PVPlayer SDK Developer's Guide
OHA 2.07,rev 1
Apr 9, 2010

© 2010 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0


http://www.apache.org/licenses/LICENSE-2.0

Open

References
http://www.loc.gov/standards/iso639-2. A URL reference to ISO-639-2/T language codes.
http://www.w3.0rg/TR/NOTE-datetime. A URL reference to the ISO 8601 time format.
http://www.id3.org/. A URL reference to the ID3 metadata format.

http://android.qgit.kernel.org/?p=platform/external/opencore.qgit;a=tree;f=doc;:hb=master “OMX
Core Integration Guide”.

PodPE



http://android.git.kernel.org/?p=platform/external/opencore.git;a=tree;f=doc;hb=master
http://www.id3.org/
http://www.w3.org/TR/NOTE-datetime
http://www.loc.gov/standards/iso639-2

Upen
1

Table of Contents

1 INtrodUCHION. .. eeuuuiemusiienssiennsiiennsiienssrrenssrrnnssrrnnssrensssennsssrnnssrenssseensssrnnsssennsseenssnnsrnnsennsens 7
1.1 PVPlayer SDK DefiNitiON.....coceuueiiiiieeiiiiieieiiiiiiiei i eeeieeieeeeeenneen, 7
1.2 PVPIayer SDK SCOPC. ciuuuuiiitiiiiiiieiiie et iieeeee et eiieeeeseereeeen, 7
1.3 AUAIENCE. e iieeeeiiiiee ettt ettt ettt et e et e e erreeen 7

2 High Level DeSIgN....uuueeeeeiiiiiiiisssnnnnnnniiniiiisssssssssssseeniiiisssssssssssseeennnsssssssnsssssennnnnsssssnnnas 8
2.1 Scope and LimitatiONS.......iiieeeeniiiieeei i eeeeeeeeeeeee e eeeeeeene, 8
2.2 Requirements on Platform and TOOIS......cccuiiieeiiiieeiiiiieiiiieiiieiiieeeiieeeiieeeee, 8
2.3 Architecture and Component BreakKdOWN............eevveeeeeiiiieeeiiiiiieiiieeiieieeeeeeeennnen.. 8
2.4 CONLIOI FIOW. ieuuiiiieiiiiieiiiie ittt ee i eeeieeeieeeeen, 9
SN B\ v= W i (0 T T T T 9

3 PVPlayer ENgiNe DeSigN....cuueeeerriiiiisssssnnnnenseriiinissssssnnsssssnniinissssssssssneenssnnsnsssssssssnnnnns 10
3.1 PVPlayerInterface APl........ccvuuiiiiieeiiiiiiiieiiiiiiieiiiiieiee e, 10
3.2 ASynchronNOUS OPEratiONS. . ....iieeuiieeiiieeiiiieiiiiee i eiiieeiieeeseeeiieeeeiieeeeieeeenen, 10
3.3 Event HANAING. .. ooeeeeeiiiiiiei i, 10
3.4 PVPlayer ENQING StruCtUI ... iuuuuiiieeiiiieiiiieiiiieeiieeiieeiiieeeeeeeieeeeeeeeeeeeeiei, 11
3.5 State TranSition DIAgraM. . ......ieeeeeeiiieeeeiiiieeee i eeeeeieeeeeeeeeeireeeieereeieeen, 11

L 0 = = (o = PP 14
4.1 Default Interface.......uiivieueiiiiieiiiiiiiiieiiiiieie e 14
Ao = o) ¢z 1 [0] A 1 = /=) S T T T TP N 14
4.3 Multi-Threading SUPPOIM........cuueiiiieie i eeeeeieeeeeeeeeen, 14
4.4 Media Data Output t0 Data SiNK.....ouee.iiieeeiiieiiiiiiiiieiiiiiiiiieieiieiieeiieeiiiieiennnen 15
4.5 Porting to a New Platform........oooveeeeiiieeeeiiiiiiiiiiiiiee e, 15

5 PVMF Nodes for Player....cccciieeuiieenuiienniiensiiiennirennsseensssinnsrennssrensssienssensrensrassenssensenns 17
5.1 Data SINK NOAES.....ocuuuniiiiiieiiiiiiiee it eeeeieeeeeeeen, 17

6 Temporal SynchronizatioN.....c..cieesiieesuiiensiiensieienssrennssrenssiensireensseensssrensriensrennseens 18
6.1 Clock in PVPIAYEr SDK.....ccuuuiiiiieuiiiiiieiiiiieiie e eeeeeieeeeeeieeeeeeeieeeeeeeeeennnen, 18

7 Synchronization with timestampPS.......ieeeiiieuiiienniirensiirennireeniiensreniiessearensrensrassinne. 19
7.1 Synchronization with flow controlling data Sink.............ceeeeeveeeeiiiiieeeeeeiiieeeeeennne.. 19
7.2 Synchronization with cOmbiNAtION. ... ....iieeeiiiiiiiiieiiieiiieiiieeeiieeeieeeeeeeieeeene 20
7.3 Faster or slower than “real-time”..........oooveveeiiiieieiiiiiieeiiiiicie e, 20

8 Playback Control.........cccceuiiiunmiiiiiinneniiiiisnneiiiiissnsiiiissseeiiiissseeiiissssssiisssseesissssseenns 21
8.1 Starting and StOPPING.....ceeuuuiiiieiiiiieeei it e e eeien, 21
8.2 Pausing and r€SUMING . ..uuuiieeeiieeiiieeiiiiiiiieiieeeiieieeeeii e eieeeeieeeeeeeereeiereen, 21
8.3 REPOSIIONING.cuuuiiieeeniiiieieiiiiee e e ettt ettt e et e eeee et eseeeeeeseeeeeeeeeeen, 21

9 Capability Query and Configuring Settings.......ccuccseeeiiiisseneiiiiisssssniisssessnnnnsnnnsans 26
9.1 PVPlayer ENgine KeY StriNQS.....coiveuueiiiieeiiiiiiiiiiiieeeeiieieieeeeieeieeeiiieeeeeeeennnens, 26
9.2 Node Level KeY StrNQS. .iuuuiiie it eiieeeeieeeeeeieiieeieeee, 27

0.3 USO8 EXAMID S, .ttt ittt ettt ettt ettt ettt ettt teeetee et et seenseenteeeteenseenaeenaeensenrees 30




10.4 Metadata StOraAQe. ... iiee i ee i 33
10.5 Metadata KeYS....oiuuuiiieiiiieiiiieiiieiiie et i et eiieeeiieee et rieerees 34
10.6 Track-level INformation........iiee. i eeeeeeeieeeeeenns 41
10.7 Codec Level Format Specific Information...........o.oceeeeiieeeiiieeeiiieiiieeiieiieeeeennen.. 43
IO RS =T a Lo [ Vo (SO0 Lo [T T T 43
10.9 DRM Related Metadata...........ooeeeeiiieeniiieeiiieiiiieiiiiiiiiiieiiieeeiiieieiieeeiieeeeeeennes 44
10.10 Access to Other Metadata v...ouee..ieeeiiieeiiieiiiieiiiiiiiieeeiieeeeeeeeeeeeieeeeeeeien 50
10.11 Receiving Metadata from Informational Event Callback........co.ccevuveeiieeiiennnen... 50
10.12 Receiving Metadata during Clip TranSitiON. .....vieeeiieeeeiiieeiiiiiieiieiiiiieeeiaennns 51

12.2 Options for Specifying the Desired Frame..........ooeoveeeiiieeeiiieiiiieiiieiieiiiiieniiennns 57
12.3 Set Timeout for Frame Retrieval............oooevveiiieeiiiieeiiiiiiiiiieiiieiiiieiieiieeieneenn.s 58
2 O Y Lo [T =T [V (<] A Lo = T T T 58
13 Error and Fault Handling.......oueeeeeesiiieenssiiieenssiiiieensssiieeensssiieenssiieeennssseirennseieemnn. 60
13.1 Error HANAING. iieeeiiieeiiieiiiieiiie ettt eei et eieeeeeiiiennns 60
13.2 ErrOr COUBS. . iiuuniiieeiii ettt et e ettt ettt e e e eeeieeeeeiiennss 60
13.3 Error Code Translation and Error ChaiN.......eieeeiieeeeiiieiiiiieiieeiiiiieiieiieeeiiennns 61
13.4 Typical Errors in Command RESPONSE.....ieueuieeeiiieiiieeiiiieieiieiieeiieeiieiieeeennss 64
I RCRSIN A o] To7=1 I = (0] Sl =\V/=) 01 £ T T 70
13.6 Fault Detection, Handling and RECOVEerY.........coveveiiieeniiieeiiiiiiiiieiiieeeiiiieeieeennn.s 70
14.1 Instantiating PVPlayer SDK.......oocveiiieeiiiiiiiieieiiiiiiiiiiiieeiiiieeiiieeieieeeeiieieennnes 71
14.2 Shutting down PVPIayer SDK...iuuuiiieuuiiieiiiiiiiieeiieeeiieeieieeeeieeeeeeeieeeeeeiiiens 71
14.3 Open a Local MP4 File, Play and StOP........cvuuiieeeiiieeiiiiiiiiiieieeiieeiieieeieneenns 72
14.4 Open a RTSP URL, Play and StOpD.......iiieeiiiiiiiiiiiieeiieieieeeeeieeeeiieeieienn 74
14.5 Play a Local File Until ENd Of Clip..ccuuiiieeiiieiiieeiiiiiiiiiiiiieiiiieeiiieiieiieieeienn 75
14.6 Play a Local File, Stop and Play AQaIN..........uiiveeiiieeiiiiiiiiieeiieiieiieiieeeiiennns 75
14.7 Play a local file, stop, open another file,and play............occveeeieeeiiieeeeiieeeiennnn.... 76
14.8 Play a local file, pause, and réSUM ... .....iieeuiieeiiieiiiiiiiiiieeeieeieiieiieiiiiennns 78

14.9 Play a local file, PAUSE, AN0 STOD .. eu ittt ittt ittt ittt teeateateetieateateereeniensencens 78
14.10 Playback of DRM Protected CONtENES. ...ttt e et seeeieisseaseieeaens 79




Open

14.11 Using SetPlaybackRange and PVMFEInfoEndOfData Event.............ccccvuvee....... 89
14.12 L ooped Playback Using SetPlaybackRange.............ocoeevveeiiiieeeeiieiiiiieieeeennnn. 90
14.13 Start Download Sessmn ................................................................................... 91
14.15 Handling DownlOoad EVENS....ccueuuiiieeiiiieiiieeiiiiieiiieiiieiiieeeieeeieeieeeeeeiiiennn 93
14.16 Auto-Pause-Resume in Progressive Download SesSion........ceeevveeeeiieeiiennen..s 93
14.17 Error Recovery During Initialization..........eeeeeeiiieeeiiiiiiiiiiiiieeeiiieeiiieeiiieieiennns 95
14.18 Error Recovery During PlaybacK..........c..viveeiiiieiiiieiiiiiieiiiieeiiiieiiiieeiieeeeieenn 95
14.19 Unrecoverable Error HANAING. .. iieeuiiieeiiieiiiieiiiieiiiieeeiieeieieeeiieeiiieeeiieeeen 96
14.20 Gapless PlaybackK..........oiieeuiiieuiiieiiiiieiiiieiiiie i eeiieeienns 97

14.21 Usaqe of UpdateDataSource() for Plavllst SESSIONS. et eieieeiaenanne, 99




Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Service....

Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:

List of Figures

PVPlayer SDK SOftWAIE SEACK..........cciiiiiiiiiiiieei e e e e e e e e e 9
O T DI T- To ] = Lo £ PP 11
State TranSition DIGGIAIM........coi it s e e e e s b b s 12
PVPlayer AJaptation LAYET.........oo.uuiiiiieiiiiiiee ettt e et e e e st e e e e e s s snnnnbenee 14
MUIt-TRIEAdING SUPPOIT. ...ttt e e e sttt e e e s skt b e e e e e e eeeeeeeeeeeenennnee 15
Media Output to Node and Media [O.........ouiiiiiiii it eeeaaaans 15
Independent Frame is OutSide Of WINGOW...........ccooiiiiiiiiiiiiiiii et 22
Independent Frame is INSIde WINAOW...........oooiiiiiiiiiie e 22
Reposition Processing FIOW Chart............uuiiiiiiiiiiiieieccceeeeeee e e e e e e e e e e e e e e e eaaaaas 23
Capability and Configuration Interface Usage SEQUENCE...........ccceeeeeeeiiiiiiiiiiiccriieevee e 32
Mapping of Multiple Metadata KeY LiStS............cooiiiiiiiiiiiiiiiiieiee e e e e e 34
Metadata Retrieval USage SEQUENCE..........uviiiie e r e e e e e e e e e et eeeeanrans 52
Create the ULIHILY......eeii e e e e s e e e e e e e e e e e e eaeaeas 56
Delete the ULIITY. ....coiieeieee ettt e e st e e e s sabb e e e e s 57
Frame and Metadata Utility USage SEQUENCE...........uuiiiiiiiiiiieee ettt 59
Class Diagram Of Error CRaAIN...........oiiiiiiiie et e e e e e e e 62
Streaming Error EVent and ChaiN............oiiiiiiiiiiii et 63
MP4 File Parsing Error Event and Chain...............eeeeiiiiiiiiiiii e 63
Sequence Diagram for Creating PVPIAYET.............uuuiiiiiiiiiiiii e 74
Sequence Diagram for Deleting PVPIAYET.........ccoiiiiii et 75
Open a Local MP4 File, Play and StOP........ccooiiiiiiiiiicccciirerer e e 76
Open a RTSP URL, Play and STOP........cuuiiiiiiiieeeee e e e e e e e e e e e e e e a e e e a e e aa e 78
Play a Local File Until ENd Of CliP.........uuuuiiiiiiiiiiiieriicceeee et e e e e e e e e e e e e eeananns 79
Play a Local File, Stop and Play AQain........cccccuiuriiiiiiiiiiieeeeee s e e ee e e e e e e s s s s ss s eeeeenennns 80
Play a local file, stop, open another file, and play..........ccccooiiiiiiiiiiii 81
Play a local file, pause, and rESUMIE.........cuiviiiiie e e e e e e e e e e e e e e e e e eennnns 82
Play a local file, pause, And STOP........ccii i 83
Preparation Sequence to Play DRM Protected CONtents.............ccoociiiiiiiiiiiiiiiiiieeeeeeeeee e 85
Playback of DRM Content with a Valid License Available...............ccccooiiiiiiiiiieen, 86
Playback of DRM Content without a Valid License Available..............cccuviii, 87
Playback of DRM Content with a Valid License Available and which requires registration to a

................................................................................................................................................... 88
Cancel LICENSE ACGUISITION. ........ccoiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e s s e e s e s s s aean b bareaeaeeeeeeeeeeeeesnnnaaeees 89
Preview of DRM Content without a Valid License Available...............ccccccoiiiiiiiiiiiiiiiiiiinnn, 90
Playback of DRM Content with Auto-Acquisition of the LiCENSEe..........ccccvvveveeeeieiveeiiiiieeeeeeeenn, 91
Using SetPlaybackRange and PVMFInfoEndOfData EVENt............ccccuvvviiiiiiiiiiiiiiieeee e, 92
Looped Playback Using SetPlaybackRange..............coooiiiiiiiiiiiiii e 93
Start DOWNIOAA SESSION.......ciiiiiiieeeee i ee e et e e e e aaeeeeeeeaaesaasaaa s nsnnsaesrneaeneeeeeeeees 94
Handling Progressive DOWNIOAd EVENES.........ccuuuiiiiiiiiiiiiice et 95
Handling DOWNIOAA EVENLS........coiiiiiiiiiei ittt e e e e e 96
Auto-Pause-Resume in Progressive DOwNload SeSSION..........civiiieiiiiiiiiiiiiicii e 97
Error Recovery DUring INtialization..........ccceuuiiiiiiiiiiieeceee e 98
Error Recovery DUMNG PIAYDACK. .........couiiiiiiii et 99
Unrecoverable Error HANAING.........ooooi it 99



- Page 7 of 104 -

PVPlayer SDK Developer's Guide
OHA2.07, rev 1



1 Introduction

This document provides detailed information for developers writing clients to the PVPlayer SDK.
Information covered includes an overview of the high-level architecture, a description of control flow and
data flow, details of the state machine, error handling, asynchronous events, and use-case scenarios.
The document also covers the topic of logging and diagnostics.

1.1 PVPlayer SDK Definition

PVPlayer SDK is a set of components and modules that allows synchronized playback of multimedia
presentations. A multimedia presentation is defined as a collection of various media that are rendered
together in some sort of a synchronous manner. This could be in the form of a file encoded into a specific
format (like MP4, 3GPP), a live RTSP streaming session, or a SMIL presentation or any other form.

In addition to standard playback features such as repositioning and volume control, PVPlayer SDK offers
more sophisticated features such as downloading of content, and playback of content as it is being
downloaded. The amount of features contained in a particular PVPlayer SDK depends on the
requirements, design decisions, and limitations imposed by the platform and the chosen design.

1.2 PVPlayer SDK Scope

PVPlayer SDK includes all components needed to satisfy the definition above, but excludes the
application (graphical or command-line) which uses the PVPlayer SDK, the operating system or platform
that PVPlayer SDK runs on, the data sources (e.g. multimedia file, streaming server), and the sinks (e.g.
audio device, display) for the multimedia presentation. The scope of PVPlayer SDK could be further
reduced for particular platform with particular feature sets, but this document covers the largest extent of
PVPlayer SDK. PVPlayer SDK is composed of and utilizes other components from PacketVideo (e.qg.
OSCL, PVMF nodes) so certain details might be referred to another document.

1.3 Audience

This document is intended for people wanting to understand what is PVPlayer SDK and for developers
working on or using PVPlayer SDK. Information contained within this document will allow people to know
what PVPlayer SDK can and cannot do, to learn how to use PVPlayer SDK, and to modify PVPlayer SDK
for new features or debug problems.



2 High Level Design

2.1 Scope and Limitations

The PVPlayer SDK incorporates all the necessary features to support the requirements listed in the
previous section. The set of features is designed to handle the requirements of a fairly complete player
application. The modular architecture and designed extension mechanism provide convenient mechanism
for expanding or customizing the feature set when necessary. Even between new releases and upgrades
of the PVPlayer SDK, it is possible to customize certain behavior through the components that are passed
to the PVPlayer SDK from the outside (e.g., the sources and sinks).

2.2 Requirements on Platform and Tools

The design and implementation of the PVPlayer SDK imposes certain requirements on the
platform/operating system and the development tools. The PVPlayer SDK is written in the C++ language
so it requires ANSI C++ development tool support for the platform. The player implementation does not
require every feature defined by the C++ standard. For example, run time type indication (RTTI) is not
required nor is exception handling. However, C++ template support is required. If the PVPlayer SDK
interface is expected to provide another type of interface (e.g. C, Java), PVPlayer SDK can provide an
adaptation layer interface but the internal components still need to be compiled in C++.

The PVPlayer SDK source code is based on PacketVideo’s Operating System Compatibility Library
(OSCL), the PacketVideo Multimedia Framework (PVMF) and the OpenMax Integration Layer (OMX IL
1.x) components. The PVPlayer SDK relies on OSCL to provide system functionality that is portable
across platforms (i.e., it serves as an OS abstraction layer that presents a platform-independent API to
the PVPlayer SDK). PVMF is the framework defining the multimedia architecture upon which the
PVPlayer SDK is based. OSCL requires a platform with services provided by fairly complete operating
system. The platform must have services such as dynamic memory management, threading, file 1/O,
network sockets, domain name services, and time information. For a complete list of platform services
expected by OSCL, refer to the OSCL design and porting documents.

All PV codecs are wrapped with the OMX IL interface which is an open standard defined by the Khronos
group (www.khronos.org). PVMF only communicates with codecs through the OMX IL APIs. This
interface facilitates integration with 3" party codecs as well as the PacketVideo SW codecs resident in
the SDK. It is assumed that users of the PVPlayer SDK are familiar with the principles defined and
referenced in the “OMX CORE Integration Guide”

2.3 Architecture and Component Breakdown

The PVPlayer SDK architecture follows the standard architecture defined by PVMF with a modular
structure that makes the SDK flexible, scalable, and portable. The PVPIlayer engine is the heart of the
PVPlayer SDK. The engine utilizes PVMF nodes and node graphs to process data and internal utilities for
node registration, discovery, and graph construction. The interface to the PVPlayer engine can be the
primary OSCL-based one or it can be adapted to another specification based on the platform
requirements. The diagram below shows a typical composition of the PVPlayer SDK. The actual
composition would differ from one platform to the next so optional components are colored in yellow. If the
adaptation layer were not present, the application would interface directly with PVPlayer engine and
PVMF nodes.


http://www.khronos.org/

Platform

Application

Adaptation Layer

pvPlayer Engine

PVMF Node

OSCL

pvPlayer SDK
standard component

pvPlayer SDK
optional component

Figure 1: PVPlayer SDK Software Stack

2.4 Control Flow

Playback control for PVPlayer SDK originates from the user of the PVPlayer, typically a player
application. The player application is responsible for instantiating and destroying PVPlayer SDK and
calling the appropriate PVPlayer SDK APIs to initiate, handle, and terminate multimedia playback.

Within PVPlayer SDK, control flow is usually top-down. The application requests are received by
PVPIlayer engine via adaptation layer if present. The PVPlayer engine then sends the appropriate control
data to PVMF nodes that it utilizes. There are some control data between connected nodes but major
control data is between PVPlayer engine and PVMF nodes.

2.5 Data Flow

The PVPlayer SDK processes multimedia data by using one or more PVYMF nodes connected together in
a graph. The types of PVMF nodes used and the graph configuration would depend on the playback
parameters such as source clip type and playback operation. Other types of data such as clip metadata
and performance profile would be extracted by PVPlayer engine or PVMF node or combination of both
and then returned to the user of PVPlayer SDK through the appropriate interface.



3 PVPlayer Engine Design

The PVPlayer engine is the heart of PVPlayer SDK. It receives and processes all requests for PVPlayer
SDK from the user and manages the PVMF components required for multimedia playback and related
operations. The idea is to hide the details of direct interaction with the multimedia components from the
application and simplify its task to high-level control and status. The PVPlayer engine also detects,
handles, and filters events and information generated during multimedia playback operations.

