Orbiter Flight Recorder and
Plaxback Technical Reference

Copyright (c) 2000-2007 Martin Schweiger 14 September 2019
Orbiter home: orbit.medphys.ucl.ac.uk/ or www.orbitersim.com

ORSBITER

SPACEFLIGHT JIMULATOR

1 INTRODUGTION. ...ttt ettt ettt e e e e e e e e e e e e s e et e e e e eeeeennn e e e eaeennnnnnns 1
2 SEQUENCE RECORDING.........cctiitiiiiiiiiisisssssssssssmesrsnsesssssssssssssssssssssmssssssssssssssesssnnns 1
3 SEQUENCE PLAYBACK........iieiicccireessssssree s ssssssse s e s sssssmns e s sssssmsesssssssnsessssssssnsesnssnnes 2
4 FILE FORMATSo rrr s s s s s s s s smmmms s e s e e s e e s s s s s mmm s s e e e e e mmnnn s 2
4.1. Position and VElOCity data...........coooieiiiiiiie e 2
4.2, AHItUAE data......coo oo 3
4.3, ArtiCUIAtIoN data............oeiiiiiiiiii e 4
S €10 o = 1Y =T o | (S 6
5 RECORDING AND PLAYBACK OF VESSEL-SPECIFIC EVENTS.........ccccccevvirrmrennnnn. 7
6 TECHNICAL INFORMATION.......cciieiiiccmrer e esssmer e s essssmr e e s ssssmne e e e sssssmne e s sssssmmsensnnsnnes 8
6.1, State INterpolation..........c..eiiii i 8
6.2. Attitude INterpolation........ ..o 8
7 Y | o T 8
APPENDIX A ORBITER REFERENCE FRAMES..........cccccoiimmmmmrrrrrereesesss s s e snnmssss s s s neeennns 10

APPENDIX B CARTESIAN AND POLAR COORDINATES..........cccoctmmmmnmmnnsnnnsseeennssnnens 10

http://www.orbitersim.com/
http://www.medphys.ucl.ac.uk/~martins/orbit/orbit.html

1 Introduction

The purpose of this project is the extension of the standard Orbiter functionality to allow the
recording and playback of spacecraft trajectories. The format of the recording streams is
public so that external applications such as trajectory optimisation programs can be used to
generate the data streams, and to use Orbiter as a visualisation tool for these pre-computed
trajectories.

The recorded data include position and velocity samples, attitude data samples, and
articulation data which mark events such as engine levels, booster separation, animations,
etc. Different data formats (e.g. different frames of reference) are supported to simplify the
interfacing with external applications.

Additions to the Orbiter Programming Interface for recording and reading vessel-specific
articulation data are provided to enable addon developers to add specific event types in the
vessel module code.

2 Sequence recording

Flight sequences can be recorded and played back later. Currently, recorded data for include
for each spacecraft:

o Position and velocity. At the moment, these data are recorded relative to the reference
planet, either in a non-rotating reference system (ecliptic and equinox of J2000), or a
rotating equatorial reference system. As a result, trajectories are currently recorded in an
absolute time frame. Samples are written in regular intervals (currently 4 seconds) or if
the velocity vector rotates by more than 5 degrees.

Attitude. Attitude data are saved in terms of the Euler angles of the spacecraft with
respect to the ecliptic reference frame or local horizon frame. Samples are written
whenever one of the angles has changed by more than a predefined threshold limit.
Articulation data. These include changes in thrust level of individual spacecraft engines,
and custom events recorded by individual spacecraft modules, such as animations.

In addition, global simulation events, such as changes in the recording speed or onscreen
annotations, are stored separately.

To start recording a flight sequence, launch an Orbiter scenario and start the recorder by
pressing Ctrl-C, or from the recorder dialog box (Ctrl-F5). The recording can be stopped by
pressing Ctrl-C again or by terminating the simulation. Currently, all spacecraft in the scenario
are recorded. Selective recording will be implemented later.

3 Sequence playback

Each recording generates a new scenario under the “Scenarios\Playback” subdirectory, with
the same name as the original scenario. The playback scenario defines the simulation state at
the moment when the recording was started. The only difference between standard and
playback scenarios is an additional entry “FLIGHTDATA” in each of the recorded spacecraft
sections.

