
ORBITER File Formats
Copyright (c) 2000-2010 Martin Schweiger 26 August 2019
Orbiter home: orbit.medphys.ucl.ac.uk/ or www.orbitersim.com

Contents

1 INTRODUCTION...2

2 ORBITER CONFIGURATION FILES...3

2.1 Master configuration file..3
2.2 Planetary systems... 7
2.3 Planets.. 8
2.4 Adding custom markers.. 19
2.5 Vessel configuration files..21

3 SCENARIO FILES...25

4 MESH FILES..30

4.1 Mesh groups... 34
4.2 Material list... 36
4.3 Texture list.. 36
4.4 Performance optimisation..37
4.5 Mesh converters.. 37
4.6 Mesh utilities.. 37

ORBITER User Manual (c) 2000-2010 Martin Schweiger 1

http://www.orbitersim.com/
http://www.medphys.ucl.ac.uk/~martins/orbit/orbit.html

1 Introduction

This document contains information about the various file formats used by Orbiter,
including configuration, scenario and mesh files. Orbiter functionality can be
modified and extended by editing or adding new configuration files, e.g. to define a
new spacecraft type, or to modify its visual appearance.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 2

2 ORBITER configuration files

Configuration files allow the customisation of various aspects of Orbiter. Configura-
tion files have file extension .cfg. They are ASCII text files which can be edited with
any text editor capable of writing plain text files (e.g notepad).

Each line contains an item and its value, using the format

<item> = <value>

A semicolon starts a comment, continuing to the end of line.

All configuration files except for the master file (see below) are located in a subdirec-
tory tree defined by the ConfigDir entry in the master file, usually “.\Config”.

2.1 Master configuration file

The master configuration file Orbiter.cfg is located in the Orbiter main directory. It
contains general settings for graphics modes, subdirectory locations, simulation pa-
rameters, etc. Most of the options in this file are accessible via the Orbiter Launchpad
dialog box, and manual editing of the file should generally not be necessary.

Orbiter overwites the master configuration file at the start and end of each simulation
session, to store any changes made in the Launchpad by the user.

By default, only entries whose values differ from their default setting are written to
Orbiter.cfg. To force Orbiter to write out all values (useful for debugging or manually
editing the file), open Orbiter.cfg in a text editor, change the value of EchoAllParams
to TRUE, and save. Subsequently, Orbiter will write all configuration values to the
file.

Item Type Description
EchoAllParams Bool If TRUE, Orbiter writes all configuration parameters to

Orbiter.cfg, including defaults. Default: FALSE
LPadRect Rect Screen position of the launchpad dialog window (pixels)
Subdirectory locations
ConfigDir String Subdirectory for configuration files. Default: .\Config\
MeshDir String Subdirectory for mesh files. Default: .\Meshes\
TextureDir String Subdirectory for textures. Default: .\Textures\
HightexDir String Subdirectory for alternative high-resolution planetary tex-

tures. Default: .\Textures2\
ScenarioDir String Subdirectory for scenarios. Default: .\Scenarios\
Logical parameters
StartPaused Bool Suspend simulation on launch. Default: FALSE
FlightModel Int Flight model realism level. Currently supported: 0 (simple)

and 1 (complex). Default: 1
DamageModel Int Damage realism level. Currently supported: 0 (no

damage) and 1 (damage modelling enabled). Default: 0
UnlimitedFuel Bool Ignore spacecraft fuel consumption. Default: FALSE
RefuelOnPad Bool Auto-refuel spacecraft parked on a landing pad. Default:

TRUE
MFDTransparent Bool Make multifunctional displays transparent in “glass

cockpit” mode. Default: FALSE
CompactGlasspit Bool On widescreen formats, keep MFD displays in the screen

centre. Default: TRUE

ORBITER User Manual (c) 2000-2010 Martin Schweiger 3

GenericMFDSize Int Scaling factor for MFD displays in “glass cockpit” mode.
Supported values 1-10. Default: 6

MFDMapVersion Int Display style for Map MFD (0 = old, 1 = new). Default: 1
InstrumentUpdate-
Interval

Float Interval between MFD display updates (seconds). Default:
1

PanelScale Float Scaling factor for instrument panel display. Default: 1
PanelScrollSpeed Float Speed factor for panel scrolling (pixels per second).

Default: 300
User interface parameters
FocusFollowsMouse Bool If TRUE, dialog windows receive input focus when the

mouse moves over them. Default: TRUE
MenubarMode Int Main menu mode (0=on, 1=off, 2=auto-hide). Default: 2
MenuLabelOnly Bool Enable/disable main menu icon display. Default: FALSE
ShowWarpAlways Bool Display time acceleration even if menubar is hidden.

Default: TRUE
ShowWarpScientific Bool Display time acceleration in scientific mode. Default:

FALSE
InfobarMode Int Info bar mode (0=on, 1=off, 2=auto-hide). Default: 0
InfoAuxIdx Int Int Auxiliary info box modes left/right. Default: 0 0
MenubarOpacity Int Main menu opacity (0-10). Default: 4
InfobarOpacity Int Info bar opacity (0-10). Default: 4
MenubarSpeed Int Menu/info bar scroll speed (1-20). Default: 10
Visual parameters
EnableShadows Bool Enable/disable object shadows on planet surfaces.

Default: TRUE
EnableVesselSha-
dows

Bool Enable/disable vessel shadows on planet surfaces.
Default: TRUE

EnableClouds Bool Enable rendering of planetary cloud layers. Default: TRUE
EnableCloudShad-
ows

Bool Enable rendering of cloud shadows on the ground (also
requires CloudShadowDepth < 1 in individual planet con-
fig files). Default: FALSE

EnableNightlights Bool Enable rendering of night lighting effects of planetary sur-
faces. Default: TRUE

EnableWaterReflec-
tion

Bool Enable rendering of specular reflections from oceanic
surfaces. Default: TRUE

EnableSpecularRip-
ples

Bool Enable microtextures on water surfaces for ripple effects.
Default: FALSE

EnableHorizonHaze Bool Enable rendering of atmospheric effects at the horizon.
Default: TRUE

EnableDistanceFog Bool Enable distance-dependent fog effects. Default: TRUE
EnableSpecularRef-
lection

Bool Enable specular reflection effects from polished surfaces.
Default: TRUE

EnableReentry-
Flames

Bool Enable shockwave effects during reentry. Default: TRUE

EnableParticle-
Streams

Bool Enable particle generation for exhaust and reentry effects.
Default: TRUE

EnableLocalLights Bool Enable localised point and spot light emitters. Default:
FALSE

MaxLights Int Max. simultaneously active lights (0=query device).
Default: 0

AmbientLevel Int Ambient light level (brightness of not directly lit surfaces).
Valid range is 0-255. Default: 10

PlanetMaxPatch-
Level

Int Max. texture resolution level for planetary surfaces.
Range: 1-14. Default: 14

PlanetPatchRes Float Texture resolution bias for planet surfaces. Range: 0.1 to
10. Higher values produce higher resolution planetary
surfaces at a given apparent radius, but reduce perform-
ance. Default: 1.0

NightlightBrightness Float Brightness level of night lighting effects. Range: 0-1.
Default: 0.5

ORBITER User Manual (c) 2000-2010 Martin Schweiger 4

StarPrm List Brightness and scaling parameters for stars rendered as
pixels. Values: app. mag. limit for brightest stars / app.
mag. limit for dimmest stars / render brightness for
dimmest stars / lin-log scaling flag. Default: [0.0 7.0 0.1 0]

CSphereBgImage String File name for celestial sphere background image. Default:
<none>

CSphereBGPath String File path to celestial sphere background image.
CSphereBGIntensity Float Brightness of background image. Range: 0-1. Default: 0.5
Screen capture parameters
CaptureTarget Int 0=Clipboard, 1=File. Default: 0
CaptureFile String File name for next screen capture
CaptureSequenceDir String Directory name for next screen capture sequence
CaptureImageFormat Int 0=BMP, 1=PNG, 2=JPG, 3=TIFF
CaptureImageQuality Int 1-10
CaptureSequence-
Start

Int Number of next file in sequence

CaptureSequence-
Skip

Int Number of frames to skip in sequence recording

Instrument parameters
ForceMfdPow2 String TRUE=MFD sizes are set to powers of 2. FALSE=sizes

can be arbitrary, AUTO=Orbiter guesses from display
caps

MfdHiresThreshold Int MFD threshold size for switching from 256x256 to
512x512 pixels (only used if Pow2 size is active)

Visual helper parameters
Planetarium Int Bit flags for display elements in “Planetarium” mode (F9).

Default: 4330
BodyForces List Display parameters for force vector visualisation. Values:

Bit flags for force types / vector scale factor / opacity.
Default: [60 1.0 1.0]

CoordinateAxes List Display parameters for object axis visualisation. Values:
Bit flags for object types / axis scale factor / opacity.
Default: [4 1 1]

Debugging options
ShutdownMode Int Simulation shutdown method (0=dealloc memory,

1=respawn, 2=terminate). Default: 0
FixedStep Float Assigns a fixed time interval per frame [s]. Default: 0 (dis-

able fixed frame intervals)
TimerMode Int Simulation timer mode (0=auto, 1=hires hardware timer,

2=lores software timer). Default: 0
DisableFont-
Smoothing

Bool Turn off font smoothing while running Orbiter to improve
performance. Default: TRUE

ForceReenableFont-
Smoothing

Bool Re-enable font smoothing at Orbiter close even if it was
not active at program start. Default: FALSE

HtmlScnDesc Int Use inline Html viewer for Launchpad scenario
descriptions. 0=no, 1=yes, 2=auto (off for Linux/Wine)

SaveExitScreen Bool Take screenshot on session exit to display in scenario
description. Default: TRUE

Physics engine
DistributedVessel-
Mass

Bool Enables gravity gradient torque effects as result of aniso-
tropic inertia tensor. Default: FALSE

NonsphericalGravity-
Sources

Bool Enables orbit perturbations due to nonspherical gravita-
tional potentials. Default: FALSE

RadiationPressure Bool Enables orbit perturbations due to radiation pressure.
Default: FALSE

