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1 Introduction

This document describes the implementation of planetary axis precession in Orbiter.

2 Definitions

The rotation axis of a celestial body is assumed to rotate around a precession reference
axis at constant obliquity angle and constant angular velocity. Currently, the orientation
of the reference axis (OP) is considered time-invariant and is defined with respect to
the ecliptic and equinox of J2000 (see Fig. 1). The axis orientation is defined by the
obliquity ¢,¢¢ (the angle between the axis and the ecliptic north pole, V) and the angle
from the vernal equinox 7" to the ascending node of the ecliptic with respect to the
body equator, L,.t. In Orbiter’s left-handed system, 7" is defined as (1,0,0), and N is
defined as (0,1,0). The rotation matrix R,¢ for transforming from ecliptic to precession
reference frame is then given by

coSLyer 0 —sin Lo 1 0 0
Ryiet = 0 1 0 0 coseper —sSineer | . (D)
sin Lyt 0 cos Lot 0 sSinépef  COSEref

The planet’s axis of rotation at some time ¢, OS, is given relative to the reference axis
OP, by obliquity ¢ and longitude L,¢ (see Fig. 2). L, is a linear function of time,

and is defined as
t—to

T, ’

Lya(t) = Lo+ 27 2)
where t is a reference date, L is the longitude at that date, and T}, is the precession
period. The rotation from the precession reference frame to the planet’s axis frame is
described by

coSLyer 0 —sinLyg 1 0 0
Reel(t) = 0 1 0 0 coserel —sineer | . (3
sinLyer 0 cos Lyl 0 sSinepel  COSErel

The planet’s rotation angle ¢(t) is defined via the siderial period T, and a rotation

offset g:
t—to

@(t) = %o +27 + [LO - Lrel(t)] COS Evel, (4)

S



ecliptic north pole (y)

ecliptic

Figure 1: Orientation of the precession reference axis in the ecliptic frame.

where t is a reference time (usually J2000.0). The last term in Eq. 4 accounts for the
difference between siderial and node-to-node rotation period. The rotation is encoded
in matrix R;o¢:
cosp 0 —sing
Riot(t) = 0 1 0 . 5)
sinp 0 cosy
The full planet transformation is the combination of rotation and precession:
R(t) = Rref Rrel (t) Rrot (t) . (6)
The direction of the rotation axis is
0

0s:sit)=R@®) [ 1 |. @
0

The resulting axis obliquity and longitude of ascending node are

1 —Sa(t)

so(t)
Figure 3 shows examples of axis obliquity and longitude of ascending node over one
precession cycle for different reference obliquities, as a function of L, (or equiva-
lently, time). Using €¢c; and Lecy, an obliquity matrix Rec) can be defined that rotates
from ecliptic to the planet’s current precession frame:

Eeal(t) = cos ™ 5, (1), Leai(t) = tan™ (8)

coSLect 0 —sinLeg 1 0 0
Real(t) = 0 1 0 0 coS€eel —SinEea | . (9)
sinLecy 0 €08 Lecl 0 sSinéee  COSEecl



Figure 2: Planet rotation axis.

Note that like R,cfR; e, matrix Rec; describes a rotation of the axis from ON to OS.
However, there is a difference between the rotation around OS. Specifically, the ref-
erence axis for Rec is the ascending node of the ecliptic with respect to the planet
equator:

1
ONeel : n(t) = Rear(t) | 0 . (10)
0
The difference between Re.; and R;¢Re] can be expressed by an offset matrix Rog:
Recl(t> Roff (t) - Rreerel(t)7 (1 1)
Roff (t) = RZC](t) Rreerel(t)- (12)

Rost describes a rotation around y, so it has the structure

cos o 0  —sineg
Rott(t) = 0 1 0 : (13)
sinpeg 0 €Os o

and the offset angle @ is given by

1 _[Roff]13
[Roﬂ]ll -

Including this offset into the planet’s rotation angle leads to an expression for the
planet’s rotation angle (t) with respect to reference direction n(t):

r(t) = ¢(t) + port (¢)- (15)

@ot(t) = tan™ (14)
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Figure 3: Axis obliquity € and longitude of ascending node L as a function of
relative longitude L. over one precession cycle, for four different values of €,.¢, and
invariant parameters e,¢) = 20°, Ly = 40°.

We can now express the full rotation matrix R defined in Eq. 6, using Rec and 7:

R(t) = Recl(t)Rrot (1), (16)
where
B cosr 0 —sinr
Rrot (£) = 0o 1 0 : (17)

sinr 0 cosr

3 Orbiter interface

3.1 Configuration

The precession and rotation parameters supported in planet configuration files are listed
in Table 1. The following default assumptions apply:

o If PrecessionObliquity is not specified, ;. = 0 is assumed. (precession refer-
ence is ecliptic normal). In this case, the L,¢f entry is ignored and Lo = 0 is
assumed.

o If PrecessionPeriod is not specified, T}, = oo is assumed (rotation axis is station-
ary).

e If LAN_MIJD is not specified, tg = 51544.5 is assumed (J2000.0).
e If LAN is not specified, Ly = 0 is assumed.

e If Obliquity is not specified, €, = 0 is assumed.

e If SidRotPeriod is not specified, Ts = oo is assumed (no rotation).
o If SidRotOffset is not specified, o = 0 is assumed.

For a retrograde precession of the equinoxes, a negative value of PrecessionPeriod
should be used.



3.2 API functions

3.2.1 void oapiGetPlanetObliquityMatrix (OBJHANDLE hPlanet, MATRIX3
*mat)

This function returns Reci(¢) in Eq. 9 for planet iPlanet at the current simulation time.

3.2.2 double oapiGetPlanetObliquity (OBJHANDLE hPlanet)

This function returns e () in Eq. 8 for planet hPlanet at the current simulation time.

3.2.3 double oapiGetPlanetTheta (OBJHANDLE hPlanet)

This function returns Leq () in Eq. 8 for planet APlanet at the current simulation time.

3.2.4 double oapiGetPlanetCurrentRotation (OBJHANDLE hPlanet)

This function returns the current rotation angle r(¢) in Eq. 15 for planet 2Planet at the
current simulation time.

3.2.5 void oapiGetRotationMatrix (OBJHANDLE hPlanet, MATRIX3 *mat)

This function returns R(¢) in Eq. 6 for planet hPlanet at the current simulation time.

parameter config entry

T, SidRotPeriod [seconds]
©o SidRotOffset [rad]

Erel Obliquity [rad]

Ly LAN [rad]

to LAN_MIJD [MJD]

T, PrecessionPeriod [days]
Eref PrecessionObliquity [rad]
Lot PrecessionL AN [rad]

Table 1: Rotation and precession parameter entries in planet configuration files.



