
PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

Apr 9, 2010

© 2010 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0 

http://www.apache.org/licenses/LICENSE-2.0


PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

Table of Contents
1. Introduction                                                                                                           .......................................................................................................  5  
2. Architecture                                                                                                           .......................................................................................................  5  

2.1. Static Design                                                                                                    ................................................................................................  5  
2.2. SDK State Machine Design                                                                             .........................................................................  6  
2.3. Command Processing                                                                                     ................................................................................  8  
2.4. Sources and Sinks                                                                                           .......................................................................................  8  

2.4.1. Defining Media Capability                                                                        ....................................................................  8  
2.4.2. Media IO Components                                                                             .........................................................................  9  
2.4.3. Track Indications                                                                                      ..................................................................................  9  
2.4.4. Removing sources and sinks                                                                 .............................................................  10  
2.4.5. Channel re-negotiation                                                                           .......................................................................  10  

2.5. Comm Interface                                                                                             .........................................................................................  10  
2.6. Lip Synchronization                                                                                       ...................................................................................  10  
2.7. Extension Interfaces                                                                                      ..................................................................................  11  

3. Usage Scenarios                                                                                                 .............................................................................................  11  
3.1. Initializing                                                                                                       ...................................................................................................  11  
3.2. Connecting                                                                                                     .................................................................................................  12  
3.3. Adding Data Sources                                                                                     .................................................................................  14  
3.4. Removing Data Sources                                                                                ............................................................................  15  
3.5. Adding Data Sinks                                                                                         .....................................................................................  17  
3.6. Removing Data Sinks                                                                                    ................................................................................  19  
3.7. Data Sink Removed                                                                                       ...................................................................................  19  
3.8. Disconnecting                                                                                                ............................................................................................  23  
3.9. Resetting                                                                                                        ....................................................................................................  24  
3.10.  Complete Call Sequence                                                                            ........................................................................  25  

4. Proxy Adapter                                                                                                     .................................................................................................  25  
5. Logging                                                                                                                ............................................................................................................  26  

5.1. Logging incoming/outgoing audio/video data                                                ............................................  26  
6. Feature List                                                                                                          ......................................................................................................  28  

6.1. Specification Versions                                                                                   ...............................................................................  28  
6.1.1. Normative                                                                                               ...........................................................................................  28  
6.1.2. Informative                                                                                              ..........................................................................................  28  

7. Supported Features                                                                                            ........................................................................................  29  
7.1. Feature Group 1: H.223                                                                                 .............................................................................  29  
7.2. Feature Group 2: H.245                                                                                 .............................................................................  29  
7.3. Feature Group 3: H.324/3G-324M                                                                ............................................................  30  
7.4. Feature Group 4: Audio                                                                                 .............................................................................  31  
7.5. Feature Group 5: Video                                                                                 .............................................................................  31  

 - Page 2 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

8. References                                                                                                           .......................................................................................................  32  

 - Page 3 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

List of Figures
Figure 1: High Level Class Diagram...............................................................................................5
Figure 2: State Transition Diagram.................................................................................................6
Figure 3: Sequence Diagram - Initializing.....................................................................................10
Figure 4: Sequence Diagram - Connecting...................................................................................11
Figure 5: Sequence Diagram -  Adding a Data Source.................................................................13
Figure 6: Sequence Diagram – Removing a Data Source............................................................14
Figure 7: Sequence Diagram - Adding a Data Sink......................................................................16
Figure 8: Sequence Diagram - Removing a  Data Sink................................................................17
Figure 9: Sequence Diagram - Data Sink Removed.....................................................................18
Figure 10: Sequence Diagram - Disconnecting.............................................................................19
Figure 11: Sequence Diagram - Resetting....................................................................................20
Figure 12: Sequence Diagram - Complete Call Sequence............................................................21

 - Page 4 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

1. Introduction

This document is a guide for developers writing clients to the PV2Way SDK.  A client of PV2Way 
can be an application or an adapter layer to adapt PV2Way interface to a higher-level interface 
used by the application. This document describes how to use PV2Way interface and its 
extensions to create, configure and control a video telephony session.

PV2Way is a platform-agnostic SDK that provides video telephony capabilities for its clients.  The 
SDK is capable of executing 3G-324M standard video telephony calls.  The input media data are 
typically provided by live source(s) such as camera and microphone.  Output media data is 
forwarded to presentation sinks such as display and speaker.  The sources and sinks are 
provided by the client application.

2. Architecture

2.1. Static Design

The following diagram illustrates the major participants in a video telephony session using the 
PV2Way SDK.  A client obtains a reference to the 2way engine (CPV2WayInterface) using either 
of the factory classes CPV2WayEngineFactory or CPV2WayProxyFactory.  The client must also 
implement PV2Way’s observer interfaces in order to receive command completion, status 
information and error information.   PV2Way is dependent on its client to provide media data 
sources and sinks for a video telephony session.  These media sources and sinks should either 
be a Media IO Component (MIO) or implement the PVMFNodeInterface (Node) to allow PV2Way 
Engine to control them in a generic way.  A reference to the communications end point is needed 
by PV2Way to communicate with a peer terminal.  This interface acts as the data link to the peer 
terminal for the video telephony session.  Just like media sources and sinks, this can be 
implemented either as an MIO or a Node.  The Client control of the session is performed through 
CPV2WayInterface.  The figure below shows the relationship between PV2Way, the client, and 
other objects owned by the client.   MIOs are described in detail later in the document.