Playback scenarios are launched like standard scenarios. On launch, a “Playback” indicator is
displayed at the bottom of the simulation window. All spacecraft follow their recorded
trajectories until the end of the recording sequence is reached or until playback is terminated
by the user with Ctrl-C. At that point, Orbiter's own time propagation mechanism takes over
again, and spacecraft return to user control.

Position and attitude data are interpolated between the recorded samples during playback.
The recorded articulation events are effective instantaneously.

During playpack, the user can manipulate the camera views, switch between camera targets,
and operate cockpit instruments such as the MFD displays.

The playback speed (time compression) can either be controlled manually by the user, or set
automatically from data tags in the articulation stream.

4 File formats

All flight data are recorded under the “Flights” subdirectory. Each recording generates a new
subdirectory with the name of the scenario. If the directory already exists, it is overwritten.

Global simulation events, such as changes in time acceleration or camera view mode, or
onscreen annotations, are recorded in file system.dat. In addition, each recorded object
generates three files, where <object> is the name of the vessel as defined in the scenario file:

4.1. Position and velocity data

<object>.pos
Position and velocity data relative to a reference body. Each line contains either a data
sample, or a format directive. The following directives are currently supported:

STARTMJD <mjad>
Defines an absolute time reference for the simulation start time. <mjd> is a floating
point number defining the start date in MJD (Modified Julian Date) format. Only a single
STARTMJD tag should be provided at the beginning of the stream. Note that this value
is currently not used by the simulator, because the simulation start date is read from
the corresponding scenario file.

REF <reference>
Defines the reference object (planet, moon, sun) relative to which the following data
samples are calculated. Whenever the trajectory enters the sphere of influence of a
different object, another “REF” line should be added, and the following data samples
computed with respect to the new object. <reference> must correspond to a celestial
object defined in the Orbiter planetary system. There is no default object, therefore a
REF directive must appear at the beginning of the file before any data samples.

FRM [ECLIPTIC | EQUATORIAL]
Orientation of the reference frame for all following data samples. This can be either the
ecliptic of the J2000 epoch, or the (rotating) equatorial frame of the reference body.
The default setting is “ECLIPTIC”.

CRD [CARTESIAN | POLAR]
Coordinate and velocity data format for all following data samples. This can be either in
rectangular cartesian format (x,y,z) [m] and (x, »,z) [m/s], respectively, or in
spherical polar coordinates (r,4,0) [m,rad,rad] and (7., ®,©0) [m/s,rad/s,rad/s],
respectively, with radial distance r, polar angle ¢ and azimuth angle 0. If an equatorial
frame is selected, ¢ and 6 define equatorial longitude and latitude. See Appendix 2 for
transformation conventions.
The default setting is “CARTESIAN”.

Any lines not containing one of the above directives are assumed to contain data samples, in
the following format:

<simt> <position> <velocity>

where :

<simt> is the time since scenario start [s]

<position> is the object position w.r.t. the current reference object. Depending on the
current “CRD” setting, this is a triplet of <x> <y> <z> cartesian coordinates
[m], or a triplet of <radius> [m] <longitude> <latitude> [rad], in either
ecliptic or equatorial reference frame.

<velocity> is the object velocity w.r.t. the current reference object. Depending on the
current “CRD” setting, this is a triplet of <vx> <vy> <vz> rates in cartesian
coordinates [m/s], or a triplet of <radial velocity> [m/s] <longitude rate>
<latitude rate> [rad/s], in either ecliptic or equatorial reference frame.

4.2. Attitude data

<object>.att
Attitude data. Each line contains either a data sample, or a format directive. The following
directive is currently supported:

STARTMJD <mjad>
Defines an absolute time reference for the simulation start time. <mjd> is a floating
point number defining the start date in MJD (Modified Julian Date) format. Only a single
STARTMJD tag should be provided at the beginning of the stream. Note that this value
is currently not used by the simulator, because the simulation start date is read from
the corresponding scenario file.

FRM [ECLIPTIC | HORIZON]
Orientation of the reference frame for all following attitude data samples. This can
either be the ecliptic of the J2000 epoch, or the local horizon of the current vessel
position. The default setting is "ECLIPTIC".