3.1 PVPlayerinterface API

Users of all PVPlayer SDK interfaces to PVPlayer engine via an interface class called PVPlayerinterface
regardless of whether there is an adaptation layer interface between the user and PVPlayer engine.
PVPIlayerinterface is an OSCL-based interface and follows the common interface design for PacketVideo
SDK. In addition to multimedia playback specific APIs, PVPlayerinterface provides methods to retrieve
SDK information, manipulate logging, and cancel commands. To expose other interfaces available from
PVPlayer engine based on PVPlayer SDK configuration and current runtime status, PVPlayerinterface
provides methods to query and retrieve extension interfaces. For a list and description of
PVPIlayerinterface API, refer to the PVPlayerinterface API document generated from doxygen markup.

3.2 Asynchronous Operations

The PVPIlayer engine processes most commands initiated by API calls asynchronously. There are some
commands that are processed synchronously and they can be differentiated by the return value.
Synchronous commands return a PVMF status code which tells the user whether the command
succeeded or not and if it did fail, what the error was. All asynchronous commands return a command ID.
For the user to be notified of asynchronous command completion, the user must specify a callback
handler when instantiating PVPlayer engine via the factory function. When the asynchronous command
completes, PVPlayer engine calls the callback handler with the command ID for the command, command
status, and any other relevant data. To process the command asynchronously, the PVPlayer engine is
implemented as an active object, which gets to run according to the active scheduler running in the
thread. The PVPlayer engine expects scheduler to be available when instantiated and the engine itself
will not directly create a thread or scheduler.

With asynchronous commands, there is a possibility of commands not completing in expected time. To
deal with this issue, PVPlayer engine provides standard PV SDK APIs to cancel a specific or all issued
commands. The user of PVPlayer SDK can use these APIs to cancel any request that did not complete in
time or are not needed due to changing circumstances. In PVPlayer engine, it might have to deal with
lower level components that behave asynchronously. To prevent an unresponsive lower level component
from blocking PVPlayer engine operation, PVPlayer engine has timeout handling for any asynchronous
commands that it issues. When timeout does occur, the asynchronous command is canceled and is
handled appropriately (e.g. command failure, error event).

3.3 Event Handling

The PVPlayer engine notifies the user of errors and other information not related to API calls as
unsolicited events. The notification is handled by making a callback on handlers specified by the user of
PVPIlayer engine. There are two callback handlers, one for error events and one for informational events,
that must be specified by the user when instantiating PVPlayer engine via the factory function.



3.4 PVPlayer Engine Structure

The component diagram below illustrates how the PVPlayer engine interfaces to the application when the
application uses PVPlayerinterface directly without any adaptation layer. PVPlayerFactory component
handles the instantiation and destruction of PVPlayerEngine object. All PVPlayer engine APIs are
provided by PVPlayerinterface. PVPlayerEngine uses the three callback handlers passed in by the
application, PVCommandStatusObserver, PVinformationalObserver, and PVErrorEventObserver, to notify
the application above asynchronous command completion and unsolicited error and informational events.

PVCommandStatusObserver

_D

*

«uses»

Application Class

PVinformationalObserver

|<L|

«utility»
PVPlayerFactory

1

PVErrorEventObserver

: D

«interface»
PVPlayerinterface

il

«uses»

PVPlayerEngine

&
!

!

1
Figure 2: Class Diagram

3.5 State Transition Diagram

PVPlayer engine maintains a state machine and the state is modified based on PVPlayerinterface APIs
called and events from PVMF components below. The diagram below shows the state transition diagram

for PVPlayer engine’s state machine.



PREPARED

Prepare()
AddDataSource() AddDataSink()
Start()
Stop()
Init()
Stop()
IDLE Reset() INITIALIZED STARTED
. PausiResume()
RemoveDataSource() RemoveDataSink()
top()
Wh PAUSED
ERROR en error
occurs

Figure 3: State Transition Diagram

The PVPlayer engine starts in the IDLE state after it is instantiated. While in the IDLE state, the data
source(s) for multimedia playback can be specified by AddDataSource() API. After the data source is
specified, calling Init() puts PVPlayer engine in INITIALIZED state which means the data source has been
initialized. In the INITIALIZED state, the user can query data source information such as available media
tracks and metadata. While in INITIALZED state, the user calls AddDataSink() to specify the data sink(s)
for multimedia playback.

After all the data sinks are added, the user calling Prepare() causes PVPlayer engine to set up the
necessary PVMF nodes in a data-flow graph (the data-flow graph is covered in later section) for
multimedia playback based on data sources and data sinks specified. Media data is also queued for
immediate playback in PREPARED state. The user calling Start() in PREPARED state initiates the actual
multimedia playback and PVPlayer engine goes to STARTED state. Media data flows from data source to
data sink and out of the sink in a manner specified by the user. The user can go back to the INITIALIZED
state from the PREPARED state by calling Stop(). Doing so would have the PVPlayer engine stop the
data-flow graph and flush all queued media data.

While the engine is in STARTED state, the user can either call Pause() or Stop(). Calling Stop()
immediately ceases playback operation, flushes all media data, and places the engine back in
INITIALIZED state. If Pause() is called, playback operation is stopped but media data in the flow is not
flushed. PvPlayer engine goes into PAUSED and playback operation can continue from where it paused
by calling Resume(). Stop() can also be called from PAUSED state to return the engine to the
INITIALIZED state.

Calling Stop() returns PVPlayer engine to the INITIALIZED state. Back in the INITIALIZED state, data
sinks can be added and/or removed by calling AddDataSink() and RemoveDataSink(). Playback can
restarted by calling Prepare() then Start(), but to go back to the IDLE state for shutdown or to open
another data source for playback, the user must call Reset(). If all data sinks are not removed by explicitly
calling RemoveDataSink() in INITIALIZED state, Reset() call removes all the data sinks. After Reset()



completes, the engine is back in IDLE state. Data sources can be removed with RemoveDataSource()
and new data sources can be added with AddDataSource(). If the user wants to shutdown PVPlayer SDK,
PVPlayer engine can be properly destroyed in the IDLE state. It is also possible to call Reset() while in
PREPARED, STARTED, or PAUSED state. Internally this will trigger a Stop() call followed by a Reset().

If PVPlayer engine encounters an error due to usage error or error events from within or components
below which requires time to properly handle, the engine will go into a transitional ERROR state and try to
recover. If the error is unrecoverable or if the engine encounters more errors during error recovery,
PVPIlayer engine will clean up everything and go to the IDLE state. If the engine recovers from the error,
the resulting engine state would depend from which state the engine encountered the error. If the engine
was in or past the INITIALIZED state (PREPARED, STARTED, PAUSED, or any transition state in
between), PVPlayer engine will try to recover to the INITIALIZED state. If the error occurred while in IDLE
or initializing, then PVPlayer engine will try to recover to the IDLE state without performing a total cleanup.
When error recovery completes, PVPlayer engine will report PVMFInfoErrorHandlingComplete
informational event. To determine whether the engine is handling the error asynchronously, the user
should check the state of the engine synchronously in the command completion or error event handler. If
the engine state is the ERROR state, the user should wait for the PVMFInfoErrorHandlingComplete
informational event.

This state transition diagram describes the basic state transition model for all PVPlayer engine playback
operation.



4 Interface

4.1 Default Interface

The standard interface to PVPlayer engine interface is the OSCL-based interface, PVPlayerinterface.
This is the base level API which directly controls PVPlayer engine. Use of this interface requires the user
to be aware of OSCL types and components and PVMF types and components.

4.2 Adaptation Layer

If the interface to PVPlayer SDK needs to be different than the OSCL-based interface, another interface
layer needs to be created to “wrap” around the OSCL-based interface. This “wrapper” is referred to as an
adaptation layer for OSCL-based PVPlayer engine interface.

One possible reason to create an adaptation layer would be to encapsulate the OSCL interface with types
and components of a particular platform or operating system (e.g. ANSI C interface, Symbian interface).
Another reason would be that the adaptation layer modifies the interface and behavior of PVPlayer SDK
to match the expectation of the application (e.g. legacy interface). The adaptation layer could also
combine PVPlayer SDK with another SDK or component to provide a unified interface to the application.
The block diagrams below illustrate how the adaptation layer relates to PVPlayer Engine and its OSCL-
based interface. The diagram on the right shows the adaptation layer adding more functionality by
including another engine.

pvPlayer Adapation Layer pvPlayer+ Adapation Layer

pvPlayer OSCL Interface pvPlayer OSCL Interface

Another Engine
pvPlayer Engine pvPlayer Engine

Figure 4: PVPlayer Adaptation Layer

4.3 Multi-Threading Support

The default OSCL-based interface is not multi-thread-safe. To have multi-threading support in the
interface, the adaptation layer would need to provide such a feature. One method is to use OSCL proxy
interface component to provide multi-threading support. Other method is to add platform specific multi-
threading support for a particular platform to PVPlayer SDK’s adaptation layer. The diagram below shows
how multi-threading support would be accomplished via the two methods. In the left block diagram, the
adaptation layer utilizes the OSCL proxy framework, which minimizes platform specific coding in the
adaptation layer by pushing platform specific code to OSCL. In the right block diagram, the adaptation
layer directly uses the platform threading functionality so the adaptation layer becomes platform specific.



pvPlayer Adapation Layer pvPlayer Adapation Layer

pvPlayer OSCL Interface pvPlayer OSCL Interface

OSCL Proxy Framework

Platform Threading Support

pvPlayer Engine pvPlayer Engine

Platform Threading Support

Figure 5: Multi-Threading Support

4.4 Media Data Output to Data Sink

The PVPlayer engine can utilize any PVMF node as the media data sink, but in most PVPlayer SDK
usage, synchronized media data would be rendered via appropriate output media devices. For video, the
media device would be the display and for audio, the media device would be the PCM audio device.
Output media devices are typically platform specific. PvPlayer SDK handles interfacing to platform
specific output media devices one of two ways. First method is to encapsulate the media device in a
PVMF node which PVPlayer Engine can use directly. This method minimizes the code between PVPlayer
Engine and the media device interface, but requires a new PVMF node to be created. The second
method is to interface the media device to PV’'s Media I/O interface. By encapsulating the media device in
PV Media IO interface, PVPlayer Engine can use the PVYMF node that interfaces PV Media 10 to output
the media data. PV’'s Media I/O interface is less complex than PVMF node and specific for media output,
but this method adds layers and code. The diagram below shows the two methods in relation to PVPlayer
Engine. For more information on PV Media IO interface, please refer to the PV Media 10 documents.

pvPlayer Engine pvPlayer Engine

Platform-specific Output

Media PYME Node PV Media I/O PVMF Node

PV Media I/0O to Output
Media Device Interface
Wrapper

Output Media Device
Interface

Output Media Device
Interface

Figure 6: Media Output to Node and Media 10

4.5 Porting to a New Platform

Porting for PVPlayer SDK is having PVPlayer SDK working on a particular platform. Since PVPlayer
engine is strictly OSCL-based, porting for the engine would be accomplished by adding support for
particular platform in OSCL.

Porting rest of PVPlayer SDK would depend on the configuration of the SDK. If the configuration is all
OSCL-based including nodes and data sources/sinks, porting would be accomplished by porting OSCL. If
the configuration requires usage of platform specific components like hardware accelerators and



particular decoder interfaces, a new node would need to be created to encapsulate the use and register
the new node for the PVPlayer engine to use. If the data source and/or sink are platform specific, new
PVPIlayer data source/sinks needs to be created to encapsulate the platform dependency and the user of
the PVPlayer engine (adaptation layer or application) would need to pass it in.



5 PVMF Nodes for Player

This section gives a brief description of PVMF nodes used by PVPlayer engine. Only PVMF nodes based
on OSCL and PVMF components are covered. No platform specific PVMF node is covered. For more
detailed information on a particular node (one below or platform specific one), please refer to the
documentation for that node.

5.1 Data Sink Nodes

Data sink node are the end points of the data-flow graph and takes the media data out of PVPlayer
engine.

5.1.1 PVMFMediaOutputNode

PVMFMediaOutputNode is a wrapper node around the PV media I/O interface to output data. The node
translates node commands and incoming media data to appropriate media 1/O actions and handles media
I/0 events. Using PVMFMediaOutputNode allows encapsulation of platform and device specific output
interface with PV media I/O interface.

5.1.2 PVMFFileOutputNode

PVMFFileOutputNode accesses the file directly using OSCL file 1/O to write media data coming in via the
port. The node has some capability to understand format type and to write out data appropriately for the
specified format type (e.g., AMR file header for AMR IETF format).



6 Temporal Synchronization

The PVPlayer SDK is required to render all the multimedia data that it handles in a temporally
synchronized manner also known as “AV sync”. To do so, PVPlayer SDK relies on information from a
playback clock, timestamps from the media data, and optionally timing information from data sinks that
accept media data in a specified rate (e.g. audio device set at fixed sampling rate). PvPlayer SDK'’s
temporal synchronization also allows the playback speed to be adjusted and this feature would also be
described in the following sections.

6.1 Clock in PVPlayer SDK

The PVPlayer SDK uses a clock in PVPlayer engine to determine the temporal playback rate. The
playback clock is based on PVMF media clock which provides a control to set, start, pause, stop, and
adjust the clock. PVYMF media clock also allows the timebase to use for the clock source to be specified
by PVPlayer engine. For more information PVMF media clock, please refer to its design document.
PvPlayer engine creates an instance of PVMF media clock to keep track of the playback clock. PvPlayer
engine is responsible for changing the state of the clock due to changes in playback operation (start,
pause, resume, stop).

The playback clock used in PVPlayer engine is non-decreasing during playback. This means the playback
clock never goes back even if the playback repositions to an earlier time. The playback clock does not
represent the actual position in the clip which is called normal playback time or NPT. To return NPT to the
user of PVPlayer SDK, PVPlayer engine always maintains a mapping between NPT and playback clock
time.

A reference to this clock is passed to data sinks which require a clock to perform synchronization of
media data. Description of how the data sinks use the clock for synchronization is presented next.



7 Synchronization with timestamps

For data sinks with passive rendering, PVPlayer engine must output the media data properly in time. This
is accomplished by evaluating the timestamp associated with each media data with the current value of
the playback clock. If the media data’s timestamp is equal to the current clock time, the media data is in
synchronization and rendered. If the timestamp is less than the clock time, the media data is early. If the
media data is greater than the current clock time, the media data is late. What happens to media data that
is early or late depends on how PVPlayer engine is configured. In most uses, early media data is held
until it becomes in synchronization and late media data is dropped without being rendered. But in some
configurations, the late media data might be rendered as well.

Another area in timestamp synchronization that could be configured is the margin for being in
synchronization. In ideal situation, the margin is 0 where timestamp must be equal to the clock time to be
in synchronization. But due to various factors such as clock resolution and active object scheduling
resolution, the margin must be larger or the media data being in synchronization would be missed. The
synchronization point could also be offset to deal with some fixed latency in the rendering. For example, if
a video render device requires certain time to actually display the video frame, the synchronization might
happen at an earlier time so when data is sent to the device and the actual display would occur when the
timestamp value equaled the clock time.

This synchronization functionality is performed in the data sinks with such support. These data sinks take
a reference to the playback clock from PVPlayer engine and reads the media data timestamp from each
PVMF media data object. PvPlayer engine determines if a data sink has synchronization support in the
capability exchange process.

7.1 Synchronization with flow controlling data sink

If the data sink has flow control and the media data for that sink is rendered continuously, PVPlayer
engine needs to take the data output rate of the data sink into account. If there is a temporal difference
between how the flow controlled media data is actually rendered by the data sink and PVPlayer engine’s
playback clock, AV synchronization mismatch might appear between the media tracks. Depending on the
severity of the mismatch, the problem might be detectable by the person viewing the multimedia
playback.

To prevent such a temporal difference, the flow controlled data sink would perform adjustments to the
playback clock based on information of media data rendering. Such information could be fed back from
the rendering device on how much of data has been actually rendered or the time of last rendered media
data. The data sink is responsible for converting the correction information to a format that acceptable to
the clock adjustment method of PVMF media clock. An example of a data sink with flow controlling
rendering is a PCM audio output sink node. PCM audio data is continuous and audio devices typically
output the PCM audio data by some fixed sampling rate. The clock controlling the output could be
different from the clock source that PVPlayer engine’s playback clock uses so there could a difference in
how time progresses between the two. Over time, the difference could accumulate and other media data
(e.g. video, text) could be rendered out-of-synchronization with the audio. Audio devices could return the
number of PCM samples rendered or the system time when the last audio media data was rendered and
the audio output data sink node could use this information to adjust PVPlayer engine’s playback clock.



7.2 Synchronization with combination

In typical multimedia playback scenarios, PVPlayer SDK will interact with data sinks of both type: one
which relies on timestamp only and one which relies on flow control. In such cases, the data sink with flow
control is allowed to adjust the playback clock so all media data is kept in synchronization with each other.

7.3 Faster or slower than “real-time”

Since all media output rate in PVPlayer SDK is controlled by PVPlayer engine’s playback clock, the
playback rate can be changed by modifying the pacing of the playback clock. The playback clock is
based on PVMF media clock class so it uses a timebase to know how much time has elapsed. Typically
the timebase uses the system tickcount or some other system timing function to report how much time
has elapsed in microseconds. By using such a timebase, PVPlayer SDK will playback the media data in
“real-time”. But if the timebase was modified to report elapsed time as being faster than or slower than
“real-time” then playback could occur faster or slower respectively. By making such modifications to the
timebase, PVPlayer SDK provides such features as fast forward (faster than “real-time”), slow motion
(slower than “real-time”), or frame-by-frame (slower than “real-time” without set rate).

When playback rate is modified as such, media tracks with data sinks that can only work in one fixed rate
must be disabled since those sinks cannot play the data faster or slower. Typical data sink with such a
limitation is the audio output device data sink. The audio output device usually can only accept audio data
in a fixed sampling rate. If the playback rate changed, the audio data would be fed to the device too fast
or too slow and could cause the data sink to overflow or underflow with undesirable effects. Therefore in
such a case, PVPlayer engine will disable media tracks with data sinks with such restrictions. PvPlayer
engine will determine if the data sink can handle different playback rates by querying its capabilities.



8 Playback Control

PVPlayer SDK provides methods to control the multimedia playback. This section describes what occurs
inside PVPlayer engine when these control commands are issued.

8.1 Starting and Stopping

When starting playback, PVPlayer engine commands the PVMF nodes in the data-flow graph to start and
then starts the playback clock. When stopping, PVPlayer engine stops the playback clock and
commands the PVMF nodes in the data-flow graph to stop. Doing so flushes all media data in the data-
flow graph.

8.2 Pausing and resuming

When paused, the playback clock is not progressing forward and media data is not rendered via the data
sinks. But unlike being stopped, media data is still queued in the data-flow graph ready to be restarted.
Resuming takes PVPlayer SDK out of paused state to have playback clock moving forward and media
data to be rendered again.

When pausing, PVPlayer engine pauses the playback clock and commands the PVMF nodes in the data-
flow graph to pause.

When resuming, PVPlayer engine restarts the PVMF nodes in the data-flow graph and then restarts the
playback clock.

8.3 Repositioning

Repositioning is the changing of playback position in the clip during playback. An example would be to be
playing the clip at 10 seconds and then immediately jumping to the clip at 30 seconds and continuing
playback. PvPlayer SDK handles repositioning as a change in the data source’s media data position and
continuing playback. Since the playback clock does not jump during playback, the data source or PVMF
node responsible for providing the timestamp for the media stamp adjusts the media data timestamp to
maintain this requirement.

For example, playback has been started and currently the playback position is at 30 seconds. If the
playback is repositioned to the clip’s time (normal playback time, NPT) of 15 seconds, the playback clock
is still kept at 30 seconds and media data will be sent from clip at 15 seconds but the timestamp will
continue to be from 30 seconds. After 30 more seconds, the NPT is at 45 seconds, but the playback clock
and media data timestamp would be at 60 seconds. At this point, if a forward repositioning to clip’s time of
90 second occurs, media data will be sent from clip at 90 seconds but the playback clock and media data
timestamp will still be at 60 seconds. The table below lists this sequence.

Event Playback clock Clip time (NPT)
Start playback 0 0

Playback for 30 sec 30 30

Reposition to 15 sec in clip 30 15

Playback for 30 sec 60 45

Reposition to 90 sec in clip 60 90

Playback for 30 sec 90 120




The example above represents an ideal repositioning scenario. When repositioning with some data
sources, PVPlayer SDK would not be able to directly reposition to specified position due to media data
limitations or data source restrictions. Example of such limitation is the time resolution of the media data
(e.g. audio frame) and limited seek positions (e.g. I-frames in video). If PVPlayer SDK is handling such
data, there could be a transition period in reposition where additional media data might be generated and
processed. PVPlayer SDK would behave to minimize such transition period but some artifacts of the
transition might be unavoidable.

The PVPlayer SDK could handle the reposition transition in one of several ways and PVPlayer SDK
provides methods to configure this. One such configuration deals with repositioning for video with limited
seek positions (e.g. M4v). In such video data, one cannot go and playback from any frame since frames
are dependent on the previously decoded frame. Playback has to start from certain frames which are not
dependent on previous frames. So when repositioning, if jump-to location is at one of these frames that
are not dependent on the previous frame, then playback can continue from that frame. If not, then
PVPlayer SDK must go to one of these non-dependent frames before the requested repositioning position
and decode the frames in between before continuing playback. For best quality, PVPlayer SDK should
always go to one of these independent video frames. But if availability of these independent frames are
limited, PVPlayer SDK might take some time to decode the in-between frames. In such case, the better
user experience might be to just decode from a dependent frame at the requested repositioning point
while sacrificing video quality. To allow the PVPlayer SDK behavior for the transition to be configurable by
the user, PVPlayer SDK provides a way to configure whether to always go to the independent frame or
not and the size of window to look for the independent frames via the capability-and-configuration
interface (refer to the next section). If not always going to the independent frame, playback will start from
a dependent frame unless there is an independent frame at the requested repositioning position. If always
going to independent frame and the window is non-existent, then PVPlayer SDK will always look for the
independent frame that is before the requested repositioning position. Between those two extremes, if the
independent frame falls in the specified window then repositioned playback will start there. If such a frame
is not found in the window, the first dependent frame past edge of the window would be used as the
starting point for the repositioning. The diagrams below illustrate how the windowing works. In the first
diagram, the independent frame (sync point) is outside of the window so PVPlayer engine will reposition
to the edge of the window (new position).

Sync New Requested
Point  Position Position

Search Window

Figure 7: Independent Frame is
Outside of Window

In the second diagram, the independent frame (sync point) is inside of the window so PVPlayer engine
will reposition to the same position (new position).

Sync Point/ Requested
New Position Position

Search Window

Figure 8: Independent Frame is Inside
Window



Upen
1

The flow chart below describes how repositioning would be performed by PVPlayer engine based on the
reposition configuration.