StabiliseOrbits Bool Use Encke's method for improved state propagation sta-
bility at large time steps. Default: TRUE

StabilisePLimit Float Field perturbation limit for orbit stabilisation. Default: 0.05
StabiliseSLimit Float Fractional orbit step limit for orbit stabilisation. Default:

0.01

ORBITER User Manual (c) 2000-2010 Martin Schweiger 5

PertProp-
Subsampling

List Orbit stabilisation subsampling parameters. Values: max.
steps / fractional orbit step limit. Default: [10 0.02]

PertPropNon-
sphericalLimit

Float Fractional orbit step beyond which nonspherical gravity
effects are ignored. Default: 0.05

PropStages Int Number of integrator stages for vessel propagation.
Range: 1-5. Default: 4

PropStage<i> List Integrator parameters for propagator stage <i> (0-4).
Values: Integrator index / time step limit. Default:i=0: [2
0.5], i=1: [4 20.0], i=2: [6 100.0], i=3: [8 N/A]

PropSubsampling Int Max subsampling steps. Default: 100
PlanetPreloadMode Int Planetary texture load mode. 0=load on demand, 1=pre-

load at simulation start. Default: 0
PlanetTexLoadFreq Float Texture patch loading frequency [Hz]. Default: 20
PlanetAnisoMode Int Planet anisotropic filter level (1=none). Default: 1
PlanetMipmapMode Int Planet texture mipmap mode (0=none, 1=point sampling,

2=linear interpolation). Default: 1
PlanetMipmapBias Float Mipmap level bias. Range: -1 to 1, where < 0 is sharper, >

0 is smoother. Default: 0
Map dialog parameters
MapDlgFlag Int Bitflags for map dialog parameter settings
Camera parameters
CameraPanspeed Float Camera speed in ground observer mode. Default: 100
HUDColIdx Int HUD colour index. Default: 0 (green)
Device settings
DeviceIndex Int Enumeration index for current 3D device (do not edit ma-

nually)
ModeIndex Int Screen mode index (do not edit manually)
DeviceForceEnum Bool If TRUE, enumerate 3D devices at each start. Default:

TRUE
Fullscreen Bool TRUE for fullscreen mode, FALSE for windowed mode.

Default: FALSE
Stereo Bool Currently not used.
NoVSync Bool Disable vertical refresh synchronisation. Default: FALSE
StencilBuffer Bool Use stencil buffering for semi-opaque shadows, if

supported. Default: FALSE
FullscreenPageflip Bool Enable hardware page-flipping in fullscreen mode.

Default: TRUE
WindowWidth Int Horizontal window size for windowed modes [pixel].
WindowHeight Int Vertical window size for windowed modes [pixel].
Joystick parameters
JoystickIndex Int Enumeration index for current joystick (0=none). Default:

0
JoystickThrottleAxis Int Axis index for joystick throttle. (0=Z, 1=slider 0, 2=slider

1). Default: 1
JoystickThrottleSatu-
ration

Int Saturation zone for joystick throttle control (0–10000). A
setting of 9000 means that the throttle will saturate over
the last 10% of its range at either end. Default: 9500

JoystickDeadzone Int Deadzone at joystick axis centres (0-10000). A setting of
2000 means the joystick is considered neutral within 20%
from the central position. Default: 2500

IgnoreThrottleOn-
Start

Bool Ignore throttle at simulation start until moved. Default:
TRUE

Demo parameters
DemoMode Bool Start Orbiter in demo mode (auto-launch scenarios).

Default: FALSE
BackgroundImage Bool Cover screen background with an image in demo mode.

Default: FALSE
BlockExit Bool Don’t allow users to exit Orbiter in demo mode (default:

FALSE)

ORBITER User Manual (c) 2000-2010 Martin Schweiger 6

MaxDemoTime Float Max. simulation runtime in demo mode (seconds). Default:
300

MaxLaunchpadIdle-
Time

Float Max. time for launchpad to be open before auto-launching
a scenario (seconds). Default: 15

Record/play parameters
RecordPosFrame Int Flight recorder: reference frame for position data

(0=ecliptic, 1=equatorial). Default: 1
RecordAttFrame Int Flight recorder: reference frame for attitude data

(0=ecliptic, 1=equatorial). Default: 1
RecordTimeWarp Bool Save time acceleration events in recording stream.

Default: TRUE
RecordFocusEvent Bool Save vessel focus changes in recording stream. Default:

TRUE
ReplayTimeWarp Bool Set time acceleration during playback from stream data.

Default: TRUE
ReplayFocusEvent Bool Set vessel focus during playback from stream data.

Default: TRUE
ReplayCameraEvent Bool Set camera parameters during playback from stream data.

Default: TRUE
SystimeSampling Bool Use system time (rather than simulation time) for

recording sample intervals. Default: TRUE
PlaybackNotes Bool Display onscreen annotations from stream data during

playback. Default: TRUE
Font parameters
DialogFont_Scale Float Scaling factor for dialog font size. Default: 1.0
DialogFont1_Face String Standard dialog font face. Default: Arial
Window positions
DlgXXXPos Rect Screen positions of dialog windows
LpadXXXListWidth Int Width of Launchpad splitter lists
Modules list
ActiveModules List List of active plugin modules

2.2 Planetary systems

Planetary systems contain stars, planets and moons. Each planetary system requires
at least one star. Stars, planets and moons are defined in the planetary system's con-
figuration file.

General parameters

Item Type Description
Name String A name for the planetary system
MarkerPath String Directory path containing surface marker lists for the planet.

Default: .\Config\<name>\Marker\

See also Section 2.4 on how to add celestial markers to a planetary system.

Object list

The object list defines the celestial bodies populating the planetary system, and their
hierarchy.

Star entries:

Star<i> = <Name>

where <i> is an index running from 1 upward. (note: planetary systems with more
than one central star are not currently supported).

Planet entries:

ORBITER User Manual (c) 2000-2010 Martin Schweiger 7

Planet<i> = <Name>

where <i> is an index running from 1 upward.

Moon entries:

<Planet>:Moon<i> = <Name>

where <Planet> is the name of a planet defined before, and <i> is an index enume-
rating the moons of this planet, running from 1 upward.

Example:

Star1 = Sun
Planet1 = Mercury
Planet2 = Venus
Planet3 = Earth
Earth:Moon1 = Moon
Planet4 = Mars
Mars:Moon1 = Phobos
Mars:Moon2 = Deimos

2.3 Planets

Planet configuration files define the planet’s orbital, physical and visual parameters.
For an example see Config\Earth.cfg.

General parameters

Item Type Description
Name String Planet name
Module String Name of dynamic link library performing calculations for

the planet (default: none)
ErrorLimit Float Max. rel. error for position/velocity calculations (only used

if the module supports precision adjustment)
EllipticOrbit Bool If TRUE, use analytic 2-body solution for planet posi-

tion/velocity calculation, otherwise update dynamically (ig-
nored if module supports position/velocity calculation)

HasElements Bool If TRUE, the initial position/velocity is calculated from the
provided set of orbital elements, otherwise from an explicit
position/velocity pair (ignored if module supports posi-
tion/velocity calculation)

Notes:

 If the module calculates the planet position and velocity from perturbation terms,
then the value of ErrorLimit will affect the number of terms used for the calcula-
tion. A lower value will increase the number of required terms, and thus the cal-
culation time. The valid range for ErrorLimit depends on the module, but is typi-
cally 1e-3 ≤ ErrorLimit ≤ 1e-8.

Orbital parameters (Ignored if module supports position/velocity calculation or
HasElements = FALSE)

Item Type Description
Epoch Float Orbital element reference epoch (e.g. 2000)
ElReference Flag ParentEquator or Ecliptic: orbit reference frame

(default: Ecliptic)
SemiMajorAxis Float Orbit semi-major axis [m]
Eccentricity Float Orbit eccentricity
Inclination Float Orbit inclination against reference plane [rad]

ORBITER User Manual (c) 2000-2010 Martin Schweiger 8

LongAscNode Float Longitude of ascending node [rad]
LongPerihelion Float Longitude of periapsis [rad]
MeanLongitude Float Mean longitude at epoch [rad]

Physical parameters

Item Type Description
Mass Float Planet mass [kg]
Size Float Mean planet radius [m]

Rotation and precession elements (see also
Doc/Technotes/precession.pdf)

Item Type Description
SidRotPeriod Float Siderial rotation period [s] (default: infinite)
SidRotOffset Float Rotation at epoch [rad] (default: 0)
Obliquity Float Obliquity of axis: angle between planet axis and preces-

sion reference axis [rad] (default: 0)
LAN Float Longitude of ascending node of equatorial plane [rad]

(default: 0)
LAN_MJD Float Reference date for LAN [MJD] (default: 51544.5)
PrecessionPeriod Float Period of precession of axis [days] (default: infinite, i.e. no

precession)
PrecessionObliquity Float Obliquity of precession reference axis with respect to ec-

liptic normal (J2000) [rad] (default: 0)
PrecessionLAN Float Longitude of ascending node of precession reference

plane [rad] (default: 0)

Atmospheric parameters (only required if planet has atmosphere)

Item Type Description
AtmPressure0 Float (Mean) atmospheric pressure at zero altitude [Pa]
AtmDensity0 Float (Mean) atmospheric density at zero altitude [kg/m3]
AtmGasConstant Float specific gas constant [J K-1 kg-1]. Default: 286.91 (Earth

value)
AtmGamma Float ratio of specific heats cp/cv. Default: 1.4 (Earth value)
AtmColor0 Vec3 RGB triplet for atmospheric colour at ground level (0-1

each)
AtmAltLimit Float altitude limit beyond which atmospheric effects can be ig-

nored [m]
AtmHazeExtent Float Width parameter for extent of horizon haze rendering.

Range: 0 (thinnest) to 1 (widest). Default: 0.1
AtmHazeShift Float Shifts the reference altitude of the haze base line. Can be

used to adjust haze altitude to a cloud layer. (in units of
planet radius). Default: 0 (align with surface horizon). Shift
is not applied if camera is below cloud layer.

AtmHazeDensity Float Modifies the density at which the horizon haze is rendered
(basic density is calculated from atmospheric density) De-
fault: 1.0

AtmHazeColor Vec3 RGB triplet for horizon haze colour (0-1 each). Default: use
AtmColor0 values.