REF <reference>
Defines the reference object (planet, moon, sun) relative to which the following data
samples are calculated. Note that a REF tag is required after each FRM HORIZON tag,
to define the reference object for local horizon calculations, but is optional after a FRM
ECLIPTIC tag, because the reference frame is globally fixed.
When using FRM HORIZON, the reference should usually be switched by inserting a
new REF tag whenever the trajectory enters the sphere of influence of a different
object.

Any lines not containing a directive are assumed to contain samples , in the following format:
<simt> <a> <f3> <p>

where:
<simt> is the time since scenario start (seconds)
<a> <[> <y> are the Euler angles of the local spacecraft frame with respect to the
orientation of the reference frame.

Definition: Let
i To T

R=\|ry ry ry

be the rotation matrix that transforms from vessel frame to the reference frame (ecliptic or
local horizon).

For the ecliptic frame, Orbiter uses the following set of Euler angles:

r r
2! .

a =arctan—=-, f =-—arcsinr,, y =arctan—>

33 "

For the local horizon frame, Orbiter uses a different set of Euler angles:

o= arctanrl—z, B =arcsinr,,, y= arctan -
Iy T3
so that the Euler angles can be directly defined with the bank, pitch and yaw angles of the
vessel in the local horizon frame:

Bank angle a: angle between the projection of the horizon normal into the vessel xy-
plane, and the vessel "up" direction (0,1,0).

Pitch angle f: angle between the projection of the horizon normal into the vessel yz-
plane, and the vessel "up" direction (0,1,0).

Yaw angle y. angle between the projection of the vessel "forward" direction (0,0,1) into
the local horizon plane, and the horizon "north" direction.

4.3. Articulation data

<object>.atc
Articulation data. Each line contains a sample as follows:

<simt> <tag> [<data>]
where:

<simt> is the time since scenario start (seconds)

<tag> identifies the event type. The generic event types currently supported by
Orbiter are listed below. In addition, vessel-specific event types can be
directly implemented by the vessel module.

<data> Event-type specific data. Not all event types may require additional
paramters.

Engine events

Engine events are recorded with the “ENG” tag in the articulation stream. Engine event data
consist of

<engine id>:<level>

pairs, where <engine id> is either a zero-based integer index identifying the engine, or an
engine group identifier string. <level> is the thrust level (range: 0-1). Integer engine identifiers
can usually be obtained from the spacecraft DLL implementation. If groups of engines must
be operated simultaneously, it is often more convenient to use group identifiers. The following
group labels are supported:

MAIN
RETRO

HOVER
RCS_PITCHUP
RCS_PITCHDOWN
RCS_YAWLEFT
RCS_YAWRIGHT
RCS_BANKLEFT
RCS_BANKRIGHT
RCS_RIGHT
RCS_LEFT
RCS_UP
RCS_DOWN
RCS_FORWARD
RCS_BACK

How the engines are assembled in these groups depends on the vessel module code. Note
that not all vessel types may support all of the logical groups listed above. Further, some
engines may not be members of any group and therefore must be addressed by their
individual integer id's.

Not all engine levels need to be recorded with each sample, but the first and last entries of the
file should contain all engines, to provide a fully defined initial and final state.

Other generic events

The following default event tags in the articulation stream are currently recognised by vessels
in Orbiter, and written to the atc stream during recording:

RCSMODE <mode>

Switch Reaction Control System mode to <mode>, where
<mode> is an integer in the range 0...2. See the RCS_xxx
constants defined in Orbitersdk/include/OrbiterAPl.h for a
list of supported RCS modes.

ADCMODE <mode>

Switch aerodynamic control mode to <mode>

NAVMODE <mode>

Switch autonav mode to <mode>, where <mode> is an
integer in the range 1...7. See the NAVMODE_xxx
constants defined in Orbitersdk/include/OrbiterAPl.h for a
list of supported nav modes. Note that some modes are
exclusive, i.e. setting one may implicitly clear another mode.

NAVMODECLR <mode>

Explicitly clear autonav mode <mode>.

UNDOCK <dock>

Undock vessel attached at port <dock>

ATTACH <vessel> <pidx>
<cidx> [LOOSE]

Attach <vessel> as a child object. This event is written to
the parent object’'s ATC stream. <pidx> is the attachment
index on the parent, <cidx> the attachment index on the
child. If flag LOOSE is specified, the objects are attached at
their current relative orientation. Otherwise, the predefined
attachment orientation is enforced.

