PV2Way Developer's Guide
OpenCORE 2.0, rev. 2
Apr 9, 2010

© 2010 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0

http://www.apache.org/licenses/LICENSE-2.0

Open

Table of Contents

1. INtrodUCtiON....ccuereeeurrennerinnsurienssrrenssrensssrensssrnnssrrenssrennsseensssrenssseenssrnsseassensennsranss 5
2. ArChiteCtUre. . cuuiieenuiiensiiiensiiennsiienniiensiennssiennssienssiienssiennssirnnsrenssseensssenssennsensenns 5
2.1, StAliC DESION. e uiieeetiiee it ee et ei et e ettt i raeeeenn 5
2.2. SDK State Maching DeSION.....cueeuiieeiiieeeiiieieiieiiieeiieeeeeeeeieeeeieeieeennen, 6
2.3. Command ProCeSSINGcceeuuiiieuiiiiiiieeiiiii i i iieiieeeieeieeeennen, 8
2.4. SoUrces and SINKS....c.uuiiieuiiiieiiiieiiieeeiieeiii et 8
2.4.1. Defining Media Capability.........cccccieiieiiiiiiiiiiiiiiiseiiieieiiiiiiiiiaeeeeaen, 8
2.4.2. Media IO COMPONENES...iieeeiiiieiiieiiiieieiieeiiee e eeeieeeeeeeieeiiaennns 9
2.4.3. Track INAICAtIONS.....iieeeiiiieiiiii i eeeeeeieeieeieeiiieeeen, 9
2.4.4. Removing sources and SINKS.......ueiiieeiiieeiiiiiiiiiiiiiieiiieiiiieeieiennns, 10
2.4.5. Channel re-negotiatioN..........cu.iieeiiieeiiiieiiiiieeiieeiiieeeeiieiiieeieeeennes, 10

ARSI ©0]1110 0l (01 (=) 1 - oL =TT T 10
2.6. Lip SynchronizatioN.......cee.ieeeniieeeiiieeiiiie i eieeeieeeeieeeeiaennss 10
2.7. ExXtension INterfaCcesS......uiieeiieeeiiiiiiiiiiiieiiieeeiieeeeieeeeeeieeeeieeeien 11
3. USAaQge SCeNAIIOS. . euuurreeerrenuirennuirenssrrnnssrrnnssrrnnssrensssrensssrnnssrennssernssseassansrnssranss 11
I N a1 (= [T T T T T 11
3.2, CONNECHING. . ceeuuiieen ittt e ettt ettt et e et eereeeeeeieeeeeeseennes 12
3.3. AddiNg Data SOUICES...uiieeniiiieiiiiiiieiieeeieeeeeeeeeeeeeieeeeeeeeeieeeeieeeeenns 14
3.4. Removing Data SOUICES......cuuiieeiiieeiiiiiiiiieiiieeiiieeeeeieiiieeeieeeeeieeeeeeennes 15
3.5. Adding Data SiNKS....ouueuiiieeiiiieiiiiiiiieiiieeeiieeiieeei i 17
3.6. Removing Data SiNKS.........ocivveiiiieiiiiiiiiiiiiiiiiiiieeiieeiiiiieeiiiieeieiieieeaennss 19
3.7. Data SiINK REMOVEA....uuiieeeiiiieiiiiiiieiiieeiieeeeeeeieeeeveeeeeeeeeieeeeieeee 19

5.1. Logging incoming/outgoing audio/video data...............ccceveeieiieeeeenenennnn..... 26

6. Feature LiSt...........ccceerieeeirinnseiennsnienssnrenssriensireensserenssreessseensssinnssseenssrennsseensseanes 28
6.1. SpecificatioN VErSIONS. ...uuiieeeiiieeiiieiiiieeiiieeiiie e eeieeeieeieeieeieeeiaennns 28
6.1.1. NOrMALIVE. . ceeeuiieeiiieeiiiiiie it iieeeeeeennen, 28

7.1. Feature Group 1: H.223. ..., 29
7.2. Feature Group 2: H245. .. .ciiiueiiiiiiiiiiiiieiiieiiieiiiieeie e 29
7.3. Feature Group 3: H.324/3G-324M.....cooiieuiiieiiiieiiiieiiiieiieieiieeeeaennns 30
7.4. Feature Group 4: AUAIO......ieeeniieeiiieeiiii i eieeeeee e eeeeeeeeennss 31

