PVAuthor Developer's Guide
OHA 1.0, rev. 1
Sep 8, 2009

© 2010 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0

http://www.apache.org/licenses/LICENSE-2.0

Open

Table of Contents

1. INtrodUCtiON....ccuereeeurrennerinnsurienssrrenssrensssrensssrnnssrrenssrennsseensssrenssseenssrnsseassensennsranss 4
2. Architectural OVerVIieW.....ccciieuuiiensirennuiiennsiiensreenssiennssrensssiensirennsseennssrenssenssens 4
2.1. PVAULNOr StrUCTUIC. . uuuiiieeiiieeiiieeeiieeiie e eieeeeeieeeeeieieeiennes 4

2.2. Overall Sequence DiaQraml. ... ieee. i ieeiiiieiiiieiieeeiieeeeieeeiieeieiieeeieennns 6

3. PVAuthor State Machine.........cceeeveeeiieeeuiieneiiensiieenssrennssienssinnssreessiasseassenseennnes 8
4. Create and OPeN SeSSION....uireuuirennuirenuiiiensirennuirennrienssrennssrensrensianseassensrensranss 8
5. Data SOUICES..ieuureeurennrransrennrensrenserassrassrensrensernssrnssressseassrassrassrassresseasesssaseassaseas 9
5.1. Create and Add Data SOUICES.....cuuuiieeuiiieiiiiiiiieiieeeieiieiieeieeieeennns 9

5.2. Data Source Configuration.........cueeeiieeiiieeiiiieiiiiiiiiiieiiiieiiiiieiiiiieiiennss 9

6. File FOrmat COMPOSEr . ..uuieneuiiennuiiensrennsiiennsirenssrrenssrrenssrennssrennssrenssseensssenssennse 10
6.1. CompoSer SeleCtiON........iieeeiiieeiiiiiiiii i eeieeeieieeiee, 10

6.2. Composer ConfigUration.......uiieeeiiieeiiieiiiiieiiieiiiiieeiieiieieeieeieein, 10
6.2.1. 3GPP COMIPOSElMuuieuieeiieeiiieiieiiiiieiiie it iieiieeeeeeiieeiieeieeeieeennes 10

6.2.2. AMR and AAC COMPOSEl . .cuuuuiieeniiieeiiiiiiieeiiiieiieiieiieeeeiennne, 13

7. Media TraCKS....ceereeeurrensrennserennusrensrennsseennssrenssseensserenssrensssrensennsrnsseassenssnnsranss 13

9.1. Max File Size, Duration and ProgresS REPOIM.uieeeiieeiiaiieiieeieiaieensss 15
10. Initialize and Start Session ... 16

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

List of Figures

Class diagram Of PVAUINOL.ueiii et e 5
Attributes and operations of the Client............cooiii s 5
Overall SEQUENCE DIAGIAIM.cuiiiiiiiiiiiie ettt s et a e e e e e e e e 6
Overall Sequence Diagram CONINUET...........ccioiiiiiiiiieeiiie e 7
PVAuthor state transition diagram............ooeoiiiiiieieee e 8
Create and open a reCording SESSION.......cciii ittt e et e e e e e e e e e e e e e e eabb e e aaeeees 8
Create media sources and add to PVAULhOr eNgiNe..........cooooiiiiiiiiiiiiiii e 9
COMPOSEL SEIECTION. ...ttt ettt e e et e e e e e e e e e e eeeaaeeaeeabbaaaaaaeens 10
File name and authoring mode configuration............cccceeeeeeiiiiiiiieeeee e 11
AddINg Meta Data SIIINGS......uuuurriiiiiiiiiiiiieeeeeeee e e e e e e e e e e e e aaaaeaaeaaaaaaees 11
Add MEAIA TTACK.ei et 12
Query for exXtenSsioN INEIACE.vviiiiieee e 14
Max file size, duration and progress report configuration..............ccccoevviiereeninniieeneenn. 14
Informational events for progress report and max file size and duration...................... 15
Initialize and start aUtNONING SESSION........cciiiiiiiiiiii e 16
Pause and resume an authoring SESSION.........ccoiiiiiiiiiiii e 16
STOP AULNOIING SESSION....eeiiiiiiitiiiie ettt ettt e et e e et e e e e e e e e e e eeeeeeeeeeeeeennnnes 17
Reset and close authoring SESSION.......ccoii it 18
Propagation of error infOrmMation................eceeiiiiiiiii e 21

PVAuthor error handling flowchart..............oooo e 22

1. Introduction

This document is a guide for developers using the PVAuthor engine APIs. A client of PVAuthor
engine can be an application or an adapter layer used to map the PVAuthor engine interface to a
different framework or API layer used by the application. This documents describes how to use
PVAuthor engine interface and its extensions to create, configure and control a multimedia
authoring session.

