cfengine v2 reference

Edition 2.2.10 for version 2.2.10

Mark Burgess
Faculty of Engineering, Oslo University College, Norway

Copyright (©) 2008 Mark Burgess

This manual corresponds to CFENGINE Edition 2.2.10 for version 2.2.10 as last updated
21 January 2009.

Chapter 1: Introduction to reference manual 1

1 Introduction to reference manual

The purpose of the cfengine reference manual is to collect together and document the raw
facts about the different components of cfengine. Once you have become proficient in the
use of cfengine, you will no longer have need of the tutorial. The reference manual, on the
other hand, changes with each version of cfengine. You will be able to use it online, or in
printed form to find out the details you require to implement configurations in practice.

1.1 Installation

In order to install cfengine, you should first ensure that the following packages are installed.

OpenSSL Open source Secure Sockets Layer for encryption.
URL: http://www.openssl.org

BerkeleyDB (version 3.2 or later)
Light-weight flat-file database system.
URL: http://www.oracle.com/technology/products/berkeley-db/index.html]]

The preferred method of installation is then

tar zxf cfengine-x.x.x.tar.gz

cd cfengine-x.x.x

./configure

make

make install
This results in binaries being installed in ‘/usr/local/sbin’. Since this is not necessarily
a local file system on all hosts, users are encouraged to keep local copies of the binaries on
each host, inside the cfengine trusted work directory.

1.2 Work directory

In order to achieve the desired simplifications, it was decided to reserve a private work area
for the cfengine tool-set. In cfengine 1.x, the administrator could choose the locations of
configuration files, locks, and logging data independently. In cfengine 2.x, this diversity
has been simplified to a single directory which defaults to ‘/var/cfengine’ (similar to
‘/var/cron’):

/var/cfengine
/var/cfengine/bin
/var/cfengine/inputs
/var/cfengine/outputs
The installation location ‘/usr/local/sbin’ is not necessarily a local file system, and
cannot therefore be trusted to a) be present, and b) be authentic on an arbitrary system.

Similarly, a trusted cache of the input files must now be maintained in the ‘inputs’
subdirectory. When cfengine is invoked by the scheduler, it reads only from this directory.
It is up to the user to keep this cache updated, on each host. This simplifies and consolidates
the cfengine resources in a single place. The environment variable CFINPUTS still overrides
this default location, as before, but in its absence or when called from the scheduler, this
becomes the location of trusted files. A special configuration file ‘update.conf’ is parsed and
run before the main configuration is parsed, which is used to ensure that the currently caches

http://www.openssl.org
http://www.oracle.com/technology/products/berkeley-db/index.html

2 Cfengine v2 reference

policy is up-to-date. This has private classes and variables. If no value is set for CFINPUTS,
then the default location is the trusted cfengine directory ‘/var/cfengine/inputs’.

The ‘outputs’ directory is now a record of spooled run-reports. These are mailed to the
administrator, as previously, or can be copied to another central location and viewed in an
alternative browser..

1.3 Cfengine hard classes

A single class can be one of several things:

e The name of an operating system architecture e.g. ultrix, sun4, etc. This is referred
to as a hard class.

e The unqualified name of a particular host. If your system returns a fully qualified
domain name for your host, cfagent truncates it at the first dot.

e The name of a user-defined group of hosts.

e A day of the week (in the form Monday, Tuesday, Wednesday, ..).

e An hour of the day (in the form Hr00, HrO1 ... Hr23).

e Minutes in the hour (in the form Min00, Minl7 ... Min45).

e A five minute interval in the hour (in the form Min00_05, Min05_10 ... Min55_00)
e A day of the month (in the form Day1, Day2, ... Day31).

e A month (in the form January, February, ... December).

e A year (in the form Yr1997, Yr2004).

e An arbitrary user-defined string.

e The IP address octets of any active interface (in the form ipv4_192_0_0_1,
ipv4_192_0_0, ipv4_192_0, ipv4_192).

e The name of all interfaces Cfengine can find, in the form net_iface_ethO.

To see all of the classes define on a particular host, run
host# cfagent -p -v

as a privileged user. Note that some of the classes are set only if a trusted link
can be established with cfenvd, i.e. if both are running with privilege, and the
‘/var/cfengine/state/env_data’ file is secure. More information about classes can be
found in connection with allclasses.

1.4 Filenames and paths

Filenames in Unix-like operating systems use for their directory separator the forward slash
’)7 character. All references to file locations must be absolute pathnames in cfengine, i.e.
they must begin with a complete specification of which directory they are in. For example:
/etc/passwd
/usr/local/masterfiles/distfile
The only place where it makes sense to refer to a file without a complete directory specifi-
cation is when searching through directories for different kinds of file, e.g.
tidy:

/home/user pattern=core age=0 recurse=inf

Chapter 1: Introduction to reference manual 3

Here, one can write ‘core’ without a path, because one is looking for any file of that name
in a number of directories.

The Windows operating systems traditionally use a different filename convention. The
following are all valid absolute file names under Windows:
c:\winnt
c:/winnt
/var/cfengine/inputs
//fileserver/share2/dir
The ‘drive’ name “C:” in Windows refers to a partition or device. Unlike Unix, Windows
does not integrate these seamlessly into a single file-tree. This is not a valid absolute
filename:
\var\cfengine\inputs
Paths beginning with a backslash are assumed to be win32 paths. They must begin with
a drive letter or double-slash server name.

1.5 Debugging with signals

It is possible to turn debugging output on or off on a running cfagent. This is useful
for troubleshooting the cause of hangups, or for getting debugging output from a cfagent
launched from cfexecd.

A running cfagent process that receives a SIGUSR1 will immediately begin to behave as
if it had been invoked with the -d2’ option. A SIGUSR2 will cause a running cfagent to
run as if the -d2’ option had not been invoked.

Note that this output is often quite verbose.

Cfengine v2 reference

Chapter 2: Cfkey reference 5

2 Cfkey reference

The very first thing you should do on every host is to establish a public-private key pair.
To do this, you need to run the program
everyhost# cfkey

on every host. This program needs to produce random numbers, and needs a source of
randomness. A good strategy is to install and run the ‘cfenvd’ program for a week or two
in advance of deploying cfengine 2, since ‘cfenvd’ collects random events, which are an
excellent source of entropy for random number generation.

If you get the error message “PRNG not seeded”, it means that insufficient data were
found in order to make a random key. In that case, run ‘cfenvd’ for a few days more and
try again.

Cfengine v2 reference

Chapter 3: Cfshow reference 7

3 Cfshow reference

The cfshow command was introduced in cfengine 2.1.11 in order to provide a simple way
to show some of the data stored by cfagent for operational purposes.

everyhost# cfshow -a
everyhost# cfshow -1
everyhost# cfshow -c
everyhost# cfshow -s
everyhost# cfshow -p
everyhost# cfshow -f cfagent.conf -r linux.=*

The command line options are

‘-a —-—active’
This prints a list of any currently active locks, i.e. tasks that cfengine believes
it is currently enagaged in.

‘~A -—audit’
This prints a history of cfengine’s behaviour collected if the Auditing variable
is true, See Section 4.10.7 [Auditing], page 40. The audit data are best viewed
in html or parsed with xml, using the —-html and --xml options.

‘—c ——checksum’
This lists all of the files and their current checksum values in the current check-
sum database.

‘-C --classes’
This lists all of the classes that have been used on the system over the past
year, with frequency probabilities to show their relative occurrance rates and
last observed times.

‘-H --html’
Generate output in web browser-friendly html.

‘-1 --locks’
This prints a list of the locks and the last times an active lock was secured for
each cfengine acivity. This list is potentially very long.

‘-s ——-last-seen’

This lists the IP addresses of all known peers and the times they were last en-

gaged in communication with the current host. The expected interval between

communications is also printed. See FriendStatus. The output format is in a

form that can easily be parsed by user scripts. e.g.
IP + 192.168.1.101 192.168.1.101 [Tue Jan 23 16:13] not seen for (6.42) hrs, Av 0.02 +/-i
0.01 hrs
IP - 192.168.1.101 192.168.1.101 [Tue Jan 23 16:13] not seen for (6.42) hrs, Av 0.02 +/-R
0.01 hrs

Lines marked with a + represent successful attempts made by cfagent on the cur-

rent host to connect to another host. Lines with a - are connections attempted

(but not necessarily succeeded) into cfservd from another host’s cfagent or cfrun.

‘-r --regex regex’
Search the cfengine policy file (e.g. ‘cfagent.conf’) for rules that belong to
classes matching the named regular expression. Note that the class "any" is

Cfengine v2 reference

not automatically matched and the search is based on the class text from the
file. The output is not related to which classes are currently defined.

‘-s —-performance’

Shows the time in seconds required to complete copies and shell executions.

(0.00 mins
(0.00 mins
(0.02 mins
(0.00 mins
(6.41 mins

Tue Feb
Tue Feb
Tue Feb
Tue Feb
Tue Feb

-prunepaths=/media)

(0.00 mins

Tue Feb

13
13
13
13
13

13

19:
19:
19:
19:
18:

19

05)
05)
05)
05)
50)

:05)

Av 0.

Av
Av

Av

Av 0O

00 +/-

0.00 +/-

0.02 +/-
Av 0.

0.00 +/-

00 +/-

.00 +/-

O O O oo

0.

.00
.00
.00
.00
.00

00

‘-X --xml’ Generate output in xml for parsing by scripts etc.

for
for
for
for
for

for

Copy(localhost:/usr/local/sbin/cfagent >
Copy (localhost:/usr/local/sbin/cfenvd > /x
Copy(localhost:/usr/local/sbin/cfexecd >
Copy(localhost:/usr/local/sbin/cfservd > ,
Exec(/usr/bin/updatedb -

Exec(/usr/sbin/ntpdate 128.39.74.16 > /dex

Chapter 4: Cfagent reference 9

4 Cfagent reference

4.1 Cfagent intro

Cfagent is the workhorse of cfengine. It interprets and computes the necessary strategies
for implementing convergent maintenance. In order to carry out work efficiently, the agent
groups similar actions together. The order of these actions is goverened by a list called the
actionsequence.

In many cases, cfagent will be able to complete all its work in a single pass of the
actionsequence. However, in complex configurations, it is hard to resolve all of the ordering
dependencies automatically in a single pass. Cfagent keeps track both of all actions that
have been performed and of those that might still need to be performed (given that some
actions depend on the later outcomes of others). If there is a possibility that an action
ordering dilemma might occur, it runs a second pass of the actionsequence to more quickly
resolve the dependency (avoiding the wait for next scheduled run). No actions are performed
twice however, since the agent checks off actions that have already been performed to avoid
unnecessary duplication.

4.2 The file cfagent.conf

-

control:
classes::
domain = (DNS-domain-name)
classes:
Class/Group definitions
import:
Files to import

other items

N

4.3 Cfagent runtime options

Note that GNU long options are available with the syntax —-longoption. The long names
are given in brackets.

-a (--sysadm) Print only the name of the system administrator then quit.

—A’ (-—auto) Can be used to signify an automatic run of cfengine, as opposed to a
manual run. The distinction is not predetermined. Use of this option currently
causes cfengine to ignore locks. This option is reserved for future development.

‘~b’ (--force-net-copy) Normally cfengine detects attempts to copy from a server
via the network that will loop back to the localhost. It then avoids using

10

Cfengine v2 reference

the network to make the copy. This option forces cfengine to copy using the
network. Yes, someone thinks this is useful!

(--no-check-files) Do not check file systems for ownership / permissions etc.

(--no-check-mounts) Check mount points for consistency. If this option is
specified then directories which lie in the “mount point” area are checked to
see whether there is anything mounted on them. Normally this is off since not
all machines use mounted file systems in the same way. e.g. HPUX does not
generally operate with partitions, but nevertheless one might wish to mimick a
partition-like environment there, but it would be irritating to be informed that
nothing was mounted on the mount point.

(--debug) Enable debugging output. Normally you will want to send this to a
file using the shell script command or a pipe. -d1 shows only parsing output.
-d2 shows only runtime action output. -d0 shows both levels. Debugging ouput
is intended mainly for the author’s convenience and is not a supported feature.
The details of this output may change at any time.

(--define) Define a compound class symbol of the form alpha.beta.gamma.
(--no-edits) Suppress file editing.

(-—enforce-links) Globally force links to be created where plain files or links
already exist. Since this option is a big hammer, you have to use it in interactive
mode and answer a yes/no query before cfengine will run like this.

(--file) Parse filename after this switch. By default cfengine looks for a file
called cfengine.conf in the current directory.

(--help) Help information. Display version banner and options summary.

(--no-hard-classes). Prevents cfengine from generating any built-in class
name information. Can be used for emulation purposes.

(--no-ifconfig) Do not attempt to configure the local area network interface.

(--inform) Switches on the inform output level, whereby cfengine reports ev-
erything it changes..

(--no-copy) Do not copy/image any files.
(--no-lock) Ignore locks when running.

(--traverse-links) Normally cfengine does not follow symbolic links when
recursively parsing directories. This option will force it to do so.

(--delete-stale-links) Delete links which do not point to existing files (ex-
cept in user home directories, which are not touched).

(--no-mount) Do not attempt to mount file systems or edit the filesystem table.
(--no-modules) Ignore modules in actionsequence.

(--recon,~-dry-run,--just-print) No action. Only print what has to be
done without actually doing it.

Chapter 4:

Cfagent reference 11

(--negate,~-undefine) Cancel a set of classes, or undefine (set value to false)
a compound class of the form alpha.beta.gammea.

(--parse-only) Parse file and then stop. Used for checking the syntax of a
program. You do not have to be superuser to use this option.

--no-processes) Do not execute the processes action.
--no-splay) Switch off host splaying (sleeping).

-—-quert) Query the values of the comma separated list of variable names.

--silent) Silence run time warnings.

(
(
(
(--no-commands) Do not execute scripts or shell commands.
(
(--no-tidy) Do not tidy file systems.

(

--use-env) Causes cfengine to generate an environment variable
‘CFALLCLASSES’ which can be read by child processes (scripts). This variable
contains a summary of all the currently defined classes at any given time. This
option causes some System V systems to generate a Bus Error or segmentation
fault. The same information is available from the cfengine built-in variable
$(allclasses) and can be passed as a parameter to scripts. When this
variable grows too large for embedding one can also access a complete list of
current classes in ‘/var/cfengine/state/allclasses’.

(--underscore-classes). When this option is set, cfengine adds an underscore
to the beginning of the hard system classes (like _sun4, _linux etc. The longer
compound classes are not underscored, since these are already complex and
would unlikely result in collisions.) This can be used to avoid naming conflicts
if you are so unjudicious as to name a host by the name of a hard class. Other
classes are not affected.

(--verbose) Verbose mode. Prints detailed information about actions and
state.

--version) Print only the version string and then quit.

—--no-preconf) Do not execute the ‘cf.preconf’ net configuration file.

(
(
(--no-links) Do not execute the links section of a program.
(--no-warn,--quiet) Do not print warning messages.

(

--schedule) Print the exec schedule for the LAN (used by cfexecd).

In version 2.0.4, an abbreviation for actionsequence exclusions was added:

$ cfagent --avoid resolve,copy
$ cfagent --just tidy --just shellcommands

12 Cfengine v2 reference

4.4 Variable expansion and contexts

Variables in cfengine 2 are defined in contexts. Variables in a given context refer to the
different phases of execution of cfengine: global, update and main. In the "current" context,
variables have the form

$(variable) ${variable}

and are expanded either on parsing or at execution. Variables that cannot be expanded
remain as dollar strings. Variables belonging to a context that is not the current one may
be referred to as

$(context.variable) or ${context.variable}

Note carefully that cfengine requires parentheses or braces around variable names. Unlike
in the shell, they cannot be omitted. There is no difference between these forms as far as
cfengine is concerned. Some authors like to use the () form for cfengine variables, to
distinguish them with shell variables in command strings. The () form does not work in
function arguments, except inside quoted strings.