7.5. Feature Group 5: Vid0. ..ottt et ettt ettt st staseasasenzeens 31

Open PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

8. REfEIrENCES. . iuuieuiieiiiieuiieiimsascenssassassnsssassmssnassnssnssnsssassassnsssnssnssnssnnssnssnssnnsnnsasss 32

- Page 3 of 30 -

List of Figures

Figure 1: High LeVel Class DIagram........ccuui ittt 5
Figure 2: State TranSition DIAOIaAIM..........oiuuueiiiieiiiiiiiee ettt e e s e e e sbe bbb 6
Figure 3: Sequence Diagram - INItAIZING.oocuiiiiiiiii e 10
Figure 4: Sequence Diagram - CONNECLING.coiiutriiiietiiiiiie et e e e e e e e e e e e e e 11
Figure 5: Sequence Diagram - Adding & Data SOUICE............cccuuiiiieriiiiiiiiee et 13
Figure 6: Sequence Diagram — Removing a Data SOUICE............occcuuiiiiiiiiiiiiieeee e eeeii 14
Figure 7: Sequence Diagram - Adding a Data SinkK...........ccccuuiiiiiiiiiiiie e 16
Figure 8: Sequence Diagram - Removing a Data SinK..............eeeiiiiiii e 17
Figure 9: Sequence Diagram - Data Sink REMOVEd............ccoeviiiiiiiiiiii e 18
Figure 10: Sequence Diagram - DISCONNECHING.......uuuuriiiiiiiiiiieeeieeee e e e s ceeeeccrr e e e e e aaaaae e 19
Figure 11: Sequence Diagram - RESEHING.......uuuuiiiiiiiiiiiiiiiieieeee e e se s s e e e e e ear s 20

Figure 12: Sequence Diagram - Complete Call SEQUENCE.........cvvvvieiieeeeeiei e 21

1. Introduction

This document is a guide for developers writing clients to the PV2Way SDK. A client of PV2Way
can be an application or an adapter layer to adapt PV2Way interface to a higher-level interface
used by the application. This document describes how to use PV2Way interface and its
extensions to create, configure and control a video telephony session.

PV2Way is a platform-agnostic SDK that provides video telephony capabilities for its clients. The
SDK is capable of executing 3G-324M standard video telephony calls. The input media data are
typically provided by live source(s) such as camera and microphone. Output media data is
forwarded to presentation sinks such as display and speaker. The sources and sinks are
provided by the client application.

2. Architecture

2.1. Static Design

The following diagram illustrates the major participants in a video telephony session using the
PV2Way SDK. A client obtains a reference to the 2way engine (CPV2Wayinterface) using either
of the factory classes CPV2WayEngineFactory or CPV2WayProxyFactory. The client must also
implement PV2Way’s observer interfaces in order to receive command completion, status
information and error information. PV2Way is dependent on its client to provide media data
sources and sinks for a video telephony session. These media sources and sinks should either
be a Media IO Component (MIO) or implement the PVMFNodelnterface (Node) to allow PV2Way
Engine to control them in a generic way. A reference to the communications end point is needed
by PV2Way to communicate with a peer terminal. This interface acts as the data link to the peer
terminal for the video telephony session. Just like media sources and sinks, this can be
implemented either as an MIO or a Node. The Client control of the session is performed through
CPV2Waylnterface. The figure below shows the relationship between PV2Way, the client, and
other objects owned by the client. MIOs are described in detail later in the document.

Open

A udio S ip k M 10 A udio S o wufrce M 10
Vid eo S in k M

P vm iM [0 C om m|L o o p b afck V id e o S o ufrece

C lien t

C P2W a y E n g in e F ac top|ry J7

«in te rfa ce » — «interface»
PV CommandS tafjtu

C P2W a y In te[frface :
|
|

I .
|
t

P « in terface »
G pAY 8PP oy dapt‘a}|PVInformalionalE

|

¥

'|

K ey (3 :I
2W ay Engine C o ponlenls 4':

v

___>| «\nterface»l
PV E rrortE en {0 b
Clientcom ponenfts C P3vomoW ayl L !

Figure 1: High Level Class Diagram

2.2. SDK State Machine Design

PV2Way SDK has 7 states: Idle, Initializing, Setup, Connecting, Connected, Disconnecting, and
Resetting.

« Idle: The state immediately after the PV2Way instance has been successfully created or
instantiated. Some optional PV2Way components must be selected in this state.

< Initializing: The PV2Way is in this state when it is initializing from the Idle to the Setup
state. The terminal queries the available device capabilities (encode, decode, mux),
acquires resources to make a two-way call (codecs, formats, memory etc) and transitions
to the Setup state when it will be ready to accept setup parameters and Connect. |If
initializing fails, the PV2Way relinquishes the resources and reverts to the Idle state.

e Setup: The state where the PV2Way instance is in the process of receiving setup
parameters from the application, for encoding, multiplexing, capturing and rendering.

Each time a new set of parameters is passed in, validation will take place and a status will
be returned accordingly.

« Connecting: The state where the PV2Way instance has received a call to start
connecting. The communications end point is also to be provided as part of this process.
The PV2Way engine starts communication with the remote terminal to exchange media
capabilities and channel configuration in preparation for the establishment of media
channels.

e Connected: The state after all mandatory control signaling is completed. PV2Way will
establish media tracks based on local and remote capabilities and indicate outgoing track
establishment to the client, upon which the client is required to provide media sources for
these tracks. Similarly, incoming channel naotifications will be passed to the client after
which the client can add media sinks to associate with particular incoming channels.

» Disconnecting: The state where the terminal is shutting down all channels and the
multiplex.

* Resetting: The state where the terminal is releasing all resources and transitioning to the
Idle state.

