
PV Player Engine

Build Version: CORE_8.509.1.3

April 9, 2010

Contents

1 pvplayer_engine Data Structure Index 1

1.1 pvplayer_engine Data Structures. 1

2 pvplayer_engine File Index 2

2.1 pvplayer_engine File List. 2

3 pvplayer_engine Data Structure Documentation 3

3.1 PVPlayerInterface Class Reference. 3

4 pvplayer_engine File Documentation 19

4.1 pv_player_interface.h File Reference. 19

Chapter 1

pvplayer_engine Data Structure Index

1.1 pvplayer_engine Data Structures

Here are the data structures with brief descriptions:

PVPlayerInterface . 3

Chapter 2

pvplayer_engine File Index

2.1 pvplayer_engine File List

Here is a list of all files with brief descriptions:

pv_player_interface.h. 19

Chapter 3

pvplayer_engine Data Structure
Documentation

3.1 PVPlayerInterface Class Reference

#include <pv_player_interface.h >

Public Methods

• virtual∼PVPlayerInterface()
• virtual PVCommandIdGetSDKModuleInfo(PVSDKModuleInfo &aSDKModuleInfo, const Oscl-

Any ∗aContextData=NULL)=0
• virtual PVCommandIdSetLogAppender(const char∗aTag, OsclSharedPtr< PVLoggerAppender>

&aAppender, const OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdRemoveLogAppender(const char∗aTag, OsclSharedPtr< PVLogger-

Appender> &aAppender, const OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdSetLogLevel(const char∗aTag, int32 aLevel, bool aSetSubtree=false, const

OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdGetLogLevel(const char∗aTag, PVLogLevelInfo &aLogInfo, const Oscl-

Any ∗aContextData=NULL)=0
• virtual PVCommandIdQueryInterface(const PVUuid &aUuid, PVInterface∗&aInterfacePtr, const

OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdCancelCommand(PVCommandId aCancelCmdId, const OsclAny∗a-

ContextData=NULL)=0
• virtual PVCommandIdCancelAllCommands(const OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdGetPVPlayerState(PVPlayerState &aState, const OsclAny∗aContext-

Data=NULL)=0
• virtual PVMFStatusGetPVPlayerStateSync(PVPlayerState &aState)=0
• virtual PVCommandIdAddDataSource(PVPlayerDataSource &aDataSource, const OsclAny∗a-

ContextData=NULL)=0
• virtual PVCommandIdUpdateDataSource(PVPlayerDataSource &aDataSource, const OsclAny∗a-

ContextData=NULL)=0
• virtual PVCommandIdInit (const OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdGetMetadataKeys(PVPMetadataList &aKeyList, int32 aStartingIndex=0,

int32 aMaxEntries=-1, char∗aQueryKey=NULL, const OsclAny∗aContextData=NULL, uint32 a-
ClipIndex=0)=0

3.1 PVPlayerInterface Class Reference

• virtual PVCommandIdGetMetadataValues(PVPMetadataList &aKeyList, int32 aStartingValue-
Index, int32 aMaxValueEntries, int32 &aNumAvailableValueEntries, Oscl_Vector< PvmiKvp,
OsclMemAllocator> &aValueList, const OsclAny∗aContextData=NULL, bool aMetadataValues-
CopiedInCallBack=true, uint32 aClipIndex=0)=0

• virtual PVCommandIdReleaseMetadataValues(Oscl_Vector< PvmiKvp, OsclMemAllocator> &a-
ValueList, const OsclAny∗aContextData=NULL, uint32 aClipIndex=0)=0

• virtual PVCommandIdAddDataSink(PVPlayerDataSink &aDataSink, const OsclAny∗aContext-
Data=NULL)=0

• virtual PVCommandIdSetPlaybackRange(PVPPlaybackPosition aBeginPos, PVPPlaybackPosition
aEndPos, bool aQueueRange, const OsclAny∗aContextData=NULL, bool aSkipToRequested-
Position=true, bool aSeekToSyncPoint=true)=0

• virtual PVCommandIdGetPlaybackRange(PVPPlaybackPosition &aBeginPos, PVPPlayback-
Position &aEndPos, bool aQueued, const OsclAny∗aContextData=NULL)=0

• virtual PVCommandIdGetCurrentPosition(PVPPlaybackPosition &aPos, const OsclAny∗a-
ContextData=NULL)=0

• virtual PVCommandIdSetPlaybackRate(int32 aRate, PVMFTimebase∗aTimebase=NULL, const
OsclAny∗aContextData=NULL)=0

• virtual PVCommandIdGetPlaybackRate(int32 &aRate, PVMFTimebase∗&aTimebase, const Oscl-
Any ∗aContextData=NULL)=0

• virtual PVCommandIdGetPlaybackMinMaxRate(int32 &aMinRate, int32 &aMaxRate, const Oscl-
Any ∗aContextData=NULL)=0

• virtual PVMFStatusGetCurrentPositionSync(PVPPlaybackPosition &aPos)=0
• virtual PVCommandIdPrepare(const OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdStart(const OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdPause(const OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdResume(const OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdStop(const OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdRemoveDataSink(PVPlayerDataSink &aDataSink, const OsclAny∗a-

