Eigen  3.2.2
Memory.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 
15 /*****************************************************************************
16 *** Platform checks for aligned malloc functions ***
17 *****************************************************************************/
18 
19 #ifndef EIGEN_MEMORY_H
20 #define EIGEN_MEMORY_H
21 
22 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED
23 
24 // Try to determine automatically if malloc is already aligned.
25 
26 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
27 // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
28 // This is true at least since glibc 2.8.
29 // This leaves the question how to detect 64-bit. According to this document,
30 // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
31 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
32 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
33 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
34  && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ )
35  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
36 #else
37  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
38 #endif
39 
40 // FreeBSD 6 seems to have 16-byte aligned malloc
41 // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
42 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
43 // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
44 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
45  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
46 #else
47  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
48 #endif
49 
50 #if defined(__APPLE__) \
51  || defined(_WIN64) \
52  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
53  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
54  #define EIGEN_MALLOC_ALREADY_ALIGNED 1
55 #else
56  #define EIGEN_MALLOC_ALREADY_ALIGNED 0
57 #endif
58 
59 #endif
60 
61 // See bug 554 (http://eigen.tuxfamily.org/bz/show_bug.cgi?id=554)
62 // It seems to be unsafe to check _POSIX_ADVISORY_INFO without including unistd.h first.
63 // Currently, let's include it only on unix systems:
64 #if defined(__unix__) || defined(__unix)
65  #include <unistd.h>
66  #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
67  #define EIGEN_HAS_POSIX_MEMALIGN 1
68  #endif
69 #endif
70 
71 #ifndef EIGEN_HAS_POSIX_MEMALIGN
72  #define EIGEN_HAS_POSIX_MEMALIGN 0
73 #endif
74 
75 #ifdef EIGEN_VECTORIZE_SSE
76  #define EIGEN_HAS_MM_MALLOC 1
77 #else
78  #define EIGEN_HAS_MM_MALLOC 0
79 #endif
80 
81 namespace Eigen {
82 
83 namespace internal {
84 
85 inline void throw_std_bad_alloc()
86 {
87  #ifdef EIGEN_EXCEPTIONS
88  throw std::bad_alloc();
89  #else
90  std::size_t huge = -1;
91  new int[huge];
92  #endif
93 }
94 
95 /*****************************************************************************
96 *** Implementation of handmade aligned functions ***
97 *****************************************************************************/
98 
99 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
100 
104 inline void* handmade_aligned_malloc(std::size_t size)
105 {
106  void *original = std::malloc(size+16);
107  if (original == 0) return 0;
108  void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
109  *(reinterpret_cast<void**>(aligned) - 1) = original;
110  return aligned;
111 }
112 
114 inline void handmade_aligned_free(void *ptr)
115 {
116  if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
117 }
118 
124 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
125 {
126  if (ptr == 0) return handmade_aligned_malloc(size);
127  void *original = *(reinterpret_cast<void**>(ptr) - 1);
128  std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
129  original = std::realloc(original,size+16);
130  if (original == 0) return 0;
131  void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
132  void *previous_aligned = static_cast<char *>(original)+previous_offset;
133  if(aligned!=previous_aligned)
134  std::memmove(aligned, previous_aligned, size);
135 
136  *(reinterpret_cast<void**>(aligned) - 1) = original;
137  return aligned;
138 }
139 
140 /*****************************************************************************
141 *** Implementation of generic aligned realloc (when no realloc can be used)***
142 *****************************************************************************/
143 
144 void* aligned_malloc(std::size_t size);
145 void aligned_free(void *ptr);
146 
152 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
153 {
154  if (ptr==0)
155  return aligned_malloc(size);
156 
157  if (size==0)
158  {
159  aligned_free(ptr);
160  return 0;
161  }
162 
163  void* newptr = aligned_malloc(size);
164  if (newptr == 0)
165  {
166  #ifdef EIGEN_HAS_ERRNO
167  errno = ENOMEM; // according to the standard
168  #endif
169  return 0;
170  }
171 
172  if (ptr != 0)
