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1 Introduction
The purpose of this project is the extension of the standard Orbiter functionality to allow the 
recording and playback of spacecraft trajectories. The format of the recording streams is 
public so that external applications such as trajectory optimisation programs can be used to 
generate the data streams, and to use Orbiter as a visualisation tool for these pre-computed 
trajectories.
The recorded data include position and velocity samples, attitude data samples, and 
articulation data which mark events such as engine levels, booster separation, animations, 
etc. Different data formats (e.g. different frames of reference) are supported to simplify the 
interfacing with external applications.
Additions to the Orbiter Programming Interface for recording and reading vessel-specific 
articulation data are provided to enable addon developers to add specific event types in the 
vessel module code.

2 Sequence recording
Flight sequences can be recorded and played back later. Currently, recorded data for include 
for each spacecraft:

 Position and velocity. At the moment, these data are recorded relative to the reference 
planet, either in a non-rotating reference system (ecliptic and equinox of J2000), or a 
rotating equatorial reference system. As a result, trajectories are currently recorded in an 
absolute time frame. Samples are written in regular intervals (currently 4 seconds) or if 
the velocity vector rotates by more than 5 degrees.

 Attitude. Attitude data are saved in terms of the Euler angles of the spacecraft with 
respect to the ecliptic reference frame or local horizon frame. Samples are written 
whenever one of the angles has changed by more than a predefined threshold limit.

 Articulation data. These include changes in thrust level of individual spacecraft engines, 
and custom events recorded by individual spacecraft modules, such as animations.

In addition, global simulation events, such as changes in the recording speed or onscreen 
annotations, are stored separately.

To start recording a flight sequence, launch an Orbiter scenario and start the recorder by 
pressing Ctrl-C, or from the recorder dialog box (Ctrl-F5). The recording can be stopped by 
pressing Ctrl-C again or by terminating the simulation. Currently, all spacecraft in the scenario
are recorded. Selective recording will be implemented later.

3 Sequence playback
Each recording generates a new scenario under the “Scenarios\Playback” subdirectory, with 
the same name as the original scenario. The playback scenario defines the simulation state at
the moment when the recording was started. The only difference between standard and 
playback scenarios is an additional entry “FLIGHTDATA” in each of the recorded spacecraft 
sections.
Playback scenarios are launched like standard scenarios. On launch, a “Playback” indicator is
displayed at the bottom of the simulation window. All spacecraft follow their recorded 
trajectories until the end of the recording sequence is reached or until playback is terminated 
by the user with Ctrl-C. At that point, Orbiter’s own time propagation mechanism takes over 
again, and spacecraft return to user control.
Position and attitude data are interpolated between the recorded samples during playback. 
The recorded articulation events are effective instantaneously.
During playpack, the user can manipulate the camera views, switch between camera targets, 
and operate cockpit instruments such as the MFD displays.
The playback speed (time compression) can either be controlled manually by the user, or set 
automatically from data tags in the articulation stream.



4 File formats
All flight data are recorded under the “Flights” subdirectory. Each recording generates a new 
subdirectory with the name of the scenario. If the directory already exists, it is overwritten.

Global simulation events, such as changes in time acceleration or camera view mode, or 
onscreen annotations, are recorded in file system.dat. In addition, each recorded object 
generates three files, where <object> is the name of the vessel as defined in the scenario file:

4.1. Position and velocity data
<object>.pos
Position and velocity data relative to a reference body. Each line contains either a data 
sample, or a format directive. The following directives are currently supported:

STARTMJD <mjd>
Defines an absolute time reference for the simulation start time. <mjd> is a floating 
point number defining the start date in MJD (Modified Julian Date) format. Only a single
STARTMJD tag should be provided at the beginning of the stream. Note that this value 
is currently not used by the simulator, because the simulation start date is read from 
the corresponding scenario file.

REF <reference>
Defines the reference object (planet, moon, sun) relative to which the following data 
samples are calculated. Whenever the trajectory enters the sphere of influence of a 
different object, another “REF” line should be added, and the following data samples 
computed with respect to the new object. <reference> must correspond to a celestial 
object defined in the Orbiter planetary system. There is no default object, therefore a 
REF directive must appear at the beginning of the file before any data samples.