The PVAuthor engine is the part of the PacketVideo Multimedia Framework (PVMF) that provides
media recording capabilities for its clients. It is capable of capturing audio, video, and text media
data, encoding media data to compressed formats, and multiplexing the encoded media data to
various file formats. The input media data is typically provided by live source(s) such as camera
and microphone, or in other cases, provided by unencoded media data files. The input data is
then encoded to the data formats selected by the client, followed by multiplexing of media data
into the selected file format. The multiplexed media data is written to the data sink provided by
the client.

2. Architectural Overview

2.1. PVAuthor Structure

A client controlling the PVAuthor engine interacts through the PVAutthorEnginelnterface and
must also implement the PVAuthor engine observer interfaces in order to receive command
completion, status information, and error information. The interface requires that media data
sources and sinks are provided by the client for a recording session. The number and types of
sources and sinks may vary depending on the properties of the recording session. These media
sources and sinks should implement PYMFNodelnterface to allow PVAuthor engine to control
them in a uniform way. Client control of the recording session is performed through
PVAuthorEnginelnterface. Figure 1 below shows the relationship between PVAuthor engine, the
client, and other objects owned by the client. Figure 2 below shows a suggested list of attributes
and operations of the client class. Note that the attributes listed here will be referred to in
sequence diagrams later in this document.

Open

—

VideoSourceNod

|
|
’ M Client

-

| ——b <<interface>>

| PVCommandStatusObserver

|

|
AudioSourceNod¢ |
|
|
| i
|
|
|
|
I

<<interface>> PVAuthorEngineFactory
PVAuthorEnginelnterfacg g
/ % T
_! ~ TPVInformationalEventObserve
F———

- :

|
|
|
|
|
: <<interface>>
|
|
|
|

o

DataSinkNode _: PVAuthorEngine M <<interface>>
______________ ~ T] PVErrorEventObserver
Key

Author Engine components

Client components

B - comvorens

Figure 1: Class diagram of PVAuthor

Client

-iAuthor : PVAuthorEnginelnterface*
-iAudioSrcNode : PVMFNodelnterface*
-iVideoSrcNode : PVMFNodelnterface*
-iTextSrcNode : PVMFNodelnterface*
-iSelectedComposer : void*
-iComposerConfig : PVinterface*
-iAudioEncoderConfig : PVinterface*
-iVideoEncoderConfig : PVinterface*
-iTextConfig : PVinterface*

+CommandCompleted(in aResponse : PVCmdResponse)
+HandlelnformationalEvent(in aEvent : PVAsynclnformational Event)
+HandleErrorEvent(in aEvent : PVErrorEventObserver)

Figure 2: Attributes and operations of the
client.

2.2. Overall Sequence Diagram

PVAuthor Developer's Guide

The diagrams in this section present the overall sequence of API calls to set up and control a recording session. Detail usage of the APIs
will follow in subsequent sections in this document.

CreateAuthor ()

PVAuthorEngineFactory

y_ -

Create()

PVAuthorEngine

Open()

CommandCanpIeted 0

1
AddDataSource ()

T

|

|

T

|

|

|

:é—

|
Create data source nodes . I—:

|

|

|

k-

1
CommandCompleted ()

SelectComboser 0
1

________________________) 1M

Repeat AddDataSource for each data
source for the recording session .

| Composer Configuration .

1
AddMediaTrack ()
1

CommandCor'aneted 0

Init()
1

Repeat AddMediaTrack for each media
track in the recording output .

