LilyPond

The music typesetter

The LilyPond development team
Copyright (©) 1999-2006 by the authors

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

(For LilyPond version 2.11.28)




Table of Contents

Preface ... ... 1
1 Introduction .......... ... . . 2
1.1 ENgraving . .. ...ttt 2
1.2 Automated engraving. ... ..........o et 3
1.3 What symbols to engrave? .. ... ... 4
1.4 Music representation ... ... ... ..ttt e 6
1.5 Example applications. . ... ... 7
1.6 About this manual .. ... ... 8
2 Tutorial ... ... . . 11
2.1 BSOS - ottt 11
2.1.1 Compiling a file . ... ..ot 11
2.1.2  Simple Notation . . ... 12
2.1.3 Working on text files . ... 16
2.1.4 How to read the tutorial........ ... .. i 17
2.2 Single staff notation ......... .. 17
2.2.1 Relative note Names .. ..ottt 17
2.2.2  Accidentals and key signatures. ... 17
2.2.3 Ties and SIUTS . . ..ot e 19
2.2.4  Articulation and dynamics. . ....... ...t 20
2.2.5 Automatic and manual beams ........... .. 21
2.2.6  Advanced rhythmic commands. ........ ...t 22
2.3 Multiple notes at ONCe. .. ... e 23
2.3.1 Music expressions explained ............coiiiii i 23
2.3.2  Multiple SEAvVES . .. ..ot e 24
2.3.3  Piano staves. .. ... ... 25
2.3.4 Single staff polyphony ... 26
2.3.5  Combining notes into chords.......... ... 27
i S OMIES ettt e e 27
2.4.1  Printing Lyrics . ..o 28
2.4.2 Alead sheet. .. ..o 29
2.5 Final touches. ... ... 30
2.5.1  Version NUIMDET. . . ..ottt e 30
2.5.2  Adding tIt1es . . ..o 30
2.5.3  Absolute note NAMES ... ... ..t 30
2.5.4 Organizing pieces with identifiers......... . ... i 32
2.5.5  After the tutorial....... ... 33
2.5.6 How toread the manual........ ... 33

3 Putting it all together .............. ... ... ... 34
3.1 Extending the templates...... ... i 34
3.2 How LilyPond files work. . ... e 37
3.3 Score is a single musical eXPreSsion ... .....tt vttt 38

3.4 An orchestral part. ... ... 40



4 Working on LilyPond projects .............................. 42
4.1 Suggestions for writing LilyPond files........ ... . . i 42
4.1.1  General SUgEESIONS. . ... o 42
4.1.2 Typesetting existing MuUSIC. ... ....ott ittt e 43
4.1.3  Large ProJects . .. oottt 43
4.2 Saving typing with identifiers and functions............ ... ... .o i 43
4.3 Style sheets . ... 45
4.4 Updating old files . . ... 48
4.5 Troubleshooting (taking it all apart)......... ... ... .. . i i 49
4.6 Minimal examples . ... ... 49
5 Tweaking output ....... ... ... ... 51
5.1 MovIng 0bJects . ..ot 51
5.2 Fixing overlapping notation ........ ... 53
5.3 Common tWeaKs. . ... 54
5.4 Default filles . ... 56
5.5 Fitting music onto fewer pages. ... ...t 56
5.6 Advanced tweaks with Scheme..... ... ... .. 58
5.7 Avoiding tweaks with slower processing............. ..., 59
6 Basicnotation....... ... ... 60
6.1  PItChes. ... 60
6.1.1 Normal pitches ... ..o o 60
6.1.2 Accidentals. ... ... .. 61
6.1.3 Cautionary accidentals ......... ... 62
6.1.4  MICTO TOMNES . ..ottt 62
6.1.5 Note names in other languages. ... 62
6.1.6 Relative octaves .. ... 63
6.1.7 Octave check .. ... .. 64
6.1.8  TTANSPOSE . . . v e vttt et ettt 65
6.1.9  ReStS. . 66
6.1 10 SIS . v vttt et e e 66
6.2 Rhythms . .. ... o 67
6.2.1  Durations . ... 67
6.2.2  Augmentation dotS ... ... 68
6.2.3  UDletS. o oo 68
6.2.4  Scaling durations ... ..........o.iii i 70
6.2.5  Bar check ... ... 71
6.2.6 Barnumber check. ... ... e 71
6.2.7 Automatic note splitting......... ... 71
6.3 Polyphomy ... ... 72
6.3.1  CROTAS . . ottt et 72
0.3, 2 SIS « ottt 72
6.3.3 Basic polyphony . ... ... 73
6.3.4 Explicitly instantiating voices. ........ ..o 74
6.3.5 Collision Resolution ....... ... i 76
6.4  Staff notation .. ... ... e 78
6.4. 1  Clef . 78
6.4.2 Key SIgnature . ... ... e 79
6.4.3 Time SIgNAatUTre . ... ..ottt e 80
6.4.4 Partial measures. .. ... ... 82
0.4.5 Bar lInes .. ... 82

6.4.6 Unmetered MUSIC. . . ..ottt 84



6.4.7 System start delimiters . ....... ..ot 84
6.4.8 Staff symbol. . ... 86
6.4.9 Writing music in parallel. ... 87
6.5 Connecting NOLES . . . ...ttt ettt e 89
6.0, 1 IS . et 89
0.5, 2 SIS vttt ettt e 90
6.5.3 Phrasing sIUIs . ... 91
6.5.4 Laissez VIDrer ties ... ....oouiiuii 92
6.5.5  Automatic beams. .. ... ... 92
6.5.6 Manual beams. ... 93
6.5.7  GIace NOTES . . ..ottt e e e e 94
6.6 EXPressive marks. ... ... 97
6.6.1  Articulations .. ... ... . 97
6.6.2 Fingering instructions ....... ... 99
6.6.3 Dynamics .. ... 100
6.6.4 Breath marks ..... ... e 102
6.6.5  TrillS . ..o 103
6.6.6 GLSSANAO . ..ottt 103
6.6.7  ATPOGEIO . ot 104
6.6.8 Falls and doits ....... ..o 105
0.7  RePealS . o oot 105
6.7.1 Repeat types .« oot 105
6.7.2 Repeat syntax. ... ......ooiiiiiii e 105
6.7.3 Repeats and MIDI ... 107
6.7.4 Manual repeat commands ............ . 108
6.7.5  Tremolo repeats ... ...t e 108
6.7.6 Tremolo subdiviSIOns . ... ..o 109
6.7.7 Measure TePeats. .. ..o e 109

7 Instrument-specific notation ........................ ... . ... 111
7.1 Plano muSIC. .. ..o e 111
7.1.1 Automatic staff changes ....... ... 111
7.1.2 Manual staff switches. ... ... ... 112
T.1.3 Pedals. ... e 112
7.1.4  Staff switch lines . ... 113
7.1.5 Cross staff stems .. ... 114
7.2 Chord NAIIES . . ..ttt et e et e e 114
7.2.1 Introducing chord names ......... ... i 114
7.2.2 Chords mode. ... ... 115
7.2.3 Printing chord names......... . . 117
7.3 Vocal TINUSIC . . ..o ot 120
7.3.1  Setting siImple SONES . . ..ottt 121
7.3.2 Entering lyrics .. ... 121
7.3.3 Aligning lyrics to a melody .. ... 123
7.3.3.1 Automatic syllable durations.............. ... i 123
7.3.3.2  Another way of entering lyrics ........... .o i 124
7.3.3.3 Assigning more than one syllable to a single note....................... 125
7.3.3.4 More than one note on a single syllable ............. ... ... ... ... 126
7.3.3.5 Extenders and hyphens........ ... .. .. 127

7.3.4 Working with lyrics and identifiers............ ... ... i 127
7.3.5 Flexibility in placement. .........o 128
7.3.5.1 Lyrics to multiple notes of a melisma ............... ... ... .. ... ..... 128
7.3.5.2 Divisi IyTics ..o ooe it 129

7.3.5.3 Switching the melody associated with a lyrics line...................... 130



7.3.5.4 Lyrics independent of notes. ... 130

7.3.6  Spacing LyTics . ..ottt 131
7.3.7 More about stanzas ........ ... 132
7.3.7.1 Adding stanza numbers. ........ ... 132
7.3.7.2 Adding dynamics marks ......... .. 132
7.3.7.3 Adding singer names . ......... ...t 133
7.3.7.4 Printing stanzas at theend ....... ... .. ... 133
7.3.7.5 Printing stanzas at the end in multiple columns........................ 134

T.3.8  AmMDItUS ..o 136
7.3.9  Other vocal ISSUES . . ...ttt 137
7.4 Rhythmic music. ... ... 137
7.4.1 Showing melody rhythms......... ... . 137
7.4.2 Entering PercCuSSION . .. ...ttt 138
T7.4.3 Percussion SEAVES . . ... ...ttt 138
T.4.4 Ghost NOtES . ..o 141
85 T 7= PP 141
7.5.1 String number indications .......... ..o 141
7.5.2 Tablatures basiC. . ... ... 141
7.5.3 Non-guitar tablatures. ... ... .. 142
7.5.4 Banjo tablatures ......... .. 143
7.5.0 Fret diagrams .. ... 144
7.5.6  Right hand fingerings. ... 144
7.5.7  Other guitar ISSUES . . ..ottt e 145
7.6 BagDiDe. . ittt 146
7.6.1 Bagpipe definitions . .... ..ot e 146
7.6.2 Bagpipe example . ... ... 146
T.7 Ancient notation ... ....... .o 148
7.7.1 Ancient note heads . ....... ... 148
7.7.2 Ancient accidentals. ... ... ... 149
T7.3  ANCIENE TESTS . ..ottt e e 149
T.7.4 Ancient clefs . ... 150
T.7.5 Ancient flags .. ... 152
7.7.6  Ancient time Signatures . ... . ...t 153
7.7.7 Ancient articulations .......... .. 154
T8 CUSTOES . oottt e e e e 154
T.7.9  DIVISIONES . o oottt e 155
T.7.10 0 LIgAtUIES. . ottt e 156
7.7.10.1 White mensural ligatures . .......... . i 156
7.7.10.2 Gregorian square neumes ligatures............. ..o i 157
7.7.11 Gregorian Chant contexts ...... ..ottt 164
7.7.12 Mensural COntexts. .. ... 164
7.7.13 Musica ficta accidentals . ... 165
T.7.14  Figured Dass .. ... 166
7.8 Other instrument specific notation........ ... . i i 168

7.8.1 Artificial harmonics (Strings) .........oooiiiiiiii i 168



8 Advanced notation.............. ... 169
B LKt et 169
.11 TexXt SCTIPES « . v vttt 169
8.1.2 Text and line SPaNmers ... ......ouii e 170

8. 1.3 TexXt SPANIETS . .« oottt ettt et 172

8. 1.4 Text MATKS. ..ottt e 173
8.1.5  Text markup ... ..o e 175
8.1.6 Nested SCOTES. ...ttt 178
8.1.7 Page wrapping text. .. ... 178
8.1.8 Overview of text markup commands........... ..., 179
8.1.9 Overview of text markup list commands ............ ... .. ... ... 187
8.1.10 Font Selection ... .....ouiiii ittt 187
8.1.11 New dynamic marks. ...... ... e 188
8.2 Preparing Parts . . ...t 189
8.2.1 Multi MeASUTE TESTS . ..ottt ettt e e 189
8.2.2 Metronome marks .. ...... ... 191
8.2.3 Rehearsal marks. .. ... 192
8.2.4 Bar NUMDETS . ..ot 194
8.2.5 Instrument Names ... ...ttt 195
8.2.6 Instrument transpositions. ...........c.oo i 198
8.2.7 Ottava brackets .. ... ... 198
8.2.8 Different editions from one source......... ... . i i 199
8.3 Orchestral MUSIC .. ...t 200
8.3.1 Automatic part combining...........ouiuiiiii e 200
8.3.2 Hiding staves. ... ... 202
8.3.3 Quoting other vOICes .. ... ... 202
8.3.4 Formatting cue notes. ... e 204
8.3.5  Aligning to cadenzas . ...........o it 205
8.4  Contemporary NOLATION . . . ...ttt e 206
8.4.1 Polymetric notation . ... 206
8.4.2 Time administration. ............ouiiiiiii e 208
8.4.3 Proportional notation (introduction)................ ... i 209
8.4 4 ClUSEETS . o ottt 210
8.4.5 Special noteheads . ......... i 210
8.4.6 Feathered beams ..... ... 211
8.4.7 Improvisation .. ... ..o 211
8.4.8 Selecting notation font size ...... ... 212
8.5 Educational Use . ....... ... 212
8.5.1 Balloon help ... ..o 213
8.5.2 Blank music sheet .. ... ... 213
8.5.3 Hidden motes . ...... ..o e 214
8.5.4 Shape note heads. ... 214
8.5.5 Easy Notation note heads ......... ... i i 214
8.5.6  Analysis brackets. ....... .. 215
8.5.7  Coloring 0bJECtS . ..o u i 215
8.5.8 Parentheses ....... ..o 217

8.5.9  Grid LINes . .ottt 217



9 Changing defaults.............. ... ... ... .. 219
9.1 Automatic NOLATION . .. ...t 219
9.1.1 Automatic accidentals . ....... ... 219
9.1.2 Setting automatic beam behavior......... ... ... .. i 223
9.2 Interpretation COntexts ... ... ...t e 226
9.2.1 Contexts explained . . ...... ... e 226
9.2.2  Creating COMTEXES . . vttt e e e e 227
9.2.3 Changing context properties on the fly........ ... ... ... .. 229
9.2.4 Modifying context plug-ins ... 230
9.2.5 Layout tunings within contexts....... ... ... . . i i 232
9.2.6 Changing context default settings......... ... 233
9.2.7 Defining new CONTEXES .« . ut ittt e 234
0.2.8  AlgNing CONBEXTS . ..ottt e e et e e 236
9.2.9  Vertical grouping of grobs ... ... i 236
9.3 The \override command ........ ... ...t 236
9.3.1 Constructing a tweak........ ..o 236
9.3.2 Navigating the program reference........... ... .. ... i i, 237
9.3.3 Layout interfaces........... i 238
9.3.4 Determining the grob property ........ ..o 239
9.3.5 Objects connected to the input ........... ... i 240
9.3.6 Using Scheme code instead of \tweak............. ... ... 240
9.3.7 \Set V8. \OVerTide ... oottt 241
9.3.8 Difficult tweaks. ... . 241
10 Non-musical notation...................................... 244
10.1 Input files. ..o 244
10.1.1  File structure (introduction)..............oooiiiiiiiiiiiiiiiiiii ... 244
10.1.2  File Structure ... ..o 244
10.1.3 A single MusiC €XPresSiOn . .. ...ttt 245
10.1.4 Multiple scores in a book . ... ... 246
10.1.5 Extracting fragments of notation .......... ... ... . i 247
10.1.6 Including LilyPond files ......... . 248
10.1.7  Text encOdiNg . ..o utt ittt e e e e 248
10.2  Titles and headers . ... e 248
10.2.1  Creating titles. . ..ot 249
10.2.2  Custom titles . ... 252
10.2.3  Reference to page nUMbDErS .. ...t 253
10.2.4  Table of contents. . ... .. ... 254
10.3 MIDI outpub . . ..ot 255
10.3.1  Creating MIDI files. . ... e 256
10.3.2 MIDI block .ot 257
10.3.3 MIDI instrument Names . ... ......ouuuttnnn e 257
10.4 Displaying LilyPond notation........... ... . i 257

10.5  Skipping corrected muSIiC. ... ... 257



11

12

SPACING ISSUES . ... 259
11,1 Paper and PAZES . . ..o ottt e et e 259
1111 Paper SIZ€. .o e 259
11.1.2  Page formatting . ... 259
11.2 Music layout . ... ..o 264
11.2.1  Setting the staff size........ oo i 264
11.2.2 Score Layoub . . . ..ot 264
11.3  Displaying SPaciig . ... ...ttt 265
1104 Breaks . oo 266
11.4.1  Line breaking . ... ..o 266
11.4.2 Page breaking .. ..ot 267
11.4.3 Optimal page breaking .......... ... 267
11.4.4  Optimal page turning . ........ ..o e 268
11.4.5 Minimal page breaking ............ . 269
11.4.6  Explicit breaks . ... ..o 269
11.4.7 Using an extra voice for breaks........... ..o i 270
11.5 Vertical SPacCing ... ...ttt 272
11.5.1 Vertical spacing inside a system ... 272
11.5.2  Vertical spacing between systems ............ .o i 274
11.5.3  Explicit staff and system positioning.......... ... i 276
11.5.4 Two-pass vertical SPaCIng. .. ......uutttiiii e 282
11.5.5 Vertical collision avoidance .. ... 283
11.6  Horizontal Spacing ... ........uuoi i e 284
11.6.1 Horizontal spacing Overview ... ..........eiitieeen i 284
11.6.2  NeW SPACIIG Q€A . . .« ettt ettt et e et ettt e e 286
11.6.3 Changing horizontal spacing............ ... 286
11.6.4  Line length. . ... 288
11.6.5 Proportional notation .......... .. 288
Interfaces for programmers ............................... 297
12,1 Music fUnCtIONS . .« oot e 297
12.1.1  Overview of music functions......... ... 297
12.1.2  Simple substitution functions.......... ... ... 297
12.1.3 Paired substitution functions........ ... ... 299
12.1.4 Mathematics in functions......... ... .. i 299
12.1.5 Void functions. . . ....oou it 300
12.1.6 Functions without arguments......... ... . ... i 300
12.1.7  Overview of available music functions.......... ... ... ... . ... ... 300
12.2  Programmer interfaces . ....... ... 303
12.2.1 Input variables and Scheme. ......... ... ... .. . . i 303
12.2.2  Internal music representation . ............. . 304
12.3 Building complicated functions........ ... ... o i 305
12.3.1 Displaying music eXpressions . ... ...ttt 305
12.3.2  MUSIC PTOPEITIES . . oottt et e 306
12.3.3 Doubling a note with slurs (example)........... ..., 307
12.3.4 Adding articulation to notes (example) ..... ... 308
12.4 Markup programmer interface............. ... 310
12.4.1 Markup construction in Scheme ........ ... ... ... i 310
12.4.2  How markups work internally.......... .. .. i i 311
12.4.3 New markup command definition........... ... ... ... ..o 311
12.4.4 New markup list command definition ........... ... ... ... .. ... . ..., 313
12.5  Contexts for Programimers. ... ......ouu e 313