ContextData=NULL)=0
• virtual PVCommandIdReset(const OsclAny∗aContextData=NULL)=0
• virtual PVCommandIdRemoveDataSource(PVPlayerDataSource &aDataSource, const OsclAny
∗aContextData=NULL)=0

Static Public Methods

• OSCL_IMPORT_REF voidGetSDKInfo(PVSDKInfo &aSDKInfo)

3.1.1 Detailed Description

PVPlayerInterface is the interface to the pvPlayer SDK, which allows control of a multimedia playback
engine. The PVPlayerFactory factory class is to be used to create and delete instances of this object

3.1.2 Constructor & Destructor Documentation

3.1.2.1 virtual PVPlayerInterface::∼PVPlayerInterface () [inline, virtual]

Object destructor function Releases all resources prior to destruction

PV Player Engine 4 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

3.1.3 Member Function Documentation

3.1.3.1 virtual PVCommandId PVPlayerInterface::AddDataSink (PVPlayerDataSink &
aDataSink, const OsclAny∗ aContextData= NULL) [pure virtual]

This function allows a player data sink to be specified for playback. This function must be called when pv-
Player is in PVP_STATE_INITIALIZED state. The specified data sink must be a valid PVPlayerDataSink
to be accepted for use in playback. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aDataSink The player data sink to be used for playback.

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrNotSupported if
the format of the sink is incompatible with what the SDK can handle OsclErrInvalidState if
invoked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during
this operation

Returns:
A unique command id for asynchronous completion

3.1.3.2 virtual PVCommandId PVPlayerInterface::AddDataSource (PVPlayerDataSource &
aDataSource, const OsclAny∗ aContextData= NULL) [pure virtual]

This function allows a player data source to be specified for playback. This function must be called when
pvPlayer is in PVP_STATE_IDLE state and before calling Init. The specified data source must be a
valid PVPlayerDataSource to be accepted for use in playback. This command request is asynchronous.
PVCommandStatusObserver’s CommandCompleted() callback handler will be called when this command
request completes.

Parameters:
aDataSourceReference to the player data source to be used for playback

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrNotSupported if
the format of the source is incompatible with what the SDK can handle OsclErrInvalidState if
invoked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during
this operation

Returns:
A unique command id for asynchronous completion

3.1.3.3 virtual PVCommandId PVPlayerInterface::CancelAllCommands (const OsclAny∗
aContextData= NULL) [pure virtual]

This API is to allow the user to cancel all pending requests in pvPlayer. The current request being pro-
cessed, if any, will also be aborted. The user of PV-SDK should get the state of PVPlayer Engine after
the command completes and before issuing any other command. This command request is asynchronous.
PVCommandStatusObserver’s CommandCompleted() callback handler will be called when this command
request completes.

PV Player Engine 5 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

Parameters:
aContextDataOptional opaque data that will be passed back to the user with the command response

Returns:
A unique command id for asynchronous completion

3.1.3.4 virtual PVCommandId PVPlayerInterface::CancelCommand (PVCommandId
aCancelCmdId, const OsclAny∗ aContextData= NULL) [pure virtual]

This API is to allow user of the SDK to cancel any specific command which is pending on pvPlayer. If the
request is to cancel a command which still has to be processed pvPlayer will just remove the command from
its queue of commands to be processed. If the request is to cancel a command that is ongoing then player
will attempt to interrupt the ongoing command. The state of player after a cancel can vary. So the user
of pvPlayerSDK must always query for state before issuing any subsequent commands. This command
request is asynchronous. PVCommandStatusObserver’s CommandCompleted() callback handler will be
called when this command request completes.

Parameters:
aCancelCmdIdCommand Id to be cancelled.

aContextDataOptional opaque data that will be passed back to the user with the command response

Returns:
A unique command id for asynchronous completion

3.1.3.5 virtual PVCommandId PVPlayerInterface::GetCurrentPosition (PVPPlaybackPosition &
aPos, const OsclAny∗ aContextData= NULL) [pure virtual]

This function allows querying of the current playback position. The playback position units will be in
the one specified by the passed-in reference to PVPPlaybackPosition. Currently only milliseconds units is
supported. This command request is asynchronous. PVCommandStatusObserver’s CommandCompleted()
callback handler will be called when this command request completes.

Parameters:
aPos Reference to place the current playback position

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrInvalidState if in-
voked in the incorrect state

Returns:
A unique command id for asynchronous completion

3.1.3.6 virtual PVMFStatus PVPlayerInterface::GetCurrentPositionSync (PVPPlaybackPosition
& aPos) [pure virtual]

This function allows querying of the current playback position as a synchronous command. The playback
position units will be in the one specified by the passed-in reference to PVPPlaybackPosition. Currently
only millisecond units is supported.

PV Player Engine 6 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

Parameters:
aPos Reference to place the current playback position @leave This method can leave with one of the

following error codes OsclErrInvalidState if invoked in the incorrect state

Returns:
Status indicating whether the command succeeded or not.

