packetvideo

PV Player Engine

Build Version: CORE_8.509.1.3

April 9, 2010

Contents

1 pvplayer_engine Data Structure Index

1.1 pvplayer_engine Data Structures

2 pvplayer_engine File Index

2.1 pvplayer engineFileList. e

3 pvplayer_engine Data Structure Documentation

3.1 PVPlayerinterface Class Reference.

4 pvplayer_engine File Documentation

4.1 pv_player_interface.h FileReference L.

Chapter 1

pvplayer _engine Data Structure Index

1.1 pvplayer_engine Data Structures

Here are the data structures with brief descriptions:

PVPlayerinterface e

Chapter 2

pvplayer _engine File Index

2.1 pvplayer_engine File List

Here is a list of all files with brief descriptions:

pv_player_interface.h 19

Chapter 3

pvplayer_engine Data Structure
Documentation

3.1

PVPlayerinterface Class Reference

#include <pv_player_interface.h >

Public Methods

virtual ~PVPlayerinterface)

virtual PYCommandldGetSDKModulelnfo(PVSDKModulelnfo &aSDKModulelnfo, const Oscl-
Any xaContextData=NULL)=0

virtual PVCommandIldetLogAppendefconst chakaTag, OsclSharedRtrPVLoggerAppender
&aAppender, const OsclAnyaContextData=NULL)=0

virtual PVCommandldRemovelLogAppende(const charxaTag, OsclSharedRtr PVLogger-
Appender> &aAppender, const OsclAnyaContextData=NULL)=0

virtual PYCommandldetLoglLevelconst chakaTag, int32 aLevel, bool aSetSubtree=false, const
OsclAny xaContextData=NULL)=0

virtual PVCommandldGetLogLevel(const charaTag, PVLogLevellnfo &aloglnfo, const Oscl-
Any xaContextData=NULL)=0

virtual PYCommandldQuerylInterfacgconst PVUuid &aUuid, PVinterface&alnterfacePtr, const
OsclAny xaContextData=NULL)=0

virtual PVCommandldCancelCommandPVCommandld aCancelCmdld, const OsclArg-
ContextData=NULL)=0

virtual PYCommandIldCancelAllCommandgéconst OsclAnyaContextData=NULL)=0

virtual PVCommandldGetPVPlayerStatdPVPlayerState &aState, const OsclArpContext-
Data=NULL)=0

virtual PVMFStatussetPVPlayerStateSyr{PVPlayerState &aState)=0

virtual PVCommandldAddDataSourcgPVPlayerDataSource &aDataSource, const OsclAay
ContextData=NULL)=0

virtual PYCommandldUpdateDataSourd@VPlayerDataSource &aDataSource, const Oschéary
ContextData=NULL)=0

virtual PVCommandlIdnit (const OsclAnyaContextData=NULL)=0

virtual PYCommandldGetMetadataKey¢PVPMetadatalList &aKeyList, int32 aStartinglndex=0,
int32 aMaxEntries=-1, charaQueryKey=NULL, const OsclAnyaContextData=NULL, uint32 a-
Cliplndex=0)=0

packet 3.1 PVPlayerinterface Class Reference

« virtual PYCommandldGetMetadataValue¢PVPMetadataList &aKeyList, int32 aStartingValue-
Index, int32 aMaxValueEntries, int32 &aNumAvailableValueEntries, Oscl_VectBvmiKvp,
OsclMemAllocator> &aValuelList, const OsclAnyaContextData=NULL, bool aMetadataValues-
CopiedInCallBack=true, uint32 aCliplndex=0)=0

« virtual PYCommandIdReleaseMetadataValu@@scl_Vectox PvmiKvp, OsclMemAllocator- &a-
ValuelList, const OsclAnyaContextData=NULL, uint32 aClipIndex=0)=0

« virtual PYCommandldAddDataSink(PVPlayerDataSink &aDataSink, const OsclArgContext-
Data=NULL)=0

« virtual PVCommandldbetPlaybackRang®VPPlaybackPosition aBeginPos, PVPPlaybackPosition
aEndPos, bool aQueueRange, const OsclAagZontextData=NULL, bool aSkipToRequested-
Position=true, bool aSeekToSyncPoint=true)=0

« virtual PVCommandldGetPlaybackRanggPVPPlaybackPosition &aBeginPos, PVPPlayback-
Position &aEndPos, bool aQueued, const OsclAagontextData=NULL)=0

« virtual PVCommandldGetCurrentPosition(PVPPlaybackPosition &aPos, const OsclArg-
ContextData=NULL)=0

« virtual PVCommandldSetPlaybackRatént32 aRate, PVMFTimebaseaTimebase=NULL, const
OsclAny xaContextData=NULL)=0

« virtual PYCommandldsetPlaybackRatént32 &aRate, PVMFTimebas&aTimebase, const Oscl-
Any xaContextData=NULL)=0

« virtual PYCommandldsetPlaybackMinMaxRatént32 &aMinRate, int32 &aMaxRate, const Oscl-
Any xaContextData=NULL)=0