CommandCompleted ()

Start()
]

________________________ o0]

| Recording is started

|
|
:é—
|
| Encoder Configuration . l—:
|
|
|
k-
|
|
I
|
|
l
|
|
|
[

CommandCor"aneted 0
1

Figure 3: Overall Sequence Diagram

Open PVAuthor Developer's Guide

Client PVAuthorEngineFactory PVAuthorEngine
I Pahse() :
| Pause - Resume ! : ! y !
I CommandCompleted ()
Recording is paused l—yé—' ——————————————————— A
| : Resume() :
! »
i Commandbompleted 0]_J
Recording is resumed =~ ——K—-----—-—-—-—-—-————-—---——- o
| g —< 1

Stop and complete a
recording session

Recording has stopped | - Pt
Output file is now available

RemoveDataSource () :
1

|
[»
i Comman d'CompIete 40] Repeat RemoveDataSource

for each data source.

Figure 4: Overall Sequence Diagram Continued

3. PVAuthor State Machine

The PVAuthor engine has 6 states: Idle, Opened, Initialized, Recording, Paused, and Error. To
transition from one state to another, the user will need to call the session control APIs of
PVAuthorEnginelnterface. Figure 5 shows the state transition diagram.

Reset()

Initialized

Start() Stop()

Open()

Reset()

Close() Recording

)=

Reset() Pause() Resume()

Non-recoverable error Paused

i

Figure 5: PVAuthor state transition diagram.

4. Create and Open Session

To create a recording session, the client needs to first create a PVAuthor engine object. This
step is done through the Create() method in PVAuthorEngineFactory class, which will create a
PVAuthor engine without an active recording session. To open a session, the client needs to call
the Open() method on the PVAuthor engine object. Figure 6 illustrates the sequence of method
calls to create and open a recording session.

%_ __

Figure 6: Create and open a recording session.

Client PVAuthorEngineFactory PVAuthorEngine
i iAuthor:=CreateAuthor(this, this, this) : Create() :
| > >
I Open()	
! »	
: CommandCompleted(response) J:	
I	

1

Upen
1

5. Data Sources

5.1. Create and Add Data Sources

As mentioned in the previous section, a client to PVAuthor engine needs to create media data
source objects and provide them through the AddDataSource() method for capturing source data
during the authoring session. The media data source objects are PVMF Nodes that wrap around
the underlying drivers for capturing audio, video and text source data. A common method to
integrate data sources to PVAuthor engine is using the media 1/O interface and
PvmfMedialnputNode. Please refer to the Media I/O Developer's Guide for information regarding
the media 1/O interface. Figure 7 illustrates the sequence to create media data sources and
provide them to PVAuthor engine.

Client PVAuthorEngine VideoSourceNode AudioSourceNode TextSourceNode

iVideoSrcNode:=Create()

T
|
|
»
»i

iAudioSrcNode:=Create()

T T T
| | |
| | |
I | I
| | | I
I I I I
L 1 ;I 1
! iTextSrcNode:=Create() | |
1 | | | N
i AddDataSource(iVideoSrcNode) i i i 'i
I »— 1 | 1
: CommandCompleted(response) 1 : : I
T P i | | |
| AddDataSource(iAudioSrcNode) | | I I
1 o | 1 1 1
i CommandCompleted(response) l_ i i i
K 1 | 1
I" AddDataSource(iTextSrcNode) : : : !
L »L1 1 | |
| CommandCompleted(response) L | i |
o | | e
I I I I

Figure 7: Create media sources and add to PVAuthor engine

5.2. Data Source Configuration

Besides creating the data source object and adding them to PVAuthor engine, the client is also
responsible for configuring the data sources to capture source data in the desired format or
properties. The available options for configuration are dependent on the data source node
implementation and the capability of the underlying capturing devices. Please refer to the
documentation of the data source nodes and capturing devices for the options available.

6. File Format Composer

The next step in setting up a recording session is to select a file format composer for the session.
Multiplexing encoded media data and formatting the multiplexed data into the desired file format
is functionality provided by the PVMF framework made available to the client through PVAuthor
engine. The client is responsible for selecting a composer type, and configuring the composer
through a configuration object provided by PVAuthor engine.

6.1. Composer Selection

Composer selection is done by calling SelectComposer() method on the PVAuthor engine object.
The client would specify the Mime type of the composer to use, and a pointer to hold the
configuration object PVAuthor engine provides. Alternately, the client can specify the Uuid of the
composer to be used instead of the Mime type if such information is available to the client. When
the method completes asynchronously, an opaque identifier for the selected composer is returned
to the client in the response data. The client needs to store this opaque identifier and use it to
identify the selected composer in PVAuthor engine API calls when necessary. Figure 8 below
illustrates the sequence of method calls to select a composer.