Consider the example:
$(global.env_time)

Some variables in cfengine are associative arrays (as made famous by Perl). Such arrays
are referred to by square brackets:

$(arraylkeyl) $(arrayl[$(key)])

4.4.1 Setting variables with functions

A number of special functions can be used to set variables in cfengine. You can import
values from the execution of a shell command by prefixing a command with the word exec.
This method is deprecated as of cfengine version 2; use the ExecResult function instead.

control:

old method

listing = ("exec /bin/ls -1")

new method

listing = (ExecResult(/bin/ls -1))

This sets the variable ‘listing’ to the output of the command in the quotes.

Some other built-in functions are

AX,Y) Makes an associative array entry, associating X and Y. For instance:

control:

assoc_array = (A(B,"is for bird") A(C,"is for cat"))

results in:

OBJECT: main

Chapter 4: Cfagent reference 13

4569 : assoc_array[Bl=is for bird
4630 : assoc_array[C]l=is for cat

Another example:

control:

binhost = (A(linux,machinel) A(solaris,machine2))

copy:

Contact machine 1 for linux
Contact machine 2 for solaris

/etc/source dest=/etc/receve server=$(binhost[$(class)])

ExecResult (command)
Executes the named command without a shell-wrapper and inserts the output
into the variable. Note that, when this is used in cfengine built-in list variables,
any spaces are interpreted as list separators. In other lists, normal rules for
iteration apply.

ExecShellResult (command)
Executes the named command with a shell-wrapper and inserts the output into
the variable. Note that, when this is used in cfengine built-in list variables,
any spaces are interpreted as list separators. In other lists, normal rules for
iteration apply.

RandomInt(a,b)
Generate a random integer between a and b.

ReadArray(filename,fileformat, separator, comment ,Max number of bytes)
Reads up to a maximum number of bytes from a properly formatted file into a
one-dimensional associated array. File formats are:

autokey If this format is specified, ReadArray tries to interpret the file as
a table of items separated with the separator character. Blank
lines and comments (to end of line) are ignored. Items are keyed
numerically starting from 1 to the maximum number in the file.
The newline $(n) is always considered to be a separator, no matter
what the current separator is.

textkey If this format is specified, ReadArray tries to interpret the file as a
list of lines of the form:

key,value

ReadFile(filename,Max number of bytes)
Read a maximum number of bytes from a file.

ReadTable(filename,fileformat, separator, comment,Max number of bytes)
Reads up to a maximum number of bytes from a properly formatted file into a
two-dimensional associated array.

autokey If this format is specified, ReadArray tries to interpret the file as
a table of items separated with the separator character. Blank

14 Cfengine v2 reference

lines and comments (to end of line) are ignored. Items are keyed
numerically starting from 1 to the maximum number in the file.
Any lines that do not contain the correct number of separators
cause the function to fail without making any assignment.

textkey If this format is specified, ReadArray tries to interpret the file as a
list of lines of the form:
keyl,key2,valuel
key3,key4,value2

This variable would then be references as $(table[keyl][key2]).

ReadList(filename,fileformat,comment,Max number of bytes)
Reads up to a maximum number of bytes from a properly formatted file into a
listvariable. File formats are:

lines If this format is specified, ReadList tries to interpret the file as a
list of items on separate lines. The value returned is a list formatted
by the Split character.

hosts = (ReadList(/var/cfengine/inputs/datafile,lines,#,1000))

ReadTCP (host/IP, portnumber, send string,Max number of bytes)
Reads up to a maximum number of bytes from a TCP service. Can be used to
test whether certain services are responding to queries. It is recommended that
this be used primarily to check services running on localhost. Bear in mind that
this clause, executed on 100 hosts will produce the effect of a distributed denial
of service attack, so the probe should be restricted to a single representative
tester-host. For example:

one_host_only::
USE WITH CAUTION !

probewww = (ReadTCP(localhost,80,’GET index.html’,1000))

Or testing a network service:

control:

checkhost::

probesmtp = (ReadTCP(localhost,25,"",1024))

probewww = (ReadTCP(project.iu.hio.no,80,"GET /viewcvs HTTP/1.0 ${n}${n}",1024) DN}
classes:

viewcvs_error = (RegCmp(".*Python Traceback.x","${probewww}"))
alerts:
viewcvs_error::

"Received viewcvs error from web server"

Chapter 4: Cfagent reference 15

SelectPartitionNeighbours(filename, comment,Policy,group size)
This function is for use in peer to peer monitoring applications. It allows
individual hosts to identify themselves as part of a group and find their peers.
The function returns a list variable, delimited by the list separation character,
for use with Split.

control:
allpeers = (SelectPartitionNeighbours(/var/cfengine/inputs/cfrun.hosts,#,random,4))}
copy:

/data/file dest=/p2prepository/file server=$(allpeers)

SelectPartitionLeader (filename, comment,Policy,group size)
This function is for use in peer to peer monitoring applications. It allows
individual hosts to identify themselves as part of a group and select a leader.
This function reads a text file of hostnames or IP addresses, one host per line,
with blank lines and comments and partitions it into groups of a fixed size. It
then returns picks a leader for the the group and returns its name as the value
of the function.

control:

leader = (SelectPartitionLeader(/var/cfengine/inputs/cfrun.hosts,#,random,4))i
copy:

/data/file dest=/p2prepository/file server=$(leader)

Note that functions should have no spaces between the function name and the leading
parenthesis, but should themselves be surrounded by white space. For example:

control:

variable2 = (RandomInt(0,23))

variable3 = (ExecResult(/bin/ls -a /opt))

myexcerpt = (ReadFile("/etc/services",220))

listvar = (ReadArray(/tmp/array,textkey,",","#",100))

In the latter case, the file could look like this:

host$ more /tmp/array
one,String to tbe read
two,Nothing string
three,Everything comes in threes

and results in the definition of (verify with cfagent -p -d3):

16 Cfengine v2 reference

OBJECT: main
960 : listvar[one]=String to tbe read
259 : listvar[two]=Nothing string
224 : listvar[threel=Everything comes in threes

4.4.2 Special variables

Variables are referred to in either of two different ways, depending on your taste. You can
use the forms $(variable) or ${variable}. The variable in braces or parentheses can be
the name of any user defined macro, environment variable or one of the following special
built-in variables.

AllClasses
A long string in the form ‘CFALLCLASSES=classl:class2...’. This variable is
a summary of all the defined classes at any given time. It is always kept up to
date so that scripts can make use of cfengine’s class data.

arch The current detailed architecture string—an amalgamation of the information
from uname. A constant.

binserver
The default server for binary data. A constant.

cfinputs_version
The version string of the current configuration, used for version control and
auditing.

ChecksumDatabase
If set to the name of a file, cfagent will use this to store checksums of important
files, and give ‘tripwire functionality’, See Section 4.10.11 [ChecksumDatabase
in cfagent], page 40. This option was deprecated in 2.1.22.

ChecksumUpdates
If set to ‘on’, security information is automatically updated.
class The currently defined system hard-class (e.g. sun4, hpux). A constant.
date The current date string. Note that if you use this in a shell command it might

be interpreted as a list variable, since it contains the default separator ‘:’.
domain The currently defined domain.

EmailFrom
The email address from whom email from cfexecd should appear to originate.

EmailMaxLines
Most lines of output to email from a single cfexecd-induced run of cfagent. If
undefined, defaults to 100. If set to 0, no email is sent by cfexecd. If set to inf,
no maximum is enforced.

EmailTo The E-mail address to whom mail should be sent (overrides sysadm variable).
faculty The faculty or site as defined in control (see site).
fghost The fully qualified hostname of the system.

host The hostname of the machine running the program.

Chapter 4: Cfagent reference 17

ipaddress
The numerical form of the Internet address of the host currently running
cfengine found by a reverse lookup in DNS.

ipv4[interface]
The IPv4 address of the named interface as determined from a probe of the
interfaces. This variable belongs in the global context and refers to as in the
following examples:

${global.ipv4 [hme0]}
${global.ipv4[ethO0]}

MaxCfengines
The maximum number of cfengines which should be allowed to run concurrently
on the system. This can prevent excessive load due to unintentional spamming
in situations where several cfengines are started independently. The default
value is unlimited.

ostype A short for of $(arch).

OutputPrefix
This quoted string can be used to change the default ‘cfengine:${hostname}’
prefix on output lines to something else. You might wish to shorten the string,
or have a different prefix for different hosts. The default is equivalent to,
OutputPrefix = ("cfengine:$(host):")

RepChar The character value of the string used by the file repository in constructing
unique filenames from path names. This is the character which replaces ‘/’.

site This variable is identical to $(faculty) and may be used interchangeably.

smtpserver
The name of the host to which mail output should be sent.

split The character on which list variables are split.
sysadm The name or mail address of the system administrator.
timezone The current timezone as defined in control.

UnderscoreClasses
If this is set to ‘on’ cfengine uses hard classes which begin with an underscore
to avoid name collisions, See Section 4.3 [Cfagent Runtime Options|, page 9.

version The current cfengine version string as defined in the code.
year The current year.

These variables are kept special because they play a special role in setting up a system
configuration. You are encouraged to use them to define fully generalized rules in your
programs. Variables can be used to advantage in defining filenames, directory names and
in passing arguments to shell commands. The judicious use of variables can reduce many
definitions to a single one if you plan carefully.

18 Cfengine v2 reference

NOTE: the above control variables are not case sensitive, unlike user macros, so you
should not define your own macros with these names.

The following variables are also reserved and may be used to produce troublesome special
characters in strings.

cr Expands to the carriage return character.
colon Expands to the colon ‘:’ character.
dblquote Expands to a double quote "

dollar Expands to ‘$’.

1f Expands to a line-feed character (Unix end of line).

n Expands to a newline character.

quote Expands to a single quote .

spc Expands simply to a single space. This can be used to place spaces in filenames
etc.

tab Expands to a single tab character.

4.4.3 Iteration over lists

Variables can be used as iterators in some situations. Iteration over lists is currently rather
limited in cfengine and is something to be improved on in a future version. When a variable
is used as an iterator, a character is chosen to represent a list separator, as in the shell ‘IFS’
variable. The default separator is the colon ‘:’ character:

control:

listvar = (one:two:three:four)

The action that contains a variable to be interpreted as a list appears as separate actions,
one for each case:

shellcommand:

"/bin/echo $(listvar)"

is equivalent to

shellcommand:

"/bin/echo one"
"/bin/echo two"
"/bin/echo three"
"/bin/echo four"

If multiple iterators are used, these are handled as nested loops:

cfengine::/bin/echo one 1: one 1
cfengine::/bin/echo one 2: one 2
cfengine::/bin/echo one 3: one 3
cfengine::/bin/echo one 4: one 4
cfengine::/bin/echo two 1: two 1
cfengine::/bin/echo two 2: two 2
cfengine::/bin/echo two 3: two 3
cfengine::/bin/echo two 4: two 4

Chapter 4: Cfagent reference 19

cfengine::/bin/echo three: three 1
cfengine: :/bin/echo three: three 2
cfengine::/bin/echo three: three 3
cfengine::/bin/echo three: three 4
cfengine::/bin/echo four : four 1
cfengine::/bin/echo four : four 2
cfengine: :/bin/echo four : four 3
cfengine::/bin/echo four : four 4

Where iterators are not allowed, the implied lists are treated as scalars:

alerts:
amnexus: :

"do $(listl) $(1list2)"

e.g.

cfengine:: do one:two:three:four 1:2:3:4
Iterative expansion is currently restricted to:
e In the directory field of the admit/deny server access rules,
e In the ‘from’ field of a copy action,
e In the server field of the copy action,
e In the directory field of the disable action,
e In the directory field of the files action,
e In the ‘to’ field of a multiple link action,
e In the directory field of the required/disk action,
e In a resolve item.
e In the directory field of a tidy action,
e In the arguments, replyto and server attributes of methods.
e Names in the ignore action.
e A shellcommands body.
e In admit/deny path and attributes of cfserver.

4.5 Cfengine classes

A cfengine action looks like this:

action-type:
compound-class::

declaration

A single class is an identifier that may consist of any alphanumeric character or the un-
derscore, just like identifiers in ordinary programming languages. Classes that are derived
from data like TP addresses or host names convert any other characters (like .’ or ‘=’) into
underscores. A single class can be one of several things:

20 Cfengine v2 reference

e The name of an operating system architecture e.g. ultrix, sun4, etc. This is referred
to as a hard class.

e The unqualified name of a particular host. If your system returns a fully qualified
domain name for your host, cfagent truncates it at the first dot.

e The name of a user-defined group of hosts.

e A day of the week (in the form Monday, Tuesday, Wednesday, ..).

e An hour of the day (in the form Hr00, HrO1 ... Hr23).

e Minutes in the hour (in the form Min00, Min17 ... Min45).

e A five minute interval in the hour (in the form Min00_05, Min05_10 ... Min55_00)

e A quart hour (in the form Q1, Q2, Q3, Q4)

e An abbreviated time with quarter hour specified (in the form Hr00_Q1, Hr23_Q4 etc.)

e A day of the month (in the form Day1 ... Day31).

e A month (in the form January, February, ... December).

e A year (in the form Yr1997, Yr2004).

e An arbitrary user-defined string.

e The IP address octets of any active interface (in the form ipv4_192_0_0_1,
ipv4_192_0_0, ipv4_192_0, ipv4_192).

A compound class is a sequence of simple classes connected by dots or ‘pipe’ symbols
(vertical bars). For example:

myclass.sun4.Monday: :

sund|ultrix|osf::

A compound class evaluates to ‘true’ if all of the individual classes are separately true,
thus in the above example the actions which follow compound_class:: are only carried
out if the host concerned is in myclass, is of type sun4 and the day is Monday! In the
second example, the host parsing the file must be either of type sun4 or ultrix or osf.
In other words, compound classes support two operators: AND and OR, written ‘.’ and
‘|’ respectively. From cfengine version 2.1.1, I bit the bullet and added ‘&’ as a synonym
for the AND operator. Cfengine doesn’t care how many of these operators you use (since
it skips over blank class names), so you could write either

solaris|irix::
or

solaris| |irix::

depending on your taste. On the other hand, the order in which cfengine evaluates AND
and OR operations does matter, and the rule is that AND takes priority over OR, so that
.7 binds classes together tightly and all AND operations are evaluated before ORing the
final results together. This is the usual behaviour in programming languages. You can use
round parentheses in cfengine classes to override these preferences.

Chapter 4: Cfagent reference 21

Cfengine allows you to define switch on and off dummy classes so that you can use them
to select certain subsets of action. In particular, note that by defining your own classes,
using them to make compound rules of this type, and then switching them on and off, you
can also switch on and off the corresponding actions in a controlled way. The command
line options -D and -N can be used for this purpose. See also addclasses in the Reference
manual.

A logical NOT operator has been added to allow you to exclude certain specific hosts in
a more flexible way. The logical NOT operator is (as in C and C++) ‘!’. For instance, the
following example would allow all hosts except for myhost:

action:
'myhost: :

command

and similarly, so allow all hosts in a user-defined group mygroup, except for myhost, you
would write

action:
mygroup. !myhost::

command

which reads ‘mygroup AND NOT myhost’. The NOT operator can also be combined with
OR. For instance

classl|!class2
would select hosts which were either in class 1, or those which were not in class 2.

Finally, there is a number of reserved classes. The following are hard classes for various
operating system architectures. They do not need to be defined because each host knows
what operating system it is running. Thus the appropriate one of these will always be
defined on each host. Similarly the day of the week is clearly not open to definition, unless
you are running cfengine from outer space. The reserved classes are:

ultrix, sun4, sun3, hpux, hpux10, aix, solaris, osf, irix4, irix, irix64
sco, freebsd, netbsd, openbsd, bsd4_3, newsos, solarisx86, aos,
nextstep, bsdos, linux, debian, cray, unix_sv, GnU, NT
If these classes are not sufficient to distinguish the hosts on your network, cfengine provides
more specific classes which contain the name and release of the operating system. To find
out what these look like for your systems you can run cfengine in ‘parse-only-verbose’ mode:

cfagent -p -v

and these will be displayed. For example, Solaris 2.4 systems generate the additional classes
sunos_5_4 and sunos_sun4m, sunos_sun4m_5_4.