173  {
174  std::memcpy(newptr, ptr, (std::min)(size,old_size));
175  aligned_free(ptr);
176  }
177 
178  return newptr;
179 }
180 
181 /*****************************************************************************
182 *** Implementation of portable aligned versions of malloc/free/realloc ***
183 *****************************************************************************/
184 
185 #ifdef EIGEN_NO_MALLOC
186 inline void check_that_malloc_is_allowed()
187 {
188  eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
189 }
190 #elif defined EIGEN_RUNTIME_NO_MALLOC
191 inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
192 {
193  static bool value = true;
194  if (update == 1)
195  value = new_value;
196  return value;
197 }
198 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
199 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
200 inline void check_that_malloc_is_allowed()
201 {
202  eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
203 }
204 #else
205 inline void check_that_malloc_is_allowed()
206 {}
207 #endif
208 
212 inline void* aligned_malloc(size_t size)
213 {
214  check_that_malloc_is_allowed();
215 
216  void *result;
217  #if !EIGEN_ALIGN
218  result = std::malloc(size);
219  #elif EIGEN_MALLOC_ALREADY_ALIGNED
220  result = std::malloc(size);
221  #elif EIGEN_HAS_POSIX_MEMALIGN
222  if(posix_memalign(&result, 16, size)) result = 0;
223  #elif EIGEN_HAS_MM_MALLOC
224  result = _mm_malloc(size, 16);
225  #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
226  result = _aligned_malloc(size, 16);
227  #else
228  result = handmade_aligned_malloc(size);
229  #endif
230 
231  if(!result && size)
232  throw_std_bad_alloc();
233 
234  return result;
235 }
236 
238 inline void aligned_free(void *ptr)
239 {
240  #if !EIGEN_ALIGN
241  std::free(ptr);
242  #elif EIGEN_MALLOC_ALREADY_ALIGNED
243  std::free(ptr);
244  #elif EIGEN_HAS_POSIX_MEMALIGN
245  std::free(ptr);
246  #elif EIGEN_HAS_MM_MALLOC
247  _mm_free(ptr);
248  #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
249  _aligned_free(ptr);
250  #else
251  handmade_aligned_free(ptr);
252  #endif
253 }
254 
260 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
261 {
262  EIGEN_UNUSED_VARIABLE(old_size);
263 
264  void *result;
265 #if !EIGEN_ALIGN
266  result = std::realloc(ptr,new_size);
267 #elif EIGEN_MALLOC_ALREADY_ALIGNED
268  result = std::realloc(ptr,new_size);
269 #elif EIGEN_HAS_POSIX_MEMALIGN
270  result = generic_aligned_realloc(ptr,new_size,old_size);
271 #elif EIGEN_HAS_MM_MALLOC
272  // The defined(_mm_free) is just here to verify that this MSVC version
273  // implements _mm_malloc/_mm_free based on the corresponding _aligned_
274  // functions. This may not always be the case and we just try to be safe.
275  #if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
276  result = _aligned_realloc(ptr,new_size,16);
277  #else
278  result = generic_aligned_realloc(ptr,new_size,old_size);
279  #endif
280 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
281  result = _aligned_realloc(ptr,new_size,16);
282 #else
283  result = handmade_aligned_realloc(ptr,new_size,old_size);
284 #endif
285 
286  if (!result && new_size)
287  throw_std_bad_alloc();
288 
289  return result;
290 }
291 
292 /*****************************************************************************
293 *** Implementation of conditionally aligned functions ***
294 *****************************************************************************/
295 
299 template<bool Align> inline void* conditional_aligned_malloc(size_t size)
300 {
301  return aligned_malloc(size);
302 }
303 
304 template<> inline void* conditional_aligned_malloc<false>(size_t size)
305 {
306  check_that_malloc_is_allowed();
307 
308  void *result = std::malloc(size);
309  if(!result && size)
310  throw_std_bad_alloc();
311  return result;
312 }
313 
315 template<bool Align> inline void conditional_aligned_free(void *ptr)
316 {
317  aligned_free(ptr);
318 }
319 
320 template<> inline void conditional_aligned_free<false>(void *ptr)
321 {
322  std::free(ptr);
323 }
324 
325 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
326 {
327  return aligned_realloc(ptr, new_size, old_size);
328 }
329 
330 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
331 {
332  return std::realloc(ptr, new_size);
333 }
334 
335 /*****************************************************************************
336 *** Construction/destruction of array elements ***
337 *****************************************************************************/
338 
342 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
343 {
344  for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
345  return ptr;
346 }
347 
351 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
352 {
353  // always destruct an array starting from the end.