Client PVAuthorEngine response iComposerConfig

SelectComposer("x-pvmf/ff-mux/3gp", iComposerConfig) i

T

!

| CommandCompleted(response) U

Client must savethe | g ___
opagque identifier for iSelectedComposer:=GetResponseData()

the selected composer
before returning from
CommandComplete

———t ey
-y

]
i
Configure Composer :
|
|
|

Figure 8: Composer selection

6.2. Composer Configuration

Composer configuration is done through the composer configuration object returned by author
engine from the SelectComposer method call. The configuration interface implemented by this
object varies depending on the composer selected. The client can check for the interface
supported by the configuration object by calling the queryinterface method on the configuration
object. The client can call the configuration methods after SelectComposer is completed unless
specified otherwise by the configuration interface.

6.2.1. 3GPP Composer

If the client selected 3GPP file format composer, the returned configuration object implements the
PVMp4FFCNClipConfiginterface interface. The client is required to call the SetOutputFileName
method to set the output file name for the authoring session. Furthermore, if the client wants to
author a I-Motion file, then SetAuthoringMode method call is also required. Please refer to author

interface documentation for information on various authoring modes. Below is a sequence
diagram to illustrate the sequence of calls to configure the settings mentioned above.

Client Client::iComposerConfig

SetAuthoringMode call is necessary if
Client is authoring an |-Motion file.
Otherwise, the default settings is to

SetOutputFileName()

SetAuthoringMode(PVMP4FFCN_IMOTION_CONTENT_AUTHORING_MODE)

have interleaved media data and meta
data towards the end of the output file.

—————_N Y _

Figure 9: File name and authoring mode configuration

pvAuthorSDK authors files that are compliant to following specifications:

1. 1SO Base Media File Format (ISO/IEC 14496-12 - [1])

oo

MPEG-4 File Format (ISO/IEC 14496-14)
AVC File Format (ISO/IEC 14496-15)
3GPP file format (3GPP TS 26.244)

pvAuthorSDK authors brands in "ftyp" box as per criteria listed below:

« If authored file contains ANY of the following media tracks

+ AMR

+ AMR-WB

+ MPEG4 Audio
« MPEG4 Video
 H263

« AVC

* TimedText

then pvAuthorSDK uses 3gp4 as major brand and 3gp4, 3gp5, and mp41 as compatible brands.

¢ If authored file does NOT contain ANY of the media tracks listed below:

* AMR

« AMR-WB

* H263

« AVC

e TimedText

then pvAuthorSDK uses mp41 as major brand and 3gp4, 3gp5 and mp41 as compatible brands.

¢ If authored file does NOT contain ANY of the media tracks listed below:

e MPEG4 Audio
« MPEG4 Video

then pvAuthorSDK does not use mp41 anywhere.

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

M

Upen

» If authored file contains ANY of the following media tracks
* AMR
* AMR-WB
* MPEG4 Audio
*+ MPEG4 Video
+ H263
« AVC
* TimedText
AND if it contains movie fragments then pvAuthorSDK uses 3gp6 as major brand and 3gp5, 3gp6,
and mp41 as compatible brands.

¢ pvAuthorSDK always adds isom as a compatible brand.

* pvAuthorSDK adds mp42 as a compatible brand whenever it adds mp41 as compatible
brand (ISO/IEC 14496-14 does not require IODS to be present always. So we are
compatible to this spec even though we are not authoring IODS box).

* pvAuthorSDK adds avcl as a compatible brand in case the authored clip has a H264 track.

The PVMp4FFCNClipConfiginterface also allows the Client to add optional meta data information
to the output file. Below is a sequence diagram to illustrate the sequence of calls to add meta
data. Please note that adding meta data information is optional and does not affect the validity of
the output file whether the data is added or not.

Client Client::iComposerConfig

SetTitle("Title")

SetAuthor("Author")

SetCopyright("Copyright Information")

SetDescription("Description™)

SetRating("Rating")

SetCreationDate("20050203T120000Z")

——Y__ vy _ v __ v __vy_Vv__|

Figure 10: Adding Meta Data strings

The following metadata are currently supported through the
PVMp4FFCNClipConfiginterface.

a. Title

b. Author

c. Copyright

d. Description

Rating

Creation Date
Artist or Performer
Genre
Classification

Key Words

k. Location Info.