« virtual PVMFStatusGetCurrentPositionSyn®VPPlaybackPosition &aPos)=0

« virtual PVYCommandldPrepargconst OsclAnyaContextData=NULL)=0

« virtual PYCommandIldtart(const OsclAnyaContextData=NULL)=0

« virtual PYCommandldPausgconst OsclAnyaContextData=NULL)=0

« virtual PYCommandldResumgconst OsclAnyaContextData=NULL)=0

« virtual PYCommandldtop(const OsclAnyaContextData=NULL)=0

« virtual PYCommandIldRemoveDataSinkPVPlayerDataSink &aDataSink, const OsclArg-
ContextData=NULL)=0

« virtual PYCommandldReset(const OsclAnyaContextData=NULL)=0

« virtual PVCommandldRemoveDataSourcéPVPlayerDataSource &aDataSource, const OsclAny
xaContextData=NULL)=0

Static Public Methods

* OSCL_IMPORT_REF voidsetSDKInfo(PVSDKInfo &aSDKInfo)

3.1.1 Detailed Description

PVPlayerinterface is the interface to the pvPlayer SDK, which allows control of a multimedia playback
engine. The PVPlayerFactory factory class is to be used to create and delete instances of this object

3.1.2 Constructor & Destructor Documentation
3.1.2.1 virtual PVPlayerinterface::~PVPlayerinterface () [inline, virtual]

Object destructor function Releases all resources prior to destruction

PV Player Engine 4 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

3.1.3 Member Function Documentation

3.1.3.1 virtual PYvCommandld PVPlayerinterface::AddDataSink (PVPlayerDataSink &
aDataSink const OsclAnyx aContextData= NULL) [pure virtual]

This function allows a player data sink to be specified for playback. This function must be called when pv-
Player is in PVP_STATE_INITIALIZED state. The specified data sink must be a valid PVPlayerDataSink

to be accepted for use in playback. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aDataSink The player data sink to be used for playback.

aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrNotSupported if
the format of the sink is incompatible with what the SDK can handle OsclErrinvalidState if
invoked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during
this operation

Returns:
A unique command id for asynchronous completion

3.1.3.2 virtual PYCommandld PVPlayerinterface::AddDataSource (PVPlayerDataSource &
aDataSourceconst OsclAnyx aContextData= NULL) [pure virtual]

This function allows a player data source to be specified for playback. This function must be called when
pvPlayer is in PVP_STATE_IDLE state and before calling Init. The specified data source must be a
valid PVPlayerDataSource to be accepted for use in playback. This command request is asynchronous.
PVCommandStatusObserver's CommandCompleted() callback handler will be called when this command
request completes.

Parameters:
aDataSourceReference to the player data source to be used for playback

aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrNotSupported if
the format of the source is incompatible with what the SDK can handle OsclErrinvalidState if
invoked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during
this operation

Returns:
A unique command id for asynchronous completion

3.1.3.3 virtual PYvCommandld PVPlayerinterface::CancelAllCommands (const OsclAny«
aContextData= NULL) [pure virtual]

This API is to allow the user to cancel all pending requests in pvPlayer. The current request being pro-
cessed, if any, will also be aborted. The user of PV-SDK should get the state of PVPlayer Engine after
the command completes and before issuing any other command. This command request is asynchronous.
PVCommandStatusObserver's CommandCompleted() callback handler will be called when this command
request completes.

PV Player Engine 5 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

Parameters:
aContextData Optional opaque data that will be passed back to the user with the command response

Returns:
A unigue command id for asynchronous completion

3.1.3.4 virtual PVCommandld PVPlayerInterface::CancelCommand (PVCommandld
aCancelCmdld const OsclAnyx aContextData= NULL) [pure virtual]

This APl is to allow user of the SDK to cancel any specific command which is pending on pvPlayer. If the
request is to cancel a command which still has to be processed pvPlayer will just remove the command from
its queue of commands to be processed. If the request is to cancel a command that is ongoing then player
will attempt to interrupt the ongoing command. The state of player after a cancel can vary. So the user
of pvPlayerSDK must always query for state before issuing any subsequent commands. This command
request is asynchronous. PVCommandStatusObserver's CommandCompleted() callback handler will be
called when this command request completes.

Parameters:
aCancelCmdld Command Id to be cancelled.

aContextData Optional opaque data that will be passed back to the user with the command response

Returns:
A unique command id for asynchronous completion

3.1.3.5 virtual PYCommandld PVPIlayerinterface::GetCurrentPosition (PVPPlaybackPosition &
aPos const OsclAnyx aContextData= NULL) [pure virtual]

This function allows querying of the current playback position. The playback position units will be in

the one specified by the passed-in reference to PVPPlaybackPosition. Currently only milliseconds units is
supported. This command request is asynchronous. PYCommandStatusObserver's CommandCompleted()
callback handler will be called when this command request completes.

Parameters:
aPos Reference to place the current playback position

aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrinvalidState if in-
voked in the incorrect state

Returns:
A unique command id for asynchronous completion

3.1.3.6 virtual PVYMFStatus PVPlayerinterface::GetCurrentPositionSync (PVPPlaybackPosition
& aPog [pure virtual]

This function allows querying of the current playback position as a synchronous command. The playback
position units will be in the one specified by the passed-in reference to PVPPlaybackPosition. Currently
only millisecond units is supported.