FRM [ECLIPTIC | EQUATORIAL]
Orientation of the reference frame for all following data samples. This can be either the 
ecliptic of the J2000 epoch, or the (rotating) equatorial frame of the reference body. 
The default setting is “ECLIPTIC”.

CRD [CARTESIAN | POLAR]
Coordinate and velocity data format for all following data samples. This can be either in
rectangular cartesian format (x,y,z) [m] and ),,( zyx   [m/s], respectively, or in 
spherical polar coordinates (r,,) [m,rad,rad] and ),,(  r  [m/s,rad/s,rad/s], 
respectively, with radial distance r, polar angle  and azimuth angle . If an equatorial 
frame is selected,  and  define equatorial longitude and latitude. See Appendix 2 for 
transformation conventions.
The default setting is “CARTESIAN”.

Any lines not containing one of the above directives are assumed to contain data samples, in 
the following format:

<simt> <position> <velocity>

where :
<simt> is the time since scenario start [s]
<position> is the object position w.r.t. the current reference object. Depending on the 

current “CRD” setting, this is a triplet of <x> <y> <z> cartesian coordinates
[m], or a triplet of <radius> [m]  <longitude> <latitude> [rad], in either 
ecliptic or equatorial reference frame.

<velocity> is the object velocity w.r.t. the current reference object. Depending on the 
current “CRD” setting, this is a triplet of <vx> <vy> <vz> rates in cartesian 
coordinates [m/s], or a triplet of <radial velocity> [m/s] <longitude rate> 
<latitude rate> [rad/s], in either ecliptic or equatorial reference frame.



4.2. Attitude data
<object>.att
Attitude data. Each line contains either a data sample, or a format directive. The following 
directive is currently supported:

STARTMJD <mjd>
Defines an absolute time reference for the simulation start time. <mjd> is a floating 
point number defining the start date in MJD (Modified Julian Date) format. Only a single
STARTMJD tag should be provided at the beginning of the stream. Note that this value 
is currently not used by the simulator, because the simulation start date is read from 
the corresponding scenario file.

FRM [ECLIPTIC | HORIZON]
Orientation of the reference frame for all following attitude data samples. This can 
either be the ecliptic of the J2000 epoch, or the local horizon of the current vessel 
position. The default setting is "ECLIPTIC".

REF <reference>
Defines the reference object (planet, moon, sun) relative to which the following data 
samples are calculated. Note that a REF tag is required after each FRM HORIZON tag,
to define the reference object for local horizon calculations, but is optional after a FRM 
ECLIPTIC tag, because the reference frame is globally fixed.
When using FRM HORIZON, the reference should usually be switched by inserting a 
new REF tag whenever the trajectory enters the sphere of influence of a different 
object.

Any lines not containing a directive are assumed to contain samples , in the following format:

<simt> <> <> <>

where:
<simt> is the time since scenario start (seconds)
<> <> <> are the Euler angles of the local spacecraft frame with respect to the 

orientation of the reference frame.
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be the rotation matrix that transforms from vessel frame to the reference frame (ecliptic or 
local horizon). 

For the ecliptic frame, Orbiter uses the following set of Euler angles:
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For the local horizon frame, Orbiter uses a different set of Euler angles:
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so that the Euler angles can be directly defined with the bank, pitch and yaw angles of the 
vessel in the local horizon frame:

Bank angle : angle between the projection of the horizon normal into the vessel xy-
plane, and the vessel "up" direction (0,1,0).

Pitch angle : angle between the projection of the horizon normal into the vessel yz-
plane, and the vessel "up" direction (0,1,0).



Yaw angle : angle between the projection of the vessel "forward" direction (0,0,1) into
the local horizon plane, and the horizon "north" direction.

4.3. Articulation data
<object>.atc
Articulation data. Each line contains a sample as follows:

<simt> <tag> [<data>]

where:

<simt> is the time since scenario start (seconds)
<tag> identifies the event type. The generic event types currently supported by 

Orbiter are listed below. In addition, vessel-specific event types can be 
directly implemented by the vessel module.

<data> Event-type specific data. Not all event types may require additional 
paramters.