S@ o

—

6.2.2. AMR and AAC composer

When the client selects an AMR or AAC file format composer, the configuration object should
implement the PvmfFileOutputNodeConfiginterface interface. The client is required to call the
SetOutputFileName method to set the output file name for the authoring session. Please refer to
Figure 9 for a sequence diagram.

7. Media Tracks

A media file, regardless of its format, should have at least one media track. Therefore, the client
needs to add at least one media track to the file format composer in order to compose a valid
output file. The maximum number of and types of media tracks supported varies depending on
the properties of the selected file format composer. To create a file with multiple media tracks, for
example AMR audio with H263 video and text tracks, the client will need to call AddMediaTrack
for each of the track.

7.1. Add a Media Track

Adding of media track is done through the AddMediaTrack method. The client will need to
specify the input PVMF node that provides the source data for this media track, the MIME type of
the encoder to be used to encode the source data, and the file format composer in which a media
track is added. The file format composer is identified by the opaque data returned in the
CommandCompleted callback for the SelectComposer call. Alternately, the client can specify the
Uuid of the encoder to be used instead of the Mime type if such information is available to the
client. The client also needs to specify a PVinterface pointer where PVAuthor engine will save a
pointer an instance of the configuration object of the selected encoder. Figure 11 below
illustrates the sequence of calls to add a media track.

Client PVAuthorEngine iAudioEncoderConfig

! AddMediaTrack(iAudioSrcNode, “x-pvmf/audio/encode/amr-nb", iSelectedComposer, iAudioEncoderConfig) !
I

CommandCompleted(response) U

Configure Audio Encoder

N, A

Figure 11: Add media track

7.2. Encoder Configuration

Encoder configuration is performed through the configuration interface object returned by the
PVAuthor engine in the AddMediaTrack call. The configuration interface implemented by this
object varies depending on the encoder selected. If the selected encoder supports no
configuration interface, this pointer would be set to NULL. Also, if the input node provides
encoded source data, no encoder would be selected for the media track by PVAuthor engine, and
the configuration pointer would be set to NULL. The client can check for the interface supported
by the configuration object by calling the querylnterface method on the configuration object. The
client can call the configuration methods after AddMediaTrack call is completed unless specified
otherwise by the configuration interface.

When the client selects an H263, MPEG4 or AVC video encoder, the configuration object should
implement the PVYMp4H263EncExtensioninterface interface. Please refer to PVAuthor engine
interface documentation for the options available from the interface.

8. Data Sinks

Currently, PVAuthor only supports PV’s 3GPP, AMR and AAC file format composer nodes.
These nodes have integrated file IO and does not require the client to add data sink nodes for
PVAuthor engine to write its output data to. The client will need to set the output file name
through the configuration interface of the selected composer.

In future, when file format nodes without integrated file 10 are supported, the client will be
required to call AddDataSink method to specify the data sink node where a particular file format
composer should write its output.

9. Additional Features Through Extension Interface

Besides features and configurations available from PVAuthor engine Interface and configuration
objects provided by the Author engine, additional features are also available on demand through
Querylinterface method. This methods allow PVAuthor engine to extend and expose new
features to the client as they become available. Providing the client with UUIDs of features,
enables the client to call Querylnterface to retrieve an interface object to use the feature. Figure
12 below shows the sequence of calls to query for an extension interface.

C _lien PV A utheo

Q u e ry lIn{ueuridax ce n s)io n P t

PVAuthofEngineslcre:apomlecftomt[ﬁweandctlmp‘et
anoin s tance o f the e|xtel s_io_n__in_l_e_r?___e ____________
woith th e sope cified uv.uftd ITo e xten sion P tr
If th e u u id is neoxttse m p oondIPIeHd

is set to. N U L L

|
|
|
|
|
Figure 12: Query for extension interface

9.1. Max File Size, Duration and Progress Report

PVAuthor engine has a feature to set the maximum size of the output file or the maximum time
duration of the output file. If the maximum file size or duration is set, PVAuthor engine will check
against these settings while authoring the output file and stop the authoring session automatically
when it reaches the specified maximum size or duration. Also, PVAuthor engine can be
configured to provide progress reports to the client periodically. These progress reports can be in
terms of file size written or the current duration of the output file. These features are available
through the PvmfComposerSizeAndDurationinterface extension interface. To access these
features, the client needs to first query for an instance of the extension interface, and then
configure PVAuthor engine through the provided interface. Figure 13 shows the sequence
diagram for these features.

