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1 Spacecraft design

This section describes how to create a new vessel class for Orbiter by writing a vessel
DLL module. Although it is possible to create simple vessel classes by writing a vessel
configuration file  without a custom module,  the full  potential  of  Orbiter’s  custom
spacecraft design capabilities can only be realised with a specialised module.

All vessels of a given class share the same DLL module. Orbiter only loads a single
instance of the DLL. This means that global variables are shared between all vessels
of that class. Do not store data which are specific to individual vessels in global or
static variables, because they can be overwritten by another vessel.

1.1 Module initialisation

When  the  user  launches  the  simulation  by  picking  a  scenario  from  the  Orbiter
Launchpad dialog and pressing the “Launch Orbiter” button, Orbiter will  load the
vessel DLL module for each spacecraft type used in the simulation, and call its  Init-
Module function. This function is called only once per Orbiter session, no matter how
many spacecraft of that type appear in the simulation. It will not be called again if the
user exits the simulation to the Launchpad, and reloads another simulation scenario.
You can use it to initialise global (non-instance specific and non-session specific) pa-
rameters.

#define ORBITER_MODULE
#include "orbitersdk.h"

HINSTANCE g_hDLL;

DLLCLBK void InitModule (HINSTANCE hModule)
{
    g_hDLL = hModule;
    // perform global module initialisation here
}

In this example, we use the InitModule function to save the module instance handle
passed to the function in global  variable  g_hDLL.  This  handle  is  useful  later,  e.g.
when loading resources stored in the module file. Note the first line of the code ex-
ample, which defines the ORBITER_MODULE flag. This flag should be included in all
Orbiter DLL modules, to ensure proper execution of initialisation and cleanup func-
tions.

At the end of a simulation run, Orbiter calls the  ExitModule function for each DLL
module.

DLLCLBK void ExitModule (HINSTANCE hModule)
{
    // perform module cleanup here
}

If you performed any dynamic memory allocation in InitModule, this is a good place
to perform the corresponding cleanup operations which de-allocate that memory.
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1.2 Vessel initialisation

To allow initialisation of individual spacecraft, Orbiter will call the ovcInit function
each time a scenario is loaded, for each vessel of that type listed in the scenario file.
Orbiter will also call  ovcInit during the simulation if a new vessel of this type is cre-
ated. The main purpose of ovcInit is to create an instance of a  VESSEL-derived in-
terface  class.  VESSEL is  a class  defined in the Orbiter API which is  the primary
means of communication between Orbiter and your own spacecraft class. In order to
make  use  of  the  interface,  you  should  derive  your  own vessel  class  derived from
VESSEL. In  ovcInit, you then create an instance of that class and return it back to
Orbiter. Note that in the latest Orbiter version, the new VESSEL2 class has been in-
troduced which inherits all the methods of VESSEL, and introduces a number of new
callback  functions  which  replace  the  previous  method  of  event  notification.  You
should derive your vessel class from VESSEL2 to make use of this latest interface.

As an example, let’s create a new class called  MyVessel, and create an instance in
ovcInit:

class MyVessel: public VESSEL2 {
public:
    MyVessel (OBJHANDLE hObj, int fmodel): VESSEL2 (hObj, fmodel) {}
    ~MyVessel () {}
    // add more vessel methods here
};

DLLCLBK VESSEL *ovcInit (OBJHANDLE hvessel, int flightmodel)
{
    return new MyVessel (hvessel, flightmodel);
}

ovcInit passes two parameters to your module: a handle to the vessel for which you
are about to create an interface, and a flag for the type of flight model requested by
the user. Both parameters are passed on to the vessel constructor. The vessel handle
is required to identify your vessel when requesting information from Orbiter.  The
flightmodel flag can be used to implement different behaviour in your module, for ex-
ample to define an “easy” and a “complex” flight model, which can then be selected by
the user. You don’t need to store these parameters in your module, because you can
retrieve them with the GetHandle and GetFlightModel methods of the VESSEL class.

To ensure proper cleanup at the end of a simulation session, you must implement the
ovcExit function to delete your vessel:

DLLCLBK void ovcExit (VESSEL *vessel)
{
    if (vessel) delete (MyVessel*)vessel;
}

Note that you need to cast the generic VESSEL pointer passed by Orbiter to your own
vessel class to ensure that the correct destructors are called.

1.3 Reading and saving a vessel state

Next, you need to make sure that your vessel is able to read its initial state from a
scenario file at the start of a simulation, and to save its state in a scenario at the end
of the simulation. This is done by overloading the  clbkLoadStateEx and  clbkSave-
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State methods of  the  VESSEL2 class.  Note  that  you only  need to  overload  these
methods if your vessel requires nonstandard parameters to be stored in the scenario
file. Standard parameters (such as position or velocity) are automatically read and
written by the base class methods.

class MyVessel: public VESSEL2 {
public:
    MyVessel (OBJHANDLE hObj, int fmodel): VESSEL2 (hObj, fmodel) {}
    ~MyVessel () {}
    void clbkLoadStateEx (FILEHANDLE scn, void *status);
    void clbkSaveState (FILEHANDLE scn);
private:
    double myparam;
};

void MyVessel::clbkLoadStateEx (FILEHANDLE scn, void *status)
{
    char *line;

    while (oapiReadScenario_nextline (scn, line)) {
        if (!strnicmp (line, "MYPARAM", 7)) {
            sscanf (line+7, "%lf", &myparam);
        } else {
            ParseScenarioLineEx (line, status);
        }
    }
}

void MyVessel::clbkSaveState (FILEHANDLE scn)
{
    VESSEL2::clbkSaveState (scn);
    oapiWriteScenario_float (scn, "MYPARAM", myparam);
}

In the code fragment above, we use the overloaded clbkLoadStateEx function to read
myparam from the scenario, were it is stored under the MYPARAM label. The func-
tion  reads  each  line  of  the  scenario  file  associated  with  our  vessel,  using  the
oapiReadScenario_nextline function.  In the loop,  we process  the  MYPARAM line,
and pass everything else to Orbiter via ParseScenarioLineEx for default processing.
Likewise, in clbkSaveState, the base class method VESSEL2::clbkSaveState is called
to  store  all  default  parameters,  before  writing  our  private  MYPARAM value.  Of
course, a real vessel implementation may need to store a large number of parameters
in the scenario to make sure its status is completely defined when the scenario is
loaded next time.

1.4 Defining class capabilities

One  of  the  most  important  callback  functions  that  should  be  overloaded  is  the
clbkSetClassCaps method. It defines the general capabilities and properties of your
spacecraft, e.g. its mass, size, visual representation, engine layout etc.

void MyVessel::clbkSetClassCaps (FILEHANDLE cfg)
{
    SetEmptyMass (1000.0);
    SetSize (10.0);
    AddMesh (oapiLoadMeshGlobal (“MyVessel.msh”));
    // define vessel capabilities here
}
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In the above example, we define a few essential parameters (empty mass and mean
radius), and load a mesh to provide a visual representation for our new spacecraft
class. In practical applications, many more parameters may have to be defined here.
Note that the file handle passed to the function points to the configuration file (.cfg)
of the vessel. This can be used to read parameters from the file, thereby allowing the
user to overwrite parameters by editing the configuration file.

We now have a “skeleton implementation” for our new spacecraft class. To make it
interesting, many more properties need to be defined, such as rocket engines (or air-
breathing engines), aerodynamic properties, animations, etc. Some of these aspects
are described in the rest of this chapter. For a complete (and sometimes quite com-
plex) vessel implementations, see the sample projects in the Orbitersdk\samples sub-
directory.

1.5 Creating rocket engines

To propel your ship in space, you must equip it with engines. There exist a variety of
different rocket engine types, such as liquid and solid fuel engines, or more futuristic
ones such as ion or photon drives.

1.5.1 A bit of theory

Thrust force

Despite their very different design, all engines work by the same principle: generating
a thrust force in one direction by expelling particles in the opposite direction at high
velocity.  A liquid-fuel engine,  for example,  consists of a burn chamber in which a
mixture of propellant and oxydiser are ignited, and a nozzle through which the ex-
panding gas is forced at high velocity. The force  Fth generated by the engine is pro-
portional to the propellant mass flow dm/dt and the velocity v0 of the expelled gas:

0)( vt
dt

dm
Fth




When creating a thruster, you need to specify the maximum force Fth it can generate
when it is driven at full power, and the propellant exit velocity  v0. (in Orbiter,  v0 is
called the fuel-specific impulse, or Isp). The Isp value determines how much fuel per
second is consumed to obtain a given thrust force. The higher the Isp value, the more
fuel-efficient the engine.

-Fth Fth

Fuel

O2
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Sometimes the  thrust-specific fuel consumption (TSFC) is quoted in the literature.
This is the amount of propellant that needs to be burned per second to obtain 1N of
thrust. Thus the TSFC is the inverse of the Isp and has units of [s m-1], or more intui-
tively [kg s-1 N-1].

Note: In Orbiter, the thrust is specified as a force, and has units of Newton [1N = 1kg
m s-2]. In the literature, thrust is often specified in units of kg. To convert such data
into Orbiter units, multiply by 1g = 9.81 m s-2. Isp is specified as a velocity in Orbiter,
with units of m s-1. In the literature it is often given in units of seconds [s]. To convert
to Orbiter units, again multiply by 1g.

How long will my fuel last?

The burn time Tb at full thrust Fmax for fuel mass mF is given by

maxF

Ispm
T F

b 

Pressure-dependent thrust efficiency

Most conventional rocket engines work less efficiently in the presence of ambient at-
mospheric  pressure,  because the ignited gas must be expelled  through the nozzle
against the outside pressure of the atmosphere. This leads to a reduction of the thrust
force at ambient pressure p:

pAFpF  0)(

where F0 is the vacuum thrust rating and A has units of an area [m2] and can be re-
garded as the effective nozzle cross section. If we know the force F1 generated at am-
bient pressure p1, then
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In the literature, the pressure-dependency of engine thrust is often defined by speci-
fying the Isp value for both vacuum and a given reference pressure (e.g. atmospheric
pressure at sea level). Orbiter uses the same convention to apply pressure depend-
ency.

Thrust level

In Orbiter,  thrusters  can  be driven  at  any  level  L between 0 (cutout)  and 1  (full
thrust). The actual thrust force generated by the engine is thus calculated as

LpFpF  )()( max
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In reality, thrusters can often only be driven at maximum, or within a limited range
below maximum. This is not currently implemented in Orbiter, but may be intro-
duced in a future version.

Thruster placement and thrust direction

The effect of a thruster depends on its placement on the vessel, and the direction in
which the thrust force is generated. In the most general case, a thruster will produce
both a linear acceleration (due to a force) and an angular acceleration (do to torque).

Torque is generated if the force vector does not pass through the vessel’s centre of
gravity (CG)

F

r CG

The torque is then given by the cross product

rFM




(remember that Orbiter uses a left-handed coordinate system!) To avoid uncontrolla-
ble spin you should design your ship’s main engines so that their force vector passes
through the CG. Vessel coordinates are always defined so that the CG is at the origin
(0,0,0). Therefore, a thruster located at (0,0,-10) and generating thrust in direction
(0,0,1) would not generate torque.

Attitude thrusters: Rotation

Sometimes generating torque is desired in order to rotate the spacecraft.  For con-
trolled attitude manouevres one then usually wants to change only the angular mo-
ment, without also inducing a linear acceleration. This requires the simultaneous op-
eration of at least 2 thrusters so that their linear moments cancel.

F

r-r

-F

Attitude thrusters: Translation

In order to provide small linear accelerations in various directions (for example, to
line the ship up with the docking port of a space station), thrusters must be driven
single or in groups so that they don’t generate torque. Sometimes it is possible to re-
use the rotational attitude thrusters for this task,  but it  is equally possible to add
separate linear thrusters.
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Engine gimbal and thrust vectoring

Using attitude thrusters in a launch vehicle during the burn phase of the main en-
gines is  usually  not practical.  Instead,  attitude control  is  performed by tilting the
main engines and thereby generating a torque as described above. In practice this
may be done by suspending the engines in a gimbal system which allows rotation
around one or two axes. In Orbiter, this can be implemented by modifying the thrust
direction of the engine.

Another way to change the thrust direction is by inserting deflector plates into the
exhaust stream.

Torque, angular momentum and angular velocity

The relationship between torque M and angular velocity is given by Euler’s equations
for a rotating rigid body:
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where (Jx, Jy, Jz) are the principal moments of the inertia tensor (PMI), (Mx, My, Mz) are
the  components  of  the  torque  tensor,  and  (x,  y,  z)  are  the  angular  velocity
components around the x, y, and z-axes. In Orbiter, this system of differential equa-
tions is solved by a trapezoid rule.

1.5.2 Putting it all into the module

Now that you know how thrusters work, it is time to add a few to your new ship. As
with other vessel capabilities, thrusters should usually be designed in the  clbkSet-
ClassCaps callback function, for example like this (assuming that MyVessel is a class
derived from VESSEL2):

void MyVessel::clbkSetClassCaps (FILEHANDLE cfg)
{
    // vessel caps definitions
}

Propellant resources

Thrusters can only be operated if they are connected to propellant resources (e.g. fuel
tanks). To create a propellant resource:

class MyVessel: public VESSEL
{
    ...
    PROPELLANT_HANDLE ph_main;
}

void MyVessel::clbkSetClassCaps (FILEHANDLE cfg)
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{
    ...
    const double MAX_MAIN_FUEL = 1e5;
    ph_main = CreatePropellantResource (MAX_MAIN_FUEL);
    ...
}

which creates a fuel tank of capacity 105kg. CreatePropellantResource returns a han-
dle to the new tank, which is used later to connect thrusters to the tank.

CreatePropellantResource accepts two further optional parameters: the initial fuel
mass, and a fuel efficiency factor eff between 0 and 1. By default, the tank is full, with
fuel efficiency 1. If an eff < 1 is specified, then the thrust force generated by all con-
nected thrusters is modified by

effFF 

Creating thrusters

To add a new thruster, use the CreateThruster command:

class MyVessel: public VESSEL
{
    ...
    THRUSTER_HANDLE th_main;
}

void MyVessel::clbkSetClassCaps (FILEHANDLE cfg)
{
    ...
    const double MAX_MAIN_THRUST = 2e5;
    const double VAC_MAIN_ISP = 4200.0;
    th_main = CreateThruster (_V(0,0,-8), _V(0,0,1), MAX_MAIN_THRUST,
                              ph_main, VAC_MAIN_ISP);
    ...
}

This adds a thruster at position (0,0,-8) with a thrust vector in the positive z-direc-
tion, with the specified max. thrust and Isp values,  and connected to the tank we
added earlier.  In this configuration,  the engine efficiency is assumed not to be af-
fected by atmospheric pressure. For increased realism, we could introduce pressure-
dependency by adding an additional Isp value at a reference pressure, and the refer-
ence pressure itself:

void MyVessel::clbkSetClassCaps (FILEHANDLE cfg)
{
    ...
    const double MAX_MAIN_THRUST = 2e5;
    const double VAC_MAIN_ISP = 4200.0;
    const double NML_MAIN_ISP = 3500.0;
    const double P_NML = 101.4e3;
    th_main = CreateThruster (_V(0,0,-8), _V(0,0,1), MAX_MAIN_THRUST,
                              ph_main, VAC_MAIN_ISP, NML_MAIN_ISP, P_NML);
    ...
}

This reduces the Isp value at sea level to 3500 and performs a linear interpolation to
obtain the Isp at arbitrary pressures. Note that we could have omitted the last pa-
rameter,  P_NML, because the reference pressure defaults to 101.4 kPa (atmospheric
pressure at Earth sea level).
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If you descend into a very dense planetary atmosphere, Orbiter will extrapolate the
Isp value beyond sea level pressure, until Isp drops to zero. At this point, the thruster
will stop working altogether.