To transition from one state to another, the user will need to call the session control APIs of
PV2Wayinterface. The figure below illustrates state transition of PV2Way SDK.

IR eset C om I i

Resett‘ng In itia liz in g

IR e sE)tL [Tn it C om ple te

(s ene—

ID isconmnect C ofm ple te [C o nnf(e)ctl

Cling :C Onne:c
IN e tw o rk D jBRceom mdectD iDcic ommefr)e ctl IC onnect Clom p
. { C o none e—f

Figure 2: State Transition Diagram

2.3. Command Processing

The PV2Way SDK exposes functionalities via commands implemented either by the
CPV2Waylnterface class or by extension interfaces. The following are some common features of
these APIs:

1. Most APlIs to the PV2Way SDK are asynchronous. The user is expected to implement an
observer to monitor the status of issued commands.

2. The asynchronous APIs return a unigue command id if the request is accepted.

3. The API will leave if there is an error queuing the request.

4. Optional opaque data can be passed in with every asynchronous call to allow the user to
associate arbitrary data/state information with the call.

5. Reference to data structures can be passed in some APIs to allow the user to specify where
the data should be written. The PV2Way SDK will have complete ownership of the
reference until the call is completed

6. Once the command is processed, the user is notified via the command observer of the
command id, completion status, the opaque context data and additional opaque data
which is to be interpreted based on the command type and the completion status.

7. All pending commands can be cancelled by using the CancelAllCommands API. The
CancelAllCommands command itself cannot be cancelled. Cancelled commands will still
return a command completion notification with an indication that it was cancelled.

2.4. Sources and Sinks

PV2Way can handle several types of media sources and sinks and can adapt its internal
configuration based on the types of the sources and sinks, and the time when they are added to
the PV2Way.

2.4.1. Defining Media Capability

The user of the SDK should define the scope of the call during initialization. The PV2Waylnitinfo
class allows the user to advertise the formats and capabilities of available sources and sinks for
each incoming and outgoing channel of media that is to be established. The order of formats
specifies the preference in decreasing order. For instance, user may define the following:

Available outgoing audio formats: {AMR}

Available video formats: {Mpeg4, YUV422}
Available incoming audio formats: {AMR}

Available incoming video formats: {Mpeg4, YUV420}

These capabilities along with the capabilities of the PV2Way engine (internal codecs, stack) will
be used to negotiate the session with the peer. However, it is hot guaranteed that the most
preferred formats will be negotiated or, that any format will be negotiated at all.

2.4.2. Media 10 Components

In PV2Way SDK and PV multimedia framework architecture, the Media 10 (MIO) component is a
communication layer for the 2way engine to interact with the device’s capturing, rendering and
network interfaces. As access to media capturing/rendering & network functionalities are different
for every platform that PV software works on, the MIO component serves as a glue layer for
different PV modules. In order to act as an adapter between PV modules and underlying
hardware interfaces, a MIO component has several responsibilities.

e Control the underlying hardware based on commands from other PV modules.

* Exchange capabilities information of the underlying hardware with other PV

modules.
e Send/Receive media data to/from the different underlying hardware interfaces.

Several PV2Way engines APIs (CPV2Waylnterface) accept a reference to PYMFNodelnterface
for sources and sinks (including the COMM interface). Factories that provide a node wrapper for
a given MIO are provided in the PV2Way SDK so that the client does not have to adapt to the
PVMFNodelnterface, but can simply provide all its adaptations using MIOs. The
PVCommsIONodeFactory class creates a hode wrapper for the COMM MIO. The
PvmfMedialnputNodeFactory class creates a node wrapper for media input MIOs. The
PvmfMediaOutputNodeFactory class creates a hode wrapper for the media output MIOs.

In the rest of this document, a node is used interchangeably with an MIO in the context of
sources, sinks and the comms interface.

Detailed information on Media I/O components can be found in the “Media 1/O Developers
Guide.”

2.4.3. Track Indications

Media sources and sinks should be added after an indication from PV2Way is received notifying

establishment of the track (PVT_INDICATION_OUTGOING_TRACK/

PVT_INDICATION_INCOMING_TRACK). This can happen in the EConnecting and EConnected

states. The indications convey the following:

e The port tag associated with the track. The Client is expected to pass in this tag when it calls
AddDataSource/AddDataSink.

e The media type associated with the track

A PV2WayTrackinfolnterface extension interface, which conveys the format type as a MIME
string, Format Specific Information if any, etc.

The following are the types of sinks/sources supported:

* Raw data sources: These sources output uncompressed data — YUV, PCM etc.

e Compressed data sources: These sources output compressed data — MPEG-4, H.263, AMR.

« Raw data sinks: These sinks receive uncompressed data — YUV, PCM etc. The PV2Way
Engine will establish a codec in the datapath to convert the incoming compressed bitstream
to a raw type supported by the sink.

« Compressed data sinks: These sinks receive compressed data — MPEG-4, H.263, AMR.

2.4.4. Removing sources and sinks

Sources and sinks added during a call should be removed before disconnecting the call.