Cfengine uses both the unqualified and fully host names as classes. Some sites and
operating systems use fully qualified names for their hosts. i.e. uname -n returns to full
domain qualified hostname. This spoils the class matching algorithms for cfengine, so
cfengine automatically truncates names which contain a dot *.” at the first *.” it encounters.
If your hostnames contain dots (which do not refer to a domain name, then cfengine will be

22 Cfengine v2 reference

confused. The moral is: don’t have dots in your host names! NOTE: in order to ensure that
the fully qualified name of the host becomes a class you must define the domain variable.
The dots in this string will be replaced by underscores.

In summary, the operator ordering in cfengine classes is as follows:
‘0’ Parentheses override everything.
‘v The NOT operator binds tightest.
A The AND operator binds more tightly than OR.

4|7

OR is the weakest operator.

4.5.1 Setting classes with special functions

Cfengine provides a number of built-in functions for evaluating classes, based on file tests.
Using these built-in functions is quicker than calling the shell test function. The time
functions place their arguments in chronological order.

4.5.2 AccessedBefore

AccessedBefore(f1,f2)

True if file 1 was accessed more recently than file 2 (UNIX atime)

4.5.3 ChangedBefore

ChangedBefore(f1,£2)

True if file 1’s attributes were changed in any way more recently than file 2’s (UNIX
ctime)

4.5.4 ClassMatch

ClassMatch(regexp)

True if the quoted regular expression matches one of the currently defined classes. It
is wise to place ClassMatch at the end of your parsing in order to capture as many of the
user-defined classes as possible.

classes:

userdef = (ClassMatch(.*linux.*))

4.5.5 FileExists

FileExists(file)

True if the named file object (file/directory or link) exists.

4.5.6 GroupExists

GroupExists(groupname | gid)

True if the groupname or group id is registered on the system.

4.5.7 HostRange
HostRange (basename, start-stop)
True if the current relative domain name begins with basename and ends with an in-
teger between start and stop. Note well: matching is case insensitive (both hostname and
basename are converted to all lower case for comparison.)

Chapter 4: Cfagent reference 23

4.5.8 IsDefined

IsDefined(variable-id)

True if the named variable is defined. Note well: use the variable name, not its contents
(that is, IsDefined(var), and not IsDefined(${var}))

4.5.9 IsDir
IsDir(f)

True if the file f is a directory

4.5.10 IsLink
IsLink(f)
True if the file f is a symbolic link
4.5.11 IsPlain
IsPlain(f)
True if the file f is a plain file
4.5.12 IsNewerThan
IsNewerThan(f1,f2)
True if file 2 was modified more recently than file 1 (UNIX mtime)
4.5.13 IPRange
IPRange (address-range)
True if the current host lies within the specified IP range
4.5.14 PrepModule
PrepModule (module,argl arg2...)

True if the named module exists and can be executed. The module is assumed to follow
the standard programming interface for modules (see Writing plugin modules in tutorial).
Unlike actionsequence modules, these modules are evaluated immediately on parsing. Note
that the module should be specified relative to the authorized module directory.

4.5.15 Regcmp

Regcmp (regexp, string or list separated string)
True if the string matched the regular expression regexp.
4.5.16 ReturnsZero
ReturnsZero (command)

True if the named shell command returns with exit code zero (success). The command
is executed without a shell wrapper.

4.5.17 ReturnsZeroShell

ReturnsZeroShell (command)

True if the named shell command returns with exit code zero (success) when executed
in the environment of a shell wrapper.

24 Cfengine v2 reference

4.5.18 Strcm

Strcmp(si,s
True if the string sl exactly matches s2

4.5.19 UserExists

UserExists(username | uid)

True if the username or user id is registered on the system (this does not imply that the
user can log in or has a home directory).

4.5.20 IsGreaterThan

IsGreaterThan(s1,s2)

Returns true if the value of sl is greater than the value of s2. Note that, if the strings
have numerical values, a numerical comparison is performed, otherwise a string comparison
is used.

4.5.21 IsLessThan

IsLessThan(s1,s2)

Returns true if the value of sl is less than the value of s2. Note that, if the strings have
numerical values, a numerical comparison is performed, otherwise a string comparison is
used.

control:
actionsequence = (files)

2.12)
(2.11)

o |
n~

classes:

1t = (IsLessThan(${a},${p}))
gt = (IsGreaterThan(${al},${b}))

alerts:

1t:: "$(a) LESS THAN $(b)"
gt:: "$(a) GREATER THAN $(b)"

4.5.22 Examples setting classes

For example:

classes:

HostRange (cpu-,01-32)
PrepModule (startup2,"argl arg2"))

compute_nodes
gotinit

access_to_dir = (ReturnsZero(/bin/cd /mydir))
compare = (ChangedBefore(/etc/passwd_master,/etc/passwd))
isplain = (IsPlain(/tmp/import))
inrange = (IPRange(128.39.89.10-15))
CIDR = (IPRange(128.39.89.10/24))
= (
= (

Chapter 4: Cfagent reference 25

4.6 acl

-

acl:

class::

{ acl-alias

action

}

Cfengine’s ACL feature is a common interface for managing filesystem access control lists
(ACLs). An access control list is an extended file permission. It allows you to open or close
a file to a named list of users (without having to create a group for those users); similarly, it
allows you to open or close a file for a list of groups. Several operating systems have access
control lists, but each typically has a different syntax and different user interface to this
facility, making it very awkward to use. This part of a cfengine configuration simplifies the
management of ACLs by providing a more convenient user interface for controlling them
and—as far as possible—a common syntax.

An ACL may, by its very nature, contain a lot of information. Normally you would
set ACLs in a files command, See Section 4.19 [files|, page 95, or a copy command, See
Section 4.12 [copy], page 61. It would be too cumbersome to repeat all of the information
in every command in your configuration, so cfengine simplifies this by first associating an
alias together with a complex list of ACL information. This alias is then used to represent
the whole bundle of ACL entries in a files or copy command. The form of an ACL is
similar to the form of an editfiles command. It is a bundle of information concerning a
file’s permissions.

{ acl-alias

method:overwrite/append
fstype:posix/solaris/dfs/afs/hpux/nt

acl_type :user/group :permissions
acl_type :user/group :permissions

The name acl-alias can be any identifier containing alphanumeric characters and under-
scores. This is what you will use to refer to the ACL entries in practice. The method
entry tells cfengine how to interpret the entries: should a file’s ACLs be overwritten or only
adjusted? Since the filesystems from different developers all use different models for ACLs,
you must also tell cfengine what kind of filesystem the file resides on. Currently only Solaris
and DCE/DFS ACLs are implemented.

NOTE: if you set both file permissions and ACLs the file permissions override the ACLs.

26 Cfengine v2 reference

4.6.1 Access control entries

An access control list is build of any number of individual access control entries (ACEs).
The ACEs has the following general syntax:

acl_type:user/group :permissions
The user or group is sometimes referred to as a key.

For an explanation of ACL types and their use, refer to your local manual page. However,
note that for each type of filesystem, there are certain entries which must exist in an ACL.
If you are creating a new ACL from scratch, you must specify these. For example, in Solaris
ACLs you must have entries for user, group and other. Under DFS you need what DFS
calls a user_obj, group_obj and an other_obj, and in some cases mask_obj. In cfengine
syntax these are called user:*:, other:*: and mask:*:, as described below. If you are
appending to an existing entry, you do not have to re-specify these unless you want to
change them.

Cfengine can overwrite (replace) or append to one or more ACL entries.

overwrite
method:overwrite is the default. This sets the ACL according to the specified
entries which follow. The existing ACL will be overwritten completely.
append method:append adds or modifies one or more specified ACL entries. If an entry

already exists for the specified type and user/group, the specified permission
bits will be added to the old permissions. If there is no ACL entry for the given
type and user/group, a new entry will be appended.

If the new ACL exactly matches the existing ACL, the ACL is not replaced.

The individual bits in an ACE may be either added subtracted or set equal to a specified
mask. The ‘+’ symbol means add, the ‘-’ symbol subtract and ‘=’ means set equal to. Here
are some examples:

acltype:id/* :mask

user:mark:+rx,-w
user:ds:=r

user: jacobs:noaccess
user:forgiven:default

user:x:rw
group:*:r
other:*:r

The keyword noaccess means set all access bits to zero for that user, i.e. remove all
permissions. The keyword default means remove the named user from the access crontrol
list altogether, so that the default permissions apply. A star/asterisk in the centre field
indicates that the user or group ID is implicitly specified as of the owner of the file, or that
no ID is applicable at all (as is the case for ‘other’).

4.6.2 Solaris ACLs
Under Solaris, the ACL type can be one of the following:

Chapter 4: Cfagent reference 27

user

group
mask

other
default_user
default_group
default_mask
default_other

A user or group can be specified to the user, group, default_user and default_group types.
Solaris ACL permissions are the normal UNIX permissions bits ‘rwx’, where:

r - Grants read privileges.
w - Grants write privileges.
X - Grants execute privileges.

4.6.3 DFS ACLs
In DCE, the ACL type can be one of the following:

other

mask

any
unauthenticated
user

group

foreign_other

foreign_user

foreign_group
The user, group, foreign_user and foreign_group types require that you specify a user
or group. The DCE documentation refers to types user_obj, group_obj and so on. In
the cfengine implementation, the ugly ‘_obj’ suffix has been dropped to make these more
in keeping with the POSIX names. user_obj: :, is equivalent to user:*: is cfengine. The
star/asterisk implies that the ACL applies to the owner of the file object.

DFS permissions are comprised of the bits ‘crwxid’, where:

¢ - Grants control privileges, to modify an acl.
r - Grants read privileges.

w - Grants write privileges.

X - Grants execute privileges.

i - Grants insert privileges.

d - Grants delete privileges.

See the DCE/DFS documentation for more information about this.

It is not possible to set ACLs in foreign cells currently using cfengine, but you can still
have all of your ACL definitions in the same file. You must however arrange for the file to
be executed on the server for the cell concerned. Note also that you must perform a DCE
login (normally as user ‘cell_admin’) in order to set ACLs on files which are not owned by
the owner of the cfengine-process. This is because you must have a valid security ticket.

4.6.4 NT ACLs
NT ACEs are written as follows:

acl_type:user/group:permissions:accesstype

28 Cfengine v2 reference

The actual change consists of the extra field containing the access type. A star/asterisk
in the field for user/group would normally imply that the ACL applies to the owner of the
file object. However this functionality is as of today not yet implemented.

In NT, the ACL type can be one of the following:
user
group

Both types require that you specify the name of a user or a group.

NT permissions are comprised of the bits ‘rwxdpo’, where:
r - Read privileges
w - Write privileges
- Execute privileges
- Delete privileges
- Privileges to change the permissions on the file
- Privileges to take ownership of the file

O QA ™

In addition to any combination of these bits, the word noaccess or default can be used
as explained in the previous section. N'T' comes with some standard, predefined permissions.
The standards are only a predefined combination of the different bits specified above and
are provided with cfengine as well. You can use the standards by setting the permission to
read, change or all. The bit implementation of each standard is as on NT:

read - rx
change - rwxd
all - rwxdpo

where the bits follow the earlier definition. The keywords mentioned above can only be
used alone, and not in combination with ‘+’, ‘=’ ‘=" and/or other permission bits.

NT defines several different access types, of which only two are used in connection with
the ACL type that is implemented in cfengine for NT. The access type can be one of the
following:

allowed
denied

Intuitively, allowed access grants the specified permissions to the user, whilst denied
denies the user the specified permissions. If no access type is specified, the default is
allowed. This enables cfengine’s behaviour as on UNIX systems without any changes to
the configuration file. If the permissions noaccess or default is used, the access type will
be irrelevant.

4.6.5 Windows ACL Example

Here is an example of a configuration file for an NT ACL:

control:
actionsequence = (files)
domain = (iu.hioslo.no)

files:
$(HOME) /tt acl=acl_aliasl action=fixall

acl:
{ acl_aliasi

method:overwrite
fstype:nt

Chapter 4: Cfagent reference

user:gustafb:rwx:allowed
user:mark:all:allowed
user:toreo:read:allowed
user:torej:default:allowed
user:ds2:+rwx:allowed

group:dummy:all:denied
group:iu:read:allowed
group:root:all:allowed
group:guest:dpo:denied
}

4.6.6 Posix ACL Example
Here is an example of a configuration file for one Solaris ACL and one DCE/DFS ACL:

control:
actionsequence = (files)
domain = (iu.hioslo.no)

files:
$(HOME) /tt acl=acl_aliasl action=fixall
/:/bigfile acl=acl_alias2 action=fixall

acl:
{ acl_aliasl

method:overwrite
fstype:posix

user:*:rwx
user:mark:=rwx
user:sowille:=rx
user:toreo:=rx
user:torej:default
user:ds2:+rwx
group:*:rx
group:iu:r
group:root:x
mask:*:rx
other:*:rx

default_user:*:=rw
default_user:mark:+rwx
default_user:ds:=rwx
default_group::=r
default_group:iu:+r
default_mask::w
default_other: :rwx

}
{ acl_alias2

method:overwrite
fstype:dfs

user:*:rwxcid
group:*:rxd

30 Cfengine v2 reference

other:*:wxir

mask:*:rxw
user:/.../iu.hioslo.no/cell_admin:rc
group:/.../iu.hioslo.no/acct-admin:rwxcid
user:/.../iu.hioslo.no/root:rx

}

4.7 alerts

Alerts are normally just messages that are printed when classes become activated in order
to alert the system administrator to some condition that has arisen. Alerts can also be
special functions, like ShowState () that generate system output.

Alerts cannot belong to the class any, that would generate a message from every host.
In a huge network this could result in vast amounts of Email. This behaviour can be forced,
however, by creating an alias for the class ‘any’ that is defined on the affected hosts.

alerts:
class::
quoted message

ifelapsed=time

audit=true/false
ShowState (parameter)
SysLog(priority,message)
SetState(name, ttl,policy)
UnSetState (name)

FriendStatus (hours)
PrintFile(‘filename’,lines)

For example:

alerts:
myclass::
"Reminder: say hello every hour" ifelapsed=60
nfsd_in_high_dev2::

"High NFS server access rate 2dev at $(host) value $(value_nfsd_in) av $(average_nfsd_in) pm $(stddev_r
ShowState (incoming.nfs)

ROOT PROCS
anomaly_hosts.RootProcs_high_dev2::

"RootProc anomaly high 2 dev on $(host) value $(value_rootprocs) av $(average_rootprocs) pm $(stddev_r
ShowState (rootprocs)

The ShowState () function reports on state gathered by the cfenvd daemon.

Chapter 4: Cfagent reference 31

ShowState(incoming.tcpsyn)
ShowState (outgoing.smtp)
ShowState (incoming.www)
ShowState (outgoing.www)
ShowState (procs)
ShowState (rootprocs)
ShowState (otherprocs)
ShowState (users)
To limit the frequency of alerts, you can set locking times:

ROOT PROCS
anomaly_hosts.RootProcs_high_dev2::
"RootProc anomaly high 2 dev on $(host) value $(value_rootprocs) av $(average_rootprocs) pm $(stddev_x

ShowState(rootprocs) ifelapsed=10 expireafter=20

Alerts can also be channeled directly to syslog, to avoid extraneous console messages or
email.

SysLog(LOG_ERR, "Test syslog message")

One application for alerts is to pass signals from one cfengine to another by persistent,
shared memory. For example, suppose a short-lived anomaly event triggers a class that
relates to a security alert. The event class might be too short-lived to be followed up by
cfagent in full. One could thus set a long term class that would trigger up several follow-up
checks. A persistent class could also be used to exclude an operation for an interval of time.

Persistent class memory can be added through a system alert functions to give timer
behaviour. For example, consider setting a class that acts like a non-resettable timer. It is
defined for exactly 10 minutes before expiring.

SetState("preserved_class",10,Preserve)

Or to set a class that acts as a resettable timer. It is defined for 60 minutes unless the
SetState call is called again to extend its lifetime.