PV Player Engine 6 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

Parameters:
aPos Reference to place the current playback position @leave This method can leave with one of the
following error codes OsclErrinvalidState if invoked in the incorrect state

Returns:
Status indicating whether the command succeeded or not.

3.1.3.7 virtual PYCommandld PVPlayerinterface::GetLoglLevel (const charx aTag
PVLogLevellnfo & aloglnfo, const OsclAnyx aContextData= NULL) [pure
virtual]

Allows the logging level to be queried for a particular logging tag. A larger log level will result in more
messages being logged. In the asynchronous response, this should return the log level along with an
indication of where the level was inherited (i.e., the ancestor tag). This command request is asynchronous.
PVCommandStatusObserver's CommandCompleted() callback handler will be called when this command
request completes.

Parameters:
aTag Specifies the logger tree tag where the log level should be retrieved.

aLoginfo An output parameter which will be filled in with the log level information.
aContextData Optional opaque data that will be passed back to the user with the command response

Exceptions:
This method can leave with one of the following error codes OsclErrNoMemory if the SDK failed to
allocate memory during this operation

Returns:
A unique command ID for asynchronous completion

3.1.3.8 virtual PYvCommandld PVPlayerinterface::GetMetadataKeys (PVPMetadataList &
aKeylList int32 aStartinglndex= 0, int32 aMaxEntries= -1, char * aQueryKey= NULL,
const OsclAnyx aContextData= NULL, uint32 aClipindex=0) [pure virtual]

This function makes a request to return the list of all or segment of available metadata keys in the current
pvPlayer state. The metadata key list is dynamic and can change during the course of pvPlayer usage. The
list can be used to retrieve the metadata values with GetMetadataValues function. This command request is
asynchronous. PYCommandStatusObserver's CommandCompleted() callback handler will be called when
this command request completes.

Parameters:
aKeyList Reference to a vector to place the metadata key list.

aStartingIndex Input parameter to specify the starting index for akeyList. This parameter along with
aMaxEntries allows us to retrieve the metadata key list in segments.

aMaxEntries Input parameter to specify the maximum number of entries to be added to aKeyList. If
there is no limit, set to -1.

aQueryKeylnput parameter to narrow down the list of requested keys. For example, "track-
info/video" indicates all keys related to "track-info/video". for eg: "track-info/video/width"
"track-info/video/height". A NULL value indicates that all keys are requested.

aContextData Optional opaque data that will be passed back to the user with the command response

PV Player Engine 7 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

aClipIndex: an optional parameter for use with playlists to select the clip of interest. @leave This
method can leave with one of the following error codes OsclErrinvalidState if invoked in the
incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

3.1.3.9 virtual PVvCommandld PVPlayerinterface::GetMetadataValues (PVPMetadataList
& aKeylist int32 aStartingValuelndex int32 aMaxValueEntries int32 &
aNumAvailableValueEntriesOscl_Vector< PvmiKvp, OscIMemAllocator > & aValuelList
const OsclAnyx aContextData= NULL, bool aMetadataValuesCopiedInCallBack true,
uint32 aClipindex=0) [pure virtual]

The function makes a request to return the metadata value(s) specified by the passed in metadata key list. If
the requeted metadata value is unavailable or the metadata key is invalid, the returned list will not contain
a KVP entry for the key. Note that value indexed in the returned aValueList does not necessary match
the same index into the specified aKeyList since this command can return none or more than one KVP
for a specified key. This command request is asynchronous. PVCommandStatusObserver's Command-
Completed() callback handler will be called when this command request completes.

Parameters:
aKeyList Reference to a list of metadata keys for which metadata values are requested.

aStartingValuelndex The starting index refers to the an index into the whole value list specified by
the keys in aKeyList. This command would populate the aValueList starting from the specified
index.

aMaxValueEntries Input parameter to specify the maximum number of entries to be added to aValue-
List. If there is no limit, set to -1.

aNumAvailableValueEntriesOutput parameter which will be filled with number of available values
for the specified key list.

aValueList Reference to a vector of KVP to place the specified metadata values
aContextData Optional opaque data that will be passed back to the user with the command response

aMetadataValuesCopiedInCallBaciBoolean to let engine know if metadata values are copied by
User of SDK in command complete callback. By default the SDK assumes this to be the case.
If this argument is set to false by the caller, then SDK assumes that user will call ReleaseMeta-
DataValues at a later point.

aClipIndex: an optional parameter for use with playlists to select the clip of interest. @leave This
method can leave with one of the following error codes OsclErrinvalidState if invoked in the
incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this operation

Returns:
A unigue command id for asynchronous completion

3.1.3.10 virtual PYCommandld PVPlayerinterface::GetPlaybackMinMaxRate (int32 &
aMinRate, int32 & aMaxRate const OsclAny* aContextData= NULL) [pure
virtual]

This function retrieves the minimum and maximum playback rate expressed as a millipercent of "real-
time" playback rate. This function can be called anytime between pvPlayer instantiation and destruction.
This command request is asynchronous. PVCommandStatusObserver's CommandCompleted() callback
handler will be called when this command request completes.