’] PvmfComposerSizeAndDurationInt
PVAuthorEngine
Client PVAuthorEngin -

i Querylnterface(PvmfComposerSizeAndDurationUuid, extension)

CommandCompleted()

SetFileSizeProgressReport(true, every 1000 bytes)
1

R T T

SetDurationProgressReport(true, every 1000 ms)

A T

Figure 13: Max file size, duration and progress report configuration

After the authoring session is started, if the progress reports are enabled, PVAuthorEngine will
send informational events to the Client at the specified frequency to the

PVInformationalEventObserver for the session. If the max file size or duration feature is enabled,
when the file size or duration reaches the specified maximum, PVAuthorEngine will send an
informational event to the Client after stopping the session and completed writing the output file.
Figure 14 below illustrates the information events sent to the Client if the max file size, duration
and progress report features are enabled.

Client PVAuthorEngine PVAsynclnformationalEvent

i Handlelnformational Event(event) !

N J
PVMF_COMPOSER_DURATION_PROGRESS:=GetEvertType()
1

- — Duration Progress in ms :=GetEventData()
The duration and file size progress , ;
event is sent by PVAuthorEngine at ! Handlelnformational Event(event) !
the specified frequency until the A a
authoring session is stopped. PVMF_COMPOSER _FILESIZE PROGRESS:=GetEventType()

1
Current file size in bytes :=GetEventData()

! HandlelnformationalEvent(event) i

1

Upon receiving either max file size or I :
max duration reached event, the {OR} E

I

authoring session has completed and ! Handlelnformational Event(event)
the output file is available for playback L e e a

PVMF_COMPOSER_MAXDURATION_REACHED:=GetEventType()
|
T

—————_,, Yy Yy ____ Y v ____ Y v _____|

Figure 14: Informational events for progress report and max file size and
duration

10. Initialize and Start Session

After setting up the session by selecting a file format composer, adding all media tracks and
configuring all composers and encoders, the client can initialize and start the authoring session.
Once Init is called, the settings and configuration of the authoring session will be set for the
remainder of the session except special settings that are designated to be modifiable after
PVAuthor engine is initialized or started. Otherwise, to modify the settings and configuration, the
client will need to reset the authoring session and restart the session configuration process.
PVAuthor engine will allocate resources for the session and connect to the data source capturing
devices when it is being initialized. After PVAuthor engine is started, input data from various
capturing devices will be encoded to the requested data formats, formatted to the requested file
format and written out to file. Figure 15 below illustrates the sequence of calls to initialize and
start the authoring session.

Client PVAuthorEngine

i Init() !

! >

: CommandCompleted() 1
i leant ittt i

| S |
i CommandCompleted() L
:e __________________

pvAuthor Engine is now started
and new input data will be
encoded and written to file.

|
Figure 15: Initialize and start
authoring session

11. Pause and Resume Session

After the authoring session is started, the client can pause the session if the application user
chooses to pause the session or events such as an incoming call occurs. When PVAuthor
engine is in paused state, it will not process any new input data from the capturing devices.
However, if there are buffered input data captured before PVAuthor engine is paused, PVAuthor
engine will continue to process the data and write to file until the buffered input is exhausted. The
client can resume the authoring session any time after the session is successfully paused. After
resume is complete, PVAuthor engine will resume processing input data from the capturing
devices. Figure 16 below illustrates the sequence of calls to pause and resume an authoring
session.

Client PVAuthorEngine

Pause() i
»

CommandCompleted() U

pvAuthor Engine is now paused
and no new input data will be
processed and recorded during
the paused state.

Resume() :
[l

CommandCompleted() U

R Tt v

|
Figure 16: Pause and resume an
authoring session

12. Stop Session

The client can stop the authoring session when it is in a started or paused state using the Stop
method. If there is unencoded source data captured and buffered in the data path of PVAuthor
engine, the default behavior is to encode them and add them to the output file, such that all media
captured before the Stop will be written to the output file. This behavior can potentially cause a
delay before the client would receive completion on the Stop call, depending on the amount of
buffered up data and the processing power of the device. Figure 17 below illustrates the
sequence of calls to stop an authoring session.