SetState(non_preserved_class,60,Reset)

Existing persistent classes can be deleted with:

UnsetState (myclass)

The FriendStatus function is available from version 2.1.4 and displays a message if
hosts that normally have a cfengine protocol connection with the current host have not
connected for more than than specified number of hours. If the number of hours is set to
zero, cfengine uses a machine-learned expectation value for the time and uses this to report.
The friend status of a host is thus the expectation that there is a problem with a remote
peer. Expected contact rates of more than the variable LastSeenExpireAfter are ignored
as spurious, See Section 4.10.45 [lastseenexpireafter|, page 49.

32 Cfengine v2 reference

The PrintFile function can be used to display short excerpts from text files. The
arguments are the filename and a maximum number of lines to be printed.

4.8 binservers

The binservers declaration need only be used if you are using cfengine’s model for mount-
ing NFS filesystems. This declaration informs hosts of which other hosts on the network
possess filesystems containing software (binary files) which client hosts should mount. This
includes resources like programs in /usr/local and so on. A host may have several bi-
nary servers, since there may be several machines to which disks are physically attached.
In most cases, on a well organized network, there will be only one architecture server per
UNIX platform type, for instance a SunOS server, an ULTRIX server and so on.

Binary servers are defined as follows:

binservers:
physics.sun4:: sunserver sunserver2
physics.linux:: linuxserver

The meaning of this declaration is the following. All hosts of type sun4 which are members
of the group physics should mount any binaries declared in the mountables resource list
which belong to hosts sunserver or sunserver2. Similarly all 1inux machines should
mount binary filesystems in the mountables list from linuxserver.

Cfengine knows the difference between binaries and home directories in the mountables
list, because home directories match the pattern given by homepattern. See Section 4.10.36
[homepattern|, page 46. See Section 4.22 [homeservers|, page 108.

Note that every host is a binary server for itself, so that the first binary server (and that
with highest priority) is always the current host. This ensures that local filesystems are
always used in preference to NFS mounted filesystems. This is only relevant in connection
with the variable $(binserver).

Chapter 4: Cfagent reference 33

4.9 broadcast

This information is used to configure the network interface for each host.

Every local area network has a convention for determining which internet address is
used for broadcast requests. Normally this is an address of the form aaa.bbb.ccc.255 or
aaa.bbb.ccc.0. The difference between these two forms is whether all of the bits in the
last number are ones or zeroes respectively. You must find out which convention is used at
your establishment and tell cfengine using a declaration of the form:

broadcast:
any::

ones # or zZeros, oOr zeroes

In most cases you can use the generic class any, since all of the hosts on the same subnet
have to use the same convention. If your configuration file encompasses several different
subnets with different conventions then you will need to use a more specific.

Cfengine computes the actual value of the broadcast address using the value specified
above and the netmask See Section 4.10.51 [netmask], page 50.

34

4

Cfengine v2 reference

.10 control

The fundamental piece of any cfengine script or configuration file is the control section.

If

you omit this part of a cfengine script, it will not do anything! The control section is

used to define certain variables, set default values and define the order in which the various
actions you have defined will be carried out. Because cfengine is a declarative or descriptive
language, the order in which actions appear in the file does not necessarily reflect the order
in which they are executed. The syntax of declarations here is:

(N
control:
classes::
variable = (list or value function(args))
- J
The control section is a sequence of declarations which looks something like the following
example:
control:
site = (univ)
domain = (univ.edu)
sysadm = (admin@computing.univ.edu)
netmask = (255.255.252.0)
timezone = (EDT)
nfstype = (nfs)

childlibpath = (/usr/local:/mylibs)

sensiblesize = (1000)
sensiblecount = (2)
editfilesize = (4000)
actionsequence =

(

links.some

mountall
links.others
files
)
myvariable = (something)
mymacro = (somethingelse)
myrandom = (RandomInt(3,6))
myexcerpt = (ReadFile("/etc/services",220))

Parentheses are required when making a declaring information in cfengine. Note that a
limited number of built-in functions exists:

e ExecResult(command) Executes the named shell command and inserts the output into
the variable. Note that, when this is used in cfengine built-in list variables, any spaces
are interpreted as list separators. In other lists, normal rules for iteration apply.

e RandomInt(a,b) Is substituted for a random number between (a,b).

Chapter 4: Cfagent reference

35

e ReadFile(filename,Max number of bytes) A maximum number of bytes is read from
the named file and placed in a variable.

For more functions, See Section 4.4.1 [Setting variables with functions], page 12.

The meaning of each of these lines is described below.

4.10.1 AbortClasses

The AbortClasses list is a list of class identifiers that will result in the abortion of the
current cfagent instanitation with an error message containing the name of the offending

class.

AbortClasses = (emergency nologin_exists)

This mechanism allows one to make controlled exceptions at the agent level. For example

control:

actionsequence = (shellcommands)

AbortClasses = (danger_will_robinson)

shellcommands:

"shellcom 1"

"shellcom 2" define=ok elsedefine=danger_will_robinson

4.10.2 access

The access list is a list of users who are to be allowed to execute a cfengine program. If
the list does not exist then all users are allowed to run a program.

access = (userl user2

)

The list may consist of either numerical user identifiers or valid usernames from the password

database. For example:

access = (mark aurora 22 456)

would restrict a script to users mark, aurora and user id 22 and 456.

4.10.3 actionsequence

The action sequence determines the order in which collective actions are carried out. Here
is an example containing the full list of possibilities:

actionsequence =
(
mountall
mountinfo
checktimezone
netconfig
resolve
unmount
packages
shellcommands
editfiles
addmounts
directories

H H H H H HHHHE R

mount filesystems in fstab
scan mounted filesystems
check timezone

check net interface config
check resolver setup

unmount any filesystems
install/upgrade/remove packages
execute shell commands

edit files

add new filesystems to system
make any directories

36

Cfengine v2 reference

links # check and maintain links (single and child)
mailcheck # check mailserver

mountall # (again)

required # check required filesystems

tidy # tidy files

disable # disable files

files # check file permissions

copy # make a copy/image of a master file
processes # signal / check processes

module :name # execute a user-defined module

)

Here is a more complete description of the meaning of these keywords.

addmounts
causes cfengine to compute which NF'S filesystems are missing from the current
host and add them. This includes editing the filesystem table, creating the
mount-directory, if required. This command relies on information provided
by mountinfo, so it should normally only be called after mountinfo. If the
filesystem already appears to be in the filesystem table, a warning is issued.
checktimezone
runs a check on the timezone defined for the shell running cfengine.
directories
executes all the commands defined under the directories section of the pro-
gram. It builds new directories.
disable executes all the commands defined under the disable section of the program.
editfiles
executes all the commands defined under the editfiles section of the program.
files executes all the commands defined under the files section of the program.
links executes all the commands defined under the 1inks section of the program.
mailcheck
tests for the presence of the NF'S-mounted mail spooling directory on the current
host. The name of the mail spool directory is defined in the mailserver section
of the cfengine program. If the current host is the same as the mailserver (the
host which has the physical spool directory disk) nothing is done. Otherwise
the filesystem table is edited so as to include the mail directory.
module Normally cfengine’s ability to detect the system’s condition is limited to what it

is able to determine while excuting predefined actions. Classes may be switched
on as a result of actions cfengine takes to correct a problem. To increase the
flexibility of cfengine, a mechanism has been introduced in version 1.5 which
allows you to include a module of your own making in order to define or undefine
a number of classes. The syntax

module:mytests

"module:mytests argl arg2 .."

declares a user defined module which can potentially set the classes classl etc.
Classes returned by the module must be declared so that cfengine knows to

Chapter 4: Cfagent reference 37

mountall

mountinfo

netconfig

required

resolve

packages

pay attention to rules which use these classes when parsing; this is done using
AddInstallable. If arguments are passed to the module, the whole string
must be quoted like a shellcommand. See (undefined) [Writing plugin modules],
page (undefined). Whether or not these classes become set or not depends on
the behaviour of your module. The classes continue to apply for all actions
which occur after the module’s execution. The module must be owned by
the user executing cfengine or root (for security reasons), it must be named
‘module:module-name’ and must lie in a special directory, See Section 4.10.49
[moduledirectory|, page 49.

mounts all filesystems defined in the hosts filesystem table. This causes new
NFS filesystems added by addmounts and mailcheck to be actually mounted.
This should probably be called both before mountinfo and after addmounts etc.
A short timeout is placed on this operation to avoid hanging RPC connections
when parsing NF'S mounted file systems.

builds internal information about which filesystems are presently mounted on
the current host. Cfengine assumes that required-filesystems which are not
found need to be mounted. A short timeout is placed on this operation to
avoid hanging RPC connections when parsing NFS mounted file systems. If
this times out, no further mount operations are considered reliable and are
summarily cancelled.

checks the netmask, hostname, IP address and broadcast address for the current
host. The correct values for the netmask and broadcast address are set if there
is an error. The defaultroute is matched against the static routing table and
added if no default route exists. This does not apply to DHCP clients, which
set a default route automatically.

executes all the commands defined under the required section of the program.
It checks for the absence of important NFS resources.

checks and corrects the DNS domain name and the order of nameservers in the
file ‘/etc/resolv.conf’.

executes commands defined under the packages section of the program. This
will query the system’s package database for the specified packages, at the
specified versions, set classes based on whether or not those packages exist,
and optionally install, upgrade or remove those packages using a pre-defined
package manager command.

shellcommands

tidy

unmount

executes all the commands defined under the shellcommands section of the
program.

executes all the commands defined under the tidy section of the program.

executes all the commands defined under the unmount section of the program.
The filesystem table is edited so as to remove the unwanted filesystems and the
unmount operation is executed.

38 Cfengine v2 reference

processes
executes commands defined under the processes section of the program.

Under normal circumstances this coarse ordering is enough to suit most purposes. In
some cases you might want to, say, only perform half the link operations before mounting
filesystems and then, say, perform the remainder. You can do this (and similar things)
by using the idea of defining and undefining classes. See (undefined) [Defining classes],
page (undefined).

The syntax

actionsequence =
(

links.firstpass.include

iiﬁks.secondpass

)
means that cfengine first executes links with the classes firstpass and include defined.
Later it executes links with secondpass defined. You can use this method of adding classes
to distinguish more finely the flow of control in programs.

A note about style: if you define and undefine lots of classes to do what you want to do,
you might stop and ask yourself if your groups are defined as well as they should be. See
Section 4.21 [groups|, page 106. Programming in cfengine is about doing a lot for only a
little writing. If you find yourself writing a lot, you are probably not going about things in
the right way.

4.10.4 AddClasses
AddClasses = (list of identifiers)

The AddClasses directive is used to define a list of class attributes for the current host.
Normally only the hard classes defined by the system are ‘true’ for a given host. It is
convenient though to be able to define classes of your own to label certain actions, mainly
so that they can later be excluded so as to cut short or filter out certain actions. This can
be done in two ways. See Section 4.10.3 [actionsequence], page 35.

To define a list of classes for the current session, you write:

AddClasses = (exclude shortversion)

This is equivalent to (though more permanent than) defining classes on the command line
with the -D option. You can now use these to qualify actions. For example

any.exclude::

Under normal circumstances exclude is always true — because you have defined it to
be so, but you can undefine it in two ways so as to prevent the action from being carried
out. One way is to undefine a class on the command line when you invoke cfengine:

Elost# cfengine -N exclude

or

Chapter 4: Cfagent reference 39

host# cfengine -N exclude.shortversion

host# cfengine -N a.b.c.d

These commands run cfengine with the named classes undefined. That means that actions
labelled with these classes are excluded during that run.

Another way to restrict classes is to add a list of classes to be undefined in the action-
sequence. See next section.

4.10.5 AddInstallable
AddInstallable = (list of identifiers)

Some actions in your cfengine program will be labelled by classes which only become
defined at run time using a define= option. Cfengine is not always able to see these classes
until it meets them and tries to save space by only loading actions for classes which is
believes will become defined at some point in the program. This can lead to some actions
being missed if the action is parsed before the place where the class gets switched on, since
cfengine is a one-pass interpreter,. To help cfengine determine classes which might become
defined during a run, you can declare them in this list. It does no harm to declare classes
here anyway. Here is an example where you need to declare a class because of the ordering
of the actions.

control:
AddInstallable = (myclass)
files:
myclass::
/tmp/test mode=644 action=fixall
copy:

/tmp/foo dest=/tmp/test define=myclass

If we remove the declaration, then when cfengine meets the files command, it skips it because
it knows nothing about the class ‘myclass’—when the copy command follows, it is too late.
Remember that imported files are always parsed after the main program so definitions made
in imported files always come later than things in the main program.

4.10.6 AllowRedefinitionOf

Normally cfagent warns about redefinitions of variables during parsing. This is presumed
to be a mistake. To avoid this behaviour, add the name of the variable to this list, and the
warning disappears.

control:
actionsequence = (copy)
AllowRedefinitionOf = (cfrep)

cfrep = (bla)

40 Cfengine v2 reference

cfrep = (blo)

4.10.7 Auditing

If this variable is set to true then cfengine conducts extensive auditing of its actions to a
database in the work directory. When rules are applied, their locations and policy version
are recorded also so that it is possible to see exactly which rule was applied and when. It
is assumed that the version is recorded as below:

control:

cfinputs_version = (1.2.1)
Auditing = true

This variable acts as the global default behaviour and may be overriden locally by
audit=true/false attributes, where applicable.

4.10.8 AutoDefine

control:
hup_syslogd::

autodefine = (/etc/syslog.c*)

Referring to the class that prefixes the command, autodefine is a list of file patterns
that will define the said class, if a named file is copied in any statement. This helps to avoid
having to write a large number of file-specific copy: lines with define=class configured. In
the example above, the class hup_syslogd would be defined if ‘/etc/syslog. conf’ is copied
at any time.

4.10.9 BinaryPaddingChar

BinaryPaddingChar = (\0)

This specifies the type of character used to pad strings of unequal length in editfiles
during binary editing. The default value is the space character, since this is normally used
to edit filenames or text messages within program code.

4.10.10 BindTolnterface in cfagent

If this is set to a specific [P address of an IP configured interface, cfagent will use that
address for outgoing connections. On Multi-homed hosts this allows one to restrict the
traffic to a known interface. An interface must be configured with an IP address in order
to be bound.

This feature is not available for old operating systems.

4.10.11 ChecksumDatabase in cfagent

Chapter 4: Cfagent reference 41

ChecksumDatabase = (/var/cfengine/cfdb)

If this filename is defined, cfengine will use it to store message digests (i.e. cryptographic
checksums) of files for security purposes, See Section 4.19 [files|, page 95, checksum=.

This option was deprecated in 2.1.22.

4.10.12 ChecksumPurge

ChecksumPurge = (on)

This variable defaults to ‘off’. If set to true, cfagent will look at all of the registered files
in the database and check whether thet still exist. If the file no longer exists, it is removed
from the database and a warning is issued.

To purge files now and then, but at no particular time, one could do something like this:

strategies:
{ purging

NowAndThen: 1
ElseWhen: 49
}

control:
NowAndThen: :

ChecksumPurge = (on)

4.10.13 ChecksumUpdates

ChecksumUpdates = (on)

This variable defaults to ‘off’. If set to true, cfagent will automatically update the
checksum of a file, if it changes on the disk. This means that a security warning will
be issued only once about files which have changed, and the changed version will be re-
registered as the correct version. This option could be switched on after a system upgrade,
for instance, in order to update the database, and then switched to ‘off” again to reduce the
risk of missing a security alert. Alternatively, if you are confident that the first message is
sufficient, it can be left as ‘on’ so that only one message is given.

4.10.14 CompressCommand

Specified the name of a program that is used in the files action=compress attribute.

CompressCommand = (/usr/bin/gzip)

42 Cfengine v2 reference

4.10.15 ChildLibPath
Sets a value for LD_LIBRARY_PATH in child processes:

childlibpath = (/usr/local/lib:/local/mysql/1lib)

Note that the variables LD_LIBRARY_PATH is special. This library path is needed
to run processes as children of cfengine. Often, if the agent is started from cron (which
is started by init), there is no suitable library path set, and shellcommands will fail with
strange errors about not being able to load shared objects. Setting a library path here is a
useful way of correcting this problem.

