
Orbiter Technical Notes: Dynamic state vector

propagation

Martin Schweiger

June 10, 2006

1 Introduction

This document describes the numerical integration methods used by Orbiter to propa-

gate vessel state vectors from one time point to the next. The time step intervals can

vary over a large range, both due to variations in the computational complexity of ren-

dering a frame for the 3D scenery, and due to support for “time compression” up to

105× real time. To avoid the accumulation of numerical errors during the simulation,

integration schemes of adequate accuracy must be chosen. Where the time intervals be-

come too large to allow sufficiently accurate numerical integration of the state vectors,

Orbiter can switch to “orbit stabilisation”, a variant of Encke’s method, where only the

perturbations on top of a base line 2-body orbit defined by its osculating elements are

integrated numerically.

2 Polynomial interpolation methods

Let ~rn and ~vn be the state vectors of a vessel at time tn, given in some coordinate

system. Let the interval to the next step tn+1 be given by ∆tn = tn+1 − tn. In the

following, we assume that the gravitational acceleration ~ag at any position ~r and any

time t between tn and tn+1 can be computed. Further we assume that any additional

forces ~a0 (thrust, atmospheric drag, etc.) are constant between tn and tn+1.

~a(t) = ~ag(t, ~r(t)) + ~a0 ≡ A(t, ~r), t ∈ [tn, tn+1]

where operator A formally denotes the function call providing the forces acting on the

vessel at an arbitrary time within [tn, tn+1]. This will generally involve the summation

of numerically calculated gravitational potentials from relevant celestial bodies. The

equation of motion is then given by the 2nd order differential equation

~̈r = A(t, ~r) (1)

The following sections describe methods used in the Orbiter code to solve the initial

value problem of propagating (~rn, ~vn) to (~rn+1, ~vn+1).

2.1 Linear interpolation, single pass [L/s]

Given state vectors (~rn, ~vn) and ~an = A(tn, ~rn), and interval h = ∆tn, calculate

(~rn+1, ~vn+1) using a predictor-corrector method with a linear interpolation of ~a. Let

~r
(0)
n+1 = ~rn + h~vn +

1

2
h2~an

1



be the predicted new position under the assumption of constant ~a(t) = ~an. (Zero-th

order approximation). Recalculate the acceleration at the predicted position:

~a
(0)
n+1 = A(tn+1, ~r

(0)
n+1)

Assume a linear interpolation of ~a between tn and tn+1:

~a(t) = ~an + (~a
(0)
n+1 − ~an)

t− tn
h

, t ∈ [tn, tn+1].

Then the state vector updates are given by

∆~v(0) =

∫ tn+1

tn

~a(t)dt =
1

2
h(~an + ~a

(0)
n+1)

∆~r(0) =

∫ tn+1

tn

~v(t)dt =

∫ tn+1

tn

~vn + ~a(t)tdt = h~vn +
1

2
h∆~v(0)

(2)

and thus

~rn+1 = ~rn +∆~r(0)

~vn+1 = ~vn +∆~v(0)

2.2 Linear interpolation, double pass [L/d]

The above method can be iterated further to provide a second correction. Given the

position update of Eq. 2, re-calculate the gravitational acceleration

~a
(1)
n+1 = A(tn+1, ~rn +∆~r(0))

and use the new acceleration estimate for the interpolation:

∆~v(1) =
1

2
h(~an + ~a

(1)
n+1)

∆~r(1) = h~vn +
1

2
h∆~v(1)

and

~rn+1 = ~rn +∆~r(1)

~vn+1 = ~vn +∆~v(1)

2.3 Quadratic interpolation, single pass [Q]

To use a second-order interpolation of ~a(t) between tn and tn+1, we first propagate the

position by a half-step,

~r
(0)

n+ 1
2

= ~rn +
h

2
~vn +

1

2

(

h

2

)2

~an

and find the mid-point acceleration,

~a
(0)

n+ 1
2

= A

(

tn +
h

2
, ~r

(0)

n+ 1
2

)

(3)

2



which is then used to propagate across the full step,

~r
(0)
n+1 = ~rn + h~vk +

1

2
h2~a

(0)

n+ 1
2

and

~a
(0)
n+1 = A(tn+1, ~r

(0)
n+1) (4)

We now assume a quadratic behaviour of ~a(t) between tn and tn+1:

~a(t) = ~an + ~c1(t− tn) + ~c2(t− tn)
2 t ∈ [tn, tn+1].