Client PVAuthorEngine

| Stop() |
| » !

| CommandCompleted()

Figure 17: Stop authoring
session

13. Reset and Close Session

When PVAuthor engine is in initialized, started or paused state, the Reset command would return
PVAuthor engine to the opened state. If SelectComposer or AddMediaTrack were called, and
PVAuthor engine returned configuration objects for the composer or media track, the client will
need to call removeRef on the configuration object before Reset can be called. If PVAuthor
engine is in started or paused state, it would first stop the authoring session. The session would
then reset and the selected composer and media tracks for the session would be deleted.
However, the added data source and sink nodes will remain available for PVAuthor engine to
use. After Reset is complete, PVAuthor engine is returned to the open state and the client can
call SelectComposer and AddMediaTrack to set up the session once again.

To close the session, the client should call RemoveDataSource to remove all data source
previously added to PVAuthor engine and then call Close to close the session.

Figure 18 below illustrates the sequence of calls to reset and close an authoring session.

Client Client: :iComposerConfig Client::iAudioEncoderConfig Client::iVideoE ncoderConfig PVAuthorEngine
|

| | | |
removeRef
| 0 J | | |
! removeRef() ! I !
1 =I			
	removeRef()		
		=I	
	Reset()		
	1	» 1	
	CommandCompleted()	M	
k— e e - e e — = do			
	RemoveDataSource(iAudioSrcNode)		
1] 1			
	CommandCompleted()	M	
K- ———]	- - - - - — —— = L d——_—— =		
	RemoveDataSource(iVideoSrcNode)		
I [[y		
	CommandCompleted()	M	
Kk———————-	- ————= - ———— +t--——-—-—-		
	RemoveDataSource(iTextSrcNode)		
['l (] 'l	-l		
i i CommandCompleted() i			
Ke—————=- === = === t--—-—=-—-			
I	Close()	I	
B			
: : CommanqumpIeted() : M			
Fe—————— - ——-——= —————————-== B B			

[
Figure 18: Reset and close authoring session

14. Capability Query and Configuring Settings

PVAuthor engine utilizes the PVMF capability-and-configuration interface to allow the application
to access and modify engine and node settings not exposed by the author interface. The
extension interface (PvmiCapabilityAndConfig) is exposed via the player API, Queryinterface(),
by requesting with the UUID associated with the interface. Using the returned interface pointer,
the application can query, verify, and set settings at the engine and node levels. At the node
level, the node being used by the engine must support the capability-and-configuration interface
as well for node settings to be accessible to the application.

Capability-and-configuration interface uses key strings in PacketVideo Extended MIME String
(PvXms) format to specify the settings of interest. PvXms extends the standard MIME string
format by allowing additional levels of subtype strings all separated by the slash character.. Using
key strings adds complexity in parsing but allows flexibility and extensibility for settings without
greatly modifying code when settings are added, removed, or modified. In addition to specifying
the setting of interest, the key string also provides information on value returned with the string in
a key-value pair (KVP). The “type” parameter in the key string tells the user of the KVP whether
there is a valid value if “type=value”. The “valtype” parameter in the key string tells the user of the
KVP what the value type is so the appropriate union member can be accessed in the KVP.

14.1. PVAuthor Engine Key Strings

All key strings at the PVAuthor engine level start with “x-pvmf/author”.

14.2. Node Level Key Strings

The node level key strings available during PVAuthor engine usage depends on PVMF nodes
being used by the PVAuthor engine at that time and the key strings supported by a particular
node. For node level key strings, PVAuthor engine acts as a router to pass any requests to the
appropriate node. Currently, PVAuthor engine performs a hardcoded mapping from key sub-
string to certain nodes, but in the future, pvPlayer engine and nodes will determine the mapping
at runtime using a registration scheme.

Currently, the key string mapping to nodes is as follows in PVAuthor engine.

Key Sub-String Node Type
x-pvmf/video/render Video Encode Node
x-pvmf/audio/render Audio Encode Node
fileio/ Composer Node
x-pvmfi/file/output File Output Node
x-pvmf/media-io Media Input Node
x-pvmf/avc/encoder AVC Encoder

PVMF video and audio encoder node key strings are listed below. The key strings allow settings
associated with M4v, H.263 and H.264 video encoding to be queried and modified when PVMF

Video Encoder node is used to encode yuv bitstreams to mp4 or 3gp. The key strings are used
by amr encoder to encode pcm data to mp4/3gp files.