4.10.16 CopyLinks

This list is used to define a global list of names or patterns which are to be copied rather
than linked symbolically. For example
CopyLinks = (*.config)

The same facility can be specified for each individual link operation using the copy
option See Section 4.26 [links]|, page 112. Copying is performed using a file age comparison.

Note that all entries defined under a specified class are valid only as long as that class
is defined. For instance

class::

CopyLinks = (pattern)

would define a pattern which was only valid when class is defined.

4.10.17 DefaultCopyType
This parameter determines the default form of copying for all copy operations parsed after

this variable. The legal values are ctime (intial default), mtime, checksum and binary. e.g.

DefaultCopyType = (mtime)

4.10.18 DefaultPkgMgr
Sets the default value of the pkgmgr attribute for packages items.

DefaultPkgMgr = (rpm)

By default, this variable is not set, meaning there will be no package manager selected,
and each item in the packages section must specify its own package manager, or it will
not be checked. For information on the values of this variable, See Section 4.32 [packages],
page 133.

4.10.19 DeleteNonUserFiles

If this parameter is set to true, cfengine will delete files which do not have a name belonging
to a known user id.

DeleteNonUserFiles = (true)

SpoolDirectories = (/var/spool/cron/crontabs)

Chapter 4: Cfagent reference 43

This is an generalization of DeleteNonUserMail and makes it redundant. it is formally
executed as a part of the “tidy” action.

4.10.20 DeleteNonOwnerFiles

If this parameter is set to true, cfengine will delete files on mailservers whose names do not
correspond to a known user name, but might be owned by a known user.

DeleteNonOwnerFiles = (true)

SpoolDirectories = (/var/spool/cron/crontabs)

This is an generalization of DeleteNonOwnerMail and makes it redundant.

4.10.21 DeleteNonUserMail

If this parameter is set to true, cfengine will delete mail files on mailservers which do not
have a name belonging to a known user id. This does not include lock files.

4.10.22 DeleteNonOwnerMail

If this parameter is set to true, cfengine will delete files on mailservers whose names do not
correspond to a known user name, but might be owned by a known user.

4.10.23 domain

domain = (domain name)

This variable defines the domainname for your site. You must define it here, because
your system might not know its domainname when you run cfengine for the first time. The
domainname can be used as a cfengine variable subsequently by referring to $(domain). The
domainname variable is used by the action resolve. The domain is also used implicitly
by other matching routines. You should define the domain as early as possible in your
configuration file so as to avoid problems, especially if you have the strange practice of
naming hosts with their fully qualified host names since groups which use fully qualified
names can fail to be defined if cfengine is not able to figure out the domain name.

4.10.24 DPKGInstallCommand

Sets the command used to install packages that need to be installed under the DPKG
package manager.

DPKGInstallCommand = ("/usr/bin/pkgmgr %s")

By default, this variable is not set, meaning that any packages with action=install will
NOT be installed if installation is required. Note the "’s around the string, and the %s is
replaced with the name of the package to be installed.

4.10.25 DryRun

DryRun = (on/off)

This variable has the same effect as the command line options --dry-run or -n. It tells
cfengine to only report what it should do without actually doing it.

44 Cfengine v2 reference

classes::

DryRun = (on)

4.10.26 editbinaryfilesize
EditBinaryFileSize = (size)

Cfengine will refuse to edit a file which is larger than the value of editbinaryfilesize
in bytes. This is to prevent possible accidents from occurring. The default value for this
variable is 10000000 bytes. If you don’t like this feature, simply set the value to be a very
large number or to zero. If the value is zero, cfengine will ignore it.

4.10.27 editfilesize
EditfileSize = (size)

This variable is used by cfengine every time it becomes necessary to edit a file. Since file
editing applies only to text files, the files are probably going to be relatively small in most
cases. Asking to edit a very large (perhaps binary) file could therefore be the result of an
error.

A check is therefore made as a security feature. Cfengine will refuse to edit a file which is
larger than the value of editfilesize in bytes. This is to prevent possible accidents from
occurring. The default value for this variable is 10000 bytes. If you don’t like this feature,
simply set the value to be a very large number or to zero. If the value is zero, cfengine will
ignore it.

4.10.28 EmptyResolvConf
EmptyResolvConf = (true)

Normally cfengine does not tidy up old entries in the ‘/etc/resolv.conf’ file. This
option causes cfengine to remove all existing content from the file.

4.10.29 Exclamation
This variable defaults to “on”. If set to “off”, no exclamation marks (Br. pling, Am: shriek)
are printed during security alerts, e.g. for checksum violations.

Exclamation = (off)

4.10.30 ExcludeCopy

This list is used to define a global list of names or patterns which are to be excluded from
copy operations. For example
ExcludeCopy = (*~ *J, core)

The same facility can be specified for each individual link operation using the exclude
option See Section 4.12 [copy], page 61.

Note that all entries defined under a specified class are valid only as long as that class
is defined. For instance

class::

ExcludeCopy = (pattern)
would define a pattern which was only valid when class is defined.

Chapter 4: Cfagent reference 45

4.10.31 ExcludeLink
This list is used to define a global list of names or patterns which are to be excluded from
linking operations. For example

ExcludeLink = (*~ %J, core)

The same facility can be specified for each individual link operation using the exclude
option See Section 4.26 [links|, page 112.

Note that all entries defined under a specified class are valid only as long as that class
is defined. For instance

class::

Excludelink = (pattern)

would define a pattern which was only valid when class is defined.

4.10.32 ExpireAfter

If you change the value of this parameter, it should be one of the first things you do in your
configuration script.

This parameter controls the global value of the ExpireAfter parameter. See (undefined)
[Spamming and security], page (undefined). This parameter controls the maximum time in
minutes which a cfengine action is allowed to live. After this time a second cfengine agent
will try to kill the cfengine which seems to have hung and attempt to restart the action.
This is different from a TimeOut, where an internal alarm interrupt is used.

ExpireAfter = (time-in-minutes)

This parameter may also be set per action in the action sequence by appending a pseudo-
class called ExpireAftertime. For instance,

actionsequence = (copy.ExpireAfter15)

sets the expiry time parameter to 15 minutes for this copy command. This method should
be considered old and deprecated however. As of version 2.1.0, you can define the expiry
time on a per-command basis, as options of the form expireafter=10.

4.10.33 FreeBSDInstallCommand

Sets the path to ‘pkg_add’ which is used to install packages that need to be installed under
FreeBSD.

FreeBSDInstallCommand = ("/usr/sbin/pkg_add -r %s")

By default, this variable is not set, meaning that any packages with action=install will
NOT be installed. Note the quotes around the string, and the %s is replaced with the name
of the package to be installed.

46 Cfengine v2 reference

4.10.34 FreeBSDRemoveCommand

Sets the path to ‘pkg_delete’ which is used to remove packages that need to be uninstalled
under FreeBSD.

FreeBSDRemoveCommand = ("/usr/sbin/pkg_delete %s")

By default, this variable is set to /usr/sbin/pkg_delete, meaning that any packages with
action=remove will be removed. Note the quotes around the string, and the %s is replaced
with the name of the package to be installed.

4.10.35 FullEncryption
From version 2.1.22. This is false for protocol compatability with older servers.

If this is set to true, directory filenames are encrypted in addition to file contents. If
transferred data are not especially secret or travel over public networks this is a waste of
CPU time. In high security environments it provides full privacy of data transmission.

FullEncryption = (true)

4.10.36 HomePattern

HomePattern = (list of patterns)

The homepattern variable is used by the cfengine model for mounting nfs filesystems.
See (undefined) [NFS resources|, page (undefined). It is also used in the evaluation of the
pseudo variable home, See Section 4.19 [files|, page 95, Section 4.39 [tidy], page 147.

homepattern is in fact a list and is used like a wildcard or pattern to determine which
filesystems in the list of mountables are home directories. See Section 4.30 [mountables],
page 127. This relies on your sticking to a rigid naming convention as described in the first
reference above.

For example, you might wish to mount (or locate directly if you are not using a separate
partition for home directories) your home directories under mountpattern in directories ul,
u2 and so on. In this case you would define homepattern to match these numbers:

homepattern = (u?)

Cfengine now regards any directory matching $(mountpattern)/u? as being a user login
directory.

Suppose you want to create mount home directories under $ (mountpattern)/home and
make subdirectories for staff and students. Then you would be tempted to write:
HomePattern = (home/staff home/students)
Unfortunately this is not presently possible. (This is, in principle, a bug which should be
fixed in the future.) What you can do instead is to achieve the same this as follows:

MountPattern = (/$(site)/$(host) /$(site)/$(host)/home)
HomePattern = (staff students)

Chapter 4: Cfagent reference 47

4.10.37 HostnameKeys in cfagent

If this variable is set to true/on, it causes cfagent to lookup and store trusted public keys
according to their DNS fully qualified host name, instead of using the IP address. This can
be useful in environments where hosts do not have fixed IP addresses, but do have fixed
hostnames.

HostnameKeys = (on)

This method of storing keys is not recommended for sites with fixed IP addresses, since it
removes one security barrier from a potential attacker by potentially allowing DNS spoofing.

Note that there is a corresponding variable to be set in ‘cfrun.hosts’ which must be
set for consistency.

4.10.38 IfElapsed in cfagent

If you change the value of this parameter, it should be one of the first things you do in your
configuration script.

This parameter controls the global value of the IfElapsed parameter, See (undefined)
[Spamming and security|, page (undefined). This parameter controls the minimum time
which must have elapsed for an action in the action sequence before which it will be executed
again.

IfElapsed = (time-in-minutes)

This parameter may also be set per action in the action sequence by appending a pseudo-
class called IfElapsedtime. For instance,

ActionSequence = (copy.IfElapsedlb)

sets the elapsed time parameter to 15 minutes for this copy command. This method should
be considered old and deprecated however. As of version 2.1.0, you can define the expiry
time on a per-command basis, as options of the form ifelapsed=15.

4.10.39 FriendIgnoreRegex

Use this regular expression to suppress FriendStatus warnings for matching hosts. e.g.

IgnoreFriendRegex = ("2001:700:.*|hostl|host2")

4.10.40 IgnorelnterfaceRegex

Use this regular expression to delete class information about interfaces that you do not
want to see on a host. This is useful for tamig virtual machines and their multitudinous
interfaces.

IgnoreInterfaceRegex = ("vm.*")

48 Cfengine v2 reference

4.10.41 Inform

Inform = (on/off)

This variable switches on the output level whereby cfengine reports changes it makes
during a run. Normally only urgent messages or clear errors are printed. Setting Inform
to on makes cfengine report on all actions not explicitly cancelled with a ‘silent’ option. To
set this output level one writes:

classes::

Inform = (on)

4.10.42 InterfaceName

If you have an operating system which is installed on some non-standard hardware, you
might have to specifically set the name of the network interface. For example:

control:

nextstep.some::

InterfaceName (en0)

nextstep.others::

InterfaceName = (ecO)

It is only necessary to set the interface name in this fashion if you have an operating system
which is running on special hardware. Most users will not need this. The choice set here
overrides the system defaults and the choices made in the ‘cfrc’ file, See Section 7.2 [cfrc
resource file], page 166.

4.10.43 FileExtensions

This list may be used to define a number of extensions which are regarded as being plain
files by the system. As part of the general security checking cfengine will warn about
any directories which have names using these extensions. They may be used to conceal
directories.

FileExtensions = (¢ o gif jpg html)

4.10.44 LastSeen

This option is true by default. If set to off or false it prevents cfengine and/or cfservd from
learning about last times hosts were observed connecting to one another. Some users with
broken resolvers (particularly in view of the change over to IPv6 compatible libraries) might
find this useful when processes appear to hang on connecting.

Chapter 4: Cfagent reference 49

LastSeen = (off)

4.10.45 LastSeenExpireAfter

This value (in days) sets the time after which unseen friend hosts are purged from the ‘last
seen’ database, as viewed by the FriendStatus function, See Section 4.7 [alerts], page 30.

LastSeenExpireAfter = (2)

4.10.46 LinkCopies

This list is used to define a global list of names or patterns which are to be linked symboli-
cally rather than copied. For example
excludelinks = (*.gif *.jpg)

The same facility can be specified for each individual link operation using the symlink
option See Section 4.12 [copy], page 61.

Note that all entries defined under a specified class are valid only as long as that class
is defined. For instance

class::

LinkCopies = (pattern)
would define a pattern which was only valid when class is defined.

4.10.47 LogDirectory

This is now deprecated.

Specify an alternative directory for keeping cfengine’s log data. This defaults to
‘/var/run/cfengine’ or ‘/var/cfengine’.

LogDirectory = (/var/cfengine)

4.10.48 LogTidyHomeFiles

LogTidyHomeFiles = (off)

If set to “off”, no log is made of user files, in their home directories, of the files which
are tidied by cfengine.

4.10.49 moduledirectory
moduledirectory = (directory for plugin modules)

This is the directory where cfengine will look for plug-in modules for the actionsequence,
See Section 4.10.3 [actionsequence|, page 35. Plugin modules may be used to activate
classes using special algorithms. See (undefined) [Writing plugin modules|, page (unde-
fined). This variable defaults to ‘/var/cfengine/modules’ for privileged users and to
‘$HOME) / . cfengine/modules’ for non-privileged users.

50 Cfengine v2 reference

4.10.50 mountpattern

mountpattern = (mount-point)

The mountpattern list is used by the cfengine model for mounting nfs filesystems. See
(undefined) [NFS resources|, page (undefined). It is also used in the evaluation of the pseudo
variable home, See Section 4.19 [files], page 95, Section 4.39 [tidy], page 147.

It is used together with the value of homepattern to locate and identify what filesystems
are local to a given host and which are mounted over the network. For this list to make
sense you need to stick to a rigid convention for mounting your filesystems under a single
naming scheme as described in the section mentioned above. If you follow the recommended
naming scheme then you will want to set the value of mountpattern to

mountpattern = (/$(site)/$(host))

which implies that cfengine will look for local disk partitions under a unique directory given
by the name of the host and site. Any filesystems which are physically located on the
current host lie in this directory. All mounted filesystems should lie elsewhere. If you insist
on keeping mounted file systems in more than one location, you can make a list like this:

mountpattern = (/$(site)/users /$(site)/projects)

4.10.51 netmask
netmask = (aaa.bbb.ccc.ddd)

The netmask variable defines the partitioning of the subnet addresses on your network.
Its value is defined by your network administrator. On most systems it is likely to be
255.255.255.0. This is used to configure the network interface in netconfig. See Sec-
tion 4.10.3 [actionsequence], page 35.

Every host on the internet has its own unique address. The addresses are assigned
hierarchically. Each network gets a domain name and can attach something like 65,000
hosts to that network. Since this is usually too many to handle in one go, every such
network may be divided up into subnets. The administrator of the network can decide how
the division into subnets is made. The decision is a trade-off between having many subnets
with few hosts, or many hosts on few subnets. This choice is made by setting the value of
a variable called netmask. The netmask looks like an internet address. It takes the form:

aaa.bbb.ccc.mmm

The first two numbers ‘aaa.bbb’ are the address of the domain. The remainder ‘ccc.mmm’
specifies both the subnet and the hostname. The value of netmask tells all hosts on the
network: how many of the bits in the second half label different subnets and how many
label different hosts on each of the subnets?

The most common value for the netmask is ‘255.255.255.0". It is most helpful to think
of the netmask in terms of bits. Each base-10 number between 0-255 represents 8 bits which
are either set or not set. Every bit which is set is a network address and every bit which
is zero is part of a host address. The first two parts of the address ‘255.255’ always takes
these values. If the third number is ‘255’, it means that the domain is divided up into 256
sub networks and then the remaining bits which are zero can be used to give 255 different
host addresses on each of the subnets.

Chapter 4: Cfagent reference 51

If the value had been ‘255.255.255.254’, the network would be divided up into 2'5
subnets, since fifteen of the sixteen bits are one. The remaining bit leaves enough room for
two addresses 0 and 1. One of those is reserved for broadcasts to all hosts, the other can
be an actual host — there would only be room for one host per subnet. This is a stupid
example of course, the main point with the subnet mask is that it can be used to trade
subnets for hosts per subnet. A value of ‘255.255.254 .0 would allow 128 different subnets
with 2 % 256 — 1 = 511 hosts on each.