3.1.3.7 virtual PVCommandId PVPlayerInterface::GetLogLevel (const char∗ aTag,
PVLogLevelInfo & aLogInfo, const OsclAny∗ aContextData= NULL) [pure
virtual]

Allows the logging level to be queried for a particular logging tag. A larger log level will result in more
messages being logged. In the asynchronous response, this should return the log level along with an
indication of where the level was inherited (i.e., the ancestor tag). This command request is asynchronous.
PVCommandStatusObserver’s CommandCompleted() callback handler will be called when this command
request completes.

Parameters:
aTag Specifies the logger tree tag where the log level should be retrieved.

aLogInfo An output parameter which will be filled in with the log level information.

aContextDataOptional opaque data that will be passed back to the user with the command response

Exceptions:
This method can leave with one of the following error codes OsclErrNoMemory if the SDK failed to

allocate memory during this operation

Returns:
A unique command ID for asynchronous completion

3.1.3.8 virtual PVCommandId PVPlayerInterface::GetMetadataKeys (PVPMetadataList &
aKeyList, int32 aStartingIndex= 0, int32 aMaxEntries= -1, char ∗ aQueryKey= NULL,
const OsclAny∗ aContextData= NULL, uint32 aClipIndex= 0) [pure virtual]

This function makes a request to return the list of all or segment of available metadata keys in the current
pvPlayer state. The metadata key list is dynamic and can change during the course of pvPlayer usage. The
list can be used to retrieve the metadata values with GetMetadataValues function. This command request is
asynchronous. PVCommandStatusObserver’s CommandCompleted() callback handler will be called when
this command request completes.

Parameters:
aKeyList Reference to a vector to place the metadata key list.

aStartingIndex Input parameter to specify the starting index for aKeyList. This parameter along with
aMaxEntries allows us to retrieve the metadata key list in segments.

aMaxEntries Input parameter to specify the maximum number of entries to be added to aKeyList. If
there is no limit, set to -1.

aQueryKey Input parameter to narrow down the list of requested keys. For example, "track-
info/video" indicates all keys related to "track-info/video". for eg: "track-info/video/width"
"track-info/video/height". A NULL value indicates that all keys are requested.

aContextDataOptional opaque data that will be passed back to the user with the command response

PV Player Engine 7 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

aClipIndex: an optional parameter for use with playlists to select the clip of interest. @leave This
method can leave with one of the following error codes OsclErrInvalidState if invoked in the
incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

3.1.3.9 virtual PVCommandId PVPlayerInterface::GetMetadataValues (PVPMetadataList
& aKeyList, int32 aStartingValueIndex, int32 aMaxValueEntries, int32 &
aNumAvailableValueEntries, Oscl_Vector< PvmiKvp, OsclMemAllocator > & aValueList,
const OsclAny∗ aContextData= NULL, bool aMetadataValuesCopiedInCallBack= true,
uint32 aClipIndex= 0) [pure virtual]

The function makes a request to return the metadata value(s) specified by the passed in metadata key list. If
the requeted metadata value is unavailable or the metadata key is invalid, the returned list will not contain
a KVP entry for the key. Note that value indexed in the returned aValueList does not necessary match
the same index into the specified aKeyList since this command can return none or more than one KVP
for a specified key. This command request is asynchronous. PVCommandStatusObserver’s Command-
Completed() callback handler will be called when this command request completes.

Parameters:
aKeyList Reference to a list of metadata keys for which metadata values are requested.

aStartingValueIndex The starting index refers to the an index into the whole value list specified by
the keys in aKeyList. This command would populate the aValueList starting from the specified
index.

aMaxValueEntries Input parameter to specify the maximum number of entries to be added to aValue-
List. If there is no limit, set to -1.

aNumAvailableValueEntriesOutput parameter which will be filled with number of available values
for the specified key list.

aValueList Reference to a vector of KVP to place the specified metadata values

aContextDataOptional opaque data that will be passed back to the user with the command response

aMetadataValuesCopiedInCallBackBoolean to let engine know if metadata values are copied by
User of SDK in command complete callback. By default the SDK assumes this to be the case.
If this argument is set to false by the caller, then SDK assumes that user will call ReleaseMeta-
DataValues at a later point.

aClipIndex: an optional parameter for use with playlists to select the clip of interest. @leave This
method can leave with one of the following error codes OsclErrInvalidState if invoked in the
incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

3.1.3.10 virtual PVCommandId PVPlayerInterface::GetPlaybackMinMaxRate (int32 &
aMinRate, int32 & aMaxRate, const OsclAny∗ aContextData= NULL) [pure
virtual]

This function retrieves the minimum and maximum playback rate expressed as a millipercent of "real-
time" playback rate. This function can be called anytime between pvPlayer instantiation and destruction.
This command request is asynchronous. PVCommandStatusObserver’s CommandCompleted() callback
handler will be called when this command request completes.

PV Player Engine 8 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

Parameters:
aMinRate A reference to an integer which will be filled in with the minimum playback rate allowed

expressed as millipercent of "real-time" playback rate.

aMaxRate A reference to an integer which will be filled in with the maximum playback rate allowed
expressed as millipercent of "real-time" playback rate.