AtmHorizonAlt Float altitude scale for horizon haze rendering [m]. Default: 0.01
of planet radius.

ShadowDepth Float Depth (“blackness”) of object shadows (0 ... 1, where
0=black, 1=no shadows). Default: exp(-0/2), where 0 is
the atmospheric density at the surface. This option is only
used when stencil buffering is enabled. Otherwise sha-
dows are always black.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 9

NEW

Cloud parameters (only required if planet contains a cloud layer)

Item Type Description
CloudAlt Float Altitude of cloud layer [m]
CloudShadowDepth Float Depth (“blackness”) of cloud shadows on the ground (0 ...

1) where 0 = black, 1 = don’t render shadows. Default: 1
CloudRotPeriod Float Rotation period of cloud layer against surface [s] (default:

0 – static cloud layer)
CloudMicrotextureAlt Float+

Float
Altitude range [m] for cloud microtexturing. First value is
altitude at which full microtexture is applied. Second value
is altitude at which microtexture starts to kick in. First value
 0 and second value > first value is required. Default: no
microtexture.

Visualisation parameters

Item Type Description
MaxPatchResolution Int Max. resolution level for surface texture maps (1 ... 10)
MinCloudResolution Int Min. resolution at which clouds are rendered as separate

layer (1 ... 8)
MaxCloudResolution Int Max. cloud resolution level (MinCloudResolution ... 8)
SpecularRipple Bool If TRUE, and if “Specular ripples” option is enabled in the

Launchpad dialog, specularly reflecting surfaces use a
“water ripple” microtexture. Default: FALSE.

Surface marker parameters (optional)

Item Type Description
Marker-
Path

String Directory path containing surface marker lists for the planet.
Default: .\Config\<planet name>\Marker\

See also Section 2.4 on how to add surface markers to a planet.

Surface bases (optional)

This list contains the names and locations of surface landing sites (“spaceports”).
Each entry in this list must be accompanied by a configuration file for the corres-
ponding surface base.

BEGIN_SURFBASE
<base list>

END_SURFBASE

Base list entries have the following format:

<name>: <lng> <lat>

where

<name> Name which identifies the base config file (<name>.cfg). The actual
name of the base as it appears in Orbiter is given by the NAME tag in the
base config file.

<lng> <lat> Base position (equatorial coordinates) [deg]

Note that there is an alternative format for this list, using a NumBases entry and Ba-
seXX tags. This format is obsolete and should no longer be used.

Ground-based observer sites (optional)

ORBITER User Manual (c) 2000-2010 Martin Schweiger 10

This list contains the pre-defined locations for ground-based observers (launch cam-
eras, spectators, etc.) which can be selected in the Camera dialog. The format of the
list is

BEGIN_OBSERVER
<observer list>

END_OBSERVER

List entries have the following format:

<site>:<spot>: <lng> <lat> <alt>

where

<site> a name which identifies the site (e.g. KSC)

<spot> the particular location at the site (e.g. Launch pad 39)

<lng> <lat> observer position (equatorial coordinates) [deg]

<alt> observer altitude [m] (>0)

The easiest way to find the coordinates for a new observer spot is to open the Camera
dialog (), and select a nearby location under the Ground tab. Then move the
camera to the new spot using and . The coordinates are dis-
played in the dialog and can be directly copied into the configuration file.

Navbeacon transmitter list (optional)

This list contains all navigation radio transmitter specs except those directly asso-
ciated with a spaceport (see section). The list format is as follows:

BEGIN_NAVBEACON
<NAV list>

END_NAVBEACON

List entries have the following format:

<type> <id> <lng> <lat> <freq> [<range>]

where

<type> transmitter type. currently supported: VOR

<id> identifer code (up to 4 letters)

<lng> <lat> transmitter position (equatorial coordinates) [deg]

<freq> transmitter frequency [MHz]

<range> transmitter range [m] (default: 500 km)

To implement a custom DLL module for planet position/velocity calculations, see
SDK documentation.

To add a new planet to a planetary system the following steps are required:

1. Add an entry for the planet in the planetary system configuration file (see pre-
vious section):

Planet<X> = <Planetname>

2. Create a configuration file <Planetname>.cfg for the new planet in the “Config”
subdirectory, with entries as listed above.

3. Create the required surface texture maps up to the specified resolution.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 11

4. Optionally, create a monochrome (green on black) surface outline bitmap
(256x128, BMP) to be used by the Map MFD. The file name should be <Planet-
name>M.bmp.

Surface bases

Surface bases (or “spaceports”) are launch and landing sites on the surface of planets
or moons, usually equipped with launchpads or runways, for vertical and horizontal
liftoff and/or landing. Each surface base is defined via its own configuration file.
When Orbiter loads a planet configuration, it scans all surface base definitions for the
planet and creates the corresponding bases.

The base definition file

To create a new surface base, you need to write a definition file for it. The file name
should be of the form <base-name>.cfg, and it must be placed in an appropriate
folder. (see Linking surface bases to planets below).

The format of the surface base definition file is as follows:

BASE-V2.0
NAME = <Base name>
LOCATION = <lng> <lat>
SIZE = <size>
OBJECTSIZE = <osize>
MAPOBJECTSTOSPHERE = [TRUE|FALSE]

BEGIN_NAVBEACON
<NAV list>

END_NAVBEACON

BEGIN_OBJECTLIST
<Object list>

END_OBJECTLIST

BEGIN_SURFTILELIST
<Surface tile list>

END_SURFTILELIST

BASE-V2.0

Format identifer that must be placed in the first line of the file. This item is optional if
the base is referenced directly in the planet’s base list.

NAME = <Base name>

Defines the base’s (logical) name which need not correspond to the file name.

LOCATION = <lng> <lat>

Defines the position of the base on the planet surface, where <lng> is longitude (deg,
West < 0, East > 0), and <lat> is latitude (deg, South < 0, North > 0). This item is
optional if the base is referenced directly in the planet’s base list.

Size = <size>

Defines the base’s overall radius in meters.

OBJECTSIZE = <osize>

Defines the size of a “typical” object (building, etc.) This value is used by Orbiter to
determine up to what camera distance base objects will be rendered. Objects will not

ORBITER User Manual (c) 2000-2010 Martin Schweiger 12

be rendered if the apparent size of an object of size <osize>, located at the centre of
the base, would be smaller than 1 pixel. The default value for <osize> is 100.0.

MAPOBJECTSTOSPHERE (boolean)

If true, the objects in the object list will be automatically adjusted in elevation to cor-
rect for the planets curvature. This means that objects with elevation 0 will be
mapped onto altitude 0 of the planet surface. If false, elevation 0 maps onto the flat
horizon plane of the base reference point. Default: false.

Note: Currently this function is only implemented for a limited number of base object
types.

<NAV list>

Contains a list navigation radio transmitters associated with the base. The format is
identical to that of the Planet config file (see section 2.3).

<Object list>

Contains a list of objects which make up the visual elements of the base. See next
section for details.

<Surface tile list>

An optional list of high-resolution surface tiles covering the base area. Each tile is
represented by a line in the list, with the format

<res> <lng-idx> <lat-idx> <flag>

where <res> is the tile resolution (integer 1), and <lng-idx> and <lat-idx> are the
position indices. The position indices define the location of the tile on the global pla-
net map at the given resolution. <flag> is a bitflag (bit 0 = 1: render tile; bit 1 = 1: tile
contains transparency in the alpha channel).

For each tile entry, a corresponding texture file in DDS format (DXT1 or DXT5) must
exist in the Textures subdirectory, with naming convention

<planet>_<res>_[W|E]<lng-idx>_[N|S]<lat-idx>.dds

where <planet> is the planet name, <res> is the tile resolution as defined in the list,
and <lng-idx> and <lat-idx> are the position indices as defined in the list (zero-pad-
ded to 4 digits).

Note: Future versions of Orbiter may incorporate local high-resolution planetary
surface areas directly in the planet’s texture file. The mechanism of associating sur-
face tiles with base definitions via the surface tile list will then be removed. Using
surface tile lists is therefore not recommended.

Linking surface bases to planets

After creating the base configuration file, it must be referenced by a planet to instan-
tiate the base. There are several ways to make Orbiter read a surface base definition:

 Place the base configuration file in the default base configuration folder for the
planet. By default, Orbiter will scan the folder Config\<pname>\Base for base
definitions, where <pname> is the planet name. For example, the default folder
for Earth bases is Config\Earth\Base. The default folder is only scanned if the
planet doesn’t explicitly define a base list (see below).

ORBITER User Manual (c) 2000-2010 Martin Schweiger 13

 To make Orbiter scan different folders, create a surface base list in the planet’s
configuration file, starting with the line BEGIN_SURFBASE and ending with the
line END_SURFBASE. In this list, specify the new surface base directory with the
line ‘DIR <folder>’, where <folder> is the path to the folder containing the base
configurations (relative to the Config folder). Multiple folders can be specified. If
the same base is defined in more than one of the scanned folders, only the first is
used. This allows to replace base definitions without having to delete the original
configuration file.

Example:

BEGIN_SURFBASE
 DIR Earth\MyBase
 DIR Earth\MoreBases
END_SURFBASE

If the surface base list exists in a planet’s configuration file, the default base con-
figuration folder will not be scanned, unless it is explicitly listed.

 Base references can be placed directly into the base list, using the following for-
mat:

<fname>:<lng> <lat>

where <fname> is the name of the surface base configuration file: Config\
<fname>.cfg, and <lng> and <lat> are the equatorial coordinates of the base
(longitude and latitude) in degrees. When using this format, the base configura-
tion file must be located in the Config subdirectory.

Selective loading of bases

To provide more control over the loading of surface bases in for a given simulation
scenario, two conditional flags can be set with a DIR entry in the base list:

 Specify a time interval with the PERIOD parameter. The corresponding directory
will only be scanned if the scenario start date is inside this interval. This allows to
replace surface bases only at specific time periods, for example to set up the Ken-
nedy Space Center for the Apollo lunar missions.