2.4.5. Channel re-negotiation

If the peer does not support one of our outgoing track formats or if a conflict arises, one or more
of the tracks may need to be closed and replaced with tracks agreeable to both sides. As soon
as the PV2Way SDK detects this condition, it passes a PVT_INDICATION_CLOSING_TRACK
indication to the Client specifying the unique tag for the channel. Subsequently, it closes the
track and passes a PVT_INDICATION_CLOSE_TRACK indication. This is illustrated in Section
3.8.

For outgoing channels the Client needs to wait for the PVT_INDICATION_OUTGOING_TRACK
indication and then add a compatible source. For incoming channels, the user needs to wait for
the PVT_INDICATION_INCOMING_TRACK indication before adding a compatible sink.

2.5. Comm Interface

The Comm Interface represents the data link to the remote video telephony terminal. It typically
implements a 64kbps circuit-switched connection to a serial-port or the baseband of a phone.
The PV2Way Engine interfaces to it using an MIO or PVMFNodelnterface. Once the Comm
Interface indicates a successful start the PV2Way Engine begins sending and receiving a 3G-
324M compliant bitstream with the peer terminal via the Comm Interface.

More details on this can be found in Reference 4.
2.6. Lip Synchronization

The strategy for lip synchronization of incoming media is pretty similar to how its handled in the
PVPlayer, so only the differences are addressed here.

The pv2way engine will provide timestamped audio and video samples to the Media 1/O
Components along with a clock just like the PVPlayer case. The active audio rendering MIO
would adjust the clock based on the number of samples rendered and the video rendering MIO
would pace itself based on the shared clock.

— The pv2way engine would attempt to smoothen the incoming timestamps especially for
audio to reduce jitter. The jitter comes from the fact that the protocol does not support
bitstream timestamps. Without bitstream timestamps, the timestamps are based on
arrival time and this makes them prone to a lot of jitter.

— The pv2way engine disables buffering/delaying/dropping of audio and video within 2way
datapaths for lip synchronization. Buffering/delaying/dropping decisions are left to the
MIOs.

— Incoming skew indication will be forwarded to the application via the
H324MConfiginterface. This provides any inherent skew between the incoming audio and
video streams that needs to be compensated for at the time of rendering. This is not very
common, but applications need to be able to handle it if the skew is significant.

For outgoing media, the pv2way engine monitors the outgoing audio and video streams for
significant skew and if detected, it issues a Skew Indication message to the peer.

2.7. Extension Interfaces

Extended configuration of the engine for protocol-specific features and for value adds may be
acheived using extension interfaces (if they are supported.) This is done using the
QueryInterface mechanism.

H.324-specific configuration may be acheived using the H324MConfiginterface.

More details may be found in the pv2way engine APl document.

3. Usage Scenarios

The following sections illustrate the interactions that happen between the client and the PV2Way
components to handle some of the typical commands.

3.1. Initializing

The Init command initializes an instance of PV2Way and acquires all the resources for a video
telephony call. The Command Status Observer is notified of the outcomes.

Open

PV2Way Developer's Guide
OpenCORE 2.0, rev. 2

Client CPY2WavEndineFaciory

CPVE2Wayinterface

MPYCommandStatusObserver

I
I
|
[|
f*L B Create Component |
L | e
' | i
o o |
[
I InitL{media capability) I
L | o
F ' Ti
e cme e sorsaens Pomssmormmserasons
[

Create nodes :

-Codec Modes {if necessary)

Cuery VOL header fram
encoder node if available.

|
CommandCompletedL{InitL

Figure 3: Sequence Diagram - Initializing

3.2. Connecting

Commanding PV2Way to Connect begins the 3G-324M call setup procedure. The CommNode is
used as the network connection to the peer 3G-324M terminal and must therefore be connected
to the shared data link once the Start command is returned with a successful result.

- Page 12 of 30 -

0

C

dPe V

0

N

.
-
- =
@ o
|||||||||||||||||| a‘ll|||||||||||||||||||||||||.l|||||l [——
« ﬁ
— A
= =z
e = I
«
N - o | |
- - - =
o @ I
o @ @ @ @
a — — = I
M @ @ = = _
= A - - - = _
> o = = © e |
= =
— @ < [}
@ =S o = = |
= o = = e — = b=l _
o £ _| 5] ©
....... o B - = R e i
)y °H .) n _ Y = s |
= _he\ | o - | I | = _
= |~ [Jp= | © | - 2
n 2. _ B | 2 |
S B = _ IS bl I T = S |
- —_ = I o
a | = | < = | w [& ° |
— = | — £ _ [
® | | @ | = | | - |
Z - = - = ol - I pd ©
_ 1=/ Z] _ || T !
- =
_ | e _ o I B |
. 60 e z | @ | @
- = \ o
L —— fll ||||||| | & IrlllﬁlldﬁlllﬁlrlldWH%ln .II!I@IIII
Y (&) = ©
— o o e
o | > | o
w
a — =3 o = =
= | -
-
= | I _ s
o | b
o | -
|
& =

ing

- Connect

iagram

Sequence Di

Figure 4

3.3. Adding Data Sources

The PV2Way Client needs to create media i/o components for source data (audio, video) and
provide them to PV2Way via the AddDataSource() method after receiving the
PVT_INDICATION_OUTGOING_TRACK for the channel. Data from these sources would be
(optionally) encoded, multiplexed and transmitted to the peer. The PVYMFMedialnputNode is
used to encapsulate the media i/o components before passing them via the AddDataSource call.