With Eqs. 3 and 4 we can determine ~c1 and ~c2 as

~c1 =
−3~an − ~a

(0)
n+1 + 4~a

(0)

n+ 1
2

h

~c2 =
2(~an + ~a

(0)
n+1 − 2~a

(0)

n+ 1
2

)

h2

and again integrate for obtaining the state vector updates:

∆~v(0) =

∫ tn+1

tn

~a(t)dt = h~an +
h2

2
~c1 +

h3

3
~c2

∆~r(0) =

∫ tn+1

tn

~v(t)dt = h~vn +
h2

2
~an +

h3

6
~c1 +

h4

12
~c2

3 Runge-Kutta methods [RK]

Given the first-order differential equation

ẏ = f(t, y(x)) (5)

the step from yn to yn+1 can be developed by a Taylor series expansion

yn+1 = yn +
dy

dt

h

1!
+

d2y

dt2
h2

2!
+

d3y

dt3
h3

3!
+ . . .

By truncating at order N , the formal development scheme for Runge-Kutta solvers of

order N is given by a series of R terms (R ≥ N ):

k1 = hf(t, y)

k2 = hf(t+ α1h, y + β11k1)

k3 = hf(t+ α2h, y + β21k1 + β22k2)

kj+1 = hf(t+ αjh, y + βj1k1 + βj2k2 + . . .+ βjjkj)

. . .

kR = hf(t+ αR−1h, y + βR−1,1kR−1 + . . .+ βR−1,R−1kR−1)

(6)

such that

yn+1 = yn +

R
∑

j=1

γjkj

where αj , βji and γj define a set of coefficients for a given scheme. Two choices of

parameters for a 2-stage second-order Runge-Kutta scheme (RK2) are

3



a)

α 1
β 1

γ 1
2

1
2

b)

α 1
2

β 1
2

γ 0 1

A common choice for a 4-stage 4-th order scheme (RK4) is,

α 1
2

1
2 1

β 1
2
0 1

2
0 0 1

γ 1
6

1
3

1
3

1
6

Various parameter sets for higher-order schemes (RK5, RK6, RK7, RK8 ...) can be

found in the literature. It should be noted that Euler’s method

yn+1 = yn + hf(t, y)

can in this context be regarded as a first-order Runge-Kutta method with γ1 = 1.

To adapt the RK solvers for the 2-nd order problem of Eq. 1, we need to recast it in

the first-order form of Eq. 5 by introducing the velocity ~v as an auxiliary variable, and

simultaneously solving a system of two coupled first-order problems:

~̇r = f1(t, ~r, ~v) = ~v

~̇v = f2(t, ~r, ~v) = A(t, ~r)

Then each of the terms in (6) must be calculated for both state vectors. For example,

RK4 then becomes

~k1 = h~vn

~l1 = hA(tn, ~rn)

~k2 = h(~vn +~l1/2)

~l2 = hA(tn + h/2, ~rn + ~k1/2)

~k3 = h(~vn +~l2/2)

~l3 = hA(tn + h/2, ~rn + ~k2/2)

~k4 = h(~vn +~l3)

~l4 = hA(tn + h,~rn + ~k3)

leading to state vector updates

~rn+1 = ~rn +
1

6
(~k1 + 2~k2 + 2~k3 + ~k4)

~vn+1 = ~vn +
1

6
(~l1 + 2~l2 + 2~l3 +~l4)

4 Symplectic integrators [SY]

A popular choice for long-term numerical integration of celestial trajectories is the

family of symplectic integrators for Hamiltonian systems which have the property of

preserving the total energy of the problem. This is reflected in the excellent stability of

4



the semi-major axis shown in the numerical tests in Section 6. Note however that other

orbital elements may not show a similar improvement of accuracy over non-symplectic

integrators.

A discussion of the theory of symplectic integrators is beyond the scope of this

document, but a rich literature is available on the subject. For the implementation of

symplectic integrators of orders 4, 6 and 8 in Orbiter, the paper by Yoshida [1] was

followed.