PV Player Engine 8 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

Parameters:
aMinRate A reference to an integer which will be filled in with the minimum playback rate allowed
expressed as millipercent of "real-time" playback rate.

aMaxRate A reference to an integer which will be filled in with the maximum playback rate allowed
expressed as millipercent of "real-time" playback rate.

aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes

Returns:
A unique command id for asynchronous completion

3.1.3.11 virtual PVCommandld PVPIlayerinterface::GetPlaybackRange (PVPPlaybackPosition
& aBeginPos PVPPlaybackPosition & aEndPos bool aQueued const OsclAny
aContextData= NULL) [pure virtual]

This function retrieves the playback range information for the current or queued playback range. The user
can choose which playback range by the aQueued flag. This function can be called when pvPlayer is
in PVP_STATE_INITIALIZED, PVP_STATE_PREPARED, PVP_STATE_STARTED, or PVP_STATE_-
PAUSED state. The units of position is specified in the passed-in PVPlaybackPosition parameters which
will be filled in when the command completes. This command request is asynchronous. PVCommand-
StatusObserver's CommandCompleted() callback handler will be called when this command request com-
pletes.

Parameters:
aBeginPosReference to place the begin position for the playback range

aEndPos Reference to place the end position for the playback range

aQueuedInput flag to choose inof of which playback range to return. Set(true)for queued range.
Reset(false) for current range.

aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrinvalidState if in-
voked in the incorrect state

Returns:
A unique command id for asynchronous completion

3.1.3.12 virtual PYCommandld PVPlayerInterface::GetPlaybackRate (int32 &aRate
PVMFTimebase x& aTimebaseconst OsclAnyx aContextData= NULL) [pure
virtual]

This function retrieves the current playback rate setting. If the playback rate is set as a millipercent of
"real-time" playback rate, then aRate will be filled in with the milliperecent value when this command
completes successfully. If the playback rate is set by an outside timebase, aRate will be set to 0 and a-
Timebase pointer will point to the PVYMFTimebase being used when the command completes successfully.
This function can be called when pvPlayer is in PVP_STATE_PREPARED, PVP_STATE STARTED,
or PVP_STATE_PAUSED state. This command request is asynchronous. PVYCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aRate A reference to an integer which will be filled in with the current playback rate expressed as
millipercent of "real-time" playback rate. If an outside timebase is being used, aRate would be
setto O.

PV Player Engine 9 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

aTimebaseReference to an PVMFTimebase pointer which will be valid if an outside timebase is being
used for the playback clock.

aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes

Returns:
A unique command id for asynchronous completion

3.1.3.13 virtual PVCommandld PVPlayerInterface::GetPVPlayerState (PVPlayerState &aState
const OsclAnyx aContextData= NULL) [pure virtual]

This function returns the current state of pvPlayer. Application may use this info for updating display or de-
termine if the pvPlayer is ready for the next request. This command request is asynchronous. PVYCommand-
StatusObserver's CommandCompleted() callback handler will be called when this command request com-
pletes.

Parameters:
aState A reference to a PVPlayerState. Upon successful completion of this command, it will contain
the current state of pvPlayer.

aContextData Optional opaque data that will be passed back to the user with the command response

Returns:
A unique command id for asynchronous completion

3.1.3.14 virtual PVMFStatus PVPlayerinterface::GetPVPlayerStateSync (PVPlayerState &
aStatg [pure virtual]

This function returns the current state of pvPlayer as a synchronous command. Application may use this
info for updating display or determine if the pvPlayer is ready for the next request.

Parameters:
aState A reference to a PVPlayerState. Upon successful completion of this command, it will contain
the current state of pvPlayer.

Returns:
Status indicating whether the command succeeded or not.

3.1.3.15 OSCL_IMPORT_REF void PVPIlayerinterface::GetSDKInfo (PVSDKInfo & aSDKInfo)
[static]

Returns SDK version information about pvPlayer.

Parameters:
aSDKInfo A reference to a PVSDKInfo structure which contains product name, supported hardware
platform, supported software platform, version, part number, and PV UUID. These fields will
contain info .for the currently instantiated pvPlayer engine when this function returns success.

PV Player Engine 10 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

3.1.3.16 virtual PVCommandld PVPlayerinterface::GetSDKModulelnfo (PVSDKModulelnfo &
aSDKModulelnfg const OsclAnyx aContextData= NULL) [pure virtual]

Returns information about all modules currently used by pvPlayer SDK. This command request is asyn-
chronous. PVCommandStatusObserver's CommandCompleted() callback handler will be called when this
command request completes.