Query the source
for the sync point
with requested

position

the requested position
past the current position and
actual position before
current paosition?

Set the source to
new data source
position

Tell the sink nodes
to skip media data
to new position

J

Figure 9: Reposition Processing Flow Chart




The reposition flow chart also incorporates a forward repositioning optimization when always going to an
independent frame and the search window exists. If the requested repositioning position is past the
current playback position and the position of the independent frame is before the current playback
position, PVPlayer engine will not modify the source data position. This optimization saves unnecessary
data transfer and processing between the independent frame position and the current playback position
when repositioning.

Another configurable repositioning behavior but is not show in the flowchart is the option to always start
rendering the media data at the requested reposition position. If this behavior is enabled and PVPlayer
engine will always tell the sink nodes to skip media data up to the requested reposition position
irrespective of where the source node starts sending the media data from.

Another deviation from the ideal repositioning scenario is the repositioning occurring when there are
media data in the data-flow graph that are waiting to be rendered by the data sinks. This occurs if the
nodes in the data-flow graph process media data ahead of the playback rate to have the media data for
rendering in time and the repositioning command is not known beforehand. When repositioning, these
media datas become obsolete and should not be rendered. To prevent these obsolete media data from
being rendered, PVPlayer engine queries the data source node for the starting timestamp for media data
after repositioning. The data source node knows this information since the data source node controls the
media data going into the data-flow graph. The data source node calculates the repositioning timestamp
as the next time value past the last media data sent into the data-flow graph. Then the PVPlayer engine
stops and sets the playback clock to this starting timestamp and commands all data sink nodes with
synchronization support to flush media data before the new repositioning timestamp. The playback clock
is started again when all data sink nodes report old media data has been flushed. With this feature, the
repositioning example for the ideal case would be changed to the following:

Event Playback clock Clip time (NPT)
Start playback 0 0
Playback for 30 sec 30 30
Reposition to 15 sec in clip but 2 sec worth 32 15

of data in data-flow graph

Playback for 30 sec 62 45
Reposition to 90 sec in clip but 4 sec worth 66 90

of data in data-flow graph

Playback for 30 sec 96 120

Repositioning use cases can be divided into three categories. First one is offset playback where the
starting position is known before playback starts. Second one is “edit-list” playback in which when and
where to reposition are known beforehand. The last use case is random positioning playback in which
where to reposition is known but when to reposition is not known until the command is requested.

In the OSCL-based interface to PVPlayer engine, all three repositioning types can be realized by the
SetPlaybackRange() API. Depending on the PVPlayer engine state when SetPlaybackRange() command
is issued and the parameters passed in, the PVPlayer SDK user can perform all three repositioning types
in playback.

SetPlaybackRange() API has two parameters for the beginning playback position and ending playback
position. When the command is accepted, PVPlayer engine will play the media data between these two
positions. SetPlaybackRange() also has a flag to specify whether to activate the new range immediately
or queue for activation later when the current playback range completes. PvPlayer engine can only queue



one playback range at any given time so if multiple playback ranges are queued at once, only the last one
queued will be actually activated. For offset playback and random positioning use cases, the flag is set to
immediate activation. For “edit-list” playback, the flag is set for queuing.

Begin and end playback position parameters are allowed to be indeterminant. In such case, the beginning
of the clip (time 0) and end of clip (clip duration) will replace begin and end positions, respectively. The
only exception is when SetPlaybackRange() is called during playback with begin position being
indeterminate and flag set for immediate activation. In such scenario, the end position will be modified
without interrupting the playback (i.e. will not random position to beginning of clip).

SetPlaybackRange() can be called in most engine states, however, for performance reasons it should be
called as early as possible. For example if playback is to start from 30 seconds instead of 0 seconds it
would be possible to reposition after Init, after Prepare or after Start has been issued. The later two cases
are inefficient because data has already been retrieved and processed and now also needs to be flushed.
In this case it would be best to call SetPlaybackRange() before calling Prepare() to avoid unnecessary
calculations and improve start up speed.



9 Capability Query and Configuring Settings

PVPlayer engine utilizes the PVMF capability-and-configuration interface to allow the application to
access and modify engine and node settings not exposed by the player interface. The extension interface
(PvmiCapabilityAndConfig) is exposed via the player API, Querylnterface(), by requesting with the UUID
associated with the interface. Using the returned interface pointer, the application can query, verify, and
set settings at the engine and node levels. At the node level, the node being used by the engine must
support the capability-and-configuration interface as well for node settings to be accessible to the
application.

Capability-and-configuration interface uses key strings in PacketVideo Extended MIME String (PvXms)
format to specify the settings of interest. PvXms extends the standard MIME string format by allowing
additional levels of subtype strings all separated by the slash character. Using key strings adds
complexity in parsing but allows flexibility and extensibility for settings without greatly modifying code
when settings are added, removed, or modified. In addition to specifying the setting of interest, the key
string also provides information on value returned with the string in a key-value pair (KVP). The “type”
parameter in the key string tells the user of the KVP whether there is a valid value if “type=value”. The
“valtype” parameter in the key string tells the user of the KVP what the value type is so the appropriate
union member can be accessed in the KVP.

9.1 PVPlayer Engine Key Strings

All key strings at the PVPlayer engine level start with “x-pvmf/player”. The following key strings are
currently supported in the player engine:

Key Strings With Value Type Description
x-pvmf/player/pbpos_units;valtype=char* Playback position units specified with
strings (“PVPPBPOSUNIT_MILLISEC”,
“PVPPBPOSUNIT_SEC”,
“PVPPBPOSUNIT_MIN”,
“PVPPBPOSUNIT FILEOFFSET")

x-pvmf/player/pbpos_interval;valtype=uint32 The interval between playback position
info event. Integer value in milliseconds.
x-pvmf/player/seektosyncpoint;valtype=bool The flag to specify whether to always

seek to the closest sync point when
repositioning.
x-pvmf/player/skiptorequestedpos;valtype=bool The flag to specify whether to always start
playback from the requested begin
position (i.e. skip frames when sync point
doesn’t match the requested position)

x-pvmf/player/renderskipped;valtype=bool The flag to specify whether to render the
skipped frames
x-pvmf/player/silenceinsertion_enable;valtype=bool The flag to specify whether to check for

any gaps in an audio bitstream and insert
silence samples.
x-pvmf/player/syncpointseekwindow;valtype=uint32 If seeking to closest sync point, this
parameter specifies how far to search
back in milliseconds. If the sync point is
not present in the specified window,
playback would continue from the window




| | boundary. Value of 0 means no window. |

9.2 Node Level Key Strings

The node level key strings available during PVPlayer engine usage depends on PVMF nodes being used
by the PVPlayer engine at that time and the key strings supported by a particular node. For node level
key strings, PVPlayer engine acts as a router to pass any requests to the appropriate node. Currently,
PVPlayer engine performs a hardcoded mapping from key sub-string to certain nodes, but in the future,
PVPIlayer engine and nodes will determine the mapping at runtime using a registration scheme.

Currently, the key string mapping to nodes is as follows in PVPlayer engine.

Key Sub-String Node Type

x-pvmf/video/decoder Video decoder node then video sink node
x-pvmf/audio/decoder Audio decoder node than audio sink node
x-pvmfivideo/render Video sink node

x-pvmf/audio/render Audio sink node

x-pvmf/net Data source node (typically streaming / download)
x-pvmf/parser Data source node (typically local playback sources)

PVMF video decoder node key strings are listed below. The key strings allow settings associated with
M4v and H.263 video decoding to be queried and modified when PVMF Video Decoder node is used to
decode video bitstreams to YUV.

Key Strings With Value Type Description
x-pvmflvideo/decoder/postproc_enable;valtype=bool Flag to enable/disable
postprocessing in video decoder
x-pvmflvideo/decoder/postproc_type;valtype=bitarray32 If postprocessing is enabled, the
postprocessing types enabled.
x-pvmfivideo/decoder/key_frame_only_mode;valtype=bool Flag to enable/disable key frame

only mode, in which non-key
frames are skipped
x-pvmf/video/decoder/skip_n_until_key_frame;valtype=uint32 If greater than 0, enables
skip_n_until_key_ frame mode as
well as sets the maximum number
of frames to skip while waiting for
the first key frame of a clip during
playback. A value of O disables
skip_n_until_keyframe mode.

PVMF streaming and download source node key strings are listed below.

Key Strings With Value Type Description
x-pvmf/net/delay;valtype=uint32 Specifies the jitter buffer duration
in milliseconds (typically used in
streaming sessions)
x-pvmf/net/user-agent;valtype=wchar* Specifies the user agent string in
unicode




x-pvmf/net/keep-alive-interval;valtype=uint32

Specifies the keep-alive-interval
in milliseconds (this is the
frequency at which the player
would send keep-alive
notifications to the server)

x-pvmf/net/keep-alive-during-play;valtype=bool

Specifies whether keep-alive
notifications need be sent during
playback (typically keep-alive
notifications are sent in a paused
state)

x-pvmf/net/http-version;valtype=char*

Specifies the HTTP Protocol
Version to be used during
download / streaming.

x-pvmf/net/num-redirect-attempts;valtype=uint32

Optional params on key:

1) The key can contain a “mode="
parameter to indicate if this
redirect attempts applies to
streaming or download session or
DLA.

Specifies the maximum number of
times the client would process
and act on a redirect notification
from the server.

x-pvmf/net/protocol-extension-header;valtype=char*

Optional params on key:

2) The key can contain “purge-on-
redirect”. This means that this
protocol-extension-header will not
be sent to the server in case of
redirect. Example: “x-
pvmf/net/protocol-extension-
header;valtype=char*;mode=stre
aming;purge-on-redirect”

3) The key can contain a “mode="
parameter to indicate if this
extension header applies to
streaming or download session or
DRM.

Format of the value string:

1) The extension header is provided a s key-value pair.

2) The value string can contain an additional “method="
argument. This is used to specify the protocol methods to
which this extension header applies. For example:
“key=PVPlayerCoreEngineTest;value=Test;method=GET,
POST"

Specifies any extension headers
that need to be sent to the server.

x-pvmf/net/http-timeout;valtype=uint32

Specifies the HTTP timeout in
seconds

x-pvmf/net/http-header-request-disabled;valtype=bool

During progressive download
player uses the HTTP HEAD




request upfront to ascertain the
total file size. In case it is desired
that this HEAD request must not
be sent then this key can be used
to disable the same.

x-pvmf/net/max-tcp-recv-buffer-size-download;valtype=uint32

Specifies the max buffer size to
be used while doing recvs on the
TCP socket, during a progressive
download session.

x-pvmf/net/max-tcp-recv-buffer-size-streaming;valtype=uint32

Specifies the max buffer size to
be used while doing recvs on the
TCP socket, during a streaming
session.

x-pvmf/net/rebuffering-threshold;valtype=uint32

Specifies the re-buffering
threshold in milliseconds (typically
used in streaming sessions). If
the jitter buffer delay drops below
this threshold, then player would
enter re-buffering. This value
must be less than the jitter buffer
duration specified via the “delay”
key string listed above.

x-pvmf/net/disable-firewall-packets;valtype=bool

In case of UDP streaming
sessions, a firewall between the
client and the server could block
all UDP traffic. PvPlayerSDK
attempts to unblock traffic using a
proprietary algorithm, by default.
This key can be used to turn off
this feature.

x-pvmf/net/jitterbuffer-inactivity-duration;valtype=uint32

Specifies the jitter buffer inactivity
duration in milliseconds (typically
used in streaming sessions). If
there is no incoming media for
this amount of time PVPlayerSDK
will end the streaming session
with an inactivity timeout error

x-pvmf/net/max-min-udp-port;valtype=range_uint32

Specifies both min and max UDP
port numbers (typically used in
RTSP streaming for RTP/RTCP
packets.)

9.2.1 Download Progress Usage Detail

As discussed in Section 9.2, the application can configure the type of download progress data reported by
PVPlayer using the x-pvmf/inet/download-progress-info capability configuration. The application would
receive download progress data when PVPlayer sends the PVMFInfoBufferingStatus event. The data



can be retrieved by calling GetLocalBuffer() on the PVAsyncinformationalEvent object provided to the
HandlelnformationalEvent() callback. The progress data can be interpreted in the following three ways:

e If no content length is received from the server, the progress data is always the total number of
bytes received from the server, regardless of x-pvmf/net/download-progress-info setting.

e If content length is received from the server, the progress data is by default the percentage of
time duration of the clip that has been downloaded. For example, if 6 seconds of media data has
been downloaded for a 30 second clip, the progress data would be 20%.

e If the application configures x-pvmf/net/download-progress-info setting to report progress in
bytes, the progress data is the number of bytes downloaded divided by the total number of bytes
in the file to be downloaded. For example, if 60KB of data has been downloaded for a 300KB
clip, the progress data would be 20%.

9.1 Usage examples

The sequence diagram below illustrates how the application can retrieve the capability-and-configuration
interface from PVPlayer engine and perform queries and changing of playback settings at the engine level
and node level. Since PVPlayer engine does not support a PvmiMIOSession for the capability-and-
configuration interface, NULL is passed in for interface methods with a PvmiMIOSession parameter. Also
context parameter is not supported so the PvmiCapContext parameter is ignored by interface methods.



i

Queries for capability-and-
corfiguration interface

Quenyirterface()

Requests for available key
strings at the player level

Retums the requested interface

getParametersSync( x-puri/player;attr=cap’)

CQreate and retum allist of key
strings below " x-pvrf/player”

[

Ay dataretumed by getParametersSync()
must be 'released” after use to free menory

)

releaseParaeters()

Any nodifications can be verified before
actually modifying via verifyParametersSync()

)

T
verifyParametersSyno( x-pvir/player/pbpos_interval;valtype=uint32', 500)

»l
gl

pvHayer engne checks if the
spedified parameter can be
nodfied at this time and the
newvalue is valid

Settings can be nodified using
setParametersSync() function

]

T
setParametersSync( x-pvn/player/popos._interval;valtype=uint32', 500)

il

pvPlayer engine validates and then
nodifies the settings inmediately

To modify a video decoder setting, call
setParametersSync() with appropriate
key string and value when the video
decoder node is available

T
setParametersSync( x-pvimfAvidea/decoder/postproc_enable;valtype=bod!™, true)

1

PWWF Video Decoder Node

Since the key string is "xpvnfAidea/decoder”, engine
calls setParametersSync on the video decoder node

]

setParametersSync(* x-pvirfividea/decoder/postproc._enable;valtype=boal”, true)
L !

»l
[Tl

Mdeo decoder node validates and then
nodifies the setting immediately

LF

Figure 10: Capability and Configuration Interface Usage Sequence



10 Metadata Handling

Metadata is information about the multimedia data, which is not the media data itself. Across the different
content types supported by PVPlayer, there are several different schemes defined for storing information.
For example, the following is a short list of some of the metadata schemes that may be encountered in
the supported file types: ID3v1, ID3v1.1, ID3v2, PV's metadata storage within an MPEG4 file, 3GPP
Release 6 asset information within an MPEGA4 file, and Apple iTunes metadata within an MPEG4 file.
Typical information in the metadata includes such things as title, author, description, copyright, etc. The
PVPlayer SDK supports retrieval of metadata by the relaying metadata queries to the underlying
components that implement the actual parsing of the different metadata storage schemes.

10.1 Metadata retrieval APIs

Within the PVPlayerinterface, metadata is handled as key-value pairs. The APIs provide a way to obtain
the list of available key strings through GetMetadataKeys() and a way to obtain the values associated with
a list of keys through GetMetadataValues(). Since there are usually several metadata values, the APIs
use list structures for the keys and values. Also, the lists of values can be arbitrarily long, so the APIs
allow segments of any size to be retrieved with each call so that it is not required to hold the entire list at
once.

10.1.1 Metadata Related Events

In certain non-local playback metadata is not readily available with the engine. Hence it could not be
retrieved at the beginning of playback. Or, in a playlist scenario, the engine does not have the metadata
readily available for all the clips in the queue. In such scenarios metadata shall be fetched on the basis of
informational events sent by engine.

Typical metadata related events sent by engine:

Error Code Meaning

PVMFInfoDurationAvailable Duration is available, and can be retrieved now. This event itself
carries the duration and there’s no need to issue
GetMetadataValues() api to get the duration value.
PVMFInfoMetadataAvailable Metada is ready, and application can retrieve meta data now.

10.2 Retrieving Metadata List

The PVPlayer engine relies on PVMF nodes to provide a list of metadata keys and values. Most metadata
typically come from data source and parser nodes, but metadata could also come from processing nodes
like decoders. The engine determines if a node supports metadata by requesting each node for the
metadata retrieval extension interface. The engine retrieves the node’s metadata key list by calling the
GetNodeMetadataKeys() API for the node. In response to that command, the node returns information on
all available metadata in the node at that moment as an array of metadata key strings. The engine
concatenates the metadata key list from each node to form the overall list of keys which is provided when
the GetMetadataKeys() API of the PVPlayer SDK is called. The diagram below shows how the PVPlayer
engine’s metadata key list is generated from each node’s metadata key list including the mapping for
illustrative purposes.



Node 1 Metadata

. . List
pvPlayer Engine Metadata List Metadata Key T
Metadata Key 1 Node 1 Key 1 Metadata Key 2

Metadata Key 2 Node 1 Key 2 / Metadata Key 3
Metadata Key 3 Node 1 Key 3 Metadata Key 4

Metadata Key 4 Node 1 Key 4 Metadata Key 5
Metadata Key 5 Node 1 Key 5 Metadata Key 6
Metadata Key 6 Node 1 Key 6

Metadata Key 7 Node 2 Key 1 Node 2 Metadata
Metadata Key 8 Node 2 Key 2 List

Metadata Key 9 Node 2 Key 3 Metadata Key 1
Metadata Key 10 | Node 2 Key 4 \ Metadata Key 2
Metadata Key 11 | Node 2 Key 5 Metadata Key 3
Metadata Key 4
Metadata Key 5

Figure 11: Mapping of Multiple Metadata Key Lists

The list of metadata keys from PVPlayer engine is dynamic and changes as nodes being used are added
and removed from the data-flow graph and change states. When a node is added to the data-flow graph,
new metadata keys may be added to the overall list, and when a node is removed, metadata entries may
be removed. Therefore the metadata key list returned by the PVPlayer engine would only be valid for a
finite amount of time.

10.3 Querying Metadata

When GetMetadataValues() is called, PVPlayer engine calls GetNodeMetadataValues() for each node
that provides the metadata retrieval extension interface. As each node returns the list of requested
metadata values, the metadata values are copied to the metadata value list passed in by the user of
PVPlayer SDK. When all nodes return requested the metadata values, PVPlayer engine reports
GetMetadataValues command as complete.

10.4 Metadata Storage

Metadata is a key-value pair where the metadata key is stored as a string while the value is often a string
but may be other types such as an integer, etc. The metadata value could be one of many data types so it
is stored as an union of various data types. When GetMetadataValues() is called, PVPlayer engine
returns the requested values as a vector of the key-value pair structure which contains the key string
along with a union containing the value. The “valtype” parameter in the returned key string specifies
which of the union members to access to read the associated value. The user is responsible for parsing
the key string for this “valtype” parameter to determine the data type of the value. For example a returned
key string of

author;valtype=wchar*

would indicate that the returned author value is a wide-character string and is accessible in the union
member corresponding to the wide character pointer.



If the metadata value is a pointer type, PVPlayer engine will allocate and deallocate the memory
referenced by the pointer. But the pointer is only valid during the callback handler (i.e.
CommandCompleted() function) that notifies the user GetMetadataValues command has completed. After
the callback handler returns, the memory may be freed at any time and the pointer would become invalid.
Therefore, all data of interest must be copied to another storage area before the callback handler returns.

For variable size value types (e.g. pointers such char*), the length field of the key-value pair provides the
size of the valid data and the capacity field provides the total size of the buffer. Both length and capacity
sizes are in the units of the type. For character string values, the length field includes the NULL terminator
(e.g. if value string is "abc\0", the string is 3 characters long but length field in the key-value pair is 4). For
fixed size value types, length and capacity are undefined and should not be used.

10.5 Metadata Keys

The different metadata schemes have variations on the exact set of information provided. Some consist
of small fixed sets of information, while others like ID3v2 are extensible to allow new keys and new
information in the future. However, there is a fair amount of similarity in the core set information provided
by these different schemes. Therefore the PVPlayer SDK defines a set of simple common metadata keys
that across the different content formats and metadata schemes. Internally, the appropriate metadata
entry will be mapped to the appropriate common key. Other metadata may be accessible beyond the
common set, but access to those values will use keys specific to the metadata scheme. The table below
lists the set of simple common metadata keys. For example, the SDK user could query with the metadata
key “author” to get the author information regardless of content type. It's not guaranteed that a particular
piece of content has any of this information stored in metadata. However the SDK user can be sure that
if, for example, authoring information is stored in a supported metadata scheme, a query using the
“author” will retrieve it.

Many of the keys are simple one-word strings, but the format of the key allows for more complicated
forms, which may include optional parameter qualifiers. The syntax of the key strings follows a similar
format to the PvXms extended MIME strings used of configuration and capability exchange within the
framework, but there are some differences. For example, the key strings can consist of a single word
(i.e., does not require at least two levels of type strings). The syntax of the metadata key is defined as
follows:

Metadata key := root-key-string *(“/” sub-key-string)
*(“;" parameter)
; Matching of key-string
; 1s ALWAYS case-insensitive.
; There MUST ALWAYS be a root-key-string

root-key-string := token
sub-key-string := token
parameter := attribute “=" value

attribute := token
; Matching of attributes
; 1s ALWAYS case-insensitive.



Value := token / quoted-string

token := 1*<any (US-ASCII) CHAR except SPACE, CTLs,
or tspecials>

tspecials :: ll(ll / ll)" / ll<II / ll>II / ll@" /
II, n / " ; n / " : n / II\II / <”>
II/II / " [II / II] n / II? n / II:II
; Must be in quoted-string,
; to use within parameter values

gquoted-string = <”> *(qtext/quoted-pair) <”>; Regular qtext or
; quoted chars.

Qtext

<any CHAR excepting <">, ; => may be folded
“\" & CR, and including
linear-white-space>

quoted-pair = “\” CHAR ; may quote any char
octal decimal
CHAR = <any ASCII character> ; (0 0-177, 0.-127.)

When the values are returned from a query the key will include some additional parameters providing
further information about how to interpret the value. For example, the key returned from a query for
author may look like:

author;valtype=whcar*
which indicates the value of the author string can be found in the wide character array member of the key-

value pair structure. The valtype parameter will be included with every returned key since it is necessary
to specify the member of the key-value pair structure to use.