12.5.1 Context evaluation . ... ..ot 314



12.5.2 Running a function on all layout objects........ ... ... ... ... .. 314

12.6 Scheme procedures as Properties. ... ..ot 314
13 Running LilyPond ........ ... ... ... ... ... ... 316
13.1  Invoking Hlypond . ... 316
13.1.1  Command line options .. .......couiiiii e 316
13.1.2  Environment variables. ............ i 319

13.2  Notes for the MacOS X app ... vvttnt et e e i 320
13.3 Updating with convert-1y...... ... .o 320
13.4  Reporting hDugs . ...t 322
13.5  EITOT MIESSAZES . . . v vttt ettt et e e 322
13.6  Editor SUPPOT . . ..o 323
13.7 Point and click. . ... o 324
14 1lilypond-book: Integrating text and music............... 325
14.1  An example of a musicological document ........... ... ... ... ... ... 325
14.2  Integrating INTEX and musiC. . ..ot 328
14.3 Integrating Texinfo and music........ ... 329
14.4  Integrating HTML and music ... i 330
14.5 Integrating DocBook and music .......... ..o i i 331
Common CONVENTIONS .« . ...ttt ettt et ettt 331
Including a LilyPond file ... 331
Including LilyPond code. ... 331
Processing the DocBook document ........ ... o i 331

14.6  Music fragment Options ....... ... 331
14.7  Invoking Lilypond=bo0oK .. ......uunut ittt 333
14.8  Filename eXtensionsS . ... ...ttt et 335
14.9 Many quotes of a large SCOTe .. ... ...t e 335
14.10 Inserting LilyPond output into OpenOffice.org........... ...t 335
14.11 Inserting LilyPond output into other programs .................. .. ... ... ... 335
15 Converting from other formats........................... 337
151 Invoking midi2ly ... ...ttt e 337
15.2 Invoking etf21y .. ..o 338
15.3 Invoking musicxmI2Ly ... ...ttt 338
15.4 Invoking abC2ly ...t 339
15.5  Generating LilyPond files ........ ... i 340
Appendix A Literature list .................... ... ... ... ... 341
Appendix B Scheme tutorial ................. ... ... ... ... 342
Appendix C Notation manual tables........................ 344
C.1 Chord name chart ....... ... 344
C.2 MIDIINStruments . .. .. ...ttt e e e e e e 345
C.3  List of COlOrs ..o 346
C.4 The Feta font. . ..o 348

C.5 Note head styles . ..o 363



Appendix D Templates............... ... ... ............. 364
D.1 Single stafl ... 364
D11 Notes only . ... 364

D.1.2 Notes and LyTics .. ..ottt e 364

D.1.3 Notes and chords ...... ... 365

D.1.4 Notes, lyrics, and chords. ... e 365

D.2 Piano templates ... ... ... 366
D.2.1  Solo PIlano . ... 366

D.2.2 Piano and melody with lyrics ... 367

D.2.3 Piano centered 1yTics. ... ... 368

D.2.4 Piano centered dynamics. ........ ... 369

D.3  String quartet .. ... 371
D.3.1  String quartet . ... 371

D.3.2  String quartet Parts. .........uee et 372

D.4 Vocal ensembles . ... ... 374
D41 SATB vOCAL SCOTE . . . oottt e e e e 374

D.4.2 SATB vocal score and automatic piano reduction........................... 376

D.4.3 SATB with aligned contexts. ....... ...t 378

D.5 Ancient notation templates ....... ... .. 381
D.5.1 Transcription of mensural music......... ... i 381

D.5.2 Gregorian transcription template.......... ... ... i 386

D.6  Jazz combo. ... 387
D.7 Lilypond-book templates. ........ ... 393
DT L LA e X . e 393

D.T7.2  Texinfo . ... 393
Appendix E Cheat sheet...................... ... ........... 395
Appendix F  GNU Free Documentation License ........... 399
F.0.1 ADDENDUM: How to use this License for your documents ................. 404
Appendix G LilyPond command index ..................... 405

Appendix H LilyPond index................................. 409



Preface 1

Preface

It must have been during a rehearsal of the EJE (Eindhoven Youth Orchestra), somewhere in
1995 that Jan, one of the cranked violists, told Han-Wen, one of the distorted French horn
players, about the grand new project he was working on. It was an automated system for
printing music (to be precise, it was MPP, a preprocessor for MusiXTeX). As it happened,
Han-Wen accidentally wanted to print out some parts from a score, so he started looking at the
software, and he quickly got hooked. It was decided that MPP was a dead end. After lots of
philosophizing and heated email exchanges, Han-Wen started LilyPond in 1996. This time, Jan
got sucked into Han-Wen’s new project.

In some ways, developing a computer program is like learning to play an instrument. In the
beginning, discovering how it works is fun, and the things you cannot do are challenging. After
the initial excitement, you have to practice and practice. Scales and studies can be dull, and
if you are not motivated by others — teachers, conductors or audience — it is very tempting to
give up. You continue, and gradually playing becomes a part of your life. Some days it comes
naturally, and it is wonderful, and on some days it just does not work, but you keep playing,
day after day.

Like making music, working on LilyPond can be dull work, and on some days it feels like
plodding through a morass of bugs. Nevertheless, it has become a part of our life, and we keep
doing it. Probably the most important motivation is that our program actually does something
useful for people. When we browse around the net we find many people who use LilyPond, and
produce impressive pieces of sheet music. Seeing that feels unreal, but in a very pleasant way.

Our users not only give us good vibes by using our program, many of them also help us by
giving suggestions and sending bug reports, so we would like to thank all users that sent us bug
reports, gave suggestions or contributed in any other way to LilyPond.

Playing and printing music is more than a nice analogy. Programming together is a lot of
fun, and helping people is deeply satisfying, but ultimately, working on LilyPond is a way to
express our deep love for music. May it help you create lots of beautiful music!

Han-Wen and Jan

Utrecht /Eindhoven, The Netherlands, July 2002.



Chapter 1: Introduction 2

1 Introduction

1.1 Engraving

The art of music typography is called (plate) engraving. The term derives from the traditional
process of music printing. Just a few decades ago, sheet music was made by cutting and stamping
the music into a zinc or pewter plate in mirror image. The plate would be inked, the depressions
caused by the cutting and stamping would hold ink. An image was formed by pressing paper
to the plate. The stamping and cutting was completely done by hand. Making a correction was
cumbersome, if possible at all, so the engraving had to be perfect in one go. Engraving was a
highly specialized skill; a craftsman had to complete around five years of training before earning
the title of master engraver, and another five years of experience were necessary to become truly
skilled.

Nowadays, all newly printed music is produced with computers. This has obvious advantages;
prints are cheaper to make, and editorial work can be delivered by email. Unfortunately, the
pervasive use of computers has also decreased the graphical quality of scores. Computer printouts
have a bland, mechanical look, which makes them unpleasant to play from.

The images below illustrate the difference between traditional engraving and typical computer
output, and the third picture shows how LilyPond mimics the traditional look. The left picture
shows a scan of a flat symbol from an edition published in 2000. The center depicts a symbol
from a hand-engraved Brenreiter edition of the same music. The left scan illustrates typical
flaws of computer print: the staff lines are thin, the weight of the flat symbol matches the light
lines and it has a straight layout with sharp corners. By contrast, the Brenreiter flat has a bold,
almost voluptuous rounded look. Our flat symbol is designed after, among others, this one. It
is rounded, and its weight harmonizes with the thickness of our staff lines, which are also much
thicker than lines in the computer edition.

b

Henle (2000) Brenreiter (1950) LilyPond Feta font
(2003)

Ndn

In spacing, the distribution of space should reflect the durations between notes. However,
many modern scores adhere to the durations with mathematical precision, which leads to poor
results. In the next example a motive is printed twice: once using exact mathematical spacing,
and once with corrections. Can you spot which fragment is which?

4]

K ) | | | | |
r’(\r\ € [ P_I ! P T 1
oS - o — . i o009

P
T
~
iy




Chapter 1: Introduction 3

Each bar in the fragment only uses notes that are played in a constant rhythm. The spacing
should reflect that. Unfortunately, the eye deceives us a little; not only does it notice the
distance between note heads, it also takes into account the distance between consecutive stems.
As a result, the notes of an up-stem/down-stem combination should be put farther apart, and
the notes of a down-stem/up-stem combination should be put closer together, all depending on
the combined vertical positions of the notes. The upper two measures are printed with this
correction, the lower two measures without, forming down-stem/up-stem clumps of notes.

Musicians are usually more absorbed with performing than with studying the looks of a piece
of music, so nitpicking about typographical details may seem academical. But it is not. In larger
pieces with monotonous rhythms, spacing corrections lead to subtle variations in the layout of
every line, giving each one a distinct visual signature. Without this signature all lines would
look the same, and they become like a labyrinth. If a musician looks away once or has a lapse
in concentration, the lines might lose their place on the page.

Similarly, the strong visual look of bold symbols on heavy staff lines stands out better when
the music is far away from the reader, for example, if it is on a music stand. A careful distribution
of white space allows music to be set very tightly without cluttering symbols together. The result
minimizes the number of page turns, which is a great advantage.

This is a common characteristic of typography. Layout should be pretty, not only for its own
sake, but especially because it helps the reader in her task. For performance material like sheet
music, this is of double importance: musicians have a limited amount of attention. The less
attention they need for reading, the more they can focus on playing the music. In other words,
better typography translates to better performances.

These examples demonstrate that music typography is an art that is subtle and complex,
and that producing it requires considerable expertise, which musicians usually do not have.
LilyPond is our effort to bring the graphical excellence of hand-engraved music to the computer
age, and make it available to normal musicians. We have tuned our algorithms, font-designs,
and program settings to produce prints that match the quality of the old editions we love to see
and love to play from.

1.2 Automated engraving

How do we go about implementing typography? If craftsmen need over ten years to become
true masters, how could we simple hackers ever write a program to take over their jobs?

The answer is: we cannot. Typography relies on human judgment of appearance, so people
cannot be replaced completely. However, much of the dull work can be automated. If LilyPond
solves most of the common situations correctly, this will be a huge improvement over existing
software. The remaining cases can be tuned by hand. Over the course of years, the software
can be refined to do more and more things automatically, so manual overrides are less and less
necessary.

When we started, we wrote the LilyPond program entirely in the C++ programming language;
the program’s functionality was set in stone by the developers. That proved to be unsatisfactory
for a number of reasons:

e When LilyPond makes mistakes, users need to override formatting decisions. Therefore, the
user must have access to the formatting engine. Hence, rules and settings cannot be fixed
by us at compile-time but must be accessible for users at run-time.

e Engraving is a matter of visual judgment, and therefore a matter of taste. As knowledgeable
as we are, users can disagree with our personal decisions. Therefore, the definitions of
typographical style must also be accessible to the user.

e Finally, we continually refine the formatting algorithms, so we need a flexible approach to
rules. The C++ language forces a certain method of grouping rules that do not match well
with how music notation works.



Chapter 1: Introduction 4

These problems have been addressed by integrating an interpreter for the Scheme program-
ming language and rewriting parts of LilyPond in Scheme. The current formatting architecture
is built around the notion of graphical objects, described by Scheme variables and functions.
This architecture encompasses formatting rules, typographical style and individual formatting
decisions. The user has direct access to most of these controls.

Scheme variables control layout decisions. For example, many graphical objects have a direc-
tion variable that encodes the choice between up and down (or left and right). Here you see two
chords, with accents and arpeggios. In the first chord, the graphical objects have all directions
down (or left). The second chord has all directions up (right).

=

0 |

===

=

The process of formatting a score consists of reading and writing the variables of graphical
objects. Some variables have a preset value. For example, the thickness of many lines — a
characteristic of typographical style — is a variable with a preset value. You are free to alter this
value, giving your score a different typographical impression.

. be s » - l’f-
)' / K) ‘ | |
— l,

> _® - 'f
o o e l” ? = ’

Formatting rules are also preset variables: each object has variables containing procedures.
These procedures perform the actual formatting, and by substituting different ones, we can
change the appearance of objects. In the following example, the rule which note head objects
are used to produce their symbol is changed during the music fragment.

) A

)

0]
=

|

- ! 9

< C b bla =
V I

mm\_/

1.3 What symbols to engrave?

The formatting process decides where to place symbols. However, this can only be done once it
is decided what symbols should be printed, in other words what notation to use.

Common music notation is a system of recording music that has evolved over the past 1000
years. The form that is now in common use dates from the early renaissance. Although the
basic form (i.e., note heads on a 5-line staff) has not changed, the details still evolve to express
the innovations of contemporary notation. Hence, it encompasses some 500 years of music. Its
applications range from monophonic melodies to monstrous counterpoints for large orchestras.

How can we get a grip on such a many-headed beast, and force it into the confines of a com-
puter program? Our solution is to break up the problem of notation (as opposed to engraving,
i.e., typography) into digestible and programmable chunks: every type of symbol is handled by



Chapter 1: Introduction 5

a separate module, a so-called plug-in. Each plug-in is completely modular and independent, so
each can be developed and improved separately. Such plug-ins are called engravers, by analogy
with craftsmen who translate musical ideas to graphic symbols.

In the following example, we see how we start out with a plug-in for note heads, the Note_
heads_engraver.

Then a Staff_symbol_engraver adds the staff

e ——

e — — L
-
the Clef_engraver defines a reference point for the staff

0 ;
{7 ®

g

and the Stem_engraver adds stems.

0

)
) o mopasf
| ) V) V) v |
I y r r r -
The Stem_engraver is notified of any note head coming along. Every time one (or more, for a
chord) note head is seen, a stem object is created and connected to the note head. By adding
engravers for beams, slurs, accents, accidentals, bar lines, time signature, and key signature, we
get a complete piece of notation.

_o_gﬂj_ -o-i_'
\_/l ——

This system works well for monophonic music, but what about polyphony? In polyphonic
notation, many voices can share a staff.

f

X

=
|

te —dl—a—o—o—'::‘—
=

In this situation, the accidentals and staff are shared, but the stems, slurs,

beams, etc., are private to each voice. Hence, engravers should be grouped.
The engravers for mnote heads, stems, slurs, etc., go into a group -called
‘Voice context,” while the engravers for key, accidental, bar, etc., go into a group
called ‘Staff

context.” In the case of polyphony, a single Staff context contains more than one Voice context.
Similarly, multiple Staff contexts can be put into a single Score context. The Score context is
the top level notation context.



Chapter 1: Introduction 6

See also

Program reference:

g
e =

\ [ )
e
hd

pa—

N (o]

Ex

Ty
e
| N
e
e

1.4 Music representation

Ideally, the input format for any high-level formatting system is an abstract description of the
content. In this case, that would be the music itself. This poses a formidable problem: how
can we define what music really is? Instead of trying to find an answer, we have reversed the
question. We write a program capable of producing sheet music, and adjust the format to be
as lean as possible. When the format can no longer be trimmed down, by definition we are left
with content itself. Our program serves as a formal definition of a music document.

The syntax is also the user-interface for LilyPond, hence it is easy to type
c'4 d'8
a quarter note C1 (middle C) and an eighth note D1 (D above middle C)

0
"4
7\ r @)
[ Fan Y 0

o e ¥

On a microscopic scale, such syntax is easy to use. On a larger scale, syntax also needs
structure. How else can you enter complex pieces like symphonies and operas? The structure is
formed by the concept of music expressions: by combining small fragments of music into larger
ones, more complex music can be expressed. For example

cd

Chords can be constructed with << and >> enclosing the notes

<<c4 d4 e4d>>



Chapter 1: Introduction 7

This expression is put in sequence by enclosing it in curly braces { ... }
{ £4 <<c4 d4 e4>> }

o)

)" 4 )
The above is also an expression, and so it may be combined again with another simultaneous
expression (a half note) using <<, \\, and >>

<< g2 \\ { f4 <<c4 d4 e4>> } >>

0

g" e —

Such recursive structures can be specified neatly and formally in a context-free grammar.
The parsing code is also generated from this grammar. In other words, the syntax of LilyPond
is clearly and unambiguously defined.

User-interfaces and syntax are what people see and deal with most. They are partly a matter
of taste, and also subject of much discussion. Although discussions on taste do have their merit,
they are not very productive. In the larger picture of LilyPond, the importance of input syntax is
small: inventing neat syntax is easy, while writing decent formatting code is much harder. This
is also illustrated by the line-counts for the respective components: parsing and representation
take up less than 10% of the source code.

1.5 Example applications

We have written LilyPond as an experiment of how to condense the art of music engraving into
a computer program. Thanks to all that hard work, the program can now be used to perform
useful tasks. The simplest application is printing notes.

A

il

P>

o &

By adding chord names and lyrics we obtain a lead sheet.

n C C F o C
—@—4—|—|—,\ % ! ! [ o—@ —ﬁ &
oJ ¢ &

twin kle twin kle little star

Polyphonic notation and piano music can also be printed. The following example combines
some more exotic constructs.

Screech and boink
Random complex notation
Han-Wen Nienhuys



Chapter 1: Introduction 8

L
n ez » < ld 1J
AN VYD Q |
A\ (@) I
o

N
YL
IS
D
B
Ny
= s
E=SE
wW

QL

The fragments shown above have all been written by hand, but that is not a requirement.
Since the formatting engine is mostly automatic, it can serve as an output means for other
programs that manipulate music. For example, it can also be used to convert databases of
musical fragments to images for use on websites and multimedia presentations.