Parameters:
aSDKModulelnfo A reference to a PVSDKModulelnfo structure which contains the number of mod-
ules currently used by pvPlayer SDK and the PV UUID and description string for each module.
The PV UUID and description string for modules will be returned in one string buffer allocated
by the client. If the string buffer is not large enough to hold the all the module’s information, the
information will be written up to the length of the buffer and truncated.

aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrNoMemory if the
SDK failed to allocate memory during this operation

Returns:
A unigue command ID for asynchronous completion

3.1.3.17 virtual PVCommandld PVPlayerInterface::Init (const OsclAny x aContextData= NULL)
[pure virtual]

This function switches pvPlayer from PVP_STATE_IDLE state to the PVP_STATE_INITIALIZED state.
During the transition, pvPlayer is in the PVP_STATE_INITIALIZING transitional state and the data source

is being initialized to obtain metadata and track information of the source media. If initialization fails,
pvPlayer will revert to PVP_STATE_IDLE state and the data source will be closed. The Command
should only be called in PVP_STATE_IDLE. This command request is asynchronous. PVCommand-
StatusObserver's CommandCompleted() callback handler will be called when this command request com-
pletes.

Parameters:
aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrinvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

Returns:
A unique command id for asynchronous completion

3.1.3.18 virtual PYCommandld PVPlayerinterface::Pause (const OsclAny aContextData=
NULL) [pure virtual]

This function pauses the currently ongoing playback. pvPlayer must be in PVP_STATE_STARTED state
to call this function. When pause successfully completes, pvPlayer will be in PVP_STATE_PAUSED state.
This command request is asynchronous. PVCommandStatusObserver's CommandCompleted() callback
handler will be called when this command request completes.

Parameters:
aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrinvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

PV Player Engine 11 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

Returns:
A unique command id for asynchronous completion

3.1.3.19 virtual PVCommandld PVPlayerinterface::Prepare (const OsclAny aContextData=
NULL) [pure virtual]

This functions prepares pvPlayer for playback. pvPlayer connects the data source with the data sinks
and starts the data source to queue the media data for playback(e.g. for 3GPP streaming, fills the jitter
buffer). pvPlayer also checks to make sure each component needed for playback is ready and capable.
When successful, pvPlayer will be in PVP_STATE_PREPARED state, The command should be called only
in PVP_STATE_INITIALISED. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrinvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

Returns:
A unique command id for asynchronous completion

3.1.3.20 virtual PYCommandld PVPlayerinterface::Querylnterface (const PVUuid & aUuid,
PVinterface x& alnterfacePtr, const OsclAny* aContextData= NULL) [pure
virtual]

This API is to allow for extensibility of the pvPlayer interface. It allows a caller to ask for an instance of

a particular interface object to be returned. The mechanism is analogous to the COM IUnknown method.
The interfaces are identified with an interface ID that is a UUID as in DCE and a pointer to the interface
object is returned if it is supported. Otherwise the returned pointer is NULL. This command request is
asynchronous. PVCommandStatusObserver's CommandCompleted() callback handler will be called when
this command request completes.

Parameters:
aUuid The UUID of the desired interface

alnterfacePtr A reference to the output pointer to the desired interface
aContextData Optional opaque data that will be passed back to the user with the command response

Exceptions:
This method can leave with one of the following error codes OsclErrNotSupported if the specified
interface UUID is not supported

Returns:
A unique command ID for asynchronous completion

3.1.3.21 virtual PYCommandld PVPlayerinterface::ReleaseMetadataValues (Oscl_Vectar
PvmiKvp, OscIMemAllocator > & aValueList const OsclAnyx aContextData= NULL,
uint32 aCliplndex=0) [pure virtual]

The function makes a request to release the metadata value(s) specified by the passed in metadata value list.
This command request is asynchronous. PVCommandStatusObserver's CommandCompleted() callback

PV Player Engine 12 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

handler will be called when this command request completes.If a GetMetaDataValues were called in PVP_-
STATE_INITIALIZED state, then corresponding ReleaseMetaDataValues must be called before Reset. If a
GetMetaDataValues were called in PVP_STATE_PREPARED, PVP_STATE_STARTED, PVP_STATE_-
PAUSED states, then corresponding ReleaseMetaDataValues must be called before Stop.

Parameters:
aValuelList Reference to a vector of KVP to place the specified metadata values

aContextData Optional opaque data that will be passed back to the user with the command response

aClipindex: an optional parameter for use with playlists to select the clip of interest. @leave This
method can leave with one of the following error codes OsclErrinvalidState if invoked in the
incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

3.1.3.22 virtual PVYCommandld PVPlayerinterface::RemoveDataSink (PVPlayerDataSink &
aDataSink const OsclAnyx aContextData= NULL) [pure virtual]

This function may be used to close and unbind a data sink that has been previously added. This func-
tion must be called when pvPlayer is in PVP_STATE_INITIALIZED state. If the data sink is in use for
playback, Stop must be called first to stop the playback and free the data sink. This command request is
asynchronous. PVCommandStatusObserver's CommandCompleted() callback handler will be called when
this command request completes.