Key string Description Notes

album Album name Value is typically a null-terminated string (either
narrow or wide character).

artist Artist or performer Value is typically a null-terminated string (either
narrow or wide character).

author Author or writer Value is typically a null-terminated string (either
narrow or wide character).

classification Classification Value is typically a null-terminated string (either
narrow or wide character).

clip-type High-level classification of Value is a null-terminated character string.

clip describing whether itis | Defined values include: local, streaming,
local, streaming, download, | download, fasttrack.

etc.
comment Comment string Value is typically a null-terminated string (either
narrow or wide character).
compilation Typically found in music The value is a null-terminated string (either

content. narrow or wide character). There is usually also




a language code.

composer Music composer Value is typically a null-terminated string (either
narrow or wide character).
copyright Copyright holder Value is typically a null-terminated string (either
narrow or wide character).
date Creation date The date value will be returned as a string
represented in a subset of ISO 8601 format.
For example, “"yyyy”, “yyyy-mm”, etc where
yyyy represents the year and mm the month.
See the ID3 specification or reference [2] for
other possible examples and more details.
description Brief description of the Value is typically a null-terminated string (either
content narrow or wide character).
duration Duration / length of the clip | Could be returned as an integer representing

the duration along with a timescale or the string
“unknown” if the duration is not known. See
description below for more details.

duration-from-

Duration of the clip

Value is an unsigned 32-bit integer representing

metadata provided in it's metadata the duration along with a timescale.
genre Genre The value will typically be an integer code or
string. See description below for details.
graphic Location of an associated Value is typically a null-terminated string (either
graphic or the actual narrow or wide character) or an attached
graphic. picture using a format like the ID3 attached
picture format.
id Product ID / SKU / unique No specific standard defined for this field, so it
ID would typically be returned as a string.
keyword Content specific keyword(s) | The value is a null-terminated string (either
narrow or wide character). There is usually
also a language code.
lyricist Lyricist. Typically found in The value is a null-terminated string (either
music content. narrow or wide character). There is usually also
a language code.
lyrics A simple string containing The value is a null-terminated string (either

the words spoken or sung
within the song.

narrow or wide character). There is usually
also a language code.

music-selling-agency

Typically found in music
content.

The value is a null-terminated string (either
narrow or wide character). There is usually
also a language code.

music-label

Typically found in music
content.

The value is a null-terminated string (either
narrow or wide character). There is usually
also a language code.

music-rights-holder

Typically found in music
content. This could be
different from copyright.

The value is a null-terminated string (either
narrow or wide character). There is usually
also a language code.

music-rights- Typically found in music The value is a null-terminated string (either

information content. narrow or wide character). There is usually
also a language code.

music-url Typically found in music The value is a null-terminated string (either

content.

narrow or wide character).




performer

Performer. Typically found
in music content.

The value is a null-terminated string (either
narrow or wide character). There is usually
also a language code.

playlist Playlist name Value is typically a null-terminated string (either
narrow or wide character).
podcast-url Podcast URL The value is a null-terminated string (either

narrow or wide character).

purchase-date

Content purchase date

The date value will be returned as a string
represented in a subset of ISO 8601 format.
For example, “"yyyy”, “yyyy-mm”, etc where
yyyy represents the year and mm the month.
See the ID3 specification or reference [2] for

other possible examples and more details.

rating Rating information There may be several different
src Clip source / filename Value is typically a null-terminated string (either
narrow or wide character).
title Title or name of the clip Value is typically a null-terminated string (either
narrow or wide character).
num-tracks The number of tracks in the | Value is typically a 32-bit unsigned integer
clip
version Software version of the Value is typically a null-terminated string (either
authoring software narrow or wide character).
year Year of Value is typically a 32-bit unsigned integer

recording/performance.
Typically applies to music
files.

10.5.1 Limiting the Metadata Value Size

In certain cases it may be desirable to specify the maximum size of the metadata value that is being
requested. This way the application can have some control over the amount of memory that will be used
to return the metadata value. Since the metadata may include items like graphics (e.g., album art, etc),
which can be fairly large, it is important for applications to have enough control to avoid out of memory
conditions in memory-constrained situations.

The maxsize parameter in the request key string is used to specify the maximum size, in bytes, that
should be returned for the requested value. It is an optional parameter that may be applied to any
variable-length metadata value (i.e., strings, arrays, etc). The maxsize parameter does not apply to
values that are returned as fixed-sized elements of the PvmiKvp union (e.g., int32, uint8, etc). The
reason that it only applies to the variable-length values is that the PvmiKvp structure needs to be provided
in every case to return the key value and report the required maximum size. Also the intention of the
maxsize parameter is mainly to provide a way to deal with large metadata values. In case of metadata
values that are strings, maxsize parameter will be interpreted to mean maximum size, in number of
characters not including the NULL terminator, and not maximum size, in bytes.

With a maxsize parameter defined, there is the question of the behavior in the case that the maxsize is
exceeded. Either the value could be returned truncated to the specified size or the information about the
required size could be returned without the actual value (i.e., no space would be allocated to hold the
value and no portion of the value be returned). Truncation is reasonable where an incomplete part of the



value is potentially meaningful and useful (e.g., a string value). For cases where the value is really only
useful when it can be returned in its entirety (e.g., a graphic image), then it does not make sense to
truncate the value. Instead the request should be answered by indicating the required amount of memory
to retrieve the complete value. Since the majority of the common metadata values are strings, the default
behavior in the case where the value size exceeds the specified maxsize parameter will be to return the
truncated value. However, an optional boolean parameter called truncate can be specified to indicate
the desired truncation behavior. For example,

title;maxsize=100; truncate=false

indicates that the returned title value should have a max size of 100 bytes, and if the actual size exceeds
that length, only the information about the required size should be returned (i.e., no truncation should
happen). By contrast, the request

title;maxsize=100; truncate=true

differs by the fact that the title value should be truncated to at most 100 bytes. Note that the request with

title;maxsize=100

is equivalent to the one with the truncate=true parameter since truncation is the default behavior. Note
that strings consisting of multibyte characters (e.g., UCS-2, UTF-8, etc) will be truncated to a
whole number of characters that is less than or equal to the specified number of bytes.

If the metadata value is larger than the specified maxsize, the required number of bytes is returned in the
regsize parameter. The required size is returned regardless of whether the value is truncated and
returned or not. For example, if the request for the title is truncated at 100 bytes but the actual size of the
string is 137, then the returned key string would look like:

title;valtype=wchar*;reqsize=137

The reqsize parameter is only included in cases where the entire value is not returned (i.e., either when it
was truncated or no part of value is returned).

10.5.2 Duration

The duration value is typically returned as an integer value and may include an optional parameter that
specifies a timescale. If no timescale is specified, then the default is milliseconds. Some examples
include
duration;valtype=uint32 (the duration is an integer representing milliseconds)
duration;valtype=uint32;timescale=8000 (the duration is an integer representing the
duration in a timescale of 8 kHz)
duration;valtype=char* (the duration is returned as the string “unknown”).

The duration is not stored explicitly in all the supported file formats. File formats like mpeg4 store the
duration value explicitly so it is a simple and quick matter to extract the value. Other simpler file formats
like mp3, aac, and amr consist of a concatenation of encoded frames without the duration explicitly stored
anywhere. Therefore, the duration must be determined by parsing the entire file, which can be
computationally expensive and time-consuming in these cases. By default, the duration will be returned
as unknown in these cases initially and an event will be sent once the duration has been determined as a



part of normal playback. However, it is possible to request that the duration be computed by including an
additional option in request key. The form of the request key would look like:

duration;compute=true
to request that the duration is computed if necessary and possible.

The duration-from-metadata key is for situations where the duration is provided as an optional part of
metadata and is not guaranteed or even necessarily reliable for the content type. For content that
duration derived from metadata in a consistent and reliable way, the duration metadata key will be used.
This can be queried via

duration-from-metadata;valtype=uint32

10.5.3 Genre

The genre value is often stored as an integer that corresponds to one of the values defined by ID3v1. In
these situations, the returned value would be an integer and the returned key would include a qualifying
parameter to indicate that it should be interpreted as an ID3v1 genre code as follows:

genre;valtype=uint32; format=id3v1

In the case of ID3v2, the classification may consist of a mixture of the ID3v1 code and an arbitrary string.
In this case, the genre would be returned as a string with id3v2 indicated in the format as follows:

genre;valtype=wchar*; format=1d3v2.

In some cases the genre may simply be a free-form string. In those cases the format parameter would
not be provided because there is no special way of interpreting the value other than as a string. For
example, it the key string would like the following:

genre;valtype=wchar*.
10.5.4 Graphic

The graphic value may be either a reference to an external image (i.e., stored separately from the media
source) through a URL string or the image itself. In the case of the external reference, the information
would be returned as a URL string. For example,

graphic;valtype=char*
is an example of a key string for a external reference graphic where the character string is a URL. If the
graphic is returned as a character string with no other format specification, then it should be interpreted as
a URL.

A popular format for directly holding the image within the media file is the ID3v2 attached picture format
(i.e., the APIC frame). This same format is also used within ASF files for the WM/Picture metadata value.
The format parameter for the key string indicates that the value is in the APIC format as follows:

graphic;format=APIC;valtype=ksv



The format includes the following information:
* A MIME type string describing the format of the image data
e A picture type code that classifies the content of the image
e Atext description
e The binary picture data.

The picture type is one byte with values defined in the ID3v2 specification [3]. For convenience, the
current table at the time this document was produced is included below, but the reference, [3], should
serve as the official source of the defined values.

Code (in hex) Description Code (in hex) Description

$00 Other $0B Composer

$01 32x32 pixels 'file icon' (PNG $0C Lyricist/text writer
only)

$02 Other file icon $0D Recording Location

$03 Cover (front) $0E During recording

$04 Cover (back) $OF During performance

$05 Leaflet page $10 Movie/video screen capture

$06 Media (e.qg., label side of CD) $11 A bright coloured fish

$07 Lead artist/lead $12 lllustration
performer/soloist

$08 Artist/performer $13 Band/artist logotype

$09 Conductor $14 Publisher/Studio logotype

$0A Band/Orchestra

In general, there can be an arbitrary number of APIC frames associated with a file, but there may only be
one instance of type $01 and one instance of type $02 according to the specification. The key string
syntax for these

It may be desirable to request information on the number of APIC frames in the file before actually
requesting them. This information can be requested by using the key string

graphic/num-frames; format=APIC

Since there can be multiple frames in the file it may be desirable to obtain the descriptions and select the
frame(s) of interest before actually requesting image data. The following key string can be used to
request the multiple entries.

graphic/description;format=APIC;index=X..Y

where the values X and Y refer to the start and end index values of the requested frames (in the range 0
to num-frames-1). The structure returned is the same as the one used for the full APIC information
except the binary image data buffer is empty (i.e., the description string, text encoding, mime type, and
picture type, and the size of the binary image data are returned). To request the full value including the
binary image data, the request key string would simply use ‘graphic’ string as in this example:

graphic; format=APIC; index=X.



It is also possible to restrict the query to a specific picture type by adding the “pict-type” parameter to the
key string. In that case, the returned values are narrowed to the set of the frames that have the matching
picture type. For example, the key string

graphic/num-frames; format=APIC; pict-type=0F

specifies that the value returned should correspond to the number of frames with picture type equal to OF.
If the pict-type parameter is applied to a request with an index parameter, then the range of valid index
values is restricted to lie between 0 and num-frames-1, where num-frames is the number of frames with
that picture type. For example, to get the second graphic value with picture type OF, the request might
look like

graphic; format=APIC;pict-type=0F;index=1.

The maxsize parameter is another common key string parameter that can be applied to the graphic value
request as described in Section 10.5.1. Refer to the APl documentation for details of the structure that is
returned for the APIC format.

All images by default are considered storable/savable. However there could be cases wherein the content
provided might mark some of the images as not storable. In those cases a “not-storable” string would be
added to the returned key string. For example key string for a non-storable image would look like

graphic;format=API;index=1;not-storable

10.1 Track-level Information

Certain file formats, such as mpeg4, as well as streamed presentations can contain multiple media
streams or tracks. The track-level information provides details at the individual media level on such things
as format, sample rate, bitrate, etc. The mechanism for accessing track information will apply for all clips
regardless of how many tracks are included. For simple file formats, there will only be one track while
others may include an arbitrary number. The metadata key, “num-tracks,” will return the number of tracks
within the clip. Information for individual tracks is accessed or qualified in the returned value with the
“index” parameter, which has a range from 0 to (hum-tracks — 1). For example:

track-info/type;index=0;valtype=char*

would be one possible key string for the track-level type information of the first track (i.e., index 0).

10.1.1 Compact Representation of Ranges

When querying for a list of available keys from a file source with multiple tracks, it will have a set of keys
for track-level information where the only difference is the index parameter. One possible way of
returning the set of keys is to simply include them all individually in the list (e.g., track-
info/type;index=0, track-info/type;index=1, track-info/type;index=2, track-
info/type;index=n-1). However, a more compact representation is allowed for the index using a
format for expressing a range. For example, the string

track-info/type;index=0..8

represents a set of 9 keys, 0 through 8, in a single string using the range representation for the index.



10.1.2 General Information

The table below lists general track-level information that would be available for any track.

Key string

Description

track-info/type

The type information for the media stream typically expressed as a
MIME type.

track-info/track-id

The track-id is the identifier specified within the file if any. It may
be different than the “index” parameter, which is simply used to
iterate through the track-info metadata.

track-info/sample-rate

The sample-rate of the media in samples per second. Applicable
to audio tracks. Provides the sampling rate of audio.

track-info/bit-rate

The bit-rate in bits-per-second.

track-info/duration

The track-level duration. The format is the same as the clip-level
durations.

track-info/num-samples

The number of samples in the track.

track-info/selected

Boolean value that signals whether the track specified by the index
is selected for playback or not.

track-info/frame-rate

Applicable only to video tracks. Provides an approximate
estimate of the video frame rate.

track-info/codec-name

Value is typically a null-terminated string (either narrow or wide
character).

track-info/codec-description

Value is typically a null-terminated string (either narrow or wide
character).

track-info/codec-specific-info

The uint8 pointer provides the codec specific information.

track-info/track-number

The track-number is the identifier specified within the file if any.
Typically found in music files and can be different from both
“index” and “track-id” metadata fields.

track-info/max-bitrate

Maximum bit-rate in bits-per-second.

10.1.3 Format Specific Information

Some track-level information is specific to the type of media. Below are the defined video and audio

track-level information.

Video-specific track-level information

track-info/video/format

Detailed video format information (e.g., profile and
level information for mpeg4)

track-info/video/height

Height of the video frame.

track-info/video/width

Width of the video frame.

track-info/video/display-height

Display height of the video frame. This need not be
same as the decode height.

track-info/video/display-width

Display width of the video frame. This need not be
same as the decode width.




Audio-specific track-level information

track-info/audio/format

Detailed audio format information

track-info/audio/channels

Number of audio channels (e.g., 1 = mono, 2 = stereo,
ete).

track-info/audio/bits-per-sample

Mainly relevant for PCM audio files.

10.2 Codec Level Format Specific Information

The codecs may also expose similar types of information, which are actually extracted from the bitstream.
The codec-level information can be more reliable than the track-level information at times (e.g., in some
files the height and width information has been found to be incorrect). The format-specific codec-level
information is shown below:

Video-specific codec-level information

codec-info/video/format Detailed video format information (e.g., profile and
level information for mpeg4)
Height of the video frame.

Width of the video frame.

codec-info/video/height
codec-info/video/width

Audio-specific codec-level information

codec-info/audio/format

Detailed audio format information

codec-info/audio/channels

Number of audio channels (e.g., 1 = mono, 2 = stereo,
etc).

codec-info/audio/sample-rate

The sample-rate of the audio data in samples per

second. For PCM audio, it represents the frequency in
hertz.
Bits-per-sample of the output PCM

codec-info/audio/bits-per-sample

10.3 Language Codes

3GPP Release 6 defines a number of metadata elements as part of the asset information specified in the
document TS 26.244v6.2.0. These metadata strings can be represented in different languages, so there
is a language code associated with each entry to encode the language of the string. The language codes
are stored as packed 1SO-639-2/T language codes, which are basically 3 character codes assigned to
each language. The table below lists a just a few examples of the languages and the associated
language code, please refer to a reference on ISO-639-2/T for a complete list such [1]:

3-Letter Language Code Description
eng English
fre/fra French
ger/deu German




If the language code exists it will be returned in the iso-639-2-lang parameter. Otherwise English should
be assumed. It is expected that content may contain the same metadata in multiple languages, so the
language parameter in the returned key string can be used to select the value in the appropriate language
based on the user preferences. An example of a key string with a language code is

track-info/type;index=0;valtype=wchar*;is0-639-2-lang=ger

10.4 DRM Related Metadata

There are a number of metadata values related to license information for content protected with some
form of digital rights management (DRM). For a particular piece of content, not all the values in the table
will be available. This set of metadata provides information that describes the issuer of the license, which
operations are allowed, when it expires, etc. Note that certain time-based licenses may have only start
times, only expiration times, or both start and expiration times. Values will only be returned if the license
has a corresponding value for that key string, so for example, if the license only has a start time then
queries for the license-expiry would not return a value.



Key string

Description

Notes

drm/is-protected

Absence of value indicates that the
content is unprotected; however if value
returned; indicates whether the content is
DRM- protected (true) or DRM-
unprotected (false).

Value is bool type when provided.

dla/license-issuer

This is the URI of the license issuer.

Value returned in the char* type.

dla/num-redirect

Number of license server re-directs that
were followed in a direct license
acquisition attempt.

Value returned in the uint32 type.

drm/allowed-usage

Provides information on the approved
usage of the content. The returned value
is a packed bit array with the possible
permission values.

Packed bit array.

Possible values include:

Play, Pause, Resume, Seek forward, Seek backwards, stop, print,
download, save, execute, preview.

drm/is-license-
available

True/false value indicating whether the
license is available.

Value returned in the bool type.

drm/auto-acquire

True/false value indicating whether there
will be an attempt to automatically
acquire a new license when necessary.

Value returned in the bool type.

drm/license-type

License types fall into following
categories:

e time based (has an start
and end time)

e duration based (a certain
amount of time since first
use)

e count based

e or a combination of count
and one of time-related

types

Value returned would be a string that will take any of
o the following forms:

e ‘“time”, “duration
“unlimited”

, ‘count”,

time-count”, “duration-count”,




e unlimited (no limit on the
counted license)

drm/num-counts

Counts remaining

Value is returned as a uint32

drm/license-start

The starting time for the licensed interval

All start and end times are in ISO 8601 Timeformat
e The format is as follows. Exactly the components shown
here must be present,
e with exactly this punctuation. Note that the “T” appears
literally in the string to indicate the beginning of the time
element, as specified in ISO 8601.
Year: YYYY (e.g., 1997)
Year and month: YYYY-MM (e.g., 1997-07)
Complete date: YYYY-MM-DD (e.g., 1997-07-16)
Complete date plus hours and minutes: YYYY-MM-DDThh:mmTZD (e.g.,
1997-07-16T19:20+01:00)

Complete date plus hours, minutes and seconds: YYYY-MM-
DDThh:mm:ssTZD (e.g., 1997-07-16T719:20:30+01:00)

Complete date plus hours, minutes, seconds and a decimal fraction of a
second: YYYY-MM-DDThh:mm:ss.sTZD (e.g., 1997-07-
16T19:20:30.45+01:00)
where: YYYY = four-digit year

MM = two-digit month (01=January, etc.)

DD =two-digit day of month (01 through 31)

hh = two digits of hour (00 through 23) (am/pm NOT allowed)

mm = two digits of minute (00 through 59)

ss = two digits of second (00 through 59)

s = one or more digits representing a decimal fraction of a second
TZD =time zone designator (Z or +hh:mm or —hh:mm)




This profile defines two ways of handling time zone offsets:
e Times are expressed in UTC (Coordinated Universal
Time), with a special UTC designator (“Z").

e Times are expressed in local time, together with a time
zone offset in hours and minutes. A time zone offset of
“+hh:mm” indicates that the date/time uses a local time
zone which is “hh” hours and “mm” minutes ahead of
UTC. A time zone offset of “-hh:mm” indicates that the
date/time uses a local time zone which is “hh” hours and
“mm” minutes behind UTC.

For example: 1994-11-05T08:15:30-05:00 corresponds to November 5,
1994, 8:15:30 am, US Eastern Standard Time. 1994-11-05T13:15:30Z
corresponds to the same instant.

If the start time is not set then the value should be interpreted as “now”.

drm/license-expiry

End time of licensed interval.

See previous description of the time format. A query for this key will not be
answered if there is no specified end time.

drm/duration

Duration of the license specified in
number of seconds.

The value will be returned as a uint32.

drm/license-store-
time

The time when the license was added to
the license store.

See previous description of the time format. A query for this key will not be
answered if there is no support for looking up the time that the storage for
a particular license store.

drm/is-forward-locked

True/false value indicating whether the
content is forward locked.

Value returned in the bool type.




10.4.1 Windows Media DRM

The following table defines which of the previously listed metadata fields are available for Windows Media
DRM and provides additional specifics on the values.



Key string

Notes/Availability

drm/is-protected

This key is always available.

drm/is-license-available

This key is always available.

dla/license-issuer

This key is available only after engine Init command has returned
PVMFErrLicenseRequired.

dla/num-redirect

This key is available only after engine Init command has returned
PVMFErrLicenseRequired.

drm/license-type

This key is available only when source intent includes
GETMETADATA. This indicates the type of playback rights
restriction that currently applies to the content. Specific values
returned are:

<“unlimited”: unlimited rights are available.

«“count” has a playback count restriction.

*“time”: has an absolute start time and/or an end time restriction.
«“time-count”: has a count restriction plus a start time and/or an end
time.

«“duration”: has a duration restriction. This is a duration relative to
the first playback time, or in other words “duration after first use”.
«“time-duration”: has a duration after first use restriction combined
with an absolute start time and/or an absolute end time.

drm/num-counts

This key is available only when source intent includes
GETMETADATA and the current playback rights include a play
count restriction. The returned value is the number of counts
remaining.

drm/license-start

This key is available only when source intent includes
GETMETADATA and the current playback rights include a start time
restriction. See the previous table for the time value format.

drm/license-expiry

This key is available only when source intent includes
GETMETADATA and the current playback rights include an end
time restriction. See the previous table for the time value format.

drm/duration

This key is available only when source intent includes
GETMETADATA and the current playback rights include an
“expiration after first use” restriction. The data returned is the
number of seconds that will remain after the first playback. After the
first playback occurs, the reported rights will include the actual end
time instead of the original “duration after first use” value.

drm/content-header

This key is available only after engine Init command has returned
PVMFErrDrmLicenseNotFound or PVMFErrDrmLicenseExpired. The
data returned is the DRM content header that can be used to acquire
content licenses.