This manual also shows an application: the input format is text, and can therefore be easily
embedded in other text-based formats such as IXTEX, HTML, or in the case of this manual,
Texinfo. By means of a special program, the input fragments can be replaced by music images
in the resulting PDF or HTML output files. This makes it easy to mix music and text in
documents.

1.6 About this manual

The manual is divided into four books.

Learning manual
This book explains how to begin learning LilyPond, as well as explaining some key concepts in
easy terms.

e Chapter 2 [Tutorial], page 11, gives a gentle introduction to typesetting music. First time
users should start here.

o Chapter 3 [Putting it all together], page 34, explains some general concepts about the lily-
pond file format. If you are not certain where to place a command, read this chapter!

e Chapter 4 [Working on LilyPond projects/, page 42, discusses practical uses of LilyPond
and how to avoid some common problems.

o Chapter 5 [Tweaking output], page 51, shows how to change the default engraving that
LilyPond produces.

Notation reference
This book explains all the LilyPond commands which produce notation. It assumes that readers
are familiar with the concepts in the Learning manual.

e Chapter 6 [Basic notation], page 60, discusses topics grouped by notation construct. This
section gives details about basic notation that will be useful in almost any notation project.

e Chapter 7 [Instrument-specific notation/, page 111, discusses topics grouped by notation
construct. This section gives details about special notation that will only be useful for
particular instrument (or vocal) groups.

e Chapter 8 [Advanced notation], page 169, discusses topics grouped by notation construct.
This section gives details about complicated or unusual notation.

e Chapter 9 [Changing defaults], page 219, explains how to fine tune layout.

e Chapter 10 [Non-musical notation/, page 2/4, discusses non-musical output such as titles,
multiple movements, and how to select which MIDI instruments to use.

o Chapter 11 [Spacing issues], page 259, discusses issues which affect the global output, such
as selecting paper size or specifying page breaks.

e Chapter 12 [Interfaces for programmers], page 297, explains how to create music functions.



Chapter 1: Introduction 9

Program usage

This book explains how to execute the program and how to integrate LilyPond notation with
other programs.

Chapter 13 [Running LilyPond], page 316, shows how to run LilyPond and its helper pro-
grams. In addition, this section explains how to upgrade input files from previous versions
of LilyPond.

Chapter 1/ [LilyPond-book], page 325, explains the details behind creating documents with
in-line music examples, like this manual.

Chapter 15 [Converting from other formats/, page 337, explains how to run the conversion
programs. These programs are supplied with the LilyPond package, and convert a variety
of music formats to the .1y format.

Appendices

This book contains useful reference charts.

Appendiz A [Literature list], page 341, contains a set of useful reference books for those who
wish to know more on notation and engraving.

The Appendiz B [Scheme tutorial], page 342, presents a short introduction to Scheme, the
programming language that music functions use.

Appendiz C' [Notation manual tables/, page 344, are a set of tables showing the chord names,
MIDI instruments, a list of color names, and the Feta font.

Appendiz D [Templates], page 364, of LilyPond pieces. Just cut and paste a template into
a file, add notes, and you're done!

The Appendiz E [Cheat sheet], page 395, is a handy reference of the most common LilyPond
commands.

The Appendiz G [LilyPond command index], page 405, is an index of all LilyPond
\commands.

The Appendiz H [LilyPond index/, page 409, is a complete index.

Other information

There are a number of other places which may be very valuable.

The music glossary explains musical terms, and includes translations to various languages.
It is a separate document, available in HTML and PDEF. If you are not familiar with music
notation or music terminology (especially if you are a non-native English speaker), it is
highly advisable to consult the glossary.

The Snippets are a great collection of short examples which demonstrate tricks, tips, and
special features of LilyPond. Most of these snippets can also be found in the LilyPond
Snippet Repository. This website also has a searchable LilyPond manual.

The Program reference is a set of heavily cross linked HTML pages, which document the
nitty-gritty details of each and every LilyPond class, object, and function. It is produced
directly from the formatting definitions used.

Almost all formatting functionality that is used internally, is available directly to the user.
For example, all variables that control thickness values, distances, etc., can be changed in
input files. There are a huge number of formatting options, and all of them are described in
this document. Each section of the notation manual has a See also subsection, which refers
to the generated documentation. In the HTML document, these subsections have clickable
links.


http://lsr.dsi.unimi.it/
http://lsr.dsi.unimi.it/

Chapter 1: Introduction 10

Once you are an experienced user, you can use the manual as reference: there is an extensive
index!, but the document is also available in a big HTML page, which can be searched easily
using the search facility of a web browser.

In all HTML documents that have music fragments embedded, the LilyPond input that was
used to produce that image can be viewed by clicking the image.

The location of the documentation files that are mentioned here can vary from system to
system. On occasion, this manual refers to initialization and example files. Throughout this
manual, we refer to input files relative to the top-directory of the source archive. For example,
‘input/lsr/dirname/bla.ly’ may refer to the file ‘1ilypond2.x.y/input/lsr/dirname/bla
.1ly’. On binary packages for the Unix platform, the documentation and examples can typi-
cally be found somewhere below ‘/usr/share/doc/lilypond/’. Initialization files, for example
‘scm/lily.scm’, or ‘ly/engraver-init.ly’, are usually found in the directory ‘/usr/share/
lilypond/’.

Finally, this and all other manuals, are available online both as PDF files and HTML from
the web site, which can be found at http://www.lilypond.org/.

Lrf you are looking for something, and you cannot find it in the manual, that is considered a bug. In that case,
please file a bug report.


http://www.lilypond.org/

Chapter 2: Tutorial 11

2 Tutorial

This tutorial starts with an introduction to the LilyPond music language and how to produce
printed music. After this first contact we will explain how to create common musical notation.

2.1 First steps

This section gives a basic introduction to working with LilyPond.

2.1.1 Compiling a file

The first example demonstrates how to start working with LilyPond. To create sheet music, we
write a text file that specifies the notation. For example, if we write

{
c 1 e ] g | e 1
}
the result looks like this

0 a
€ |
[Y) &

Warning: Every piece of LilyPond input needs to have { curly braces } placed around the
input. The braces should also be surrounded by a space unless they are at the beginning or
end of a line to avoid ambiguities. These may be omitted in some examples in this manual, but
don’t forget them in your own music!

In addition, LilyPond input is case sensitive. {c d e } is valid input; { C D E } will produce
an error message.

Entering music and viewing output

In this section we will explain what commands to run and how to view or print the output.

MacOS X

If you double click LilyPond.app, it will open with an example file. Save it, for example, to
‘test.ly’ on your Desktop, and then process it with the menu command ‘Compile > Typeset
File’. The resulting PDF file will be displayed on your screen.

Be warned that the first time you ever run LilyPond, it will take a minute or two because all
of the system fonts have to be analyzed first.

For future use of LilyPond, you should begin by selecting
or ‘Open’.
You must save your file before typesetting it. If any errors occur in processing, please see the
log window.

Windows

On Windows, if you double-click in the LilyPond icon on the Desktop, it will open a simple
text editor with an example file. Save it, for example, to ‘test.ly’ on your Desktop and then
double-click on the file to process it (the file icon looks like a note). After some seconds, you will
get a file ‘test.pdf’ on your desktop. Double-click on this PDF file to view the typeset score.
An alternative method to process the ‘test.ly’ file is to drag and drop it onto the LilyPond
icon using your mouse pointer.



Chapter 2: Tutorial 12

To edit an existing ‘. 1y’ file, right-click on it and select
source”. To get an empty file to start from, run the editor as described above and use
“New” in the “File”
menu.

Double-clicking the file does not only result in a PDF file, but also produces a ‘.1log’ file that
contains some information on what LilyPond has done to the file. If any errors occur, please
examine this file.

Note that there are several other text editors available, with better support for LilyPond, see
Section 13.6 [Editor support|, page 323, for more information.

Unix
Begin by opening a terminal window and starting a text editor. For example, you could open

an xterm and execute joe'. In your text editor, enter the following input and save the file as
‘test.ly’

{
c' e g'e'
}
To process ‘test.ly’, proceed as follows
lilypond test.ly
You will see something resembling

lilypond test.ly
GNU LilyPond 2.10.0
Processing “test.ly'

Parsing. ..

Interpreting music... [1]
Preprocessing graphical objects...
Calculating line breaks... [2]

Layout output to “test.ps'...
Converting to “test.pdf'...

The result is the file ‘test.pdf’ which you can print or view with the standard facilities of your
operating system.?

2.1.2 Simple notation

LilyPond will add some notation elements automatically. In the next example, we have only
specified four pitches, but LilyPond has added a clef, time signature, and rhythms.
{
c 1 e ] g ) e 1

}

N e

U
an

&

This behavior may be altered, but in most cases these automatic values are useful.

L There are macro files for VIM addicts, and there is a LilyPond-mode for Emacs addicts. If they have not
been installed already, refer to the file ‘INSTALL. txt’. The easiest editing environment is ‘LilyPondTool’. See
Section 13.6 [Editor support], page 323, for more information.

2 your system does not have any such tools installed, you can try Ghostscript, a freely available package for
viewing and printing PDF and PostScript files.


http://www.cs.wisc.edu/~ghost/

Chapter 2: Tutorial 13

Pitches

The easiest way to enter notes is by using \relative mode. In this mode, the
interval between the previous note and the current note is assumed to be within a
fourth. We begin by entering the most elementary piece of music, a
scale.

\relative c' {
cdef
gabc

}

"4
y - )
(T o

) B

The initial note is middle
C. Each successive note is within a fourth of the previous note — in other words, the first ‘¢’ is
the closest C to middle C. This is followed by the closest D to the previous note. We can create
melodies which have larger intervals:

\relative c' {
dfag
cbfd

DN

r £}

Bt |

¢

As you may notice, this example does not start on middle C. The first note — the ‘d’ — is the
closest D to middle C.

To add intervals that are larger than a fourth, we can raise the octave by adding a single
quote ' (or apostrophe) to the note name. We can lower the octave by adding a comma , to
the note name.

\relative c'' {
aa, c' f,

gg" a,, f!
}

e

>

oJ

To change a note by two (or more!) octaves, we use multiple ' ' or ,, — but be careful that you
use two single quotes '' and not one double quote " ! The initial value in \relative c' may
also be modified like this.



Chapter 2: Tutorial

Durations (rhythms)
The

of a mnote 1is specified by a number after the mnote name.

whole note, ‘2’ for a
note, ‘4’ for a
note and so on. Beams are added automatically.

\relative c'' {
al
a2 a4 a8 a
al6 a aaa32aaaabd4daaaaaaaa?2

}
0 | |
e)
3 0 — |
A >—2 '
[Y)

14

duration
‘17 for a
half
quarter

If you do not specify a duration, the previous duration is used for the next note. The duration

of the first note defaults to a quarter.

To create
notes, add a dot ‘.’ to the duration number.

\relative c'' {
a a a4. a8
a8. al6 a a8. a8 a4.

}

0 = A— |
e o e e : :
e
Rests

A

is entered just like a note with the name ‘r’:

\relative c'' {
arr2
r8 ard r4. r8

dotted

rest



Chapter 2: Tutorial

Time signature

The
signature) can be set with the \time command:

\relative c'' {

\time 3/4
ad a a
\time 6/8
ad. a
\time 4/4
a4 a a a
}
() L L L
)" 4 L3 | | | [0 | | | | | |
@ o C o oo o
[y
Clef
The

can be set using the \clef command:

\relative c' {
\clef treble
cl
\clef alto
cl
\clef tenor
cl
\clef bass
cl

0 3 B Bre—9 —

<

[Y) -©

All together

Here is a small example showing all these elements together:

\relative c, {
\time 3/4
\clef bass
c2 e8 c' g'2.
f4 e d c4 c, rd

N

L
N

i

N
¢

15

time

clef



Chapter 2: Tutorial 16

More information

Entering pitches and durations
see Section 6.1 [Pitches|, page 60, and Section 6.2.1 [Durations], page 67.

Rests see Section 6.1.9 [Rests|, page 66.

Time signatures and other timing commands
see Section 6.4.3 [Time signature], page 80.

Clefs see Section 6.4.1 [Clef], page 78.

2.1.3 Working on text files

LilyPond input files are similar to source files in many common programming languages. They
are case sensitive, and white-space is generally equivalent. Expressions are formed with curly
braces { }, and comments are denoted with % or %{ ... %}.

If the previous sentence sounds like nonsense, don’t worry! We’ll explain what all these terms
mean:

e Case sensitive: it matters whether you enter a letter in lower case (i.e. a, b, s, t) or upper
case (i.e. A, B, S, T). Notes are lower case: { ¢ d e } is valid input; { C D E } will produce
an error message.

e Whitespace insensitive: it does not matter how many spaces (or new lines) you add. { ¢ d
e } means the same thing as { ¢ de } and

{
C d
e}
Of course, the previous example is hard to read. A good rule of thumb is to indent code
blocks with either a tab or two spaces:

{

cde
}

e Expressions: Every piece of LilyPond input needs to have { curly braces } placed around
the input. These braces tell LilyPond that the input is a single music expression, just like
parenthesis ‘() in mathematics. The braces should be surrounded by a space unless they
are at the beginning or end of a line to avoid ambiguities.

A function (such as \relative { }) also counts as a single music expression.

e Comments: A comment is a remark for the human reader of the music input; it is ignored
while parsing, so it has no effect on the printed output. There are two types of comments.
The percent symbol ‘%’ introduces a line comment; anything after ‘%’ on that line is ignored.
A block comment marks a whole section of music input as a comment. Anything that is
enclosed in %{ and %} is ignored. (Comments do not nest.) The following fragment shows
possible uses for comments

% notes for twinkle twinkle follow
cdcg' gaag2

hi
This line, and the notes below
are ignored, since they are in a
block comment.

ggffeeddc2
h}



Chapter 2: Tutorial 17

There are more tips for constructing input files in Section 4.1 [Suggestions for writing Lily-
Pond files], page 42.

2.1.4 How to read the tutorial

As we saw in Section 2.1.3 [Working on text files|, page 16, LilyPond input must be surrounded
by { } marks or a \relative c'' { ... }. For the rest of this manual, most examples will omit
this.

If you are reading the HTML documentation and wish to see the exact exact LilyPond code
that was used to create the example, simply click on the picture. If you are not reading the
HTML version, you could copy and paste the displayed input, but you must add the \relative
c'' { } like this:

\relative c'' {
. example goes here...

}

Why omit the braces? Most examples in this manual can be inserted into the middle of a
longer piece of music. For these examples, it does not make sense to add \relative c'' { } —
you should not place a \relative inside another \relative, so you would not be able to copy
a small documentation example and paste it inside a longer piece of your own.

2.2 Single staff notation

This section introduces common notation that is used for one voice on one staff.

2.2.1 Relative note names

As we saw in Section 2.1.2 [Simple notation], page 12, LilyPond calculates the pitch of each note
relative to the previous one®. If no extra octave marks (' and ,) are added, it assumes that
each pitch is within a fourth of the previous note.

LilyPond examines pitches based on the note names — in other words, an augmented fourth
is not the same as a diminished fifth. If we begin at a C, then an F-sharp will be placed a higher
than the C, while a G-flat will be placed lower than the C.

c2 fis
c2 ges

N

T
A\

U
an

N (o
TN
N

More information

Relative octaves
see Section 6.1.6 [Relative octaves|, page 63.

Octave check
see Section 6.1.7 [Octave check]|, page 64.

2.2.2 Accidentals and key signatures

3 There is another mode of entering pitches, Section 2.5.3 [Absolute note names|, page 30, but in practice
relative mode is much easier and safer to use.



Chapter 2: Tutorial 18

Accidentals

A sharp pitch is made by
adding ‘is’ to the name, and a flat
pitch by adding ‘es’. As you might expect, a

sharp or double

flat is made by adding ‘isis’ or ‘eses™

cisl ees fisis, aeses

DO

N (@
==
N
g

HL @ ]

Iz St
-

Key signatures

The key signature is set with the command \key followed by a pitch and \major or \minor.
\key d \major

al

\key ¢ \minor

a
) 4 h |
)" A _ DX HL1 D,
. "1L [ Ubp 1
AT U O 17 D ILS )
ANV
oJ

Warning: key signatures and pitches

To determine whether to print an accidental, LilyPond examines the pitches and the key signa-
ture. The key signature only affects the printed accidentals, not the actual pitches! This is a
feature that often causes confusion to newcomers, so let us explain it in more detail.

LilyPond makes a sharp distinction between musical content and layout. The alteration
(flat, natural or sharp) of a note is part of the pitch, and is therefore musical content. Whether
an accidental (a printed flat, natural or sharp sign) is printed in front of the corresponding
note is a question of layout. Layout is something that follows rules, so accidentals are printed
automatically according to those rules. The pitches in your music are works of art, so they will
not be added automatically, and you must enter what you want to hear.

In this example

\key d \major
d cis fis

No note has a printed accidental, but you must still add the ‘is’ to cis and fis.
The code ‘e’ does not mean “print
a black dot just below the first line of the staff.” Rather, it means:

“there is a note with pitch E-natural.” In the key of A-flat major, it does get an
accidental:

4 This syntax derived from note naming conventions in Nordic and Germanic languages, like German and Dutch.
To use other names for accidentals, see Section 6.1.5 [Note names in other languages|, page 62.



Chapter 2: Tutorial 19

\key aes \major
e

Liate

eJ

Adding all alterations explicitly might require a little more effort when typing, but the advan-
tage is that transposing is easier, and accidentals can be printed according to different conven-
tions. See Section 9.1.1 [Automatic accidentals|, page 219, for some examples how accidentals
can be printed according to different rules.