Parameters:
aDataSink Reference to the data sink to be removed

aContextData Optional opaque data that will be passed back to the user with the command response
@Ileave This method can leave with one of the following error codes OsclErrBadHandle if the
passed in sink parameter is invalid OsclErrinvalidState if invoked in the incorrect state OsclErr-
NoMemory if the SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

3.1.3.23 virtual PVCommandld PVPlayerinterface::RemoveDataSource (PVPlayerDataSource &
aDataSource const OsclAnyx aContextData= NULL) [pure virtual]

This function may be used to close and unbind a data source that has been previously added. This function
must be called when pvPlayer is in PVP_STATE_IDLE state. If the data source has already been initial-
ized, Reset must be called first. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aDataSourceReference to the data source to be removed.

aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrBadHandle if the
passed in sink parameter is invalid OsclErrinvalidState if invoked in the incorrect state OsclErr-
NoMemory if the SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

PV Player Engine 13 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

3.1.3.24 virtual PVCommandld PVPlayerinterface::RemovelLogAppender (const chak aTag,
OsclSharedPtr< PVLoggerAppender > & aAppendey const OsclAnysx aContextData=
NULL) [pure virtual]

Allows a logging appender to be removed from the logger tree at the point specified by the input tag. If the
input tag is NULL then the appender will be removed from locations in the tree. This command request is
asynchronous. PVCommandStatusObserver's CommandCompleted() callback handler will be called when
this command request completes.

Parameters:
aTag Specifies the logger tree tag where the appender should be removed. Can be NULL to remove
at all locations.

aAppenderThe log appender to remove.
aContextData Optional opaque data that will be passed back to the user with the command response

Exceptions:
This method can leave with one of the following error codes OsclErrNoMemory if the SDK failed to
allocate memory during this operation

Returns:
A unigue command ID for asynchronous completion

3.1.3.25 virtual PYCommandld PVPlayerinterface::Reset (const OsclAny aContextData=
NULL) [pure virtual]

This function cleans up resources used for playback to transition pvPlayer to PVP_STATE_IDLE state.
While processing this command, pvPlayer is in the PVP_STATE_RESETTING state. If any data sinks are
still referenced by pvPlayer when this function is called, the data sinks will be closed and removed from
pvPlayer during the Reset. If already in PVP_STATE_IDLE state, then nothing will occur. This command
request is asynchronous. PVYCommandStatusObserver's CommandCompleted() callback handler will be
called when this command request completes.

Parameters:
aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrNoMemory if the
SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

3.1.3.26 virtual PYCommandld PVPlayerinterface::Resume (const OsclAny aContextData=
NULL) [pure virtual]

This function resumes the currently paused playback. pvPlayer must be in PVP_STATE_PAUSED state to
call this function. When resume successfully completes, pvPlayer will be in PVP_STATE_STARTED state.
This command request is asynchronous. PVCommandStatusObserver's CommandCompleted() callback
handler will be called when this command request completes.

Parameters:
aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrinvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

PV Player Engine 14 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

Returns:
A unique command id for asynchronous completion

3.1.3.27 virtual PVCommandld PVPlayerinterface::SetLogAppender (const char aTag,
OsclSharedPtr< PVLoggerAppender > & aAppendey const OsclAnyx aContextData=
NULL) [pure virtual]

Allows a logging appender to be attached at some point in the logger tag tree. The location in the tag tree
is specified by the input tag string. A single appender can be attached multiple times in the tree, but it may
result in duplicate copies of log messages if the appender is not attached in disjoint portions of the tree.
A logging appender is responsible for actually writing the log message to its final location (e.g., memory,
file, network, etc). This API can be called anytime after creation of pvPlayer. This command request is
asynchronous. PYCommandStatusObserver's CommandCompleted() callback handler will be called when
this command request completes.

Parameters:
aTag Specifies the logger tree tag where the appender should be attached.

aAppenderThe log appender to attach.
aContextData Optional opaque data that will be passed back to the user with the command response

Exceptions:
This method can leave with one of the following error codes OsclErrNoMemory if the SDK failed to
allocate memory during this operation

Returns:
A unique command ID for asynchronous completion

3.1.3.28 virtual PYCommandld PVPlayerinterface::SetLogLevel (const chak aTag, int32 aLevel|
bool aSetSubtree false, const OsclAny aContextData= NULL) [pure virtual]

Allows the logging level to be set for the logging node specified by the tag. A larger log level will result

in more messages being logged. A message will only be logged if its level is LESS THAN or equal to
the current log level. The aSetSubtree flag will allow an entire subtree, with the specified tag as the root,
to be reset to the specified value. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aTag Specifies the logger tree tag where the log level should be set.

alLevel Specifies the log level to set.
aSetSubtreeSpecifies whether the entire subtree with aTag as the root should be reset to the log level.
aContextData Optional opaque data that will be passed back to the user with the command response

Exceptions:
This method can leave with one of the following error codes OsclErrNoMemory if the SDK failed to
allocate memory during this operation

Returns:
A uniqgue command ID for asynchronous completion

PV Player Engine 15 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

3.1.3.29 virtual PVCommandld PVPlayerinterface::SetPlaybackRange (PVPPlaybackPosition
aBeginPos PVPPlaybackPositionaEndPos bool aQueueRanggeconst OsclAny
aContextData= NULL, bool aSkipToRequestedPositiontrue, bool aSeekToSyncPoint
true) [pure virtual]