DETACH <pidx> [<vel>]

Detach the child object currently attached at attachment
point <pidx>. This event is written to the parent object’s
ATC stream. An optional detachment velocity <vel> can be
specified. By default, <vel>=0.

4.4. Global events

Simulation events which do not refer to a specific spacecraft are recorded in a separate file,
system.dat. The format is the same as for vessel .atc files:

<simt> <tag> [<data>]

The following global event tags are currently supported by Orbiter, and written to system.dat

during recording:

Time acceleration events

TACC <acc> [<delay>]

Set time acceleration factor to <acc>. This tag is only
written if the “Record time acceleration” option is enabled in
the recorder dialog (Ctrl-F5). If the optional <delay> value is
provided, the change in time acceleration is non-
instantaneous. Instead, time acceleration changes by one
order of magnitude per <delay> seconds.

Input focus events

FOCUS <object>

Switch input focus to vessel <object>. Although manual
control of spacecraft is largely disabled during playback,
resetting the focus object does affect the playback
behaviour (for example, only the focus object supports
cockpit camera modes).

This tag is only written if the "Record focus events" option is
enabled in the recorder dialog.

Recorded focus events are only used during playback if the
"Use recorded focus events" option is enabled in the
playback dialog.

Camera events

CAMERA PRESET <n>

Switch to camera preset position <n>, where <n> is the
zero-based index of a camera preset mode stored in the
scenario.

CAMERA SET <param>

Switch camera to a mode defined by <param>. This tag
allows inline camera mode definitions without the need for
storing preset data in the scenario. The contents of
<param> depend on the specific camera mode.

Onscreen annotation events

Playback sequences can be annotated with onscreen messages. The messages appear on
top of the render window at the time defined in the playback stream. Some basic formatting
(position, size and colour) are available.

NOTE <text> Display <text> as an onscreen annotation.

NOTEOFF Remove the current annotation.

NOTEPOS <x1> <y1> <x2> Define the bounding box of the annotation area in units of

<y2> the simulation window size:
0<x71<x2<1and0<yf<y2<1.

NOTESIZE <scale> Reset the annotation font size (scale > 0, where scale = 1 is
the default size).

NOTECOL <r> <g>

Annotations can be added by inserting NOTE tags manually into the articulation stream after
the recording has been completed. The format is

<simt> NOTE <text>

where <text> is the text of the note. The text must be entered as a single line, but will be
displayed in multiple lines on screen as required. The notes must be sorted appropriately into
the stream, so that all <simt> tags appear in increasing order. The text remains visible until it
is replaced by a new note, or until it is explicitly removed with

<simt> NOTEOFF

or until the end of the replay sequence. Note that annotations can be displayed by all vessels
in the playback scenario. However, in general notes should only be generated by the focus
vessel to avoid confusion.

The following formatting tags are available:

<simt> NOTEPOS <x1> <y1> <x2> <y2>

defines the position of the rectangle where the note appears. All values are fractions
of the simulation window size, in the range 0...1. <x7> and <x2> are the left and right
edges of the note rectangle, <y7> and <y2> are the top and bottom edges. x7 < x2
and y1 < y2 are required. If the rectangle is set too small, part of the note may not be
displayed.

<simt> NOTESIZE <scale>
defines the size scale for the note text, where 1 denotes the default size. The actual
text size is scaled with the simulation window size.

<simt> NOTECOL <r> <g>
defines the colour of the note text, where <r> <g> are the red, green and blue
components, respectively. Values must be in the range 0...1.

5 Recording and playback of vessel-specific events

Using Orbiter's Application Programming Interface (API) it is possible to record and play back
events that are not recognised by the Orbiter core. These may include animations like
lowering or retracting landing gear, opening cargo bay doors, separating booster rockets, etc.
The API interface for recording and playback consists of two functions:

void VESSEL::RecordEvent (const char *event_type, const char *event) const
The vessel calls this function to record an event to the articulation stream. The record consists

of an event type identifier (event_type) and the event itself (event). event_type must be a
single word (no whitespace), while event can contain multiple items separated by spaces.