We needn’t be concerned with the details of the netmask here. Suffice it to say that its
value is determined for your entire domain by the network administrator and each host has
to be told what the value is.

Each host must also know what convention is used for the broadcast address. This is an
address which hosts can send to if they wish to send a message to every other host on their
subnet simultaneously. It is used a lot by services like NIS to ask if any hosts are willing
to perform a particular service. There are two main conventions for the broadcast address:
address zero (all host bits are zero) and the highest address on the subnet (all host bits are
ones). The convention can be different on every subnet and it is decided by the network
administrator. When you write a cfengine program you just specify the convention used on
your subnet and cfengine works out the value of the broadcast address from the netmask
and the host address See Section 4.9 [broadcast], page 33. Cfengine works out the value of
the broadcast address using the value of the netmask.

4.10.52 NonAlphaNumkFiles

If enabled, this option causes cfengine to detect and disable files which have purely non-
alphanumeric filenames, i.e. files which might be accidental or deliberately concealed. The
files are then marked with a suffix .cf-nonalpha and are rendered visible.

NonAlphaNumFiles = (on)

These files can then be tidied by searching for the suffix. Note that alphanumeric means
ascii codes less than 32 and greater than 126.

4.10.53 nfstype
nfstype = (nfs-type)

This variable is included only for future expansion. If you do not define this variable,
its value defaults to “nfs”.

At present cfengine operates only with NFS (the network file system). When
cfengine looks for network file systems to mount, it adds lines in the filesystem table
(‘/etc/fstab’,'/etc/checklist’ etc.) to try to mount filesystems of type “nfs”. In
principle you might want to use a completely different system for mounting filesystems
over the network, in which case the ‘mount type’ would not be “nfs” but something else.

At the time of writing certain institutions are replacing NFS with AFS (the Andrew
filesystem) and DFS (from the distributed computing environment). The use of these
filesystems really excludes the need to use the mount protocol at all. In other words if you
are using AFS or DFS, you don’t need to use cfengine’s mounting commands at all.

52 Cfengine v2 reference

4.10.54 Portagelnstall Command

Sets the path to ‘emerge’ which is used to install packages that need to be installed under
Gentoo Portage.

gentoo.some: :
DefaultPkgMgr = (portage)
PortageInstallCommand = ("/usr/bin/emerge --nocolor ¥%s")

gentoo.other::

DefaultPkgMgr = (portage)
PortageInstallCommand = ("/usr/lib/portage/bin/emerge --color=n %s"

By default, this variable is not set, meaning that any packages with action=install will
NOT be installed if installation is required. Note the quotes around the string, and the %s
is replaced with the name of the package to be installed.

4.10.55 RepChar
RepChar = (character)

The value of this variable determines the characters which is used by cfengine in creating
the unique filenames in the file repository. Normally, its value is set to ‘_’ and each ‘/’ in
the path name of the file is changed to ‘_’ and stored in the repository. If you prefer a

different character, define it here. Note that the character can be quoted with either single
or double quotes in order to encompass spaces etc.

4.10.56 Repository
Repository = (directory)
Defines a special directory where all backup and junk files are collected. Files are assigned
a unique filename which identifies the path from which they originate. This affects files
saved using disable, copy, links and editfiles See (undefined) [Disabling and the file
repository], page (undefined).

4.10.57 RPMcommand

The default value of the Red Hat Package manager command ‘/bin/rpm’ can be altered for
non-standard systems with this variable.

RPMcommand = (/usr/bin/rpm)

4.10.58 RPMlInstallCommand

Sets the command used to install packages that need to be installed under the RPM package
manager.
RPMInstallCommand = ("/usr/bin/pkgmgr %s")

By default, this variable is not set, meaning that any packages with action=install will
NOT be installed if installation is required. Note the quotes around the string, and the %s
is replaced with the name of the package to be installed.

control:

Chapter 4: Cfagent reference 53

DefaultPkgMgr = (rpm)
RPMInstallCommand = ("/usr/bin/yum -d 0 -e 0 -y install %s")

This would remove all dependencies (!)
#
RPMRemoveCommand = ("/usr/bin/yum -d 0 -e O -y remove %s")

This might be less drastic

RPMRemoveCommand = ("/bin/rpm -e --nodeps %s")
packages:
this will remove this package regardless of version.

some_rpm_name version=0:0.0 cmp=ge action=remove

4.10.59 Schedule
schedule = (Min00_05 Min30_35 time class)

When cfexecd is used in daemon mode, it defaults to running once an hour, on the
hour, i.e..

schedule = (Min00_05)

This can be extended to make the agent run more often. The time specifiers are cfengine
classes, and are written as intervals of time rather the precise times. Cfengine’s time
resolution is purposely limited to five minutes because the auto-correlation time of user
resources is generally greater than this. Thus, it is assumed that precision timing is not
required and the start time of cfengine, when scheduled in daemon mode, is not better than
a few minutes. The daemon does not require precision, but offers many other strategic
features for load balancing and security.

Other time classes can be used in the schedule list, but note that cfexecd will not run
the agent more than once every five minutes. This is treated as a fundamental granularity.

4.10.60 Securelnput

SecureInput = (on)

If this is set cfengine will not import files which are not owned by the uid running the
program, or which are writable by groups or others.

4.10.61 SensibleCount

SensibleCount = (count)

This variable is used by the action required. It defines for cfengine what you consider to
be the minimum number of files in a ‘required’ directory. If you declare a directory as being
required, cfengine will check to see if it exists. Then, if the directory contains fewer than
the value of sensiblecount files, a warning is issued. The default value for this variable is
2.

4.10.62 SensibleSize

SensibleSize = (size)

54 Cfengine v2 reference

This variable is used by the action required. It defines for cfengine what you consider
to be the minimum size for a ‘required’ file. If you declare a file as being required, cfengine
will check to see if the file exists. Of course, the file may exist but be empty, so the size
of the file is also checked against this constant. If the file is smaller than the value of
sensiblesize a warning is issued. The default value for this variable is 1000 bytes.

4.10.63 ShowActions

ShowActions = (on)

This causes cfengine to produce detailed output of what action is being carried out as
part of the prefix information during output. This is intended only for third party tools
which collect and parse the cfengine output. It will be of little interest to humans.

4.10.64 SingleCopy

singlecopy = (path_and_filename_wildcard)

If a singlecopy pattern is defined the behavior of copy: is modified so that a given
destination file, matching the pattern, will only be updated once. In other words, if someone

tries to copy more then one source file to the same location, the destination will not be

overwritten in the same run. If the path name and wildcard is any of "*’, ’on’ or ’true’, then

the list applies to all files. For example:

control:
actionsequence = (copy)
singlecopy = (/tmp/*)
addinstallables = (zzz)
z77::
autodefine = (/tmp/*)
copy:

/etc/passwd dest=/tmp/destination type=binary
/etc/group dest=/tmp/destination type=binary

alerts:
zzz: .
"Copied something in /tmp"
Note (Warning) that this feature has several problems. It assumes an order dependence

that cfengine generally tries to avoid. The first copy that takes place wins. Also, if files are
locked at different times, this can result in oscillations between several different source files.

e.g.

copy:

/etc/passwd dest=/tmp/bla type=binary ifelapsed=2

Chapter 4: Cfagent reference 55

/etc/group dest=/tmp/bla type=binary ifelapsed=1

In order to avoid explicit looping, cfengine assumes that a file has been copied even if no
actual copy took place —i.e. as long as a file is apparently up to date, that counts as a valid
copy update and the promise/action is considered done. If this were not the case, then the
following promises would still be in line for execution and cfengine would loop between the
different versions on subsequent invocations.

4.10.65 site/faculty
site = (sitename)
faculty = (facultyname)

This variable defines a convenient name for your site configuration. It is useful for
making generic rules later on, because it means for instance that you can define the name
of a directory to be

/$(site)/$(host)/local

without having to redefine the rule for a specific site. This is a handy trick for making
generic rules in your files which can be imported into a configuration for any site.

faculty is a synonym for site. The two names may be used interchangeably.

4.10.66 Skipldentify
SkipIdentify = (true)

This is the client side directive corresponding to the server directive SkipVerify. It tells
cfengine not to assume that the client is registered in the Domain Name Service (DNS).
Sometimes the assumption of DNS registration can break connectivity between hosts, par-
ticularly if firewalls or Network Address Translation is in use.

4.10.67 smtpserver
smtpserver = (mailhost)
This variable specified the destination for Email sent by cfexecd.
4.10.68 SplayTime
SplayTime = (time-in-minutes)

This variable is used to set the maximum time over which cfengine will share its load on
a server, See (undefined) [Splaying host times]|, page (undefined).

4.10.69 Split
Split = (character)

The value of this variable is used to define the list separator in variables which are
expected to be treated as lists. The default value of this variable is the colon ‘:’. Cfengine
treats variables containing this character as lists to be broken up and iterated over, See
Section 4.4.3 [Iteration over lists], page 18.

This typically allows communication with PATH-like environment variables in the shell.

56 Cfengine v2 reference

4.10.70 SpoolDirectories

A list of additional spool directories for cfengine to police. In these directories, filenames
should correspond to existing users of the system. When users lost their accounts, this list
plus the mail spool directory will be checked for files owned by deprecated users. See also:
DeleteNonOwnerFiles, DeleteNonUserFiles.

SpoolDirectories = (/var/spool/cron/crontabs /var/spool/cron/atjobs)

4.10.71 SUNInstallCommand

Sets the command used to install packages that need to be installed under the SUN package
manager.
SUNInstallCommand = ("/usr/bin/pkgmgr %s")

By default, this variable is not set, meaning that any packages with action=install will
NOT be installed if installation is required. Note the quotes around the string, and the %s
is replaced with the name of the package to be installed.

4.10.72 suspiciousnames
SuspiciousNames = (.mo 1rk3)

Filenames in this list are treated as suspicious and generate a warning as cfengine scans
directories. This might be used to detect hacked systems or concealed programs. Checks
are only made in directories which cfengine scans in connection with a command such as
files, tidy or copy.

4.10.73 sysadm

sysadm = (mail address)

The mail address of your system administrator should be placed here. This is used in
two instances. If cfengine is invoked with the option -a, then it simply prints out this value.
This is a handy feature for making scripts.

The administrators mail address is also written into the personal log files which cfengine
creates for each user after tidying files, so you should make this an address which users can
mail if they have troubles.

4.10.74 Syslog

Syslog = (on/off)

This variable activates syslog logging of cfengine output at the ‘inform’ level.

To set this output level one writes:

classes::

Syslog = (on)

4.10.75 SyslogFacility

Chapter 4: Cfagent reference 57

SyslogFacility = (facility)
This variable alters the syslog facility level. e.g.

SyslogFacility = (LOG_LOCAL1)

Valid arguments are

LOG_USER

LOG_DAEMON
LOG_LOCALO
LOG_LOCAL1
LOG_LOCAL2
LOG_LOCAL3
LOG_LOCAL4

4.10.76 timezone

timezone = (3-character timezone)

The timezone variable is a list of character strings which define your local timezone.
Normally you will only need a single timezone, but sometimes there are several aliases
for a given timezone e.g. MET and CET are synonymous. Currently only the first three
characters of this string are checked against the timezone which cfengine manages to glean
from the system. If a mismatch is detected a warning message is printed. cfengine does
not attempt to configure the timezone. This feature works only as a reminder, since the
timezone should really be set once and for all at the time the system is installed. On some
systems you can set the timezone by editing a file, a procedure which you can automate
with cfengine See Section 4.17 [editfiles|, page 76.

The value of the timezone can be accessed by variable substitution in the usual way. It
expands to the first item in your list.

shellcommands:

"echo ${timezone} | mail ${sysadm}"

4.10.77 TimeOut

TimeQut = (10)

The default timeout for network connections is 10 seconds. This is too short on some
routed networks. It is not permitted to set this variable smaller than 3 seconds or larger
than 60 seconds. A timeout is generated by an ‘alarm’ interrupt within an executing agent.
This is constrasted with ExpireAfter, in which a second agent is required to interrupt the
activity.

4.10.78 Verbose

Verbose = (on/off)

58 Cfengine v2 reference

This variable switches on the output level whereby cfengine reports everything it does
during a run in great detail. Normally only urgent messages or clear errors are printed, See
Section 4.10.41 [Inform], page 48. This option is almost equivalent to using the --verbose
of -v command-line options. The only difference is that system environment reporting
information, which is printed prior to parsing, is not shown. To set this output level on
selected hosts one writes:

classes::

Verbose = (on)

For related more limited output, See Section 4.10.41 [Inform|, page 48.

4.10.79 Warnings

Warnings = (on/off)

This variable switches on the parser-output level whereby cfengine reports non-fatal
warnings. This is equivalent to setting the command line switch —--no-warn, or -w. To set
this output level on selected hosts one writes:

classes::

Warnings = (on)

4.10.80 WarnNonUserFiles

If this parameter is set to true, cfengine will warn about files in spool directories which do
not have a name belonging to a known user id.

See also DeleteNonUserFiles.

4.10.81 WarnNonOwnerFiles

If this parameter is set to true, cfengine will warn about files on mailservers whose names
do not correspond to a known user name, but might be owned by a known user.

SpoolDirectories = (/var/spool/cron/crontabs)

WarnNonOwnerFiles = (true)

See also DeleteNonOwnerFiles. This generalizes and succeeds DeleteNonOwnerMail.

4.10.82 WarnNonUserMail

If this parameter is set to true, cfengine will warn about mail files on mailservers which do
not have a name belonging to a known user id. This does not include lock files.

Chapter 4: Cfagent reference 59

4.10.83 WarnNonOwnerMail

If this parameter is set to true, cfengine will warn about files on mailservers whose names
do not correspond to a known user name, but might be owned by a known user.

60 Cfengine v2 reference

4.11 classes

The classes keyword is an alias for groups as of version 1.4.0 of cfengine.

Chapter 4: Cfagent reference 61

4.12 copy

Cfengine copies files between locally mounted filesystems and via the network from regis-
tered servers. The copy algorithm avoids race-conditions which can occur due to network
and system latencies by copying first to a file called ‘file.cfnew’ on the local filesystem,
and then renaming this quickly into place. The aim of this roundabout procedure is to
avoid situations where the direct rewriting of a file is interrupted midway, leaving a par-
tially written file to be read by other processes. Cfengine attempts to preserve hard links
to non-directory file-objects, but see the caution below.

Caution should be exercised in copying files which change rapidly in size. This can lead
to file corruption, if the size changes during copying. Cfengine attempts to prevent this
during remote copies.

The syntax summary is:

62 Cfengine v2 reference

copy:
class::

master-file
dest=destination-file

mode=mode

owner=owner

group=group
action=warn/silent/fix
backup=true/false/timestamp
repository=backup directory
stealth=true/on/false/off
checkroot=true/on/false/off
timestamps=preserve/keep
symlink=pattern

include=pattern
exclude=pattern
ignore=pattern
filter=filteralias
xdev=true/on/false/off

recurse=number/inf/0
type=ctime/mtime/checksum/sum/byte/binary/any
linktype=absolute/symbolic/relative/hard/none/copy
typecheck=true/on/false/off
define=class-1list(,:.)
elsedefine=class-1list (,:.)

force=true/on/false/off
forcedirs=true/on/false/off
forceipv4=true/on/false/off
size=size limits
server=server-host
failover=classes

trustkey=true/false
secure=[deprecated]
encrypt=true/false
verify=true/false
oldserver=true/false

purge=true/false
syslog=true/on/false/off
inform=true/on/false/off

audit=true/false

findertype=MacOSX finder type

-)

Note that the $(this) contains the name of the server used. This variable may be used in
the source and destination strings in order to tailor the filename when downloading from
multiple sources (see below).