More information

Accidentals
see Section 6.1.2 [Accidentals|, page 61, and Section 9.1.1 [Automatic
accidentals], page 219.

Key signature
see Section 6.4.2 [Key signature], page 79.

2.2.3 Ties and slurs

Ties
A tie
is created by appending a tilde ‘~’ to the first note being tied
gd™ g c27
c4d 7 c8 a8 7 a2
0 |
"4 | | — 1
e
~— | | 1 ~—
e) I I
Slurs
A slur is

a curve drawn across many notes. The starting note and ending note are marked with ‘C and
)’ respectively.
d4( c16) cis( d e ¢ cis d) e( d4)

0) —
e ET e T
\‘_\I/I -

& €]

Phrasing slurs

Slurs to indicate longer phrasing can be entered with \ ( and \). You can have both legato slurs
and phrasing slurs at the same time, but you cannot have simultaneous slurs or simultaneous
phrasing slurs.

a8(\( ais b ¢c) cis2 b'2 a4 cis,\)




Chapter 2: Tutorial 20

Warnings: slurs vs. ties

A slur looks like a tie,
but it has a different meaning. A tie simply makes the first note longer, and can only be used
on pairs of notes with the same pitch. Slurs indicate the articulations of notes, and can be used
on larger groups of notes. Slurs and ties can be nested.

c2”( c8 fis fis4 ~ fis2 g2)

o) P —
S ——il =
ANV = | I/l !
U |

More information
Ties see Section 6.5.1 [Ties|, page 89.
Slurs see Section 6.5.2 [Slurs], page 90.
Phrasing slurs
see Section 6.5.3 [Phrasing slurs|, page 91.

2.2.4 Articulation and dynamics

Articulations

Common articulations
can be added to a note using a dash ‘-’ and a single character:

c—. ¢c—— c=> c~" c—+ c-_

Fingerings

Similarly, fingering indications can be added to a note using a dash (‘-’) and the digit to be
printed:

c-3 e-5 b-2 a-1

1
[ 3 2 2
A1V . I I
U | |

Articulations and fingerings are usually placed automatically, but you can specify a direction
using ‘~’ (up) or ‘_’ (down). You can also use multiple articulations on the same note. However,
in most cases it is best to let LilyPond determine the articulation directions.

c_-"1d7. £74_2-> e"-_+




Chapter 2: Tutorial 21

Dynamics
Dynamic signs are made by adding the markings (with a backslash) to the note
c\ff c\mf c\p c\pp

VA
ANV | | | |

ffmf P PP

Crescendi and decrescendi are started with the commands \< and \>. An ending dynamic,
for example \f, will finish the (de)crescendo, or the command \! can be used

c2\< c2\ff\> c2 c2\!

()
)" 4
7\ o 7 7 7 7
[ fan Y. W |
ANV, |
() '
< ff—

More information

Articulations
see Section 6.6.1 [Articulations|, page 97.

)

Fingering see Section 6.6.2 [Fingering instructions|, page 99.

Dynamics see Section 6.6.3 [Dynamics], page 100.

2.2.5 Automatic and manual beams

All beams
are drawn automatically:

a8 ais d ees r d cl16 b a8

() l
@" C ; e ok
Y, ——— r .

If you do not like the automatic beams, they may be overridden manually. Mark the first note
to be beamed with ‘[’ and the last one with ‘1.

a8[ ais] d[ ees r d] a b

Q l —

) l .7#h|‘|

L |

eJ

More information

Automatic beams
see Section 6.5.5 [Automatic beams]|, page 92.

Manual beams
see Section 6.5.6 [Manual beams], page 93.



Chapter 2: Tutorial 22

2.2.6 Advanced rhythmic commands

Partial measure

A pickup (or anacrusis)
is entered with the keyword \partial. It is followed by a duration: \partial 4 is a quarter
note pickup and \partial 8 an eighth note.

\partial 8
£f8 c2 d

N (o]
N
|\

N

P>

Tuplets

Tuplets are made with the \times keyword. It takes two arguments: a fraction and a piece of
music. The duration of the piece of music is multiplied by the fraction. Triplets make notes
occupy 2/3 of their notated duration, so a triplet has 2/3 as its fraction

\times 2/3 { f8 g a }
\times 2/3 { cr c }
\times 2/3 { £,8 gi6[ a g a] %
\times 2/3 { d4 a8 }

o - 2
] L PR S
0 R o ) R T S )
@ € ] < )
[y L g—1 L 3 1 L_g_1

Grace notes
Grace notes are created with the \grace command, although they can also be created by pre-

fixing a music expression with the keyword \appoggiatura or \acciaccatura

c2 \grace { a32[ b] } c2
c2 \appoggiatura b1l6 c2
c2 \acciaccatura bl6 c2

n = A\ A
)’ 4 | =] N N
by C P[P~ oF
| — |
ry) | | | |

More information

Grace notes
see Section 6.5.7 [Grace notes|, page 94,

Tuplets see Section 6.2.3 [Tuplets]|, page 68,

Pickups see Section 6.4.4 [Partial measures|, page 82.



Chapter 2: Tutorial 23

2.3 Multiple notes at once

This section introduces having more than one note at the same time: multiple instruments,
multiple staves for a single instrument (i.e. piano), and chords.

Polyphony in music refers to having more than one voice occurring in a piece of music.
Polyphony in LilyPond refers to having more than one voice on the same staff.

2.3.1 Music expressions explained

In LilyPond input files, music is represented by music expressions. A single note is a music
expression, although it is not valid input all on its own.

ad

Enclosing a group of notes in braces creates a new music expression:

{ a4 g4}

Putting a group of music expressions (e.g. notes) in braces means that they are in sequence
(i.e. each one follows the previous one). The result is another music expression:

{{adglrfg}l

n_ .

eJ

Simultaneous music expressions: multiple staves

This technique is useful for polyphonic music. To enter music with more voices or more
staves, we combine expressions in parallel.  To indicate that two wvoices should play
at the same time, simply enter a simultaneous combination of music expressions. A
‘simultaneous’ music expression is formed by enclosing expressions inside << and >>. In
the following example, three sequences (all containing two separate notes) are combined
simultaneously:

\relative c'' {
<<
{ad g}l
{fel}
{db}
>>



Chapter 2: Tutorial 24

0 .
0

N (@

-

P>
an

Note that we have indented each level of the input with a different amount of space. LilyPond
does not care how much (or little) space there is at the beginning of a line, but indenting LilyPond
code like this makes it much easier for humans to read.

Warning: each note is relative to the previous note in the input, not relative to the ¢'' in
the initial \relative command.

Simultaneous music expressions: single staff

To determine the number of staves in a piece, LilyPond looks at the first expression. If it is a
single note, there is one staff; if there is a simultaneous expression, there is more than one staff.
\relative c'' {
c2 <<Lc e>>
<< {efl}r{c<ba>}>»
}

P>

Analogy: mathematical expressions

This mechanism is similar to mathematical formulas: a big formula is created by composing
small formulas. Such formulas are called expressions, and their definition is recursive so you can
make arbitrarily complex and large expressions. For example,

1
1+ 2
(1 +2) =3

(1 +2) *3) / (4 % 5)

This is a sequence of expressions, where each expression is contained in the next (larger)
one. The simplest expressions are numbers, and larger ones are made by combining expressions
with operators (like ‘+’, ‘¢’ and ‘/’) and parentheses. Like mathematical expressions, music
expressions can be nested arbitrarily deep, which is necessary for complex music like polyphonic
scores.

2.3.2 Multiple staves

As we saw in Section 2.3.1 [Music expressions explained|, page 23, LilyPond input files are
constructed out of music expressions. If the score begins with simultaneous music expressions,
LilyPond creates multiples staves. However, it is easier to see what happens if we create each

staff explicitly.

To print more than one staff, each piece of music that makes up a staff is marked by adding
\new Staff before it. These Staff elements are then combined in parallel with << and >>:



Chapter 2: Tutorial 25

\relative c'' {
<<
\new Staff { \clef treble c }
\new Staff { \clef bass c,, }
>>

PR

The command \new introduces a
tation context.” A notation context is an environment in which musical events (like notes
or \clef commands) are interpreted. For simple pieces, such notation contexts are created
automatically. For more complex pieces, it is best to mark contexts explicitly.

There are several types of contexts. Score, Staff, and Voice handle melodic notation, while
Lyrics sets lyric texts and ChordNames prints chord names.

In terms of syntax, prepending \new to a music expression creates a bigger music expression.
In this way it resembles the minus sign in mathematics. The formula (4 + 5) is an expression,
so —(4 4 5) is a bigger expression.

Time signatures entered in one staff affects all other staves, but the key signature of one staff
does not affect other staves®.

\relative c'' {
<<
\new Staff { \clef treble \time 3/4 c }
\new Staff { \clef bass \key d \major c,, }

>>

b
) 4 &
b 3
ANV I
o
8, 3,
S

2.3.3 Piano staves

Piano music is typeset in two staves connected by a brace. Printing such a staff is similar to the
polyphonic example in Section 2.3.2 [Multiple staves|, page 24, but now this entire expression is
inserted inside a PianoStaff:

\new PianoStaff <<
\new Staff
\new Staff

>>

Here is a small example

5 This behavior may be changed if desired; see Chapter 9 [Changing defaults], page 219, for details.

no-



Chapter 2: Tutorial 26

\relative c'' {
\new PianoStaff <<
\new Staff { \time 2/4 c4 e g g, }
\new Staff { \clef bass c,, c' e ¢ }

>>
}
]
NIV @
Y, |
o |Ze
'S Yo

More information

See Section 7.1 [Piano music|, page 111.

2.3.4 Single staff polyphony

When different melodic lines are combined on a single staff they are printed as polyphonic voices;
each voice has its own stems, slurs and beams, and the top voice has the stems up, while the
bottom voice has them down.

Entering such parts is done by entering each voice as a sequence (with {...}) and combining
these simultaneously, separating the voices with \\
<<
{ a4 g2 f4~ £f4 } \\
{r4 ga £2 4 }
>>

EES =

For polyphonic music typesetting, spacer rests can also be convenient; these are rests that do
not print. They are useful for filling up voices that temporarily do not play. Here is the same
example with a spacer rest (‘s’) instead of a normal rest (‘r’),

<<
{ a4 g2 £4~ £4 } \\
{ s4 g4 £2 f4 }

>>

Again, these expressions can be nested arbitrarily.

<<
\new Staff <<
{ a4 g2 f4~ f4 } \\



Chapter 2: Tutorial 27

{ s4 g4 £2 f4 %}

>>

\new Staff <<
\clef bass
{ <c g>1 ~ <c g4 } \\
{e,,4de2 "~ e4}

>>

>>

R
?_
e
Frre—r

More information

See Section 6.3.3 [Basic polyphony], page 73.

2.3.5 Combining notes into chords
Chords can be made by surrounding pitches with single angle brackets. Angle brackets are the
symbols ‘<’ and ‘>’.

r4 <c e g>4 <c f a>2

n .
Lot

o !

You can combine markings like beams and ties with chords. They must be placed outside
the angle brackets

14 <c e g>8[ <c f a>]” <c f a>2

éi%
D
\\

2.4 Songs

This section introduces vocal music and simple song sheets.



Chapter 2: Tutorial 28

2.4.1 Printing lyrics
Consider a simple melody:

\relative c'' {
a4 e c8 e r4d
b2 c4( d)

}

N
£
[

]
- =

A

o —
[

L YHA

The lyrics can be set to these notes, combining both with the \addlyrics keyword. Lyrics
are entered by separating each syllable with a space.
<<
\relative c'' {
ad e c8 e rd

b2 c4( d)
}
\addlyrics { One day this shall be free }
>>
0 |
)’ 4 | N
) r d
B (o . e m— =
| &
[y, < z "\_/

Onedaythisshall be free

This melody ends on a melisma,
a single syllable ( ‘free’)
sung to more than one note. This is indicated with an extender line. It is entered as two
underscores __:

<<

\relative c'' {
ad e c8 e rd

b2 c4( d)
}
\addlyrics { One day this shall be free __ }
>>
0 |
)’ 4 |
) rd
(. s m— =
| &
o) - 7 ‘\_/

Onedaythisshall be free_

Similarly, hyphens between words can be entered as two dashes, resulting in a centered
hyphen between two syllables
<<
\relative c' {
\time 2/4



Chapter 2: Tutorial 29

f4 f c c
}
\addlyrics { A -- le -- gri -- a }
>>
o)
)’ 4 [}
£\ A
- -
A - le - - gri - a

More information

More options, such as putting multiple stanzas below a melody, are discussed in
Section 7.3 [Vocal music|, page 120.

2.4.2 A lead sheet

In popular music it is common to denote accompaniment with chord names. Such chords can
be entered like notes,

\chordmode { c2 f4. g8 }

Guias

Now each pitch is read as the root of a chord instead of a note. This mode is switched on
with \chordmode. Other chords can be created by adding modifiers after a colon. The following
example shows a few common modifiers:

\chordmode { c2 f4:m g4:maj7 gisl:dim7 }

| 4

>

For lead sheets, chords are not printed on staves, but as names on a line for themselves. This
is achieved by using \chords instead of \chordmode. This uses the same syntax as \chordmode,
but renders the notes in a ChordNames context, with the following result:

\chords { c2 f4.:m g4.:maj7 gis8:dim7 }

c FmG" cf”

When put together, chord names, lyrics and a melody form a lead sheet,

<<
\chords { c2 g:sus4 f e }
\relative c'' {
a4 e c8 e 14
b2 c4( d)
}
\addlyrics { One day this shall be free __ }



Chapter 2: Tutorial 30

>>
N Cl Gsus4 F E
[Y) . z & [ 4

Oneday thisshall be free_

More information

A complete list of modifiers and other options for layout can be found in Section 6.3.1
[Chords|, page 72.

2.5 Final touches

This is the final section of the tutorial; it demonstrates how to add the final touches to simple
pieces, and provides an introduction to the rest of the manual.

2.5.1 Version number
The \version statement marks for which version of LilyPond the file was written. To mark a
file for version 2.10.1, place
\version "2.11.15"
at the top of your LilyPond file.

These annotations make future upgrades of LilyPond go more smoothly. Changes in the
syntax are handled with a special program, ‘convert-1y’ (see Section 13.3 [Updating files with
convert-ly|, page 320), and it uses \version to determine what rules to apply.

2.5.2 Adding titles

The title, composer, opus number, and similar information are entered in the \header block.
This exists outside of the main music expression; the \header block is usually placed underneath
the Section 2.5.1 [Version number], page 30.

\version "2.11.15"

\header {
title = "Symphony"
composer = "Me"
opus = "Op. 9"

3

{

. music ...
3

When the file is processed, the title and composer are printed above the music. More infor-
mation on titling can be found in Section 10.2.1 [Creating titles|, page 249.

2.5.3 Absolute note names

So far we have always used \relative to define pitches. This is the easiest way to enter most
music, but another way of defining pitches exists: absolute mode.

If you omit the \relative, LilyPond treats all pitches as absolute values. A c¢' will always
mean middle C, a b will always mean the note one step below middle C, and a g, will always
mean the note on the bottom staff of the bass clef.



Chapter 2: Tutorial

{
\clef bass

c'bg, g,
g, £, £ c'

Here is a four-octave scale:

{
\clef bass
c, d, e, f,
g, a, b, c
defg
abc'd'
\clef treble
el fl gl al
b' c'' d'' e"!
f''g'ta'" b
c'''1

14

Cgi’«o

31

As you can see, writing a melody in the treble clef involves a lot of quote ’ marks. Consider

this fragment from Mozart:

{
\key a \major
\time 6/8

cis''8. d''16 cis''8 e''4 e''8

b'8. cis''16 b'8 d''4 d''8

L

(@) |

Y, ]

==
——

-

All these quotes makes the input less readable and it is a source of errors. With \relative,
the previous example is much easier to read:



Chapter 2: Tutorial 32

\relative c'' {
\key a \major
\time 6/8
cis8. d16 cis8 e4 eS8
b8. cisl1l6 b8 d4 d8

}
SY (o] | | "4
e — '

If you make a mistake with an octave mark (' or ,) while working in \relative mode, it
is very obvious — many notes will be in the wrong octave. When working in absolute mode, a
single mistake will not be as visible, and will not be as easy to find.

However, absolute mode is useful for music which has large intervals, and is extremely useful
for computer-generated LilyPond files.

2.5.4 Organizing pieces with identifiers

When all of the elements discussed earlier are combined to produce larger files, the music ex-
pressions get a lot bigger. In polyphonic music with many staves, the input files can become
very confusing. We can reduce this confusion by using identifiers.

With identifiers (also known as variables or macros), we can break up complex music expres-
sions. An identifier is assigned as follows

namedMusic = { ... }

The contents of the music expression namedMusic can be used later by placing a backslash
in front of the name (\namedMusic, just like a normal LilyPond command). Identifiers must be
defined before the main music expression.

violin = \new Staff { \relative c¢'' {

ad bchb
i3
cello = \new Staff { \relative c {
\clef bass
e2 d
i3
{
<<
\violin
\cello
>>
}
()
)" 4
)
ry, |
6 )
Je fo 7 =y
P \ U I lf"
| |

The name of an identifier must have alphabetic characters only: no numbers, underscores, or
dashes.

It is possible to use variables for many other types of objects in the input. For example,



Chapter 2: Tutorial 33

width = 4.5\cm
name = "Wendy"
aFivePaper = \paper { paperheight = 21.0 \cm }
Depending on its contents, the identifier can be used in different places. The following
example uses the above variables:
\paper {
\aFivePaper
line-width = \width
}
{ c4"\name }

2.5.5 After the tutorial

After finishing the tutorial, you should probably try writing a piece or two. Start with one of
the Appendix D [Templates|, page 364, and add notes. If you need any notation that was not
covered in the tutorial, look at the Notation Reference, starting with Chapter 6 [Basic notation],
page 60. If you want to write for an instrument ensemble that is not covered in the templates,
take a look at Section 3.1 [Extending the templates|, page 34.