Syntax:

DIR <folder> PERIOD <mjd0> <mjd1>

where <mjd0> and <mjd1> are the start and end dates of the period over which
the base folder will be scanned, in MJD (Modified Julian Date) format. Either can
be set to ‘-‘ to disable the limit at one end.

 Specify a scenario context with the CONTEXT parameters. The corresponding di-
rectory will only be scanned if the scenario specifies the same context string in its
environment context entry (see Section 3). This allows to add or replace surface
bases only within a defined set of scenarios.

Syntax:

DIR <folder> CONTEXT <string>

where <string> is the context string to be matched against the scenario context.

The PERIOD and CONTEXT parameters can be used simultaneously. In that case
the directory will only be scanned if both conditions are satisfied.

Examples:

BEGIN_SURFBASE

ORBITER User Manual (c) 2000-2010 Martin Schweiger 14

DIR Earth\1969Base PERIOD 40222 42048
DIR Earth\TempBases CONTEXT RichScenery
DIR Earth\OtherBases PERIOD – 40000 CONTEXT EarlyBases
DIR Earth\Base

END_SURFBASE

Note that the list order is important to allow the custom base definitions to re-
place standard bases.

Adding objects to surface bases

Surface bases are composed of objects (buildings, train lines, hangars, launch pads,
etc.) The configuration file for each surface base contains a list of its objects:

BEGIN_OBJECTLIST
<Object 0>
<Object 1>
…
<Object n-1>

END_OBJECTLIST

Each object entry in the list defines a particular object and its properties (type, posi-
tion, size, textures, etc.). An object can either be a pre-defined type or a generic mesh.
Each object entry has the following format:

<Type>
<Parameters>

END

Note that textures used by base objects must be listed in the texture list of the
Base.cfg configuration file.

The following pre-defined object types are currently supported:

BLOCK

A 5-sided “brick” (without a floor) which can be used as a simple generic building, or
as part of a more complex structure. The following parameters are supported:

Parameter Type Description
POS V Centre of the block’s base rectangle (in local coordinates of the

surface base). Note that the y-coordinate is the elevation above
ground. Default: 0 0 0

SCALE V Object size in the three coordinate axes. Default: 1 1 1
ROT F Rotation around vertical axis (degrees). Default: 0
TEX1 S F F Texture name and u,v scaling factors for walls along the x-axis.

Default: none
TEX2 S F F Texture name and u,v scaling factors for walls along the z-axis.

Default: none
TEX3 S F F Texture name and u,v scaling factors for roof. Default: none

(V=Vector, F=Float, S=String)

HANGAR

A hangar-type building with a barrel-shaped roof. The following parameters are sup-
ported:

Parameter Type Description
POS V Centre of the object’s base rectangle (in local coordinates of the

surface base). Note that the y-coordinate is the elevation above
ground. Default: 0 0 0

SCALE V Object size in the three coordinate axes. Default: 1 1 1
ROT F Rotation around vertical axis (degrees). Default: 0
TEX1 S F F Texture name and u,v scaling factors for walls. Default: none

ORBITER User Manual (c) 2000-2010 Martin Schweiger 15

TEX2 S F F Texture name and u,v scaling factors for front gate. Default: none
TEX3 S F F Texture name and u,v scaling factors for roof. Default: none

(V=Vector, F=Float, S=String)

HANGAR2

A hangar-type building with a tent-shaped roof. The following parameters are sup-
ported:

Parameter Type Description
POS V Centre of the object’s base rectangle (in local coordinates of the

surface base). Note that the y-coordinate is the elevation above
ground. Default: 0 0 0

SCALE V Object size in the three coordinate axes. Default: 1 1 1
ROT F Rotation around vertical axis (degrees). Default: 0
TEX1 S F F Texture name and u,v scaling factors for front and back walls.

Default: none
TEX2 S F F Texture name and u,v scaling factors for side walls. Default: none
TEX3 S F F Texture name and u,v scaling factors for roof. Default: none
ROOFH F Roof height from base to ridge. Default: ½ building height.

(V=Vector, F=Float, S=String)

HANGAR3

A hangar-type building with a barrel-shaped roof reaching to the ground. The fol-
lowing parameters are supported:

Parameter Type Description
POS V Centre of the object’s base rectangle (in local coordinates of the

surface base). Note that the y-coordinate is the elevation above
ground. Default: 0 0 0

SCALE V Object size in the three coordinate axes. Default: 1 1 1
ROT F Rotation around vertical axis (degrees). Default: 0
TEX1 S F F Texture name and u,v scaling factors for front and back walls. De-

fault: none [not supported yet!]
TEX2 S F F Texture name and u,v scaling factors for front gate. Default: none

[not supported yet!]
TEX3 S F F Texture name and u,v scaling factors for roof. Default: none

(V=Vector, F=Float, S=String)

TANK

A fuel tank-like upright cylinder with flat top. The following parameters are sup-
ported:

Parameter Type Description
POS V Centre of the object’s base circle (in local coordinates of the surface

base). Note that the y-coordinate is the elevation above ground.
Default: 0 0 0

SCALE V Cylinder radii in x and z, and height in y. Default: 1 1 1
ROT F Rotation around vertical axis (degrees). Default: 0
NSTEP I Number of segments to approximate circle. Default: 12
TEX1 S F F Texture name and u,v scaling factors for mantle. Default: none
TEX2 S F F Texture name and u,v scaling factors for top.

(V=Vector, F=Float, I=Integer, S=String)

RUNWAY

Texturing for a runway. The texture mapping can be split into segments, to allow in-
clusion of markings, overruns, etc. This does not include any lighting (see RUNWAY-
LIGHTS).

ORBITER User Manual (c) 2000-2010 Martin Schweiger 16

Parameter Type Description
END1 V First end point of runway (center line), including any overruns to be

textured.
END2 V Second end point of runway (center line).
WIDTH F Runway width [m]
ILS1 F Localiser frequency for approach towards END1 (108.00 to 139.95).

Default: No ILS support
ILS2 F Localiser frequency for approach towards END2 (108.00 to 139.95).

This can be the same frequency as ILS1. Default: No ILS support.
NRWSEG I Number of texture segments
RWSEGx I F F F

F F
Definition of segment x (x = 1...NRWSEG).
Parameters:
1. Number of mesh sub-segments (≥1)
2. Fractional length of segment (sum of all segments must be 1)
3. texture coordinate u0 of segment
4. texture coordinate u1

5. texture coordinate v0

6. texture coordinate v1

RWTEX S Texture name for all segments

(V=Vector, F=Float, I=Integer, S=String)

RUNWAYLIGHTS

Complete lighting for a single runway, including optional Precision Approach Path
Indicator (PAPI) and Visual Approach Slope Indicator (VASI) – see section Error:
Reference source not found. Runway markers are turned off during daytime, but
PAPI and VASI indicators are always active.

Parameter Type Description
END1 V First end point of runway (center line).
END2 V Second end point of runway (center line).
WIDTH F Runway width [m]
COUNT1 I Number of lights along the runway center line (2). Default: 40
PAPI F F F Precision Approach Path Indicator (PAPI). Default: no PAPI.

Parameters:
Designated approach angle [deg]
Approach cone aperture [deg]
Offset of PAPI location from runway endpoints. [m]

VASI F F F Visual Approach Slope Indicator (VASI). Default: no VASI
Parameters:
Designated approach angle [deg]
Distance between white and red indicator lights [m]
Offset of VASI (red bar) location from runway endpoints [m]

(V=Vector, F=Float, I=Integer)

BEACONARRAY

A linear array of illuminated beacons, usable e.g. for taxiway night lighting.

Parameter Type Description
END1 V First end point of beacon array (in local coordinates of the surface

base). Note that the y-coordinate is the elevation above ground.
END2 V Second end point of beacon array
COUNT I Number of beacons in the array (2). Default: 10
SIZE F Size (radius) of each beacon light. Default: 1.0
COL F F F Beacon colour (RGB) Valid range: 0..1 for each value.

Default: 1 1 1 (white)

(V=Vector, F=Float, I=Integer)

SOLARPLANT

ORBITER User Manual (c) 2000-2010 Martin Schweiger 17

A grid of ground-mounted solar panels, smart enough to align themselves with the
Sun. The following parameters are supported:

Parameter Type Description
POS V Centre position of the panel grid. Default: 0 0 0
SCALE F Scaling factor for each panel. Default: 1
SPACING F F Distance between panels in x and z direction. Default: 40 40
GRID I I Grid dimensions in x and z direction. Default: 2 2
ROT F Rotation of plant around vertical axis (degrees). Default: 0
TEX S [F F] Texture name and u,v scaling factors for panels. Default: none

(V=Vector, F=Float, I=Integer, S=String)

TRAIN1

A monorail-type train on a straight track. The following parameters are supported:

Parameter Type Description
END1 V First end point of track
END2 V Second end point of track
MAXSPEED F Maximum speed of train [m/s] Default: 30
SLOWZONE F Distance over which train slows down at end of track [m] Default:

100
TEX S Texture name

(V=Vector, F=Float, S=String)

TRAIN2

Suspension train on a straight track. The following parameters are supported:

Parameter Type Description
END1 V First end point of track
END2 V Second end point of track
HEIGHT F Height of suspension track over ground [m] Default: 11
MAXSPEED F Maximum speed of train [m/s] Default: 30
SLOWZONE F Distance over which train slows down at end of track [m] Default:

100
TEX S Texture name

(V=Vector, F=Float, S=String)

LPAD1

An octagonal bordered landing pad. Default diameter 80m (at scale 1). Landing pads
are numbered in the order they appear in the list. Can be assigned numbers 1-9. For
expected layout of texture map see e.g. Textures\Lpad01.dds.

Parameter Type Description
POS V Pad centre coordinates (in local coordinates of the surface base).
SCALE F Scaling factor. Default: 1
ROT F Rotation around vertical axis (degrees). Default: 0
TEX S Texture name. Default: none
NAV F frequency [MHz] of VTOL nav transmitter (valid range: 85.0-140.0,

default: none)

(V=Vector, F=Float, S=String)

LPAD2

A square landing pad. Default size 80m (at scale 1). Landing pads are numbered in
the order they appear in the list. Can be assigned numbers 1-99. For expected layout
of texture map see e.g. Textures\Lpad02.dds.

