pyspark.pandas.groupby.SeriesGroupBy.value_counts#

SeriesGroupBy.value_counts(sort=None, ascending=None, dropna=True)[source]#

Compute group sizes.

Parameters
sortboolean, default None

Sort by frequencies.

ascendingboolean, default False

Sort in ascending order.

dropnaboolean, default True

Don’t include counts of NaN.

Examples

>>> df = ps.DataFrame({'A': [1, 2, 2, 3, 3, 3],
...                    'B': [1, 1, 2, 3, 3, np.nan]},
...                   columns=['A', 'B'])
>>> df
   A    B
0  1  1.0
1  2  1.0
2  2  2.0
3  3  3.0
4  3  3.0
5  3  NaN
>>> df.groupby('A')['B'].value_counts().sort_index()  
A  B
1  1.0    1
2  1.0    1
   2.0    1
3  3.0    2
Name: count, dtype: int64

Don’t include counts of NaN when dropna is False.

>>> df.groupby('A')['B'].value_counts(
...   dropna=False).sort_index()  
A  B
1  1.0    1
2  1.0    1
   2.0    1
3  3.0    2
   NaN    1
Name: count, dtype: int64