354  if(ptr)
355  while(size) ptr[--size].~T();
356 }
357 
358 /*****************************************************************************
359 *** Implementation of aligned new/delete-like functions ***
360 *****************************************************************************/
361 
362 template<typename T>
363 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
364 {
365  if(size > size_t(-1) / sizeof(T))
366  throw_std_bad_alloc();
367 }
368 
373 template<typename T> inline T* aligned_new(size_t size)
374 {
375  check_size_for_overflow<T>(size);
376  T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
377  return construct_elements_of_array(result, size);
378 }
379 
380 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
381 {
382  check_size_for_overflow<T>(size);
383  T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
384  return construct_elements_of_array(result, size);
385 }
386 
390 template<typename T> inline void aligned_delete(T *ptr, size_t size)
391 {
392  destruct_elements_of_array<T>(ptr, size);
393  aligned_free(ptr);
394 }
395 
399 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
400 {
401  destruct_elements_of_array<T>(ptr, size);
402  conditional_aligned_free<Align>(ptr);
403 }
404 
405 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
406 {
407  check_size_for_overflow<T>(new_size);
408  check_size_for_overflow<T>(old_size);
409  if(new_size < old_size)
410  destruct_elements_of_array(pts+new_size, old_size-new_size);
411  T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
412  if(new_size > old_size)
413  construct_elements_of_array(result+old_size, new_size-old_size);
414  return result;
415 }
416 
417 
418 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
419 {
420  check_size_for_overflow<T>(size);
421  T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
422  if(NumTraits<T>::RequireInitialization)
423  construct_elements_of_array(result, size);
424  return result;
425 }
426 
427 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
428 {
429  check_size_for_overflow<T>(new_size);
430  check_size_for_overflow<T>(old_size);
431  if(NumTraits<T>::RequireInitialization && (new_size < old_size))
432  destruct_elements_of_array(pts+new_size, old_size-new_size);
433  T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
434  if(NumTraits<T>::RequireInitialization && (new_size > old_size))
435  construct_elements_of_array(result+old_size, new_size-old_size);
436  return result;
437 }
438 
439 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
440 {
441  if(NumTraits<T>::RequireInitialization)
442  destruct_elements_of_array<T>(ptr, size);
443  conditional_aligned_free<Align>(ptr);
444 }
445 
446 /****************************************************************************/
447 
464 template<typename Scalar, typename Index>
465 static inline Index first_aligned(const Scalar* array, Index size)
466 {
467  enum { PacketSize = packet_traits<Scalar>::size,
468  PacketAlignedMask = PacketSize-1
469  };
470 
471  if(PacketSize==1)
472  {
473  // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
474  // of the array have the same alignment.
475  return 0;
476  }
477  else if(size_t(array) & (sizeof(Scalar)-1))
478  {
479  // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
480  // Consequently, no element of the array is well aligned.
481  return size;
482  }
483  else
484  {
485  return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
486  & PacketAlignedMask, size);
487  }
488 }
489 
492 template<typename Index>
493 inline static Index first_multiple(Index size, Index base)
494 {
495  return ((size+base-1)/base)*base;
496 }
497 
498 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
499 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
500 template<typename T, bool UseMemcpy> struct smart_copy_helper;
501 
502 template<typename T> void smart_copy(const T* start, const T* end, T* target)
503 {
504  smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
505 }
506 
507 template<typename T> struct smart_copy_helper<T,true> {
508  static inline void run(const T* start, const T* end, T* target)
509  { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
510 };
511 
512 template<typename T> struct smart_copy_helper<T,false> {
513  static inline void run(const T* start, const T* end, T* target)
514  { std::copy(start, end, target); }
515 };
516 
517 
518 /*****************************************************************************
519 *** Implementation of runtime stack allocation (falling back to malloc) ***
520 *****************************************************************************/
521 
522 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
523 // to the appropriate stack allocation function
524 #ifndef EIGEN_ALLOCA
525  #if (defined __linux__)
526  #define EIGEN_ALLOCA alloca
527  #elif defined(_MSC_VER)
528  #define EIGEN_ALLOCA _alloca
529  #endif
530 #endif
531 
532 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
533 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
534 template<typename T> class aligned_stack_memory_handler
535 {
536  public:
537  /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
538  * Note that \a ptr can be 0 regardless of the other parameters.
539  * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
540  * In this case, the buffer elements will also be destructed when this handler will be destructed.