Chapter 4: Cfagent reference 63

dest

The destination file is the only obligatory item. This must be the name of an ob-
ject which matches the type of the master object i.e. if the master is a plain file,
the destination must also be the explicit name of a plain file. An implicit ‘copy
file to directory’ syntax is not allowed. Symbolic links are copied as symbolic
links, plain files are copied as plain files and special files are copied as special
files. The recurse option is required to copy the contents of subdirectories.

If the destination file name is of the form ‘filename/..namedfork/rsrc’, then
it is assumed that you are copying the resource fork of a file to an HFS+ file
system on OS X Jaguar. In the absence of the destination file being in this
form (just dest=filename), cfengine will assume that you are working with the
data fork of the file. See [dest|, page 62.

For a resource fork copy to properly work, the data fork must have already been
copied. Ie the OS will not allow you to copy the resource fork for a file that
does not exist. And, copying a data fork after the resource fork will overwrite
the resource fork. So, order is important. Copy the data fork, first. Then, copy
the resource fork.

To split the data and resource forks of a file into two parts, open up a terminal.
The following commands will copy MyFile ’s data and resource forks into two
separate files which can then be recombined by cfengine:

cp MyFile MyFile-datafork
cp MyFile/..namedfork/rsrc MyFile-rsrcfork

mode, owner, group

action

force

forceipvé

forcedirs

backup

The file mode, owner and group of the images are specified as in the files
function See Section 4.19 [files], page 95.

The action may take the values warn, silent or fix. The default action is fix,
i.e. copy files. If warn is specified, only a warning is issued about files which
require updating. If silent is given, then cfengine will copy the files but not
report the fact.

If set to ‘true’, this option causes cfengine to copy files regardless of whether it
is up to date.

If you are working on an ipv6 enabled pair of hosts, cfengine will normally select
ipv6 for communication between them. If you wish to force the use of ipv4 for
some reason, set this option to true.

If set to ‘true’, this option causes files or links which block the creation of
directories, during recursive copying, to be moved aside forcably. A single
non-supressable warning is given when this occurs; the file is moved to
filename*. cf-moved’.

If the backup option is set to “false”, cfengine will not make a backup copy of
the file before copying. The default value is “true”. If the option “timestamp”
is chosen, a unique timestamp will be appended to the saved filename.

64 Cfengine v2 reference

repository
This allows a local override of the Repository variable, on an item by item
basis. If set to “off” or “none” it cancels the value of a global repository.

Copy makes a literal image of the master file at the destination, checking
whether the master is newer than the image. If the image needs updating
it is copied. Existing files are saved by appending .cfsaved to the filename.

stealth If set to ‘on’ causes cfengine to preserve atime and mtime on the source files
during local file copies. File times cannot be preserved on remote copies. This
option should normally only be used together with a checksum copy, since
preserving atime and mtime implies changing ctime which will force continual
copying. This is a weakness in the Unix file system. Ctime cannot be preserved.
Before version 1.5.0, there was a typo which made this option active on many

file copies.

checkroot
Default value false, this option causes cfengine to check the permissions of the
root directory during recursive directory copies. If not true, cfengine sets its
own permissions on the root.

timestamps

If this is set to ‘preserve’ or ‘keep’, the times of the source files are inherited
by the destination files during copying. This is like the ‘p’ option of the tar
command.

recurse Specifies the depth of recursion when copying whole file-trees recursively. The
value may be a number or the keyword inf. Cfengine crosses device bound-
aries or mounted filesystems when descending recursively through file trees. To
prevent this it is simplest to specify a maximum level of recursion.

symlink This option may be repeated a number of times to specify the names of files,
or wildcards which match files which are to be symbolically linked instead of
copied. A global list of patterns can also be defined in the control section of
the program See Section 4.10.46 [linkcopies], page 49.

ignore This works like the global ignore directive but here you may provide a private
list of ignorable directories and files. Unlike include, exclude this affects the
way cfengine parses directory trees.

include This option may be repeated a number of times to specify the names of files,
or wildcards which match files which are to be included in a copy operation.
Specifying one of these automatically excludes everything else except further
include patterns. A global list of patterns can also be defined in the control
section of the program.

If the purge option is used in copying, then the ignore option has the effect of
the excluding files from the purge, i.e. ignore means ‘keep’ the named files.

exclude This option may be repeated a number of times to specify the names of files, or
wildcards which match files which are to be excluded from a copy operation. A
global list of patterns can also be defined in the control section of the program
‘excludes’ override ‘includes’. See Section 4.10.31 [excludelinks|, page 45.

Chapter 4: Cfagent reference 65

xdev Prevents cfengine from descending into file systems that are not on the same
device as the root of the rescurion path.

type Normally cfengine uses the ctime date-stamps on files to determine whether a
file needs to be copied: a file is only copied if the master is newer than the copy
or if the copy doesn’t exist. If the type is set to ‘checksum’ or ‘sum’, then a
secure MD5 checksum is used to determine whether the source and destination
files are identical. If ‘byte’ or ‘binary’ is specified, a byte by byte comparison
is initiated. An ‘mtime’ comparison does not take into account changes of file
permissions, only modifications to the contents of the files.

findertype
Sets the four letter file type code in an HFS+ file system on Mac OS X Jaguar.
For example, the four letter code APPL indicates the file is an Application (and
will be executed when double-clicked). The four letter code TEXT indicates
the file is a text file and will be opened by the default text editor.

If the file also has an extension (for example .txt), then if setting the finder
type code, you should make sure your finder type code does not conflict with
the file extension.

Files both without extensions and finder type codes are mostly useless to OS
X, so be sure to do one or the other!

Also note that finder type codes should not be applied to the resource forks of
files.

server If you want to copy a file remotely from a server, you specify the name of the
server here. This must be the name of a host which is running the cfservd
daemon, and you must make sure that you have defined the variable domain in
the control section of the ‘cfagent.conf’ file. If you don’t define a domain you
will probably receive an error of the form ‘cfengine: Hey! cannot stat file’. If
the server name is ‘localhost’, cfengine will perform a local copy, without using
a connection to cfservd.

failover If a file copy fails due to an error, the classes in this assignment will become
active, allowing failover rules to become active.

oldserver
If this is true, cfengine uses the old protocol specification for temporary com-
patibility with early version 2 alphas.

trustkey This option defaults to 'no’ or ’false’. If set to true, cfagent will accept a public
key from a server whose public key is presently unknown to the agent, on trust.
This option should be used to bootstrap public key transfer between hosts.
Once a public key has been accepted, it will not be replaced automatically.
Dated public keys must be removed by hand.

encrypt Has an effect only when used in conjuction with copy from a remote file server.
This causes cfengine to use encryption and one-time keys on transferred data.
(This requires RSA keys to be installed on both client and server hosts, and
provides strong authentication and encryption, using random session keys.)
The preferred algorithm is Blowfish, with a 128 bit key. Generally speaking the

66

verify

size

linktype

typecheck

define

purge

Cfengine v2 reference

only case in which this function makes sense is in transferring shadow password
files. Encrypting the transfer of system binaries makes little sense. Note: the
encryption keys required to get files from cfservd are those for the user under
which cfservd is running (normally root).

If verify is true, cfagent attempts to verify the integrity of a remote file transfer
before the new file is installed. This takes time, since an MD5 computation and
transaction must take place.

With this option you can specify that a file is only to be copied if the source
file meets a size critereon. This could be used to avoid installing a corrupted
file (the copying of an empty password file, for instance). Sizes are in bytes by
default, but may also be quoted in kilobytes or megabytes using the notation:

numberbytes
numberkbytes
numbermbytes

Only the first characters of these strings are significant, so they may be written
however is convenient: e.g. 14kB, 14k, 14kilobytes etc. Examples are:

size=<400 # copy if file size is < 400 bytes
size=400 # copy if file size is equal to 400 bytes
size=>400 # copy if file size > 400 bytes

This option determines the type of link used to make links. This only applies if
the file is linked rather than copied because it matches a pattern set by symlink.
The default type is a direct symbolic link. The values ‘relative’ or ‘absolute’
may be used, but hard links may not be created in place of copied files, since
hard links must normally reside on the same filesystem as their files, and it is
assumed that most links will be between filesystems. If this value is set to copy
or none, symbolic links will be replaced by actual copies of the files they point
to. Note that for directories, this option is ignored.

Controls whether cfengine allows files of one type to overwrite files of another
type, i.e. switches on/off errors if source and existing destination files do not
match in type, e.g. if a file would overwrite a directory or link. The default is
on for safety reasons.

This option is followed by a list of classes which are to be ‘switched on’ if and
only if the named file was copied. In multiple (recursive) copy operations the
classes become defined if any of the files in the file tree were copied. This
feature is useful for switching on other actions which are to be performed after
the installation of key files (e.g. package installation scripts etc).

If this option is set to true, cfengine will remove files in the destination directory
which are not also in the source directory. This allows exact images of filesys-
tems to be mantained. Note that if the copy command has includes or excludes
or ignored files, cfengine will purge only those files on the client machine which

Chapter 4: Cfagent reference 67

are also on the server. Included files are not purged. This means that some files
(such as system specific work files) can be excluded from copies without them
being destroyed. Note that purging is disallowed if contact with a remote server
fails. This means that local files will not be destroyed by a denial of service at-
tack. You should not use this option to synchronize NFS mounted file systems.
If the NF'S server goes down, cfengine cannot then tell the difference between
a valid empty directory and a missing NFS file system. If you use purge, use
a remote copy also. If we specify purge, then the following options will also
be set and cannot be altered: forcedirs=true, typecheck=false, since other
defaults could be very destructive.

4.12.1 copy example

Example:

copy:

/local/etc/aliases dest=/etc/aliases m=644 o=root g=other
/local/backup-etc dest=/etc

solaris::

/local/etc/nsswitch.conf dest=/etc/nsswitch.conf

In the first example, a global aliases file is copied from the master site file
‘/local/etc/aliases’ to ‘/etc/aliases’, setting the owner and protection as specified.
The file gets installed if ‘/etc/aliases’ doesn’t exist and updated if ‘/local/etc/aliases’
is newer than ‘/etc/aliases’. In the second example, ‘backup-etc’ is a directory
containing master configuration files (for instance, ‘services’, ‘aliases’, ‘passwd’...).
Each of the files in ‘backup-etc’ is installed or updated under ‘/etc’. Finally, a global
‘nsswitch.conf’ file is kept up to date for Solaris systems.

The home directive can be used as a destination, in which case cfengine will copy files
to every user on the system. This is handy for distributing setup files and keeping them
updated:

copy:

/local/masterfiles/.cshrc dest=home/.cshrc mode=0600

You can force the copying of files, regardless of the date stamps by setting the option
force=true or force=on. The default is force=false or force=off.

4.12.2 Hard links in copying

Hard links are not like symbolic links, they are not merely pointers to other files, but
alternative names for the same file. The name of every file is a hard link, the first so to
speak. You can add additional names which really are the file, they are not just pointers. For
the technically minded, they are not separate inodes, they are additional directory references
to the same inode. When you perform a copy operation on multiple files, cfengine attempts
to preserve hard links but this is a difficult task.

68 Cfengine v2 reference

Because a hard link just looks like an ordinary file (it cannot be distingiushed from the
original, the way a symbolic link can) there is a danger that any copy operation will copy
two hard links to the same file as two separate copies of the same file. The difference is that
changes a hard-linked file propagate to the links, whereas two copies of a file are completely
independent thereafter. In order to faithfully reproduce all hardlinks to all files, cfengine
needs to examine every file on the same filesystem and check whether they have the same
inode-number. This would be an enourmous overhead, so it is not done. Instead what
happens is that cfengine keeps track of only the files which it is asked to examine, for each
atomic copy-command, and makes a note of any repeated inodes within this restricted set.
It does not try to go off, wandering around file systems looking to other files which might
be hardlinks.

To summarize, cfengine preserves hardlinks during copying, only within the scope of the
present search. No backups are made of hard links, only of the first link or name of the file
is backed up. This is a necessary precaution to avoid dangling references in the inode table.
As a general rule, hard links are to be avoided because they are difficult to keep track of.

4.12.3 Too many open files

In long recursive copies, where you descend into many levels of diretories, you can quickly
run out of file descriptors. The number of file descriptors is a resource which you can often
set in the shell. It is a good idea to set this limit to a large number on a host which will be
copying a lot of files. For instance, in the C shell you would write,

limit descriptors 1024

Most systems should have adequate defaults for this parameter, but on some systems it
appears to be set to a low value such as 64, which is not sufficient for large recursive tree
searches.

Chapter 4: Cfagent reference 69

4.13 defaultroute

Dynamical routing is not configurable in cfengine, but for machines with static routing
tables it is useful to check that a default route is configured to point to the nearest gateway
or router. The syntax for this statement is simply:

defaultroute:
class::

my_gateway

For example:

defaultroute:
most::
129.240.22.1
rest::
small_gw
no_default_route::

192.168.1.1

Gateways and routers usually have internet address aaa.bbb.ccc.1 — i.e. the first address
on the subnet. You may use the numerical form or a hostname for the gateway.

The class no_default_route is defined if the current host does not have a currently
defined default route, but specifies one in its configuration.

70 Cfengine v2 reference

4.14 disks

This is a synonyn for required, See Section 4.34 [required], page 140. This action tests for
the existence of a file or filesystem. It should be called after all NFS filesystems have been
mounted. You may use the special variable $ (binserver) here.

-
disks:
/filesystem freespace=size-limit define=class-list(,:.)
inform=true
log=true
audit=true/false
scanarrivals=true
force=true
ifelapsed=mins
expireafter=mins
=

Files or filesystems which you consider to be essential to the operation of the system
can be declared as ‘required’. Cfengine will warn if such files are not found, or if they look
funny.

Suppose you mount your filesystem /usr/local via NFS from some binary server. You
might want to check that this filesystem is not empty! This might occur if the filesystem
was actually not mounted as expected, but failed for some reason. It is therefore not enough
to check whether the directory /usr/local exists, one must also check whether it contains
anything sensible.

Cfengine uses two variables: sensiblesize and sensiblecount to figure out whether
a file or filesystem is sensible or not. You can change the default values of these variables
(which are 1000 and 2 respectively) in the control section. See Section 4.10 [control],
page 34.

If a file is smaller than sensiblesize or does not exist, it fails the ‘required’ test. If a
directory does not exist, or contains fewer than sensiblecount files, then it also fails the
test and a warning is issued.

disks:
any::
/$(site)/$(binserver)/local
If you set the freespace variable to a value and set inform=true, cfagent issues warnings

when free disk space falls below this threshold. Any define-classes also become defined in
this instance. (the default units are kilobytes, but you may specify bytes or megabytes),

e.g.

Chapter 4: Cfagent reference 71

required:

/site/host/homel freespace=50mb define=dotidy
/site/host/home2 freespace=10% define=dotidy

then cfengine will warn when the filesystem concerned has less than this amount of free
space. By adding a define tag, you can switch on any number of classes if this happens.
This allows you to activate special measures for dealing with a filesystem which is in danger
of becoming full.

If the option force=true is used, cfengine will parse filesystems even on NFS mounted
filesystems. Normally it does not make sense to check filesystems that are not native to the
local host, but occasionally ne would like to force such a check in order to set a class, based
on the result, for instance.

If the scanarrivals option is set, the agent will recursively descend through the file
system building a database of file modification times. This data is used for research purposes
and will eventually be used to trigger classes that determine optimal times for backup of
filesystem.

4.15 directories

Directories declarations consist of a number of directories to be created. Directories and
files may also be checked and created using the touch option in the files actions. See
Section 4.19 [files], page 95.

The form of a declaration is:

(")
directories:
classes::
/directory
mode=mode
owner=uid
group=gid

rxdirs=true/on/false/off

define=classlist
elsedefine=classlist
syslog=true/on/false/off
inform=true/on/false/off
audit=true/on/false/off

ifelapsed=mins
expireafter=mins

N

For example

directories:

class::

72 Cfengine v2 reference

/usr/local/bin mode=755 owner=root group=wheel

The form of the command is similar to that of files but this command is only used to create
new directories. Valid options are mode, owner, group and rxdirs; these are described under
files See Section 4.19 [files], page 95. This interface is only for convenience. It is strictly
a part of the ‘files’ functionality and is performed together with other ‘files’ actions at run
time.