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes

Returns:
A unique command id for asynchronous completion

3.1.3.11 virtual PVCommandId PVPlayerInterface::GetPlaybackRange (PVPPlaybackPosition
& aBeginPos, PVPPlaybackPosition & aEndPos, bool aQueued, const OsclAny∗
aContextData= NULL) [pure virtual]

This function retrieves the playback range information for the current or queued playback range. The user
can choose which playback range by the aQueued flag. This function can be called when pvPlayer is
in PVP_STATE_INITIALIZED, PVP_STATE_PREPARED, PVP_STATE_STARTED, or PVP_STATE_-
PAUSED state. The units of position is specified in the passed-in PVPlaybackPosition parameters which
will be filled in when the command completes. This command request is asynchronous. PVCommand-
StatusObserver’s CommandCompleted() callback handler will be called when this command request com-
pletes.

Parameters:
aBeginPosReference to place the begin position for the playback range

aEndPos Reference to place the end position for the playback range

aQueued Input flag to choose inof of which playback range to return. Set(true)for queued range.
Reset(false) for current range.

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrInvalidState if in-
voked in the incorrect state

Returns:
A unique command id for asynchronous completion

3.1.3.12 virtual PVCommandId PVPlayerInterface::GetPlaybackRate (int32 &aRate,
PVMFTimebase∗& aTimebase, const OsclAny∗ aContextData= NULL) [pure
virtual]

This function retrieves the current playback rate setting. If the playback rate is set as a millipercent of
"real-time" playback rate, then aRate will be filled in with the milliperecent value when this command
completes successfully. If the playback rate is set by an outside timebase, aRate will be set to 0 and a-
Timebase pointer will point to the PVMFTimebase being used when the command completes successfully.
This function can be called when pvPlayer is in PVP_STATE_PREPARED, PVP_STATE_STARTED,
or PVP_STATE_PAUSED state. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aRate A reference to an integer which will be filled in with the current playback rate expressed as

millipercent of "real-time" playback rate. If an outside timebase is being used, aRate would be
set to 0.

PV Player Engine 9 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

aTimebaseReference to an PVMFTimebase pointer which will be valid if an outside timebase is being
used for the playback clock.

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes

Returns:
A unique command id for asynchronous completion

3.1.3.13 virtual PVCommandId PVPlayerInterface::GetPVPlayerState (PVPlayerState &aState,
const OsclAny∗ aContextData= NULL) [pure virtual]

This function returns the current state of pvPlayer. Application may use this info for updating display or de-
termine if the pvPlayer is ready for the next request. This command request is asynchronous. PVCommand-
StatusObserver’s CommandCompleted() callback handler will be called when this command request com-
pletes.

Parameters:
aState A reference to a PVPlayerState. Upon successful completion of this command, it will contain

the current state of pvPlayer.

aContextDataOptional opaque data that will be passed back to the user with the command response

Returns:
A unique command id for asynchronous completion

3.1.3.14 virtual PVMFStatus PVPlayerInterface::GetPVPlayerStateSync (PVPlayerState &
aState) [pure virtual]

This function returns the current state of pvPlayer as a synchronous command. Application may use this
info for updating display or determine if the pvPlayer is ready for the next request.

Parameters:
aState A reference to a PVPlayerState. Upon successful completion of this command, it will contain

the current state of pvPlayer.

Returns:
Status indicating whether the command succeeded or not.

3.1.3.15 OSCL_IMPORT_REF void PVPlayerInterface::GetSDKInfo (PVSDKInfo & aSDKInfo)
[static]

Returns SDK version information about pvPlayer.

Parameters:
aSDKInfo A reference to a PVSDKInfo structure which contains product name, supported hardware

platform, supported software platform, version, part number, and PV UUID. These fields will
contain info .for the currently instantiated pvPlayer engine when this function returns success.

PV Player Engine 10 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

3.1.3.16 virtual PVCommandId PVPlayerInterface::GetSDKModuleInfo (PVSDKModuleInfo &
aSDKModuleInfo, const OsclAny∗ aContextData= NULL) [pure virtual]

Returns information about all modules currently used by pvPlayer SDK. This command request is asyn-
chronous. PVCommandStatusObserver’s CommandCompleted() callback handler will be called when this
command request completes.

Parameters:
aSDKModuleInfo A reference to a PVSDKModuleInfo structure which contains the number of mod-

ules currently used by pvPlayer SDK and the PV UUID and description string for each module.
The PV UUID and description string for modules will be returned in one string buffer allocated
by the client. If the string buffer is not large enough to hold the all the module’s information, the
information will be written up to the length of the buffer and truncated.