Grouping thrusters

Although it is possible to address thrusters individually in your module, it is often
easier to engage them in groups. Groups are also required to activate manual user
thruster control  via the keyboard or joystick, and the automatic navigation modes
such as killrot.

Orbiter  has  a  number  of  standard  thruster  groups,  such  as  THGROUP_MAIN,
THGROUP_RETRO,  THGROUP_HOVER, and a full set of attitude thruster groups.
For a full listing, see VESSEL::CreateThrusterGroup in the Reference Manual.

It is the responsibility of the vessel designer to make sure that thrusters are grouped
in a sensible way. For example, whenever the user presses the “+” key on the numeri-
cal  keypad, all  thrusters in  THGROUP_MAIN will  fire. If the thrusters grouped in
THGROUP_MAIN behave in an unexpected or non-intuitive way it will be confusing
to the user. Furthermore, if attitude thrusters are not appropriately grouped, some or
all of the navigation modes may fail.

To group thrusters, use the CreateThrusterGroup command:

void MyVessel::clbkSetClassCaps (FILEHANDLE cfg)
{
    ...
    thg_main = CreateThrusterGroup (th_main, 2, THGROUP_MAIN);
    ...
}

 (this assumes that th_main is an array of 2 thruster handles which have been created
previously). The function returns a handle to the group which can be used later to
address the group.

Apart from the standard groups, Orbiter allows to create custom groups by using the
THGROUP_USER label.  Custom groups  are  not  engaged  by any  of  the  standard
manual or automatic control methods, therefore the module must implement a suit-
able control interface for these groups.

1.5.3 Defining exhaust flames

When you define a thruster with CreateThruster, Orbiter will not automatically gen-
erate visuals for the exhaust flames when the thruster is engaged. Sometimes exhaust
flames may not be appropriate, or, more importantly, you may want to detach the
logical thruster definition from the physical definition (more about this below).

To  create  an  exhaust  flame  definition  use  the  AddExhaust function.  AddExhaust
comes in two flavours:

 UINT AddExhaust (THRUSTER_HANDLE th, double lscale, double wscale, 
SURFHANDLE tex = 0) const

 UINT AddExhaust (THRUSTER_HANDLE th, double lscale, double wscale, const
VECTOR3 &pos, const VECTOR3 &dir, SURFHANDLE tex = 0) const
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Both versions require a handle to the logical thruster they are linked to, and two size
parameters (longitudinal and transversal scaling),  but while the first version takes
exhaust location and direction directly from the thruster definition, the second ver-
sion gets location and direction passed as parameters.

Here is an example demonstrating how you would use the second version of AddEx-
haust:

Let’s assume you build a rocket propelled by 4 main engines arranged in a regular
square pattern. The engines have fixed orientation (no individual gimbal mode) and
all thrust force vectors are parallel. In addition, the engines produce identical thrust
magnitudes at all times.

Then the 4 engines can be represented by a single logical thruster, whose magnitude
is the sum of the 4 actual engines, and positioned in the geometric centre. This sim-
plifies the code, and is more efficient, because Orbiter does not need to add up 4 indi-
vidual force vectors.

However, you still want to see exhaust flames for each of the 4 engines, so you would
use the second version of AddExhaust to define 4 exhaust flames at the correct posi-
tions.

The disadvantage of the second version is that changes in the position or orientation
of the thruster (for example as a result of SetThrusterPos or SetThrusterDir) are not
automatically propagated to the exhaust flames. Therefore, if you plan to move or tilt
the thrusters, you should create them individually and use the first version of AddEx-
haust.

Custom exhaust textures

By default, Orbiter uses a standard texture to render exhaust flames. If you want to
customise the exhaust appearance on a per-thruster basis, you can pass a nonzero
surface handle tex to both of the AddExhaust versions. To obtain a surface handle for
a custom texture, use the oapiRegisterExhaustTexture function.

...
SURFHANDLE tex = oapiRegisterExhaustTexture (“MyExhaust”);
AddExhaust (th_main, 10, 2, tex);
...

The texture file must be stored in DDS format in Orbiter’s default texture directory.
Note that  oapiRegisterExhaustTexture can be safely called multiple times with the
same texture.

1.6 Air-breathing engines

Orbiter is not limited to rocket engines. Other devices for generating thrust can be
implemented as well, from turbojet engines to solar sails or some hypothetical future
technology. Unlike conventional rocket engines, which are natively supported by the
Orbiter core, custom designs require a bit more work from the developer. As an ex-
ample, I will here discuss the (tentative) scramjet engine implementation used by the
delta-glider.
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A ramjet engine is a type of a jet engine which compresses the air for combustion not
by any mechanical rotating machinery, but simply by “ramming” through the atmos-
phere, i.e. by using the aircraft’s velocity in the airstream. This is an efficient way of
generating  thrust  at  supersonic  speeds,  but  does  not  work  at  very  low speed.  (A
scramjet is a variant where the air is not slowed down to subsonic speeds in the com-
bustor and therefore avoids excessive heating at extreme velocities).

A typical ramjet engine is composed of 3 sections:

 the  inlet  diffuser  where  the  air  is  isentropically  decelerated,  with  pressure
increasing from freestream pressure  p to  pd,  and temperature increasing from
freestream temperature T to Td.

 the combustion chamber, where the air-fuel mixture is burned at constant pres-
sure pb = pd, and temperature increases from Td to Tb.

 the exhaust nozzle, where the hot, high-pressure gas is expanded isentropically,
with pressure decreasing from pb to p, and temperature decreasing from Tb to Te.

The temperatures and pressures in the three parts of the engine (diffuser, burner and
exhaust) can be calculated in the following form:
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where M is the freestream Mach number,  is the ratio of specific heats, and Tb0 is the
burner temperature limit, an engine design parameter defined by the heat resistance
of the combustion chamber material. Note that if at high velocities Td > Tb0, the engine
will start to overheat purely from the isentropic compression in the diffuser, without
any combustion taking place! The figure below shows an example for the temperature
distribution in the engine compartments as a function of freestream Mach number.
The example assumes a burner temperature limit of  Tb0 = 3200 K. In this case, the
limiting velocity is v = Mach 8.2.
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To calculate the thrust generated by a scramjet, we start from the fundamental thrust
equation for jet propulsion,
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where am  and fm  are the air and fuel mass rates, respectively (using the common
notation dtdxx / ), ev  and v  are the exhaust and freestream velocities, and eA

is the exhaust cross section. 

Because of the assumption pe = p the last term vanishes. The specific thrust is then
given by

   vvD
m

F
e

a

1


where af mmD  /  is the fuel-to-air ratio.

The amount of fuel burned in the combustion chamber must be adjusted so that the
burner temperature limit is not exceeded. This leads to the following expression for
D:
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where Q is a fuel-specific heating value and cp is the specific heat at constant pressure,
given by
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The mass flow of air collected by the engine is a function of air intake cross section Ai,
freestream density  and freestream velocity v:

ia Avm  

where v can be expressed in terms of the freestream Mach number:

  RTMv 

From the above equations for D and am  we can calculate the fuel rate fm  required
to achieve combustion temperature Tb.

The final quantity required to calculate F is the exhaust velocity ev . This can be ob-
tained from the energy balance

2/2
eepbp vTcTc 

We now have all the components to calculate the thrust  F generated by the engine.
The graphs below show various scramjet parameters for velocities in the range from
Mach 0 to  Mach 10 at an altitude of 10 km (assuming  = 0.43 kg/m3 and T = 225 K).
The DG engine design parameters in this example are  Q = 4.5  107 J/kg,  Ai = 0.6 m2,
and Tb0 = 3200 K.
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1.7 Rendering re-entry flames

To visualise the friction heat dissipation during atmospheric  reentry,  Orbiter  sup-
ports the rendering of “re-entry flames”. To calculate the amount of heat generated
per surface area and time (and to scale the exhaust flames) Orbiter uses this formula:

3

2

1
vP 

where  is the atmospheric density, and v is the vessel’s airspeed. Orbiter renders ex-
haust flames if P > P0 where P0 is a user defined limit. The size and opacity of the re-
entry flames is scaled by








 


0

0

5
,1min

P

PP
s

In addition, the user can specify scaling factors for length and width of the reentry
texture, as well as the texture itself.

Orbiter by default uses its own texture to render reentry flames. If you want to change
the texture globally, you need to replace reentry.dds in the Textures subdirectory. If
you only want to modify the texture for a specific vessel class, you need to load a
custom texture, and then set your render options:

void MyVessel::clbkSetClassCaps (FILEHANDLE cfg)
{
  ...
  SURFHANDLE tex = oapiRegisterReentryTexture (“MyReentryFlame”);
  SetReentryTexture (tex, my_plimit, my_lscale, my_wscale);
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  ...
}

Reentry textures require a specific layout. They consist of an elongated part in the left
half of the texture map, and a circular part in the upper right corner. The lower right
corner is not currently used. This is how the alpha channel of the default reentry.dds
looks like:

Note that Orbiter automatically adds a colour component to the texture depending on
the value of  s, from red to white. If this is sufficient for your custom reentry flame,
leave the RGB channels of the texture pure white. Otherwise you may want to ex-
periment with additional texture colours.

If you want to suppress rendering of reentry flames for your vessel altogether, use

...
SetReentryTexture (NULL);
...

1.8 Adding particle streams for exhaust and reentry effects

Orbiter  supports  particle  streams for  rendering  contrails,  exhaust  gases,  reentry
plasma trails etc. Particle streams consist of a series of textured “billboard” objects
which always face the camera. The streams can be customised with a set of parame-
ters and allow the simulation of a variety of effects.

The PARTICLESTREAMSPEC structure

At  creation,  the  particle  stream  can  be  customised  by  passing  a  PARTI-
CLESTREAMSPEC structure  to  VESSEL::AddExhaustStream and  VES-
SEL::AddReentryStream. The structure is defined as follows:

typedef struct {
DWORD flags;
double srcsize;
double srcrate;
double v0;
double srcspread;
double lifetime;
double growthrate;
double atmslowdown;
enum LTYPE { EMISSIVE, DIFFUSE } ltype;
enum LEVELMAP { LVL_FLAT, LVL_LIN, LVL_SQRT, LVL_PLIN, LVL_PSQRT }

           levelmap;
double lmin, lmax;
enum ATMSMAP { ATM_FLAT, ATM_PLIN } atmsmap;
double amin, amax;
SURFHANDLE tex;

} PARTICLESTREAMSPEC;
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srcrate

The (average) rate at which particles are created by the emission source [Hz].

v0

The (average) emission velocity of particles by the emission source [m/s]

ltype

Defines the material lighting method when rendering the particles.

EMISSIVE: Particles are rendered emissive (self-radiating). This is appropri-
ate for streams representing ionized exhaust gases, or plasma 
streams during reentry.

DIFFUSE: Particles are rendered diffuse (diffuse reflection of external light 
sources). This is appropriate for smoke and vapour trails.

levelmap

Defines the mapping between the level parameter L (e.g. thruster level) and the
alpha value   (opacity) of the generated particle. The higher the alpha value,
the more solid the stream will appear. This parameter is only used for exhaust
streams. The following options are available:

LVL_FLAT: constant mapping, i.e. alpha is independent of th reference level: 
 = lmin

LVL_LIN: linear mapping:  = L

LVL_SQRT:square root mapping: L

LVL_PLIN: linear mapping in sub-range:




















lmax1

lmaxlmin
lminlmax

lmin
lmin0

if L

Lif
L

Lif



LVL_PSQRT: square root mapping in sub-range:




















lmax1

lmaxlmin
lminlmax

lmin

lmin0

if L

Lif
L

Lif



lmin, lmax

Defines  min  and  max  levels  for  alpha  mapping.  Only  used  if  levelmap is
CONST, PLIN or PSQRT (see above). For CONST, only lmin is used. For PLIN
and PSQRT, lmin < lmax is required. Note that lmin < 0 is valid – this will cause
the stream to produce particles even when the reference level is 0. Likewise,
lmax > 1 is valid – this will cause the alpha value of the particles to remain < 1
even at reference level 1.

atmsmap

Defines the mapping between atmospheric parameters and the alpha value  
(opacity) of the generated particle. The following options are available:
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ATM_FLAT: constant mapping, i.e. alpha is independent of atmospheric pa-
rameters:  = amin

ATM_PLIN: linear mapping of ambient atmospheric parameter x:




















amax1

amaxamin
aminamax

amin
amin0

if x

xif
x

xif



ATM_PLOG: logarithmic mapping of ambient atmospheric parameter x:


















amax1

amaxamin
aminamaxln

aminln
amin0

if x

xif
x

xif



For exhaust streams, atmospheric parameter x is the ambient atmospheric den-
sity,  .  For reentry streams,  x is  defined as  

3
2
1 vx   (v:  airspeed) which is

proportional to the friction power in turbulent airflow (omitting geometry-re-
lated parameters).

amin, amax

Defines  min  and  max  atmospheric  parameter  (ambient  density  or  friction
power) for alpha mapping. amin < amax is required. For PLIN, amin < 0 is ad-
missible to enable particle generation at zero density. For  PLOG,  amin > 0 is
required. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

reference level

al
ph

a

LIN  
SQRT 
PLIN 
PSQRT
FLAT 

lmin lmax 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

density [atm]

al
ph

a

PLIN
PLOG
FLAT

amin amax 

Figure 1: The particle alpha value as a function of reference level (left) and atmos-
pheric parameter (right) for different ‘levelmap’ and ‘atmsmap’ modes.

1.9 Atmospheric flight model

1.9.1 Lift and drag theory

Drag is a force acting on the vessel in the direction of the freestream airflow. It is
composed from several components:
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1. The skin friction drag caused by the boundary layer surrounding the airfoil.

2. The pressure drag caused by separation of flow from the surface.

3. The wave drag at supersonic velocities.

4. Induced drag, caused by airflow around the wingtip (finite wing) from the lower
to the upper surface.

The combination of components 1-3 is defined as profile drag or parasite drag.