The creation of a path will fail if one of the links in the path is a plain file or device
node. A list of classes may optionally be defined here if a directory is created.

If the owner value is set to the literal "LastNode", then the owner will be exchanged for
the last node of the path. This allows the creation of home directories owned by users.

control:
homedirs = (mark:simen:luke:aeleen)
directories:

/home/$(1listcontent) owner=LastNode

Chapter 4: Cfagent reference 73

4.16 disable

Disabling a file means renaming it so that it becomes harmless. This feature is useful if you
want to prevent certain dangerous files from being around, but you don’t want to delete
them— a deleted file cannot be examined later. The syntax is

-

disable:
class::

/filename
dest=filename

type=plain/file/link/links
rotate=empty/truncate/numerical-value
size=numerical-value

define=classlist
syslog=true/on/false/off
inform=true/on/false/off
audit=true/on/false/off

repository=destination directory
action=disable/warn

ifelapsed=mins
expireafter=mins

-

If a destination filename is specified, cfagent renames the source file to the destination, where
possible (renaming across filesystems is not allowed). If no destination is given, cfagent
renames a given file by appending the name of the file with the suffix ‘. cfdisabled’. Note
that directories are only renamed if they have a specific destination specified.

A typical example of a file you would probably want to disable would be the
/etc/hosts.equiv file which is often found with the ‘+’ symbol written in it, opening
the system concerned to the entire NIS universe without password protection! Here is an
example:

disable:
/etc/hosts.equiv
/etc/nologin
/usr/lib/sendmail.fc

suné: :

/var/spool/cron/at.allow

Hint: The last example disables a file which restricts access to the at utility. Such a
command could be followed by a file action, See Section 4.19 [files|, page 95,

files:

74 Cfengine v2 reference

some: :

/var/spool/cron/at.allow =0644 N owner=root group=wheel touch

which would create an empty security file ‘at.allow’. See also your system manual pages
for the at command if you don’t understand why this could be useful.

Disabling a link deletes the link. If you wish you may use the optional syntax

disable:

/directory/name type=file

to specify that a file object should only be disabled if it is a plain file. The optional element
type= can take the values plain, file, 1ink or links. If one of these is specified, cfengine
checks the type and only disables the object if there is a match. This allows you to disable
a file and replace it by a link to another file for instance.

NOTE that if you regularly disable a file which then gets recreated by some process,
the disabled file ‘filename.cfdisabled’ will be overwritten each time cfengine disables the
file and therefore the contents of the original are lost each time. The rotate facility was
created for just this contingency.

The disable feature can be used to control the size of system log files, such as
‘/var/adm/messages’ using a further option rotate. If the value rotate is set to 4, say,

disable:

filename rotate=4

then cfengine renames the file concerned by appending ‘.1’ to it and a new, empty file is
created in its place with the same owner and permissions. The next time disable is executed
.1’ is renamed to ‘.2’ and the file is renamed ‘.1’ and a new empty file is created with the
same permissions. Cfengine continues to rotate the files like this keeping a maximum of
four files. This is similar to the behaviour of syslog.

If you simply want to empty the contents of a log file, without retaining a copy then you
can use rotate=empty or rotate=truncate. For instance, to keep control of your World
Wide Web server logs:

disable:

Sunday | Wednesday: :

/usr/local/httpd/logs/access_log rotate=empty
This keeps a running log which is emptied each Sunday and Wednesday.
The size= option in disable allows you to carry out a disable operation only if the size

of the file is less than, equal to or greater than some specified size. Sizes are in bytes by
default, but may also be quoted in kilobytes or megabytes using the notation:

numberbytes
numberkbytes
numbermbytes

Chapter 4: Cfagent reference 75

Only the first characters of these strings are significant, so they may be written however is
convenient: e.g. 14kB, 14k, 14kilobytes etc. Examples are:

size=<400 # disable if file size is < 400 bytes
size=400 # disable if file size is equal to 400 bytes
size=>400 # disable if file size > 400 bytes

This options works with rotate or normal disabling; it is just an extra condition which
must be satisfied.

If a disable command results in action being taken by cfengine, an optional list of classes
becomes can be switched on with the aid of a statement define=classlist in order to
trigger knock-on actions.

The repository declaration allows a local override of the Repository variable, on an
item by item basis. If set to “off” or “none” it cancels the value of a global repository and
leaves the disabled file in the same directory.

76 Cfengine v2 reference

4.17 editfiles

Performs ascii (line-based) editing on text-files or limited binary editing of files. If editing
a file which has hard links to it, be aware that editing the file will destroy the hard link ref-
erences. This is also the case with shell commands. You should avoid hard links whenever
possible. The form of an editing command is editfiles can also search directories recur-
sively through directories and edit all files matching a pattern, using Include, Exclude,
and Ignore (see Recursive File Sweeps in the tutorial).

-
editfiles:
class::

{ file-to-be-edited

action "quoted-string..."

}

{ directory-to-be-edited

Recurse "inf" # iterated over all files

Filter "filteralias"

Include ".cshrc"

Ignore "bin"

Ignore ".netscape"

action "quoted-string..."

}
-

Here are some examples:

editfiles:
suné: :
{ /etc/netmasks

DeleteLinesContaining "255.255.254.0"
AppendIfNoSuchLine "128.39 255.255.255.0"
X

PrintServers::
{ /etc/hosts.1lpd

AppendIfNoSuchLine "tor"
AppendIfNoSuchLine "odin"
AppendIfNoSuchLine "borg"
3

The first of these affects the file ‘/etc/netmasks’ on all SunOS 4 systems, deleting any
lines containing the string “255.255.254.0” and Appending a single line to the file con-
taining “128.39 255.255.255.0” if none exists already. The second affects only hosts in
the class ‘PrintServers’ and adds the names of three hosts: tor, odin and borg to the file

Chapter 4: Cfagent reference 7

‘/etc/hosts.1pd’ which specifies that they are allowed to connect to the printer services
on any host in the class ‘PrintServers’.

Note that single or double quotes may be used to enclose strings in cfengine. If you use
single quotes, your strings may contain double quotes and vice-versa. Otherwise a double
quoted string may not currently contain double quotes and likewise for single quoted strings.

As of version 2.0.6 quoted strings may contain escaped quotes using \".
As of version 1.3.0, you can use the ‘home’ directive in edit filenames, enabling you to

edit files for every user on the system, provided they exist. For example, to edit every user’s
login files, you would write

{ home/.cshrc

AppendIfNoSuchLine "setenv PRINTER default-printer"
AppendIfNoSuchLine "set path = ($path /new/directory)"
}

If a user does not possess the named file, cfengine just skips that user. A new file is not
created.

The meanings of the file-editing actions should be self-explanatory. Commands containing
the word ’comment’ are used to ‘comment out’ certain lines in a file rather than deleting
them. Hash implies a shell comment of the type

comment

Slash implies a comment of the C++ type:

// comment

Percent implies a comment of the type:

% comment

More general comment types may be defined using the SetCommentStart,
SetCommentEnd and CommentLinesMatching, CommentLinesStarting functions.

A special group of editing commands is based on the POSIX Regular Expression package.
These use regular expressions to search line by line through text and perform various editing
functions. Searches are of two different types: “LineMatching” and “LineContaining”. In
the first case the regular expression must match the entire line exactly; in the latter, a
substring is searched for in the file.

Some of these commands are based on the concept of a file pointer. The pointer starts at
line one of the file and can be reset by 'locating’ a certain line, or by using the reset-pointer
commands. The current position of the pointer is used by commands such as InsertLine
to allow a flexible way of editing the middle of files.

A simple decision mechanism is incorporated to allow certain editing actions to be ex-
cluded. For instance, to insert a number of lines in a file once only, you could write:

{ file

LocatelLineMatching "insert point..."
IncrementPointer "

78 Cfengine v2 reference

BeginGroupIfNoMatch "# cfengine - 2/Jan/95"
IncrementPointer "-1"
InsertLine "# cfengine - 2/Jan/95"
InsertLine "/local/bin/start-xdm"
DefineInGroup "AddedXDM"

EndGroup

}

Since the first inserted line matches the predicate on subsequent calls, the grouped lines
will only be carried out once. When the grouped lines are run, the ‘AddedXDM’ class will be
activated for use by a later part of the script.

The full list of editing actions is given below in alphabetical order. Note that some
commands refer to regular expressions and some refer to ’literal strings’ (i.e. any string
which is not a regular expression). Variable substitution is performed on all strings. Be
aware that symbols such as ‘.’, ‘¥’ and so on are meta-characters in regular expressions
and a backslash must be used to make them literal. The regular expression matching
functions are POSIX extended regular expressions. See (undefined) [Regular expressions],

page (undefined).

Editfile caution. It is suggested that you use these editing functions with caution. Al-
though all possible safeguards have been incorporated into them, it is still possible through
carelessness to do damage to important files on your system. Always test editing programs
carefully before committing them to your global site configuration.

4.17.1 AbortAtLineMatching

AbortAtLineMatching quoted-regex

This command sets the value of a regular expression. In all editing operations (except
FixEndOfLine and GotoLastLine) which involve multiple replacements and searches, this
expression marks a boundary beyond which cfengine will cease to look any further. In
other words, if cfengine encounters a line matching this regular expression, it aborts the
current action. BE CAREFUL with this feature: once set, the string remains set for the
remainder of the current file. It might therefore interact in unsuspected ways with other
search parameters. Editing actions are always aborted as soon as the abort expression is
matched. Use UnsetAbort to unset the feature.

4.17.2 Append

Append quoted-regex

Add a line containing the quoted string to the end of the file. This should be
used in conjunction with the decision structures BeginGroupIfNoLineMatching and
BreakIfLineMatches.

4.17.3 AppendIfNoLineMatching

AppendIfNoLineMatching quoted-regex/ °‘ThisLine’’

Chapter 4: Cfagent reference 79

A new version of the older AppendIfNoSuchLine which uses a regular expression instead
of a literal string. The line which gets appended must be set previously using SetLine. If
“‘ThisLine’’ is given as the argument, the current value of then line buffer is assumed.
This allows constructions for merging files on a convergent line-by-line basis:

editfiles:

{ /tmp/bla

ForEachLineIn "/tmp/in"
AppendIfNoLineMatching "ThisLine"

EndLoop
X

4.17.4 AppendIfNoSuchLine

AppendIfNoSuchLine quoted-string

Add a line containing the quoted string to the end of the file if the file doesn’t contain
the exact line already.

4.17.5 AppendIfNoSuchLinesFromFile

AppendIfNoSuchLinesFromFile filename

For each line in the named file, call AppendIfNoSuchLine. This adds lines containing
the strings listed in the named file to the end of the current file if the file doesn’t contain
the exact line already.

4.17.6 AppendToLinelfNotContains

AppendToLineIfNotContains quoted-string

This commands looks for an exact match of the quoted string in the current line. If the
quoted string is not contained in the line, it is appended. This may be used for adding
entries to a list.

4.17.7 Audit in editfiles

Audit true/false

Local decision about whether this edit stanza will be audited. Requires auditing to be
on globally for this to have an effect.

4.17.8 AutoCreate

If this command is listed anywhere in the file action list, cfengine will create the named file
if it doesn’t exist. Normally cfengine issues an error if the named file does not exist, but if
this is set, notification of the file’'s absence is only in verbose output. New files are created

80 Cfengine v2 reference

with mode 644 (see also Umask), read access for everyone and write access for the cfengine
user (normally root). Note that if you set this, BeginGrouplfFileIsNewer will always be
true.

4.17.9 AutomountDirectResources

AutomountDirectResources quoted-string

This command is designed to assist with automounter configuration for users wishing to
use the automounter for NFS filesystems, but still use the cfengine mount model. Applied
to the current file, it is equivalent to saying: for each of the mountable resources in the list
See Section 4.30 [mountables|, page 127, append if not found a line for a direct automount
map command, to the current file. The string which follows can be used to specify any
special mount options e.g. ¢ ‘-nosuid’’ for non setuid mounting (of all the mountables).
Note that this is added to the current file and not to a file named ‘/etc/auto_direct’.

4.17.10 Backup in editfiles

Backup quoted-string

Set to true or false, on or off to set backup policy for this file. Default is on. The
default is to produce time-stamped backups of files; this may be coded explicitly by setting
to “timestamp” or “stamp”. If set to “false” or “off”, no backup is kept of the edited file. If
the value is set to “single” or “one” then only the last version of the file is kept, overwriting
any previously saved versions.

See [copybackup]|, page 63.
Backup "single"

4.17.11 BeginGrouplfDefined

BeginGroupIfDefined quoted-string

The lines following, up to the first EndGroup are executed if the quoted class is defined.
Edit groups may be nested.

4.17.12 BeginGrouplIfNotDefined

BeginGroupIfNotDefined quoted-string

The lines following, up to the first EndGroup are executed if the quoted class is not
defined. Edit groups may be nested.

4.17.13 BeginGrouplfFileExists

BeginGroupIfFileExists quoted-string

The lines following, up to the first EndGroup are executed if the quoted filename exists
(can be statted). Files which are not readable by the running process are for all intents and
purposes non-existent. Edit groups may be nested.

Chapter 4: Cfagent reference 81

4.17.14 BeginGrouplfFileIsNewer

BeginGroupIfFileIsNewer quoted-string

The lines following, up to the first EndGroup are executed if the quoted filename is newer
than the file being edited. Edit groups may be nested.

4.17.15 BeginGrouplfLineContaining

BeginGroupIfLineContaining quoted-string

The lines following, up to the first EndGroup are executed if the quoted string appears
in any line in the file. Edit groups may be nested.

4.17.16 BeginGrouplfLineMatching

BeginGroupIfLineMatching quoted-regex

The lines following, up to the first EndGroup are executed if the quoted regular expression
matches any line in the file. Edit groups may be nested.

4.17.17 BeginGrouplfMatch

BeginGroupIfMatch quoted-regex

The lines following, up to the first EndGroup are executed if the quoted regular expression
matches the current line. Edit groups may be nested.

4.17.18 BeginGrouplfNoLineContaining

BeginGroupIfNoLineContaining quoted-string

The lines following, up to the first EndGroup are executed if the quoted string does not
appear in any line in the file. Edit groups may be nested.

4.17.19 BeginGrouplfNoLineMatching

BeginGroupIfNoLineMatching quoted-regex

The lines following, up to the first EndGroup are executed if the quoted regular expression
does not match any line in the file. Edit groups may be nested.

4.17.20 BeginGrouplfNoMatch

BeginGroupIfNoMatch quoted-regex

The lines following, up to the first EndGroup are executed if the quoted regular expression
does not match the current line. Edit groups may be nested.

4.17.21 BeginGrouplIfNoSuchLine

82 Cfengine v2 reference

BeginGroupIfNoSuchLine quoted-string

The lines following, up to the first EndGroup are executed if the quoted literal string
does not match any line in the file. Edit groups may be nested.

4.17.22 BreaklIfLineMatches

BreakIfLineMatches quoted-regex

Terminates further editing of the current file if the current line matches the quoted
regular expression.

4.17.23 CatchAbort

Edit actions which abort on failure (such as LocateLineMatching) will jump to the

first instance of this marker instead of completely aborting an edit if this keyword

occurs in an editing script. You can catch the exceptions thrown by the following com-

mands: CommentNLines,CommentToLineMatching,DeleteNLines,DeleteToLineMatching,
HashCommentToLineMatching,IncrementPointer, LocateLineMatching ,PercentCommentToLineMatching i
RunScriptIf (No)LineMatching,UnCommentNLines.

4.17.24 CommentLinesMatching

CommentLinesMatching quoted-regex

Use the current value of the comment delimiters set using SetCommentStart and
SetCommentEnd to comment out lines matching the given regular expression in quotes.

4.17.25 CommentLinesStarting

CommentLinesStarting quoted-string

Use the current value of the comment delimiters set using SetCommentStart and
SetCommentEnd to comment out lines starting with the quoted literal string.

4.17.26 CommentNLines

CommentNLines quoted-string

Comments up to IV lines from the current file, s