 - Page 5 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

2.2. SDK State Machine Design

PV2Way SDK has 7 states: Idle, Initializing, Setup, Connecting, Connected, Disconnecting, and 
Resetting.  

• Idle: The state immediately after the PV2Way instance has been successfully created or 
instantiated.    Some optional PV2Way components must be selected in this state.

• Initializing: The PV2Way is in this state when it is initializing from the Idle to the Setup 
state.  The terminal queries the available device capabilities (encode, decode, mux), 
acquires resources to make a two-way call (codecs, formats, memory etc) and transitions 
to the Setup state when it will be ready to accept setup parameters and Connect.  If 
initializing fails, the PV2Way relinquishes the resources and reverts to the Idle state.  

• Setup: The state where the PV2Way instance is in the process of receiving setup 
parameters from the application, for encoding, multiplexing, capturing and rendering. 
Each time a new set of parameters is passed in, validation will take place and a status will 
be returned accordingly.   

 - Page 6 of 30 -

Figure 1: High Level Class Diagram

« i n t e r f a c e »
P V M F N o d e I n t e r f a c e C l i e n t

« i n t e r f a c e »
P V C o m m a n d S t a t u s O b s e r v e r

« i n t e r f a c e »
P V I n f o r m a t i o n a l E v e n t O b s e r v e r

« i n t e r f a c e »
P V E r r o r E v e n t O b s e r v e r

K e y

2 W a y  E n g i n e  C o m p o n e n t s

P V M F  C o m p o n e n t s

C l i e n t  c o m p o n e n t s

P v m i M I O C o m m L o o p b a c k

C P V2 W a y E n g i n e F a c t o r y

A u d i o  S i n k  M I O

V i d e o  S i n k  M I O

A u d i o  S o u r c e  M I O

V i d e o  S o u r c e  M I O

1

*

« i n t e r f a c e »
C P V2 W a y I n t e r f a c e

C P V3 2 4m 2 W a y

C P V2 W a y P r o x y A d a p t e r

1
1

1
*



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

• Connecting:  The state where the PV2Way instance has received a call to start 
connecting.  The communications end point is also to be provided as part of this process. 
The PV2Way engine starts communication with the remote terminal to exchange media 
capabilities and channel configuration in preparation for the establishment of media 
channels.   

• Connected: The state after all mandatory control signaling is completed. PV2Way will 
establish media tracks based on local and remote capabilities and indicate outgoing track 
establishment to the client, upon which the client is required to provide media sources for 
these tracks.  Similarly, incoming channel notifications will be passed to the client after 
which the client can add media sinks to associate with particular incoming channels.

• Disconnecting: The state where the terminal is shutting down all channels and the 
multiplex.

• Resetting: The state where the terminal is releasing all resources and transitioning to the 
Idle state.

To transition from one state to another, the user will need to call the session control APIs of 
PV2WayInterface.  The figure below illustrates state transition of PV2Way SDK.

 - Page 7 of 30 -

Figure 2: State Transition Diagram

I d l e

S e t u p

I n i t i a l i z i n g

C o n n e c t i n g

R e s e t t i n g

C o n n e c t e d

D i s c o n n e c t i n g

/  I n i t L( )/  R e s e t  C o m p l e t e

/  I n i t  C o m p l e t e/  R e s e t L( )

/  C o n n e c t L( )

/  C o n n e c t  C o m p l e t e/  N e t w o r k  D i s c o n n e c t, R e m o t e  D i s c o n n e c t, D i s c o n n e c t L( )

/  D i s c o n n e c t  C o m p l e t e



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

2.3. Command Processing 

The PV2Way SDK exposes functionalities via commands implemented either by the 
CPV2WayInterface class or by extension interfaces.  The following are some common features of 
these APIs:

1. Most APIs to the PV2Way SDK are asynchronous.  The user is expected to implement an 
observer to monitor the status of issued commands. 

2. The asynchronous APIs return a unique command id if the request is accepted.  
3. The API will leave if there is an error queuing the request.
4. Optional opaque data can be passed in with every asynchronous call to allow the user to 

associate arbitrary data/state information with the call.
5. Reference to data structures can be passed in some APIs to allow the user to specify where 

the data should be written.  The PV2Way SDK will have complete ownership of the 
reference until the call is completed

6. Once the command is processed, the user is notified via the command observer of the 
command id, completion status, the opaque context data and additional opaque data 
which is to be interpreted based on the command type and the completion status.

7. All pending commands can be cancelled by using the CancelAllCommands API.  The 
CancelAllCommands command itself cannot be cancelled.  Cancelled commands will still 
return a command completion notification with an indication that it was cancelled.