Lift is an upward force (perpendicular to the airflow) caused by the shape of the air-
foil and its orientation to the airflow.

Drag D and lift L of an airfoil are expressed by the drag and lift coefficients cD and cL,
with

Sq

L
c

Sq

D
c LD



 ,

where  2
2

1
  Vq   is  the freestream dynamic  pressure,  and  S is  the wing area.

Generally,  cD and cL, will be functions of the angle of attack, the Mach number, and
the Reynolds number. We now split cD in the components of profile and induced drag.
Induced drag is a result of lift and can be expressed as a function of cL:

eA

c
cc L

eDD 

2

, 

where e is a span efficiency factor, and A is the wing aspect ratio, defined as b2/S with
wing span b.

The profile component cD,e will change with angle of attack. We assume that cD,e can be
expressed  as  the  combination  of  a  zero-lift  component  cD,0 and  a  component  de-
pending on cL:

2
0,, LDeD rccc 

Here,  r is a form constant which is usually determined empirically. We can now in-
corporate the lift-dependent term of cD,e into the factor e, to give

A

c
cc L

DD 

2

0, 

where )1/(  eAre   is the Oswald efficiency factor.

When implementing an airfoil in Orbiter, the user must supply a function which cal-
culates  cL and  cD for a given set of parameters (angle of attack, Mach number and
Reynolds number). Orbiter provides a helper function (oapiGetInducedDrag) to cal-
culate the induced drag component with the above formula.

1.9.2 Lift and drag in transonic and supersonic flight

(to be completed)
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1.9.3 Angular moments and vessel stability

(to be completed)

1.9.4 Angular drag

Similar to (linear) drag which produces a force acting against a vessel’s airspeed vec-
tor, a rotating vessel will experience angular drag which acts against the angular ve-
locity, thus slowing the rotation. Orbiter uses the following formulae to calculate an-
gular damping:

zzyz

yyyy

xxyx

cSqdM

cSqdM

cSqdM













,

,

,







where  
2

02
1 )( VVq    is  a  modified  dynamic  pressure  which  ensures  that

angular drag also occurs at low airspeeds (Orbiter currently uses a fixed V0 = 30 m/s).
Sy is the vessel’s cross section projected along the vertical (y) axis, used as a reference
area. Sy is the y-component of the vector passed to VESSEL::SetCrossSections(). c,x,
c,y and c,z are the drag coefficients for rotations around the x, y, and z vessel axes as
defined by VESSEL::SetRotDrag(). x, y and z are the angular velocities around the
vessel axes, and dMx, dMy and dMz are the changes in torque due to damping.

Angular drag is determined by the vessel shape. Developers can adjust the effect of
angular  damping  in  the atmosphere by adjusting  the coefficients  passed  to  VES-
SEL::SetRotDrag(). Higher coefficients make a vessel less responsive to control input,
and reduce oscillations around equilibrium orientation.

1.9.5 API interface for airfoil definitions

To define the lift and drag characteristics for a spacecraft in the DLL module, use the
VESSEL::CreateAirfoil method.  An  airfoil  is  defined  as  a  cross  section  through  a
wing. In Orbiter, we use the term airfoil for any components of the vessel which pro-
duce lift and/or drag forces. Multiple airfoils can be defined for a single vessel (for
example for the left and right wing, the body, the horizontal and vertical stabilizers in
the tail, etc.). It is usually best to keep the number of airfoils low to keep the flight
model predictable and to improve simulation performance.

Orbiter distinguishes two different types of airfoil orientations: airfoils which create
vertical lift (e.g. wings) and airfoils which create horizontal “lift”, e.g. vertical stabilis-
ers. Even vessels without any wings or other aerodynamic surfaces should define at
least one horizontal and one vertical airfoil to define their atmospheric drag behav-
iour (even blunt objects such as reentry capsules which have no similarity to an air-
craft produce drag and lift forces).

When calling the CreateAirfoil method, the user must provide

 basic airfoil parameters (orientation, wing area, chord length and wing aspect ra-
tio).
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 the force attack point (i.e. the point on the vessel on which the lift and drag forces
for this airfoil act). This influences the angular moments generated by the forces.

 a callback function which calculates the lift, drag and moment coefficients of the
airfoil as a function of angle of attack , Mach number M and Reynolds number
Re.

The coefficients decide how much lift and drag is generated by the airfoil. The lift and
drag forces (L and D) are obtained from the moments (cL and cD) by

SqMcMD

SqMcML

D

L








Re),,(Re),,(

Re),,(Re),,(




with  freestream dynamic pressure 221 vq  , and reference area S. The function
which calculates cL and cD must be able to handle arbitrary angles of attack (- to )
and very high Mach numbers which may occur during LEO insertion and atmos-
pheric entry (orbital velocity for a low Earth orbit is equivalent to M > 20!)

The Reynolds number is a parameter dependent on atmospheric viscosity :


vc

Re

with freestream airspeed v and density . In the current Orbiter version,  is assumed
constant ( = 1.689410-5 kg m-1 s-1). In future versions,  will depend on the atmos-
pheric composition and temperature.

The direction of the lift force vector is defined in Orbiter as

22

22

/),0,(ˆ

/),,0(ˆ

zxxz

zyyz

vvvvL

vvvvL









for  vertical  and  horizontal  lift  components,  respectively,  where  (vx,vy,vz) is  the
freestream airflow vector in vessel coordinates. This means that  L̂  is rotated 90°
counter-clockwise against the projection of the airflow vector into the yz-plane, and

L̂  is rotated 90° counter-clockwise against the projection of the airflow vector into
the xz-plane. Since  and  are defined as

zx

zy

vv

vv





/arctan

/arctan





we find the following relations between  or  and the direction of lift:

 lift direction  lift direction

0° up (+y) 0° right (+x)

90° forward (+z) 90° forward (+z)

180° down (-y) 180° left (-x)

270° backward (-z) 270° backward (-z)

This convention must be taken into account when defining the lift coefficient profile.
For example, the  cL profile for a vertical stabiliser with symmetric airfoil should be
positive for 0° ≤  ≤ 90° and 180° ≤  ≤ 270°, and negative for 90° ≤  ≤ 180° and
270° ≤   ≤ 360°.  The lift  profile  in  this  case may therefore  resemble  sin 2.  For
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asymmetric airfoils the lift profile will look more complicated (for example, the zero-
lift angle will usually not be exactly 0°).

1.10 Defining an animation sequence

Animation sequences can be used to simulate movable parts of a vessel. Examples are
the deployment of landing gear, cargo door operation, or animation of airfoils.

Animations are implemented in vessel modules, using the VESSEL interface class.

Orbiter allows 3 types of animation: rotation, translation and scaling. More complex
can be built from these basic operations.

1.10.1 Semi-automatic animation

Mesh requirements:

Animations are performed by transforming mesh groups. Therefore, all parts of the
mesh participating  in an animation must be defined in  separate  groups.  Multiple
groups can participate in a single transformation.

Defining an animation sequence:

Create a member function for  MyVessel to define animation sequences, and call it
from the constructor, e.g.

MyVessel::MyVessel (OBJHANDLE hObj, int fmodel)
: VESSEL2 (hObj, fmodel)
{
  DefineAnimations();
}

In the body of DefineAnimations(), you now have to specify how the animation should
be performed. Here is an example for a nose wheel animation:

void MyVessel::DefineAnimations()
{
  static UINT groups[4] = {5,6,10,11}; // participating groups

  static MGROUP_ROTATE nosewheel (
    0,                          // mesh index
    groups, 4,                  // group list and # groups
    _V(0,-1.0,8.5),             // rotation reference point
    _V(1,0,0),                  // rotation axis
    (float)(0.5*PI)             // angular rotation range
  );

  anim_gear = CreateAnimation (0.0);
  AddAnimationComponent (anim_gear, 0, 1, &nosewheel);
}

You first need to determine which mesh groups take part in the animation. In this
case, the nose wheel consists of the four groups 5, 6, 10 and 11, and these are listed in
the “groups” array.

Next,  you must define the parameters  of  the rotation.  This  is  done by creating a
MGROUP_ROTATE instance. Besides the mesh index and group indices, this also
requires the rotation reference point (i.e. the point around which the mesh groups are
rotated), the axis of rotation, and the rotation range.
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A new animation  is  created by calling  CreateAnimation.  The parameter  passed to
CreateAnimation defines the animation state in which the mesh groups are stored in
the mesh. The return value identifies the animation.

Finally, the rotation of the nose wheel is added to the animation by calling AddAni-
mationComponent. The parameter are the animation identifier, the cutoff states of
the component, and the transformation. The cutoff states define over which part of
the animation the component transformation is applied. In this example, the cutoff
states are 0 and 1, that is, the rotation of the nose wheel occurs over the full duration
of the animation.

Now let’s consider a slightly more complicated example, where the animation con-
sists of two components: (a) opening the wheel well cover, and (b) deploying the gear.

void MyVessel::DefineAnimations()
{
  static UINT cover_groups[2] = {0,1};
  static MGROUP_ROTATE cover (0, cover_groups, 2,
    _V(-0.5,-1.5,7), _V(0,0,1), (float)(0.45*PI));

  static UINT wheel_groups[4] = {5,6,10,11};
  static MGROUP_ROTATE nosewheel (0, wheel_groups, 4,
    _V(0,-1.0,8.5), _V(1,0,0), (float)(0.5*PI));

  anim_gear = CreateAnimation (0.0);
  AddAnimationComponent (anim_gear, 0, 0.5, &cover);
  AddAnimationComponent (anim_gear, 0.4, 1, &nosewheel);
}

The rotations for the gear well cover and the landing gear are defined by two separate
MGROUP_ROTATE variables. After creating the animation, both rotations are added
as components. The cover is opened during the first part of the animation (between
states 0 and 0.5) while the gear is deployed in the final part (between states 0.4 and
1). Note that there is a small overlap (between 0.4 and 0.5), which means that the
gear begins to rotate before the cover is fully opened.

When the animation is played backward to retract the gear, the components are ro-
tated in the inverse order: the gear is retracted first, then the cover is closed.

Animations can be arranged in a hierarchical order, so that a parent animation can
transform mesh groups which are themselves animations. Consider for example the
wheel on a landing gear which is spinning while the gear is being retracted. In this
case, the gear animation is defined as a rotation around the gear hinge point, while
the wheel animation is a rotation around the wheel axis. The wheel animation must
be defined as a child of the gear animation, because the wheel is rotated together with
the gear.

void MyVessel::DefineAnimations()
{
  ANIMATIONCOMPONENT_HANDLE parent;

  static UINT gear_groups[2] = {5,6};
  static MGROUP_ROTATE gear (0, gear_groups, 2,
    _V(0,-1.0,8.5), _V(1,0,0), (float)(0.45*PI));

  static UINT wheel_groups[2] = {10,11};
  wheel = new MGROUP_ROTATE (0, wheel_groups, 2,
    _V(0,-1.0,6.5), _V(1,0,0), (float)(2*PI));
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  anim_gear = CreateAnimation (0.0);
  parent = AddAnimationComponent (anim_gear, 0, 1, &gear);

  anim_wheel = CreateAnimation (0.0);
  AddAnimationComponent (anim_wheel, 0, 1, wheel, parent);
}

The gear and wheel rotations are defined by the MGROUP_ROTATE variables “gear”
and “wheel”. Note that in this case “wheel” is not defined static, since reference point
and axis will be modified by the parent. Therefore, “wheel” must be defined as a data
member of the MyVessel class. Since “wheel” is allocated dynamically, don’t forget to
de-allocate it with

MyVessel::~MyVessel()
{
  ...
  delete wheel;
  ...
}

The return value of the  AddAnimationComponent() call  for the gear animation is a
handle which identifies the transformation. We use this value for the optional parent
parameter when defining the animation component for the wheel animation.  This
makes the wheel animation a child of the gear animation.

A complex example for hierarchical animations can be found in the RMS arm anima-
tion of Space Shuttle Atlantis in Orbitersdk\samples\Atlantis\Atlantis.cpp.

Apart from rotations, mesh groups can also be transformed by translating and scal-
ing.  The  corresponding  MGROUP_TRANSFORM derivates  are
MGROUP_TRANSLATE and MGROUP_SCALE:

  MGROUP_TRANSLATE t1 (0, groups, 2, _V(0,10,5));
  MGROUP_SCALE t2 (0, groups, 2, _V(5,0,2), _V(2,2,2));

In both cases,  the first three parameters  are  the same as for  MGROUP_ROTATE
(mesh, index,  group list and number of groups).  For  MGROUP_TRANSLATE,  the
last parameter defines the translation vector. For MGROUP_SCALE, the last two pa-
rameters define the scale origin, and the scale factors in the three axes.

Performing the animation:

To animate the nose wheel now, we need to manipulate the animation sequence state
by calling  SetAnimation() with a value between 0 (fully  retracted) and 1 (fully  de-
ployed). This is typically done in the Timestep() member function, e.g.

void MyVessel::Timestep (double simt)
{
  if (gear_status == CLOSING || gear_status == OPENING) {
    double da = oapiGetSimStep() * gear_speed;
    if (gear_status == CLOSING) {
      if (gear_proc > 0.0)
        gear_proc = max (0.0, gear_proc-da);
      else
        gear_status = CLOSED;
    } else  { // door opening
      if (gear_proc < 1.0)
        gear_proc = min (1.0, gear_proc+da);
      else
        gear_status = OPEN;
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    }
    SetAnimation (anim_gear, gear_proc);
  }
}

Here, gear_status is a flag defining the current operation mode (CLOSING,  OPEN-
ING, CLOSED, OPEN). This will typically be set by user interaction, e.g. by pressing a
keyboard button. If the animation is in progress (OPENING or  CLOSING), we de-
termine the rotation step (da) as a function of the current frame interval (oapiGet-
TimeStep). The value of gear_speed defines how fast the gear is deployed.

Next, we update the deployment state (gear_proc), and check whether the sequence
is complete (0 if closing, or 1 if opening). Finally, SetAnimation is called to perform
the animation.

The  DeltaGlider  sample  module  (Orbitersdk\samples\DeltaGlider)  contains  a  com-
plete example for an animation implementation.

1.10.2 Manual animation

As an alternative to the (semi-)automatic animation concept described in the previ-
ous section, Orbiter also allows manual animation. This can be more versatile, but
requires more effort from the module developer, because the complete animation se-
quence must be implemented explicitly.

A  manual  animation  sequence  is  created  by  the  functions  VES-
SEL::RegisterAnimation() and  VESSEL::UnregisterAnimation().  A  call  to  Register-
Animation causes Orbiter to call the module’s  ovcAnimate callback function at each
frame, provided the vessel’s visual exists. UnregisterAnimation cancels the request.