The media i/o component is configured using the capability exchange interfaces.

Client CPV2WayInterface SourceNode MPVCommandStatusObserver MPVInfoEventObserver

PVT_INDICATION_OUTGOING_TRACK

|
I
| ’AddDataSourcel() |
L
|
|
|
|

S—

| |
NodeCommandCompleted(Queryinterface)

7 [1

Configure node specific parameters ﬁ

r Start()
I—’
I
P
|

o ___

|
I

I I
NodeCommandCompleted(Start)

1 =

Figure 5: Sequence Diagram - Adding a Data Source

3.4. Removing Data Sources

Data Sources should be removed before disconnecting the call.

C

v

M eP

0

Kk—— - - — - — — —

p

n(R @ pemt

a

1
I
BN
1
=
I
I

Figure 6: Sequence Diagram — Removing a Data Source

3.5. Adding Data Sinks

The PV2Way Client needs to create media i/o components for sink data (audio, video) and
provide them to PV2Way via the AddDataSink() method after receiving the
PVT_INDICATION_INDICATION_TRACK for the channel. Incoming media data from the peer
would be de-multiplexed, (optionally) decoded and provided to these sinks. The
PVMFMediaOutputNode is used to encapsulate the media i/o components before passing them
via the AddDataSink call. The media i/o component is configured using the capability exchange
interfaces.

Upen
1

e

NodeComm'andCompIete(Que'ryInterface

Configure node specific parameters

Client CPV2Waylnterface SinkNode PVCommandStatusObserver PVInfoEventObserver
T T T
| i |
: PVT_INDICATION_INCOMING_TRACK
____________ L e e
AddDataSinK) |
3

g S SN U U P UPUY U

Figure 7: Sequence Diagram - Adding a Data Sink

3.6. Removing Data Sinks

Data Sinks should be removed before disconnecting the call..

C lie nft{C_P2W a y In te|lrfa | S _in k N fo dijeM P V C o m m a n d

|
|

Noo d e C om m a f¥dtd po m p le te d
* 1
|

T
|
|
|
|
|
|
| |
| |
| |
| |
| |
| |
| |
| 1 |
] R e S)e t
T]
K—————————
I —
I 1
N o de C om m a (RdeCpoe o p le te d
e 1
L_[1
I -
(
1 » 1
[I U
Y D
[o [
: : C om m a nyd C(Ro @ mp bevie dSLin: k
I 1 >
(

Figure 8: Sequence Diagram - Removing a Data Sink

3.7. Data Sink Removed

The following events happen when a track is closed by the peer during a video conferencing
session.

C lie nft/C_P2W a y In te¢ rfal S in k N fo dja P V C o m m a n d §

1
H a n d le In fo rm(PaVti™ nDallCE ACE W1 00 NS TI

6,0 K

e e Y

Hoa n d le In fo rm(PaViim nDalCE ACE OO NS RE A,i@ K
] 3!
i I g
| |

Figure 9: Sequence Diagram - Data Sink Removed

3.8. Disconnecting

To terminate a video telephony call, a client needs to call Disconnect after all the Sources and
Sinks are removed. This will cause protocol negotiations (EndSessionCommand) with the peer
after which the multiplex and the Comms MIO will be stopped.

m

: m

8 ~1

g T B |

Q| 5 —~ — |

3 = g g 3

-l - I

8 i T 0 I A A I S B A
BM i 9o | ! g | = _ m “

s S|t Elg| 1 By o8| L OB

] g8 a1 Sl 8 1 g 8

g 58 N LB |
0T | |

M Mﬂlu m m Vvl!m T-!m_ﬂ Jeo L. Vo

31 o 1|25 ; E

@ w. m _,.mp

18 £3
a) |
gl N
O

Figure 10: Sequence Diagram - Disconnecting

3.9. Resetting

Resetting the PV2Way Engine releases all resources acquired by the SDK. This command must
be issued after Disconnect completes and prior to deleting the PV2Way instance.

Figure 11: Sequence Diagram - Resetting

3.10. Complete Call Sequence

The following is the complete sequence of interactions that happen during a typical video
telephony call.