Once you have written a few short pieces, read the rest of the Learning Manual (chapters 3-5).
There’s nothing wrong with reading it now, of course! However, the rest of the Learning Manual
assumes that you are familiar with LilyPond input. You may wish to skim these chapters right
now, and come back to them after you have more experience.

2.5.6 How to read the manual

As we saw in Section 2.1.4 [How to read the tutorial], page 17, many examples in the tutorial
omitted a \relative c'' { ... } around the printed example.

In the rest of the manual, we are much more lax about the printed examples: sometimes
they may have omitted a \relative c¢'' { ... }, but other times a different initial pitch may
be used (such as c¢' or c,,), and in some cases the whole example is in absolute note mode!
However, ambiguities like this only exist where the pitches are not important. In any example
where the pitch matters, we have explicitly stated \relative or absolute-mode { }.

If you are still confused about the exact LilyPond input that was used in an example, read
the HTML version (if you are not already doing so) and click on the picture of the music. This
will display the exact input that LilyPond used to generate this manual.



Chapter 3: Putting it all together 34

3 Putting it all together

This chapter discusses general LilyPond concepts and how to create \score blocks.

3.1 Extending the templates

You've read the tutorial, you know how to write music. But how can you get the staves that
you want? The templates are ok, but what if you want something that isn’t covered?

Start off with the template that seems closest to what you want to end up with. Let’s say
that you want to write something for soprano and cello. In this case, we would start with
‘Notes and lyrics’ (for the soprano part).

\version "2.11.15"
melody = \relative c' {
\clef treble
\key c \major
\time 4/4

ad b cd

text = \lyricmode {
Aaa Bee Cee Dee

}

\score{
<<
\new Voice = "one" {
\autoBeamOf f
\melody
}
\new Lyrics \lyricsto "one" \text
>>
\layout { }
\midi { }
}
Now we want to add a cello part. Let’s look at the
only’ example:

\version "2.11.15"
melody = \relative c' {
\clef treble
\key c \major
\time 4/4

ad bcd
}

\score {

\new Staff \melody
\layout { }

\midi { }

}



Chapter 3: Putting it all together 35

We don’t need two \version commands. We’ll need the melody section. We don’t want two
\score sections — if we had two \scores, we’d get the two parts separately. We want them
together, as a duet. Within the \score section, we don’t need two \layout or \midi.

If we simply cut and paste the melody section, we would end up with two melody sections. So
let’s rename them. We'll call the section for the soprano sopranoMusic and the section for the
cello celloMusic. While we're doing this, let’s rename text to be sopranoLyrics. Remember
to rename both instances of all these names — both the initial definition (the melody = relative
c' { part) and the name’s use (in the \score section).

While we’re doing this, let’s change the cello part’s staff — celli normally use bass clef. We’ll
also give the cello some different notes.

\version "2.11.15"
sopranoMusic = \relative c' {
\clef treble
\key c \major
\time 4/4

ad b cd

sopranoLyrics = \lyricmode {
Aaa Bee Cee Dee

}

celloMusic = \relative c {
\clef bass
\key c \major
\time 4/4

dd g fis8 e d4
b

\score{
<<
\new Voice = "one" {
\autoBeam0Off
\sopranoMusic
}
\new Lyrics \lyricsto "one" \sopranolyrics
>>
\layout { }
\midi { }
}
This is looking promising, but the cello part won’t appear in the score — we haven’t used it

in the \score section. If we want the cello part to appear under the soprano part, we need to
add

\new Staff \celloMusic

underneath the soprano stuff. We also need to add << and >> around the music — that tells
LilyPond that there’s more than one thing (in this case, Staff) happening at once. The \score
looks like this now

\score{



Chapter 3: Putting it all together 36

<<
<<
\new Voice = "one" {
\autoBeamOff
\sopranoMusic
}
\new Lyrics \lyricsto "one" \sopranoLyrics
>>
\new Staff \celloMusic
>>
\layout { }
\midi { }

}

This looks a bit messy; the indentation is messed up now. That is easily fixed. Here’s the
complete soprano and cello template.

\version "2.11.15"
sopranoMusic = \relative c' {
\clef treble
\key ¢ \major
\time 4/4

ad b cd

sopranoLyrics = \lyricmode {
Aaa Bee Cee Dee

¥

celloMusic = \relative c {
\clef bass
\key c \major
\time 4/4

dd g fis8 e d4
b

\score{
<<
<<
\new Voice = "one" {
\autoBeamOff
\sopranoMusic
}
\new Lyrics \lyricsto "one" \sopranoLyrics
>>
\new Staff \celloMusic
>>
\layout { }
\midi { }
}



Chapter 3: Putting it all together 37

()
)" 4
/\ y £)
U
5] —~
& -
Aaa Bee Cee Dee
ray }
S Ta—
Vi
| | | |

3.2 How LilyPond files work

The LilyPond input format is quite free-form, giving experienced users a lot of flexibility to
structure their files however they wish. However, this flexibility can make things confusing for
new users. This section will explain some of this structure, but may gloss over some details
in favor of simplicity. For a complete description of the input format, see Section 10.1.2 [File
structure|, page 244.
Most examples in this manual are little snippets — for example
cd abc
As you are (hopefully) aware by now, this will not compile by itself. These examples are
shorthand for complete examples. They all need at least curly braces to compile
{
cd abc
}

Most examples also make use of the \relative c' (or ¢'') command. This is not necessary
to merely compile the examples, but in most cases the output will look very odd if you omit the
\relative c'.

\relative c'' {
cd abec

Now we get to the only real stumbling block: LilyPond input in this form is actually another
shorthand. Although it compiles and displays the correct output, it is shorthand for

\score {
\relative c'' {
c4d abc
}
}

A \score must begin with a single music expression. Remember that a music expression
could be anything from a single note to a huge

{
\new GrandStaff <<
insert the whole score of a Wagner opera in here
>>
}
Since everything is inside { ... }, it counts as one music expression.

The \score can contain other things, such as

\score {
{c'4abc'?}
\layout { }



Chapter 3: Putting it all together 38

\midi { }
\header { }
}

Some people put some of those commands outside the \score block — for example, \header is
often placed above the \score. That’s just another shorthand that LilyPond accepts.

Another great shorthand is the ability to define variables. All the templates use this

melody = \relative c' {
cd abc
}

\score {
{ \melody }
}

When LilyPond looks at this file, it takes the value of melody (everything after the equals
sign) and inserts it whenever it sees \melody. There’s nothing special about the names — it
could be melody, global, pianorighthand, or foofoobarbaz. You can use whatever variable
names you want. For more details, see Section 4.2 [Saving typing with identifiers and functions],
page 43.

For a complete definition of the input format, see Section 10.1.2 [File structure|, page 244.

3.3 Score is a single musical expression

In the previous section, Section 3.2 [How LilyPond files work]|, page 37, we saw the general
organization of LilyPond input files. But we seemed to skip over the most important part: how
do we figure out what to write after \score?

We didn’t skip over it at all. The big mystery is simply that there s no mystery. This line
explains it all:

A \score must begin with a single music expression.

You may find it useful to review Section 2.3.1 [Music expressions explained|, page 23. In that
section, we saw how to build big music expressions from small pieces — we started from notes,
then chords, etc. Now we’re going to start from a big music expression and work our way down.

\score {
{ 7 this brace begins the overall music expression
\new GrandStaff <<
insert the whole score of a Wagner opera in here
>>
} 7 this brace ends the overall music expression
\layout { }
}
A whole Wagner opera would easily double the length of this manual, so let’s just do a singer
and piano. We don’t need a GrandStaff for this ensemble, so we shall remove it. We do need
a singer and a piano, though.

\score {
{
<<
\new Staff = "singer" <<
>>
\new PianoStaff = piano <<
>>

>>



Chapter 3: Putting it all together

}
\layout { }
}

39

Remember that we use << and >> to show simultaneous music. And we definitely want to

show the vocal part and piano part at the same time!

\score {
{
<<
\new Staff = "singer" <<
\new Voice = "vocal" { }
>>

\new Lyrics \lyricsto vocal \new Lyrics { }
\new PianoStaff = "piano" <<
\new Staff = "upper" { }
\new Staff = "lower" { }
>>
>>
}
\layout { }
}

Now we have a lot more details. We have the singer’s staff: it contains a Voice (in LilyPond,
this term refers to a set of notes, not necessarily vocal notes — for example, a violin generally
plays one voice) and some lyrics. We also have a piano staff: it contains an upper staff (right

hand) and a lower staff (left hand).

At this stage, we could start filling in notes. Inside the curly braces next to \new Voice =

vocal, we could start writing

\relative c'' {
ad bcd
}

But if we did that, the \score section would get pretty long, and it would be harder to

understand what was happening. So let’s use identifiers (or variables) instead.

melody =
text = {
upper = {
lower = {
\score {

{

<<
\new Staff = "singer" <<

\new Voice = "vocal" { \melody }
>>

{13
}

+
}

\new Lyrics \lyricsto vocal \new Lyrics { \text }

\new PianoStaff = "piano" <<
\new Staff = "upper" { \upper }
\new Staff = "lower" { \lower }
>>
>>
}
\layout { }
}



Chapter 3: Putting it all together 40

Remember that you can use almost any name you like. The limitations on identifier names are
detailed in Section 10.1.2 [File structure], page 244.

When writing a \score section, or when reading one, just take it slowly and carefully. Start
with the outer layer, then work on each smaller layer. It also really helps to be strict with
indentation — make sure that each item on the same layer starts on the same horizontal position
in your text editor!

3.4 An orchestral part

In orchestral music, all notes are printed twice. Once in a part for the musicians, and once in a
full score for the conductor. Identifiers can be used to avoid double work. The music is entered
once, and stored in a variable. The contents of that variable is then used to generate both the
part and the full score.

It is convenient to define the notes in a special file. For example, suppose that the file
‘horn-music.ly’ contains the following part of a horn/bassoon duo

hornNotes = \relative c {
\time 2/4
r4d f8 a cisd f e d

}

Then, an individual part is made by putting the following in a file

\include "horn-music.ly"

\header {
instrument = "Horn in F"
}
{
\transpose f c' \hornNotes
}
The line

\include "horn-music.ly"

substitutes the contents of ‘horn-music.ly’ at this position in the file, so hornNotes is defined
afterwards. The command \transpose f c' indicates that the argument, being \hornNotes,
should be transposed by a fifth upwards. Sounding ‘f’ is denoted by notated c', which cor-
responds with the tuning of a normal French Horn in F. The transposition can be seen in the
following output

In ensemble pieces, one of the voices often does not play for many measures. This is denoted
by a special rest, the multi-measure rest. It is entered with a capital ‘R’ followed by a duration
(1 for a whole note, 2 for a half note, etc.). By multiplying the duration, longer rests can be
constructed. For example, this rest takes 3 measures in 2/4 time

R2%*3

When printing the part, multi-rests must be condensed. This is done by setting a run-time
variable

\set Score.skipBars = ##t



Chapter 3: Putting it all together 41

This command sets the property skipBars in the Score context to true (##t). Prepending the
rest and this option to the music above, leads to the following result

H . 3 |
"4 ()] N I
7\ A == £ P L

© 51 ""IF Jlge *1r |
eJ - ' ! !

The score is made by combining all of the music together. Assuming that the other voice is
in bassoonNotes in the file ‘bassoon-music.ly’, a score is made with

\include "bassoon-music.ly"
\include "horn-music.ly"

<<
\new Staff \hornNotes
\new Staff \bassoonNotes

>>

leading to

)

A —2 = - - .
D4 7

J g #* * o

s o &
s A — —_—

EEES2 = it
' |

-

land

o

EBaE

More in-depth information on preparing parts and scores can be found in the notation manual;
see Section 8.3 [Orchestral music], page 200.
‘prop-

Setting run-time variables (
erties’) is discussed in Section 9.2.3 [Changing context properties on the fly], page 229.



Chapter 4: Working on LilyPond projects 42

4 Working on LilyPond projects

This section explains how to solve or avoid certain common problems. If you have programming
experience, many of these tips may seem obvious, but it is still advisable to read this chapter.

4.1 Suggestions for writing LilyPond files

Now you’re ready to begin writing larger LilyPond files — not just the little examples in the
tutorial, but whole pieces. But how should you go about doing it?

As long as LilyPond can understand your files and produces the output that you want, it
doesn’t matter what your files look like. However, there are a few other things to consider when
writing lilypond files.

e What if you make a mistake? The structure of a lilypond file can make certain errors easier
(or harder) to find.

e What if you want to share your files with somebody else? In fact, what if you want to alter
your own files in a few years? Some lilypond files are understandable at first glance; other
files may leave you scratching your head for an hour.

e What if you want to upgrade your lilypond file for use with a later version of lilypond? The
input syntax changes occasionally as lilypond improves. Most changes can be done auto-
matically with convert-1y, but some changes might require manual assistance. Lilypond
files can be structured in order to be easier (or header) to update.

4.1.1 General suggestions

Here are a few suggestions that can help you to avoid or fix problems:

e Include \version numbers in every file. Note that all templates contain a \version
"2.11.15" string. We highly recommend that you always include the \version, no matter
how small your file is. Speaking from personal experience, it’s quite frustrating to try to
remember which version of LilyPond you were using a few years ago. convert-1y requires
you to declare which version of LilyPond you used.

e Include checks: Section 6.2.5 [Bar check], page 71, Section 6.1.7 [Octave check],
page 64, and Section 6.2.6 [Barnumber check|, page 71. If you include checks every
so often, then if you make a mistake, you can pinpoint it quicker. How often is
‘every so often’? It depends on the complexity of the music. For very simple music,
perhaps just once or twice. For very complex music, perhaps every bar.

e One bar per line of text. If there is anything complicated, either in the music it-
self or in the output you desire, it’s often good to write only one bar per line. Sav-
ing screen space by cramming eight bars per line just isn’t worth it if you have to
‘debug’ your files.

e Comment your files. Use either bar numbers (every so often) or references to musical themes
( ‘second theme in
violins,’ ‘fourth
variation,” etc.). You may not need comments when you're writing the piece for the first
time, but if you want to go back to change something two or three years later, or if you pass
the source over to a friend, it will be much more challenging to determine your intentions
or how your file is structured if you didn’t comment the file.

e Indent your braces. A lot of problems are caused by an imbalance in the number of { and
.

e Explicity add durations at the beginnings of sections and identifiers. If you specify c4 d e
at the beginning of a phrase (instead of just c d e) you can save yourself some problems if
you rearrange your music later.



Chapter 4: Working on LilyPond projects 43

e Separate tweaks from music definitions. See Section 4.2 [Saving typing with identifiers and
functions|, page 43, and Section 4.3 [Style sheets], page 45.

4.1.2 Typesetting existing music
If you are entering music from an existing score (i.e., typesetting a piece of existing sheet music),

e Enter one manuscript (the physical copy) system at a time (but still only one bar per line
of text), and check each system when you finish it. You may use the showLastLength
command to speed up processing — see Section 10.5 [Skipping corrected music|, page 257.

e Define mBreak = { \break } and insert \mBreak in the input file whenever the manuscript
has a line break. This makes it much easier to compare the LilyPond music to the original
music. When you are finished proofreading your score, you may define mBreak = { } to
remove all those line breaks. This will allow LilyPond to place line breaks wherever it feels
are best.

4.1.3 Large projects
When working on a large project, having a clear structure to your lilypond files becomes vital.

e Use an identifier for each voice, with a minimum of structure inside the definition. The
structure of the \score section is the most likely thing to change; the violin definition is
extremely unlikely to change in a new version of LilyPond.

violin = \relative c'' {
g4 c'8. el6
}
\score {
\new GrandStaff {
\new Staff {
\violin
}

3
3

e Separate tweaks from music definitions. This point was made in Section 4.1.1 [General
suggestions|, page 42, but for large projects it is absolutely vital. We might need to change
the definition of fthenp, but then we only need to do this once, and we can still avoid
touching anything inside violin.

fthenp = _\markup{
\dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p }
violin = \relative c'' {
g4\fthenp c'8. el6
}

4.2 Saving typing with identifiers and functions
By this point, you’ve seen this kind of thing:

hornNotes = \relative c'' { c4 b dis ¢ }
\score {
{
\hornNotes
}
}



Chapter 4: Working on LilyPond projects 44

e S i

ANV | | |

o) I 1

You may even realize that this could be useful in minimalist music:
fragh = \relative c'' { a4 a8. b16 7
fragB = \relative c'' { a8. gisl6 eesd }
violin = \new Staff { \fragA \fragA \fragB \fragA }

\score {
{
\violin
}
}
0 | = = S =
B (o o — — 0 't‘il T — =

However, you can also use these identifiers (also known as variables, macros, or (user-defined)
command) for tweaks:

dolce = \markup{ \italic \bold dolce }
padText = { \once \override TextScript #'padding = #5.0 }
fthenp=_\markup{ \dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p }
violin = \relative c'' {
\repeat volta 2 {
c4._\dolce b8 a8 g a b |
\padText
c4.”"hi there!" d8 e' f g d |
c,4.\fthenp b8 c4 c-. |

}
}
\score {
{
\violin
}
\layout{ragged-right=##t}
}
hi there!
o,
D | e :
. _._‘L. D % . s
g A
dolce S2nd p

These identifiers are obviously useful for saving typing. But they’re worth considering even
if you only use them once — they reduce complexity. Let’s look at the previous example without
any identifiers. It’s a lot harder to read, especially the last line.

violin = \relative c'' {
\repeat volta 2 {
c4._\markup{ \italic \bold dolce } b8 a8 g a b |
\once \override TextScript #'padding = #5.0



Chapter 4: Working on LilyPond projects 45

c4.”"hi there!" d8 e' f g d |
c,4.\markup{ \dynamic f \italic \small { 2nd }
\hspace #0.1 \dynamic p } b8 c4 c-. |
}
}

So far we’ve seen static substitution — when LilyPond sees \padText, it replaces it with the
stuff that we’ve defined it to be (ie the stuff to the right of padtext=).