Note that  RegisterAnimation/UnregisterAnimation pairs can be nested. Each call  to
RegisterAnimation increments a reference counter, each call to  UnregisterAnimation
decrements the counter. Orbiter will call ovcAnimate as long as the counter is > 0.

It is up to the module to implement its animations in the body of ovcAnimate. Typi-
cally  this  will  involve  calls  to  MeshgroupTransform(),  to  rotate,  translate  or  scale
mesh groups as a function of the last simulation time step. Note that ovcAnimate is
called only once per frame, even if more than one RegisterAnimation request has been
logged. The module must therefore decide which animations need to be processed in
ovcAnimate.

UnregisterAnimation should never be called from inside  ovcAnimate, since  ovcAni-
mate is only called if the visual exists. This could cause the unregister request to be
lost. It is better to test for animation termination in ovcTimestep.

1.11 Designing 2D-instrument panels

Instrument panels are a good way to give an individual feel to a spacecraft class and
allow the user to monitor flight parameters and control specific aspects of the vessel
via the mouse, without the need to remember a large number of keyboard commands.

There are two ways to define a cockpit interior: you can build one (or several) flat
two-dimensional panels as bitmaps which are overlayed on top of the three-dimen-
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sional scenery of the simulation window (denoted as panels below), or you can con-
struct a full three-dimensional mesh representation of the cockpit (denoted as virtual
cockpit, or VC below). A vessel can implement both 2-D panels and virtual cockpits.
The user can switch between them (and the generic  cockpit  view comprising two
MFD displays and HUD) by pressing F8.

In this section we will discuss the steps required to define 2-D panels in the vessel
module. Section 1.13 will deal with virtual cockpits.

1.11.1 The panel request callback function

Whenever the vessel switches to a new 2-D panel cockpit view (either from an outside
view or another cockpit view), it calls the clbkLoadPanel2D callback function. This is
the point where we need to define the panel geometry and functions. For now, we are
going to implement only a single main panel:

bool MyVessel::clbkLoadPanel2D (int id, PANELHANDLE hPanel,
  DWORD viewW, DWORD viewH)
{
  switch (id) {
  case 0: 
    DefineMainPanel (hPanel);
    ScalePanel (hPanel, viewW, viewH);
    return true;
  default:
    return false;
  }
}

Note that clbkLoadPanel2D has been introduced in the VESSEL3 interface, so your
vessel class must be derived from  VESSEL3 to make use of it.  clbkLoadPanel2D is
the equivalent of  clbkLoadPanel for the old-style 2-D panel interface. If your vessel
defines clbkLoadPanel2D, it should not also define clbkLoadPanel.

The  id parameter defines the panel (the main panel has always  id 0, but additional
neighbour panels can be defined as well). The  hPanel object is a handle that is re-
quired by various functions during the definition of the panel. The viewW and viewH
parameters define the width and height of the viewport in pixels, which can be useful
for scaling purposes.

Now we need to implement the  DefineMainPanel function which defines the panel
mesh, textures and active areas.

1.11.2 The panel mesh

2-D instrument panels are defined as 2-D meshes. Orbiter uses the same mesh format
for 2-D meshes as it does for 3-D meshes (used e.g. to describe vessel and virtual
cockpit geometries), with the exception that the vertex z-coordinates for 2-D meshes
are ignored and should be set to 0.

The mesh coordinate system to which the mesh vertex coordinates refer can be freely
chosen by the developer. A convenient convention is to set the bottom left corner of
the mesh to coordinates (0,0), and the top right corner to coordinates (px,py), where
px and py are the width and height of the panel background texture in pixels. With
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this  convention,  mesh coordinates  correspond to  the pixel  positions  of  the  back-
ground texture.

As a first example, let’s start with a simple rectangular panel, which can be defined
with 4 vertices and 2 triangles. If we plan for a panel texture of dimension 1280x400,
then the mesh would look like this:

Vertex coordinate list (0,0,0), (0,400,0), (1280,400,0), (1280,0,0)

Triangle index list (0,2,1), (2,0,3)

In principle it is possible to put this mesh definition into a standard Orbiter mesh file,
and read it when required with oapiLoadMesh. However, this mesh is so simple that
it is more efficient to define it directly in the vessel code. Defining the 2-D panel mesh
in the code will later also have the advantage that we are better able to control an-
imations and moving parts which require direct access to the vertex lists. The main
panel mesh definition could look like this:

void MyVessel::DefineMainPanel (PANELHANDLE hPanel)
{
  static DWORD panelW = 1280;
  static DWORD panelH =  400;
  float fpanelW = (float)panelW;
  float fpanelH = (float)panelH;
  static NTVERTEX VTX[4] = {
    {      0,      0,0,   0,0,0,   0,0},
    {      0,fpanelH,0,   0,0,0,   0,0},
    {fpanelW,fpanelH,0,   0,0,0,   0,0},
    {fpanelW,      0,0,   0,0,0,   0,0}
  };
  static WORD IDX[6] = {
    0,2,1,
    2,0,3
  };

  if (hPanelMesh) oapiDeleteMesh (hPanelMesh);
  hPanelMesh = oapiCreateMesh (0,0);
  MESHGROUP grp = {VTX, IDX, 4, 6, 0, 0, 0, 0, 0};
  oapiAddMeshGroup (hPanelMesh, &grp);
  SetPanelBackground (hPanel, 0, 0, hPanelMesh, panelW, panelH, 0,
    PANEL_ATTACH_BOTTOM | PANEL_MOVEOUT_BOTTOM);
}

Here, hPanelMesh is assumed to be a MESHHANDLE object defined as a member of
MyVessel. The call to oapiCreateMesh creates an empty mesh, to which the group for
the main panel background is added by oapiMeshGroup.

Since the hPanelMesh object may be shared with other cockpit panel views, we need
to check if it is allocated already, and delete it before defining the new one, using the
oapiDeleteMesh function. For this to work, it must be initialised it to  NULL in the
constructor:

MyVessel::MyVessel(OBJHANDLE hObj, int fmodel)
{
  ...
  hPanelMesh = NULL;
  ...
}

To avoid memory leaks, the destructor should delete the mesh if required:

MyVessel::~MyVessel ()
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{
  ...
  if (hPanelMesh) oapiDeleteMesh (hPanelMesh);
  ...
}

The  SetPanelBackground call  in our  DefineMainPanel function registers the panel
mesh with Orbiter. Its parameters are:

 The panel handle, as provided by clbkLoadPanel2D
 A list of textures, and the number of textures in the list (set to 0 for now – we’ll

come back to those later)
 The panel mesh handle
 The width and height of the panel in mesh units
 The panel base line
 The viewport attachment and scroll flags

1.11.3 Scaling the panel

Now we have to think about scaling the panel to the viewport. This will be done in the
ScalePanel method that has already been called in clbkLoadPanel2D.

By default, we want to scale the panel so that it fills the width of the viewport, inde-
pendent  of  its  actual  size.  This  can  be  done  painlessly  by  using  the  VES-
SEL3::SetPanelScaling method. This is a big improvement over the old-style panel
definitions, which only provided an awkward global scaling option. In addition, we
can also define a zoom option that magnifies the panel. This will only display a part of
the panel, but other parts can be scrolled in. This is particularly useful for small view-
port sizes, where scaling the panel to fit would make it too small to use. The user can
switch between standard and magnified scaling with the mouse wheel.

The scaling parameters passed to SetPanelScaling are magnification factors that de-
scribe how many viewport pixels should be covered by one mesh unit.  The imple-
mentation of ScalePanel could therefore look like this:

void MyVessel::ScalePanel (PANELHANDLE hPanel, DWORD viewW, DWORD viewH)
{
  double defscale = (double)viewW/1280.0;
  double magscale = max (defscale, 1.0);
  SetPanelScaling (hPanel, defscale, magscale);
}

The defscale factor makes sure that the panel (defined as size 1280) stretches over
the full viewport width (viewW). The magscale factor magnifies the panel such that 1
mesh unit covers one screen pixel  if the viewport width is  smaller  than the panel
width. This is a sensible convention, but of course you are free to implement different
scaling strategies for your panels.

1.11.4 Adding a panel background texture

We now want to draw a texture over the bare panel mesh. The texture serves the
same function as the bitmap in the old-style panel definitions, but it must be stored
in DDS format, rather than BMP format. You may have to experiment with the com-
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pression format,  but usually DXT1 is best if no or only binary transparency is re-
quired, or DXT5 if continuous transparency is required.

Another important restriction is the fact that textures must have sizes that are multi-
ples of 2. So for our 1280x400 texture we will have to create a 2048x512 pixel texture.
For now this is a lot of waste, but we can use the same texture to add additional pan-
els and active elements later on. Sometimes you may also be able to reduce the re-
quired texture size by clever mesh design and re-using the same texture elements
multiple times (e.g. defining the right half of the panel as a mirror of the left).

The panel texture is a global resource (it is shared by all vessels of the MyVessel class,
so we can make it static and load it during module initialisation:

// vessel class interface
class MyVessel: public VESSEL3
{
public:
  ...
  static SURFHANDLE panel2dtex;
  ...
};

// public member initialisation
SURFHANDLE MyVessel::panel2dtex = NULL;

// module initialisation
DLLCLBK void InitModule (HINSTANCE hModule)
{
  ...
  MyVessel::panel2dtex = oapiLoadTexture (“MyVessel\\panel2d.dds”);
  ...
}

// module cleanup
DLLCLBK void ExitModule (HINSTANCE hModule)
{
  ...
  oapiDestroySurface (MyVessel::panel2dtex);
  ...
}

where  the  panel  texture  is  assumed  to  be  located  in  file  Textures\MyVessel\
panel2d.dds.

We can now modify the  DefineMainPanel method to make use of the background
texture:

void MyVessel::DefineMainPanel (PANELHANDLE hPanel)
{
  static DWORD panelW = 1280;
  static DWORD panelH =  400;
  float fpanelW = (float)panelW;
  float fpanelH = (float)panelH;
  static DWORD texW   = 2048;
  static DWORD texH   =  512;
  float ftexW   = (float)texW;
  float ftexH   = (float)texH;
  static NTVERTEX VTX[4] = {
    {      0,      0,0,   0,0,0,            0.0f,1.0f–fpanelH/ftexH},
    {      0,fpanelH,0,   0,0,0,            0.0f,1.0f              },
    {fpanelW,fpanelH,0,   0,0,0,   fpanelW/ftexW,1.0f              },
    {fpanelW,      0,0,   0,0,0,   fpanelW/ftexW,1.0f-fpanelH/ftexH}
  };

ORBITER Programmer’s Guide (c) 2001-2010 Martin Schweiger 28



  static WORD IDX[6] = {
    0,2,1,
    2,0,3
  };

  if (hPanelMesh) oapiDeleteMesh (hPanelMesh);
  hPanelMesh = oapiCreateMesh (0,0);
  MESHGROUP grp = {VTX, IDX, 4, 6, 0, 0, 0, 0, 0};
  oapiAddMeshGroup (hPanelMesh, &grp);
  SetPanelBackground (hPanel, &panel2dtex, 1, hPanelMesh, panelW, panelH, 0,
    PANEL_ATTACH_BOTTOM | PANEL_MOVEOUT_BOTTOM);
}

The texture coordinates for the mesh vertices have now been defined (where I am as-
suming that the main panel image is located in the lower left corner of the texture.
The call  to  SetPanelBackground contains a pointer to the texture handle,  and the
number of textures (1). If  your panel mesh references more than one texture,  put
them in a list, pass the list as the second parameter of SetPanelBackground, and the
number of textures in the list as the third parameter.

At this point, you can compile your vessel code and run it in Orbiter. It isn’t very ex-
citing yet (a static panel background texture covering the lower half of the screen),
but it is the basis for the next steps. You should be able to scroll the panel up and
down with the cursor keys.

1.12 Designing instrument panels (legacy style)

This  section  describes  the  design  for  a  legacy-style  2-D  instrument  panel.  This
method is still supported by Orbiter, but its use is discouraged, because it does not
work well with newer 3-D rendering engines and external graphics clients. Vessel ad-
don designers should switch to the new 2-D panel method described in  Section 1.11.

1.12.1 Defining a panel

You will first need to create a bitmap which represents the 2-D instrument panel. You
can use any paint tool capable of generating Windows BMP files. The panel can be
saved in 8-bit or 24-bit mode, but 8-bit mode is strongly recommended to reduce the
size of the resulting vessel module, and improve simulation performance.

Figure 2: The DG main panel bitmap.
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Some thought should be given to the size of the panel bitmap. Remember that users
will  run Orbiter at different screen resolutions and window sizes.  If  the bitmap is
made very large, a lot of panning will be required to bring different parts of the panel
into view at low resolutions. If the bitmap is very small, it will cover only a small area
of the screen at high resolutions.  It  is probably best to design panels for medium
screen resolutions (between 1024x768 and 1280x960 pixels). Users with very low or
very high screen resolutions will be able to adjust the panel size by using Orbiter's
panel rescaling option.

You should also consider whether the panel is to cover the whole screen, or only part
of it. The main panel should usually obstruct only part of the 3-D scenery, but side
panels could take up the whole simulation window.

The main panel should typically also provide space for MFDs (multifunctional dis-
plays), which are the primary method to provide flight data to the pilot. Most com-
mon is a layout with two MFDs, but fewer or more can be defined as well. The size of
the MFD displays should be chosen so that they are easily readable over a 'typical'
range of screen resolutions.

You can define more than one panel for a vessel. For example, you may define a main
panel which is visible in the lower half of the screen when the pilot looks forward, an
overhead panel, side panels, etc. The user can switch between the different panels
with Ctrl+cursor keys. We will discuss later how to define the connectivity between
panels. To start with, let's look at the definition of a single main panel.

Once you have created the panel BMP file, you should add it as a bitmap resource to
your vessel module project. Now you are ready to write the code to support the panel.
To do so, you need to overload the clbkLoadPanel method of the VESSEL2 class:

bool MyVessel::clbkLoadPanel (int id)
{
  ...
}

Here we assume that MyVessel is a class derived from VESSEL2 (see Section 1.2 on
how to create vessel instances).  id is a panel identifier which Orbiter will provide to
let your function know which panel is required. If only a single main panel is defined,
id will always be 0. If you define more than one panel, you should examine this pa-
rameter to decide which panel to load.

Orbiter will call your clbkLoadPanel method whenever it needs to load an instrument
panel. This happens if

 the user switches to instrument panel view from another view mode by pressing
F8.

 the user switches between panels with Ctrl+cursor keys.

 the user switches from an external view to a cockpit view.

 the user switches to a different spacecraft with F3.