10.1 Access to Other Metadata

Depending on the content format being accessed and the metadata storage scheme, there may be
additional metadata entries that do not fall within the list of values described above. This situation is
especially true for extensible metadata schemes like ID3v2. The parser used by the engine may not
necessarily understand how to interpret the data in the metadata frame, but it can provide the raw data
back to application for it to interpret. The form of the keystrings for requesting ID3v2 frames is:

id3v2/<four-character frame ID>

where <four-character frame ID> is the four-character code defined by the ID3 specification. If the key
string is present, the returned value will include the ID3 version, the frame ID, frame size, frame flags, and
the raw data contained in the frame. See the API documents for the exact definition of the id3v2 frame
structure. This id3v2 frame structure will be returned in the key-specific value field of the returned key-
value pair structure.

10.2 Receiving Metadata from Informational Event Callback

For server side playlist streaming sessions, PVPlayer engine also sends an unsolicited information event
— PVMFInfoPlayListClipTransition. A playlist contains several playlist elements. When the client gets
notified about the transition to a new playlist element, the player engine sends this event. It should NOT
be used as an accurate indication of the transition point on Ul because of the delay like jitter etc. This
event also carries the extra meta data about the next playlist element. The event data is a
PVMFRTSPClientEngineNodePlaylistinfoType struct:

typedef struct
{
uint32 iPlaylistUrlLen;
char *iPlaylistUrlPtr;
uint32 iPlaylistIndex;
uint32 iPlaylistOffsetSec;
uint32 iPlaylistOffsetMillsec;

uint32 iPlaylistNPTSec;
uint32 iPlaylistNPTMillsec;

//max 256
uint32 iPlaylistMediaNamelLen;
char iPlaylistMediaNamePtr[256];

//max 512

uint32 iPlaylistUserDatalen;

char iPlaylistUserDataPtr[512];
}PVMFRTSPClientEngineNodePlaylistInfoType;



10.3 Receiving Metadata during Clip Transition

For local playlist scenarios, PVPlayer sends certain metadata for each clip in the data source.

14.20.1 PVPlayerinfoCliplnitialized

PVPIlayer sends this event when playing from a clip list, to indicate that a new clip has been initialized and
metadata is available. This event's local buffer contains the clip index.
The format of local buffer is as follows:

Byte 1-4: uint32 (zero-based index of the initialized clip)

Byte 5-8: unused

14.20.2 PVPlayerinfoClipPlaybackStarted

PVPlayer sends this event when playing from a clip list, to indicate that a new clip has playback has
started. This event's local buffer contains the clip index.
The format of the local buffer is as follows:

Byte 1-4: uint32 (zero-based index of the initialized clip)

Byte 5-8: unused

14.20.3 PVPlayerinfoClipPlaybackEnded

PVPIlayer sends this event when playing from a clip list, to indicate that a clip's playback has ended. This
event's local buffer contains the clip index.
The format of the local buffer is as follows:

Byte 1-4: uint32 (zero-based index of the initialized clip)

Byte 5-8: unused

10.4 Metadata Retrieval Usage Example

To illustrate how metadata list is generated and returned to the user of PVPlayer SDK and how metadata
value is returned, a sequence diagram between the user of PVPlayer SDK, PVPlayer engine, and two
PVMF nodes that support metadata retrieval is shown below.



Open

vPlayer SDK r pvPlayer Engine PVME N 1 PVMF Node 2

pvPlayer engine requests each node with
metadata to return its metadata key list

GetNodeMetadataKey()

NodeCommandCompleted()

pvPlayer engine adds node 1's
metadata key list to the engine one

GetNodeMetadataKey()
|

NodeCommandCompleted()

pvPlayer engine adds node 2's
metadata key list to the engine one

User wants the list of all
available metadata keys

GetMetadataKey()

pvPlayer engine returns its metadata key list

CommandCompleted()

User wants a particular set of metadata
values from the returned key list.

GetMetadataValue()

Engine parses the requested values
from the key list and sends the
appropriate requests to the nodes which
have the metadata values.

GetNodeMetadataValue()

GetNodeMetadataValue()

NodeCommandCompleted()

CommandCompleted()

Figure 12: Metadata Retrieval Usage Sequence



10.5 Supported Key Strings in Select PVMF Nodes

The table below lists the supported metadata key strings in several PVYMF nodes. The key string list is the
comprehensive list, but actual key list could be a subset depending on the information available in the
data source.

PVMF Node Supported Key Strings
PVMFMP4FFParserNode author

title

description

rating

copyright

version

date

duration

num-tracks
track-info/type
track-info/track-id
track-info/duration
track-info/bit-rate
track-info/audio/format
track-info/video/format
track-info/video/width
track-info/video/height
track-info/sample-rate
PVMFMP3FFParserNode title

artist

album

year

comment

copyright

genre

track-number
num-tracks

duration
track-info/bit-rate
track-info/sample-rate
track-info/audio/format
track-info/audio/channels
PVMFAACFFParserNode title

artist

album

year

comment

copyright

genre

track-number
num-tracks

duration
track-info/bit-rate




track-info/sample-rate
track-info/audio/format

PVMFAMRFFParserNode

duration

num-tracks
track-info/bit-rate
track-info/audio/format

PVMFWAVFFParserNode

duration

num-tracks

track-info/bit-rate
track-info/sample-rate
track-info/audio/format
track-info/audio/channels
track-info/audio/bits-per-sample

PVMFVideoDecNode

codec-info/video/format
codec-info/video/width
codec-info/video/height

PVMFAVCDecNode

codec-info/video/format
codec-info/video/width
codec-info/video/height

PVMFAACDecNode

codec-info/audio/format
codec-info/audio/channels
codec-info/audio/sample-rate

PVMFWMADecNode

codec-info/audio/format
codec-info/audio/channels
codec-info/audio/sample-rate

PVMFWMVDecNode

codec-info/video/format
codec-info/video/width
codec-info/video/height




11 Playback Position

PVPlayer engine provides the application with methods to obtain the current playback position of the
media being played. The application can use the playback position data as strictly informational data to
display to the user or to make decisions during media playback (e.g. pause playback 5 seconds into
playback).

The position can be retrieved by having the application make API calls or PVPlayer engine can send the
playback position periodically via the unsolicited informational event callback. For both methods, the
application can change the playback position units from the default of millisecond time unit.

11.1 Retrieve Playback Position Using API Call

PVPlayer SDK provides two APl to retrieve the current playback position from PVPlayer engine:
GetCurrentPosition() and GetCurrentPositionSync(). Both APIs perform the same function but the latter
completes the request synchronously instead of asynchronously. In both APIs, the user must provide a
reference to a PVPPlaybackPosition object which is an input/output parameter. The input parameter
portion is the iPosUnit field which allows the user to request the units to use for the playback position. The
default units is in milliseconds but the user can request the position in other time units such as seconds,
hours, and SMPTE time code, or non-time units such as percentage of whole clip, sample number, and
offset from beginning of the file in bytes. Availability of playback position in non-time units would depend
on the support from the underlying nodes and source media being used. If non-time units is not
supported, these APIs will return with PVMFErrNotSupported error code.

11.2 Receive Playback Position from Informational Event

PVPlayer engine also sends the current playback position periodically as an unsolicited informational
event with PVMFInfoPositionStatus event code and player specific event code of
PVPIlayerinfoPlaybackPositionStatus (=8193) in PVPlayerErrorinfoEventTypesUUID event code space
(=0x46fcabac, 0x5b57, 0x4cc2, 0x82, 0xc3, 0x03, 0x10, 0x60, Oxb7, Oxb5, 0x98). The position value is
stored in the local data buffer of the informational event. The application is responsible for “listening” for
this event in the informational event callback handler if it wants to obtain the current playback position by
this method.

The position units and the time length of the reporting period can be queried and modified via the
capability-and-configuration extension interface of PVPlayer engine. The default settings are milliseconds
for playback position units and 1000 milliseconds for the reporting period. For more information on how to
query and modify these settings via the capability-and-configuration interface, refer to the Capability
Query and Configuring Settings section. Support for non-time position units would change based on the
underlying nodes and source media being used. Therefore, if support for non-time position units becomes
unavailable, PVPlayer engine will automatically change to the default of milliseconds.



12 Frame and Metadata Utility

A common use-case for player functionality involves retrieving the metadata information along with a
frame from the video stream to be used as a thumbnail or other still image representation of the clip. For
example there may be gallery view of the available content stored on the filesystem, which is presented to
the user as a still image frame from each clip along with some metadata information such as title, author,
etc. The player engine APIs can certainly be used directly to obtain the necessary information. However
the PVFrameAndMetadataUtility simplifies the task for the application by hiding some of the interaction
with the player engine for this use-case.

12.1 Creating and Deleting the Utility

Instances of the PVFrameAndMetadataUtility are created and deleted using static member functions of
the factory class. The factory function used to produce a new instance of the utility class takes a MIME
string argument, which specifies the desired output format for the video frame, as well as references to
observer classes for receiving callbacks from the utility. Internally, the utility creates an instance of the
player engine. The diagrams below show sequences for creating and deleting the utility instance.

The format of the video frame that will be returned in the GetFrame calls is specified as an argument to
the factory function when creating an instance of the utility class. A MIME string is used to specify
whether the frame should be YUV420, RGB16, etc. The header file pvmf_format_types.h contains a
listing of many of the common MIME strings for the different video frame formats. If the output format
cannot be supported for a given input source that is specified later, then an error will be returned from the
GetFrame call.

Application PVFrameAndMetadataFactory PVFrameAndMetadataUtility PVPlayerFactory PVPlayerEngine

i
|
|
CreateFrameAndMetadataUtility()

L __

New()

CreatePlayer()

New()
B —

PVPlayerEngine object
is instantiated

return PVPlayerInterface*

ﬁV____________

——————————e e ———

<
return PVFrameAndMetadataUtility*

return PVFrameAndMetadatalnterface* :
ié— ______________ 1. :

|

|

Figure 13: Create the Utility



Application PVFrameAndMetadataFactory PVFrameAndMetadataUtility PVPlayerFactory PVPlayerEngine

DeleteFrameAndMetadataUtility()

~PVFrameAndMetadataUtility()

A,

DeletePlayer()

delete()

PVPlayerEngine object
is deleted

-y

l

——————————————— ===

return true

Figure 14: Delete the Utility

12.2 Options for Specifying the Desired Frame

The GetFrame() APl is used to retrieve a frame specified in the frame selector argument. There are a few
options for specifying the desired frame:

» the exact frame index with O corresponding to the first frame,

« the time offset of the frame,

These two options are used to select a specific frame based on either the frame index or the time offset of
the frame. An example where this type of specification might be used is for creation of a thumbnail image
from the first frame. The PVFrameSelector data type is used to hold the information on the desired frame.

In many cases, the first frame of the clip may not contain a meaningful image (e.g., the first frame may be
a black frame). Therefore, another alternative is to let the Utility use an internal algorithm to autodetect a
frame of interest. To achieve this, the user of the utility has to set the source context data with the
BITMASK _PVMF_SOURCE_INTENT_THUMBNAILS intent. The following is an example of how it
should be used.

// create the source context data for autodetection of thumbnails

iSourceContextData = new PVMFSourceContextData();

iSourceContextData->EnableCommonSourceContext();

//set the intent to thumbnails

iSourceContextData->CommonData()->ilntent =
BITMASK_PVMF_SOURCE_INTENT_THUMBNAILS;

iDataSource->SetDataSourceContextData((OsclAny*)iSourceContextData);

iDataSource->SetDataSourceURL(wFileName);

iDataSource->SetDataSourceFormatType(iFileType);

OSCL_TRY (error, iCurrentCmdId=iFrameMetadataUtil->AddDataSource(*iDataSource,
(OsclAny*)&iContextObject));




12.1 Set Timeout for Frame Retrieval

The default timeout set for the frame retrieval is 30 seconds. The user of the utility has the option to alter
the value of this timeout. This can be achieved by querying for the extension interface
PvmiCapabilityAndConfig via the API Querylnterface(). The pointer to the interface obtained provides the
flexibility to the user to set the timeout using the following KVP:

x-pvmf/fmu/timeout-frameretrieval-in-seconds;valtype=uint32

12.2 Usage Sequence

The main sequence for interfacing with the PVFrameAndMetadataUtility is shown in the figure below. As
the diagram shows, the utility takes care of some of the steps of interaction with the player engine in order
to get a specific frame or retrieve the metadata. The metadata is available to the application after the
completion of the AddDataSource call to the utility. The AddDataSource, Init, AddDataSink, Prepare,
Start, and Pause calls to the player engine are all hidden inside the processing of this request. The player
engine is taken to a paused playback state to allow the datapath to be created and to allow the user to
retrieve metadata from nodes within the datapath (e.g. codec information from decoder nodes).

There are two variants of the GetFrame call, which allow the frame buffer to either be provided by the
application or the utility. The diagram below shows the case where the buffer is provided by the utility, in
which case it must be returned once it is no longer needed using the ReturnBuffer call.



Application

Utility Command Observer

PVFrameAndMetadataUtility

Command Observer

PVPlayerEngine

AddO

Specify a media source for the
utility to examine

After driving the player engine
through paused playback state
all metadata is available for querying

Get the metadata values

Returned values are valid
only during the lifetime of
the CommandCompleted
call.

ataSource ()
AddDataSource ()
CommandCompleted ()
mto |~
The data sink is added CommandCompleted ()
based on the output S —
format requested when AddDataSink () /* based on output format ~ */
the utility object was
created . CommandCompleted ()
Prepare 0 |
CommandCompleted ()
é_ _____________
Start ()
CommandCompleted ()
é_ _____________
Pause
CommandCompleted ()

CommandCompleted ()

GetMetadataValues ()

CommandCompleted ()

GetMetadataValues ()

CommandCompleted ()

ReturnBuffer ()

Stop ()

CommandCompleted ()

Stop the player engine
since it is paused

Prepare

CommandCompleted

Start ()

Stop ()

CommandCompleted ()

Frame buffer is returned

Figure 15: Frame and Metadata Utility Usage Sequence




13 Error and Fault Handling
13.1 Error Handling

Error is an erroneous system behavior that deviates from the design specifications. PVPlayer SDK will
detect and handle any errors reported within its components or outside components (e.g. platform
services, platform specific decoders). Based on the type of error, PVPlayer SDK will decide whether to
report the error to the user of the SDK or not and whether to handle the error before continuing on. The
reporting mechanism would depend on the interface between PVPlayer SDK and its user. With the
OSCL-based interface, PVPlayer SDK reports errors via the command completion callback if the error
occurs during an PVPlayer SDK APl command processing or via the observer -callback,
PVErrorEventObserver, if the error is an unsolicited event.

The following section provides an overview of error types detected in PVPlayer SDK and error message
reported by PVPlayer engine. Depending on the platform and PVPlayer SDK configuration, the list of error
messages could be larger or smaller. For information on error events on a particular platform, refer to the
PVPlayer SDK APl document for that platform.

13.2 Error Codes

When PVPlayer engine reports an error, the error code would be one of PVMF status codes that provides
a high-level description of the error. PVPlayer engine specific error code would be sent with the PVMF
status code in the event extension interface pointer (PVinterface*) if available. The player engine specific
error code would be encoded in the object pointed by the interface pointer and can be retrieved using
PVMFErrorinfoMessagelnterface extension interface methods.

Please refer the pvmf_return_codes.pdf document for the complete list of error status codes. PVPlayer
engine specific error code would be in the range from 1024 to 8191 as specified by
PVPlayerErrorEventType enum in pv_player_interface.h. The UUID for PVPlayer engine specific error
code collection and event codes is defined as PVPlayerErrorinfoEventTypesUUID.

PVPlayer engine specific error codes are listed below.

PVPlayer Engine Error Code Error Description
PVPlayerEngineErrSourcelnvalid User provides an invalid data source for
multimedia playback
PVPlayerEngineErrSourcelnit Error when initializing data source
PVPlayerEngineErrSource General non-fatal error from the data
source
PVPlayerEngineErrSourceFatal General fatal error from the data source
PVPlayerEngineErrSourceNoMediaTrack Data source contains no media track for
playback
PVPlayerEngineErrSinkinvalid User provides an invalid data sink for
multimedia playback
PVPlayerEngineErrSinkInit Error when initializing data sink
PVPlayerEngineErrSink General non-fatal error from the data sink
PVPlayerEngineErrSinkFatal General fatal error from the data sink
PVPlayerEngineErrNoSupportedTrack No supported media track for playback
was found




PVPlayerEngineErrDatapathinit Error when initializing the datapath and its
nodes
PVPlayerEngineErrDatapath General non-fatal error from the datapath
or its nodes
PVPlayerEngineErrDatapathFatal General fatal error from the datapath or its
nodes
PVPlayerEngineErrSourceMediaDataUnavailable Data source ran out of media data
PVPlayerEngineErrSourceMediaData General error in the data source’s media
data
PVPlayerEngineErrSinkMediaData General error in the data sink’s media data
PVPlayerEngineErrDatapathMediaData General error in the datapath’s or its
nodes’ media data
PVPlayerEngineErrSourceShutdown Error when shutting down the data source
PVPlayerEngineErrSinkShutdown Error when shutting down the data sink
PVPlayerEngineErrDatapathShutdown Error when shutting down the datapath
and its nodes

13.3 Error Code Translation and Error Chain

When components below PVPlayer engine (i.e. PVYMF nodes) report an error, PVPlayer engine receives
and processes the error, and if the error needs to be reported to the user of PVPlayer SDK, the error as
one of PVMF status code is passed up. A PVMF status code is passed up so the user can expect a
limited set of error codes.

But for users of PVPlayer SDK that can handle more specific error information from PVPlayer engine and
components below PVPlayer engine, the error from PVPlayer engine contains a linked list that shows the
trail of error message from the originator of the error to the error message that was received by PVPlayer
engine and the error message generated by PVPlayer engine. To understand all this error message
information would require the user to have access to the context specific error codes used by the
generator of error message at each level. To allow the context to be determined, the error list entry is
based on PVMFErrorinfoMessageExtension, which provides access to the UUID for the error context with
the error code. PVMFErrorinfoMessageExtension also allows the miscellaneous error message
information (non-error code) to be retrieved as well via other extension interfaces. The user would need to
understand the extension interface and know the UUID for the extension interface. Though
PVMFErrorinfoMessageExtension is derived from PVInterface, it is not expected for the user of the SDK
to keep a reference of the message even after the commandcomplete call back completes. So, the user
of the SDK should NOT be increasing the reference counter of the message by doing a "addRef". For
more information on PVMFErrorinfoMessageExtension including its features and usage, refer to its
design document.

To illustrate how this error code translation is performed in PVPlayer SDK, an example with PVPlayer
engine and data source nodes are shown below.



User of pvPlayer SDK User of pvPlayer SDK

] ]

PVPlayerEngine PVPlayerEngine
Real-time Streaming Source Node| MP4 File Format Parser Node
k T
Socket 10

Figure 16: Class Diagram of Error Chain

The structure on the left shows the error propagation path for real-time streaming source when the error
originates in network socket interface. The structure on the right shows the error propagation path for
local file source when the error originates in the MP4 file format parser.

For the streaming case, the error originates in the socket IO level and real-time streaming source node
receives a basic error message with an error code from socket |O. The streaming source node prepends
its own error code to the socket IO error using PVMFErrorinfoMessageExtension’s error chaining feature.
Streaming source node packages its streaming specific error code with associated error details and
sends an error event to PVPlayer engine. When PVPlayer engine receives the error event from the
streaming source node, PVPlayer engine’s own error code is prepended to the streaming source node’s
error and sends an error event to the PVPlayer SDK user. So the user of PVPlayer SDK receives PVYMF
error code and error messages from PVPlayer engine, streaming source node, and socket 10 node which
resulted in the engine level error. The streaming source node error message also provides more
information about the error than just an error code by including RTSP error code and error strings if
available. The diagram below shows how the error event, PVAsyncEvent, received by PVPlayer SDK
would contain the error messages from PVPlayer engine, streaming source node, and socket 10 node.



PVinterface

— ]

PVMFErrorinfoMessagelnterface PVMFStreamingMessagelnterface

PVAsyncEvent VAN %
-iEventExtInterface

q PVMFBasicErrorinfoMessage

-iNextErrorMessage
" [HErrorCode PVMFStreamingErrorinfoMessage

-iErrorCodeUuid 9 9
-iINextErrorMessage
-iErrorCode
_iErrorCodeUuid PVMFBasicErrorinfoMessage
-IRTSPErrorString -iNextErrorMessage
-IRTSPErrorCode [ |-iErrorCode

-iErrorCodeUuid

Figure 17: Streaming Error Event and Chain

For the local file case, the error originates in the MP4 file format parser node. In addition to the error code,
the error message generated by the parser includes the MP4 atom where the error occurred. This error
message is passed up to PVPlayer engine. PVPlayer engine then reports the error event to the PVPlayer
SDK user with its own error code. The diagram below shows the error event and chain that the PVPlayer
SDK user would receive for this case.

PVinterface

T

PVAsyncEvent PVMFErrorinfoMessagelnterface

ﬁéﬁ_

PVMFBasicErrorinfoMessage

-iEventExtInterface

-iNextErrorMessage
*  |-iErrorCode PVMFBasicErrorinfoMessage
-iErrorCodeUuid -iNextErrorMessage

-iErrorCode
-iErrorCodeUuid

Figure 18: MP4 File Parsing Error Event and Chain



13.4 Typical Errors in Command Response

If a PVPlayer SDK APl command fails, the failure is reported with error information in the
CommandCompleted() callback. The following tables (one per API) list typical errors reported in response
to API commands, the cause of the error, and expected handling by the user of PVPlayer SDK. As stated
before, if an error is reported, the PVPlayer SDK user should check the PVPlayer engine state before
performing any error handling of its own. Some errors might not be major or fatal and do not require any
error handling.

AddDataSource()

Error code

Likely Cause

Expected Handling

PVMFErrinvalidState

Not in idle state. Wrong state to
call AddDataSource()

Command is rejected but engine does
not go into error state. No error handling
needed.

PVPIlayerErrSourcelnit

the required extension interface

PVMFErrArgument Passed in player data source is | Command is rejected but engine does
invalid not go into error state. No error handling

needed.

PVMFErrNotSupported | Specified player data source Command is rejected but engine does
(format type) is not supported in | not go into error state. No error handling
this PVPlayer SDK. needed

PVMFErrNotSupported, | Source node does not support Check engine state to see if async error

handling is occurring or not. Cannot use
that particular data source..