Key Strings With Value Type Description
x-pvmfivideo/render/output width;valtype=uint32 Set the output frame width
x-pvmf/video/render/output height;valtype=uint32 Set the output frame height
x-pvmf/audio/render/sampling_rate;valtype=uint32 Set the sampling rate of audio
bitstream
x-pvmf/audio/render/channels;valtype=uint32 Set the number of channels in audio
bitstream
x-pvmf/avc/encoder/encoding _mode;valtype=uint32 Set the encoding mode

MP4 Composer Node key strings are listed below:;

Key Strings With Value Type Description
fileio/pv-cache-size Set the file io cache size. This setting
will depend on if the PV file cache

setting has been turned-on in
osclconfig_io.h
fileio/presentation-timescale Set the timescale for overall 3GP
presentation . Default value is 1000.

15. Error Handling in the PVAuthor Engine

The PVAuthor engine is responsible for mapping commands and requests from the application or
higher-level components to potentially multiple steps and commands to the set of
nodes/components under the PVAuthor engine's control. Errors may occur while processing a
specific application request or may happen asynchronously outside of any request (e.g., an error
may happen during the recording process after it has already started). The nodes/components
attached to the PVAuthor engine report errors through the following methods:

1. HandleNodeErrorEvent for errors that happen asynchronously,

2. NodeUtilCommandCompleted for errors that happen while processing a specific request.
If any errors happen while the PVAuthor engine is processing a request from the application,
PVAuthor will wait for any pending commands it has to underlying nodes/components and then
return the error information as part of the CommandComplete status. If the errors happen outside
of any request or command from the application, the information will be sent using the
HandleErrorEvent method. The idea of collecting even the asynchronous errors that happen
during the processing of a request and sending it back during CommandComplete is to avoid
reporting the same errors multiple times. The PVAuthor engine will transition to an error state
when it reports these errors and the application can call Reset as described in Section 13 to
recover. Figures 19 and 20 show the API sequences and the logic flowchart for the error
handling described here.

Open

PVAuthor Developer's Guide

OHA 1.0, rev. 1

[Current Control Flow in Author}

Node/Mio comp

EviMPhodelnteriace

P Engi "

BvAuthorEngine Tas: I

CommandComplete i

ReporErrorEvent

MNodeCommandCompleted{Success/Failure)

=)

RegportinfoEvent

CompletelUtilityCmd

HandleNodeEmorEvent

NodeUtilCommandCompleted

CornpieteEngineCommand

|

HandleNodelnformationalEvent

CommandComplete
A

HandleErrorEvent

HandlalnformationalEvent

N |

RPN P,

Figure 19: Propagation of error information.

- Page 22 of 23 -

PVAuthorEngine TestApp/Ul

HandleNodeErrorEvent | if (PendingCmd == true)
— and (AuthorState != ERROR)

else (PendingCmd == false)

. I= —B
and if (AuthorState != ERROR) Set AuthorState = ERROR HandleErrorEvent()

if(status == FAILURE) B

set AuthorState = ERROR

NodeUtilCommandCompleted|

-~

wait for any subtask pending
command to complete

CompleteEngineCommand (Failure)

if (Status == FAILURE)

CommandComplete(FAILURE)

Reset()

Figure 20: PVAuthor error handling flowchart.

	1. Introduction
	2. Architectural Overview
	2.1. PVAuthor Structure
	2.2. Overall Sequence Diagram

	3. PVAuthor State Machine
	4. Create and Open Session
	5. Data Sources
	5.1. Create and Add Data Sources
	5.2. Data Source Configuration

	6. File Format Composer
	6.1. Composer Selection
	6.2. Composer Configuration
	6.2.1. 3GPP Composer
	6.2.2. AMR and AAC composer

	7. Media Tracks
	7.1. Add a Media Track
	7.2. Encoder Configuration

	8. Data Sinks
	9. Additional Features Through Extension Interface
	9.1. Max File Size, Duration and Progress Report

	10. Initialize and Start Session
	11. Pause and Resume Session
	12. Stop Session
	13. Reset and Close Session
	14. Capability Query and Configuring Settings
	14.1. PVAuthor Engine Key Strings
	14.2. Node Level Key Strings

	15. Error Handling in the PVAuthor Engine