Engine events

Engine events are recorded with the “ENG” tag in the articulation stream. Engine event data 
consist of

<engine id>:<level>

pairs, where <engine id> is either a zero-based integer index identifying the engine, or an 
engine group identifier string. <level> is the thrust level (range: 0-1). Integer engine identifiers 
can usually be obtained from the spacecraft DLL implementation. If groups of engines must 
be operated simultaneously, it is often more convenient to use group identifiers. The following
group labels are supported:

MAIN
RETRO
HOVER
RCS_PITCHUP
RCS_PITCHDOWN
RCS_YAWLEFT
RCS_YAWRIGHT
RCS_BANKLEFT
RCS_BANKRIGHT
RCS_RIGHT
RCS_LEFT
RCS_UP
RCS_DOWN
RCS_FORWARD
RCS_BACK

How the engines are assembled in these groups depends on the vessel module code. Note 
that not all vessel types may support all of the logical groups listed above. Further, some 
engines may not be members of any group and therefore must be addressed by their 
individual integer id's.
Not all engine levels need to be recorded with each sample, but the first and last entries of the
file should contain all engines, to provide a fully defined initial and final state.

Other generic events

The following default event tags in the articulation stream are currently recognised by vessels 
in Orbiter, and written to the atc stream during recording:



RCSMODE <mode> Switch Reaction Control System mode to <mode>, where 
<mode> is an integer in the range 0...2. See the RCS_xxx 
constants defined in Orbitersdk/include/OrbiterAPI.h for a 
list of supported RCS modes.

ADCMODE <mode> Switch aerodynamic control mode to <mode>
NAVMODE <mode> Switch autonav mode to <mode>, where <mode> is an 

integer in the range 1...7. See the NAVMODE_xxx 
constants defined in Orbitersdk/include/OrbiterAPI.h for a 
list of supported nav modes. Note that some modes are 
exclusive, i.e. setting one may implicitly clear another mode.

NAVMODECLR <mode> Explicitly clear autonav mode <mode>.
UNDOCK <dock> Undock vessel attached at port <dock>
ATTACH <vessel> <pidx> 
<cidx> [LOOSE]

Attach <vessel> as a child object. This event is written to 
the parent object’s ATC stream. <pidx> is the attachment 
index on the parent, <cidx> the attachment index on the 
child. If flag LOOSE is specified, the objects are attached at 
their current relative orientation. Otherwise, the predefined 
attachment orientation is enforced.

DETACH <pidx> [<vel>] Detach the child object currently attached at attachment 
point <pidx>. This event is written to the parent object’s 
ATC stream. An optional detachment velocity <vel> can be 
specified. By default, <vel>=0.

4.4. Global events
Simulation events which do not refer to a specific spacecraft are recorded in a separate file, 
system.dat. The format is the same as for vessel .atc files:

<simt> <tag> [<data>]

The following global event tags are currently supported by Orbiter, and written to system.dat 
during recording:

Time acceleration events

TACC <acc> [<delay>] Set time acceleration factor to <acc>. This tag is only 
written if  the “Record time acceleration” option is enabled in
the recorder dialog (Ctrl-F5). If the optional <delay> value is
provided, the change in time acceleration is non-
instantaneous. Instead, time acceleration changes by one 
order of magnitude per <delay> seconds.

Input focus events

FOCUS <object> Switch input focus to vessel <object>. Although manual 
control of spacecraft is largely disabled during playback, 
resetting the focus object does affect the playback 
behaviour (for example, only the focus object supports 
cockpit camera modes).
This tag is only written if the "Record focus events" option is
enabled in the recorder dialog.
Recorded focus events are only used during playback if the 
"Use recorded focus events" option is enabled in the 
playback dialog.

Camera events

CAMERA PRESET <n> Switch to camera preset position <n>, where <n> is the 
zero-based index of a camera preset mode stored in the 
scenario. 

CAMERA SET <param> Switch camera to a mode defined by <param>. This tag 
allows inline camera mode definitions without the need for 
storing preset data in the scenario. The contents of 
<param> depend on the specific camera mode.



Onscreen annotation events

Playback sequences can be annotated with onscreen messages. The messages appear on 
top of the render window at the time defined in the playback stream. Some basic formatting 
(position, size and colour) are available.

NOTE <text> Display <text> as an onscreen annotation.
NOTEOFF Remove the current annotation.
NOTEPOS <x1> <y1> <x2> 
<y2>

Define the bounding box of the annotation area in units of 
the simulation window size:
0  x1 < x2  1 and 0  y1 < y2  1.