2.4. Sources and Sinks

PV2Way can handle several types of media sources and sinks and can adapt its internal 
configuration based on the types of the sources and sinks, and the time when they are added to 
the PV2Way.  

2.4.1. Defining Media Capability
The user of the SDK should define the scope of the call during initialization.  The PV2WayInitInfo 
class allows the user to advertise the formats and capabilities of available sources and sinks for 
each incoming and outgoing channel of media that is to be established.  The order of formats 
specifies the preference in decreasing order.  For instance, user may define the following:

Available outgoing audio formats: {AMR}

Available video formats: {Mpeg4, YUV422}

Available incoming audio formats: {AMR}

Available incoming video formats: {Mpeg4, YUV420}

These capabilities along with the capabilities of the PV2Way engine (internal codecs, stack) will 
be used to negotiate the session with the peer.  However, it is not guaranteed that the most 
preferred formats will be negotiated or, that any format will be negotiated at all. 

 - Page 8 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

2.4.2. Media IO Components
In PV2Way SDK and PV multimedia framework architecture, the Media IO (MIO) component is a 
communication layer for the 2way engine to interact with the device’s capturing, rendering and 
network interfaces. As access to media capturing/rendering & network functionalities are different 
for every platform that PV software works on, the MIO component serves as a glue layer for 
different  PV  modules.   In  order  to  act  as  an  adapter  between  PV  modules  and  underlying 
hardware interfaces, a MIO component has several responsibilities.

• Control the underlying hardware based on commands from other PV modules. 
• Exchange capabilities  information  of  the  underlying  hardware  with  other  PV 

modules.
• Send/Receive media data to/from the different underlying hardware interfaces.

Several PV2Way engines APIs (CPV2WayInterface) accept a reference to PVMFNodeInterface 
for sources and sinks (including the COMM interface).  Factories that provide a node wrapper for 
a given MIO are provided in the PV2Way SDK so that the client does not have to adapt to the 
PVMFNodeInterface, but can simply provide all its adaptations using MIOs.  The 
PVCommsIONodeFactory class creates a node wrapper for the COMM MIO.  The 
PvmfMediaInputNodeFactory class creates a node wrapper for media input MIOs.  The 
PvmfMediaOutputNodeFactory class creates a node wrapper for the media output MIOs.  

In the rest of this document, a node is used interchangeably with an MIO in the context of 
sources, sinks and the comms interface.

Detailed  information  on  Media  I/O  components  can  be  found  in  the  “Media  I/O  Developers 
Guide.”

2.4.3. Track Indications
Media sources and sinks should be added after an indication from PV2Way is received notifying 
establishment of the track (PVT_INDICATION_OUTGOING_TRACK/ 
PVT_INDICATION_INCOMING_TRACK).  This can happen in the EConnecting and EConnected 
states.  The indications convey the following:
• The port tag associated with the track.  The Client is expected to pass in this tag when it calls 

AddDataSource/AddDataSink.
• The media type associated with the track
• A PV2WayTrackInfoInterface extension interface, which conveys the format type as a MIME 

string, Format Specific Information if any, etc.
The following are the types of sinks/sources supported:
• Raw data sources:  These sources output uncompressed data – YUV, PCM etc.  
• Compressed data sources:  These sources output compressed data – MPEG-4, H.263, AMR.
• Raw data sinks:  These sinks receive uncompressed data – YUV, PCM etc. The PV2Way 

Engine will establish a codec in the datapath to convert the incoming compressed bitstream 
to a raw type supported by the sink. 

• Compressed data sinks:  These sinks receive compressed data – MPEG-4, H.263, AMR.

 - Page 9 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

2.4.4. Removing sources and sinks
Sources and sinks added during a call should be removed before disconnecting the call.

2.4.5. Channel re-negotiation
If the peer does not support one of our outgoing track formats or if a conflict arises, one or more 
of the tracks may need to be closed and replaced with tracks agreeable to both sides.  As soon 
as the PV2Way SDK detects this condition, it passes a PVT_INDICATION_CLOSING_TRACK 
indication to the Client specifying the unique tag for the channel.  Subsequently, it closes the 
track and passes a PVT_INDICATION_CLOSE_TRACK indication.  This is illustrated in Section 
3.8.

For outgoing channels the Client needs to wait for the PVT_INDICATION_OUTGOING_TRACK 
indication and then add a compatible source.  For incoming channels, the user needs to wait for 
the PVT_INDICATION_INCOMING_TRACK indication before adding a compatible sink. 

2.5. Comm Interface

The Comm Interface represents the data link to the remote video telephony terminal.  It typically 
implements a 64kbps circuit-switched connection to a serial-port or the baseband of a phone. 
The PV2Way Engine interfaces to it using an MIO or PVMFNodeInterface.  Once the Comm 
Interface indicates a successful start the PV2Way Engine begins sending and receiving a 3G-
324M compliant bitstream with the peer terminal via the Comm Interface.  

More details on this can be found in Reference 4.

2.6. Lip Synchronization

The strategy for lip synchronization of incoming media is pretty similar to how its handled in the 
PVPlayer, so only the differences are addressed here. 
The pv2way engine will provide timestamped audio and video samples to the Media I/O 
Components along with a clock just like the PVPlayer case. The active audio rendering MIO 
would adjust the clock based on the number of samples rendered and the video rendering MIO 
would pace itself based on the shared clock.  