541  * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
542  **/
543  aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
544  : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
545  {
546  if(NumTraits<T>::RequireInitialization && m_ptr)
547  Eigen::internal::construct_elements_of_array(m_ptr, size);
548  }
549  ~aligned_stack_memory_handler()
550  {
551  if(NumTraits<T>::RequireInitialization && m_ptr)
552  Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
553  if(m_deallocate)
554  Eigen::internal::aligned_free(m_ptr);
555  }
556  protected:
557  T* m_ptr;
558  size_t m_size;
559  bool m_deallocate;
560 };
561 
562 } // end namespace internal
563 
579 #ifdef EIGEN_ALLOCA
580 
581  #if defined(__arm__) || defined(_WIN32)
582  #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
583  #else
584  #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
585  #endif
586 
587  #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
588  Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
589  TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
590  : reinterpret_cast<TYPE*>( \
591  (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
592  : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
593  Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
594 
595 #else
596 
597  #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
598  Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
599  TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
600  Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
601 
602 #endif
603 
604 
605 /*****************************************************************************
606 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
607 *****************************************************************************/
608 
609 #if EIGEN_ALIGN
610  #ifdef EIGEN_EXCEPTIONS
611  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
612  void* operator new(size_t size, const std::nothrow_t&) throw() { \
613  try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
614  catch (...) { return 0; } \
615  return 0; \
616  }
617  #else
618  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
619  void* operator new(size_t size, const std::nothrow_t&) throw() { \
620  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
621  }
622  #endif
623 
624  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
625  void *operator new(size_t size) { \
626  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
627  } \
628  void *operator new[](size_t size) { \
629  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
630  } \
631  void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
632  void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
633  /* in-place new and delete. since (at least afaik) there is no actual */ \
634  /* memory allocated we can safely let the default implementation handle */ \
635  /* this particular case. */ \
636  static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
637  static void *operator new[](size_t size, void* ptr) { return ::operator new[](size,ptr); } \
638  void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
639  void operator delete[](void * memory, void *ptr) throw() { return ::operator delete[](memory,ptr); } \
640  /* nothrow-new (returns zero instead of std::bad_alloc) */ \
641  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
642  void operator delete(void *ptr, const std::nothrow_t&) throw() { \
643  Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
644  } \
645  typedef void eigen_aligned_operator_new_marker_type;
646 #else
647  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
648 #endif
649 
650 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
651 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
652  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
653 
654 /****************************************************************************/
655 
672 template<class T>
674 {
675 public:
676  typedef size_t size_type;
677  typedef std::ptrdiff_t difference_type;
678  typedef T* pointer;
679  typedef const T* const_pointer;
680  typedef T& reference;
681  typedef const T& const_reference;
682  typedef T value_type;
683 
684  template<class U>
685  struct rebind
686  {
687  typedef aligned_allocator<U> other;
688  };
689 
690  pointer address( reference value ) const
691  {
692  return &value;
693  }
694 
695  const_pointer address( const_reference value ) const
696  {
697  return &value;
698  }
699 
701  {
702  }
703 
705  {
706  }
707 
708  template<class U>
710  {
711  }
712 
714  {
715  }
716 
717  size_type max_size() const
718  {
719  return (std::numeric_limits<size_type>::max)();
720  }
721 
722  pointer allocate( size_type num, const void* hint = 0 )
723  {
724  EIGEN_UNUSED_VARIABLE(hint);
725  internal::check_size_for_overflow<T>(num);
726  return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
727  }
728 
729  void construct( pointer p, const T& value )
730  {
731  ::new( p ) T( value );
732  }
733 
734  void destroy( pointer p )
735  {
736  p->~T();
737  }
738 
739  void deallocate( pointer p, size_type /*num*/ )
740  {
741  internal::aligned_free( p );
742  }
743 
744  bool operator!=(const aligned_allocator<T>& ) const
745  { return false; }
746 
747  bool operator==(const aligned_allocator<T>& ) const
748  { return true; }
749 };
750 
751 //---------- Cache sizes ----------
752 
753 #if !defined(EIGEN_NO_CPUID)
754 # if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
755 # if defined(__PIC__) && defined(__i386__)
756  // Case for x86 with PIC
757 # define EIGEN_CPUID(abcd,func,id) \
758  __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
759 # elif defined(__PIC__) && defined(__x86_64__)
760  // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
761  // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
762 # define EIGEN_CPUID(abcd,func,id) \
763  __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
764 # else
765  // Case for x86_64 or x86 w/o PIC
766 # define EIGEN_CPUID(abcd,func,id) \
767  __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
768 # endif
769 # elif defined(_MSC_VER)
770 # if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
771 # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
772 # endif
773 # endif
774 #endif
775 
776 namespace internal {
777 
778 #ifdef EIGEN_CPUID
779 
780 inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
781 {
782  return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
783 }
784 
785 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
786 {
787  int abcd[4];
788  l1 = l2 = l3 = 0;
789  int cache_id = 0;
790  int cache_type = 0;
791  do {
792  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
793  EIGEN_CPUID(abcd,0x4,cache_id);
794  cache_type = (abcd[0] & 0x0F) >> 0;
795  if(cache_type==1||cache_type==3) // data or unified cache
796  {
797  int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
798  int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
799  int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
