DataFrame.
groupBy
Groups the DataFrame using the specified columns, so we can run aggregation on them. See GroupedData for all the available aggregate functions.
DataFrame
GroupedData
groupby() is an alias for groupBy().
groupby()
groupBy()
New in version 1.3.0.
Changed in version 3.4.0: Supports Spark Connect.
Column
columns to group by. Each element should be a column name (string) or an expression (Column) or list of them.
Grouped data by given columns.
Examples
>>> df = spark.createDataFrame([ ... (2, "Alice"), (2, "Bob"), (2, "Bob"), (5, "Bob")], schema=["age", "name"])
Empty grouping columns triggers a global aggregation.
>>> df.groupBy().avg().show() +--------+ |avg(age)| +--------+ | 2.75| +--------+
Group-by ‘name’, and specify a dictionary to calculate the summation of ‘age’.
>>> df.groupBy("name").agg({"age": "sum"}).sort("name").show() +-----+--------+ | name|sum(age)| +-----+--------+ |Alice| 2| | Bob| 9| +-----+--------+
Group-by ‘name’, and calculate maximum values.
>>> df.groupBy(df.name).max().sort("name").show() +-----+--------+ | name|max(age)| +-----+--------+ |Alice| 2| | Bob| 5| +-----+--------+
Group-by ‘name’ and ‘age’, and calculate the number of rows in each group.
>>> df.groupBy(["name", df.age]).count().sort("name", "age").show() +-----+---+-----+ | name|age|count| +-----+---+-----+ |Alice| 2| 1| | Bob| 2| 2| | Bob| 5| 1| +-----+---+-----+