– The pv2way engine would attempt to smoothen the incoming timestamps especially for 
audio to reduce jitter.  The jitter comes from the fact that the protocol does not support 
bitstream timestamps.  Without bitstream timestamps, the timestamps are   based on 
arrival time and this makes them prone to a lot of jitter.

– The pv2way engine disables buffering/delaying/dropping of audio and video within 2way 
datapaths for lip synchronization. Buffering/delaying/dropping decisions are left to the 
MIOs.

– Incoming skew indication will be forwarded to the application via the 
H324MConfigInterface. This provides any inherent skew between the incoming audio and 
video streams that needs to be compensated for at the time of rendering.  This is not very 
common, but applications need to be able to handle it if the skew is significant. 

For outgoing media, the pv2way engine monitors the outgoing audio and video streams for 
significant skew and if detected, it issues a Skew Indication message to the peer.

 - Page 10 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

2.7. Extension Interfaces

Extended configuration of the engine for protocol-specific features and for value adds may be 
acheived using extension interfaces (if they are supported.)  This is done using the 
QueryInterface mechanism.
H.324-specific configuration may be acheived  using the H324MConfigInterface.  

More details may be found in the pv2way engine API document.

3. Usage Scenarios

The following sections illustrate the interactions that happen between the client and the PV2Way 
components to handle some of the typical commands. 

3.1. Initializing

The Init command initializes an instance of PV2Way and acquires all the resources for a video 
telephony call.  The Command Status Observer is notified of the outcomes.

 - Page 11 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

3.2. Connecting

Commanding PV2Way to Connect begins the 3G-324M call setup procedure.  The CommNode is 
used as the network connection to the peer 3G-324M terminal and must therefore be connected 
to the shared data link once the Start command is returned with a successful result.  

 - Page 12 of 30 -

Figure 3: Sequence Diagram - Initializing



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

 - Page 13 of 30 -

Figure 4: Sequence Diagram - Connecting

C l i e n t C P V2 W a y I n t e r f a c e P V C o m m a n d S t a t u s O b s e r v e r

C o n n e c t( )

C o m m a n d C o m p l e t e d( C o n n e c t)

C o m m N o d e

W a i t  f o r  S t a c k  t o  C o m p l e t e  3 G - 3 2 4M  P r o t o c o l  N e g o t i a t i o n s

I n i t( )

N o d e C o m m a n d C o m p l e t e d( I n i t)

S t a r t( )

N o d e C o m m a n d C o m p l e t e d( S t a r t)

T h r e a d L o g o n( )

Q u e r y I n t e r f a c e( )

N o d e C o m m a n d C o m p l e t e d( Q u e r y I n t e r f a c e)

C o n f i g u r e  n o d e  s p e c i f i c  p a r a m e t e r s



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

3.3. Adding Data Sources

The PV2Way Client needs to create media i/o components for source data (audio, video) and 
provide them to PV2Way via the AddDataSource() method after receiving the 
PVT_INDICATION_OUTGOING_TRACK for the channel.  Data from these sources would be 
(optionally) encoded, multiplexed and transmitted to the peer.  The PVMFMediaInputNode is 
used to encapsulate the media i/o components before passing them via the AddDataSource call. 

 - Page 14 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

The media i/o component is configured using the capability exchange interfaces. 

3.4. Removing Data Sources

Data Sources should be removed before disconnecting the call.

 - Page 15 of 30 -

Figure 5: Sequence Diagram -  Adding a Data Source

Client CPV2WayInterface MPVCommandStatusObserver

AddDataSourceL()

CommandCompletedL(Add Source)

SourceNode

Init()

NodeCommandCompleted(Init)

Start()

NodeCommandCompleted(Start)

ThreadLogon()

QueryInterface()

NodeCommandCompleted(QueryInterface)

Configure node specific parameters

MPVInfoEventObserver

PVT_INDICATION_OUTGOING_TRACK



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

 

 - Page 16 of 30 -

Figure 6: Sequence Diagram – Removing a Data Source

C l i e n t C P V2 W a y I n t e r f a c e M P V C o m m a n d S t a t u s O b s e r v e r

R e m o v e D a t a S o u r c e L( )

C o m m a n d C o m p l e t e d L( R e m o v e  S o u r c e)

N o d e C o m m a n d C o m p l e t e d( S t o p)

S o u r c e N o d e

R e s e t( )

S t o p( )

N o d e C o m m a n d C o m p l e t e d( R e s e t)

T h r e a d L o g o f f( )



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

3.5. Adding Data Sinks

The PV2Way Client needs to create media i/o components for sink data (audio, video) and 
provide them to PV2Way via the AddDataSink() method after receiving the 
PVT_INDICATION_INDICATION_TRACK for the channel.  Incoming media data from the peer 
would be de-multiplexed, (optionally) decoded and provided to these sinks.  The 
PVMFMediaOutputNode is used to encapsulate the media i/o components before passing them 
via the AddDataSink call.  The media i/o component is configured using the capability exchange 
interfaces.  