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrNoMemory if the
SDK failed to allocate memory during this operation

Returns:
A unique command ID for asynchronous completion

3.1.3.17 virtual PVCommandId PVPlayerInterface::Init (const OsclAny ∗ aContextData= NULL)
[pure virtual]

This function switches pvPlayer from PVP_STATE_IDLE state to the PVP_STATE_INITIALIZED state.
During the transition, pvPlayer is in the PVP_STATE_INITIALIZING transitional state and the data source
is being initialized to obtain metadata and track information of the source media. If initialization fails,
pvPlayer will revert to PVP_STATE_IDLE state and the data source will be closed. The Command
should only be called in PVP_STATE_IDLE. This command request is asynchronous. PVCommand-
StatusObserver’s CommandCompleted() callback handler will be called when this command request com-
pletes.

Parameters:
aContextDataOptional opaque data that will be passed back to the user with the command response

@leave This method can leave with one of the following error codes OsclErrInvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

Returns:
A unique command id for asynchronous completion

3.1.3.18 virtual PVCommandId PVPlayerInterface::Pause (const OsclAny∗ aContextData=
NULL) [pure virtual]

This function pauses the currently ongoing playback. pvPlayer must be in PVP_STATE_STARTED state
to call this function. When pause successfully completes, pvPlayer will be in PVP_STATE_PAUSED state.
This command request is asynchronous. PVCommandStatusObserver’s CommandCompleted() callback
handler will be called when this command request completes.

Parameters:
aContextDataOptional opaque data that will be passed back to the user with the command response

@leave This method can leave with one of the following error codes OsclErrInvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

PV Player Engine 11 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

Returns:
A unique command id for asynchronous completion

3.1.3.19 virtual PVCommandId PVPlayerInterface::Prepare (const OsclAny∗ aContextData=
NULL) [pure virtual]

This functions prepares pvPlayer for playback. pvPlayer connects the data source with the data sinks
and starts the data source to queue the media data for playback(e.g. for 3GPP streaming, fills the jitter
buffer). pvPlayer also checks to make sure each component needed for playback is ready and capable.
When successful, pvPlayer will be in PVP_STATE_PREPARED state, The command should be called only
in PVP_STATE_INITIALISED. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aContextDataOptional opaque data that will be passed back to the user with the command response

@leave This method can leave with one of the following error codes OsclErrInvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

Returns:
A unique command id for asynchronous completion

3.1.3.20 virtual PVCommandId PVPlayerInterface::QueryInterface (const PVUuid & aUuid,
PVInterface ∗& aInterfacePtr, const OsclAny∗ aContextData= NULL) [pure
virtual]

This API is to allow for extensibility of the pvPlayer interface. It allows a caller to ask for an instance of
a particular interface object to be returned. The mechanism is analogous to the COM IUnknown method.
The interfaces are identified with an interface ID that is a UUID as in DCE and a pointer to the interface
object is returned if it is supported. Otherwise the returned pointer is NULL. This command request is
asynchronous. PVCommandStatusObserver’s CommandCompleted() callback handler will be called when
this command request completes.

Parameters:
aUuid The UUID of the desired interface

aInterfacePtr A reference to the output pointer to the desired interface

aContextDataOptional opaque data that will be passed back to the user with the command response

Exceptions:
This method can leave with one of the following error codes OsclErrNotSupported if the specified

interface UUID is not supported

Returns:
A unique command ID for asynchronous completion

3.1.3.21 virtual PVCommandId PVPlayerInterface::ReleaseMetadataValues (Oscl_Vector<
PvmiKvp, OsclMemAllocator > & aValueList, const OsclAny∗ aContextData= NULL,
uint32 aClipIndex= 0) [pure virtual]

The function makes a request to release the metadata value(s) specified by the passed in metadata value list.
This command request is asynchronous. PVCommandStatusObserver’s CommandCompleted() callback

PV Player Engine 12 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

handler will be called when this command request completes.If a GetMetaDataValues were called in PVP_-
STATE_INITIALIZED state, then corresponding ReleaseMetaDataValues must be called before Reset. If a
GetMetaDataValues were called in PVP_STATE_PREPARED, PVP_STATE_STARTED, PVP_STATE_-
PAUSED states, then corresponding ReleaseMetaDataValues must be called before Stop.

Parameters:
aValueList Reference to a vector of KVP to place the specified metadata values

aContextDataOptional opaque data that will be passed back to the user with the command response

aClipIndex: an optional parameter for use with playlists to select the clip of interest. @leave This
method can leave with one of the following error codes OsclErrInvalidState if invoked in the
incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

3.1.3.22 virtual PVCommandId PVPlayerInterface::RemoveDataSink (PVPlayerDataSink &
aDataSink, const OsclAny∗ aContextData= NULL) [pure virtual]

This function may be used to close and unbind a data sink that has been previously added. This func-
tion must be called when pvPlayer is in PVP_STATE_INITIALIZED state. If the data sink is in use for
playback, Stop must be called first to stop the playback and free the data sink. This command request is
asynchronous. PVCommandStatusObserver’s CommandCompleted() callback handler will be called when
this command request completes.