I'L

muﬂ

e

c

el Itre Jtde Lr fa

(@ m

C

coa)p a b Hit:y

ia

b

Y U =

C

d

3

\——— -

monleete tdl L

(6 m

C

it

m

Ja 1 a
e JCt K

P

ges dioln
|
|
n0aMEIR
N

tpS le
@Ntic

nd C (6 m
In fo rm

a
e

m

0

L

k

n

a t@) S

D

- ——-

L
~ -
- —
p— (&)
—
=
w =]
=
=
e =
- —
- -
o b R E
=A <
=N o
= =
R=] =]
< =
=
o
=1 =
=
-
« -
=
= =
@

C
L

k

n

t@) S

a

=
= =
= —
S
. =
w m
=1 b
= S
- =
— —
< S
e Gl
=\
[
o
= =
= P
=
« —
<
(&)
= =
=
o
< —
=
= _
@
mll‘ —
o =1
=
[
P
ES

C

[

u

dp Dleaté¢agdSL o

(A o

C

>
|

K

) Ct

I0ET 1@ & fn

@

T

@ tUo

m

[

\———

C

r

u

dp Dleate¢adSLo

(A

C

S

ms g ooedta & Lk t

(D

c

m

m

0

c

]

1
e
}
|
-

d

te

$p el e

(R m

C

I

- Complete Call Sequence

iagram

Sequence Di

Figure 12

4. Proxy Adapter

When building multimedia applications with their requisite complex timing requirements, it is often
useful to allocate processing among multiple threads to get some degree of timing independence.
Multithreading is a useful tool that simplifies the task of sharing CPU resources among multiple
independent components. Itis also possible to share processing among components within a
single thread using concepts like active objects, which implement a cooperative multitasking
model. Cooperative multitasking definitely has its place as another tool that should be utilized to
allow complex systems to be built up from simpler components. Either tool on its own will not
lead to a good solution for any reasonably complex system, so it's important to make proper use
of each.

PV2Way has an optional Proxy Adapter that may be used to separate the client thread from the
PV2Way thread. This separation can be used to ensure that the Ul thread can remain responsive
to user events and also for protection of time-critical processing within PV2Way. All callbacks
(command completion, unsolicited events) will be made in the context of the thread that PV2Way
was created. Sources and sinks passed in by the application should have the mechanism and
capability to operate (data passing, state change) in a different thread from which it was created.
The PV2Way Engine utilizes the Source/Sink ThreadLogon routines to notify external data
sources and sinks of the thread contexts for data passing and observer callbacks.

The interface to the client does not change when the Proxy Adapter is in use. This is illustrated in
Figure 1.

5. Logging

The 2Way Logging APIs provide methods for the application to control the logging level at any
point in the logger tree using hierarchical tags to specify the control point. This will give the
application complete control over the amount of log messages being produced by PV2Way, and
by using the hierarchical tags, it provides very fine-grained control to turn up logging just where it
is needed.

The application will be able to control the logging destinations by passing in Logger Appender
instances that are created externally. Logger Appender classes are provided for most common
simple cases such as logging to a file.

5.1. Logging incoming/outgoing audio/video data

Logging data coming in and going out of the PV2Way SDK proves to be useful at times especially
in cases where there is large packet loss, data needs to be verified for timing issues, or audio &
video data needs to be ascertained for their arrival times for lipsync purposes. An easy way of
collecting logs for incoming and outgoing audio & video data is by the use of hierarchical logger.
These tags provide the flexibility of restricting the number of log messages by categorizing them
for incoming or outgoing audio, video or both kinds of data.

Some examples below typify their usage.
Logger tag: datapath.outgoing

This tag allows the user to log messages depicting all outgoing multiplexed data, be it audio or
video at the stack level.

Following are the sample log messages printed/outputted:

PVLOG:TID(0x73c): Time=5656: Outgoing audio frames received. Stats: Entry time=2266,
Icn=65543, size=254

PVLOG:TID(0x73c):Time=5656: Stats of the outgoing audio SDU are: timestamp=2266, size=31

PVLOG:TID(0x73c):Time=5657: Outgoing video frames received. Stats: Entry time=2286,
Icn=65542, size=31

PVLOG:TID(0x73c):Time=5656: Stats of the outgoing video SDU are: timestamp=2286, size=254
Logger tag: datapath.outgoing.video.h223.lcn

This tag allows the user to only explicitly log outgoing multiplexed video data at the stack level.
Following are the sample log messages printed/outputted:

PVLOG:TID(0x73c): Time=5657: Outgoing video frames received. Stats: Entry time=2286,
Icn=65542, size=254

PVLOG:TID(0x73c): Time=5656: Stats of the outgoing video SDU are: timestamp=2286, size=254
Logger tag: datapath.outgoing.audio.h223.Icn
This tag allows the user to only explicitly log outgoing multiplexed audio data at the stack level.

Following are the sample log messages printed/outputted:

PVLOG:TID(0x73c): Time=5657: Outgoing audio frames received. Stats: Entry time=2266,
Icn=65542, size=31

PVLOG:TID(0x73c):Time=5656: Stats of the outgoing audio SDU are: timestamp=2266, size=31
Logger tag: datapath.incoming

This tag allows the user to log all incoming de-multiplexed data be it audio or video at the stack
level.