 - Page 17 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

 - Page 18 of 30 -

Figure 7: Sequence Diagram - Adding a Data Sink

Client CPV2WayInterface PVCommandStatusObserver

AddDataSink()

CommandCompleted(AddDataSink)

SinkNode

Init()

NodeCommandCompleted(Init)

Start()

NodeCommandCompleted(Start)

ThreadLogon()

QueryInterface()

NodeCommandCompleted(QueryInterface)

Configure node specific parameters

PVInfoEventObserver

PVT_INDICATION_INCOMING_TRACK



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

3.6. Removing Data Sinks

Data Sinks should be removed before disconnecting the call..

3.7. Data Sink Removed

The following events happen when a track is closed by the peer during a video conferencing 
session.

 - Page 19 of 30 -

Figure 8: Sequence Diagram - Removing a  Data Sink

C l i e n t C P V2 W a y I n t e r f a c e M P V C o m m a n d S t a t u s O b s e r v e r

R e m o v e D a t a S i n k L( )

C o m m a n d C o m p l e t e d L( R e m o v e  S i n k)

N o d e C o m m a n d C o m p l e t e d( S t o p)

S i n k N o d e

R e s e t( )

S t o p( )

N o d e C o m m a n d C o m p l e t e d( R e s e t)

T h r e a d L o g o f f( )



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

3.8. Disconnecting

To terminate a video telephony call,  a client needs to call Disconnect after all the  Sources and 
Sinks are removed.  This will cause protocol negotiations (EndSessionCommand) with the peer 
after which the multiplex and the Comms MIO will be stopped.

 - Page 20 of 30 -

Figure 9: Sequence Diagram - Data Sink Removed

C l i e n t C P V2 W a y I n t e r f a c e M P V C o m m a n d S t a t u s O b s e r v e r

N o d e C o m m a n d C o m p l e t e d( S t o p)

S i n k N o d e

R e s e t( )

S t o p( )

N o d e C o m m a n d C o m p l e t e d( R e s e t)

T h r e a d L o g o f f( )

H a n d l e I n f o r m a t i o n a l E v e n t( P V T_ I N D I C A T I O N_ C L O S I N G_ T R A C K, i d )

H a n d l e I n f o r m a t i o n a l E v e n t( P V T_ I N D I C A T I O N_ C L O S E_ T R A C K, i d)



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

3.9. Resetting

 - Page 21 of 30 -

Figure 10: Sequence Diagram - Disconnecting

Client CPV 2WayInterface PVCommandStatusObserver

Disconnect ()

CommandCompleted (Disconnect )

CommNode

Stop ()

NodeCommandCompleted (Stop )

Reset ()

NodeCommandCompleted (Reset )

-Wait for Stack to Complete 3G-324 M Shutdown
-Stop and Reset all Sources and Sinks

ThreadLogoff ()



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

Resetting the PV2Way Engine releases all resources acquired by the SDK.  This command must 
be issued after Disconnect completes and prior to deleting the PV2Way instance.

3.10.  Complete Call Sequence

The following is the complete sequence of interactions that happen during a typical video 
telephony call.

 - Page 22 of 30 -

Figure 11: Sequence Diagram - Resetting

C l i e n t C P V2 W a y E n g i n e F a c t o r yC P V2 W a y I n t e r f a c eM P V C o m m a n d S t a t u s O b s e r v e r

D e l e t e T e r m i n a l L( )

R e s e t L( )

C o m m a n d C o m p l e t e d L( R e s e t L)



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

 - Page 23 of 30 -

Figure 12: Sequence Diagram - Complete Call Sequence

C l i e n t C P V2 W a y E n g i n e F a c t o r yC P V2 W a y I n t e r f a c eM P V C o m m a n d S t a t u s O b s e r v e r

C r e a t e T e r m i n a l L( )

I n i t L( m e d i a  c a p a b i l i t y)

C o n n e c t L( )

C o m m a n d C o m p l e t e d L( C o n n e c t L)

H a n d l e I n f o r m a t i o n a l E v e n t( I N C O M I N G_ T R A C K)

A d d D a t a S i n k L( )

H a n d l e I n f o r m a t i o n a l E v e n t( I N C O M I N G_ T R A C K)

A d d D a t a S i n k L( )

C o m m a n d C o m p l e t e d L( A d d D a t a S o u r c e)

C o m m a n d C o m p l e t e d L( A d d D a t a S o u r c e)

A d d D a t a S o u r c e L( )

A d d D a t a S o u r c e L( )

C o m m a n d C o m p l e t e d L( D i s c o n n e c t)

D i s c o n n e c t L( )

C o m m a n d C o m p l e t e d L( R e s e t)

R e s e t L( )

D e l e t e T e r m i n a l L( )

C o m m a n d C o m p l e t e d L( I n i t L)

G e t S e s s i o n P a r a m e t e r s L

C o m m a n d C o m p l e t e d L( G e t S e s s i o n P a r a m e t e r s L)