Orbiter only writes the event if a recording session is active. Otherwise the function call is
ignored. The event appears in the stream in the format

<simt> <event_type> <event>

During a playback session, any events that are read from the articulation stream but contain
an identifier not recognised by the Orbiter core, are passed on to the vessel module via the
callback function

virtual bool VESSEL2::clbkPlaybackEvent (double simt, double event_t, const char
*event_type, const char *event)

where simt is the current simulation time, event _t is the time recorded with the event,

event _type is the identifier for the event, and event is the recorded event data. An event is
processed whenever the simulation time has moved past the recorded time stamp, therefore
simt > event_t.

Examples for vessel-specific custom articuation stream commands can be found in the
source code of the “Delta-glider”: Orbitersdk/samples/DeltaGlider/DeltaGlider.cpp

6 Technical information

6.1. State interpolation

Orbiter interpolates position and velocity vectors assuming piecewise linear acceleration. Let
o and t; be two consecutive samples, with recorded state vectors

rty)=ry, r@t)=rn

v(ty)=vy, v(t,)=v,
To find the interpolated state at time t with f, < t < t;, assume linear acceleration between f,
and t:

a(t) =a, +bAt
where At = t - f,. To find a, and b which satisfy the boundary conditions, we integrate the state
vectors:

At
v(t) = Ia(t')dt’ =V, +a,At +%bAt2
0

At
1 1
P = [Vt = ry 4 oA+ Za AP+ bAP
0
Substituting the boundary conditions at t; and solving for a, and b gives

_ 2[3(r;, — 1) — AT (2v, +v))]

‘ AT?
b= 0[2(ry —1) + AT (vy +v))]
AT?
with AT =t — to.

6.2. Attitude interpolation

Currently, spacecraft orientations are interpolated linearly between attitude samples, resulting
in piecewise constant angular velocities. The interpolation is implemented by transforming the
recorded Euler angle data into a quaternion representation, and performing a spherical
interpolation between pairs of quaternion samples.

The attitude data stream should provide sufficiently dense sampling so that noticeable jumps
in angular velocity are avoided.

Orbiter’s built-in recording module writes a sample to the attitude stream

¢ when the orientation has changed by more than 0.06 rad since the last sample, or

e when the orientation has changed by more than 0.001 rad and no sample has been
written for more than 0.5 seconds.

Some recorded examples are provided to demonstrate the playback features in orbiter, and
the data stream formats. The examples can be found in the Playback scenario folder, and are
executed by running Orbiter with the appropriate scenario. The corresponding data streams
can be found under the Flights folder.

Glider launch 1:
Scenario:

Attitude stream:
Pos/vel stream:
Articulation stream:

Glider launch 2:
Scenario:

Attitude stream:
Pos/vel stream:
Avrticulation stream:
Notes:

Glider in orbit 1:
Scenario:

Attitude stream:
Pos/vel stream:
Avrticulation stream:
Notes:

Glider in orbit 2:
Scenario:

Attitude stream:
Pos/vel stream:
Articulation stream:
Notes:

Atlantis launch:
Scenario:

Attitude stream:
Pos/vel stream:
Articulation stream:

Notes:

Glider takeoff and landing.

Ecliptic frame of reference

Geocentric cartesian coordinates in ecliptic frame of reference
Exhaust rendering, animations (landing gear, airbrakes)

Glider takeoff and landing.

Local horizon frame of reference.

Geocentric polar coordinates in equatorial frame of reference

Exhaust rendering, animations (landing gear, airbrakes)

Demonstrates use of horizon frame of reference, where attitude data are
provided in terms of bank, pitch and yaw angle of local horizon plane.

Glider attitude control in orbit

Ecliptic frame of reference

Geocentric cartesian coordinates in ecliptic frame of reference

Exhaust rendering of reaction control thrusters

Demonstrates use of attitude stream for object rotation, including visual
cues (RCS thruster rendering).

Glider in orbit: demonstration of custom animations

Local horizon frame of reference

Geocentric polar coordinates in equatorial frame of reference

Custom animation sequences

This example shows the use of custom animation commands (defined in
the vessel plugin module) read from the articulation stream. The glider
defines animation commands for various mesh elements (landing gear,
airbrakes, airloccks and hatches, radiator deployment, etc.)