NOTESIZE <scale> Reset the annotation font size (scale > 0, where scale = 1 is
the default size).

NOTECOL <r> <g> <b>

Annotations can be added by inserting NOTE tags manually into the articulation stream after 
the recording has been completed. The format is

<simt> NOTE <text>

where <text> is the text of the note. The text must be entered as a single line, but will be 
displayed in multiple lines on screen as required. The notes must be sorted appropriately into 
the stream, so that all <simt> tags appear in increasing order. The text remains visible until it 
is replaced by a new note, or until it is explicitly removed with

<simt> NOTEOFF

or until the end of the replay sequence. Note that annotations can be displayed by all vessels 
in the playback scenario. However, in general notes should only be generated by the focus 
vessel to avoid confusion.

The following formatting tags are available:

<simt> NOTEPOS <x1> <y1> <x2> <y2>
defines the position of the rectangle where the note appears. All values are fractions 
of the simulation window size, in the range 0...1. <x1> and <x2> are the left and right 
edges of the note rectangle, <y1> and <y2> are the top and bottom edges. x1 < x2 
and y1 < y2 are required. If the rectangle is set too small, part of the note may not be 
displayed.

<simt> NOTESIZE <scale>
defines the size scale for the note text, where 1 denotes the default size. The actual 
text size is scaled with the simulation window size.

<simt> NOTECOL <r> <g> <b>
defines the colour of the note text, where <r> <g> <b> are the red, green and blue 
components, respectively. Values must be in the range 0...1.

5 Recording and playback of vessel-specific events
Using Orbiter’s Application Programming Interface (API) it is possible to record and play back 
events that are not recognised by the Orbiter core. These may include animations like 
lowering or retracting landing gear, opening cargo bay doors, separating booster rockets, etc. 
The API interface for recording and playback consists of two functions:

void VESSEL::RecordEvent (const char *event_type, const char *event) const

The vessel calls this function to record an event to the articulation stream. The record consists
of an event type identifier (event_type) and the event itself (event). event_type must be a 
single word (no whitespace), while event can contain multiple items separated by spaces. 



Orbiter only writes the event if a recording session is active. Otherwise the function call is 
ignored. The event appears in the stream in the format

<simt> <event_type> <event>

During a playback session, any events that are read from the articulation stream but contain 
an identifier not recognised by the Orbiter core, are passed on to the vessel module via the 
callback function

virtual bool VESSEL2::clbkPlaybackEvent (double simt, double event_t, const char 
*event_type, const char *event)

where simt is the current simulation time, event_t is the time recorded with the event, 
event_type is the identifier for the event, and event is the recorded event data. An event is 
processed whenever the simulation time has moved past the recorded time stamp, therefore 
simt  event_t.

Examples for vessel-specific custom articuation stream commands can be found in the 
source code of the “Delta-glider”: Orbitersdk/samples/DeltaGlider/DeltaGlider.cpp

6 Technical information

6.1. State interpolation
Orbiter interpolates position and velocity vectors assuming piecewise linear acceleration. Let 
t0 and t1 be two consecutive samples, with recorded state vectors
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with T = t1 – t0.

6.2. Attitude interpolation
Currently, spacecraft orientations are interpolated linearly between attitude samples, resulting
in piecewise constant angular velocities. The interpolation is implemented by transforming the
recorded Euler angle data into a quaternion representation, and performing a spherical 
interpolation between pairs of quaternion samples.
The attitude data stream should provide sufficiently dense sampling so that noticeable jumps 
in angular velocity are avoided.
Orbiter’s built-in recording module writes a sample to the attitude stream
 when the orientation has changed by more than 0.06 rad since the last sample, or 



 when the orientation has changed by more than 0.001 rad and no sample has been 
written for more than 0.5 seconds.

7 Examples
Some recorded examples are provided to demonstrate the playback features in orbiter, and 
the data stream formats. The examples can be found in the Playback scenario folder, and are
executed by running Orbiter with the appropriate scenario. The corresponding data streams 
can be found under the Flights folder.