Parameters:
aDataSink Reference to the data sink to be removed

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrBadHandle if the
passed in sink parameter is invalid OsclErrInvalidState if invoked in the incorrect state OsclErr-
NoMemory if the SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

3.1.3.23 virtual PVCommandId PVPlayerInterface::RemoveDataSource (PVPlayerDataSource &
aDataSource, const OsclAny∗ aContextData= NULL) [pure virtual]

This function may be used to close and unbind a data source that has been previously added. This function
must be called when pvPlayer is in PVP_STATE_IDLE state. If the data source has already been initial-
ized, Reset must be called first. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aDataSourceReference to the data source to be removed.

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrBadHandle if the
passed in sink parameter is invalid OsclErrInvalidState if invoked in the incorrect state OsclErr-
NoMemory if the SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

PV Player Engine 13 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

3.1.3.24 virtual PVCommandId PVPlayerInterface::RemoveLogAppender (const char∗ aTag,
OsclSharedPtr< PVLoggerAppender> & aAppender, const OsclAny∗ aContextData=
NULL) [pure virtual]

Allows a logging appender to be removed from the logger tree at the point specified by the input tag. If the
input tag is NULL then the appender will be removed from locations in the tree. This command request is
asynchronous. PVCommandStatusObserver’s CommandCompleted() callback handler will be called when
this command request completes.

Parameters:
aTag Specifies the logger tree tag where the appender should be removed. Can be NULL to remove

at all locations.

aAppenderThe log appender to remove.

aContextDataOptional opaque data that will be passed back to the user with the command response

Exceptions:
This method can leave with one of the following error codes OsclErrNoMemory if the SDK failed to

allocate memory during this operation

Returns:
A unique command ID for asynchronous completion

3.1.3.25 virtual PVCommandId PVPlayerInterface::Reset (const OsclAny∗ aContextData=
NULL) [pure virtual]

This function cleans up resources used for playback to transition pvPlayer to PVP_STATE_IDLE state.
While processing this command, pvPlayer is in the PVP_STATE_RESETTING state. If any data sinks are
still referenced by pvPlayer when this function is called, the data sinks will be closed and removed from
pvPlayer during the Reset. If already in PVP_STATE_IDLE state, then nothing will occur. This command
request is asynchronous. PVCommandStatusObserver’s CommandCompleted() callback handler will be
called when this command request completes.

Parameters:
aContextDataOptional opaque data that will be passed back to the user with the command response

@leave This method can leave with one of the following error codes OsclErrNoMemory if the
SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

3.1.3.26 virtual PVCommandId PVPlayerInterface::Resume (const OsclAny∗ aContextData=
NULL) [pure virtual]

This function resumes the currently paused playback. pvPlayer must be in PVP_STATE_PAUSED state to
call this function. When resume successfully completes, pvPlayer will be in PVP_STATE_STARTED state.
This command request is asynchronous. PVCommandStatusObserver’s CommandCompleted() callback
handler will be called when this command request completes.

Parameters:
aContextDataOptional opaque data that will be passed back to the user with the command response

@leave This method can leave with one of the following error codes OsclErrInvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

PV Player Engine 14 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

Returns:
A unique command id for asynchronous completion

3.1.3.27 virtual PVCommandId PVPlayerInterface::SetLogAppender (const char∗ aTag,
OsclSharedPtr< PVLoggerAppender> & aAppender, const OsclAny∗ aContextData=
NULL) [pure virtual]

Allows a logging appender to be attached at some point in the logger tag tree. The location in the tag tree
is specified by the input tag string. A single appender can be attached multiple times in the tree, but it may
result in duplicate copies of log messages if the appender is not attached in disjoint portions of the tree.
A logging appender is responsible for actually writing the log message to its final location (e.g., memory,
file, network, etc). This API can be called anytime after creation of pvPlayer. This command request is
asynchronous. PVCommandStatusObserver’s CommandCompleted() callback handler will be called when
this command request completes.

Parameters:
aTag Specifies the logger tree tag where the appender should be attached.

aAppenderThe log appender to attach.

aContextDataOptional opaque data that will be passed back to the user with the command response

Exceptions:
This method can leave with one of the following error codes OsclErrNoMemory if the SDK failed to

allocate memory during this operation

Returns:
A unique command ID for asynchronous completion

3.1.3.28 virtual PVCommandId PVPlayerInterface::SetLogLevel (const char∗ aTag, int32 aLevel,
bool aSetSubtree= false, const OsclAny∗ aContextData= NULL) [pure virtual]

Allows the logging level to be set for the logging node specified by the tag. A larger log level will result
in more messages being logged. A message will only be logged if its level is LESS THAN or equal to
the current log level. The aSetSubtree flag will allow an entire subtree, with the specified tag as the root,
to be reset to the specified value. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aTag Specifies the logger tree tag where the log level should be set.

aLevel Specifies the log level to set.

aSetSubtreeSpecifies whether the entire subtree with aTag as the root should be reset to the log level.

aContextDataOptional opaque data that will be passed back to the user with the command response

Exceptions:
This method can leave with one of the following error codes OsclErrNoMemory if the SDK failed to

allocate memory during this operation

Returns:
A unique command ID for asynchronous completion

PV Player Engine 15 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

3.1.3.29 virtual PVCommandId PVPlayerInterface::SetPlaybackRange (PVPPlaybackPosition
aBeginPos, PVPPlaybackPositionaEndPos, bool aQueueRange, const OsclAny∗
aContextData= NULL, bool aSkipToRequestedPosition= true, bool aSeekToSyncPoint=
true) [pure virtual]