5 Rotational state propagation

The propagation of the linear state vectors (~r, ~v) discussed in the previous sections

can now be extended to the angular state vectors of orientation and angular velocity,

(~ρ, ~ω). In analogy to the linear case, this requires the propagation of (~ρn, ~ωn) at time

tn to (~ρn+1, ~ωn+1) at time tn+1, given a time-dependent torque ~τ(t). The equations of

motion in this case can be stated as

~̇ρ = ~ω

~̇ω = E−1(~τ , ~ω)
(7)

where operator E−1 formally denotes the solution of Euler’s equations of rigid body

motion:

E(~ω, ~̇ω) ≡ ~τ = ~̇L+ ~ω × ~L =





I1ω̇1 − ω2ω3(I2 − I3)
I2ω̇2 − ω3ω1(I3 − I1)
I3ω̇3 − ω1ω2(I1 − I2)



 (8)

where ~L is the angular momentum measured in the frame of the rotating body, and

(I1, I2, I3) are the principal moments of inertia of the body (assuming that the frame is

the principal axis frame, with diagonal inertia tensor).

We now consider ~τ (t) to be composed of a time-dependent gravity gradient com-

ponent ~τg (cf. Orbiter Technotes: Distributed Vessel Mass) and a term ~τ0 containing all

other torque components (atmospheric effects, engine thrust, etc.) which is assumed to

be constant in the interval [tn, tn+1]:

~τ (t, ~r, ~ρ, ~ω) = ~τg(t, ~r, ~ρ, ~ω) + ~τ0 ≡ T(t, ~r, ~ρ, ~ω), t ∈ [tn, tn+1] (9)

Note the additional dependencies of ~τg on position ~r, orientation ~ρ and angular velocity

~ω. (The ~ω dependency arises from the inclusion of a damping term). We assume that

the gravity gradient torque can be computed at any time between tn and tn+1, and

represent the resulting torque function by operator T.

The ~r dependency of T (and hence ~̇ω) couples the angular and linear state vectors.

This means that the angular state can not be propagated independently from the linear

state. Instead we need to solve a system of four coupled equations simultaneously:

~̇r = f1(t, ~r, ~v, ~ρ, ~ω) = ~v

~̇v = f2(t, ~r, ~v, ~ρ, ~ω) = A(t, ~r)

~̇ρ = f3(t, ~r, ~v, ~ρ, ~ω) = ~ω

~̇ω = f4(t, ~r, ~v, ~ρ, ~ω) = E−1[T(t, ~r, ~ρ, ~ω), ~ω]

(10)

The integration of this system into the Runge-Kutta mechanism and other integrators

is straightforward. As a simple example, consider version b) of the RK2 scheme in

5



Section 3. Given the initial state (~rn, ~vn, ~ρn, ~ωn) at tn, the two stages of RK2 are

~k1 = h~vn

~l1 = hA(tn, ~rn)

~κ1 = h~ωn

~λ1 = hE−1[T(tn, ~rn, ~ρn, ~ωn), ~ωn]

~k2 = h(~vn +~l1/2)

~l2 = hA(tn + h/2, ~rn + ~k1/2)

~κ2 = h(~ωn + ~λ1/2)

~λ2 = hE−1[T(tn + h/2, ~rn + ~k1/2, ~ρn + ~κ1/2, ~ωn + ~λ1/2), ~ωn + ~λ1/2]

(11)

leading to updates

~rn+1 = ~rn + ~k2

~vn+1 = ~vn +~l2

~ρn+1 = ~ρn + ~κ2

~ωn+1 = ~ωn + ~λ2

(12)

Note that the formal sum operator for the orientation ~ρ represents a rotation. Its ac-

tual implementation depends on the representation of body orientation. Orbiter uses

a quaternion representation. Other choices are rotation matrices, Euler angles or axis-

angle representations.

6 Numerical simulations

Figure 1 shows the mean drift and standard deviation of the semi-major axis of a low

Earth orbit (mean altitude 217 km) over a 10-day period for the different integration

schemes as a function of step interval. For these simulations, the interval lengths were

kept constant (during an actual Orbiter simulation run, step lengths will normally vary

as a function of scenery complexity and time compression).