In the body of clbkLoadPanel, we need to load the panel bitmap and pass it to Orbiter
via the oapiRegisterPanelBackground function:
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bool MyVessel::clbkLoadPanel (int id)
{
  HBITMAP hBmp = LoadBitmap (hDLL, MAKEINTRESOURCE(IDB_PANEL));
  oapiRegisterPanelBackground (hBmp);
  return true;
}

Here, hDLL is a module instance handle passed to the InitModule callback function of
your module, and IDB_PANEL is assumed to be the numerical resource identifier of
the panel bitmap. The return value of clbkLoadPanel should normally be true.  false
signifies an error, e.g. failure to load the panel bitmap.

oapiRegisterPanelBackground has an additional  optional  parameter  which defines
how the panel is connected to the edges of the simulation window, and how it can be
scrolled across the screen with the cursor keys. A common choice for a main window
is to connect it to the lower edge of the window, and allow it to be scrolled downward.
This can be accomplished as follows:

  oapiRegisterPanelBackground (hBmp,
      PANEL_ATTACH_BOTTOM|PANEL_MOVEOUT_BOTTOM);

 (This is in fact the default setting, so you only need to provide this parameter if you
need to define a different behaviour.)  For a full  list  of  supported attachment  and
scroll parameters, see the oapiRegisterPanelBackground description in the Reference
Manual.

oapiRegisterPanelBackground has a further optional parameter to define a transpar-
ent colour. Any part of the bitmap containing that colour will be transparent in the
render window. This allows to implement irregular panel shapes such as windows
which provide a view of the 3-D scene though the panel.

The transparent colour is given in 0xRRGGBB format. Note that if Orbiter is run in
16-bit mode, not all colours can be represented. For that reason, it is recommended
to use either black (0x000000) or white (0xFFFFFF) as the transparent colour which
are always available in 16-bit mode, to avoid problems. In any case, you should al-
ways check that your panel appears correctly in both 16 and 32 bit modes before pub-
lishing your addon.

So the final version of our main panel loading call looks like this, where we allow the
panel to be scrolled out at the bottom, and use white as the transparent colour:

  oapiRegisterPanelBackground (hBmp,
      PANEL_ATTACH_BOTTOM|PANEL_MOVEOUT_BOTTOM, 0xFFFFFF);

At this point, you can try to compile your module and test the panel in Orbiter. You
should be able to make the panel visible by pressing F8 when you are in the cockpit of
an instance of your vessel class, and scroll it up and down with the cursor keys.

1.12.2 Defining active panel areas

Now we can start to do something interesting with our new panel. We need to acti-
vate areas of the panel. Active areas can do two things:

 They can be repainted from within the code, for example to dynamically update
an instrument display, and/or
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 they can register mouse button events to allow the user to interact with the panel.

A  panel  area  is  activated  with  the  oapiRegisterPanelArea function.  This  must  be
called in your vessel's  clbkLoadPanel method, after the panel has been loaded with
oapiRegisterPanelBackground. Let's define an area that contains a button which the
user can press:

  oapiRegisterPanelArea (AID_BUTTON, _R(10,10,30,20),
      PANEL_REDRAW_MOUSE, PANEL_MOUSE_LBDOWN, PANEL_MAP_BACKGROUND);

The first parameter, AID_BUTTON, is a value that uniquely identifies the area across
all panels. The next parameter defines a rectangular area in the panel given by the
left, top, right and bottom edges (measured from the top left corner of the panel bit-
map).

The next parameter, PANEL_REDRAW_MOUSE, specifies that the area must be re-
drawn whenever a mouse event occurs inside the area. Other areas may need to be
redrawn at each frame, by explicitly requesting a redraw, or not at all.

PANEL_MOUSE_LBDOWN requests a notification whenever the user presses the left
mouse button inside the area. You can also request mouse button releases, or con-
tinuous  notifications  as  long  as  a  button  is  pressed.  A  panel  area  defined  with
PANEL_MOUSE_IGNORE will never generate any mouse events.

PANEL_MAP_BACKGROUND requests the area background (i.e. the portion of the
panel bitmap under the area) to be passed to the redraw function. Instead, you could
request the current status of the area, or an un-initialised bitmap to be passed to the
redraw function. See the documentation to  oapiRegisterPanelArea in the Reference
Manual for more details.

You can define more panel areas to turn your panel into a useful interface, but avoid
overlapping areas.

Next, we need to implement the callback functions Orbiter will call to allow the mod-
ule to respond to redraw and mouse events generated by the active areas.

1.12.3 The mouse event handler

To intercept mouse events generated by a panel you must overload the  clbkPanel-
MouseEvent method of the VESSEL2 class:

bool MyVessel::clbkPanelMouseEvent (int id, int event, int mx, int my)
{
  ...
}

where  id is the identifier of the panel area for which the event was generated (e.g.
AID_BUTTON in our example), event specifies the mouse event type, and mx,my are
the panel coordinates at which the event occurred.

Important: A button-up event is always generated for the instrument which pro-
duced the preceding button-down event, even if the mouse has been dragged out of
the panel area in the mean time.

The following mouse events are available:
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PANEL_MOUSE_LBDOWN Left mouse button pressed down.

PANEL_MOUSE_RBDOWN Right mouse button pressed down.

PANEL_MOUSE_LBUP Left mouse button released.

PANEL_MOUSE_RBUP Right mouse button released.

PANEL_MOUSE_LBPRESSED Left mouse button down

PANEL_MOUSE_RBPRESSED Right mouse button down.

The  PANEL_MOUSE_LBPRESSED and  PANEL_MOUSE_RBPRESSED events are
sent continuously while the buttons are held down. This allows the implementation of
mouse-dragging event, for example to move sliders with the mouse.

Inside clbkPanelMouseEvent, your code must check the area id and perform the ap-
propriate actions:

bool MyVessel::clbkPanelMouseEvent (int id, int event, int mx, int my)
{
  switch (id) {
  case AID_BUTTON:
    DoProcessButtonPress (...);
    return true;
  case ...  // place response to other areas here
  }
  return false;
}

Here,  DoProcesButtonPress is assumed to be a locally defined method which per-
forms the required action.

The  return  value  is  currently  only  used  for  areas  which  use  the
PANEL_REDRAW_MOUSE flag.  In this case,  returning  true will  trigger a redraw
event, while returning false will not. For efficiency, return true only if the area needs
to be redrawn as a consequence of the mouse event.

The mx and my parameters define the area coordinates (0,0 is the top left corner of
the area) at which the mouse event occurred. This is sometimes useful to fine-tune
the response. For example, let's assume that the button defined in the example is ac-
tually a switch which can be flipped left or right. Then we could do this:

  ...
  case AID_BUTTON:
    if (mx < 10)
      DoProcessFlipLeft (...);
    else
      DoProcessFlipRight (...);
    return true;
  ...

1.12.4 The redraw event handler

To provide a visual cue of the button press, we may want to redraw the area  (e.g. to
simulate a control lamp lighting up). Other areas representing gauges and displays
may need to be redrawn continuously without any mouse events. To respond to re-
draw requests, we need to overload the clbkPanelRedrawEvent method of the VES-
SEL2 class:
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bool MyVessel::clbkPanelRedrawEvent (int id, int event, SURFHANDLE surf)
{
  ...
}

As with the mouse event handler,  your  implementation of  clbkPanelRedrawEvent
should examine the area id (and the redraw event, if required), and redraw the corre-
sponding area as required.

surf is a handle to the paint surface for the area in which all repainting takes place.
The contents of the surface passed to the callback function depend on the parameters
specified during the definition of the area:

PANEL_MAP_NONE surf is undefined

PANEL_MAP_BACKGROUND surf contains area background

PANEL_MAP_CURRENT surf contains current area contents

PANEL_MAP_BGONREQUEST surf  is  undefined,  but  area  background can be
obtained on request

PANEL_MAP_NONE is the most efficient option if the whole area needs to be re-
drawn at each redraw event. PANEL_MAP_BACKGROUND is least efficient, because
it involves the most internal surface copy processes. If you need the background bit-
map, but your area doesn't need to be redrawn for each redraw request generated (for
example, if you have defined a gauge, to be redrawn at each simulation frame, but
often the contents don't change between subsequent frames), it is more efficient to
use the  PANEL_MAP_BGONREQUEST flag, and obtaining the background bitmap
explicitly  with  a  call  to  oapiBltPanelAreaBackground whenever  the  area  actually
needs to be redrawn (see documentation to oapiBltPanelAreaBackground in the Ref-
erence Manual for more details).

Our redraw function might look like this:

bool MyVessel::clbkPanelRedrawEvent (int id, int event, SURFHANDLE surf)
{
  switch (id) {
  case AID_BUTTON:
    if (button_pressed)
      oapiBlt (surf, buttonSurf, 0, 0, 0, 0, 20, 10);
    else
      oapiBlt (surf, buttonSurf, 0, 0, 0, 10, 20, 10);
    return true;
  case ... // imprement redraw methods for other areas
  }
  return false;
}

Here, buttonSurf is assumed to be the surface handle to a bitmap which contains im-
ages of the button for both the pressed and the released state. (You can store this
bitmap as a module resource and obtain a surface handle  to it  with the  oapiCre-
ateSurface method.)  oapiBlt copies the relevant part of the bitmap into the area's
surface (the button_pressed flag could for example have been set in the mouse event
handler).

When more complex redrawing is required, you can obtain a device context handle to
the surface with oapiGetDC and then use standard Windows GDI methods to paint in
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the surface.  (see Windows API documentation).  Don't  forget to release the device
context with oapiReleaseDC at the end.

The return value of  clbkPanelRedrawEvent signals to Orbiter if the contents of the
area have been redrawn. Return true only if you did modify the surface, false other-
wise.

1.12.5 Defining panel MFDs

MFD (multifunctional displays) are probably the most important components of your
panel. They are defined differently to other panel areas, because some of the redraw
events are processed directly by Orbiter.

MFDs consist of a square display area (representing a colour CRT or LCD display)
and rows of control buttons to the left and right. The number of buttons can be de-
fined individually.

You reserve a panel area for an MFD with the oapiRegisterMFD method during set-
ting up the panel in the overloaded clbkLoadPanel callback function:

bool MyVessel::clbkLoadPanel (int id)
{
  oapiRegisterPanelBackground (...);
  ...
  MFDSPEC mfds_left  = {{100, 10, 200, 110}, 6, 6, 10, 20};
  oapiRegisterMFD (MFD_LEFT,  mfds_left);
  ...
  return true;
}

The first parameter of oapiRegisterMFD identifies the MFD (left, right, or a user-de-
fined MFD). The left and right MFDs can be controlled with keyboard commands,
while  user-defined  MFDs  can  only  be  controlled  with  the  mouse.  Therefore  you
should always first define the left and right MFDs, and use user-defined ones only if
more than two MFDs are to be defined in the panel.

The second parameter is a structure which defines the layout of the MFD. It contains:

 the rectangular area (left, top, right and bottom edge) of the panel area to contain
the MFD display,

 the number of buttons along the left and right edges,

 the y-offset of the upper edge of the topmost button from the top edge of the dis-
play,

 the y-distance between the top edges of the buttons.

The button rows must be implemented as separate areas. Note that a single area is
used for the left row of buttons, and another one for the right row. In addition, a
bottom row of 3 buttons can be defined to perform MFD on/off, display of button
commands, and display of mode contents:

bool MyVessel::clbkLoadPanel (int id)
{
  oapiRegisterPanelBackground (...);
  ...
  MFDSPEC mfds_left  = {{100, 10, 200, 110}, 6, 6, 10, 20};
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  oapiRegisterMFD (MFD_LEFT,  mfds_left);
  oapiRegisterPanelArea (AID_LBUTTONS, _R(80,20,100,100), PANEL_REDRAW_USER,
      PANEL_MOUSE_LBDOWN|PANEL_MOUSE_LBPRESSED, PANEL_MAP_BACKGROUND);
  oapiRegisterPanelArea (AID_RBUTTONS,_R(200,20,220,100), PANEL_REDRAW_USER,
      PANEL_MOUSE_LBDOWN|PANEL_MOUSE_LBPRESSED, PANEL_MAP_BACKGROUND);
  oapiRegisterPanelArea (AID_BBUTTONS,_R(100,110,200,130), 
      PANEL_REDRAW_NEVER, PANEL_MOUSE_LBDOWN);
  ...
  return true;
}

The button areas have been defined with the PANEL_MOUSE_LBPRESSED flag in
addition to PANEL_MOUSE_LBDOWN, so that continued mouse presses can be re-
corded when required.

Mouse button events now need to be processed in the mouse event handler:

bool MyVessel::clbkPanelMouseEvent (int id, int event, int mx, int my)
{
  switch (id) {
  case AID_LBUTTONS:
  case AID_RBUTTONS:
    if (my%20 < 15) {
      int bt = my/20 + (id == AID_LBUTTONS ? 0 : 6);
      oapiProcessMFDButton (MFD_LEFT, bt, event);
      return true;
    }
    break;
  case ...
  }
  return false;
}

This code fragment processes all the buttons in the left and right button columns si-
multaneously. It first checks if the mouse event occurred over a button (my%20 <
15), assuming that each button is 15 pixels high, and buttons are spaced in 20 pixel
intervals. It then checks if the event occurred in the left or right button column, and
determines which of the buttons was pressed (bt). Finally, the oapiProcessMFDBut-
ton function is called with the appropriate parameters, to allow Orbiter to respond to
the MFD request.

The bottom row of buttons is processed similarly:

  ...
  case AID_BBUTTONS:
    if (mx < 20)
      oapiToggleMFD_on (MFD_LEFT);
    else if (mx >= 30 && mx < 50)
      oapiSendMFDKey (MFD_LEFT, OAPI_KEY_F1);
    else if (mx > 60)
      oapiSendMFDKey (MFD_LEFT, OAPI_KEY_GRAVE);
    return true;
  ...

where  oapiToggleMFD_on switches  the  MFD  on/off,  and  the  oapiSendMFDKey
commands trigger the default actions of displaying the key commands and the MFD
mode list.

Of course, the values of the various mouse x and y values in an actual implementation
will  depend on the geometry of the individual MFD layout. You could even define
each single button as a separate area, but this will generally result in less efficient
code.
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Finally, the MFD buttons need to respond to redraw events, to reflect the change of
button labels (for example, when the MFD mode changes). Note that the MFD dis-
play area itself is automatically updated by Orbiter and therefore doesn't need to im-
plement a redraw response.

bool MyVessel::clbkPanelRedrawEvent (int id, int event, SURFHANDLE surf)
{
  switch (id) {
  case AID_LBUTTONS:
  case AID_RBUTTONS:
    side = (id == AID_LBUTTONS ? 0:1);
    hDC = oapiGetDC (surf);
    for (int bt = 0; bt < 6; bt++) {
      if (label = oapiMFDButtonLabel (MFD_LEFT, bt+side*6))
        TextOut (hDC, 5, 2+20*bt, label, strlen(label));
      else break;
    }
    oapiReleaseDC (surf, hDC);
    return true;
  case ...
  }
  return false;
}

This uses the oapiMFDButtonLabel function to retrieve the label text for each of the
buttons (button labels consist of 1 to 3 characters). The redraw function can be cus-
tomised to reflect the style in which the button labels are displayed (for example by
changing the font size or colour).