This function sets the begin and end positions for the new playback range or changes the end position of
the current playback range. This function must be called when pvPlayer is in PVP_STATE_INITIALIZED,
PVP_STATE_PREPARED, PVP_STATE_STARTED, or PVP_STATE_PAUSED state. The specified posi-
tions must be between beginning of clip and clip duration. The units of position is specified in the passed-in
parameter PVPPlaybackPosition. If either of the positions is indeterminate, use the indeterminate flag in
PVPPlaybackPosition structure. The queued playback range can be done using aQueueRange flag which
is Not Supported as of now by PV-SDK. This function will overwrite any previous playback range info.
The only exception is the changing of end position for the current playback range during playback. Com-
mand if called in player state as PVP_STATE_INITIALISED or PVP_STATE_PAUSED, will complete in
one Engine AO run without actually changing the position. The change in position will come into affect
when Prepare or Resume respectively is called on Engine by the app. If reposition request is not honored
by the source node during Prepare or Resume, engine will continue to complete Prepare or Resume but
will send an informational event "PVMFInfoChangePlaybackPositionNotSupported" to the app inform-
ing that the SetPlaybackRange request could not be honored. This command request is asynchronous.
PVCommandStatusObserver’s CommandCompleted() callback handler will be called when this command
request completes.

Parameters:
aBeginPosBeginning position for the new playback range

aEndPos Ending position for the new playback range.

aQueueRangeInput flag to tell pvPlayer to queue the new playback range (Set/true) or use the new
playback range right away (Reset/false)

aContextDataOptional opaque data that will be passed back to the user with the command response

aSkipToRequestedPositionBoolean value to indicate whether or not the display should start exactly
from the requested position Default is set to ’true’.

aSeekToSyncPointBoolean value to indicate whether or not the source should seek to a sync point.
true - Means that the decoder will be fed from a key-frame thereby promising that there are no
artefacts false - Means that the decoder will be fed the nearest frame from the requested seek
point, which can be a non-sync frame, with a possibility of causing artefacts Default is set to
’true’ @leave This method can leave with one of the following error codes OsclErrInvalidState
if invoked in the incorrect state

Returns:
A unique command id for asynchronous completion

3.1.3.30 virtual PVCommandId PVPlayerInterface::SetPlaybackRate (int32aRate,
PVMFTimebase∗ aTimebase= NULL, const OsclAny ∗ aContextData= NULL) [pure
virtual]

This function allows the setting of the playback rate. The playback rate can be set as millipercent of "real-
time" playback rate. For example, 100000 means 1X "real-time", 400000 means 4X, 25000 means 0.25X,
and -100000 means 1X backward. The playback rate can also be modified by specifying the timebase to
use for the playback clock. This is accomplished by setting the aRate parameter to 0 and passing in a
pointer to an PVMFTimebase. This function can be called when pvPlayer is in PVP_STATE_PREPARED,
PVP_STATE_STARTED, or PVP_STATE_PAUSED state. Changing to or from an outside timebase is only
allowed in PVP_STATE_PREPARED. Command if called in player state PVP_STATE_PAUSED with a

PV Player Engine 16 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

direction change, will complete in one Engine AO run without actually changing the direction. The change
in direction will come into affect when Resume is called on Engine by the app. If the request is not honored
by the source node during Resume, engine will continue to complete Resume but will send an informational
event "PVMFInfoChangePlaybackPositionNotSupported" to the app informing that the SetPlaybackRate
request could not be honored. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aRate The playback rate specified as millipercent of "real-time". A millipercent is 1/1000 of a percent.

So 2X = 200% of realtime is 200,000 millipercent. The motivation is to povide precision with an
integer parameter. Negative rates specify backward playback. The valid range of absolute value
of playback rates will be limited to the minimum and maximum returned byGetPlaybackMin-
MaxRate().

aTimebaseReference to an PVMFTimebase which will be used to drive the playback clock. aRate
must be set to 0, 1X, or -1X to use the timebase.

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrArgument if rate or
timebase is invalid

Returns:
A unique command id for asynchronous completion

3.1.3.31 virtual PVCommandId PVPlayerInterface::Start (const OsclAny∗ aContextData=
NULL) [pure virtual]

This function kicks off the actual playback. Media data are sent out from the data source to the data
sink(s). pvPlayer will transition to PVP_STATE_STARTED state after playback starts successfully. The
command should be called only in PVP_STATE_PREPARED. This command request is asynchronous.
PVCommandStatusObserver’s CommandCompleted() callback handler will be called when this command
request completes.