H a n d l e I n f o r m a t i o n a l E v e n t( O U T G O I N G_ T R A C K)

H a n d l e I n f o r m a t i o n a l E v e n t( O U T G O I N G_ T R A C K)

Q u e r y I n t e r f a c e( c o m p o n e n t)

C o m m a n d C o m p l e t e d L( Q u e r y I n t e r f a c e)

C o m m a n d C o m p l e t e d L( A d d D a t a S i n k L)

C o m m a n d C o m p l e t e d L( A d d D a t a S i n k L)



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

4. Proxy Adapter

When building multimedia applications with their requisite complex timing requirements, it is often 
useful to allocate processing among multiple threads to get some degree of timing independence. 
Multithreading is a useful tool that simplifies the task of sharing CPU resources among multiple 
independent components.  It is also possible to share processing among components within a 
single thread using concepts like active objects, which implement a cooperative multitasking 
model.  Cooperative multitasking definitely has its place as another tool that should be utilized to 
allow complex systems to be built up from simpler components.  Either tool on its own will not 
lead to a good solution for any reasonably complex system, so it’s important to make proper use 
of each.

PV2Way has an optional Proxy Adapter that may be used to separate the client thread from the 
PV2Way thread.  This separation can be used to ensure that the UI thread can remain responsive 
to user events and also for protection of time-critical processing within PV2Way.  All callbacks 
(command completion, unsolicited events) will be made in the context of the thread that PV2Way 
was created.  Sources and sinks passed in by the application should have the mechanism and 
capability to operate (data passing, state change) in a different thread from which it was created. 
The PV2Way Engine utilizes the Source/Sink ThreadLogon routines to notify external data 
sources and sinks of the thread contexts for data passing and observer callbacks.

The interface to the client does not change when the Proxy Adapter is in use.  This is illustrated in 
Figure 1.

5. Logging

The 2Way Logging APIs provide methods for the application to control the logging level at any 
point in the logger tree using hierarchical tags to specify the control point.  This will give the 
application complete control over the amount of log messages being produced by PV2Way, and 
by using the hierarchical tags, it provides very fine-grained control to turn up logging just where it 
is needed. 
The application will be able to control the logging destinations by passing in Logger Appender 
instances that are created externally. Logger Appender classes are provided for most common 
simple cases such as logging to a file.

5.1. Logging incoming/outgoing audio/video data

Logging data coming in and going out of the PV2Way SDK proves to be useful at times especially 
in cases where there is large packet loss, data needs to be verified for timing issues, or audio & 
video data needs to be ascertained for their arrival times for lipsync purposes. An easy way of 
collecting logs for incoming and outgoing audio & video data is by the use of hierarchical logger. 
These tags provide the flexibility of restricting the number of log messages by categorizing them 
for incoming or outgoing audio, video or both kinds of data.

Some examples below typify their usage.

Logger tag: datapath.outgoing

This tag allows the user to log messages depicting all outgoing multiplexed data, be it audio or 
video at the stack level.

Following are the sample log messages printed/outputted:

 - Page 24 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

PVLOG:TID(0x73c):Time=5656: Outgoing audio frames received. Stats: Entry time=2266, 
lcn=65543, size=254

PVLOG:TID(0x73c):Time=5656: Stats of the outgoing audio SDU are: timestamp=2266, size=31 

PVLOG:TID(0x73c):Time=5657: Outgoing video frames received. Stats: Entry time=2286, 
lcn=65542, size=31

PVLOG:TID(0x73c):Time=5656: Stats of the outgoing video SDU are: timestamp=2286, size=254 

Logger tag: datapath.outgoing.video.h223.lcn

This tag allows the user to only explicitly log outgoing multiplexed video data at the stack level. 
Following are the sample log messages printed/outputted:

PVLOG:TID(0x73c):Time=5657: Outgoing video frames received. Stats: Entry time=2286, 
lcn=65542, size=254

PVLOG:TID(0x73c):Time=5656: Stats of the outgoing video SDU are: timestamp=2286, size=254

Logger tag: datapath.outgoing.audio.h223.lcn

This tag allows the user to only explicitly log outgoing multiplexed audio data at the stack level.

Following are the sample log messages printed/outputted:

PVLOG:TID(0x73c): Time=5657: Outgoing audio frames received. Stats: Entry time=2266, 
lcn=65542, size=31

PVLOG:TID(0x73c):Time=5656: Stats of the outgoing audio SDU are: timestamp=2266, size=31 

Logger tag: datapath.incoming

This tag allows the user to log all incoming de-multiplexed data be it audio or video at the stack 
level.