Parameter Type Description

ORBITER User Manual (c) 2000-2010 Martin Schweiger 18

POS V Pad centre coordinates (in local coordinates of the surface base).
SCALE F Scaling factor. Default: 1
ROT F Rotation around vertical axis (degrees). Default: 0
TEX S Texture name. Default: none
NAV F frequency [MHz] of VTOL nav transmitter (valid range: 85.0-140.0,

default: none)

(V=Vector, F=Float, S=String)

LPAD2A

Similar to LPAD2, but uses a different layout for the texture map, providing a higher
resolution at the same texture size. For expected layout of texture map see e.g. Tex-
tures\Lpad02a.dds. The supported parameters are the same as for LPAD2.

MESH

Generic mesh for custom object types. Mesh files must be in ORBITER mesh file for-
mat (see 3DModel.pdf in the Orbiter SDK package).

Parameter Type Description
FILE S Mesh file name (without path and extension). Mesh files must be lo-

cated in the mesh subdirectory (see master config file).
POS V Position of mesh origin (in local coordinates of the surface base).
SCALE V Scaling factors in x and z, and height in y. Default: 1 1 1
ROT F Rotation around vertical axis (degrees). Default: 0
TEX S Texture name. Default: none
SHADOW Render the shadow cast on the ground by the object (cannot be

used together with OWNSHADOW)
OWNSHADOW Use group shadow flags in mesh file to set shadows for individual

mesh groups (cannot be used together with SHADOW)
UNDERSHADOWS Object can be covered by shadows cast on the ground by other

objects (e.g. roads, landing pads, etc.). Default: object not covered
by ground shadows

OWNMATERIAL Use materials and textures defined in the mesh file. This overrides
the TEX entry.

LPAD Object is a landing pad.
PRELOAD Mesh should be loaded at program start. This can reduce disk ac-

tivity during the simulation but increases main memory usage. De-
fault: Load only when used.

(V=Vector, F=Float, S=String)

Notes:

 If the mesh only uses a single texture it is more efficient to specify it via the TEX
entry than via the mesh using OWNMATERIAL, because Orbiter can merge ob-
jects with the same TEX entries for improved performance.

 If OWNSHADOW is used, any mesh groups which have bit 0 set in their FLAG
entry do not cast shadows, otherwise they do cast shadows (see Section 5.1).

2.4 Adding custom markers

You can define lists of labels to mark objects on the celestial sphere (e.g. bright stars,
navigation stars, nebulae, etc.), or planetary surface markers to locate natural land-
marks, points of interest, historic landing sites, navigational aids, etc.

The user can display these markers during the simulation using and .

ORBITER User Manual (c) 2000-2010 Martin Schweiger 19

All celestial and planetary surface markers are placed in their own subdirectories,
which default to .\Config\<name>\Marker\, where <name> is the name of the
planetary system (for celestial markers) or planet (for surface markers) they are re-
ferring to. You can specify a different location with the MarkerPath option in the pla-
net's or planetary system's configuration file (see Section 2.3). Marker files must have
extension .mkr. Multiple files can be defined for a single planet or planetary system,
which the user can turn on or off individually. Marker files are in ASCII (text) format:

BEGIN_HEADER
InitialState [on/off]
ShapeIdx [0 .. 6]
ColourIdx [0 .. 5]
Size [0.1 .. 2]
DistanceFactor [1e-5 .. 1e3]
Frame [celestial/ecliptic]

END_HEADER
BEGIN_DATA

<lng> <lat> : <label> [: <label>]
<lng> <lat> : <label> [: <label>]
...

The header section contains some configuration options:

 InitialState defines if the labels are initially visible when the user activates
surface markers under . The user can turn lists on and off individually
during the simulation. The default is "off".

 ShapeIdx: an integer between 0 and 6 defining the shape of the labels.
0 box (default)
1 circle
2 diamond
3 delta
4 nabla
5 cross
6 X

 ColourIdx: an integer between 0 and 5 defining the colour of the labels.
Default is 1.

 Size: A size factor for the markers. Default is 1.0.

 DistanceFactor: Defines up to what distance the markers are displayed.
Default is 1.0.

 Frame (used for celestial markers only): defines the reference frame to which
the coordinates in the list refer.

ecliptic: data are ecliptic longitude and latitude

celestial: data are right ascension and declination of J2000 equator and
equinox. (default)

Each item in the header section is optional. If missing, the default value is substi-
tuted. The header can also be omitted altogether, in which case the "BEGIN_DATA"
flag is also not required.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 20

In the data section, each line defines a label. It consists of equatorial position: longi-
tude (in degrees, with eastern longitudes positive, and western longitudes negative),
latitude (in degrees with northern latitudes positive, and southern latitudes negative),
and one or two label strings to be displayed above and below the marker.

2.5 Vessel configuration files

All vessel configuration files are by default located in ORBITER’s Config
subdirectory (unless the ConfigDir entry in Orbiter.cfg points to a different
directory).

Below is a description of the default vessel configuration options recognised by
Orbiter. Note that not all options need to be present in a configuration file. In
particular vessels defined via costomised modules may specify various parameters
directly in the module. Furthermore, vessel modules may read additional custom
parameters not listed here from the configuration file.

Item Type Description

BaseClass S Optional; parent class. Missing entries are taken from this
class. Allows the construction of class hierarchies. (Make
sure not to introduce circular dependencies!)

Module S Optional; name of plugin module for vessel customisation.
The module must be located in the Modules folder.

Help S,S Optional; name of help file to be used for vessel class
specific help when the user presses the “Vessel” button on
the Help dialog. The help file must be a compiled html file
(.CHM) and be located in directory Html/Vessels. The
entry contains the file name without path and extension,
and (separated by comma) the name of the first page of
the file to be displayed (without extension). Default: no
vessel class specific help.

EditorCreate B If false, the vessel type does not appear in the list on the
vessel creation page of the scenario editor. (default: true)

ImageBmp S File name of a bitmap file (BMP) displaying the vessel. The
name should include the path (relative to orbiter main
directory) and extension (.bmp). This image is shown on
the vessel creation page of the Scenario Editor. For best
results, it should be size 164x240 pixels.

MeshName S Name of the mesh used for visualisation

EnableFocus B true if vessel can receive input focus (default: true)

EnableXPDR B true if vessel carries a transponder (default: false)

XPDR I transponder channel (in units of 0.05 kHz from 108.0 kHz).
Only used if EnableXPDR=true. This default channel may
be overridden by a vessel’s scenario script.

Mass F Vessel mass (empty) [kg]

Size F (Mean) vessel radius [m]

MaxMainThrust F Main thruster rating [N]

MaxRetroTrust F Retro thruster rating [N]

MaxHoverThrust F Hover thruster rating [N]

ORBITER User Manual (c) 2000-2010 Martin Schweiger 21

MaxAttitudeThrust F Thrust rating for reaction contol engines [N]

TouchdownPoints V V V 3 surface contact points in local vessel coordinates. For
aircraft-like configurations these are: nose wheel, left main
wheel, right main wheel. (the order is important to define
the “up” direction). Other spacecraft types may interpret
the points differently.

CameraOffset V Camera position inside the vessel for cockpit view

CW F F F
F

Airflow resistance coefficients: forward, backward,
transversal, vertical. Only used by legacy flight model (if no
airfoils are defined in the module).

WingAspect F The wing aspect ratio (wingspan2 / wing area). Used for
atmospheric drag calculation in the legacy flight model.

WingEffectiveness F A wing form factor: ~3.1 for elliptic wings, ~2.8 for tapered
wings, ~2.5 for rectangular wings. Only used by legacy flight
model.

CrossSections V Cross sections in axis directions (z=longitudinal) [m2]

RotResistance V Resistance against rotation around axes in atmosphere,
where angular deceleration due to atmospheric friction is
a())

x,y,z = -v())
x,y,z rx,y,z with angular velocity v()) and

atmospheric density .

Inertia V Principal moments of inertia, mass-normalised (see below)
[m2]

GravityGradientDam
ping

F Damping coefficient for gravity gradient torque. Determines
relaxation time for tidal locking. Default: 0 (undamped).

PropellantResourcei F [F] Specs for propellant resource i (i 1). First value: max.
fuel capacity [kg]. Second value: fuel efficiency factor (>0,
default: 1)

MaxFuel F Max. fuel mass [kg]. Obsolete; only used if no propellant
resources are defined

Isp F Default value for fuel-specific impulse [m/s]: Amount of
thrust [N] obtained by burning 1kg of fuel per second. Ves-
sel modules can override this value for individual engines.

MEngineRefi V Reference position for main thruster i (i=1…)

REngineRefi V Reference position for retro thruster i (i=1…)

HEngineRefi V Reference position for hover thruster i (i=1…)

AttRefdij V Reference position for attitude thruster (for rotation around
axis d (d=X,Y,Z), rotation direction i (i=1,2) and thruster
index j (j=1,2)) for a total of 12 attitude thrusters

LongAttRefij V Reference position for attitude thrusters (for linear forward/
backward translation), direction i (i=1,2) and thruster index
j (j=1,2)) for a total of 4 attitude thrusters

DockRef V Docking reference point for first docking port (obsolete)

DockDir V Docking approach direction for first docking port (obsolete)

DockRot V Longitudinal alignment direction (normal to DockDir) for
first docking port (obsolete)

<Docklist> List List of positions and approach directions for docking ports
(see below).

<Attachment list> List List of positions and approach directions for attachment
points (see below).

ORBITER User Manual (c) 2000-2010 Martin Schweiger 22

(S=String, B=Bool, F=Float, V=Vector)

Notes:

 A vessel class can be derived from a different vessel class, by defining the
BaseClass entry. All properties not defined in the new class configuration file are
taken from the base class.

 The mesh name should not contain the file extension (.msh) and should not
contain a directory path.

 The MaxFuel entry has been replaced by PropellantResource, which allows the
definition of multiple propellant resources (fuel tanks).

 The DockRef, DockDir, DockRot entries have been replaced with the more
versatile Docklist (see below), which allows the configuration of multiple docking
ports and IDS frequencies.