Parameters:
aContextDataOptional opaque data that will be passed back to the user with the command response

@leave This method can leave with one of the following error codes OsclErrInvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

Returns:
A unique command id for asynchronous completion

3.1.3.32 virtual PVCommandId PVPlayerInterface::Stop (const OsclAny∗ aContextData=
NULL) [pure virtual]

This function stops the current playback and transitions pvPlayer to the PVP_STATE_INITIALIZED state.
During the transition, data transmission from data source to all data sinks are terminated. Also all con-
nections between data source and data sinks are torn down. This command request is asynchronous.
PVCommandStatusObserver’s CommandCompleted() callback handler will be called when this command
request completes.

PV Player Engine 17 Confidential/Proprietary

3.1 PVPlayerInterface Class Reference

Parameters:
aContextDataOptional opaque data that will be passed back to the user with the command response

@leave This method can leave with one of the following error codes OsclErrInvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

Returns:
A unique command id for asynchronous completion

3.1.3.33 virtual PVCommandId PVPlayerInterface::UpdateDataSource (PVPlayerDataSource &
aDataSource, const OsclAny∗ aContextData= NULL) [pure virtual]

This function allows extending or updating a track list during playback. Changes can be applied prior to
beginning initialization for any track.

Parameters:
aDataSourceaDataSource contains an updated version of the data source previously provided in Add-

DataSource command. The updated data source can contain modifications to existing clips in the
list, or new clips added to the end of the list. This API cannot be used to update data for clips
that have already been initialized, or to delete clips from the clip list.

aContextDataOptional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrNoMemory if the
SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

The documentation for this class was generated from the following file:

• pv_player_interface.h

PV Player Engine 18 Confidential/Proprietary

Chapter 4

pvplayer_engine File Documentation

4.1 pv_player_interface.h File Reference

#include "oscl_base.h"

#include "oscl_string.h"

#include "oscl_vector.h"

#include "oscl_mem.h"

#include "pvlogger.h"

#include "pvmf_return_codes.h"

#include "pv_engine_types.h"

#include "pv_player_types.h"

#include "pv_player_events.h"

#include "pv_player_datasource.h"

#include "pv_player_datasink.h"

#include "pvmi_kvp.h"

#include "pvmf_media_clock.h"

Data Structures

• classPVPlayerInterface

Index

∼PVPlayerInterface
PVPlayerInterface,4

AddDataSink
PVPlayerInterface,5

AddDataSource
PVPlayerInterface,5

CancelAllCommands
PVPlayerInterface,5

CancelCommand
PVPlayerInterface,6

GetCurrentPosition
PVPlayerInterface,6

GetCurrentPositionSync
PVPlayerInterface,6

GetLogLevel
PVPlayerInterface,7

GetMetadataKeys
PVPlayerInterface,7

GetMetadataValues
PVPlayerInterface,8

GetPlaybackMinMaxRate
PVPlayerInterface,8

GetPlaybackRange
PVPlayerInterface,9

GetPlaybackRate
PVPlayerInterface,9

GetPVPlayerState
PVPlayerInterface,10

GetPVPlayerStateSync
PVPlayerInterface,10

GetSDKInfo
PVPlayerInterface,10

GetSDKModuleInfo
PVPlayerInterface,10

Init
PVPlayerInterface,11

Pause
PVPlayerInterface,11

Prepare
PVPlayerInterface,12

pv_player_interface.h,19

PVPlayerInterface,3
PVPlayerInterface

∼PVPlayerInterface,4
AddDataSink,5
AddDataSource,5
CancelAllCommands,5
CancelCommand,6
GetCurrentPosition,6
GetCurrentPositionSync,6
GetLogLevel,7
GetMetadataKeys,7
GetMetadataValues,8
GetPlaybackMinMaxRate,8
GetPlaybackRange,9
GetPlaybackRate,9
GetPVPlayerState,10
GetPVPlayerStateSync,10
GetSDKInfo,10
GetSDKModuleInfo,10
Init, 11
Pause,11
Prepare,12
QueryInterface,12
ReleaseMetadataValues,12
RemoveDataSink,13
RemoveDataSource,13
RemoveLogAppender,13
Reset,14
Resume,14
SetLogAppender,15
SetLogLevel,15
SetPlaybackRange,15
SetPlaybackRate,16
Start,17
Stop,17
UpdateDataSource,18

QueryInterface
PVPlayerInterface,12

ReleaseMetadataValues
PVPlayerInterface,12

RemoveDataSink
PVPlayerInterface,13

RemoveDataSource

INDEX

PVPlayerInterface,13
RemoveLogAppender

PVPlayerInterface,13
Reset

PVPlayerInterface,14
Resume

PVPlayerInterface,14

SetLogAppender
PVPlayerInterface,15

SetLogLevel
PVPlayerInterface,15

SetPlaybackRange
PVPlayerInterface,15

SetPlaybackRate
PVPlayerInterface,16

Start
PVPlayerInterface,17

Stop
PVPlayerInterface,17

UpdateDataSource
PVPlayerInterface,18

PV Player Engine 21 Confidential/Proprietary

	pvplayer_engine Data Structure Index
	pvplayer_engine Data Structures

	pvplayer_engine File Index
	pvplayer_engine File List

	pvplayer_engine Data Structure Documentation
	PVPlayerInterface Class Reference

	pvplayer_engine File Documentation
	pv_player_interface.h File Reference