LilyPond can handle non-static substitution, too (you can think of these as functions).

padText =
#(define-music-function (parser location padding) (number?)
#{
\once \override TextScript #'padding = #$padding
#1)

\relative c''' {
c4”""piu mosso" b a b
\padText #1.8
c4”"piu mosso" d e £
\padText #2.6
c4”"piu mosso" fis a g

}
} piu mosso piu mos:o
plu mosso e P 2 #._ £ 0
N T o o0 2 & -
¢
[ (YA W]
ANV
[y,

Using identifiers is also a good way to reduce work if the LilyPond input syntax changes (see
Section 4.4 [Updating old files], page 48). If you have a single definition (such as \dolce) for all
your files (see Section 4.3 [Style sheets|, page 45), then if the syntax changes, you only need to
update your single \dolce definition, instead of making changes throughout every .1y file.

4.3

Style sheets

The output that LilyPond produces can be heavily modified; see Chapter 5 [Tweaking output],
page 51, for details. But what if you have many files that you want to apply your tweaks to?
Or what if you simply want to separate your tweaks from the actual music? This is quite easy

to do.

Let’s look at an example. Don’t worry if you don’t understand the parts with all the #().
This is explained in Section 5.6 [Advanced tweaks with Scheme], page 58.

mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:1line(#:dynamic "mp" #:text #:italic "dolce" )))

tempoMark = #(define-music-function (parser location markp) (string?)

#{

\once \override Score . RehearsalMark #'self-alignment-X = #left

\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0 .

\mark \markup { \bold $markp }
#1)

\relative c'' {

-inf.0)



Chapter 4: Working on LilyPond projects 46

\tempo 4=50

a4.\mpdolce d8 cis4--\glissando a | b4 bes a2
\tempoMark "Poco piu mosso"

cis4.\< d8 e4 fis | g8(\! fis)-. e( d)-. cis2

}
Jo 50 Poco piu mosso
Q . = T I — 1 : '_F /\; z
Lo I 2 — ) -
< | T | |
mp dolce B

There are some problems with overlapping output; we’ll fix those using the techniques in
Section 5.1 [Moving objects|, page 51. But let’s also do something about the mpdolce and
tempoMark definitions. They produce the output we desire, but we might want to use them
in another piece. We could simply copy-and-paste them at the top of every file, but that’s an
annoyance. It also leaves those definitions in our music files, and I personally find all the #()

somewhat ugly. Let’s hide them in another file:

%kl save this to a file called "definitions.ly"

mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:1line(#:dynamic "mp" #:text #:italic "dolce" )))

tempoMark = #(define-music-function (parser location markp) (string?)

#{

\once \override Score . RehearsalMark #'self-alignment-X = #left

\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0 .

\mark \markup { \bold $markp }
#1)

Now let’s modify our music (let’s save this file as ‘"music.ly"’).
\include "definitions.ly"

\relative c'' {
\tempo 4=50
a4.\mpdolce d8 cis4--\glissando a | b4 bes a2
\once \override Score.RehearsalMark #'padding = #2.0
\tempoMark "Poco piu mosso"
cis4.\< d8 e4 fis | g8(\! fis)-. e( d)-. cis2

}
Joso Poco piu mosso
h T —— de  PHe 4,
Co— e 1 P —— ) 1
o I — I I
mp dolce —

That looks better, but let’s make a few changes. The glissando is hard to see, so

let’s make it thicker and closer to the noteheads. Let’s put the metronome mark-
ing above the clef, instead of over the first note. And finally, my composition professor
hates ‘C’ time signatures, so
we’d better make that ‘a4/4

instead.

-inf.0)



Chapter 4: Working on LilyPond projects 47

Don’t change ‘music.ly’, though. Replace our ‘definitions.ly’ with this:
%h% definitions.ly
mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:1line( #:dynamic "mp" #:text #:italic "dolce" )))
tempoMark = #(define-music-function (parser location markp) (string?)
#{

\once \override Score . RehearsalMark #'self-alignment-X = #left

\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0 .

\mark \markup { \bold $markp }
#1)

\layout{

\context { \Score
\override MetronomeMark #'extra-offset = #'(-9 . 0)
\override MetronomeMark #'padding = #'3

}

\context { \Staff
\override TimeSignature #'style = #'numbered

}

\context { \Voice

\override Glissando #'thickness = #3
\override Glissando #'gap = #0.1
b
+
=50 Poco piu mosso
—

0 | | — - > 5oy
&- 1 Do ——| . l/) - ———
U | | | !

mp dolce —

That looks nicer! But now suppose that I want to publish this piece. My composition
professor doesn’t like X
time signatures, but I'm somewhat fond of them. Let’s copy the current ‘definitions.ly’ to
‘web-publish.ly’ and modify that. Since this music is aimed at producing a pdf which will be
displayed on the screen, we’ll also increase the overall size of the output.

%h% definitions.ly

mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:1line( #:dynamic "mp" #:text #:italic "dolce" )))

tempoMark = #(define-music-function (parser location markp) (string?)

#{

\once \override Score . RehearsalMark #'self-alignment-X = #left

\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0 .

\mark \markup { \bold $markp }
#3})

#(set-global-staff-size 23)
\layout{
\context { \Score
\override MetronomeMark #'extra-offset = #'(-9 . 0)

-inf.0)

-inf.0)



Chapter 4: Working on LilyPond projects 48

\override MetronomeMark #'padding = #'3
}
\context { \Staff
}
\context { \Voice
\override Glissando #'thickness = #3
\override Glissando #'gap = #0.1

J=50 Poco piu mosso

T
109 |

Now in our music, [ simply replace \include "definitions.ly" with \include
"web-publish.ly". Of course, we could make this even more convenient. We could make
a ‘definitions.ly’ file which contains only the definitions of mpdolce and tempoMark,
a ‘web-publish.ly’ file which contains only the \layout section listed above, and a
‘university.ly’ file which contains only the tweaks to produce the output that my professor
prefers. The top of ‘music.ly’ would then look like this:

\include "definitions.ly"

%%% Only uncomment one of these two lines!
\include "web-publish.ly"
%\include "university.ly"

This approach can be useful even if you are only producing one set of parts. I use half a dozen
different ‘style sheet’
files for my projects. I begin every music file with \include "../global.ly", which contains

hhth  global.ly

\version "2.11.15"

#(ly:set-option 'point-and-click #f)
\include "../init/init-defs.ly"
\include "../init/init-layout.ly"
\include "../init/init-headers.ly"
\include "../init/init-paper.ly"

4.4 Updating old files

The LilyPond input syntax occasionally changes. As LilyPond itself improves, the syntax (input
language) is modified accordingly. Sometimes these changes are made to make the input easier
to read and write or sometimes the changes are made to accomodate new features of LilyPond.



Chapter 4: Working on LilyPond projects 49

LilyPond comes with a file that makes this updating easier: convert-1ly. For details about
how to run this program, see Section 13.3 [Updating files with convert-ly|, page 320.

Unfortunately, convert-1y cannot handle all input changes. It takes care of simple search-
and-replace changes (such as raggedright becoming ragged-right), but some changes are too
complicated. The syntax changes that convert-1ly cannot handle are listed in Section 13.3
[Updating files with convert-ly], page 320.

For example, in LilyPond 2.4 and -earlier, accents and non-English letters were
entered using LaTeX — for example, ‘No\"el’ (this would print the French word for
‘Christmas’). In LilyPond 2.6 and above, the special * must be entered directly into the
LilyPond file as an UTF-8 character. convert-ly cannot change all the LaTeX special
characters into UTF-8 characters; you must manually update your old LilyPond files.

4.5 Troubleshooting (taking it all apart)

Sooner or later, you will write a file that LilyPond cannot compile. The messages that LilyPond
gives may help you find the error, but in many cases you need to do some investigation to
determine the source of the problem.

The most powerful tools for this purpose are the single line comment (indicated by %) and
the block comment (indicated by %{ ... %}). If you don’t know where a problem is, start
commenting out huge portions of your input file. After you comment out a section, try compiling
the file again. If it works, then the problem must exist in the portion you just commented. If it
doesn’t work, then keep on commenting out material until you have something that works.

In an extreme case, you might end up with only

\score {
<<
% \melody
% \harmony
% \bass
>>
\layout{}
}

(in other words, a file without any music)

If that happens, don’t give up. Uncomment a bit — say, the bass part — and see if it works.
If it doesn’t work, then comment out all of the bass music (but leave \bass in the \score
uncommented.

bass = \relative c¢' {
AL
cd ccc
dddd
%t
}

Now start slowly uncommenting more and more of the bass part until you find the problem
line.

Another very useful debugging technique is constructing Section 4.6 [Minimal examples],
page 49.
4.6 Minimal examples

A minimal example is an example which is as small as possible. These examples are much easier
to understand than long examples. Minimal examples are used for



Chapter 4: Working on LilyPond projects 50

e Bug reports
e Sending a help request to mailists
e Adding an example to the LilyPond Snippet Repository
To construct an example which is as small as possible, the rule is quite simple: remove
anything which is not necessary. When trying to remove unnecessary parts of a file, it is a very

good idea to comment out lines instead of deleting them. That way, if you discover that you

actually do need some lines, you can uncomment them, instead of typing them in from scratch.

There are two exceptions to the “as

small as possible” rule:
e Include the \version number.
e If possible, use \paper{ ragged-right=##t } at the top of your example.

The whole point of a minimal example is to make it easy to read:

e Avoid using complicated notes, keys, or time signatures, unless you wish to demonstrate
something is about the behavior of those items.

e Do not use \override commands unless that is the point of the example.


http://lsr.dsi.unimi.it/

Chapter 5: Tweaking output 51

5 Tweaking output

This chapter discusses how to modify output. LilyPond is extremely configurable; virtually
every fragment of output may be changed.

5.1 Moving objects

This may come as a surprise, but LilyPond is not perfect. Some notation elements can overlap.
This is unfortunate, but (in most cases) is easily solved.

TODO: with the new spacing features in 2.12, these specific examples are no longer relevant.
However, they still demonstrate powerful features of lilypond, so they remain until somebody
creates some better examples.

% temporary code to break this example:
\override TextScript #'outside-staff-priority = ##f
e4"\markup{ \italic ritenuto } g b e

-
0 ritegut® 1—
€ T i m—
@ \ U7 I
oJ

The easiest solution is to increase the distance between the object (in this case text, but it
could easily be fingerings or dynamics instead) and the note. In LilyPond, this is called the
padding property; it is measured in staff spaces. For most objects, this value is around 1.0 or
less (it varies with each object). We want to increase it, so let’s try 1.5

% temporary code to break this example:

\override TextScript #'outside-staff-priority = ##f
\once \override TextScript #'padding = #1.5
e4"\markup{ \italic ritenuto } g b e

e

A riteﬁuﬁa

[{a W ]
\\3Y
[y,

That looks better, but it isn’t quite big enough. After experimenting with a few values,
we think 2.3 is the best number in this case. However, this number is merely the result of
experimentation and my personal taste in notation. Try the above example with 2.3... but also
try higher (and lower) numbers. Which do you think looks the best?

The staff-padding property is closely related. padding controls the minimum amount of
space between an object and the nearest other object (generally the note or the staff lines);
staff-padding controls the minimum amount of space between an object and the staff. This
is a subtle difference, but you can see the behavior here.

% temporary code to break this example:

\override TextScript #'outside-staff-priority = ##f
c4”"piu mosso" b ab
\once \override TextScript #'padding = #4.6
c4”"piu mosso" d e f
\once \override TextScript #'staff-padding = #4.6
c4”"piu mosso" fis a g
\break



Chapter 5: Tweaking output 52

c'4”"piu mosso" b a b

\once \override TextScript #'padding = #4.6
c4”"piu mosso" d e f£

\once \override TextScript #'staff-padding = #4.6
c4”"piu mosso" fis a g

piu mosso  piu mosso

o) piu mosso 4o
P-4
G Creasp Bis
U | | | | |
o
o o — £
Lo o0 B ghndsso— pn#:mmﬁoz
1 pumissic EEEE EEEE
X
[ fan
A\AV4
e

Another solution gives us complete control over placing the object — we can move it horizon-
tally or vertically. This is done with the extra-offset property. It is slightly more complicated
and can cause other problems. When we move objects with extra-offset, the movement is
done after LilyPond has placed all other objects. This means that the result can overlap with
other objects.

% temporary code to break this example:

\override TextScript #'outside-staff-priority = ##f
\once \override TextScript #'extra-offset = #'( 1.0 . -1.0 )
e4"\markup{ \italic ritenuto } g b e

-
Q .vzrtlﬁu.lrﬂb =
@ \ 7 I
JJ

With extra-offset, the first number controls the horizontal movement (left is negative);
the second number controls the vertical movement (up is positive). After a bit of experimenting,
we decided that these values look good

% temporary code to break this example:

\override TextScript #'outside-staff-priority = ##f
\once \override TextScript #'extra-offset = #'( -1.6 . 1.0 )
e4"\markup{ \italic ritenuto } g b e

i)

A ritenléto ]F'

({a W ]
N3V
[y,




Chapter 5: Tweaking output 53

Again, these numbers are simply the result of a few experiments and looking at the output. You
might prefer the text to be slightly higher, or to the left, or whatever. Try it and look at the
result!

One final warning: in this section, we used
\once \override TextScript ...
This tweaks the display of text for the next note. If the note has no text, this tweak does
nothing (and does not wait until the next bit of text). To change the behavior of everything

after the command, omit the \once. To stop this tweak, use a \revert. This is explained in
depth in Section 9.3 [The \override command], page 236.

% temporary code to break this example:
\override TextScript #'outside-staff-priority = ##f
c4”"piu mosso" b

\once \override TextScript #'padding = #4.6
a4 b

c4”"piu mosso" d e f£

\once \override TextScript #'padding = #4.6

c4”"piu mosso" d e f

c4”"piu mosso" d e f

\break

\override TextScript #'padding = #4.6
c4”"piu mosso" d e £

c4”"piu mosso" d e f

\revert TextScript #'padding

c4""piu mosso" d e f

piu mosso
of£ _ L, 9

Py .
Biuangsse B st =T E # st

e

piu mosso  piu mosso

o £ o £ . o 2
540 PEEE 22T E #iufindss
A
[farY
ANV
¢
See also

This manual: Section 9.3 [The \override command], page 236, Section 5.3 [Common tweaks],
page H4.

5.2 Fixing overlapping notation

In Section 5.1 [Moving objects|, page 51, we saw how to move a TextScript object. The same
mechanism can be used to move other types of objects; simply replace TextScript with the
name of another object.

To find the object name, look at the ‘see
also’ at bottom of the relevant documentation page. For example, at the bottom of Section 6.6.3
[Dynamics|, page 100, we see



Chapter 5: Tweaking output 54

See also

Program reference:
Hairpin. Vertical positioning of these symbols is handled by
DynamicLineSpanner.

So to move dynamics around vertically, we use
\override DynamicLineSpanner #'padding = #2.0

We cannot list every object, but here is a list of the most common objects.

Object type Object name
Dynamics (vertically) DynamicLineSpanner
Dynamics (horizontally) DynamicText

Ties Tie

Slurs Slur

Articulations Script

Fingerings Fingering

Text e.g. ~"text" TextScript
Rehearsal / Text marks RehearsalMark

5.3 Common tweaks

Some overrides are so common that predefined commands are provided as short-cuts, such as
\slurUp and \stemDown. These commands are described in the Notation Reference under the
appropriate sections.

The complete list of modifications available for each type of object (like slurs or beams) are
documented in the Program Reference. However, many layout objects share properties which
can be used to apply generic tweaks.

e The padding property can be set to increase (or decrease) the distance between symbols
that are printed above or below notes. This applies to all objects with side-position-—

interface.
c2\fermata
\override Script #'padding = #3
b2\fermata
I

[ .

)" 4

/\ r ) )

[ [an Y W] |

\V |

() < -

% This will not work, see below:

\override MetronomeMark #'padding = #3
\tempo 4=120

cl

% This works:

\override Score.MetronomeMark #'padding = #3
\tempo 4=80

d1



Chapter 5: Tweaking output 55

J=80

o J: 120

)" 4

€

ANV

[Y) © (54

Note in the second example how important it is to figure out what context handles a certain
object. Since the MetronomeMark object is handled in the Score context, property changes
in the Voice context will not be noticed. For more details, see Section 9.3.1 [Constructing
a tweak], page 236.

e The extra-offset property moves objects around in the output; it requires a pair of
numbers. The first number controls horizontal movement; a positive number will move the
object to the right. The second number controls vertical movement; a positive number will
move it higher. The extra-offset property is a low-level feature: the formatting engine is
completely oblivious to these offsets.

In the following example, the second fingering is moved a little to the left, and 1.8 staff
space downwards:

\stemUp

£f-5

\once \override Fingering
#'extra-offset = #'(-0.3 . -1.8)

f-5

DO
(%]

r )

e Setting the transparent property will cause an object to be printed in
‘invisible ink’: the object is not printed, but all its other behavior is retained.
The object still takes up space, it takes part in collisions, and slurs, ties, and beams can
be attached to it.