PVPIlayerErrSourcelnit

not available in source node.

PVMFErrNoMemory Required amount of memory Check engine state to see if async error
not available in engine handling is occurring or not. Should not
continue and should shutdown the
engine.
PVMFErrNoMemory, Required amount of memory Check engine state to see if async error

handling is occurring or not. Should not
continue and should shutdown the
engine.

PVMFFailure General failure code. Check engine state to see if async error
Components are not behaving handling is occurring or not. Should not
as expected. continue and should shutdown the

engine.
Init()
Error code Likely Cause Expected Handling

PVMFErrinvalidState

Not in idle state. Wrong state
to call Init()

Command is rejected but engine does
not go into error state. No error handling
needed.

PVMFErrNoMemory,
PVPlayerErrSourcelnit

Required amount of memory
not available in source node.

Check engine state to see if async error
handling is occurring or not. Should not
continue and should shutdown the
engine.

PVMFErrResource,
PVPlayerErrSourcelnit

Error while initializing the
source (e.qg. file parsing error,
file corrupt). Check error

Check engine state to see if async error
handling is occurring or not. Remove
the data source if needed.




message for more specific
info if available

PVMFFailure

General failure code.
Components are not behaving
as expected.

Check engine state to see if async error
handling is occurring or not. Should not
continue and should shutdown the
engine.

PVMFErrLicenseRequired,

PVPlayerErrSourcelnit

Authorization license needed
to initialize the specified
source

Should acquire a license (via player’s
license acquisition interface or other
means) before calling Init() again.

PVMFErrAccessDenied,

PVPlayerErrSourcelnit

Rights management does not
allow playback of the
specified source.

Check engine state to see if async error
handling is occurring or not. Remove
the data source if needed.

AddDataSink()

Error code

Likely Cause

Expected Handling

PVMFErrinvalidState

Not in initialized state. Wrong
state to call AddDataSink()

Command is rejected but engine does
not go into error state. No error handling
needed.

PVMFErrArgument Passed in player data sink is Command is rejected but engine does
invalid not go into error state. No error handling

needed.

PVMFErrNotSupported | Specified player data sink Command is rejected but engine does
(format type) is not supported in | not go into error state. No error handling
this PVPlayer SDK. needed

PVMFErrNoMemory Required amount of memory not | Command is rejected but engine does
available in engine not go into error state. No error handling

needed but should shutdown the engine.
Prepare()
Error code Likely Cause Expected Handling

PVMFErrinvalidState

state to call Prepare()

Not in initialized state. Wrong

Command is rejected but engine
does not go into error state. No
error handling needed.

PVMFErrNotReady No player data sink added Command is rejected but engine
yet. does not go into error state. Add at
least one valid player data sink
before calling Prepare() again.
PVMFErrNotSupported Previously specified player Check engine state to see if async
data sink is not supported error handling is occurring or not.
Remove the unsupported data sink
before calling Prepare() again.
PVMFErrNoMemory Required amount of memory | Check engine state to see if async

not available in engine

error handling is occurring or not.
Should not continue and should
shutdown the engine.

PVMFErrResourceConfiguration

with specified source and

Datapath could not created

Command is rejected but engine
does not go into error state.




sinks

Change the source and/or sinks.

PVMFErr...,
PVPlayerErrSinkinit

Extension interface for file
output sink node could be
obtained

Check engine state to see if async
error handling is occurring or not.
Pass in a sink node instead of
using the file output sink node.

PVMFErr..., Source node reported a fatal Check engine state to see if async
PVPlayerErrSourceFatal error in response to one of the | error handling is occurring or not.
following node commands: Should not playback this source.
Prepare,
QueryDataSourcePaosition,
SetDataSourcePosition, or
Start
PVMFErr..., One datapath encountered Check engine state to see if async

PVPlayerErrDatapathinit

error whiling initializing the
datapath (e.g. setting up and
connecting decoder and sink
nodes)

error handling is occurring or not.
Should not continue. Check
specific error codes for cause of
error.

PVMFErr...,
PVPlayerErrDatapathFatal

One datapath encountered
error whiling starting data flow
(i.e. calling node Start() on
decoder and/or sink node).

Check engine state to see if async
error handling is occurring or not.
Should not continue. Check
specific error codes for cause of
error.

PVMFFailure General failure code. Check engine state to see if async
Components are not behaving | error handling is occurring or not.
as expected. Should not continue and should

shutdown the engine.
Start()
Error code Likely Cause Expected Handling

PVMFErrinvalidState

Not in prepared state. Wrong
state to call Start()

Command is rejected but engine does not
go into error state. No error handling
needed.

SetPlaybackRange()
Error code Likely Cause Expected Handling
PVMFErrinvalidState Wrong state to call Command is rejected but engine does
SetPlaybackRange() not go into error state. No error handling

needed.

PVMFErrArgument Passed in reposition Command is rejected but engine does
parameter is invalid (e.qg. not go into error state. No error handling
position value) needed.

PVMFErrNotSupported Specified reposition parameter | Command is rejected but engine does
is not supported. not go into error state. No error handling

needed

PVMFErr..., Source node reported a fatal Check engine state to see if async error

PVPlayerErrSourceFatal | error in response to one of the | handling is occurring or not. Check

following node commands:

resulting state after error handling




QueryDataSourcePosition or
SetDataSourcePosition

completes before continuing

PVMFErr...,
PVPlayerErrSink

Sink node reported an error in
response to SkipMediaData()
command.

Repositioning during playback did not
succeed properly but playback is still
occurring. Stop playback first before
continuing.

PVMFFailure General failure code. Check engine state to see if async error
Components are not behaving | handling is occurring or not. Should not
as expected. continue and should shutdown the

engine.
Pause()
Error code Likely Cause Expected Handling

PVMFErrinvalidState

Not in started state or already
auto-paused due to source
underflow. Wrong state to call
Pause()

Command is rejected but engine does
not go into error state. No error handling
needed.

PVMFErr...,
PVPlayerErrDatapathFatal

One datapath encountered
error when pausing the
datapath (e.g. node pause
command failed on decoder
and/or sink node).

Check engine state to see if async error
handling is occurring or not. Check
specific error codes for cause of error.
Check resulting state after error
handling completes before continuing

PVMFErr..., Source node reported a fatal Check engine state to see if async error
PVPlayerErrSourceFatal error in response to the node handling is occurring or not. Check
pause command resulting state after error handling
completes before continuing
PVMFFailure General failure code. Check engine state to see if async error
Components are not behaving | handling is occurring or not. Should not
as expected. continue and should shutdown the
engine.
Resume()
Error code Likely Cause Expected Handling

PVMFErrinvalidState

Not in paused state or is in
paused state due to auto-

pause. Wrong state to call
Resume()

Command is rejected but engine does
not go into error state. No error handling
needed.

PVMFErr...,
PVPlayerErrDatapathFatal

One datapath encountered
error when resuming the
datapath (e.g. node start
command failed on decoder
and/or sink node).

Check engine state to see if async error
handling is occurring or not. Check
specific error codes for cause of error.
Check resulting state after error
handling completes before continuing

PVMFErr...,
PVPlayerErrSourceFatal

Source node reported a fatal
error in response to one of the
following node command:
QueryDataSourcePaosition,
SetDataSourcePosition, or
Start

Check engine state to see if async error
handling is occurring or not. Check
resulting state after error handling
completes before continuing




PVMFErr..., Sink node reported an error in | Repositioning when resuming did not
PVPlayerErrSink response to SkipMediaData() | succeed properly but playback has
command. resumed. Stop playback first before
continuing.
PVMFFailure General failure code. Check engine state to see if async error

Components are not behaving
as expected.

handling is occurring or not. Should not
continue and should shutdown the
engine.

Stop()

Error code Likely Cause

Expected Handling

PVMFErrinvalidState Not in started, paused, or
prepared state. Wrong
state to call Stop()

Command is rejected but engine does
not go into error state. No error
handling needed.

PVMFErr..., One datapath
PVPlayerErrDatapathFatal encountered error when
stopping the datapath
(e.g. node stop command
failed on decoder and/or
sink node).

Check engine state to see if async
error handling is occurring or not.
Check specific error codes for cause of
error. Check resulting state after error
handling completes before continuing

PVMFErr..., One datapath
PVPlayerErrDatapathShutdown | encountered error when
tearing down and
resetting the datapath.

Check engine state to see if async
error handling is occurring or not.
Check specific error codes for cause of
error. Check resulting state after error
handling completes before continuing

PVMFErr..., Source node reported a
PVPlayerErrSourceFatal fatal error in response to
the node stop command

Check engine state to see if async
error handling is occurring or not.
Check resulting state after error
handling completes before continuing

PVMFFailure General failure code.
Components are not
behaving as expected.

Check engine state to see if async
error handling is occurring or not.
Should not continue and should
shutdown the engine.

CancelAllCommands()

Error code Likely Cause Expected Handling

PVMFErrArgument The command is called during Command is rejected but engine does not

execution of AcquireLicense or | go into error state. No error handling
CancelAcquireLicense needed.

CancelCommand()

Error code Likely Cause

Expected Handling

PVMFErrArgument If command is called to cancel AcquireLicense or Command is rejected but




CancelAcquireLicense when they are being
processed. OR If there is no Command to be

cancelled.

engine does not go into
error state. No error
handling needed.

RemoveDataSink()

Error code

Likely Cause

Expected Handling

PVMFErrinvalidState

Not in initialized state. Wrong
state to call
RemoveDataSink()

Command is rejected but engine does not go
into error state. No error handling needed.

PVMFErrArgument Passed in data sink is invalid | Command is rejected but engine does not go
into error state. No error handling needed.
PVMFFailure Specified data sink does not | Command is rejected but engine does not go
match an existing datapath. into error state. No error handling needed.
Reset()
Error code Likely Cause Expected Handling

PVMFErrinvalidState

Not in initialized state.

Wrong state to call Reset()

Command is rejected but engine does
not go into error state. No error
handling needed.

PVMFErr...,

PVPlayerErrSourceShutdown

error to node reset
command.

Source node reported a fatal

Check engine state to see if async
error handling is occurring or not.
Check resulting state after error
handling completes before continuing

PVMFFailure General failure code. Check engine state to see if async
Components are not error handling is occurring or not.
behaving as expected. Should not continue and should

shutdown the engine.
RemoveDataSource()
Error code Likely Cause Expected Handling

PVMFErrinvalidState

Not in idle state. Wrong state
to call RemoveDataSource()

Command is rejected but engine does not go
into error state. No error handling needed.

PVMFErrArgument Passed in player data source | Command is rejected but engine does not go
is invalid into error state. No error handling needed.
GetMetadataKeys()
Error code Likely Cause Expected Handling
PVMFErrinvalidState | Wrong state to call Command is rejected but engine does not
GetMetadataKeys() go into error state. No error handling

needed.

PVMFErrArgument One or more passed-in Command is rejected but engine does not
parameter is invalid or there are go into error state. No error handling
no nodes with metadata interface | needed.

PVMFErrNoMemory | Required amount of memory not | Check engine state to see if async error

available in engine

handling is occurring or not. Should not




continue and should shutdown the engine.

PVMFFailure General failure code. Check engine state to see if async error
Components are not behaving as | handling is occurring or not. Should not
expected. continue and should shutdown the engine.

GetMetadataValues()

Error code Likely Cause Expected Handling

PVMFErrinvalidState | Wrong state to call Command is rejected but engine does not
GetMetadataValues() go into error state. No error handling

needed.

PVMFErrArgument One or more passed-in Command is rejected but engine does not
parameter is invalid or there are | go into error state. No error handling
no nodes with metadata interface | needed.
PVMFErrNoMemory | Required amount of memory not | Check engine state to see if async error
available in engine handling is occurring or not. Should not
continue and should shutdown the engine.
PVMFFailure General failure code. Check engine state to see if async error

Components are not behaving as
expected.

handling is occurring or not. Should not
continue and should shutdown the engine.

13.5 Typical Error Events

PVPlayer SDK errors that are not encountered when processing a PVPlayer SDK APl command (e.g.
error during playback) will be reported via the PVErrorEventObserver as an unsolicited event. The
following table lists typical error events reported, the cause of the error, and expected handling by the
user of PVPlayer SDK. As stated before, if an error is reported, the PVPlayer SDK user should check the
PVPlayer engine state before performing any error handling of its own. Some errors might not be major or
fatal and do not require any error handling. Please refer to section 5.1 of pvmf_return_codes.pdf
document for the PVPlayerEngine error and extension codes with their likely causes.

13.6 Fault Detection, Handling and Recovery

Fault is an incorrect and unexpected system state. PVPlayer SDK will try to detect faults based on the
information available. If the fault is avoidable or recoverable, PVPlayer engine will report the fault as an
informational event and try to continue operation. If the fault is unrecoverable, PVPlayer engine will go
into an error state and report the error to the layer above. The layer above will then need to reset or
destroy the PVPlayer engine instance to resume operations from the fault. In some faults like memory
allocation failure, PVPlayer engine will allow the leave to propagate up to the layer above to be trapped
unless the PVPlayer SDK requirement for the platform does not allow leaving.



14 Usage Scenarios

To illustrate how PVPlayer SDK would be typically used, this section will present several PVPlayer SDK
usage scenarios. Scenarios will cover different sources, playback features, and error conditions. The
PVPlayer SDK represented in the scenarios will support all the features, but the interface would be the
base level OSCL-based interface and all underlying nodes are OSCL-based software nodes. The lifelines
in the sequence diagram will be limited to PVPlayer SDK interface and the user of the SDK unless the
scenario calls for other object lifelines.

14.1 Instantiating PVPlayer SDK

The sequence diagram shows how the PVPlayer engine object is created via the factory component. After
instantiation, PVPlayer engine is in IDLE state.

Application PVPlayerFactory PVPlayerEngine

]

I
CreatePlayer() :
|

New()

y

PVPlayerEngine object
is instantiated

return PVPlayerInterface*
M L]

|
Figure 19: Sequence Diagram for Creating PVPlayer

14.2 Shutting down PVPlayer SDK

The sequence diagram shows how the PVPlayer engine object is destroyed via the factory component.
PVPIlayer engine object should be in IDLE state to properly destroy it.



Open

Application PVPlayerFactory PVPlayerEngine

PVPlayerEngine object
is in IDLE state and ready
to be deleted

DeletePlayer()

Ve

delete

'Y

PVPlayerEngine object
is destroyed

1
Figure 20: Sequence Diagram for Deleting PVPlayer

14.3 Open a Local MP4 File, Play and Stop

In this scenario, a local MP4 file containing audio and video tracks is specified as the data source, audio
and video data sinks are added, playback is started, and then stopped after some time.



Open

PVPlayerEngine via PVPlayerint

Application PVCommandStatusObserver erface
Local MP4 file is added
as the data source
AddDataSource()
CommandCompleted()
Init()
MP4 file is parsed by the
appropriate node
CommandCompleted()
e ____________________________
Add data sink for video
AddDataSink()
CommandCompleted()
e ____________________________
Add data sink for audio
AddDataSink()
CommandCompleted()
A ——
Prepare()
Datapaths of nodes are set up
and media data is queued.
CommandCompleted()
A —
Start()
Media data starts flowing
out of the sinks
CommandCompleted()
e ____________________________
Application lets playback occur for
some time and then stops playback
Stop()
CommandCompleted()
6 ____________________________

Figure 21: Open a Local MP4 File, Play and Stop



14.4 Open a RTSP URL, Play and Stop

In this scenario, a streaming source containing audio and video media tracks is specified by a RTSP URL.
Then an audio and a video data sinks are added, playback started and then stopped after some time.

PVPlayerEngine via PVPlayerInt

Application PVCommandStatusObserver erface
RTSP URL is added
as the data source
AddDataSource()
CommandCompleted()
é_ ____________________________
Init()
Streaming server specified by the RTSP
URL is contacted and content info is retrieved
CommandCompleted()
Add data sink for video St ittty
AddDataSink()
CommandCompleted()
6_ ____________________________
Add data sink for audio
AddDataSink()
CommandCompleted()
e e e ]
Prepare()
Datapaths of nodes are set up,
media data is requested from the streaming
server, and media data is queued in the datapaths
CommandCompleted()
e e ]
Start()
Media data starts flowing
out of the sinks
CommandCompleted()
é_ ____________________________
Stop()
Streaming with server is stopped and media
data flushed in the datapaths.
CommandCompleted()
6_ ____________________________

Figure 22: Open a RTSP URL, Play and Stop



14.5 Play a Local File Until End of Clip

This scenario is similar to a prior local file scenario but instead of ending playback due to the user calling
a control API, the playback pauses since the end of clip is reached. The user still needs to call Stop() after
the playback is automatically paused to stop the playback.

PVPlayerEngine via PVPlayerint

Application PVCommandStatusObserver PVinformationalEventObserver erface

Playback of local MP4
file is ongoing.

T
[
1
I
1
1
|
: End of clip is reached so playback is paused
[
1
1
[
1
I
1
1

and goes to PAUSED state. Informational event
(PVMFInfoEndOfData) is sent to notify that
playback paused due to end of clip

HandlelnformationalEvent()

ﬁ_ _____________________

to stop the playback

Application issues a Stop() request ﬁ

Stop()

CommandCompleted()

Kommmmmmmm s VTt i
Figure 23: Play a Local File Until End of Clip

14.6 Play a Local File, Stop and Play Again

This scenario shows how to re-play a clip after it has been played and then stopped. PVPlayer engine
goes to INITIALIZED state after Stop() command completes so Prepare() and Start() are called again to
restart playback.



Open

PVPlayerEngine via PVPlayerint
erface
T

Playback of local MP4
file is ongoing

Application PVCommandStatusObserver

The user stops playback ﬁ

i Stop()
|
: CommandCompleted()
| I
The user restarts playback : :
' I
Prepare() :
i CommandCompleted() :
e e e - el
Istart() :
: N
! CommandCompleted() :
Kommmmmom o 1

Playback has been started again ﬁ

Figure 24: Play a Local File, Stop and Play Again

14.7 Play a local file, stop, open another file, and play

This scenario shows how to open another clip for playback after playing the current clip. The proper
sequence for closing the current clip is shown.



PVPlayerEngine via PVPlayerint

Application PVCommandStatusObserver erface

Playback of local MP4
file is ongoing

User stops current playback
and open and play another
local MP4 file

Remove audio and
video data sinks

RemoveDataSink()

CommandCompleted()

RemoveDataSink()

CommandCompleted()

6_ ____________________________
Reset the engine back to IDLE state
Reset()
Source is reset and
engine goes to IDLE state
CommandCompleted()
6_ ____________________________
Remove the data source for
the current local MP4 file
RemoveDataSource()
CommandCompleted()
6_ ____________________________
Add the data source for the
new local MP4 file and initialize
AddDataSource()
CommandCompleted()
Init()
CommandCompleted()
6_ ____________________________

Add the data sinks

CommandCompleted()

CommandCompleted()
6_ ____________________________
Start playback
Prepare()
CommandCompleted()
.
Start()
CommandCompleted()
6_ ____________________________

Figure 25: Play a local file, stop, open another file, and play



Open

14.8 Play a local file, pause, and resume

In this scenario, a playback is paused and then playback is resumed.

PVPlayerEngine via PVPlayerint
erface
T

Application PVCommandStatusObserver

T

|

|

| Playback of local MP4
: file is ongoing
I

|

|

|

I

The user pauses playback

[ 74—

Datapath stops processing media data
without flushing the data. Media data stops
coming out of the sinks.

Playback has been paused.

CommandCompleted() 1

The user resumes playback

|
I
I
|
1
Resume()

Datapath resumes processing media data.
Media data resumes coming out of sink.
Playback has been resumed.

CommandCompleted() |

Figure 26: Play a local file, pause, and resume

14.9 Play a local file, pause, and stop

In this scenario, a playback is paused and then stopped when paused.



Upen
1

PVPlayerEngine via PVPlayerint

Application PVCommandStatusObserver erface

Playback of local MP4

T T

I I

I |

I I

I I

| I

| | L ;
| | file is ongoing
I

I

I

|

I

The user pauses playback

| Pause()
1 1 AN|
: | |
| I Datapath stops processing media data
! : without flushing the data. Media data stops
: : coming out of the sinks.
: : Playback has been paused.
i i CommandCompleted() i
: e i
I :
The user stops while paused : :
I I
| I Stop() !
1 I N
| | |
I l '
! : Datapath flushes the media data and stops.
: : Engine goes to INITIALIZED state.
I I i
: : CommandCompleted() :
; S v
I

Figure 27: Play a local file, pause, and stop

14.10 Playback of DRM Protected Contents

When playing back DRM-protected content, the interaction between the application and player engine is
very similar to playback of non-protected content with the exception of the handling of license acquisition
and some of the events associated with license acquisition. If the license for a piece of content is
available and valid, then playback will happen automatically using the same sequence of steps as with
non-protected content. If no valid license is available, then the behavior depends on whether this piece of
content had a previous valid license that expired. In most cases the engine simply notifies the application
that acquisition of a valid license is required and relies on the application to decide, possibly through user
interaction, if that should be done.

However, in some cases, it may be desirable to have the player engine automatically attempt to acquire
the new valid license if the existing one has expired. An example would be some form of subscription
service that the user has joined. In that case, the process is streamlined by having the player engine
automatically attempt to acquire the license when necessary. A property stored along with the license
determines whether it should be automatically acquired, so this behavior is only relevant after a license
for a piece of content is acquired for the first time. The following subsections describe the interaction
between the application and player engine for the different scenarios of handling DRM content.



14.10.1 Preparation to Play DRM Protected Contents

Before any DRM content can be played, the appropriate CPM (Content Policy Manager) plug-in modules
must be registered for usage by player engine. For information on CPM plug-ins, refer to the PV CPM
Plug-in Programming Guide.

CPM plug-ins are registered with a factory function and a MIME string, using the
PVMFCPMPIluginFactoryRegistryClient class. For each plug-in, the application instantiates the factory
and passes the factory plus the MIME string to the registry. During playback of protected content, the
player engine will check the registry and instantiate the plug-ins using their factory functions as needed.
In applications that support multiple types of DRM, there will be multiple CPM plug-in modules. In a multi-
DRM scenario, the application can register all available plug-ins without concern for which plug-in will be
used for a particular piece of content, since player engine makes the determination during playback.

The CPM plug-ins can be registered anytime before playback of protected content occurs. The plug-ins
will remain registered until the registry client session is closed. When the client session is closed, all
plug-ins registered during that session are automatically cleaned up and removed. An application could
register all plug-ins before creating player engine then cleanup plug-ins after player engine is destroyed.