BEGIN_DOCKLIST
<Dock-spec 0>
<Dock-spec 1>
. . .
<Dock-spec n-1>

END_DOCKLIST

where <Dock-spec i>:

<xi> <yi> <zi> <dxi> <dyi> <dzi> <rxi> <ryi> <rzi> [<ids-channel>]

<xi> <yi> <zi> is the reference position of the docking port in the vessel’s local
coordinates. <dxi> <dyi> <dzi> is the direction in which a ship approaches the
docking port in the station’s local reference frame.

<rxi> <ryi> <rzi> is a reference direction perpendicular to the approach direction
used for aligning an approaching ship’s rotation along its longitudinal axis.

<ids-channel> is an optional parameter which allows to define the channel for an
IDS (Instrument Docking System) transmitter for the dock. The value is an
integer from which the frequency is calculated by f = fmin + <ids-channel> * 0.05
kHz, where fmin = 108.0 kHz.

The IDS setting can be overridden by individual vessels via the IDS option in the
scenario file. Defining the IDS in the config file is usually only useful for objects
with a single instance, for example space stations.

 The attachment list is similar to the docklist: it allows to specify points at which
vessels can be connected to each other. Unlike docking ports, attachment points
define parent-child hierarchies, and each attachment point is either a parent or a
child port. For more details see the Vessel attachment management section in the
API Reference Manual.

BEGIN_ATTACHMENT
<Attach-spec 0>
<Attach-spec 1>
. . .
<Attach-spec n-1>

END_ATTACHMENT

where <Attach-spec i>:

<type> <xi> <yi> <zi> <dxi> <dyi> <dzi> <rxi> <ryi> <rzi> <id>

<type> is a single character: ‘P’ – “attach to a parent”, or ‘C’ – “attach to a child”.

The next 9 entries define the attachment position and direction in the same way
as docking ports.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 23

<id> is a string of up to 8 characters used for defining compatibility between
attachment points.

 Inertia tensor J: Relates angular momentum and angular velocity: ωL J

Vol

dr

ryrxryrzrxrz

rzryrzrxrxry

rzrxryrxrzry

rm
M

J
22

22

22

)()()()()()(

)()()()()()(

)()()()()()(

)(
1

where M is the total vessel mass, and the integration is over the vessel volume.
Note that this definition normalises by M, so the unit of J is [m2]. The principal
moments of inertia (PMI) Jx, Jy, Jz required by the configuration file are the
diagonal elements of J in a reference frame in which J is diagonal:

z

y

x

J

J

J

J

00

00

00
ˆ

The SDK contains a simple tool to calculate the inertia tensor for a given mesh:
Orbitersdk\utils\shipedit.exe. The tool requires “well behaved” meshes
(composed of closed compact surfaces) and assumes a homogeneous density
distribution inside the mesh. The latter is not very realistic, so the results must be
interpreted carefully. They should still serve as a good starting point for
experimentation.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 24

3 Scenario files

Scenarios (simulation startup definitions) contain all parameters required to set up
the simulation at a particular time. They are used for loading and saving simulation
states. Scenario files are usually generated automatically when saving a simulation.
The format description below is primarily intended for developers of scenario editor
add-ons.

Scenarios are located in a subdirectory defined by the ScenarioDir entry in the master
file, usually “.\Scenarios”. They have file extension .scn.

Format:

<Description block>
<Environment block>
<Focus block>
<Camera block>
<Panel block>
<VC block>
<HUD block>
<Left MFD block>
<Right MFD block>
<Ship list>

Description block (optional):

Contains a short description of the scenario.

BEGIN_DESC
<Description>

END_DESC

<Description>: ASCII text describing the scenario. This text is displayed in the
description box of the Orbiter launchpad dialog when the user selects the scenario
from the list. A subset of HTML tags, such as <h1></h1>, etc. is supported
(but not).

Environment block (optional):

Contains the simulation environment.

BEGIN_ENVIRONMENT
<Environment parameters>

END_ENVIRONMENT

<Environment parameters>:

Parameter Type Description
SYSTEM S Name of the planetary system. A configuration file for this

system must exist. Default: “Sol”
DATE Contains simulation start time. Allowed formats are:

MJD <mjd> (<mjd>: Modified Julian Date)
JD <jd> (<jd>: Julian Date)
JE <je> (<je>: Julian Epoch)
Default is current system time, but this should be avoided if
the scenario contains objects defined by position/velocity
vectors, which cannot easily be propagated in time.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 25

HELP S[,S] Scenario help file (in HTML or compressed HTML (CHM)
format. This can be used to provide the user with additional
information for the scenario. For a HTML page, specify the
location of the page relative to the Html\Scenarios folder and
without extension (.htm is assume). For a page in a CHM file,
specify the location of the file relative to the Html\Scenarios
folder without extension (.chm is assumed), followed by a
comma and the name of the page inside the CHM file without
extension (.htm is assumed). Scenario help files are
displayed in the Launchpad Scenario tab and can be opened

during the simulation with . Default: no help file.

CONTEXT S Optional context string. This can be used to fine-tune the
setup of the planetary system, e.g. by selective loading of
surface bases.

SCRIPT S A script file to run at the launch of the scenario. The string
should contain any path relative to the “Script” subdirectory,
but no file extension (.lua) is assumed). Default: no script.

Note: If the DATE entry is not present, Orbiter reads the computer’s system clock,
adds the time zone offset to convert to Universal Time (UTC), and adds another offset
of 66.184 seconds to map from UTC to Barycentric Dynamical Time (TDB).

Focus block (mandatory):

Contains parameters for the user-controlled spacecraft.

BEGIN_FOCUS
<Focus parameters>

END_FOCUS

<Focus parameters>:

Parameter Type Description
SHIP S Name of the user-controlled ship. The ship must be listed in

the ship list (see below).

Camera block (optional):

Camera mode and parameters. If the camera block is missing, the camera is set to
cockpit view in the current focus object.

BEGIN_CAMERA
<Camera parameters>

END_CAMERA

<Camera parameters>:

Parameter Type Description
MODE Flag Extern or Cockpit
TARGET S Camera view target. (external modes only; cockpit mode al-

ways refers to current focus object)
POS V Camera position relative to target (external modes only)
TRACKMODE Flag

[+String]
TargetRelative | AbsoluteDirection | GlobalFrame
| TargetTo <ref> | TargetFrom <ref> | Ground <ref> (ex-
ternal modes only)

GROUNDLO-
CATION

F F F longitude (deg), latitude (deg) and altitude (m) of ground ob-
server (Ground trackmode only)

GROUNDDI-
RECTION

F F polar coordinates of ground observer orientation (free
Ground trackmode only)

FOV F Field of view (degrees)

Panel block (optional):

ORBITER User Manual (c) 2000-2010 Martin Schweiger 26

NEW

2D instrument panel parameters. If neither this nor the VC (virtual cockpit) block is
present, Orbiter initially displays generic cockpit views.

BEGIN_PANEL
<Panel parameters>

END_PANEL

Currently no panel parameters are supported.

VC block (optional):

Virtual cockpit parameters. If neither this nor the panel block is present, Orbiter in-
itially displays generic cockpit views.

BEGIN_VC
<VC parameters>

END_VC

Currently no VC parameters are supported.

HUD block (optional):

HUD mode and parameters. If the HUD block is missing, no HUD is displayed at
startup.

BEGIN_HUD
<HUD parameters>

END_HUD

<HUD parameters>:

Parameter Type Description
TYPE Flag Orbit | Surface | Docking

Left/Right MFD blocks (optional):

Left/right MFD type and parameters. If the block is missing, the corresponding MFD
is not displayed. Note that custom MFD modes may have their own set of parameters.

BEGIN_MFD Left/Right
<MFD parameters>

END_MFD

<MFD parameters>:

Parameter Type Description
TYPE Flag MFD type: Orbit|Surface|Map|Launch|Docking|

OAlign|OSync|Transfer
REF S Reference object (Orbit and Map MFD only)
TARGET S Target object (for Orbit, OAlign and OSync MFD only)
BTARGET S Base target (for Map MFD only)
OTARGET S Orbit target (for Map MFD only)
PROJ Flag Ecliptic|Ship|Target (for Orbit MFD only)
MODE Flag Intersect 1|Intersect 2|Sh periapsis|Sh

apoapsis|Tg periapsis|Tg apoapsis|Manual axis
(for OSync MFD only)

MANUALREF F Reference axis position [deg] (for OSync MFD in manual
mode only)

LISTLEN I Number or orbit time listings (for OSync MFD only)

Ship list:

List of spacecraft. The list must at least contain the vessel referred to by the Focus
entry.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 27

BEGIN_SHIPS
<Ship 0>
<Ship 1>
. . .
<Ship n-1>

END_SHIPS

Ship entries <Ship i>:

<Vessel name>[:<Class name>]
<Vessel parameters>

END

<Vessel name>: ship identifier string

<Class name>: vessel class (if applicable). If no class is specified, a .cfg file for the
vessel, <vessel name>.cfg is required.

<Vessel parameters>:

Parameter Type Description
STATUS Flag Landed <planet> | Orbiting <planet>
BASE <base>:<lpad> (only for STATUS Landed)
HEADING F Orientation (only for STATUS Landed)
RPOS V Position rel. to reference (only for STATUS Orbiting)
RVEL V Velocity rel. to reference (only for STATUS Orbiting)
ELEMENTS List Orbital elements. This is an alternative to RPOS and RVEL

for vessels with STATUS Orbiting. The list contains 7 entries:
semi-major axis a [m], eccentricity e, inclination i [°], longi-
tude of ascending node [°], longitude of periapsis [°],
mean longitude at reference date [°], and reference date in
MJD format.

AROT V Orientation: rotation angles of object frame (only for STATUS
Orbiting)

VROT V angular velocity [°/s] (only for STATUS Orbiting)
FUEL F Fuel level (0 to 1). This entry sets the level of all propellant

resources to the same level. For individual settings, use
PRPLEVEL option instead.

PRPLEVEL List List of propellant resource levels. Each entry is of the form
<id>:<level>, where <id> is the resource identifier, and
<level> is the propellant resource level (0..1).