Following are the sample log messages printed/outputted:

PVLOG:TID(0xb98):Time=5016:Incoming audio SDU received. Stats: Entry time=2016, 
lcn=65542, size=31,FmtType=X-AMR-IF2

PVLOG:TID(0x73c):Time=6141:Incoming video SDU received. Stats: Entry time=2735, 
lcn=65543, size=254,FmtType=video/H263-2000

Logger tag: datapath.incoming.video.h223.lcn

This tag allows the user to only log incoming de-multiplexed video data at the stack level. 
Following are the sample log messages printed/outputted:

PVLOG:TID(0x73c):Time=6062:Incoming video SDU received. Stats: Entry time=2657, 
lcn=65543, size=254,FmtType=video/H263-2000

PVLOG:TID(0x73c):Time=6141:Incoming video SDU received. Stats: Entry time=2735, 
lcn=65543, size=254,FmtType=video/H263-2000

PVLOG:TID(0x73c):Time=6219:Incoming video SDU received. Stats: Entry time=2782, 
lcn=65543, size=254,FmtType=video/H263-2000

 - Page 25 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

Logger tag: datapath.incoming.audio.h223.lcn

This tag allows the user to only log incoming de-multiplexed audio data at the stack level.

Following are the sample log messages printed/outputted:

PVLOG:TID(0xb98):Time=4969:Incoming  audio  SDU  received.  Stats:  Entry  time=1969, 
lcn=65542, size=31,FmtType=X-AMR-IF2
PVLOG:TID(0xb98):Time=5016:Incoming  audio  SDU  received.  Stats:  Entry  time=2016, 
lcn=65542, size=31,FmtType=X-AMR-IF2
PVLOG:TID(0xb98):Time=5063:Incoming  audio  SDU  received.  Stats:  Entry  time=2063, 
lcn=65542, size=31,FmtType=X-AMR-IF2
PVLOG:TID(0xb98):Time=5094:Incoming  audio  SDU  received.  Stats:  Entry  time=2094, 
lcn=65542, size=31,FmtType=X-AMR-IF2

6. Feature List
The specifications which define the 3G-324M standard present various mandatory and optional 
elements which may or may not be supported in a particular terminal implementation.  The 
purpose of this section is to provide a feature-level summary of the elements supported by 
PV2Way 3G-324M solution.  Features are classified by feature groups which relate to specific 
areas of the 3G-324M standard.  

In general, features which are listed as supported may be used and/or configured through 
PV2Way API’s, i.e. no special build time provisions should be necessary to activate such 
features.  For other features (either absent from the list, or listed as “Not Supported”), some 
customization would be needed in order to add or utilize the feature.

6.1. Specification Versions
This section lists the 3G-324M system specifications and indicates the versions employed by 
PV2Way.

6.1.1. Normative

• 3GPP TS 26.110 v6.0.0: "Codec for Circuit Switched Multimedia Telephony Service; 
General description".

• 3GPP TS 26.111 v6.1.0: “Codec for Circuit Switched Multimedia Telephony Service; 
Modifications to H.324”

• ITU-T Recommendation H.324: "Terminal for low bitrate multimedia communication", 
February 1998.

• ITU-T Recommendation H.223: "Multiplexing protocol for low bit rate multimedia 
communication", March 1996.

 - Page 26 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

• ITU-T Recommendation H.223 - Annex A: "Multiplexing protocol for low bit rate 
multimedia mobile communication over low error-prone channels", February 1998.

• ITU-T Recommendation H.223 - Annex B: "Multiplexing protocol for low bit rate 
multimedia mobile communication over moderate error-prone channels", February 1998.

• ITU-T Recommendation H.245, Version 6: "Control protocol for multimedia 
communication”,  February 2000.

6.1.2. Informative

• 3GPP TR 26.911 v6.0.0: "Codec for circuit switched multimedia telephony service; 
Terminal Implementor’s Guide".

7. Supported Features

The features supported by PacketVideo’s 3G-324M solution are broken down into logical feature 
groups and presented in the following tables.

7.1. Feature Group 1: H.223

Group # Feature Support? Direction Comment
H.223 1 Level 0 Yes In/Out
H.223 2 Level 1 

(H.223 
Annex A)

Yes In/Out Support for Annex A in single or 
double flag modes.

H.223 3 Level 2 
(H.223 
Annex B)

Yes In/Out Support for Annex B with or without 
optional header.

H.223 4 Level 3a 
(H.223 
Annex C)

No --

H.223 5 Level 3b 
(H.223 
Annex D)

No --

H.223 6 Control over 
AL1

Yes In/Out Framed transfer mode, per H.324 
recommendation

H.223 7 Audio over 
AL2

Yes In/Out CRC and Optional SN are both 
supported

H.223 8 Video over 
AL2

Yes In/Out CRC and Optional SN are both 
supported

H.223 9 Video over 
AL3

Yes In/Out Support for 0, 1 or 2 control field 
octets.  Retransmission not supported 
(this is in line with the recommendation 
in 3GPP TS 26.911)

 - Page 27 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

7.2. Feature Group 2: H.245

Group # Feature Supported? Direction Comment
H.245 1 Terminal 

Capability Set
Yes In/Out

H.245 2 Master Slave 
Determination

Yes In/Out

H.245 3 Multiplex Entry 
Send

Yes In/Out

H.245 4 Request Multiplex 
Entry

Yes In/Out

H.245 5 Open Logical 
Channel

Yes In/Out For video case, both 
unidirectional and 
bidirectional are supported

H.245 6 Request Channel 
Close

Yes In/Out

H.245 7 End Session Yes In/Out
H.245 8 Request Mode No -- Currently no outgoing Mode 

Requests are sent. 
Incoming Mode Requests 
are rejected, consistent for 
case with no Transmit 
Capabilities in outgoing 
TCS. 

