pyspark.sql.functions.regr_r2#

pyspark.sql.functions.regr_r2(y, x)[source]#

Aggregate function: returns the coefficient of determination for non-null pairs in a group, where y is the dependent variable and x is the independent variable.

New in version 3.5.0.

Parameters
yColumn or str

the dependent variable.

xColumn or str

the independent variable.

Returns
Column

the coefficient of determination for non-null pairs in a group.

Examples

Example 1: All pairs are non-null

>>> import pyspark.sql.functions as sf
>>> df = spark.sql("SELECT * FROM VALUES (1, 1), (2, 2), (3, 3), (4, 4) AS tab(y, x)")
>>> df.select(sf.regr_r2("y", "x")).show()
+-------------+
|regr_r2(y, x)|
+-------------+
|          1.0|
+-------------+

Example 2: All pairs’ x values are null

>>> import pyspark.sql.functions as sf
>>> df = spark.sql("SELECT * FROM VALUES (1, null) AS tab(y, x)")
>>> df.select(sf.regr_r2("y", "x")).show()
+-------------+
|regr_r2(y, x)|
+-------------+
|         NULL|
+-------------+

Example 3: All pairs’ y values are null

>>> import pyspark.sql.functions as sf
>>> df = spark.sql("SELECT * FROM VALUES (null, 1) AS tab(y, x)")
>>> df.select(sf.regr_r2("y", "x")).show()
+-------------+
|regr_r2(y, x)|
+-------------+
|         NULL|
+-------------+

Example 4: Some pairs’ x values are null

>>> import pyspark.sql.functions as sf
>>> df = spark.sql("SELECT * FROM VALUES (1, 1), (2, null), (3, 3), (4, 4) AS tab(y, x)")
>>> df.select(sf.regr_r2("y", "x")).show()
+-------------+
|regr_r2(y, x)|
+-------------+
|          1.0|
+-------------+

Example 5: Some pairs’ x or y values are null

>>> import pyspark.sql.functions as sf
>>> df = spark.sql("SELECT * FROM VALUES (1, 1), (2, null), (null, 3), (4, 4) AS tab(y, x)")
>>> df.select(sf.regr_r2("y", "x")).show()
+-------------+
|regr_r2(y, x)|
+-------------+
|          1.0|
+-------------+