THLEVEL List List of thruster settings. Each entry is of the form
<id>:<level>, where <id> is the thruster identifier (in the or-
der of thruster creation), and <level> is the thruster level
(0..1). Thrusters with level 0 can be omitted.

DOCKINFO List Docking status list. This contains information about all
docked vessels. Each entry is of the form
<id>:<rid>,<rvessel> where <id> is the docking port iden-
tifier, <rid> is the docking port identifier of the docked vessel,
and <rvessel> is the name of the docked vessel. Only occu-
pied docking ports are listed. See notes below.

Note that individual vessel types may define additional parameter entries.

Docking vessels

There are two ways to define vessels as being assembled into a superstructure by
docking them together:

 Place the vessels so that their docking ports coincide (by using appropriate RPOS,
RVEL, AROT and VROT parameters for both). Orbiter will dock two vessels au-
tomatically if their docking ports are close enough.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 28

 Define the DOCKINFO lists for both vessels so that they reference each other.
Orbiter will then attach the vessels accordingly. Important: The RPOS, RVEL,
AROT and VROT parameters of the first vessel in the list which belongs to the su-
perstructure are used to initalise the state vectors of the superstructure. All sub-
sequent vessels docked to the same superstructure do not need to define these pa-
rameters.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 29

4 The keymap.cfg key mapping file

keymap.cfg in the orbiter root directory contains the key mapping definitions for the
default Orbiter functions. Individual vessels and other plugins may define additional
keys.

keymap.cfg is an text file and can be edited with any ASCII editor such as notepad.
Each line contains a key definition in the format

<function> = <key>

where <function> is one of the function identifiers listed in the table below, and
<key> is a key identifier, optionally followed by one or more modifier keys.

For supported key identifiers, see file Orbitersdk/doc/API_Reference.chm, section
“Keyboard key identifiers”. The key identifiers required by keymap.cfg are as defined
in this list, minus the “OAPI_KEY_” prefix.

Supported modifier keys are LSHIFT, RSHIFT, SHIFT, LCTRL, RCTRL, CTRL,
LALT, RALT, ALT.

Missing entries in keymap.cfg are replaced by their default values. To revert to the
original keymap values, simply delete keymap.cfg. Orbiter will create a new one the
next time it is run.

Function Default value Description
CockpitCamRotateLeft LEFT ALT Rotate camera left in cockpit mode
CockpitCamRotateRight RIGHT ALT Rotate camera right in cockpit mode
CockpitCamRotateUp UP ALT Rotate camera up in cockpit mode
CockpitCamRotateDown DOWN ALT Rotate camera down in cockpit mode
CockpitCamDontLean DOWN CTRL ALT Return camera to default position in VC mode
CockpitCamLeanForward UP CTRL ALT Lean forward in VC mode
CockpitCamLeanLeft LEFT CTRL ALT Lean left in VC mode
CockpitCamLeanRight RIGHT CTRL ALT Lean right in VC mode
CockpitResetCam HOME Return to default cockpit camera direction
PanelShiftLeft LEFT Scroll 2D panel left
PanelShiftRight RIGHT Scroll 2D panel right
PanelShiftUp UP Scroll 2D panel up
PanelShiftDown DOWN Scroll 2D panel down
PanelSwitchLeft LEFT CTRL Switch to left neighbour panel
PanelSwitchRight RIGHT CTRL Switch to right neighbour panel
PanelSwitchUp UP CTRL Switch to upper neighbour panel
PanelSwitchDown DOWN CTRL Switch to lower neighbour panel
TrackCamRotateLeft LEFT CTRL Rotate camera left in external track mode
TrackCamRotateRight RIGHT CTRL Rotate camera right in external track mode
TrackCamRotateUp UP CTRL Rotate camera up in external track mode
TrackCamRotateDown DOWN CTRL Rotate camera down in external track mode
TrackCamAdvance PGDOWN Move camera closer in external track mode
TrackCameraRetreat PGUP Move camera away in external track mode
GroundCamTiltLeft LEFT Tilt camera up in ground observer mode
GroundCamTiltRight RIGHT Tilt camera right in ground observer mode
GroundCamTiltUp UP Tilt camera up in ground observer mode
GroundCamTiltDown DOWN Tilt camera down in ground observer mode
IncMainThrust ADD CTRL Increment main thrust setting
DecMainThrust SUBTRACT CTRL Decrement main thrust setting
KillMainRetroThrust MULTIPLY Kill main and retro thrusters
OverrideFullMainThrust ADD Temporarily set full main thrust
OverrideFullRetroThrust SUBTRACT Temporarily set full retro thrust
IncHoverThrust NUMPAD0 Increment hover thrust setting
DecHoverThrust DECIMAL Decrement hover thrust setting
RCSEnable DIV CTRL Enable/disable RCS

ORBITER User Manual (c) 2000-2010 Martin Schweiger 30

RCSMode DIVIDE Rotational/translational RCS mode
RCSPitchUp NUMPAD2 RCS pitch up
RCSPitchDown NUMPAD8 RCS pitch down
RCSYawLeft NUMPAD1 RCS yaw left
RCSYawRight NUMPAD3 RCS yaw right
RCSBankLeft NUMPAD4 RCS bank left
RCSBankRight NUMPAD6 RCS bank right
RCSUp NUMPAD2 RCS translate up
RCSDown NUMPAD8 RCS translate down
RCSLeft NUMPAD1 RCS translate left
RCSRight NUMPAD3 RCS translate right
RCSForward NUMPAD6 RCS translate forward
RCSBack NUMPAD9 RCS translate backward
LPRCSPitchUp NUMPAD2 CTRL low power RCS pitch up
LPRCSPitchDown NUMPAD8 CTRL low power RCS pitch down
LPRCSYawLeft NUMPAD1 CTRL low power RCS yaw left
LPRCSYawRight NUMPAD3 CTRL low power RCS yaw right
LPRCSBankLeft NUMPAD4 CTRL low power RCS bank left
LPRCSBankRight NUMPAD6 CTRL low power RCS bank right
LPRCSUp NUMPAD2 CTRL low power RCS translate up
LPRCSDown NUMPAD8 CTRL low power RCS translate down
LPRCSLeft NUMPAD1 CTRL low power RCS translate left
LPRCSRight NUMPAD3 CTRL low power RCS translate right
LPRCSForward NUMPAD6 CTRL low power RCS translate forward
LPRCSBack NUMPAD9 CTRL low power RCS translate backward
NMHoldAltitude A navmode hold altitude
NMHLevel L navmode wings level
NMPrograde LBRACKET navmode prograde
NMRetrograde RBRACKET navmode retrograde
NMNormal SEMICOLON navmode orbit-normal
NMAntinormal APOSTROPHE navmode orbit-antinormal
NMKillrot NUMPAD5 navmode kill rotation
Undock D undock from main dock
IncElevatorTrim DELETE Increment elevator trim setting
DecElevatorTrim INSERT Decrement elevator trim setting
WheelbrakeLeft COMMA Apply wheel brake at left main gear
WheelbrakeRight PERIOD Apply wheel brake at right main gear
HUD H CTRL Switch HUD on/off
HUDMode H Page through HUD modes
HUDReference R CTRL Select HUD reference object
HUDTarget R CTRL ALT Select HUD target object
HUDColour H ALT Page through HUD colours
IncSimSpeed T Increment time acceleration x10
DecSimSpeed R Decrement time acceleration /10
IncFOV X Zoom camera out
DecFOV Z Zoom camera in
StepIncFOV X CTRL Zoom camera out to next 10° step
StepDecFOV Z CTRL Zoom camera in to next 10° step
MainMenu F4 Show/hide main menu
DlgHelp F1 ALT Open help window
DlgCamera F1 CTRL Open camera dialog
DlgSimspeed F2 CTRL Open time acceleration dialog
DlgCustomCmd F4 CTRL Open custom function dialog
DlgVisualHelpers F9 CTRL Open visual helpers dialog
DlgRecorder F5 CTRL Open record/playback control dialog
DlgInfo I CTRL Open object info window
DlgMap M CTRL Open map window
DlgNavaid N CTRL Open navaid list
DlgSelectVessel F3 Open vessel selection dialog
SelectPrevVessel F3 CTRL Switch to previous focus vessel
ToggleCamInternal F1 Switch cockpit/outside view
ToggleTrackMode F2 Page through external track modes
TogglePanelMode F8 Page through cockpit modes
TogglePlanetarium F9 Planetarium mode on/off

ORBITER User Manual (c) 2000-2010 Martin Schweiger 31

ToggleRecPlay C CTRL Recorder/playback on/off
Pause P CTRL Pause/resume
Quicksave Q CTRL Save current state
Quit Q CTRL Quit simulation session

ORBITER User Manual (c) 2000-2010 Martin Schweiger 32

5 Mesh files

Orbiter uses a proprietary mesh file format. Mesh files are ASCII text files. (A binary
format may be introduced in the future). Mesh files are located in the Meshes
subdirectory unless the MeshDir entry in Orbiter.cfg points to a different directory.

Orbiter meshes are defined in a left-handed coordinate system. Vessel meshes should
be oriented such that the vessel’s nose (or more precisely, its main thrust direction)
points in the positive z-direction, the positive x-axis points right, and the positive y-
axis points up.

The units for vertex coordinates are meters [m].

Mesh file format:

MSHX1 header
GROUPS <n> <n>: number of groups
<group 1> group spec 1
<group 2> group spec 2
…
<group n> group spec n
MATERIALS <m> <m>: number of materials
<mtrl-name 1> material name 1
<mtrl-name 2> material name 2
…
<mtrl-name m> material name m
<material 1> material spec 1
<material 2> material spec 2
…
<material m> material spec m
TEXTURES <t> <t>: number of textures
<tex-name 1> texture name 1
<tex-name 2> texture name 2
…
<tex-name t> texture name t

Group specs:

[LABEL <label>] group label; optional
[MATERIAL <i>] material index; optional
[TEXTURE <j>] texture index; optional
[TEXWRAP <wrap>] texture wrap mode: <wrap> = U or V or UV; optional
[NONORMAL] “no normals” flag; see below; optional
[FLAG <f>] multi-purpose bit-flags; see below; optional
GEOM <nv> <nt> <nv>: vertex count, <nt>: triangle count
<vtx 0> vertex spec 0
<vtx 1> vertex spec 1
…
<vtx nv-1> vertex spec nv-1
<tri 0> triangle spec 0
<tri 1> triangle spec 1
…
<tri nt-1> triangle spec nt-1

Vertex specs:

<x> <y> <z> [<nx> <ny> <nz> [<tu> <tv>]]
<x> <y> <z>: vertex position
<nx> <ny> <nz>: vertex normal (optional)
<tu> <tv>: texture coordinates (optional)

ORBITER User Manual (c) 2000-2010 Martin Schweiger 33

Missing normals are automatically calculated as the mean of the normals of adjacent
faces. Texture coordinates are only required if the group uses a texture.