The following example demonstrates how to connect different voices using ties. Normally,
ties only connect two notes in the same voice. By introducing a tie in a different voice,

and blanking the first up-stem in that voice, the tie appears to cross voices:

<< {
\once \override Stem #'transparent = ##t
b8~ b8\noBeam

P\ {
b[ g8l

T >>



Chapter 5: Tweaking output 56

To make sure that the just-blanked stem doesn’t squeeze the tie too much, we also lengthen
the stem, by setting the length to 8,

<< {
\once \override Stem #'transparent = ##t
\once \override Stem #'length = #8
b8~ b8\noBeam
F\\ AL
b[ g8]
T >>

Distances in LilyPond are measured in staff-spaces, while most thickness properties are mea-
sured in line-thickness. Some properties are different; for example, the thickness of beams are
measured in staff-spaces. For more information, see the relevant portion of the program refer-
ence.

5.4 Default files

The Program Reference documentation contains a lot of information about LilyPond, but even
more information can be gathered from looking at the internal LilyPond files.

Some default settings (such as the definitions for \header{}s) are stored as .1y files. Other
settings (such as the definitions of markup commands) are stored as . scm (Scheme) files. Further
explanation is outside the scope of this manual; users should be warned that a substantial amount
of technical knowledge or time is required to understand these files.

e Linux: ‘installdir/lilypond/usr/share/lilypond/current/’

e OSX: ‘installdir/LilyPond.app/Contents/Resources/share/lilypond/current/’.
To  access  this, either cd into  this  directory from  the  Termi-
nal, or control-click on the LilyPond application and select
‘Show Package Contents’.

e Windows: ‘installdir/LilyPond/usr/share/lilypond/current/’

The ‘ly/’ and ‘scm/’ directories will be of particular interest. Files such as
‘ly/property-init.ly’ and ‘ly/declarations-init.1ly’ define all the common tweaks.

5.5 Fitting music onto fewer pages

Sometimes you can end up with one or two staves on a second (or third, or fourth...) page. This
is annoying, especially if you look at previous pages and it looks like there is plenty of room left
on those.

When investigating layout issues, annotate-spacing is an invaluable tool. This command
prints the values of various layout spacing commands; see Section 11.3 [Displaying spacing],
page 265, for more details. From the output of annotate-spacing, we can see which margins
we may wish to alter.

Other than margins, there are a few other options to save space:

e You may tell LilyPond to place systems as close together as possible (to fit as many systems
as possible onto a page), but then to space those systems out so that there is no blank space
at the bottom of the page.



Chapter 5: Tweaking output 57

\paper {
between-system-padding = #0.1
between-system-space = #0.1
ragged-last-bottom = ##f
ragged-bottom = ##f

b

e You may force the number of systems (i.e., if LilyPond wants to typeset some music with
11 systems, you could force it to use 10).
\paper {
system—-count = #10

¥

e Avoid (or reduce) objects which increase the vertical size of a system. For example, volta
repeats (or alternate repeats) require extra space. If these repeats are spread over two
systems, they will take up more space than one system with the volta repeats and another
system without.

Another example is moving dynamics which
out’ of a system.
\relative c' {
ed c g\f ¢

\override DynamicLineSpanner #'padding = #-1.8
\override DynamicText #'extra-offset = #'( -2.1 . 0)
ed c g\f ¢
3
0
)’ 4 ! !
7\ r ) | ) I )
[ [av Y O I I I I
] | ‘ |
:j g s o - &
v v

S S

e Alter the horizontal spacing via SpacingSpanner. See Section 11.6.3 [Changing horizontal
spacing], page 286, for more details.

\score {
\relative c'' {
ghdee2 | f4dd2 | cadef | g4geg2l
gdee2 | f4dd2 | cdegg | c,1|
ddddd| ddef2 | edeece | e4 f g2 |
gidee2 | f4dd2 | cdeggl c,1|

}
\layout {
\context {
\Score
\override SpacingSpanner
#'base-shortest-duration = #(ly:make-moment 1 4)
}
}
}
o) . .
oo A ==
eJ ¢ - @ A - oo ® ° =




Chapter 5: Tweaking output 58

! 1
[{anY | T

% & & L oo — o & & o

Q[
| 100E
[

5.6 Advanced tweaks with Scheme

We have seen how LilyPond output can be heavily modified using commands like \override
TextScript #'extra-offset = (1 . -1). But we have even more power if we use Scheme.
For a full explantion of this, see the Appendix B [Scheme tutorial], page 342, and Chapter 12
[Interfaces for programmers|, page 297.

We can use Scheme to simply \override commands,

padText = #(define-music-function (parser location padding) (number?)

#{

\once \override TextScript #'padding = #$padding
#1)
\relative c''' {

c4”""piu mosso" b a b
\padText #1.8

c4”"piu mosso" d e £
\padText #2.6

c4”"piu mosso" fis a g

}
piu mosso P1u mosso
pumosso L, ep _fef2
N Pepepe 2l 2 -
)" 4 | |
7\ r ) I I
[ [av Y
ANV
JJ

We can use it to create new commands,

tempoMark = #(define-music-function (parser location padding marktext)
(number? string?)
#{
\once \override Score . RehearsalMark #'padding = $padding
\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0
\mark \markup { \bold $marktext }

#1)
\relative c'' {
c2 e
\tempoMark #3.0 #"Allegro"
g c
}
Allegro
>
D 2 =
/\ r )
[ o YA W
SV |
ry)

Even music expressions can be passed in.

. —-inf.0)



Chapter 5: Tweaking output 59

pattern = #(define-music-function (parser location x y) (ly:music? ly:music?)
#{

$x eBab Py bace
#1)

\relative c''{
\pattern c8 c8\f
\pattern {d16 dis} { ais16-> b\p }

}
f o 2 T . 2 fsee |
() jo P

5.7 Avoiding tweaks with slower processing

LilyPond can perform extra checks while it processes files. These commands will take extra
time, but the result may require fewer manual tweaks.

%% makes sure text scripts and lyrics are within the paper margins
\override Score.PaperColumn #'keep-inside-line = ##t



Chapter 6: Basic notation 60

6 Basic notation

This chapter explains how to use basic notation features.

6.1 Pitches

This section discusses how to specify the pitch of notes.

6.1.1 Normal pitches

A pitch name is specified using lowercase letters a through g. An ascending C-major scale is
engraved with

\clef bass
cdefgabc'

Br - =

The note name c is engraved one octave below middle C.

\clef treble

cl

\clef bass

cl
0
/\ r £) ‘)E
[ [an Y W] Z O
ANV
v p—

o

The optional octave specification takes the form of a series of single quote (‘’’) characters or
a series of comma (*,’) characters. Each ‘’’ raises the pitch by one octave; each ‘,’ lowers the

b

pitch by an octave.
\clef treble
c'c''e' gd''d dc
\clef bass
c, ¢c,, e, gd,, d, dc

0 |
)" 4 . |
I C . o f} . —
© ¢ ¥ "2z $3* I

* @ = &

An alternate method may be used to declare which octave to engrave a pitch; this method
does not require as many octave specifications (' and ,). See Section 6.1.6 [Relative octaves,
page 63.



Chapter 6: Basic notation 61

6.1.2 Accidentals
A sharp is formed by adding -is to the end of a pitch name and a flat is formed by adding -es.
Double sharps and double flats are obtained by adding -isis or -eses to a note name.

a2 ais a aes
a2 aisis a aeses

1
). X7

N |1

N
=<3

N

N\

H

N

N\

e

A

N\

P>

These are the Dutch note names. In Dutch, aes is contracted to as, but both forms are accepted.
Similarly, both es and ees are accepted

a2 as e es

(l | |
)" 4 | M |
£\ r ) | I ] | |
N U & D | 1 |
o &—be

A natural will cancel the effect of an accidental or key signature. However, naturals are not
encoded into the note name syntax with a suffix; a natural pitch is shown as a simple note name

ad aes a2

0 ]
Gy €2 hats—
e

The input d e £ is interpreted as
a D-natural, E-natural, and an F-natural,’ regardless of the key signature. For more information
about the distinction between musical content and the presentation of that content, see
Section 2.2.2 [Accidentals and key signatures], page 17.
\key d \major
defg
de fis g

dNO
T

Ly Y ) i I

SRS Sers e=

Commonly tweaked properties

In accordance with standard typesetting rules, a natural sign is printed before a sharp or
flat if a previous accidental needs to be cancelled. To change this behavior, use \set
Staff.extraNatural = ##f

ceses4 ces cis c

\set Staff.extraNatural = ##f

ceses4 ces cis ¢

‘print



Chapter 6: Basic notation 62

See also

Program reference:
NoteHead.

6.1.3 Cautionary accidentals

Normally accidentals are printed automatically, but you may also print them manually. A
reminder accidental can be forced by adding an exclamation mark ! after the pitch. A cautionary
accidental (i.e., an accidental within parentheses) can be obtained by adding the question mark
“?” after the pitch. These extra accidentals can be used to produce natural signs, too.

cis cis cis! cis? ¢ c? c! ¢

r @)
\ U7

fo o d(f)e o(fjefle o

P

See also

The automatic production of accidentals can be tuned in many ways. For more information, see
Section 9.1.1 [Automatic accidentals], page 219.

6.1.4 Micro tones
Half-flats and half-sharps are formed by adding —eh and -ih; the following is a series of Cs with
increasing pitches

\set Staff.extraNatural = ##f

ceseh ceh cih cisih

Micro tones are also exported to the MIDI file.

Bugs

There are no generally accepted standards for denoting three-quarter flats, so LilyPond’s symbol
does not conform to any standard.

6.1.5 Note names in other languages

There are predefined sets of note names for various other languages. To use them, include the
language specific init file. For example, add \include "english.ly" to the top of the input
file. The available language files and the note names they define are

Note Names sharp flat double dor

sharp £1«

nederlands.ly ¢ d e f g a besb ~-is -es —-isis —es
english.ly c d e f g a bf b -s/-sharp -f/-flat -ss/-x/ -ff,
-sharpsharp  -fl:

deutsch.ly c d e f g a b h -is -es -isis —es¢
norsk.ly c d e f g a b h -iss/-is -ess/-es -—ississ/-isis -es:
svenska.ly c d e f£f g a b h ~-iss -ess -ississ -es:



Chapter 6: Basic notation 63

italiano.ly do re mi fa sol la sib si -d -b -dd
catalan.ly do re mi fa sol la sib si -d/-s -b -dd/-ss
espanol.ly do re mi fa sol la sib si -s -b -ss

Note that in Dutch, German, Norwegian, and Swedish, the flat alterations of ‘a’ like for example
aes and aeses are usually contracted to as and ases (or more commonly asas). Sometimes
only these contracted names are defined in the corresponding language files (this also applies to
the suffixes for quartertones below).

Some music uses microtones whose alterations are fractions of a
‘regular’ sharp or flat. The note names for quartertones defined in the
various language files are listed in the following table. Here the prefixes
‘semi-’ and ‘sesqui-’
mean ‘half’
and ‘one

and a half’, respectively. For Norwegian, Swedish, Catalan and Spanish no special names have
been defined yet.

Note Names semi- semi- sesqui- sesqui-
sharp flat sharp flat

nederlands.ly ¢ d e £ g a besb -ih -eh -isih -eseh
english.ly c d e f g a bf b -gs -qf -tgs -tqf
deutsch.ly c d e f g a b h -ih -eh -isih —-eseh
norsk.ly c d e f g a b h

svenska.ly c d e f£f g a b h

italiano.ly do re mi fa sol la sib si -sd -sb -dsd -bsb
catalan.ly do re mi fa sol la sib si

espanol.ly do re mi fa sol la sib si

6.1.6 Relative octaves

Octaves are specified by adding ' and , to pitch names. When you copy existing music, it is
easy to accidentally put a pitch in the wrong octave and hard to find such an error. The relative
octave mode prevents these errors by making the mistakes much larger: a single error puts the
rest of the piece off by one octave

\relative startpitch musicexpr
or
\relative musicexpr
c' is used as the default if no starting pitch is defined.

The octave of notes that appear in musicexpr are calculated as follows: if no octave changing
marks are used, the basic interval between this and the last note is always taken to be a fourth
or less. This distance is determined without regarding alterations; a fisis following a ceses
will be put above the ceses. In other words, a doubly-augmented fourth is considered a smaller
interval than a diminished fifth, even though the doubly-augmented fourth spans seven semitones
while the diminished fifth only spans six semitones.

The octave changing marks ' and , can be added to raise or lower the pitch by an extra
octave. Upon entering relative mode, an absolute starting pitch can be specified that will act
as the predecessor of the first note of musicexpr. If no starting pitch is specified, then middle C
is used as a start.

Here is the relative mode shown in action

\relative c'' {
bcdcbc bes a



Chapter 6: Basic notation 64

0

o N N R

Octave changing marks are used for intervals greater than a fourth

\relative c'' {
cgcf, c'a,ce"

}

0

F

e) |

&

If the preceding item is a chord, the first note of the chord is used to determine the first note
of the next chord

\relative c' {

c <c e g>
<c' e g>
<c, e' g>

The pitch after \relative contains a note name.

The relative conversion will not affect \transpose, \chordmode or \relative sections in its
argument. To use relative within transposed music, an additional \relative must be placed
inside \transpose.

6.1.7 Octave check

Octave checks make octave errors easier to correct: a note may be followed by =quotes which
indicates what its absolute octave should be. In the following example,

\relative c¢'' { c='' b=' d,='"' }
the d will generate a warning, because a d' ' is expected (because b' to d'"' is only a third), but
a d' is found. In the output, the octave is corrected to be a d'' and the next note is calculated
relative to d' ' instead of 4'.
There is also an octave check that produces no visible output. The syntax
\octave pitch

This checks that pitch (without quotes) yields pitch (with quotes) in \relative mode com-
pared to the note given in the \relative command. If not, a warning is printed, and the octave
is corrected. The pitch is not printed as a note.

In the example below, the first check passes without incident, since the e (in relative mode)
is within a fifth of a'. However, the second check produces a warning, since the e is not within
a fifth of b'. The warning message is printed, and the octave is adjusted so that the following
notes are in the correct octave once again.



Chapter 6: Basic notation 65

\relative c¢' {
e
\octave a'
\octave b'
}
The octave of a note following an octave check is determined with respect to the note pre-
ceding it. In the next fragment, the last note is an a', above middle C. That means that the
\octave check passes successfully, so the check could be deleted without changing the output

of the piece.
\relative c' {

e
\octave b

6.1.8 Transpose
A music expression can be transposed with \transpose. The syntax is

\transpose from to musicexpr
This means that musicexpr is transposed by the interval between the pitches from and to:
any note with pitch from is changed to to.
For example, consider a piece written in the key of D-major. If this piece is a little too low
for its performer, it can be transposed up to E-major with

\transpose d e ...
Consider a part written for violin (a C instrument). If this part is to be played on the A
clarinet (for which an A is notated as a C, and which sounds a minor third lower than notated),

the following transposition will produce the appropriate part

\transpose a c
\transpose distinguishes between enharmonic pitches: both \transpose c cis or
\transpose c des will transpose up half a tone. The first version will print sharps and the
second version will print flats
mus = { \key d \major cis d fis g }
\new Staff {
\clef "F" \mus
\clef "G"
\transpose c g' \mus
\transpose ¢ f' \mus

}
o, l P ) #u# I o Lbllllli
—— e ] =
| | A7 |
| Y, 1
\transpose may also be wused to input written notes for a transpos-
ing instrument. Pitches are normally entered into LilyPond in C (or
‘concert pitch’), but they may be entered in another key. For example, when

entering music for a B-flat trumpet which begins on concert D, one would write



Chapter 6: Basic notation 66

\transpose c bes { e4 ... }

To print this music in B-flat again (i.e., producing a trumpet part, instead of a concert pitch
conductor’s score) you would wrap the existing music with another transpose

\transpose bes c¢ { \transpose c bes { e4 ... } }

See also
Program reference:

Example:

Bugs

If you want to use both \transpose and \relative, you must put \transpose outside of
\relative, since \relative will have no effect on music that appears inside a \transpose.

6.1.9 Rests
Rests are entered like notes with the note name r
rl r2 r4 r8

)
_@D_e——_-_g_-f_

eJ

Whole bar rests, centered in middle of the bar, must be done with multi-measure rests. They
can be used for a single bar as well as many bars, and are discussed in Section 8.2.1 [Multi
measure rests|, page 189.

To explicitly specify a rest’s vertical position, write a note followed by \rest. A rest will be
placed in the position where the note would appear,

a'4\rest d'4\rest

This makes manual formatting of polyphonic music much easier, since the automatic rest collision
formatter will leave these rests alone.

See also

Program reference:

6.1.10 Skips
An invisible rest (also called a ‘skip’)
can be entered like a note with note name ‘s’ or with \skip duration

a4 a4 s4 a4 \skip 1 a4

() | | | |

b C e -




Chapter 6: Basic notation 67

The s syntax is only available in note mode and chord mode. In other situations, for example,
when entering lyrics, you should use the \skip command
<<
\relative { a'2 a2 }
\new Lyrics \lyricmode { \skip 2 bla2 }

>>
0 -
:w
v bla

The skip command is merely an empty musical placeholder. It does not produce any output,
not even transparent output.

The s skip command does create
and Voice
when necessary, similar to note and rest commands. For example, the following results in an
empty staff.

{s4}

The fragment { \skip 4 } would produce an empty page.

See also

Program reference:

6.2 Rhythms

This section discusses rhythms, durations, and bars.

6.2.1 Durations

In Note, Chord, and Lyrics mode, durations are designated by numbers and dots: durations are
entered as their reciprocal values. For example, a quarter note is entered using a 4 (since it is a
1/4 note), while a half note is entered using a 2 (since it is a 1/2 note). For notes longer than
a whole you must use the \longa and \breve commands

c'\breve

c'l c'2 c'4 c'8 c'l6 ¢c'32 c'64 c'64
r\longa r\breve

rl r2 r4 r8 r16 r32 r64 r64

o o J MM
R L LEE

Staff



Chapter 6: Basic notation 68

If the duration is omitted then it is set to the previously entered duration. The default for
the first note is a quarter note.