800  int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
801  int sets = (abcd[2]); // C[31:0]
802 
803  int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
804 
805  switch(cache_level)
806  {
807  case 1: l1 = cache_size; break;
808  case 2: l2 = cache_size; break;
809  case 3: l3 = cache_size; break;
810  default: break;
811  }
812  }
813  cache_id++;
814  } while(cache_type>0 && cache_id<16);
815 }
816 
817 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
818 {
819  int abcd[4];
820  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
821  l1 = l2 = l3 = 0;
822  EIGEN_CPUID(abcd,0x00000002,0);
823  unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
824  bool check_for_p2_core2 = false;
825  for(int i=0; i<14; ++i)
826  {
827  switch(bytes[i])
828  {
829  case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
830  case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
831  case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
832  case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
833  case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
834  case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
835  case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
836  case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
837  case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
838  case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
839  case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
840  case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
841  case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
842  case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
843  case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
844  case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
845  case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
846  case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
847  case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
848  case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
849  case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
850  case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
851  case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
852  case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
853  case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
854  case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
855  case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
856  case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
857  case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
858  case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
859  case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
860  case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
861  case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
862  case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
863  case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
864  case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
865  case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
866  case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
867  case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
868  case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
869  case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
870  case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
871  case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
872  case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
873  case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
874  case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
875  case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
876  case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
877  case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
878  case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
879  case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
880  case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
881  case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
882  case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
883  case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
884  case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
885  case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
886 
887  default: break;
888  }
889  }
890  if(check_for_p2_core2 && l2 == l3)
891  l3 = 0;
892  l1 *= 1024;
893  l2 *= 1024;
894  l3 *= 1024;
895 }
896 
897 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
898 {
899  if(max_std_funcs>=4)
900  queryCacheSizes_intel_direct(l1,l2,l3);
901  else
902  queryCacheSizes_intel_codes(l1,l2,l3);
903 }
904 
905 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
906 {
907  int abcd[4];
908  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
909  EIGEN_CPUID(abcd,0x80000005,0);
910  l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
911  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
912  EIGEN_CPUID(abcd,0x80000006,0);
913  l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
914  l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
915 }
916 #endif
917 
920 inline void queryCacheSizes(int& l1, int& l2, int& l3)
921 {
922  #ifdef EIGEN_CPUID
923  int abcd[4];
924  const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
925  const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
926  const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
927 
928  // identify the CPU vendor
929  EIGEN_CPUID(abcd,0x0,0);
930  int max_std_funcs = abcd[1];
931  if(cpuid_is_vendor(abcd,GenuineIntel))
932  queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
933  else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
934  queryCacheSizes_amd(l1,l2,l3);
935  else
936  // by default let's use Intel's API
937  queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
938 
939  // here is the list of other vendors:
940 // ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
941 // ||cpuid_is_vendor(abcd,"CyrixInstead")
942 // ||cpuid_is_vendor(abcd,"CentaurHauls")
943 // ||cpuid_is_vendor(abcd,"GenuineTMx86")
944 // ||cpuid_is_vendor(abcd,"TransmetaCPU")
945 // ||cpuid_is_vendor(abcd,"RiseRiseRise")
946 // ||cpuid_is_vendor(abcd,"Geode by NSC")
947 // ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
948 // ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
949 // ||cpuid_is_vendor(abcd,"NexGenDriven")
950  #else
951  l1 = l2 = l3 = -1;
952  #endif
953 }
954 
957 inline int queryL1CacheSize()
958 {
959  int l1(-1), l2, l3;
960  queryCacheSizes(l1,l2,l3);
961  return l1;
962 }
963 
966 inline int queryTopLevelCacheSize()
967 {
968  int l1, l2(-1), l3(-1);
969  queryCacheSizes(l1,l2,l3);
970  return (std::max)(l2,l3);
971 }
972 
973 } // end namespace internal
974 
975 } // end namespace Eigen
976 
977 #endif // EIGEN_MEMORY_H
Definition: LDLT.h:16
STL compatible allocator to use with with 16 byte aligned types.
Definition: Memory.h:673
Definition: Eigen_Colamd.h:54