Following are the sample log messages printed/outputted:

PVLOG:TID(0xb98):Time=5016:Incoming audio SDU received. Stats: Entry time=2016,
Icn=65542, size=31,FmtType=X-AMR-IF2

PVLOG:TID(0x73c):Time=6141:Incoming video SDU received. Stats: Entry time=2735,
Ich=65543, size=254,FmtType=video/H263-2000

Logger tag: datapath.incoming.video.h223.Icn

This tag allows the user to only log incoming de-multiplexed video data at the stack level.
Following are the sample log messages printed/outputted:

PVLOG:TID(0x73c):Time=6062:Incoming video SDU received. Stats: Entry time=2657,
Icn=65543, size=254,FmtType=video/H263-2000

PVLOG:TID(0x73c):Time=6141:Incoming video SDU received. Stats: Entry time=2735,
Icn=65543, size=254,FmtType=video/H263-2000

PVLOG:TID(0x73c):Time=6219:Incoming video SDU received. Stats: Entry time=2782,
Icn=65543, size=254,FmtType=video/H263-2000

Logger tag: datapath.incoming.audio.h223.Icn

This tag allows the user to only log incoming de-multiplexed audio data at the stack level.

Following are the sample log messages printed/outputted:

PVLOG:TID(0xb98):Time=4969:Incoming
Icn=65542, size=31,FmtType=X-AMR-IF2
PVLOG:TID(0xb98):Time=5016:Incoming
Icn=65542, size=31,FmtType=X-AMR-IF2
PVLOG:TID(0xb98):Time=5063:Incoming
Icn=65542, size=31,FmtType=X-AMR-IF2
PVLOG:TID(0xb98):Time=5094:Incoming
Icn=65542, size=31,FmtType=X-AMR-IF2

6. Feature List

audio SDU

audio SDU

audio SDU

audio SDU

received.

received.

received.

received.

Stats:

Stats:

Stats:

Stats:

Entry time=1969,
Entry time=2016,
Entry time=2063,

Entry time=2094,

The specifications which define the 3G-324M standard present various mandatory and optional
elements which may or may not be supported in a particular terminal implementation. The
purpose of this section is to provide a feature-level summary of the elements supported by
PV2Way 3G-324M solution. Features are classified by feature groups which relate to specific

areas of the 3G-324M standard.

In general, features which are listed as supported may be used and/or configured through
PV2Way API’s, i.e. no special build time provisions should be necessary to activate such
features. For other features (either absent from the list, or listed as “Not Supported”), some
customization would be needed in order to add or utilize the feature.

6.1. Specification Versions

This section lists the 3G-324M system specifications and indicates the versions employed by

PV2Way.

6.1.1. Normative

e 3GPP TS 26.110 v6.0.0: "Codec for Circuit Switched Multimedia Telephony Service;

General description".

e 3GPP TS 26.111 v6.1.0: “Codec for Circuit Switched Multimedia Telephony Service;

Modifications to H.324”

¢ |TU-T Recommendation H.324: "Terminal for low bitrate multimedia communication”,

February 1998.

e ITU-T Recommendation H.223: "Multiplexing protocol for low bit rate multimedia

communication", March 1996.

ITU-T Recommendation H.223 - Annex A: "Multiplexing protocol for low bit rate
multimedia mobile communication over low error-prone channels”, February 1998.

ITU-T Recommendation H.223 - Annex B: "Multiplexing protocol for low bit rate
multimedia mobile communication over moderate error-prone channels”, February 1998.

ITU-T Recommendation H.245, Version 6: "Control protocol for multimedia

communication”, February 2000.

6.1.2.

3GPP TR 26.911 v6.0.0: "Codec for circuit switched multimedia telephony service;
Terminal Implementor’'s Guide".

Informative

7. Supported Features

The features supported by PacketVideo’s 3G-324M solution are broken down into logical feature
groups and presented in the following tables.

7.1. Feature Group 1: H.223

Group | # | Feature Support? Direction Comment

H.223 1] LevelO Yes In/Out

H.223 2 | Level 1 Yes In/Out Support for Annex A in single or
(H.223 double flag modes.
Annex A)

H.223 3 | Level 2 Yes In/Out Support for Annex B with or without
(H.223 optional header.
Annex B)

H.223 4 | Level 3a No --
(H.223
Annex C)

H.223 5 | Level 3b No -
(H.223
Annex D)

H.223 6 | Control over | Yes In/Out Framed transfer mode, per H.324
ALl recommendation

H.223 7 | Audio over Yes In/Out CRC and Optional SN are both
AL2 supported

H.223 8 | Video over Yes In/Out CRC and Optional SN are both
AL2 supported

H.223 9 | Video over Yes In/Out Support for 0, 1 or 2 control field
AL3 octets. Retransmission not supported

(this is in line with the recommendation
in 3GPP TS 26.911)