This function sets the begin and end positions for the new playback range or changes the end position of
the current playback range. This function must be called when pvPlayer is in PVP_STATE_INITIALIZED,
PVP_STATE_PREPARED, PVP_STATE_STARTED, or PVP_STATE_PAUSED state. The specified posi-
tions must be between beginning of clip and clip duration. The units of position is specified in the passed-in
parameter PVPPlaybackPosition. If either of the positions is indeterminate, use the indeterminate flag in
PVPPlaybackPosition structure. The queued playback range can be done using aQueueRange flag which
is Not Supported as of now by PV-SDK. This function will overwrite any previous playback range info.
The only exception is the changing of end position for the current playback range during playback. Com-
mand if called in player state as PVP_STATE_INITIALISED or PVP_STATE_PAUSED, will complete in

one Engine AO run without actually changing the position. The change in position will come into affect
when Prepare or Resume respectively is called on Engine by the app. If reposition request is not honored
by the source node during Prepare or Resume, engine will continue to complete Prepare or Resume but
will send an informational event "PVMFInfoChangePlaybackPositionNotSupported” to the app inform-
ing that the SetPlaybackRange request could not be honored. This command request is asynchronous.
PVCommandStatusObserver's CommandCompleted() callback handler will be called when this command
request completes.

Parameters:
aBeginPos Beginning position for the new playback range

aEndPos Ending position for the new playback range.

aQueueRangelnput flag to tell pvPlayer to queue the new playback range (Set/true) or use the new
playback range right away (Reset/false)

aContextData Optional opaque data that will be passed back to the user with the command response

aSkipToRequestedPositioBoolean value to indicate whether or not the display should start exactly
from the requested position Default is set to 'true’.

aSeekToSyncPoinBoolean value to indicate whether or not the source should seek to a sync point.
true - Means that the decoder will be fed from a key-frame thereby promising that there are no
artefacts false - Means that the decoder will be fed the nearest frame from the requested seek
point, which can be a non-sync frame, with a possibility of causing artefacts Default is set to
‘true’” @leave This method can leave with one of the following error codes OsclErrinvalidState
if invoked in the incorrect state

Returns:
A unique command id for asynchronous completion

3.1.3.30 virtual PYCommandld PVPlayerinterface::SetPlaybackRate (int32aRate
PVMFTimebase x aTimebase= NULL, const OsclAny x aContextData= NULL) [pure
virtual]

This function allows the setting of the playback rate. The playback rate can be set as millipercent of "real-
time" playback rate. For example, 100000 means 1X "real-time", 400000 means 4X, 25000 means 0.25X,
and -100000 means 1X backward. The playback rate can also be modified by specifying the timebase to
use for the playback clock. This is accomplished by setting the aRate parameter to 0 and passing in a
pointer to an PVMFTimebase. This function can be called when pvPlayer is in PVP_STATE_PREPARED,
PVP_STATE_STARTED, or PVP_STATE_PAUSED state. Changing to or from an outside timebase is only
allowed in PVP_STATE_PREPARED. Command if called in player state PVP_STATE_PAUSED with a

PV Player Engine 16 Confidential/Proprietary

packet 3.1 PVPlayerinterface Class Reference

direction change, will complete in one Engine AO run without actually changing the direction. The change

in direction will come into affect when Resume is called on Engine by the app. If the request is not honored
by the source node during Resume, engine will continue to complete Resume but will send an informational
event "PVMFInfoChangePlaybackPositionNotSupported” to the app informing that the SetPlaybackRate
request could not be honored. This command request is asynchronous. PVCommandStatusObserver’s
CommandCompleted() callback handler will be called when this command request completes.

Parameters:
aRate The playback rate specified as millipercent of "real-time". A millipercent is 1/1000 of a percent.
So 2X =200% of realtime is 200,000 millipercent. The motivation is to povide precision with an
integer parameter. Negative rates specify backward playback. The valid range of absolute value
of playback rates will be limited to the minimum and maximum returned@kyPlaybackMin-
MaxRate()

aTimebaseReference to an PVMFTimebase which will be used to drive the playback clock. aRate
must be set to 0, 1X, or -1X to use the timebase.

aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrArgument if rate or
timebase is invalid

Returns:
A unique command id for asynchronous completion

3.1.3.31 virtual PV¥Commandld PVPlayerinterface::Start (const OsclAnyx aContextData=
NULL) [pure virtual]

This function kicks off the actual playback. Media data are sent out from the data source to the data
sink(s). pvPlayer will transition to PVP_STATE_STARTED state after playback starts successfully. The
command should be called only in PVP_STATE_PREPARED. This command request is asynchronous.
PVCommandStatusObserver's CommandCompleted() callback handler will be called when this command
request completes.

Parameters:
aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrinvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this
operation

Returns:
A unique command id for asynchronous completion

3.1.3.32 virtual PYCommandld PVPlayerinterface::Stop (const OsclAny« aContextData=
NULL) [pure virtual]

This function stops the current playback and transitions pvPlayer to the PVP_STATE_INITIALIZED state.
During the transition, data transmission from data source to all data sinks are terminated. Also all con-
nections between data source and data sinks are torn down. This command request is asynchronous.
PVCommandStatusObserver's CommandCompleted() callback handler will be called when this command
request completes.