Besides registering plug-ins, the application needs to set a Boolean flag in the local source data to tell
player engine that the content may be DRM protected. In some cases, the application may not know
whether a particular piece of content is protected or not. If there is any possibility that it is protected, the
Boolean flag should be set to true.

The sequence diagram below shows the use of the CPM plug-in factory registry to register CPM plug-ins
for use by player engine.



Application PVMECPMPIu iizlrjtactor ReqistryCI

Open a client session to the plug-in registry

Connect()

Register the first plug-in.
RegisterPlugin()

Register the next plug-in.
RegisterPlugin()

Various pieces of content are played.

Close the client session and cleanup all registered plug-ins.

Close()

I T SR S S

Figure 28: Preparation Sequence to Play DRM Protected Contents

14.10.2 Playback of DRM Content with a Valid License Available

Playback of DRM content with a license available is very similar to the usual playback sequence. The
player engine will obtain the license from the license store during the Init phase and report success from
the Init command if the license is valid. At that point the usual playback sequence can happen just as
with non-protected content. If there is not license for this content in the license store or the existing
license is invalid (e.g., expired), then the player engine will report an error and the sequence will proceed
as described in Section 14.10.3. The sequence diagram below shows the details of the interaction
between the application and player engine for the case of an available valid license.



PVPlayerEngine via PVPlayerint

Application PVCommandStatusObserver erface
] ] ]
1 | |
i i
DRM-protected file is added I I
as the data source | :
AddDataSource() !
i CommandCompleted() i
e 4
I
|
Init() :
N
]

License is checked
and if a valid license
exists, then playback
proceeds as usual.

CommandCompleted (PVMFSuccess)

License is available so playback continues as usual .

|
|
1
L
|
|
1
|
|
|
1
|
|
|

|
Figure 29: Playback of DRM Content with a Valid License Available

14.10.3 Playback of DRM Content without a Valid License Available

If there is no license at all for this content in the license store or the existing license is not valid, then the
application will need to send the engine an explicit request to attempt to acquire the license. The call to
Init will fail with the return code PVMFErrDrmLicenseNotFound or PVYMFErrDrmLicenseExpired indicating
that a license must be obtained before the clip can be played. At this point, the application can fail the
playback and end the session with the player engine, acquire the license through some external process
(i.e., outside the scope of the player engine), or request that the engine attempt to acquire the license.

In order to request that the engine acquire the license, the application must first get access to the
appropriate extension interface of the player engine. This process is same as for any extension interface
to engine, the Queryinterface is called with the relevant interface ID. The extension interface is returned
in the CommandCompleted call to the observer. Once the application has the license acquisition
interface, it can make the call to AcquireLicense. The engine attempts to get the license and returns the
result in the CommandCompleted callback to the observer. Assuming the license acquisition was
successful, the application can proceed with Init call again followed by the usual sequence for playback.
In case there is a need for the application/user to be registered to a service, a
PVMFErrDrmDomainRequired or PYMFErrDrmDomainRenewRequired error is returned. The application,
in such a scenario, can make a call to JoinDomain. The necessary parameters for this call can be
obtained from the license status. Assuming the registration was successful, the player engine also
automatically attempts to re-acquire the license. The application can then proceed with Init call again
followed by the usual sequence for playback. Once the application has finished with the license



acquisition interface, it should free the resource by calling the interface’s removeRef() method. The
sequence is shown in the diagrams below.



Open

PVPlayer SDK Developer's Guide

OHA2.07, rev 1

BVP Engine via PVE i
Application PV CommandSiatusDbsarver arlrs

I I ]
- | |
DRM-protected file is added | '
as the data source ! I
AddDataSource() '
i |
l CommandCompleted|} :

Slow
retu
that

If theera is no license available for this content in the license

& or the existing license s invalid, the player engine
rns a failure status from the Init command indicating
license is not available and that license acquisition is

required

CdmrnandCumplatad:F‘UM FEernnLicanseNutFuu'nd}
I 1
,é._ _________________
I ]

with llcense acquisition

with license acguisition.

At this point, the decision about whather to proceed

player engine requires an explicit command 1o proceed

i= left up to the application. The

The application would then query the player Il\.
angine for the license acquistion extension
interface.

Ceryinterface(PVPI

ayerLicenseAcquisitioninterface)
I

PYPlaverl icensefguisition

Acquirelicense() :
_\I

| CommandCompleted(}

by 1

icense acquisition interface s relurned

The engine now attermpts to acg

then a failure will be reported.

the status in a CommandCompleted(} call 1o the obsarver.
If successful then normal playback can proceed. If unsuccessful,

uire the license and retums

! CommandCompleted)

removeRel() I

X

1 Interface can be released after license is acquired.

license acquisition was

1
Fromn this peint the ncrmal playback sequence

successhul,

|
|
|
|
|
|
|
staring with Init can proceed as long as the |
|
|
|
|
|
I

- Page 85 of 104 -



Open PVPlayer SDK Developer's Guide
OHA2.07, rev 1

Application PVCommandStatusObserver erface
T H ]
|
1
DRM-pratected file s added A\ AddDataSource() |
as the data source I |
: CommandComgleted() :
_____________________ I
1 Init(} J

If there is no license available for this content in the license
store or tha existing license is invalid, the player engine
retumns a faillure status from the Init command indicating
that license is not available and that license acquisition is
required,

I CommandCompieted|PAYMFErDmmLicenseMotFoumnd) :
I(_

_____________________ |
1

At this point, the decision about whether to proceed
with license acquisition is left up to the application, The
player engine requires an explicit command to proceed
with license acquisition.

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

engine for the license acquistion extension

1
The application would then guery the player 1
1
interface, 1

Querylnterface{PVPlayerLicensefAcquisitionimterface)

1 CommandComgpleted() |

. ot ol [N v - o M £ W £ R M O R L I ¢ L B L B ) |
PyPlayerlicenseAquisiion K=
| License acquisition interface is returned
] 1

|

|

|

|

| |
| |
| |
| The engine now attempts to acquire the license and retums |
| the status in a CommandCompleted() call to the observer, |
| If there is & requirament that the application neeads lo be |
! registered to a particular service, or renew an existing |
| subscription, then the player engine returmns either a |
; PYMFErDmDomainRequired or PYMFEDomainRenewReguired :
| status. |
| |
| |
|

AcquireLicensa() \J : CommandCompleted()

! | e m e e '

The application can use the JoinDomain API to achieve
this goal of registring andfor renewing the subscription
to a service and retums the status ina
CommandCompleted() call to the observer. If
successful then normal playback can proceed,

If unsuccessful, then & failure will be reported,

JoinDiomaini)

1 CommandCompleted()

Interface can be released after license is acquired.

removeRef)

\<_________z__

Frowm this point the normal playback sequence
starting with Init can proceed as long as the
lloanse acquisition was successiul.

1 nit()
1

|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
| CommandCompleted (PVMFSuccass)
|

|

|

|

Figure 31: Playback of DRM Content with a Valid License Available and which requires registration to
a service

- Page 86 of 104 -



Open

14.10.4 Cancel the License Acquisition of DRM Content

The AcquireLicense call can be canceled before the engine returns the result in the CommandCompleted
callback to the observer. It can make the call to CancelAcquireLicense. Once CancelAcquireLicense is
called during the license acquisition, the engine attempts to cancel the license acquisition and returns the
result in the CommandCompleted callback to the observer. The call to AcquireLicense will be returned
with the return code PVMFErrCancelled, if cancel was successful. The sequence is shown in the diagram
below.

PVPlayerEngine via PVPlayerl
erface

Application PVCommandStatusObserver

The application would then query the playe
engine for the license acquistion extension
interface

QuerylInterfac@VPlayerLicenseAcquisitioninterface

CommandCompletéd

PVPlayerLicenseAquisition || jcense acquisition interface is returned

AcquireLicens@

CancelAcquireLicenge
|
|

The engine now attempts to cancel the license acquisition. First of{all, the|
AcqurieLincense call will be returned with PVMFErrCancelled in a
CommandCompletedand() if cancel is successful. Then engin returns the
status of CancelAquireLicense in a CommandCompleted() call to the
observer.

|
CommandComplet¢@VMFErrCancelled)

removeR€()

Interface can be released after license acquisition

|

| !
N

A
>< is canceled.

Figure 32: Cancel License Acquisition



Upen
1

14.10.5 Preview of DRM Content without a Valid License Available

A variation on the scenario covered in Section 14.10.3 is the case where there is no valid license for full
playback of a piece of content, but there it can be previewed. This scenario might be a common way of
initially distributing content so that consumers can preview it before deciding to purchase a full license. In
this case the Init() method will return with the code

PVMFErrLicenseRequiredPreviewAvailable, which indicates that a license is required for full playback but
a preview is available. In order to play the preview, the application must remove the current source then

add it back with a flag set on the local data source to indicate preview mode. The sequence diagram
below shows the interaction between the engine and the application.

A pop lic tilP_ V. C o m m anrlStatusoPo\s/epllvaevrerEnuIne

| |
| |
D R-pMro te ¢te d [file is | |
a b ded as thoe|l data boouvrce I
I :AddD a t{a)sS o u rce :
! | Com m andf om p'\eled
! \_ ______________1
' | () '
I | |
| | |
| 1 1
th e re is no license a vailable foor this ¢con te n tfin th

f
hoe PV P la yeor ¢ gMlisith aPcVk Mr B & rdd ditcen se R e g v ired?P 1
nodoica te thoat license a¢gqouisition is re g uired aanfd a p
T I I
: C om m a n d(PC VoMm Fp Bertreldic e n s ¢ R e)g v oire
1 |
| (om—mmm ey

T he applica tion c¢an @ lagyutihe , ophrree Wuellwlic e n s
sim p Iy fa il thTeo poplalay p ahctd ep mepvpielioma Jfio n m v st
rem o ve the sowuwrce then -m dodd dt hllg @ is ew ith

|
I !
: : Com m an df om plle te d
! AddD a[(Es'at'u?m'ce?]'r'e'vTe'w"m"o':de fla g
I
: : Command():omp:\eted
i ittt
A fte roa d dinog th e so v orce wopitlh ythje cpkre vie w hodet\a
canproceed\nthesamesequenceasanlunp[ote
I

Figure 33: Preview of DRM Content without a Valid License Available



Upen
1

14.10.6 Playback of DRM Content with Auto License Acquisition

In cases where the license for the content exists in the license store, but it is invalid, the may attempt
automatically acquire a valid license if it has been marked for auto-acquisition (handled outside of the
player engine). In that case the engine will automatically attempt the license acquisition during the Init
phase and return the status to the application in the CommandCompleted call to the observer. In the
process the engine will send an informational event to the event observer as a notification that the license
acquisition is happening. The sequence is shown in the diagram below.

PVPlayerEngine via PVPlayerInt

Application PVinformationalEventObserver PVCommandStatusObserver erface

DRM-protected file is added
as the data source

AddDataSource()

V]

CommandCompleted()
ey

If available license is invalid and
it is set to auto-acquire, then the
engine will attempt to acquire a new
license. First an informational event
is sent about the acquisition attempt.

HandleInformationalEvent(PVMFInfoLicenseAcquisionStarted)
%_ ____________________ 4

_———————————ee e M e

i
|
|
|
|
|
|
|
|
|
|
|
| Init()
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Status from the license acquisition attempt is
returned in the CommandCompleted() call.

I
I

I

l

: 1 CommandCompleted(PVMFSuccess)

I |
! ittt
|

|

I

I

_————————

License is available so playback continues as usual.

Figure 34: Playback of DRM Content with Auto-Acquisition of the License



Upen
1

14.11 Using SetPlaybackRange and PVMFInfoEndOfData Event

The SetPlaybackRange() method can be used to set the end time of playback at which point PVPlayer
will send a PVMFInfoEndOfData event and stop playback. If no end time was specified, that event gets
sent upon reaching the end of the stream instead. Information on how to obtain the complete duration can
be found in section Metadata Handling.

Application

PVPlayerEngine via PVPlayerint

PVinformationalEventObserver PVCommandStatusObserver

erface
T T T T
I I I I
| | 1 |
I I I
: : PVPlayerEngine has been prepared via Prepared() for :
I : local or remote contents. :
I i i
I I 1 I
I I I I
I I I I
| | | |
: | Start() | |
I 1 1 _ N
: : : CommandCompleted() :

- B | K o ___ 1 | Media data starts
PVMFInfoPositionStatus : HandlelnformationalEvent(PVMFInfoPositionStatus, 800ms) I | flowing out of the
events are provided e L - | data sinks (ie
periodically, after Start() | SetPlaybackRange() I | media 10 nodes
command completes with - ! ~ | & components)
success. | | CommandCompleted() |

I | |

. K== 1
SetPlaybackRange() is : : :
called, to set the end time, I . ! » I
which will trigger : Handle|nformanona|Event(PVlV! FInfoPositionStatus, 6500ms) :
PVMFInfoEndOfData event Kem—mmmmmmmmm oo Fomomomo T 1
to occur upon reaching the 1 I I
specified end time. The I : :
example shows that : ! :
SetPlaybackRange() is | I I
called during playback, but : : :
it may also be called before ! HandlelnformationalEvent(PVMFInfoPositionStatus, 20000ms) l
Start(). i L 1

| HandleInformationalEvent(PVMFInfoEndOfData) :

e om oo

PVMFInfoEndOfData event will occur, due to reaching
that may occur before calling Start(), or during playback.

Example is shown assuming the end time is specified to
be 20000 msec.

PVP_STATE_PAUSED

=
:
|

the end time specified in SetPlaybackRange() call :
I
I
|
|
|
I
|
I
|
I

Figure 35: Using SetPlaybackRange and PVMFInfoEndOfData Event



Open

14.12 Looped Playback Using SetPlaybackRange

Applications can achieve looped playback by repositioning the playback to the beginning of the file or
stream using SetPlaybackRange() upon receiving the PVMFInfoEndOfData event.

A p op licaltipPnV In fo rm a tio n a f [PV C om m andS |ta tu s[OR bV sPelayyeerriin te rfa ce
i i I !
| | | PV P layer s in |state
| | | P V.® T AP R EPAIRED
I | . 1 I 1
r
: I i) : N
| | | Com m and()onl
| ke e — —
PPVoM F Info P ooositio § ta WU & nedvie VnlSo rm(PaViid nFalkE fo e nots oni)sn S b
are porovided poerfopgieatly alle - _ e e - |
Stdpom m and cowm pletes w ith S e tP laybapkR ange |
S U cc.8& sestP layb aldiskR la—n—g—e } ~
coalle d w ith end tip le set to thoe | Com n ﬂﬂﬂ[C)Um:PWWd
¢ lip d u,mafioch ow il frilg goe ot I\;—————————————I
PV W F Info E nd o0 f rla e ventoand | |
fe\aaycbhamcgk Iphaeu Z‘nn dg OI|0, Coh‘cpcaunrd L‘ep\n fo rm(PaVtid nFalhe fo eP notes 5tiflo 0n S fa tu s
K m - ———— A - |
| | I |
| | |
| | H oa ndle In form(PaVtid nFalhE fo e notls 0t im 0n)<S th oty s
| [P —|——————————————=
| | | .
| | Polayback reaches the specified e ¢ tim e ¢
| [ sequence and then sends a PV W|F InfoEn
: : is show n assum ing the e2 @ 0mmGe cfs sp e cifi
T
I | I !
] | H oandle Inform(PaVtid nFallt foefnntd 0 ih oata
! T B P !
1 | |
T o loop pthae baapcpklic a tio ca lls : PV P T AP EU S ED
S e tP layb alwkiRhahgein tim e | - h
se t0tan d end tim e set to]clip duvration | .
then call(RAWe s wem &®(p sumi e | |
com o mo a0 d o golamy b kectk sw illfo ccouor | |
from the beginning of the ¢lip 1 :
S e tP la b a kIR 2 n e
: : y (4 ! g N
1 | 1 Com m andC)onlpileted
[ [ . kem—mm o
e s )m e
: : ) ! N
] | ] Command(C)um'p\eted
| | ke e e — — 1
| | 1
I | I Polayer engine sets da ta
1 | I rep oo sition to the boe g ifgoning o
! | | so the playbapcle yrk s ¢s
: : : starts from the boe.ginaning of
| | Hoandle In fo rm(PaVtid nFalhE fo e notss Gnilo)jsn S Vatu s
! e e e :
| | 1 |
| | |
| | H oan d le In fo rm(PaVtid nFalhE fo eP noi2s 0t im 0n)9S thotu s
! e e e —— B {
I | 1 |
| | |
! ! Plp tayback reaches the specified e
: : :pausesequ ce and then sends
| | 1
| | H oandle In form(PaVtid nFalht foe§nantd 0 XP a ta
| ke — — — A
| | I
1
T o lo o p pla yrbeapcekaa gihaenpirocess : P V9T APMAEU SETDPD
|
] | |

Figure 36: Looped Playback Using SetPlaybackRange



Upen
1

14.13 Start Download Session

To start a download and playback session, the application would need to configure the
PVPlayerDataSourceURL object to provide the download source URL, playback control mode and other
information. The following playback control modes are defined in
PVMFSourceContextDataDownloadHTTP class:

1.ENoPlayback — Download only and playback will not be started

2.EAfterDownload — Playback will start after download is completed

3.EAsap — Progressive Download mode where playback starts as soon as possible.
4.ENoSaveToFile — Progressive Streaming mode where downloaded media data is not stored in file.

The sequence below illustrates the interaction between application and PVPlayer to start a download
playback session.

A pop lich tio n PV C om m andf taty?P e yrey glm te rfa

]
PPV P layer hag been c¢related
|

|
* |
SCoon ve ot opoa s ebbo Uuhoilepfdoem U T F
-C reédaCte n fig vre P VP laperDd gtasSource U R L
|
|

0b ject acco rdinog Iy

Ad dD a (g S ource
|

- :
Ad d D 4 )ta S in ¥k |

Ad d 4 aftla_ s in k 1 N

for vid efd | Com m and)C olm ple te d
| e
I Ad 4D {)ta s ik I

Add 4 aftla__s in k 1 |

for au djib | Com m and¢)C olm ple te d
1 L
| Pore flare |
| 1 N
| | Coom m anq) olm ple ted
I e
1 |

Wooa it for dow nload

from 0bh sk orve s

|

| |

re late d e poeon ots | |
| |

| |

|

Figure 37: Start Download Session



Open

14.14 Handling Progressive Download Events

This diagram shows a progressive download session that starts playback as soon as enough media data

has been downloaded.

Figure 38: Handling Progressive Download Events

‘ ‘ P la, y.e I in
PV In fo rm a tio n|f|{A_p o licjadP V C o m m a1 ¢fST& T 350 Ty 7 1
| . o | |
Dooow nmodoa s taftuos dis o oporoovidye d [
poe rio dWich Eyn e frpo uog b Hoa o d le In fo (PmV aMtif nona fl Bv o hfe rin g S ta I
moe d ia ¢ a ta is va il b e o e e e e 4
PPV M F In fo D a g R e a d yH e vnednlet [is fo (PmV aMtif nonafl€ By6d hfe rin g § ta tu s
sentto o sign o l—e— VL th @t 4y 4
pola yboa ¢k coaon |[slta rt Hoa n d fe In fo (PnVaMtie nnafl€ By2e®hfg rin g Spta tu s
ke ——————— d—————————— - ————— e ——— -
20 is aon e xanm e v s e d i and e In fo PnVaMtif dnaflE DvenatR ep 0y
this sequ e che|sk—rga4r———"dA—-—--——————— F——_—_————————— 4
nouom o oboerom o oay plary doepoe o dlin g | |
oon thoe dooow o0 | hodoe ¢lip 14 | |
th e noe tw ook co:n i itio n s : : :
Appmation(s)mJalucaHs[aul IS th)rt I
sta rtop,hanyptame ka fre I } ~ ‘
PV M FoInfoD afdRr e ady e velnt | Com moan{d)C an plete
[ I I v e e -
i | Hoa nd le In fo (PmV aMtif o na flE PG e0med)igio n S tp tu s
_____ N U |
boow nlo ad 5131:#5 C O NI by & Se | fo [PV aMti6 nona fIE BudaWhip rin g Sy ta tu s
Uon o tibdooow o0 looa |s_c_0__m_L_\e_q _______________________
Evoe wdfplaybaqk hoa s pa e @ & Wn fo (PmV aMtif dona {1 P a6 mOitGio 0 S g tu s
sta rte d N\ rvee- - - - 4l
| Hoa n d e In fo (PmV aMtif nona fle Byle 0Bf0B) rin g Sypta tu s
Pooosition sta ty pgodfa—e v eadqe s b 4
boe gsimosoon o oa fte rfkh e Hoa n ¢ e In fo (PmV altif nonaflE Bvog)hfe rin g f o m p le
Com m andC ofmkp—lo-dtod—p-trdbdt e e
for G)imadre pen dfdn tly fHhoann ¢ le In fo (PnV altis onafl€ Bvledshithiodn S taptu s
th e dow nuonatil| ktr+—yr————d e e e e b e e e e —
fe a0 hodn g thoe I 4 o thhae“éjI‘i“p‘” fo (PmV aMti& nonafl€ Rv2e2shmitthiodn § taptu s
Ke—————— Td————————— F——_—_—_—_—_—_—_————— -
| | | |
| | | |
| | | |




Upen
1

14.1 Handling Download Events

This diagram shows a download session that starts playback after the entire file is downloaded.