Note that the bottom row of buttons does not necessarily need to implement a redraw
method, because their labels never change.

1.12.6 Multiple panels

To implement multiple panels for a vessel, the clbkLoadPanel method must load dif-
ferent panels depending on the provided panel id, and each of the panels must define
its connectivity to neighbouring panels via the oapiSetPanelNeighbours function.

Example: If your vessel supports a main panel, an overhead and a left side panel, the
structure of the overloaded clbkLoadPanel could look like this:

bool MyVessel::clbkLoadPanel (int id)
{
  switch (id) {
  case 0: // main panel
    oapiRegisterPanelBackground (LoadBitmap (hDLL,
       MAKEINTRESOURCE (IDB_PANEL0)));
    oapiSetPanelNeighbours (2, -1, 1, -1);
    // register areas for panel 0 here
    break;
  case 1: // overhead panel
    oapiRegisterPanelBackground (LoadBitmap (hDLL,
      MAKEINTRESOURCE (IDB_PANEL1)));
    oapiSetPanelNeighbours (-1, -1, -1, 0);
    // register areas for panel 1 here
    break;
  case 2: // left side panel
    oapiRegisterPanelBackground (LoadBitmap (hDLL,
      MAKEINTRESOURCE (IDB_PANEL2)));
    oapiSetPanelNeighbours (-1, 0, -1, -1);
    // register areas for panel 2 here
    break;
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  }
  return true;
}

Each panel must register its own background bitmap via the oapiRegisterPanelBack-
ground function.

In a vessel that defines multiple panels, the user can switch between them by using
Ctrl-Arrow keys. Orbiter must know the relative location of bitmaps to each other, so
that the correct panel can be loaded. This connectivity is provided by the  oapiSet-
PanelNeighbours function. This function tells Orbiter which panels are to the left,
right, top and bottom of the current panel. A value of –1 indicates that no panel is lo-
cated at that side.

Important: All the panel id’s defined during oapiSetPanelNeighbours must be sup-
ported by clbkLoadPanel. For example, if panel 0 calls oapiSetPanelNeighbours (2,-
1,1,-1), then panels 1 and 2 must be handled by clbkLoadPanel.

All panels must call the oapiSetPanelNeighbours function, otherwise there is no way
for the user to switch back to a different panel. Panel connectivities should usually be
reciprocal, i.e. if panel 0 defines panel 1 as its top neighbour, then panel 1 should de-
fine panel 0 as its bottom neighbour. If only a single panel (panel 0) is supported,
calling oapiSetPanelNeighbours is not necessary.

1.13 Designing virtual cockpits

The concepts used for defining virtual 3-D cockpits are similar to those of 2-D panels.
They too are defined via a load function, mouse and redraw event handlers. In fact,
some of the redraw methods defined for panel areas may be reused to update parts of
the virtual cockpit textures, so it is useful to familiarise yourself with 2-D panel im-
plementations before progressing to virtual cockpits.

1.13.1 Defining a virtual cockpit

A virtual cockpit requires a 3-D mesh representation. In principle it is possible to add
the cockpit directly to the mesh used to represent the vessel in external views, and
flag this mesh to be visible both in external and cockpit views (via the SetMeshVisi-
bility method), but in general it is more efficient to design a separate mesh for the
cockpit which is  visible only in virtual  cockpit view mode (using  SetMeshVisibility
with the MESHVIS_VC flag). Make sure that the cockpit mesh is consistent with the
external mesh. A good way to achieve this is by building the VC together with the ex-
ternal mesh in your 3D design program, but exporting the cockpit and the external
parts to separate mesh files.
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Figure 3: A view of the DG virtual cockpit.

To  make  the  VC  mode  available  in  your  mesh  class,  you  must  overload  the
clbkLoadVC method of the VESSEL2 class:

bool MyVessel::clbkLoadVC (int id)
{
  ...
}

This will allow the user to switch to VC mode with the F8 key. The  id parameter is
currently always 0. Eventually it will allow to select different cockpit positions.

In the body of clbkLoadVC, you can define camera parameters:

bool MyVessel::clbkLoadVC (int id)
{
  SetCameraOffset (_V(0,1.5,6.0));
  SetCameraDefaultDirection (_V(0,0,1));
  SetCameraRotationRange (RAD*120, RAD*120, RAD*70, RAD*70);
  SetCameraShiftRange (_V(0,0,0.1), _V(-0.2,0,0), _V(0.2,0,0));
  ...
}

SetCameraOffset defines the camera (or pilot eye) position in the vessel coordinate
frame.  SetCameraDefaultDirection defines the default direction the pilot is looking
toward, SetCameraRotationRange defines how far he can turn his head left right, up
and down, and SetCameraShiftRange allows to simulate the pilot 'leaning' forward,
left or right, for example to get a better view out of a window.

Note that you only need to define these camera parameters here if they change be-
tween different cockpit view modes. If all camera modes use the same parameters,
they can be defined globally in the overloaded clbkSetClassCaps method.

Once you have implemented the  clbkLoadVC method thus far and defined the VC
mesh, you should be able to compile the module and test the virtual cockpit mode in
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Orbiter.  Try  rotating  the  view  with  Alt+cursor  keys,  and  'leaning'  with
Ctrl+Alt+cursor keys. When you are satisfied with the camera parameters, you can
proceed to activate VC areas.

1.13.2 Defining active VC areas

As with 2-D panels, virtual cockpit areas must be activated to allow dynamic updates
or to respond to user input. This is how an active area is defined in clbkLoadVC:

bool MyVessel::clbkLoadVC (int id)
{
  ...
  SURFHANDLE tex = oapiGetTextureHandle (vcmesh, 10);
  oapiVCRegisterArea (AID_BUTTON, _R(0,0,20,10), PANEL_REDRAW_ALWAYS, 
      PANEL_MOUSE_LBDOWN, PANEL_MAP_BGONREQUEST, tex);
  oapiVCSetAreaClickmode_Spherical (AID_BUTTON, _V(5,3.3,7.1), 2.5);
  ...
}

As with 2-D panel area definitions, the first parameter of oapiVCRegisterArea defines
a unique identifier for the area (AID_BUTTON in this case). The next parameter de-
fines a rectangular area (in pixel units) in a texture that is updated dynamically in a
redraw event. If the area doesn't need to update any textures (e.g. because it only re-
sponds to mouse events,  or  because it  provides visual  feedback by modifying the
mesh geometry), this parameter is ignored and can be set to _R(0,0,0,0). 

The third parameter defines the events which trigger a redraw notification for the
area. In this case we have set it to PANEL_REDRAW_ALWAYS, i.e. we request a re-
draw notification at each simulation frame (typical for gauges whose displays change
constantly).  Note  that  unlike  2-D panels,  the  term 'redraw  event'  stands  for  any
change in the visual representation of the area. This may consist of repainting a dy-
namic texture, but it could also mean a mesh group animation or direct editing of
mesh vertices or texture coordinates.

The fourth parameter defines the mouse events which trigger a notification for the
area. They are used in the same way as 2-D panel areas, but an additional function
call is required to define the mouse-sensitive area (see below).

The fifth parameter defines the initial contents of the drawing bitmap passed to the
redraw notification. It is used in the same way as for 2-D panels. However, if the re-
draw  event  does  not  update  a  dynamic  texture,  this  must be  set  to
PANEL_MAP_NONE.

The last parameter is a handle to the dynamic texture passed to redraw notifications.
In this example, we have obtained the texture handle from mesh group 10 of the VC
mesh via a call to oapiGetTextureHandle. Note that textures obtained for dynamic re-
painting must be labelled as dynamic in the mesh file (see next section). If the area
does not need to redraw a texture during a redraw event, this parameter can be set to
NULL. In that case, there is a shorter version of oapiVCRegisterArea for convenience
which omits the second, fifth and sixth parameters.

Unlike 2-D panels, the mouse-sensitive region of a VC area must be defined with a
separate function call. In virtual cockpits, the sensitive region is a 3-D volume. Or-
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biter draws a virtual ray from the camera position through the screen point at which a
mouse event occurred, and checks whether the ray intersects a mouse-sensitive vol-
ume. If so, the corresponding mouse event is generated.

You can define either a spherical or a quadrilateral mouse-sensitive region. A spheri-
cal region is defined via the oapiVCSetAreaClickmode_Spherical method, where you
specifiy the centre of the spherical region in the vessel frame of reference, and its ra-
dius. This will trigger a mouse event whenever the user clicks inside the projection of
the sphere onto the simulation window.

Quadrilateral  (e.g.  rectangular)  regions  are  defined  via  the  oapiVCSetAreaClick-
mode_Quadrilateral method, where you specify the four corners of the mouse-sensi-
tive region in space. Again, this will trigger mouse events whenever the user clicks in-
side the projection of the sensitive area on the simulation window.

Spherical regions are slightly more efficient for Orbiter to test, but quadrilateral re-
gions return information about the relative position at  which the mouse click oc-
curred, so they are somewhat more versatile.

1.13.3 Defining dynamic textures

One way to provide information to the pilot in VC mode is by repainting the bitmaps
used to texture VC mesh groups. For example, you can implement gauges and data
displays in this way. You may even be able to re-use a panel area redraw method used
for 2-D panels to update a VC texture, minimising the additional coding effort.

Important:  Orbiter  can  only  draw into  uncompressed  textures.  For  this  reason,
textures which support dynamic repainting must be marked in the mesh file with a
'D' (dynamic), e.g.

...
Textures 2
tex1.dds
tex2_dyn.dds D

Dynamic textures are less efficient than static ones, so you should try to keep them to
a minimum. Collect all parts that require dynamic updates in one or few (small) tex-
ture files, and keep them apart from the static parts.

1.13.4 The mouse event handler

Whenever a mouse event occurs inside the mouse-sensitive volume of an active area,
a notification is passed to your module. To respond to such events, you must overload
the clbkVCMouseEvent method of the VESSEL2 class.

bool MyVessel::clbkVCMouseEvent (int id, int event, VECTOR3 &p)
{
  ...
}

where id is the area identifier, and event is the mouse event that triggered the notifi-
cation (The VC notification uses the same event types as 2-D panels).

Parameter  p returns some information about the mouse position at the event. The
information returned depends on the area type for which the event was generated.

ORBITER Programmer’s Guide (c) 2001-2010 Martin Schweiger 41



For spherical regions, p.x contains the distance of the mouse position from the centre
of the area,  while p.y and p.z are not used. For quadrilateral  regions,  p.x and  p.y
contain the relative mouse x and y positions within the region, where the top left cor-
ner of the region has coordinates (0,0), and the bottom right corner has coordinates
(1,1). This allows to define differentiated responses depending on where in the region
the event occurred, similar to the procedure in 2-D panel regions.

Inside clbkVCMouseEvent, your code must check the area id and perform the appro-
priate actions:

bool MyVessel::clbkVCMouseEvent (int id, int event, VECTOR3 &p)
{
  switch (id) {
  case AID_BUTTON:
    DoProcessButtonPress (...);
    return true;
  case ...  // place response to other areas here
  }
  return false;
}

1.13.5 The redraw event handler

Any active areas which specified a redraw flag other than PANEL_REDRAW_NEVER
during initialisation, will trigger redraw notifications for the appropriate events. Your
code needs to overload the clbkVCRedrawEvent method of the VESSEL2 class to re-
spond to those events.

bool MyVessel::clbkVCRedrawEvent (int id, int event, SURFHANDLE surf)
{
  ...
}

where id is the area identifier,  event is the redraw event that triggered the notifica-
tion, and surf is a handle to the dynamic texture to be redrawn. surf may be NULL if
you didn't specify a texture during the area initialisation.

Inside  clbkVCRedrawEvent, check the area id and perform the appropriate redraw
action for that area. Typically, this will be one of the following:

 Repainting the dynamic texture passed to the notification handler. This is done in
the same way as repainting 2-D panel areas. In fact, you may even be able to re-
use the same code. Repainting textures is a good way to update displays and in-
strument gauges.

 Animating a mesh group. This can be used to simulate flipping a switch or push-
ing a lever. See Section 1.10 for details on animations.

 Editing a mesh. You can use the oapiMeshGroup function to access the vertices of
a mesh group, and edit the vertex positions or texture coordinates. Editing texture
coordinates may be a good alternative to redrawing a texture if the texture is to
switch between discrete pre-defined states.

clbkVCRedrawEvent should return true only if you have modified the dynamic tex-
ture.  If  the texture was not modified,  or  is  undefined,  the function should return
false.
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1.13.6 Defining MFDs in the virtual cockpit

To define a multifunctional display inside a virtual cockpit, you need to perform the
following steps:

Create a new group in the mesh consisting of a flat square area (defined by 4 vertices
and 2 triangles). This is going to be the MFD display. The texture coordinates of the
vertices should be: top left corner: (0,0), top right corner: (1,0), bottom left corner:
(0,1) and bottom right corner: (1,1). Set 'TEXTURE 0' and 'FLAG 3' for this group.
This will exclude the group from normal rendering (Orbiter uses a special render pass
for MFDs). You can select a material of your choice. A material with specular reflec-
tion will produce a 'glass surface' effect.

In clbkLoadVC, define the MFD display with oapiVCRegisterMFD:

bool MyVessel::clbkLoadVC (int id)
{
  ...
  static VCMFDSPEC mfds_left  = {1, 100};
  oapiVCRegisterMFD (MFD_LEFT, &mfds_left);
  ...
}

VCMFDSPEC is a structure which contains the mesh index and group index of the
MFD display group defined in the previous step.  oapiVCRegisterMFD registers this
group as an MFD display (in this case, the left MFD).

Next,  you need to  define the MFD control  buttons.  How you implement  them is
mostly up to you. Typically, you define each button as a rectangle and collect all rec-
tangles into a single mesh group. Reserve space on a dynamic texture for drawing the
button labels, and set the texture coordinates for the button rectangles accordingly.