H.245 9 User Input 
Indication

Yes In/Out

H.245 10 Round Trip Delay Yes In/Out
H.245 11 Flow Control Yes In/Out H.245 signaling support only
H.245 12 Video 

Spatial/Temporal 
Tradeoff
(Command)

Yes In/Out

H.245 13 Video Fast Update Yes In/Out Picture update only
H.245 14 Multiplex 

Reconfiguration
(level change)

No --

H.245 15 H.223 Skew 
Indication

Yes In/Out

H.245 16 Vendor 
Identification 
Indication

Yes In/Out

H.245 17 Mux PDU size 
restriction 
signaling

Yes In/Out As recommended in Section 
5 of 3GPP TS 26.911.

H.245 18 Timer/Counter 
configuration

Yes -- Various H.245 timer and 
counter values may be 
configured via API

H.245 19 Fast call setup Yes -- Optimal standards-compliant 
bundling of H.245 messages 

 - Page 28 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

to reduce setup time.

7.3. Feature Group 3: H.324/3G-324M

Group # Feature Supported? Direction Comment
H.324 1 H.324 Annex C Yes -- Mobile annex, as required in 

3G-324M specs
H.324 2 SRP Yes In/Out
H.324 3 NSRP Yes In/Out
H.324 4 WNSRP Yes In/Out
H.324 5 CCSRL Yes In/Out
H.324 6 Audio 

Channels
Yes In/Out

H.324 7 Video 
Channels

Yes In/Out

H.324 8 Data Channels No --
H.324 9 Loopback 

Mode
Yes -- External loopback support 

provided for development and 
testing.  Multiplex bitstream 
looped within terminal prior to 
transmission.  H.245 
Maintenance loop not currently 
supported.

H.324 10 Encryption No --
H.324 11 Pause/Resume Yes In/Out Option to stop sending A/V data 

on outgoing side, or to pause 
rendering of data on incoming 
side.

H.324 12 MONA-MPC Optional In/Out Standards Based Enhancement 
for faster Call Setup.

7.4. Feature Group 4: Audio

Group # Feature Supported? Direction Comment
Audio 1 AMR-NB Yes In/Out All modes including SID
Audio 2 G.723.1 No -- Not required for 3G-324M

7.5. Feature Group 5: Video

Group # Feature Supported? Direction Comment
Video 1 H.263 

baseline
Yes In/Out

 - Page 29 of 30 -



PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

(Profile 0, 
Level 10)

Video 2 MPEG-4 
Simple Profile

Yes In/Out Level 0 is baseline support; 
Could support higher levels as 
well.

Video 3 H.261 No -- Not required for 3G-324M
Video 4 H.263 

additional 
annexes

No -- Not required for 3G-324M

Video 5 MPEG-4 
Resync 
Markers

Yes In/Out

Video 6 MPEG-4 HEC Yes In/Out
Video 7 MPEG-4 Data 

Partitioning
Yes In/Out

Video 8 MPEG-4 
RVLC’s

Yes In/Out

Video 9 Error 
concealment

Yes In As recommended in 3GPP TS 
26.911.  Advanced error 
concealment provided by 
PacketVideo software decoders; 
this may or may not be available if 
a non-PV video decoder is used.

8. References

1. PacketVideo Corp. PV2Way API Document

2. ITU-T  H.324 Terminal For Low Bitrate Multimedia Communication

3. PacketVideo Corp. Media I/O Developers Guide

4. PacketVideo Corp. Guidelines for Developing Baseband Communications IO 
Components”.

 - Page 30 of 30 -


	1.  Introduction
	2.  Architecture
	2.1.  Static Design
	2.2.  SDK State Machine Design
	2.3.  Command Processing 
	2.4.  Sources and Sinks
	2.4.1.  Defining Media Capability
	2.4.2.  Media IO Components
	2.4.3.  Track Indications
	2.4.4.  Removing sources and sinks
	2.4.5.  Channel re-negotiation

	2.5.  Comm Interface
	2.6.  Lip Synchronization
	2.7.  Extension Interfaces

	3.  Usage Scenarios
	3.1.  Initializing
	3.2.  Connecting
	3.3.  Adding Data Sources
	3.4.  Removing Data Sources
	3.5.  Adding Data Sinks
	3.6.  Removing Data Sinks
	3.7.  Data Sink Removed
	3.8.  Disconnecting
	3.9.  Resetting
	3.10.   Complete Call Sequence

	4.  Proxy Adapter
	5.  Logging
	5.1.  Logging incoming/outgoing audio/video data

	6.  Feature List
	6.1.  Specification Versions
	6.1.1.  Normative
	6.1.2.  Informative


	7.  Supported Features
	7.1.  Feature Group 1: H.223
	7.2.  Feature Group 2: H.245
	7.3.  Feature Group 3: H.324/3G-324M
	7.4.  Feature Group 4: Audio
	7.5.  Feature Group 5: Video

	8.  References