Space Shuttle launch and orbit insertion.

Ecliptic frame of reference

Geocentric polar coordinates in equatorial frame of reference

SRB booster/SSME and RCS thruster exhaust animation, SRB and ET
jettison commands

Shows the use of custom-defined jettison commands for animation
control purposes. Articulation stream also has examples for addressing
thruster groups with symbolic labels (“ENG MAIN”).

Atlantis undocking:

Scenario:

Attitude stream:
Pos/vel stream:
Avrticulation stream:
Notes:

Space Shuttle moving away from International Space Station, cargo
doors closing.

Local horizon frame of reference

Geocentric polar coordinates in equatorial frame of reference

RCS thruster control, cargo bay animation

Shows custom animation commands defined in plugin module
(Atlantis.dll): Radiator and payload bay closing.

Atlantis final approach:

Scenario: Space Shuttle touchdown sequence.

Attitude stream: Ecliptic frame of reference

Pos/vel stream: Geocentric polar coordinates in equatorial frame of reference
Articulation stream: Custom animation sequences

Notes: Shows custom animation commands defined in plugin module

(Atlantis.dll): Split rudder brake deployment and landing gear animation.
Demonstrates onscreen annotation.

Lunar transfer:

Scenario: Complete transfer simulation from Earth surface (KSC) to landing on the
Moon’s surface.

Attitude stream: Ecliptic frame of reference

Pos/vel stream: Equatorial frame of reference Earth/Sun/Moon

Articulation stream: Engine events, custom animation, annotations and time acceleration

Notes: Demonstrates sampling density variations by changing the simulation

speed during recording, playback time acceleration and onscreen
annotation features. Shows transition of reference object in the .pos
stream. Demonstrates ability of long playback sequences (~1 hour at
recording speed).

8 Orbiter reference frames

Orbiter uses left-handed coordinate systems throughout.

The global frame.
The global frame of reference is the barycentric ecliptic frame for ecliptic and equinox of
epoch J2000, where

+x points to the vernal equinox

+y points to ecliptic zenith

Z=Px%

Rotating planet frames.

Planet frames are fixed to rotating planets, where
+x points from the planet centre to surface point latitude 0, longitude 0.
+y points from the planet centre to the north pole
Z=YXX

Local horizon frames.

Given planetocentric equatorial longitude and latitude (¢,0), the local horizon frame is given by
the tangent plane to the (spherical) planet surface, where

+x points east

+y points up

+z points north

Local spacecraft frames.
The orientation of the spacecraft frame is largely up to the designer. By convention, the
following is usually adopted:

+x points “right”

+y points “up”

+z points “forward” (in the direction of the thrust vector of the main engines)

9 Cartesian and polar coordinates

Given Orbiter’s left-handed coordinate system, the transformation between cartesian
positions (x, y, z) and velocities (x, 3, =) and spherical polar coordinates (r,4,6) and
velocities (7, ¢, ©) is defined as

and

X =rcos¢cosl
y=rsin@
z=rsin¢sin @

r=yx*+y*+2°

z
¢ = arctan—
X
0 = arcsin 2

7

X = cos¢cosO —r¢sin ¢ cos@ — r0 cos ¢ sin O
3 =7sin@ + 60 cos O

Z=7sin¢cosO + r¢cosdcosO —rOsin ¢sin O

r=ysin0 + cosO(xcos¢ + zsin ¢)

. zcos¢—xsing

¢:

rcosf

b ycosO —sinO(x cos ¢ + zsin @)
r

	Copyright (c) 2000-2007 Martin Schweiger 14 September 2019
	Orbiter home: orbit.medphys.ucl.ac.uk/ or www.orbitersim.com
	1 Introduction
	2 Sequence recording
	3 Sequence playback
	4 File formats
	4.1. Position and velocity data
	4.2. Attitude data
	4.3. Articulation data
	Engine events
	Other generic events

	4.4. Global events
	Time acceleration events
	Input focus events
	Camera events
	Onscreen annotation events

	5 Recording and playback of vessel-specific events
	6 Technical information
	6.1. State interpolation
	6.2. Attitude interpolation

	7 Examples
	8 Orbiter reference frames
	Rotating planet frames.
	Local horizon frames.

	9 Cartesian and polar coordinates