) PV P g ye rE pog inf
PV In fo rm a tio n faf Ap p licl@|P_V C 0o m mandStatusOEb[sIaegveer

‘ Hoanod e In fo r(m ValioFnla i §eunifie rin gls ta 11
Doow o nlooad sta ks sy bl _ L _______ —
poe rio dTichaellyfile Wl ill b e Hoa n 4 le In fo r(m Valioknla B B gWME Tim g STa tus
dow nloaded cphkgdetp——dmmme——_—— —— b——_—_——.— - — . - 4
boe fore P v W F nltop & tafipaenalgleytn fo r(m VaMioFnla P 8 p@nifte)rin g S ba tu s
evenlissenlll"rg—n—a—l—r-h—e— —=———————= :— ————————————— ':
that playback Ianslarl | | |
| | | |
PV M F In fo D a thIR e a dy e vealt I |
moay also o cocoufrla frer Hoaon 4 de In fo (M ValMiokala fo 8 ¢tn0%e Jpin g § ta tus
PN F o fo 8oy ffekrirr gt ——————— b 4
e velmtth isthea s ¢! Hoa o d le In fo (M VaMioFnla FB 8 eunffte rin g Clom p le te
a pop lica tio n § o gttt ——————— L—, ———————————— -
; | Hoa nd le In fo (M VaMioFnla fB)Deantd R e ald y
sta rtopla gl oaimke ja fter ]
re e e ivin g P T T 's et |
PV R I fe Do g R e a doy e voe ot | N
| | | Com m aan ¢)C olm p le te d
| | e -
| Boa nd e In fo (M VaMioFnla fB P 806m0ksio n S taltu s
ke e N U -
| Hoa nd le In fo (M ValioFnla Fb P, dodsnit)le n S ta ku s
k- —— A= e ——_— -
| Hoa nd le In fo (M ValioFnla fB P 8 Asmit)le n S ta ku s
k- N —_———— = -

Figure 39: Handling Download Events

14.2 Auto-Pause-Resume in Progressive Download Session

In progressive download session, it is possible that the playback is consuming data from the partially
downloaded media file faster than the download speed due to network condition and/or buffering
condition settings. When PVPlayer runs out of data for playback, it would trigger the auto-pause
sequence and notifies the application by sending PVMFInfoUnderflow event. When more data is
downloaded during auto-pause, PVPlayer auto-resumes the playback and notifies the application by
sending PVMFInfoDataReady event. It is not necessary for the application to call Start() again upon
PVMFInfoDataReady event for auto-resume notification.



Open

A pop lic l\anPVCnmmandSPluplavseHEv”urMEVia
i PETIEN;
| | |
Do w nload  ahmad Bt MteFdln fo D ata R e ady e ven ha s o coTyurr
A op p lica tion ibpcsa dlungggoe Satatdt p la yb a ¢k
PV In form a tion afl
|
f
D o w n loading s|hem S W
slow ing dow 0 R ile Ia
conli‘naunedsevenlﬁ_a_l_\y___H _________________________
anoouondoe rfloow ehond ition_mws_ _ _ _ _ o _ ol
trig ¢g.@a medd p v P Iaﬁer
ente 1 oauw e sldll
Hoa
Inth epa w foe sla'gt_e __________________________________
thebufteringa:n poo s H
sta tu s e vents clée—a—d—m—a—-e- —————————————————————————————
poe rio dwiciahllyth e | 8
p oo s itio n s tayin — =t — = == — = ———
pau se d (B ol Psiopn
wohoile om0 re doa fajis boein
d o w n lm & diedicapjte d
by bou ffe ring stptgs _ ~ 7 T T T TTTTTTT T T T T T T T T T T T T
e Ve nt |
f Hoand le Info r¢p ‘aIMwan'Lan\EuvPe‘MQm\aﬂsnSlal SA u to Pl
o __
I Boandle InforfP 4 Mok knlEovBe wathe Jin g s td 1@ sn P [a
e
I - ==L ==
I Hoand le In forfP ¥ MoFn hnlEovPe & & MiPsn S ta td s
1 1
N | |
| | | |
: Hoa n d le In fo rfP ¥ Mo Fn knlBovBe wdfthe jin g S td tu s
Ie———————!—————————————!— ——————————————
| Hoan d le In fo r P ¥ MoF hnlEovPe & & imiPsn S ta td s
- __
= I I
t t t t
Wohoe enoughd}m\sdowHand\e\nfor{m’\am’\an\an\Eo‘»aDeennaRea y
in a-p dou se th ea fea tl{————————+————————————:— ——————————————
readyevenlisseln aspvPI\ayeI I I
a u-te suom e s to | ¢k . .
P a:y Boa nd e In fo P ¥ Oio R EnlBovPe, d 8 imio)d 5 ta td
1 1
e T T T e e e . — — — — — —— — — — — -
Pohe exan ple st h S él_H EEERE TP ¥ Mo FnoenlBovBe wdfthe jin g S t
dooow noloa d in g coonptinue s wowpiou oy |
pola yboa ¢k |e_____—___________-__'_______-_ _______
| Hoa nd le In fo r @ ¥ Mo &nlBovPe & & iGmi6o)sd S ta tu
e ___1
A outo /umsuusneemaﬁoccur 1 | |
a g adiem p e n d ing o nl tf e | | |
e two oo ok conditio:ns @m0 K oaon g de Inofo r P W Mo knlBovBe wsfhe yin g S td tu s
lo audn til th e ¢con te e Ly ]
d o ow nloaded l Hoan d le In fo r P ¥ o R &nlBovPe, @ & ifmo)sh S ta tus
1 1
N [ [ |
| * ' |
A u to fre wusme e m a yde pceunrdangga onn hoe noe tw o1k
coon 4 itioon s a n, @ nstylstheem ¢ donate n t s fp Iy d o w nlo a d ¢

Figure 40: Auto-Pause-Resume in Progressive Download Session



Open

14.3 Error Recovery During Initialization

When processing the Init() request, PVPlayer engine receives an error from the source node (e.g. file not
present, network not available). PVPlayer engine goes to the ERROR state, handles the error by resetting
the source node, and goes back to the IDLE state. When error handling is complete, PVPlayer engine
reports PVMFInfoErrorHandlingComplete informational event.

) ‘ PV P la ye rE n g infe Vi
A op plicja PV C om m an dfS|PtaVtiinsf® Mdms ea rtioenrja| vV & T L0 o Sefe 7 ¢
| | | |
) ‘ | ) | |
A opop lica tio n (sesq ue sat o) I it ] |
to in itia lize the sourcl | |
| Lo (i | |
| | N
| | 1
I I T he source node rep
I ! Wb ile in Btim giznineq 1{¢ p o rts
: : re g u e sgtofe sleid to EaRn R 0
I I sta rtoe rror oreco0overy
| Com m an@)C om pletel
e |
T he sowvrce 1o d is

e n g in e g o ¢ ST thoe InD| L E
PV oM F I fo E rrorH oo
inmfo rm a tion a l e vedpt

|
|
|
|
|
|
| Hoa nd le In fo g L tion a IE veon
|

|

I I I
Figure 41: Error Recovery During Initialization

14.4 Error Recovery During Playback

During playback, PVPlayer engine receives an error from a decoder node (e.g. device became
unavailable, corrupt data). PVPlayer engine goes to the ERROR state, handles the error by stopping the
playback, and goes back to the INITIALIZED state. When error handling is complete, PVPlayer engine
reports PVMFInfoErrorHandlingComplete informational event.



Open

PVPlayerEngine via PVPlayerint

Application PVErrorEventObserver PVinformationalEventObserver erface
T T T T
| I I I
L I I I
| I |
In middle of playback : : :
| I .
| : A decoder node reports an error
: : during playback. Engine reports error event,
I I goes into ERROR state, and start error recovery.
: HandIeErrorEvent() ]
S |
|

|
Figure 42: Error Recovery During Playback

14.5 Unrecoverable Error Handling

During playback, PVPlayer engine receives an error from the source node which requires the node to be
destroyed. PVPlayer engine goes to the ERROR state, handles the error by stopping the playback, then
resetting the source node, and cleaning up. The engine ends up in the IDLE state. When error handling is
complete, PVPlayer engine reports PVMFInfoErrorHandlingComplete informational event.

Application

PVErrorEventObserver

PVInformationalEventObserver

Datagraph is stopped and then
destroyed. Player engine goes

to INITIALIZED state. Then
PVMFInfoErrorHandlingComplete
informational event is sent.

I
HandlelnformationalEvent() :

PVPlayerEngine via PVPlayerint
erface

In middle of playback

%_ ________

The source node reports an unrecoverable
error during playback. Engine reports error event,
goes into ERROR state, and starts shutdown.

HandleErrorEvent()

Datagraph is stopped and then
destroyed. Source node is reset

and then destroyed. All data sink

and source references are removed
and all engine settings are reset.
Player engine goes to IDLE state.

Then PVMFInfoErrorHandlingComplete
informational event is sent.

|
|
|
|
1
1
1
1
1
|
i
——————————— r-————-——————————————
:
|
1
|
|
!
|
|
1
|
1
1
|
|
|
|
|
|
|
!

&_ ________
|
Figure 43: Unrecoverable Error Handling



14.6 Gapless Playback

14.20.1 Gapless Metadata

The PVPlayer SDK, internally, processes gapless metadata whenever available to produce true Gapless
experience. The following is the information that is extracted:

—Encoder Delay: Delay introduced at the start of the track, in number of samples.

—Zero Padding: Padding at the end of the track, in number of samples.

—Part Of Gapless Album: Whether a particular track is part of a gapless album or not.

The PVPlayer SDK currently can extract the metadata provided by either the iTunes encoder (via the
ID3v2 tags) or the LAME encoder (via the XING header). Irrespective of whether a particular playback
session is meant to be gapless or not, the PVPlayer SDK always removes the extra samples present at
either end of the track.

Note: For cases where gapless metadata is available via both ID3v2 tags and the XING header, the
preference is given to the information from the ID3v2 tags.

14.20.2 Gapless Playlist

Users of the PVPlayer SDK can use a single datasource to queue in multiple clips of the same format.
This would constitute a Playlist session. If these clips, sequentially, are part of a gapless album, then the
session can be truly “Gapless”. Using a playlist datasource eliminates delays from individual track setup &
teardown that would occur if tracks are played using individual data sources. This is essential for a true
gapless playback experience. NOTE: Though there is a provision of updating the datasource after
playback starts (please see Section 14.21), adding all the clips prior to the start of the playback is the
preferred way of adding the datasource. Also, this is the simplest way of setting up a gapless playlist.

The abstract class PVPlayerDataSource has additional APIs that could be used to add or append more
than one clip in a datasource. These APIs are GetNumClips( ), ExtendClipList( ), SetCurrentClip( ), and
GetCurrentClip( ). The following is the definition of these APIs:

/**
* For playlist support

* @return

Total number of clips in this data source.
**/
virtual uint32 GetNumClips() = 0;

/**

* Extends the playlist by one by adding to the end and sets the current clip to the new clip.
* If the list cannot be expanded, the current clip is unchanged.

* @return

*  Current clip number.

**/

virtual uint32 ExtendClipList() = 0;

/**


http://gabriel.mp3-tech.org/mp3infotag.html
http://www.hydrogenaudio.org/forums/index.php?showtopic=48231&st=136

* Sets current clip number to the given index. If the index is invalid, the current clip number is
* unchanged.

* @param alndex

*  Zero-based index

* @return

*  Current clip number.

**/

virtual uint32 SetCurrentClip(uint32 alndex) = 0;

/**

* Retrieves current clip number.
* @return

*  Current clip number.

*

**/
virtual uint32 GetCurrentClip() = 0;

The following is an example of how a datasource can be extended to use it for a playlist scenario. In this
example, we will be using PVPlayerDataSourceURL as a datasource which would then be used to add 3
clips in its list.

iDataSource = new PVPlayerDataSourceURL;

iDataSource->SetDataSourceURL (fileName1l);

iDataSource->ExtendClipList();

iDataSource->SetDataSourceURL(fileName2);

iDataSource->ExtendClipList();

iDataSource->SetDataSourceURL(fileName3);

OSCL_TRY (err, iCmdId = iPlayer->AddDataSource(*iDataSource, (OsclAny*) & obj));

The sequence diagram is exactly the same as shown for a single local playback as shown in 74. Only
difference is in the “AddDataSource()” command, where for the former we add only a single clip, and
here, we can add multiple clips.

NOTE: The following are a few limitations to the playlist usage:

—Only audio clips in a playlist are supported. If a playlist contains:

—a video clip at the top of the list, only the first (video) clip will be played.

—a audio clip at the top of the list, then all non-audio only clips in the rest of the playlist will be ignored.
—All clips in the playlist should be of the same codec type.

-The codec parameters such as sampling rate, no. of channels, are also expected to be the same. For
mismatched parameters, it is expected that the MIOs support the in-band reconfig message.



Upen
1

14.21 Usage of UpdateDataSource() for Playlist Sessions

In a playlist scenario, instead of adding all the clips to the datasource prior to the playback, the user of the
PVPlayer SDK can also update the data source after a datasource has been added, using
UpdateDataSource(), such that clips get appended in the player engine, and the playback of clips
happens sequentially. UpdateDataSource() can be called at any point after AddDataSource(). If the user
updates the source information of a clip currently being played, then the command fails.

14.21.1 UpdateDataSource() before Start() - Adding new clips

In this scenario, the user calls AddDataSource(). Then, before calling Start(), the user decides to add
more clips to the datasource.

PVETrror PV iInf
EventObs¢rveEven

— o
o -

rE“iO"aPV(Dom m andStatulsOb PYPlayerEng|

App licatioln rver PV Playerintel

o

Add one cflip

AddDfataS(dgurce

PV PlayerlnfoC lipilinitialized

Comm andCom p|leted

The regular siffe)pAsd d D lantgtfamlid Pre(pare

UpdalteD ata§ource

Comm and Com pljleted

S[tafr)t

Comm andCom p|leted

PV[PlayerlinfoClip PlayiQackStarted

PVIPlayerlinfoClip Play2 ackStarted

Engine goes into auto pause af the en

Figure 44: UpdateDataSource() before Start()



Open

14.21.2 UpdateDataSource() after Start() - Adding new clips

In this scenario, the user calls AddDataSource(). Then, Start() is issued. During playback, the user wants
to append clips to the existing datasource.

";“iona‘PVCom m andStatulsOob PYPlayerEng|

Ap p licatioln server PV Playerlintel]

Add one cflip

AddDJlataS(gurce

PV PlayerlnfoC liptlinitialized

Comm andCom p|leted

The regular sife)pAsd d D lantgtfambkd Pre(pare

S[tafr)t

Comm andCom p|leted

e
PVIPlayerlinfoClip PlayiQackStarted

UpdalteD ataSource

Com m andCom p|leted

PV PlayerlinifoClip2n|itialized

PVIPlayerlnfoClip Play2jackStarted

PVPlayerEndOTfCIlipReached

Figure 45: UpdateDataSource() after Start() - Adding new clips



14.21.3 UpdateDataSource() after Start() - Modifying a clip that has
already started playing

In this scenario, the user calls AddDataSource() with two clips in its datasource. Then, Start() is issued.
First clip finishes playback, and the second clip starts. At this point, the user calls UpdateDataSource()
with the clip in slot 2 modified. It is expected that UpdateDataSource() in this scenario fails.

m altion all PVPlayerEng i
b rVe’PVCommandSla\lusOb PV Playerintel

rror PV inf
Obs¢rveEvVen

— o
o~

Applicatiofn E v

Add tw o c|ips

AddDJataS(gurce

PV PlayerlnfoC liptlinitialized

Comm andCom p|leted

Thle regular ste)gAsd d fD lantetyPmep ayrand S(thrt

PVIPlayerlinfoClip PlayigackStarted

PVIPlayerlinfoClip Play2jackStarted

he dataso rece
UpdalteD ataSource

Command Com pfeted
-Failed

Notd here is no error handltng w he
UpdateD ata §cooumr mean d fails:

Engine goes into auto pause af the en:

PVPlayerEndOTfCIlipReached

Figure 46: UpdateDataSource() after Start() - Attempt to modify a clip that has already started playing



1 Application’s involvement in Track Selection

It is possible for the user of PVPlayerSDK (also referred to as application or app) to participate in the track
selection process. The extension interface (PVPlayerTrackSelectioninterface) is exposed via the player
API, Queryinterface(), by requesting with the UUID associated with the interface. Before describing this
interface and its usage we define the following terms:

e Complete List — This is the complete list of available tracks in multimedia presentation.

e Playable List — This is the list of playable tracks. The list of playable tracks is a subset (at times a
proper subset) of the complete list of available tracks.

e Selected List — This refers to the list of tracks selected by player engine from playable list for
playback. Player engine performs track selection during “prepare”.

e PVMFMediaPresentationinfo — Player engine uses this data structure to expose the contents of
the above three lists.

e PVMFTrackSelectionHelper — This is an abstract interface that exposes a synchronous method to
obtain track selection inputs from the user of PVPlayerSDK. If the user of PVPlayerSDK wishes to
participate in the track selection process then, the user of the SDK needs to provide an
implementation of this object. If provided, PVPlayerSDK will invoke the SelectTracks(...) API as
part of “prepare”.

PVPlayerTrackSelectioninterface exposes APIs to retrieve the complete list, playable list and selected list.
In addition to these APIs this interface also provides a mechanism for the application to register its
implementation of the PVMFTrackSelectionHelper interface. While invoking the “SelectTracks(...)” API,
PVPlayerSDK provides it with a playable list and the implementation of PVMFTrackSelectionHelper is
responsible for creating the selected list based on this input. For exact syntax of these interfaces and their
APIs please refer to \engines\playeninclude\pv_player_track_selection_interface.h

1.1 Memory Considerations

All of the APIs of PVPlayerTrackSelectioninterface and PVMFTrackSelectionHelper objects allocate
memory. Therefore both these interfaces contain explicit release APIs. These release APIs remove any
ambiguity about memory ownership.



2 Diagnostics

2.1 Instrumentation and Debug Logs

The PVLogger component is used inside PVPlayer SDK to log stack trace, warnings, error, and other
information. PVLogger provides a very flexible and extensible framework that allows fine-grained control

of the exact logging point and logging level along with the ability to filter messages and route messages to
arbitrary outputs.

OSCL-based PVPlayer engine expects PVLogger to be initialized by the user of PVPlayer SDK and it
provides standard SDK APIs for logging via the extension interface. Refer to the PVLogger User's Guide
for more details on PVLogger.



	 1   Introduction
	 1.1  PVPlayer SDK Definition
	 1.2  PVPlayer SDK Scope
	 1.3  Audience

	 2  High Level Design
	 2.1  Scope and Limitations
	 2.2  Requirements on Platform and Tools
	 2.3  Architecture and Component Breakdown
	 2.4  Control Flow
	 2.5  Data Flow

	 3  PVPlayer Engine Design
	 3.1  PVPlayerInterface API
	 3.2  Asynchronous Operations
	 3.3  Event Handling
	 3.4  PVPlayer Engine Structure
	 3.5  State Transition Diagram

	 4  Interface
	 4.1  Default Interface
	 4.2  Adaptation Layer
	 4.3  Multi-Threading Support
	 4.4  Media Data Output to Data Sink
	 4.5  Porting to a New Platform

	 5  PVMF Nodes for Player
	 5.1  Data Sink Nodes
	 5.1.1  PVMFMediaOutputNode
	 5.1.2  PVMFFileOutputNode


	 6  Temporal Synchronization
	 6.1  Clock in PVPlayer SDK

	 7  Synchronization with timestamps
	 7.1  Synchronization with flow controlling data sink
	 7.2  Synchronization with combination
	 7.3  Faster or slower than “real-time”

	 8  Playback Control
	 8.1  Starting and Stopping
	 8.2  Pausing and resuming
	 8.3  Repositioning

	 9  Capability Query and Configuring Settings
	 9.1  PVPlayer Engine Key Strings
	 9.2  Node Level Key Strings
	 9.2.1  Download Progress Usage Detail

	 9.1  Usage examples

	 10  Metadata Handling
	 10.1  Metadata retrieval APIs
	 10.1.1  Metadata Related Events

	 10.2  Retrieving Metadata List
	 10.3  Querying Metadata
	 10.4  Metadata Storage
	 10.5  Metadata Keys
	 10.5.1  Limiting the Metadata Value Size
	 10.5.2  Duration
	 10.5.3  Genre
	 10.5.4  Graphic

	 10.1  Track-level Information
	 10.1.1  Compact Representation of Ranges
	 10.1.2  General Information
	 10.1.3  Format Specific Information

	 10.2  Codec Level Format Specific Information
	 10.3  Language Codes
	 10.4  DRM Related Metadata
	 10.4.1  Windows Media DRM

	 10.1  Access to Other Metadata 
	 10.2  Receiving Metadata from Informational Event Callback
	 10.3  Receiving Metadata during Clip Transition
	 14.20.1  PVPlayerInfoClipInitialized
	 14.20.2  PVPlayerInfoClipPlaybackStarted
	 14.20.3  PVPlayerInfoClipPlaybackEnded

	 10.4  Metadata Retrieval Usage Example
	 10.5  Supported Key Strings in Select PVMF Nodes

	 11  Playback Position
	 11.1  Retrieve Playback Position Using API Call
	 11.2  Receive Playback Position from Informational Event

	 12  Frame and Metadata Utility
	 12.1  Creating and Deleting the Utility
	 12.2  Options for Specifying the Desired Frame
	 12.1  Set Timeout for Frame Retrieval
	 12.2  Usage Sequence

	 13  Error and Fault Handling
	 13.1  Error Handling
	 13.2  Error Codes
	 13.3  Error Code Translation and Error Chain
	 13.4  Typical Errors in Command Response
	 13.5  Typical Error Events
	 13.6  Fault Detection, Handling and Recovery

	 14  Usage Scenarios
	 14.1  Instantiating PVPlayer SDK
	 14.2  Shutting down PVPlayer SDK
	 14.3  Open a Local MP4 File, Play and Stop
	 14.4  Open a RTSP URL, Play and Stop
	 14.5  Play a Local File Until End of Clip
	 14.6  Play a Local File, Stop and Play Again
	 14.7  Play a local file, stop, open another file, and play
	 14.8  Play a local file, pause, and resume
	 14.9  Play a local file, pause, and stop
	 14.10  Playback of DRM Protected Contents
	 14.10.1  Preparation to Play DRM Protected Contents
	 14.10.2  Playback of DRM Content with a Valid License Available
	 14.10.3  Playback of DRM Content without a Valid License Available
	 14.10.4  Cancel the License Acquisition of DRM Content
	 14.10.5  Preview of DRM Content without a Valid License Available
	 14.10.6  Playback of DRM Content with Auto License Acquisition

	 14.11  Using SetPlaybackRange and PVMFInfoEndOfData Event
	 14.12  Looped Playback Using SetPlaybackRange
	 14.13  Start Download Session
	 14.14  Handling Progressive Download Events
	 14.1  Handling Download Events
	 14.2  Auto-Pause-Resume in Progressive Download Session
	 14.3  Error Recovery During Initialization
	 14.4  Error Recovery During Playback
	 14.5  Unrecoverable Error Handling
	 14.6  Gapless Playback
	 14.20.1  Gapless Metadata
	 14.20.2  Gapless Playlist

	 14.21  Usage of UpdateDataSource() for Playlist Sessions
	 14.21.1  UpdateDataSource() before Start() - Adding new clips
	 14.21.2  UpdateDataSource() after Start() - Adding new clips
	 14.21.3  UpdateDataSource() after Start() - Modifying a clip that has already started playing


	 1  Application’s involvement in Track Selection 
	 1.1  Memory Considerations

	 2  Diagnostics
	 2.1  Instrumentation and Debug Logs