Glider launch 1:
Scenario: Glider takeoff and landing.
Attitude stream: Ecliptic frame of reference
Pos/vel stream: Geocentric cartesian coordinates in ecliptic frame of reference
Articulation stream: Exhaust rendering, animations (landing gear, airbrakes)

Glider launch 2:
Scenario: Glider takeoff and landing.
Attitude stream: Local horizon frame of reference.
Pos/vel stream: Geocentric polar coordinates in equatorial frame of reference
Articulation stream: Exhaust rendering, animations (landing gear, airbrakes)
Notes: Demonstrates use of horizon frame of reference, where attitude data are 

provided in terms of bank, pitch and yaw angle of local horizon plane.
Glider in orbit 1:
Scenario: Glider attitude control in orbit
Attitude stream: Ecliptic frame of reference
Pos/vel stream: Geocentric cartesian coordinates in ecliptic frame of reference
Articulation stream: Exhaust rendering of reaction control thrusters
Notes: Demonstrates use of attitude stream for object rotation, including visual 

cues (RCS thruster rendering).

Glider in orbit 2:
Scenario: Glider in orbit: demonstration of custom animations
Attitude stream: Local horizon frame of reference
Pos/vel stream: Geocentric polar coordinates in equatorial frame of reference
Articulation stream: Custom animation sequences
Notes: This example shows the use of custom animation commands (defined in 

the vessel plugin module) read from the articulation stream. The glider 
defines animation commands for various mesh elements (landing gear, 
airbrakes, airloccks and hatches, radiator deployment, etc.)

Atlantis launch:
Scenario: Space Shuttle launch and orbit insertion.
Attitude stream: Ecliptic frame of reference
Pos/vel stream: Geocentric polar coordinates in equatorial frame of reference
Articulation stream: SRB booster/SSME and RCS thruster exhaust animation, SRB and ET 

jettison commands
Notes: Shows the use of custom-defined jettison commands for animation 

control purposes. Articulation stream also has examples for addressing 
thruster groups with symbolic labels (“ENG MAIN”).

Atlantis undocking:
Scenario: Space Shuttle moving away from International Space Station, cargo 

doors closing.
Attitude stream: Local horizon frame of reference
Pos/vel stream: Geocentric polar coordinates in equatorial frame of reference
Articulation stream: RCS thruster control, cargo bay animation
Notes: Shows custom animation commands defined in plugin module 

(Atlantis.dll): Radiator and payload bay closing.



Atlantis final approach:
Scenario: Space Shuttle touchdown sequence.
Attitude stream: Ecliptic frame of reference
Pos/vel stream: Geocentric polar coordinates in equatorial frame of reference
Articulation stream: Custom animation sequences
Notes: Shows custom animation commands defined in plugin module 

(Atlantis.dll): Split rudder brake deployment and landing gear animation. 
Demonstrates onscreen annotation.

Lunar transfer:
Scenario: Complete transfer simulation from Earth surface (KSC) to landing on the 

Moon’s surface.
Attitude stream: Ecliptic frame of reference
Pos/vel stream: Equatorial frame of reference Earth/Sun/Moon
Articulation stream: Engine events, custom animation, annotations and time acceleration
Notes: Demonstrates sampling density variations by changing the simulation 

speed during recording, playback time acceleration and onscreen 
annotation features. Shows transition of reference object in the .pos 
stream. Demonstrates ability of long playback sequences (~1 hour at 
recording speed).

8 Orbiter reference frames
Orbiter uses left-handed coordinate systems throughout.

The global frame.
The global frame of reference is the barycentric ecliptic frame for ecliptic and equinox of 
epoch J2000, where

+x points to the vernal equinox
+y points to ecliptic zenith

xyz ˆˆˆ 

Rotating planet frames.

Planet frames are fixed to rotating planets, where
+x points from the planet centre to surface point latitude 0, longitude 0.
+y points from the planet centre to the north pole

xyz ˆˆˆ 

Local horizon frames.

Given planetocentric equatorial longitude and latitude (,), the local horizon frame is given by
the tangent plane to the (spherical) planet surface, where

+x points east
+y points up
+z points north

Local spacecraft frames.
The orientation of the spacecraft frame is largely up to the designer. By convention, the 
following is usually adopted:

+x points “right”
+y points “up”
+z points “forward” (in the direction of the thrust vector of the main engines)

9 Cartesian and polar coordinates
Given Orbiter’s left-handed coordinate system, the transformation between cartesian 
positions (x, y, z) and velocities ),,( zyx  and spherical polar coordinates (r,,) and 

velocities ),,(  r  is defined as
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