It can be seen that the standard deviations of all methods converge at approximately

5 · 10−3 km, defined by the noise level due to rounding errors and “true” orbit pertur-

bations. The step lengths up to which this maximum accuracy level is maintained vary

widely between the different methods. Of the polynomial interpolation schemes de-

scribed above, the quadratic scheme compares favourably to the Runge-Kutta methods,

providing better accuracy than RK4, while requiring fewer function evaluations.

The graphs also show that the parameter drift is monotonous for the even-order RK

methods and polynomial methods, but oscillatory with a zero crossing for odd-order

RK methods.

Compared to Runge-Kutta integrators, the symplectic methods deliver a signifi-

cantly improved stability of the orbit energy at the same order of accuracy. The top

graph of Fig. 2 shows the SMa standard deviation for 2nd, 4th, 6th and 8th order sym-

plectic integrators. It can be seen that for 2nd to 8th order, the symplectic methods

provide superior results compared to their Runge-Kutta counterparts of the same order.

SY8 however does not provide a significant improvement over SY6 for the problem

considered here.

6



Method stages runtime [µs]

RK2 2 9.7

RK3 3 14.8

RK4 4 16.2

RK5 6 30.5

RK6 8 38.0

RK7 11 49.1

RK8 13 57.8

L/s 2 11.3

L/d 3 13.1

Q 3 19.8

SY2 2 10.1

SY4 4 20.2

SY6 8 32.3

SY8 16 51.5

Table 1: Computational cost of the time propagation methods for the example of low

Earth orbit. 3 gravitational point sources (Sun, Earth, Moon) were considered. Run

times are for propagation evaluation only (no graphics processing), measured on an

Athlon 900 PC.

In the bottom graph, the standard deviation of perigee distance is shown. While

still superior to the RK solutions of the same order except for SY8, the improvement is

not as striking as for the semi-major axis.

Since higher-order methods require more evaluations of the function A(t, ~r) and

are therefore compuationally more expensive, the propagation method should be deter-

mined by balancing the required accuracy and computational cost.

Note that with default parameters, Orbiter will switch to “stabilised” orbit calcula-

tion for steps that involove a change in mean anomaly of more than 10−3 · 2π. In low

Earth orbit with period T ≈ 5400 s, this corresponds to a time interval of 5.4 s.

For comparison, with a typical frame rate of 50 fps and at a selected time com-

pression of 1000×, the step interval is 20 s. During normal simulation runs, the main

problem are however isolated long steps, caused for example by disc I/O. During such

steps, the orbit stabilisation mode keeps orbits from deteriorating.

References

[1] H. Yoshida. Construction of higher order symplectic integrators. Phys. Lett. A,

150:262–268, 1990.

7



10
1

10
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

step interval [s]

m
e

a
n

 S
M

a
 d

ri
ft

 [
k
m

]

RK2

RK4 RK5

RK6

RK7

RK8

L/s

L/d

Q

10
1

10
2

10
−3

10
−2

10
−1

10
0

step interval [s]

S
M

a
 s

ta
n

d
a

rd
 d

e
v
ia

ti
o

n
 [

k
m

]

RK2

RK4 RK5 RK6 RK7 RK8

L/s

L/d Q

Figure 1: Mean drift (top) and standard deviation (bottom) in semi-major axis for a

low Earth orbit (mean altitude 217 km) over a period of 10 days, as a function of time

step length. Shown are the interpolation and Runge-Kutta families of integrators used

in the Orbiter code.

8



10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

step interval [s]

S
M

a
 s

ta
n

d
a

rd
 d

e
v
ia

ti
o

n
 [

k
m

]

SY2 SY4 SY6 SY8

RK2

RK4 RK6 RK8

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

step interval [s]

p
e

ri
g

e
e

 a
lt
it
u

d
e

 s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 [

k
m

]

SY2 SY4 SY6 SY8

RK2 RK4 RK6 RK8

Figure 2: Standard deviation in semi-major axis (top) and perigee altitude (bottom)

for the 2nd, 4th, 6th and 8th order symplectic integrators available in Orbiter. For

comparison, the 2nd, 4th, 6th and 8th order Runge-Kutta results are shown as dashed

lines.

9