7.2. Feature Group 2: H.245

Group | # | Feature Supported? Direction Comment
H.245 1 | Terminal Yes In/Out
Capability Set
H.245 2 | Master Slave Yes In/Out
Determination
H.245 3 | Multiplex Entry Yes In/Out
Send
H.245 4 | Request Multiplex | Yes In/Out
Entry
H.245 5 | Open Logical Yes In/Out For video case, both
Channel unidirectional and
bidirectional are supported
H.245 6 | Request Channel | Yes In/Out
Close
H.245 7 | End Session Yes In/Out
H.245 8 | Request Mode No -- Currently no outgoing Mode
Requests are sent.
Incoming Mode Requests
are rejected, consistent for
case with no Transmit
Capabilities in outgoing
TCS.
H.245 9 | User Input Yes In/Out
Indication
H.245 10 | Round Trip Delay | Yes In/Out
H.245 11 | Flow Control Yes In/Out H.245 signaling support only
H.245 12 | Video Yes In/Out
Spatial/Temporal
Tradeoff
(Command)
H.245 13 | Video Fast Update | Yes In/Qut Picture update only
H.245 14 | Multiplex No --
Reconfiguration
(level change)
H.245 15 | H.223 Skew Yes In/Out
Indication
H.245 16 | Vendor Yes In/Out
Identification
Indication
H.245 17 | Mux PDU size Yes In/Out As recommended in Section
restriction 5 of 3GPP TS 26.911.
signaling
H.245 18 | Timer/Counter Yes - Various H.245 timer and
configuration counter values may be
configured via API
H.245 19 | Fast call setup Yes -- Optimal standards-compliant

bundling of H.245 messages

| to reduce setup time.

7.3. Feature Group 3: H.324/3G-324M

Group | # | Feature Supported? Direction Comment

H.324 1 [H.324 Annex C | Yes - Mobile annex, as required in
3G-324M specs

H.324 2 | SRP Yes In/Out

H.324 3 | NSRP Yes In/Out

H.324 4 | WNSRP Yes In/Out

H.324 5 | CCSRL Yes In/Out

H.324 6 | Audio Yes In/Out

Channels
H.324 7 | Video Yes In/Out
Channels
H.324 8 | Data Channels | No --
H.324 9 | Loopback Yes -- External loopback support
Mode provided for development and
testing. Multiplex bitstream
looped within terminal prior to
transmission. H.245
Maintenance loop not currently
supported.

H.324 10 | Encryption No --

H.324 11 | Pause/Resume | Yes In/Out Option to stop sending A/V data
on outgoing side, or to pause
rendering of data on incoming
side.

H.324 12 [MONA-MPC Optional In/Out Standards Based Enhancement
for faster Call Setup.

7.4. Feature Group 4: Audio

Group | # | Feature | Supported? Direction Comment

Audio 1| AMR-NB | Yes In/Out All modes including SID

Audio 2 | G.723.1 No -- Not required for 3G-324M

7.5. Feature Group 5: Video

Group

Feature

Supported?

Direction

Comment

Video

H.263
baseline

Yes

In/Out

(Profile 0,
Level 10)
Video 2 | MPEG-4 Yes In/Out Level 0 is baseline support;
Simple Profile Could support higher levels as
well.
Video 3 | H.261 No -- Not required for 3G-324M
Video 4 [H.263 No -- Not required for 3G-324M
additional
annexes
Video 5 | MPEG-4 Yes In/Out
Resync
Markers
Video 6 | MPEG-4 HEC | Yes In/Out
Video 7 | MPEG-4 Data | Yes In/Out
Partitioning
Video 8 | MPEG-4 Yes In/Out
RVLC's
Video 9 | Error Yes In As recommended in 3GPP TS
concealment 26.911. Advanced error
concealment provided by
PacketVideo software decoders;
this may or may not be available if
a non-PV video decoder is used.

8. References

PacketVideo Corp. PV2Way API Document
ITU-T H.324 Terminal For Low Bitrate Multimedia Communication
PacketVideo Corp. Media I/O Developers Guide

PacketVideo Corp. Guidelines for Developing Baseband Communications 10
Components”.

	1. Introduction
	2. Architecture
	2.1. Static Design
	2.2. SDK State Machine Design
	2.3. Command Processing
	2.4. Sources and Sinks
	2.4.1. Defining Media Capability
	2.4.2. Media IO Components
	2.4.3. Track Indications
	2.4.4. Removing sources and sinks
	2.4.5. Channel re-negotiation

	2.5. Comm Interface
	2.6. Lip Synchronization
	2.7. Extension Interfaces

	3. Usage Scenarios
	3.1. Initializing
	3.2. Connecting
	3.3. Adding Data Sources
	3.4. Removing Data Sources
	3.5. Adding Data Sinks
	3.6. Removing Data Sinks
	3.7. Data Sink Removed
	3.8. Disconnecting
	3.9. Resetting
	3.10. Complete Call Sequence

	4. Proxy Adapter
	5. Logging
	5.1. Logging incoming/outgoing audio/video data

	6. Feature List
	6.1. Specification Versions
	6.1.1. Normative
	6.1.2. Informative

	7. Supported Features
	7.1. Feature Group 1: H.223
	7.2. Feature Group 2: H.245
	7.3. Feature Group 3: H.324/3G-324M
	7.4. Feature Group 4: Audio
	7.5. Feature Group 5: Video

	8. References