Triangle specs:

<i> <j> <k> vertex indices (zero-based). Left-hand face is rendered.

Material specs:

MATERIAL <mtrl-name>material header
<dr> <dg> <db> <da> Diffuse colour (RGBA)
<ar> <ag> <ab> <aa> Ambient colour (RGBA)
<sr> <sg> <sb> <sa> <pow> Specular colour (RGBA) and specular power (float)
<er> <eg> <eb> <ea> Emissive colour (RGBA)

5.1 Mesh groups

Meshes are divided into groups. Each group can define its own material and texture
specification. For example, if you want different parts of the object to have different
material properties, you need to split the mesh into groups accordingly.

Each group contains

 An optional label (tag LABEL). The label must be a single word without white
spaces. It has no direct effect on the mesh, but can be used to associate a name
with a mesh group. Named groups are easier to access from within a vessel
module code than group indices (e.g. for defining animations etc.)

 An optional material index. Indices ≥1 select a material of the mesh’s material list.
Index 0 means “default material” (which is white, diffuse and opaque). If the
group doesn’t specify a material index it inherits the previous group’s material.
The first group in the mesh must specify a material index, otherwise the result is
undefined.

 An optional texture index. Indices ≥1 select a texture from the mesh’s texture list.
Index 0 means “no texture”. If the group doesn’t specify a texture index it inherits
the previous group’s texture. The first group in the mesh must specify a texture
index, otherwise the result is undefined.

 An optional TEXWRAP flag. This defines how textures wrap around the object.
“U” causes textures to wrap in the u-coordinate direction in texel space, “V” wraps
in v-coordinate direction, and “UV” wraps in both directions. Default is no
wrapping.

 An optional NONORMAL flag. This indicates that vertex definitions in this group
don’t contain normal definitions, and the first two numbers after the vertex
coordinate (x,y,z) triplet is interpreted as texture coordinate (u,v) pair.

 An optional FLAG entry. This allows to specify a user-defined 32-bit flag (in hex
format) whose interpretation is context-dependent. Below is a list of flags
currently recognised by Orbiter:

Mesh type Flag Interpretation

Vessel 0x00000001 Do not use this group to render ground shadows

Vessel 0x00000002 Do not render this group

Vessel 0x00000004 Do not apply lighting when rendering this group

ORBITER User Manual (c) 2000-2010 Martin Schweiger 34

Vessel 0x00000008 Texture blending directive: additive with background

 A GEOM specification, defining the number of vertices and triangles in the group.

 A vertex list (see below)

 A triangle list (see below)

Vertex lists

Each group contains a vertex list, defining the positions, and optionally normal
directions and texture coordinates of the vertices in the group.

Each line in the list defines a vertex, and contains up to 8 floating point numbers
(separated by spaces)

 The first 3 numbers contain the cartesian vertex coordinates (x,y,z) in the object
local coordinate space. Units are meters [m]

 The next 3 numbers (if present) contain the vertex normal direction (nx,ny,nz)
(unless the group has set the NONORMAL flag). The normal direction is the
direction perpendicular to the mesh surface at the vertex position. Orbiter needs
this to generate correct lighting effects. If no normals are specified (or if the
NONORMAL flag is set) Orbiter guesses the normal direction as the average of
the normals of the surrounding triangles. This works well for smooth surfaces,
but should be avoided for surfaces which contain sharp edges. Normal directions
should be normalised, i.e. sqrt(nx2+ny2+nz2) = 1.

 The next 2 numbers (if present) contain the vertex texture coordinates (u,v).
Texture coordinates are only required if the group uses a texture (i.e. has texture
index ≥1). Texture coordinates define how a rectangular 2D texture is mapped
onto the object surface. Texture coordinate (0,0) refers to the lower left corner of
the texture, (1,1) refers to the upper right corner. Coordinates > 1 are allowed and
cause textures to repeat periodically.

Notes:

 Vertices located at sharp edges or corners require multiple entries in the vertex
list, because they have multiple normal directions (in other words, the surfaces
are non-differentiable at edges). In that case you should always define the
normals in the mesh file, and not leave it to Orbiter to generate them for you.
Otherwise the edges will appear unrealistically smooth.

 Likewise, vertices with multiple vertex coordinates (e.g. at the edge between two
texture maps) need multiple entries in the vertex list.

Triangle lists

The group’s triangle list follows immediately below the vertex list. It defines the
triangles which compose the group’s mesh surface.

 Each line in the list defines a triangle and consists of 3 integer numbers (i,j,k).
Each of the numbers specifies a vertex from the group’s vertex list (starting from
0)

ORBITER User Manual (c) 2000-2010 Martin Schweiger 35

 Only the “clockwise” (CW) side of each triangle is rendered: the side which, if you
look at it, has the vertices arranged in a clockwise order. The opposite
“counterclockwise” (CCW) side is invisible.

 If you need to render both sides of a triangle (e.g. for a thin plate) you need to
define two triangles.

 If you want to flip the rendered side of a triangle (e.g. to correct for “inside out”
artefacts) you need to rearrange the triangle indices in the following way:
(i,j,k) -> (i,k,j)

5.2 Material list

Materials allow to specify the homogeneous lighting properties of a mesh group. The
material lists consists of

 A header line, MATERIALS <m>, defining the number <m> of materials.

 A list of material names.

 A list of material properties.

Each material property specification consists of 4 RGBA quadruplets, where R, G and
B define the red, green and blue components, and A is the opacity. RGB values should
be between 0 and 1, but can be > 1 for special effects. A must be between 0 (fully
transparent) and 1 (fully opaque).

 The first line specifies the diffuse material colour. This is the colour that is
diffusely (in all directions) reflected from an illuminated surface.

 The second line specifies the ambient material colour. This is the colour of an
unlit surface.

 The third line specifies the specular colour. This is the colour of light reflected by
a polished surface into a narrow beam. The power entry specifies the width of the
cone into which specular light is reflected. Higher values mean a narrower cone,
i.e. sharper reflections. Typical values are around 10. If omitted, the default value
for power is 0.

 The fourth line specifies the emissive colour. This is the colour of light emitted by
a glowing surface.

5.3 Texture list

The texture list contains the names of texture files used by the various mesh groups.
Texture names should contain file extensions “.dds” but no directory paths. Textures
must be located in Orbiter’s Textures subdirectory.

Notes:

 Textures must be in DDS format (“Direct Draw Surface”). A DirectX SDK tool,
dxtex, which is included in the Orbiter SDK package, allows to convert BMP
bitmaps into DDS.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 36

 You should store the textures either in DXT1 compressed format (opaque textures
or textures with binary transparency), or in DXT5 compressed format (for
textures with continuous transparency).

 For maximum compatibility, avoid textures larger than 256x256 pixels, because
of limitations of some older graphics cards.

 If a texture is to be dynamically updated during the simulation (e.g. instrument
panels in virtual cockpits), the texture name should be followed by the flag ‘D’.
Orbiter will decompress these textures to allow more efficient dynamic updates.

5.4 Performance optimisation

To achieve the best results with your new mesh, consider the following points:

 Texture groups which use the same texture should be stored in sequence in the
mesh. Unnecessary switching between textures can degrade performance if
textures must be swapped in and out of video memory.

 Within a sequence of groups using the same textures, groups which use the same
material should be stored in sequence. Again, this avoids the need of switching
render parameters.

 Avoid large numbers of very small groups. If small groups use the same
parameters (material, texture, etc.) they should be merged into a single group.

 Groups which use transparent materials or textures should be sorted to the end of
the mesh. If transparent groups overlap, the innermost ones should be listed
before the outer ones.

In order to render transparency correctly, DirectX requires the scene seen
through the transparent object to be fully built before the transparent object itself
is rendered. Any objects rendered after the transparent object will be masked by
it.

 Objects with transparency and specular reflection are more expensive to render
than opaque and diffusive objects, so use these features sparingly.

 And most importantly, keep the vertex count low! (See section Error: Reference
source not found)

5.5 Mesh converters

If you want to convert an existing model into an Orbiter mesh, check the Orbiter web
forum for mesh converters created by other users. There is currently a converter
which converts from Truespace asc format, which many 3D editors can export. If you
have written your own mesh editor or converter, publish it!

5.6 Mesh utilities

The Orbiter SDK contains a few utilities that help to extract data from mesh files.
They are located in the Orbitersdk\utils folder.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 37

shipedit: extracts geometric information from a mesh that are useful for defining
physical parameters for vessel modules. These include the bounding box extents,
volume, cross-sectional areas, and inertia tensor for homogeneous density
distribution.

meshc: mesh compiler. Eventually this may be extended to convert mesh files from
text to a binary format (for more compact storage and faster loading) but currently it
only extracts mesh parameters into a C header file that can be included in a vessel
module project for convenient access to named mesh groups.

ORBITER User Manual (c) 2000-2010 Martin Schweiger 38

	ORBITER File Formats
	1 Introduction
	2 ORBITER configuration files
	2.1 Master configuration file
	2.2 Planetary systems
	2.3 Planets
	General parameters

	2.4 Adding custom markers
	2.5 Vessel configuration files

	3 Scenario files
	4 The keymap.cfg key mapping file
	5 Mesh files
	5.1 Mesh groups
	Vertex lists
	Triangle lists

	5.2 Material list
	5.3 Texture list
	5.4 Performance optimisation
	5.5 Mesh converters
	5.6 Mesh utilities