PV Player Engine 17 Confidential/Proprietary

L]
packet 3.1 PVPlayerinterface Class Reference

Parameters:
aContextData Optional opaque data that will be passed back to the user with the command response

@leave This method can leave with one of the following error codes OsclErrinvalidState if in-
voked in the incorrect state OsclErrNoMemory if the SDK failed to allocate memory during this

operation

Returns:
A unique command id for asynchronous completion

3.1.3.33 virtual PVvCommandld PVPlayerinterface::UpdateDataSource (PVPlayerDataSource &
aDataSourceconst OsclAnyx aContextData= NULL) [pure virtual]

This function allows extending or updating a track list during playback. Changes can be applied prior to
beginning initialization for any track.

Parameters:
aDataSourceaDataSource contains an updated version of the data source previously provided in Add-
DataSource command. The updated data source can contain modifications to existing clips in the
list, or new clips added to the end of the list. This API cannot be used to update data for clips
that have already been initialized, or to delete clips from the clip list.

aContextData Optional opaque data that will be passed back to the user with the command response
@leave This method can leave with one of the following error codes OsclErrNoMemory if the
SDK failed to allocate memory during this operation

Returns:
A unique command id for asynchronous completion

The documentation for this class was generated from the following file:

* pv_player_interface.h

PV Player Engine 18 Confidential/Proprietary

Chapter 4

pvplayer_engine File Documentation

4.1 pv_player _interface.h File Reference

#include "oscl_base.h"
#include "oscl_string.h"
#include "oscl _vector.h"
#include "oscl_mem.h"
#include "pvlogger.h"

#include "pvmf_return_codes.h"
#include "pv_engine_types.h"
#include "pv_player_types.h"
#include "pv_player_events.h"
#include "pv_player_datasource.h”
#include "pv_player_datasink.h"
#include "pvmi_kvp.h"

#include "pvmf_media_clock.h"

Data Structures

* classPVPlayerinterface

Index

~PVPlayerinterface
PVPlayerinterface4

AddDataSink
PVPlayerinterfaceh

AddDataSource
PVPlayerinterfaces

CancelAllCommands
PVPlayerinterface

CancelCommand
PVPlayerinterfacef

GetCurrentPosition
PVPlayerinterfacef
GetCurrentPositionSync
PVPlayerinterfacef
GetLogLevel
PVPlayerinterfacef
GetMetadataKeys
PVPlayerinterface/
GetMetadataValues
PVPlayerinterface
GetPlaybackMinMaxRate
PVPlayerinterfaced
GetPlaybackRange
PVPlayerinterfaced
GetPlaybackRate
PVPlayerinterface9
GetPVPlayerState
PVPlayerinterfacel0
GetPVPlayerStateSync
PVPlayerinterfacel0
GetSDKInfo
PVPlayerinterfacel0
GetSDKModulelnfo
PVPlayerinterfacel0

Init
PVPlayerinterfacel 1

Pause
PVPlayerinterfacel 1

Prepare
PVPlayerinterfacel 2

pv_player_interface.H,9

PVPlayerinterface3

PVPlayerinterface
~PVPlayerinterfacet
AddDataSink5
AddDataSource
CancelAllCommands$
CancelCommand
GetCurrentPositior

GetCurrentPositionSyné,

GetLoglLevel,7
GetMetadataKeys,
GetMetadataValues,

GetPlaybackMinMaxRate

GetPlaybackRang®,
GetPlaybackRate)
GetPVPlayerStatd,0

GetPVPlayerStateSynt0

GetSDKInfo,10
GetSDKModulelnfo,10
Init, 11

Pausell

Preparel2
Querylinterfacel2

ReleaseMetadataValues?

RemoveDataSinkl.3
RemoveDataSourcé3
RemovelLogAppendet,3
Reset]14

Resumel4
SetLogAppenderl5
SetlLogLevel 15
SetPlaybackRangé5
SetPlaybackRatd,6
Start,17

Stop,17
UpdateDataSourcé8

Querylinterface
PVPlayerinterfacel 2

ReleaseMetadataValues
PVPlayerinterfacel 2

RemoveDataSink
PVPlayerinterface]l3

RemoveDataSource

-
packet

INDEX

PVPlayerinterfacel3
RemovelLogAppender
PVPlayerinterfacel 3
Reset
PVPlayerinterfacel4
Resume
PVPlayerinterfacel4

SetLogAppender
PVPlayerinterfacel5
SetlLogLevel
PVPlayerinterfacel5
SetPlaybackRange
PVPlayerinterfacel5
SetPlaybackRate
PVPlayerinterfacel 6
Start
PVPlayerinterfacel7
Stop
PVPlayerinterfacel7

UpdateDataSource
PVPlayerinterfacel 8

PV Player Engine

21

Confidential/Proprietary

	pvplayer_engine Data Structure Index
	pvplayer_engine Data Structures

	pvplayer_engine File Index
	pvplayer_engine File List

	pvplayer_engine Data Structure Documentation
	PVPlayerInterface Class Reference

	pvplayer_engine File Documentation
	pv_player_interface.h File Reference