Then you define an active area for each button to receive mouse events (but no re-
draw events). You also define a dummy area for redraw events. Pass the dynamic
texture handle reserved for that purpose to the redraw area. This could look as fol-
lows:

bool MyVessel::clbkLoadVC (int id)
{
  ...
  oapiVCRegisterArea (AID_LBUTTONS, _R(0,0,20,100),PANEL_REDRAW_USER,
      PANEL_MOUSE_IGNORE, PANEL_MAP_BACKGROUND, tex);
  oapiVCRegisterArea (AID_RBUTTONS,_R(20,0,40,100), PANEL_REDRAW_USER,
      PANEL_MOUSE_IGNORE, PANEL_MAP_BACKGROUND, tex);
  for (i = 0; i < 6; i++) {
    oapiVCRegisterArea (AID_LBUTTON1+i, PANEL_REDRAW_NEVER,
        PANEL_MOUSE_LBDOWN|PANEL_MOUSE_LBPRESSED);
    oapiVCSetAreaClickmode_Spherical (AID_LBUTTON1+i,
        _V(0.2,0.1-i*0.02,2.0), 0.01);
    oapiVCRegisterArea (AID_RBUTTON1+i, PANEL_REDRAW_NEVER,
        PANEL_MOUSE_LBDOWN|PANEL_MOUSE_LBPRESSED);
    oapiVCSetAreaClickmode_Spherical (AID_RBUTTON1+i,
        _V(0.4,0.1-i*0.02,2.0), 0.01);
  }
  ...
}

You should also define mouse-active areas for the three bottom MFD buttons.
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In the mouse event handler,  trap any mouse clicks on the MFD buttons and pass
them to the oapiProcessMFDButton function:

bool MyVessel::clbkVCMouseEvent (int id, int event)
{
  if (id >= AID_LBUTTON1 && id < AID_LBUTTON1+12) {
    oapiProcessMFDButton (MFD_LEFT, id-AID_LBUTTON1, event);
    return true;
  }
  ...
  return false;
}

In the redraw event handler, trap MFD button redraw requests and redraw the but-
tons as required:

bool MyVessel::clbkVCRedrawEvent (int id, int event, SURFHANDLE surf)
{
  switch (id) {
  case AID_LBUTTONS:
    RedrawMFDButtons (surf, MFD_LEFT, 0);
    return true;
  case AID_RBUTTONS:
    RedrawMFDButtons (surf, MFD_RIGHT, 0);
    return true;
  case ...
}

where RedrawMFDButtons is assumed to be a locally defined function performing the
redraw action. You may be able to re-use the same method used for drawing the MFD
buttons in the 2-D panel (see Section 1.12.5).

Finally, trigger a redraw event in the body of the MFD mode change callback notifi-
cation.

void MyVessel::MFDMode (int mfd, int mode)
{
  switch (mfd) {
  case MFD_LEFT:
    oapiTriggerVCRedrawArea (0, AID_LBUTTONS);
    oapiTriggerVCRedrawArea (0, AID_RBUTTONS);
    break;
  case ...
}

1.13.7 Defining the HUD in the virtual cockpit

< to be completed >
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2 Planets and moons

Orbiter allows to create new planets or planetary systems in a few simple steps. To
create a new planet, you need to do the following:

 find or create a surface texture map

 optionally, find or create texture maps for a cloud layer, for a land/sea mask, and
for night lights

 convert the texture map(s) into Orbiter’s .tex format by invoking pltex

 create a configuration file (.cfg) in the Config subfolder, containing physical and
orbital planet parameters.

 Add an entry for the planet in the configuration file of the planetary system (e.g.
Sol.cfg).

 Optionally, create a DLL plugin module to allow detailed control of planet move-
ment and atmosphere definition.

2.1 Planet texture maps

2.1.1 Texture format

Each planet has an associated surface texture file <pname>.tex, where <pname> is
the planet’s name. Optionally,  additional texture files <pname>_cloud.tex (for de-
fining  a  cloud  layer),  <pname>_lmask.tex  (for  defining  a  land  area  mask)  and
<pname>_lights.tex (for defining surface night lights) may be present.

Each texture file contains a series of texture maps,  stored as DirectDraw surfaces
(dds) in DXT1 compression format.

ORBITER uses a variable resolution approach for both meshes and texture maps to
render planetary surfaces. The rendering resolution level is determined by the appar-
ent radius of the planet. At low resolutions ORBITER uses a single spherical mesh
covered by a single texture. At higher resolutions the spherical surface is constructed
from a series of sphere patches, each containing its own texture patch. This method
allows efficient rendering by removing hidden patches before invoking the rendering
pipeline.

ORBITER currently supports 9 resolution levels for planetary surfaces, as listed in
Table 1. At the highest resolution the sphere is constructed from 364 patches with an
effective texture resolution of 16384x8192. Figure 4 shows a detail of the Martian sur-
face rendered at different resolution levels.

Level Resolution* Mesh 
patches

Triangles 
(total)**

Texture memory***

with DXT1 w/o DXT1

1 64 x 64 1 144 2K 16K

2 128 x 128 1 256 10K 80K

3 256 x 256 1 576 42K 336K
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4 512 x 256 2 1024 106K 848K

5 1024 x 512 8 2592 362K 2.9M

6 2048 x 1024 24 4672 1.1M 9.0M

7 4096 x 2048 100 25440 4.3M 34.6M

8 8192 x 4096 364 116448 16.0M 127.8M

9 16384 x 8192 1456 276640 63.9M 511.2M

Table 1: Supported resolution levels for planetary surfaces.

*Resolution: Effective texture map resolution at the equator.

**Triangles: This is the total number of triangles for all patches. In practice fewer tri-
angles will be rendered because hidden patches are removed before entering the ren-
dering pipeline.

***Texture memory: Video/AGP memory required to hold texture maps up to this
resolution level for a single planet. With DXT1: video hardware supports DXT1 tex-
ture compression. W/o DXT1: video hardware doesn’t support DXT1 texture com-
pression.

High resolution levels require significant amounts of video/AGP memory and should
only be used on systems with adequate 3D graphics subsystems. On older graphics
cards which do not natively support DXT1 texture compression ORBITER needs to
convert  textures into RGBA format  which increases memory requirements  8-fold.
Conversion to RGBA will also dramatically increase the loading time when starting
ORBITER.

Important: Do not try to use resolution level  8 if your video card does not sup-
port DXT1 texture compression or has less than 32MB of texture memory!

Figure 4: Mars texture detail at resolution levels 5, 6, 7 and 8 (from left).

2.1.2 Where ORBITER looks for textures

ORBITER  first  searches  for  the  texture  file  in  the  location  specified  by  the
HightexDir entry  in  the  Orbiter.cfg file.  If  the  texture  file  is  not  found  or  if
HightexDir is not defined then ORBITER searches in the directory specified by the
TextureDir entry. This allows switching between high and low resolution texture
maps conveniently by inserting or removing the HightexDir entry.

If no texture file is found then the planet is rendered without a surface texture.
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Each planet’s configuration file <pname>.cfg contains an entry MaxPatchResolution
which defines the maximum texture resolution level  to use with this planet (valid
range 1  to 8).  If  the texture file  contains higher resolution levels  than defined by
MaxPatchResolution then the additional resolutions are skipped. This allows reduc-
ing texture memory requirements without modifying the texture file. If the texture
file  contains fewer resolution levels than defined by  MaxPatchResolution then the
maximum resolution is reduced accordingly.

2.1.3 Using pltex to generate custom planet textures

If you prefer, you can use your own planet maps instead of those provided by OR-
BITER.  The  ORBITER  download  page  contains  a  planet  texture  conversion  tool
(pltex) which allows to convert planet maps from BMP bitmap format to ORBITER’s
texture format. It resamples the map to the requested resolutions, splits it into sur-
face patches and converts them to DXT1 compressed texture format.

The source map should contain the complete surface in spherical projection, where
the left edge corresponds to longitude 180°W, the right edge to longitude 180°E, the
bottom edge to latitude 90°S, and the top edge to latitude 90°N. The width/height
ratio of the bitmap should be close to 2/1.

Pltex requires the source map in 24bit or 8bit Windows BMP format. If your map is
in any other format (e.g. JPEG or GIF) you need to convert it into BMP (using your
favourite graphics conversion tool) before invoking pltex.

Synopsis:

pltex [–i <mapname>] [-l <minres> -h <maxres>] [-9]

<mapname>: source texture file name

<minres>: minimum resolution level (1..8)

<maxres>: maximum resolution level (<minres>..8)

 If command line options are omitted then pltex requests values interactively.

 If  a  higher  maximum resolution  is  requested  than  can  be  obtained  from  the
source map, pltex adjusts the maximum resolution accordingly. See  Table 1 for
map resolutions at the various resolution levels.

 The only justification for <minres> 1 is if you want to compose certain resolu-
tion levels from a different source map, e.g. generate Earth resolution levels 1 to 7
from a map that includes clouds, and level 8 from a map without clouds. In that
case pltex must be run twice, and the output texture files concatenated.

 The option to use alpha (transparency) maps is  intended for semi-transparent
cloud maps.

 You can use pltex to generate a set of level 9 texture patches by specifying the –9
command line option. In that case, both <minres> and <maxres> must be set to
9. Note that level 9 textures are treated differently to levels 1-8. Level 9 is not
automatically assembled into the <planet>.tex file. Instead, after generating the
individual patches (1456 in total!) with pltex, you need to run the TileManager
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application  bundled  with  the  Orbiter  base  package  to  add  patches  into  the
<planet>_tile.tex  file  containing high-resolution  patches.  See  the TileManager
help file for details.

Pltex  will  generate  a  texture  file  <mapname>.tex.  If  necessary,  rename  to
<pname>.tex where <pname> is the planet’s name, and copy to the  TextureDir di-
rectory (usually “Textures”) or HightexDir directory (usually “Textures2”).

Note:

Generating high-resolution texture maps (level 8 and higher) may take a long time
and requires a large amount of system memory.

2.2 Planet modules

Planet modules can be used to control the motion of a planet (or any other celestial
body, such as a moon, the sun, or an asteroid) within the solar system. This allows to
implement  sophisticated  analytic  ephemerides  solutions  which  take  into  account
perturbations from other celestial objects.

Planets which are not controlled via a DLL module are updated directly by Orbiter.
Depending on the settings in the definition file, Orbiter either uses an unperturbed 2-
body approximation, resulting in a conic section trajectory (e.g. an ellipse), or uses a
dynamic  update procedure based on the gravitational  forces acting on the planet.
Both methods have limitations:  the 2-body approach ignores perturbations and is
only valid if no massive bodies other than the orbit reference object are nearby. The
dynamic update accumulates numerical errors over time, causing the orbits slowly to
diverge from the correct trajectories.

By using a planet module, analytic perturbation solutions can be used which avoid
the shortcomings of the methods described above. Perturbation solutions typically
describe the perturbed orbit of a planet by expressing the state vectors as a trigono-
metric series. These series are valid over a limited period of time, after which they
start to diverge. Examples of perturbation solutions used in Orbiter are the VSOP87
solution for the 8 major planets and the sun, or the ELP2000 solution for the moon.

Planet modules can also define an atmosphere model for the celestial body. Atmos-
phere  models  return  atmospheric  data  (temperature,  density  and  pressure)  at  a
specified altitude (and other optional parameters, such as geographic position and
time). Atmospheric models can be implemented either directly in the planet module,
or in a separate plugin module. Putting the atmosphere model into a separate plugin
makes it easier to swap models later.

The following sections give a brief introduction into the design of planet modules. A
general knowledge of writing orbiter plugins is assumed.

2.2.1 First steps

Create  a  new  DLL  project  for  your  planet  module,  e.g.  in  Orbitersdk\samples\
MyPlanet.  Set  up all  the usual  include and library  paths for Orbiter  plugins.  Add
orbiter.lib and orbitersdk.lib as additional dependencies.
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2.2.2 The CELBODY2 interface class

The communication between the Orbiter core and the planet module is performed via
callback functions defined in the CELBODY and CELBODY2 classes. (CELBODY2 is
derived from CELBODY and contains all the properties of the base class, plus a sig-
nificantly  extended atmospheric  parameter  interface.)  The  CELBODY interface  is
retained for backward compatibility, but all new planet modules should refer to the
CELBODY2 interface.

We now need to the class interface for the new planet module by deriving a custom
class from CELBODY2. Create a new header file in your project, e.g. MyPlanet.h, and
add the following:

#include "OrbiterAPI.h"
#include "CelbodyAPI.h"

class DLLEXPORT MyPlanet: public CELBODY2 {
public:
    MyPlanet (OBJHANDLE hObj);
    void clbkInit (FILEHANDLE cfg);
    int clbkEphemeris (double mjd, int req, double *ret);
    int clbkFastEphemeris (double simt, int req, double *ret);
};

OrbiterAPI.h contains  the  general  API  interface,  and  CelbodyAPI.h contains  the
planet module-specific interface, in particular the  CELBODY,  CELBODY2 and  AT-
MOSPHERE classes.

The  clbkEphemeris and  clbkFastEphemeris methods  are  callback  functions  which
Orbiter will call whenever the planet positions and velocities ("ephemerides") need to
be updated.  They will  be  described in  more detail  below.  The clbkInit  method is
called by Orbiter after the planet module has been loaded. It receives a file handle for
the planet's configuration file. This allows the module to read configuration parame-
ters from the file.

The CELBODY2 interface contains a few more methods related to defining an atmos-
pheric model. These will be discussed below. Check the API Reference manual for a
complete list of class methods. 

To implement the methods in our MyPlanet class, create a source file in your project,
e.g. MyPlanet.cpp. Add the following lines:

#define ORBITER_MODULE
#include "MyPlanet.h"

MyPlanet::MyPlanet (OBJHANDLE hObj): CELBODY2 (hObj)
{
  // add constructor code here
}

void MyPlanet::clbkInit (FILEHANDLE cfg)
{
  // read parameters from config file (e.g. tolerance limits, etc)
  // perform any required initialisation (e.g. read perturbation terms from 
data files)
}

bool MyPlanet::bEphemeris() const
{
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  return true;
  // class supports ephemeris calculation
}

int clbkEphemeris (double mjd, int req, double *ret)
{
  // return planet position and velocity for Modified Julian date mjd in ret
}

int clbkFastEphemeris (double simt, int req, double *ret)
{
  // return interpolated planet position and velocity for simulation time 
simt in ret
}

The first line defining ORBITER_MODULE is required to ensure that all initialisation
functions are properly called by Orbiter.

clbkEphemeris and clbkFastEphemeris are the functions which will contain the actual
ephemeris calculations for the planet at the requested time.  clbkEphemeris is only
called by Orbiter if the planet’s state at an arbitrary time is required (for example by
an instrument calculating the position at some future time). When Orbiter updates
the  planet’s  position  for  the  next  simulation  time  frame,  the  clbkFastEphemeris
function will be called instead. This means that  clbkFastEphemeris will be called at
each frame, each time advancing the time by a small amount. This can be used for a
more efficient calculation. Instead of performing a full series evaluation, which can be
lengthy, you may implement an interpolation scheme which performs the full calcu-
lation only occasionally, and interpolates between these samples to return the state at
an intermediate time.

For both functions, the requested type of data is specified as a group of EPHEM_xxx
bitflags in the req parameter. This can be any combination of position and velocity
data for the celesital body itself and/or the barycentre of the system defined by the
body and all its children (moons). The functions should calculate all required data,
either in cartesian or polar  coordinates,  and fill  the  ret array with the results.  ret
contains 12 entries, used as follows:

ret[0-2]: true position

ret[3-5]: true velocity

ret[6-8]: barycentric position

ret[9-11]: barycentric velocity

Only the fields requested by req need to be filled. In cartesian coordinates, the posi-
tion fields must contain the x, y and z coordinates in [m], and the velocity fields must
contain the velocities dx/dt, dy/dt, dz/dt in [m/s]. In spherical polar coordinates, the
position fields must contain longitude  [rad], latitude  [rad] and radial distance r
[AU], and the velocity fields must contain the polar velocities d/dt [rad/s], d/dt
[rad/s] and dr/dt [AU/s].

The functions should indicate the fields actually calculated via the return value. This
is in particular important if not all requests could be satisified (e.g. position and ve-
locity was requested, but only position could be calculated). The return value is inter-
preted as a bitflag that can contain the same EPHEM_xxx flags as the req parameter.
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If all requests could be satisfied, it should be identical to req. In addition, the return
value should contain additional flags indicating the properties of the returned data,
including EPHEM_POLAR if the data are returned as spherical polar coordinates, or
EPHEM_TRUEISBARY if the true and barycentric coordinates are identical (i.e. the
celestial body does not have child bodies).

2.2.3 The API interface

Next, we need to define the API interface that will allow Orbiter to load an instance of
the celestial body interface. This is done by implementing the InitInstance and ExitIn-
stance functions in MyPlanet.cpp:

DLLCKBK CELBODY *InitInstance (OBJHANDLE hBody)
{
  // instance initialisation
  return new MyPlanet;
}

DLLCLBK void ExitInstance (CELBODY *body)
{
  // instance cleanup
  delete (MyPlanet*)body;
}

InitInstance and ExitInstance are called by Orbiter each time an instance of the planet
is loaded or discarded. There are also functions InitModule and ExitModule, which are
called only once per simulation run, and can be used to initialise and clean up global
resources:

DLLCLBK void InitModule (HINSTANCE hModule)
{
  // module initialisation
}

DLLCLBK void ExitModule (HINSTANCE hModule)
{
  // module cleanup
}

Because usually only a single instance of a specific planet object is created during a
simulation, the difference between  InitInstance and  InitModule is not as significant
here  as  it  is  for  vessel  modules.  The  InitModule and  ExitModule methods  can  be
omitted if the module doesn’t need any global parameter initialisation.

2.3 Defining an atmosphere

Planetary atmospheres have a significant influence on the flight behaviour of space-
craft. The primary atmospheric parameters are temperature, pressure and density as
a function of altitude.

Defining a simple atmospheric model is possible by setting a few parameters in the
planet’s configuration file. More sophisticated models must be coded in the planet’s
DLL module.

Orbiter currently does not model local atmospheric perturbations (climatic/weather
effects), although local temperature and pressure variations can be implemented by
customised atmosphere models.
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2.3.1 A simple atmosphere

To define a simple exponentially decaying atmosphere, define the following items in
the planet’s configuration (.cfg) file:

AtmPressure0: The static atmospheric pressure [Pa] at altitude zero, p0.

AtmDensity0: The atmospheric density [kg/m3] at altitude zero, 0.

AtmAltLimit: The  altitude  above  which  atmospheric  effects  can  be  ne-
glected.

where altitude zero is defined as distance Size (as defined in the configuration file)
from the planet’s centre.

The pressure and density at any altitude h is then calculated by Orbiter as
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 , and g0 is the gravitational acceleration at altitude zero.

This model assumes constant temperature.

2.3.2 A more sophisticated atmosphere

Where the simple model described above is not adequate, a more detailed atmos-
pheric model can be implemented in a plugin module. This section assumes that a
module for the celestial body has already been created, as outlined in Section 2.2.

The atmosphere model interface is described by the ATMOSPHERE class defined in
CelbodyAPI.h. To create a custom atmosphere model, create a new header file in your
planet project, e.g. MyAtmosphere.h. The atmosphere class interface should look like

#include "OrbiterAPI.h"
#include "CelbodyAPI.h"

class DLLEXPORT MyAtmosphere: public ATMOSPHERE {
public:
  MyAtmosphere (CELBODY2 *body);
  const char *clbkName () const;
  bool clbkConstants (ATMCONST *atmc) const;
  bool clbkParams (const PRM_IN *prm_in, PRM_OUT *prm_out);
};

The constructor takes the CELBODY2 class instance of the associated celestial body
as a parameter.

The clbkName callback function should return a short name identifying the model.

The  clbkConstants callback function should return in atmc some basic atmosphere
parameters, such as the mean density and pressure at ground level, gas constant and
ratio of specific heats, as well as some rendering parameters.

Note that some of the parameters returned by clbkConstants may be overwritten by
the settings defined in the celestial body's configuration file. Configuration file entries
take precedence over clbkConstants.
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The  clbkParams callback function should return atmospheric temperature, density
and pressure at the location specified by the data in the  prm_in parameter. Simple
models may depend on altitude only, but more sophisticated models can make use of
the additional parameters such as position (longitude and latitude), solar flux, geo-
magnetic index, and date.

Create a source file, e.g.  MyAtmosphere.cpp, to implement the actual model. A very
simplistic implementation may look like this:

#include "MyAtmosphere.h"

static double T0       = 288.0;  // ground level temperature [K]
static double p0       = 101325; // ground level pressure [Pa]
static double rho0     = 1.2250; // ground level density [kg/m^3]
static double R        = 286.91; // gas constant
static double gamma    = 1.4;    // ratio of specific heats
static double altlimit = 200e3;  // cutoff altitude
static double C        = rho0/p0;

MyAtmosphere::MyAtmosphere (CELBODY2 *body): ATMOSPHERE (body)
{
}

const char *MyAtmosphere::clbkName () const
{
  static char *name = "Simple";
  return name;
}

bool MyAtmosphere::clbkConstants (ATMCONST *atmc) const
{
  atmc->p0       = p0;
  atmc->rho0     = rho0;
  atmc->R        = R;
  atmc->gamma    = gamma;
  atmc->altlimit = altlimit;
  return true;
}

bool MyAtmosphere::clbkParams (const PRM_IN *prm_in, PRM_OUT *prm_out)
{
  double z = (prm_in->flag & PRM_ALT ? prm_in->alt : 0.0);
  if (z < 200e3) {
    double scale = exp (-C*z);
    prm_out->T = T0;
    prm_out->rho = rho0 * scale;
    prm_out->p   = p0   * scale;
    return true;
  } else {
    prm_out->T   = 0;
    prm_out->rho = 0;
    prm_out->p   = 0;
    return false;
  }
}

The above example serves only as an illustration. The actual atmosphere models pro-
vided with the Orbiter distribution are more complex. For some background on the
supported  Earth  atmosphere  models,  see  the  technical  note  in  Doc\Technotes\
earth_atm.pdf.
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Now we need to link the atmosphere model into the celestial body interface. This can
be done with the SetAtmosphere function of the CELBODY2 class. Add the following
statement to the clbkInit method of your MyPlanet definition:

#include "MyAtmosphere.h"

void MyPlanet::clbkInit (FILEHANDLE cfg)
{
  SetAtmosphere (new MyAtmosphere (this));
}

The atmosphere instance will be destroyed automatically when the planet instance is
deleted.

2.3.3 External atmosphere modules

Instead of implementing the atmosphere model inside the planet module, it can can
also be implemented in a separate plugin module. This makes it easier to exchange
the atmosphere model for a different one later on, without having to have access to
the rest of the planet module code.

To implement the atmosphere as a separate module, create a new DLL project for it.
Add the  MyAtmosphere.h and  MyAtmosphere.cpp files created in the previous sec-
tion to the project. Since the atmosphere is now defined in its own module, add the
line

#define ORBITER_MODULE

on top of MyAtmosphere.cpp.

In addition, you need to define an API interface to the module code. It should look 
like this:

DLLCLBK void InitModule (HINSTANCE hModule)
{
  // module initialisation
}

DLLCLBK void ExitModule (HINSTANCE hModule)
{
  // module cleanup
}

DLLCLBK ATMOSPHERE *CreateAtmosphere (CELBODY2 *cbody)
{
  return new MyAtmosphere (cbody);
}

DLLCLBK void DeleteAtmosphere (ATMOSPHERE *atm)
{
  delete (MyAtmosphere*)atm;
}

By convention, external planetary atmosphere modules should be placed in the Mod-
ules\Celbody\<Name>\Atmosphere folder,  where  <Name> is  the  celestial  body's
name. So in our case, Modules\Celbody\MyPlanet\Atmosphere\MyAtmosphere.dll.

We now need to modify the MyPlanet code to allow it to load its atmosphere interface
from an external module. Replace the SetAtmosphere statement in the clbkInit func-
tion with
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void MyPlanet::clbkInit (FILEHANDLE cfg)
{
  LoadAtmosphereModule ("MyAtmosphere");
}

However, this causes the atmospheric module name to be hardcoded in the planet
module. A more flexible method is to specify the atmospheric module in the celestial
body's configuration file, using the MODULE_ATM entry. Our MyPlanet.cfg file might
look like this:

NAME = MyPlanet
MODULE = MyPlanet
MODULE_ATM = MyAtmosphere

If the MODULE_ATM entry is defined in the configuration file, then the default CEL-
BODY2::clbkInit implementation will load the atmosphere module directly, so we only
need to make sure to call the base class method:

void MyPlanet::clbkInit (FILEHANDLE cfg)
{
  CELBODY2::clbkInit (cfg);
}

Calling  the  CELBODY2::clbkInit method  also  enables  another  interesting  feature:
Before  reading  the  MODULE_ATM entry  in  the  planet  configuration  file,  Orbiter
scans the Config\<Name>\Atmosphere.cfg file for an entry "Model" and uses that, if
present. This file is written by the Atmosphere configuration tool in the Extra tab of
the Orbiter launchpad, which provides a convenient method for users to change at-
mosphere models. This mechanism allows to add new atmosphere modules without
the need to change any configuration files. As long as the atmosphere DLL modules
are placed in the correct location (Modules\Celbody\<Name>\Atmosphere), they will
be scanned automatically by the atmosphere selector tool.

2.3.4 Adding and replacing atmosphere models

Most of the celestial body modules in the default Orbiter distribution have built-in
support for external atmosphere modules, and some of them (Earth, Mars and Ve-
nus) come with one or several atmosphere modules. To add additional choices for
atmosphere models for a body, create one as outlined above, and simply drop the
DLL  library  into  the  Modules\Celbody\<Name>\Atmosphere folder.  If  that  folder
doesn't exist yet, you have to create it. The user can then select the new model from
the Extra tab in the Orbiter Launchpad (Celestial body configuration | Atmosphere
configuration).

For best support of the atmosphere model selection tool, your atmosphere module
should contain two additional API functions:

DLLCLBK char *ModelName ()
{
  static char *name = "MyAtmosphere";
  return name;
}

DLLCLBK char *ModelDesc ()
{
  static char *desc = "My custom atmosphere model";
  return desc;
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}

The string returned by the ModelName function represents the model in the dialog's
selection list box. The string returned by ModelDesc should contain a short descrip-
tion (max 256 characters displayed in the dialog box when the model is selected.

If you don't want to design your own custom atmosphere model, you can quickly add
atmospheres  to  planets  by  replicating  existing  ones.  Simply  copy  an  atmosphere
module from the Modules\Celbody\<Name>\Atmosphere folder of one planet to that
of another one. It then becomes available in the list of atmospheres for that planet.
Note that the module only provides the physical atmospheric parameters. You will
still have to edit the definition file to provide visual effects.

Of course, replicating an atmosphere should be regarded as a quick and dirty trick for
experimentation. Atmospheres are always tailor-made for specific bodies, and don't
realistically fit anywhere else.

2.3.5 Earth default atmosphere models

The Orbiter distribution contains three Earth atmosphere models that can be selected
by  the  user  from  the  Extra  tab  in  the  Launchpad  dialog.  See  Doc\Technotes\
earth_atm.pdf for further details on the different models.

Jacchia71-Gill Atmosphere Model. This is an implementation of the Jacchia-71
(J71) model1, using a polynomial series approximation by Gill2. It uses a static US
Standard Atmosphere model below 90km, and a diffusion-equilibrium solution be-
tween 90 and 2500km altitude. The only model parameter is the exospheric tem-
perature.

NRLMSISE-00 Atmosphere Model. This model is based on the MSISE90 model,
with the addition of further corrections based on observation data.  MSISE90 pro-
vides the neutral temperature and density from ground level to thermospheric alti-
tudes. Unlike the Jacchia models, the low-altitude data are not static, but vary with
location.

Orbiter 2006 Legacy model. This is the model that was used in the Orbiter 2006
Edition. It is based on a static standard model3 below 105km, and assumes constant
temperature  and  exponentially  decaying  density  and  pressure  between  105  and
200km. This model underestimates density and pressure above ~120km, which re-
duces the orbit decay of object in low Earth orbit.

In addition, the atmosphere can be disabled for testing/debugging purposes.

2.3.6 Mars atmosphere

Orbiter uses the following atmospheric parameter profiles for Mars:

Altitude [km] 0 2 4 14 20 30

Temperature [K] 195 200 200 180 180 165

Pressure [Pa] 610.0 499.5 410.1 145.1 75.2 23.9

Density [kg m-3] 0.02 0.0160 0.0131 0.0052 2.710-3 9.310-4
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Atmospheric parameters:

Surface pressure: p0 = 610.0 Pa

Surface density: 0 = 0.020 kg m-3

Ratio of specific heats:  = 1.2941

Specific gas constant: R = 188.92 J K-1 kg-1

Orbiter defines the upper atmosphere altitude limit as 100 km.

2.3.7 Venus atmosphere

Orbiter uses the following atmospheric parameter profiles for Venus:

Altitude [km] 0 30 60 70 90 200

Temperature [K] 750 480 230 230 180 180

Pressure [Pa] 9.2M 897k 14.2k 1.85k 18.5 3.410-11

Density [kg m-3] 65 9.9 0.33 0.043 5.410-4 1.010-15
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Atmospheric parameters:

Surface pressure: p0 = 9.2 MPa

Surface density: 0 = 65 kg m-3

Ratio of specific heats:  = 1.2857

Specific gas constant: R = 188.92 J K-1 kg-1

Orbiter defines the upper atmosphere altitude limit as 200 km. The cloud layer is set
at an altitude of 60 km.

2.3.8 The speed of sound

Orbiter uses the equation for an ideal gas to compute the speed of sound as a function
of absolute temperature:

RTa 

where  is the ratio of specific heat at constant pressure cp, and specific heat at con-
stant temperature, cv, for the gas, vp cc /  For air at normal conditions,  = 1.4. This
value is used by Orbiter as a default. It can be overridden by setting the AtmGamma
parameter in the planet’s configuration file.

R is the specific gas constant. By default, Orbiter uses the value for air, 286.91 J K -1

kg-1. This can be overridden by setting the AtmGasConstant parameter in the planet’s
configuration file.

Mach number: The Mach number is an essential parameter in aerodynamics. It ex-
presses a velocity v in units of the current speed of sound:
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M = v/a
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