{aaa2aataalal

0
"4
7\ {
[an Y
ANV

oJ

)
/

ey

7

93 F 933 & =
6.2.2 Augmentation dots

To obtain dotted note lengths, simply add a dot (‘.”) to the number. Double-dotted notes are
produced in a similar way.

a'd4b' c''4. b'8 a'4. b'4.. c''8.

Predefined commands
Dots are normally moved up to avoid staff lines, except in polyphonic situations. The following
commands may be used to force a particular direction manually

\dotsUp, \dotsDown,
\dotsNeutral.

See also

Program reference:
and DotColumn.

6.2.3 Tuplets

Tuplets are made out of a music expression by multiplying all durations with a fraction
\times fraction musicexpr

The duration of musicexpr will be multiplied by the fraction. The fraction’s denominator will

be printed over the notes, optionally with a bracket. The most common tuplet is the triplet in

which 3 notes have the length of 2, so the notes are 2/3 of their written length

g'4 \times 2/3 {c'4 c' c'} d'4 d'4

. 3/
i
y O —

(o um o
[y,

DO

o0 0©@® O

Tuplets may be nested, for example,

\override TupletNumber #'text = #tuplet-number::calc-fraction-text
\times 4/6 {

ad a
\times 3/56 { aaaaal
}
' 0t 53—
0 s i




Chapter 6: Basic notation 69

Predefined commands

\tupletUp, \tupletDown,
\tupletNeutral.

Commonly tweaked properties

The property tupletSpannerDuration specifies how long each bracket should last. With this,
you can make lots of tuplets while typing \times only once, thus saving lots of typing. In the
next example, there are two triplets shown, while \times was only used once

\set tupletSpannerDuration = #(ly:make-moment 1 4)
\times 2/3 { c8 c c c c c }

0

Vi

\\_\}
¢

For more information about make-moment, see Section 8.4.2 [Time administration|, page 208.

The format of the number is determined by the property text in TupletNumber. The default
prints only the denominator, but if it is set to the function tuplet-number: :calc-fraction-
text, num:den will be printed instead.

To avoid printing tuplet numbers, use

\times 2/3 { c8 ¢ ¢ } \times 2/3 { c8 c ¢ }
\override TupletNumber #'transparent = ##t
\times 2/3 { c8 c ¢ } \times 2/3 { c8 c c }

Use the \tweak function to override nested tuplets beginning at the same music moment. In
this example, \tweak specifies fraction text for the outer TupletNumber and denominator text
for the TupletNumber of the first of the three inner tuplets.

\new Staff {
\tweak #'text #tuplet-number::calc-fraction-text
\times 4/3 {
\tweak #'text #tuplet-number::calc-denominator-text
\times 2/3 { c'8[ ¢'8 ¢'8] }
\times 2/3 { c'8[ ¢'8 ¢'8] }
\times 2/3 { c'8[ ¢'8 ¢'8] }

}
}
n T 3:4 1
"4 3 3 3
'lr\“ {3 | [ 1 | [ 1 | [ 1
ANV | | | | | | | | |
e 400



Chapter 6: Basic notation 70

Here \tweak and \override work together to specify TupletBracket direction. The first
\tweak positions the TupletBracket of the outer tuplet above the staff. The second \tweak
positions the TupletBracket of the first of the three inner tuplets below the staff. Note that
this pair of \tweak functions affects only the outer tuplet and the first of the three inner tuplets
because only those two tuplets begin at the same music moment. We use \override in the
usual way to position the TupletBrackets of the second and third of the inner tuplets below
the staff.

\new Staff {
\tweak #'text #tuplet-number::calc-fraction-text
\tweak #'direction #up
\times 4/3 {
\tweak #'direction #down
\times 2/3 { c'8[ ¢'8 ¢'8] }
\override TupletBracket #'direction = #down
\times 2/3 { ¢'8[ ¢'8 c'8] }
\times 2/3 { c'8[ ¢'8 ¢'8] }

}
}
n T 3:4 1
A—
[ (av YA W | [ 1 | [ 1 | [ 1
ANV | | | | | | | | |
o -d--g--d--d--g--d--d--g--d-

Tuplet brackets can be made to run to prefatory matter or the next note

—5— —3—
See also

Program reference:
TupletNumber, and TimeScaledMusic

6.2.4 Scaling durations

You can alter the length of duration by a fraction N/M appending ‘*N/M’ (or ‘*N’ if M=1).
This will not affect the appearance of the notes or rests produced. These may be combined such
as ‘“*xM*N’.

In the following example, the first three notes take up exactly two beats, but no triplet
bracket is printed.

\time 2/4

ad*2/3 gisd*2/3 ad*2/3
ad a4 adx2

bl6*x4 c4




Chapter 6: Basic notation 71

See also

This manual: Section 6.2.3 [Tuplets|, page 68.
6.2.5 Bar check

Bar checks help detect errors in the durations. A bar check is entered using the bar symbol, ‘|’.
Whenever it is encountered during interpretation, it should fall on a measure boundary. If it
does not, a warning is printed. In the next example, the second bar check will signal an error
\time 3/4 c2 e4d | g2 |
Bar checks can also be used in lyrics, for example
\lyricmode {
\time 2/4
Twin -- kle | Twin -- kle
}

Failed bar checks are caused by entering incorrect durations. Incorrect durations often com-
pletely garble up the score, especially if the score is polyphonic, so a good place to start correcting
input is by scanning for failed bar checks and incorrect durations.

It is also possible to redefine the meaning of |. This is done by assigning a music expression
to pipeSymbol,

pipeSymbol = \bar "||"

{c'2c" | c'2c" }

)" 4

/\ r ) ) ) )
[av Y W I I I
ANV | I I

[y & 6 6 &

ey

s

6.2.6 Barnumber check

When copying large pieces of music, it can be helpful to check that the LilyPond bar number cor-
responds to the original that you are entering from. This can be checked with \barNumberCheck,
for example,

\barNumberCheck #123

will print a warning if the currentBarNumber is not 123 when it is processed.

6.2.7 Automatic note splitting

Long notes can be converted automatically to tied notes. This is done by replacing
the Note_heads_engraver
by the Completion_
heads_engraver. In the following examples, notes crossing the bar line are split and tied.
\new Voice \with {

\remove "Note_heads_engraver"

\consists "Completion_heads_engraver"

A
c2. c8 dd e f gabc8c2bd aglé fdedc8. c2
b

P>
|
ol
@

N




Chapter 6: Basic notation 72

9 | |
" Y N N
ANV | ‘:. )
e ~— o ° <

This engraver splits all running notes at the bar line, and inserts ties. One of its uses is to
debug complex scores: if the measures are not entirely filled, then the ties exactly show how
much each measure is off.

If you want to allow line breaking on the bar lines  where
Completion_heads_engraver splits notes, you must also remove
Forbid_line_break_engraver.

Bugs

Not all durations (especially those containing tuplets) can be represented exactly with normal
notes and dots, but the engraver will not insert tuplets.

Completion_heads_engraver only affects notes; it does not split rests.

See also

Program reference:
heads_engraver.

6.3 Polyphony

Polyphony in music refers to having more than one voice occurring in a piece of music. Polyphony
in LilyPond refers to having more than one voice on the same staff.

6.3.1 Chords

A chord is formed by a enclosing a set of pitches between < and >. A chord may be followed by
a duration, and a set of articulations, just like simple notes

<c e g>4 <c>8

¥

For more information about chords, see Section 7.2 [Chord names|, page 114.

6.3.2 Stems

Whenever a note is found, a Stem
object is created automatically. For whole notes and rests, they are also created but made
invisible.

Predefined commands

\stemUp, \stemDown,
\stemNeutral.

Commonly tweaked properties

To change the direction of stems in the middle of the staff, use

ad bcb

\override Stem #'neutral-direction = #up
a4 bcb

\override Stem #'nmeutral-direction = #down

ad bcb



Chapter 6: Basic notation 73

&yt i
U | | | | | | |

6.3.3 Basic polyphony

The easiest way to enter fragments with more than one voice on a staff is to enter each voice as
a sequence (with {...}), and combine them simultaneously, separating the voices with \\

\new Staff \relative c' {

cl6 d e £

<<
{gdfel d2e2} \\
{r8et dc8 " | cbleab8g ™ g2} \\
{s2. | s4 b4 c2 }

>>

}
0 .

MR N d7 &2

The separator causes Voice
contexts' to be instantiated. They bear the names "1", "2", etc. In each of these contexts,
vertical direction of slurs, stems, etc., is set appropriately.

These voices are all separate from the voice that contains the notes just outside the << \\ >>
construct. This should be noted when making changes at the voice level. This also means that
slurs and ties cannot go into or out of a << \\ >> construct. Conversely, parallel voices from
separate << \\ >> constructs on the same staff are the same voice. Here is the same example,
with different noteheads for each voice. Note that the change to the note-head style in the main
voice does not affect the inside of the << \\ >> constructs. Also, the change to the second voice
in the first << \\ >> construct is effective in the second << \\ >>, and the voice is tied across
the two constructs.

\new Staff \relative c' {
\override NoteHead #'style = #'cross
clé6 d e f
<<
{gdfel}\\
{ \override NoteHead #'style = #'triangle
r8 ed d c8 7 }
>> |
<<
{d2 e2 } \\
{ c8Db16 a b8 g ~ g2 } \\
{ \override NoteHead #'style = #'slash s4 b4 c2 }
>>

1 Polyphonic voices are sometimes called ‘lay-
ers’ in other notation packages



Chapter 6: Basic notation 74

0

P

Polyphony does not change the relationship of notes within a \relative { } block. Each
note is calculated relative to the note immediately preceding it.

\relative { noteA << noteB \\ noteC >> noteD }

noteC is relative to noteB, not noteA; noteD is relative to noteC, not noteB or noteA

6.3.4 Explicitly instantiating voices

Voice contexts can also be instantiated manually inside a << >> block to create polyphonic
music, using \voiceOne, up to \voiceFour to assign stem directions and a horizontal shift for
each part.

Specifically,
<< \upper \\ \lower >>
is equivalent to
<<
\new Voice

\new Voice
>>

"1" { \voiceOne \upper }
"2" { \voiceTwo \lower }

The \voiceXXX commands set the direction of stems, slurs, ties, articulations, text annota-
tions, augmentation dots of dotted notes, and fingerings. \voiceOne and \voiceThree make
these objects point upwards, while \voiceTwo and \voiceFour make them point downwards.
The command \oneVoice will revert back to the normal setting.

An expression that appears directly inside a << >> belongs to the main voice. This is useful
when extra voices appear while the main voice is playing. Here is a more correct rendition of the
example from the previous section. The crossed noteheads demonstrate that the main melody
is now in a single voice context.

\new Staff \relative c' {
\override NoteHead #'style = #'cross
clé d e £
\voiceOne
<<
{gdfel d2e2}7
\new Voice="1" { \voiceTwo
r8 e4 d c8 ~ | c8 bl6 a b8 g ~ g2
\oneVoice
}
\new Voice { \voiceThree
s2. | s4 b4 c2
\oneVoice

3

>>
\oneVoice




Chapter 6: Basic notation 75

The correct definition of the voices allows the melody to be slurred.

\new Staff \relative c' {
cl6"(de f
\voiceOne
<<

{gdfel d2e2) }

\context Voice="1" { \voiceTwo
r8 e4 d c8 ~ | c8 bl6 a b8 g ~ g2
\oneVoice

}

\new Voice { \voiceThree
s2. s4 b4 c2
\oneVoice

}

>>
\oneVoice

\1EEE

MR a7 a2

Avoiding the \\ separator also allows nesting polyphony constructs, which in some case might
be a more natural way to typeset the music.

\new Staff \relative c' {
cl6"(de f
\voiceOne
<<
{gsfel d2e2)}
\context Voice="1" { \voiceTwo
r8 e4 d c8 ~ |
<<
{c8 b16 a b8 g ~ g2}
\new Voice { \voiceThree
s4 b4 c2
\oneVoice

}
>>

\oneVoice

}

>>
\oneVoice

ir
~

i
by
N
QL



Chapter 6: Basic notation 76

In some instances of complex polyphonic music, you may need additional voices to avoid
collisions between notes. Additional voices are added by defining an identifier, as shown below:

voiceFive = #(context-spec-music (make-voice-props-set 4) 'Voice)

\relative c''' <<
{ \voiceOne g4 ~ \stemDown g32[ f( es d c b a b64 )gl } \\
{ \voiceThree b4} \\
{ \voiceFive d,} \\
{ \voiceTwo g,}
>>

<

O d—e
6.3.5 Collision Resolution
Normally, note heads with a different number of dots are not merged,

but when the object property merge-differently-dotted is set in the
NoteCollision object, they are merged:

\new Voice << {
g8 g8
\override Staff.NoteCollision
#'merge-differently-dotted = ##t
g8 g8
}\\ { g8.[ £f16] g8.[ f16] } >>

Similarly, you can merge half note heads with eighth notes, by setting merge-differently-
headed:

\new Voice << {
c8 c4.
\override Staff.NoteCollision
#'merge-differently-headed = ##t
c8c4. }\\ { c2c21} >

merge-differently-headed and merge-differently-dotted only apply to opposing stem di-
rections (ie. Voice 1 & 2).
LilyPond also vertically shifts rests that are opposite of a stem, for example



Chapter 6: Basic notation 7

\new Voice << c''4 \\ r4 >

If three or more notes line up in the same column, merge-differently-headed cannot
successfully complete the merge of the two notes that should be merged. To allow the merge
to work properly, apply a \shift to the note that should not be merged. In the first measure
of following example, merge-differently-headed does not work (the half-note head is solid).
In the second measure, \shiftOn is applied to move the top g out of the column, and merge-
differently-headed works properly.

\override Staff.NoteCollision #'merge-differently-headed = ##t
<<
{d="'2 g2 } \\
{ \oneVoice d=''8 c8 r4 e,8 c'8 r4 } \\
{ \voiceFour e, ,2 e'2}
>>
<<
{ d'="'2 \shiftOn g2 } \\
{ \oneVoice d=''8 c8 r4 e,8 c¢'8 rd4 } \\
{ \voiceFour e, ,2 e'2}

>>
0 | o~ |
e s i s S i

7 7

Predefined commands

\oneVoice, \voiceOne,
\voiceTwo, \voiceThree,
\voiceFour.

\shiftOn, \shiftOnn,
\shiftOnnn, \shiftOff:

these commands specify the degree to which chords of the current voice should be shifted. The
outer voices (normally: voice one and two) have \shiftOff, while the inner voices (three and
four) have \shiftOn. \shiftOnn and \shiftOnnn define further shift levels.

When LilyPond cannot cope, the force-hshift property of  the
NoteColumn object and pitched rests can be used to override typesetting decisions.

\relative <<
{
<d g>
<d g>
AN {
<b f'>
\once \override NoteColumn #'force-hshift = #1.7
<b £'>



Chapter 6: Basic notation

T >>

Q —

See also

Program reference:
are

and

Bugs

the objects

responsible for

resolving

78

collisions
NoteCollision

RestCollision.

When using merge-differently-headed with an upstem eighth or a shorter note, and a down-
stem half note, the eighth note gets the wrong offset.

There is no support for clusters where the same note occurs with different accidentals in the
same chord. In this case, it is recommended to use enharmonic transcription, or to use special
cluster notation (see Section 8.4.4 [Clusters|, page 210).

6.4 Staff notation

This section describes music notation that occurs on staff level, such as key signatures, clefs and

time signatures.

6.4.1 Clef

The clef indicates which lines of the staff correspond to which pitches. The clef is set with the

\clef command

{ c''2 \clef alto g'2 }

Vol od
\24

e) |

Supported clefs include

Clef

treble, violin, G, G2
alto, C
tenor

bass, F
french
soprano
mezzosoprano
baritone
varbaritone
subbass
percussion
tab

Position

G clef on 2nd line
C clef on 3rd line
C clef on 4th line.
F clef on 4th line
G clef on 1st line, so-called French violin clef
C clef on 1st line
C clef on 2nd line
C clef on 5th line
F clef on 3rd line
F clef on 5th line
percussion clef
tablature clef

By adding _8 or "8 to the clef name, the clef is transposed one octave down or up, respectively,
and _15 and ~15 transposes by two octaves. The argument clefname must be enclosed in quotes
when it contains underscores or digits. For example,



Chapter 6: Basic notation 79

\clef "G_8" c4

Commonly tweaked properties

The command \clef "treble_8" is equivalent to setting clefGlyph, clefPosition (which
controls the Y position of the clef), middleCPosition and clefOctavation. A clef is printed
when any of these properties are changed. The following example shows possibilities when
setting properties manually.

{
\set Staff.clefGlyph = #"clefs.F"
\set Staff.clefPosition = #2
c'd
\set Staff.clefGlyph = #"clefs.G"
c'4
\set Staff.clefGlyph = #"clefs.C"
c'4d
\set Staff.clefOctavation = #7
c'4d
\set Staff.clefOctavation = #0
\set Staff.clefPosition = #0
c'd
\clef "bass"
c'4d
\set Staff.middleCPosition = #4
c'4
+
5 »
/: \ U e) 8 /:
& - 4 @ &
See also

Manual: Section 6.5.7 [Grace notes], page 94.

Program reference:

6.4.2 Key signature
The key signature indicates the tonality in which a piece is played. It is denoted by a set of
alterations (flats or sharps) at the start of the staff.
Setting or changing the key signature is done with the \key command
\key pitch type

Here, type should be \major or \minor to get pitch-major or pitch-
minor, respectively. You may also use the standard mode names (also called
‘church modes’): \ionian, \locrian, \aeolian, \mixolydian, \lydian, \phrygian, and
\dorian.



Chapter 6: Basic notation 80

This command sets the context property Staff.keySignature. Non-standard key signatures
can be specified by setting this property directly.

Accidentals and key signatures often confuse new users, because unaltered notes get natural
signs depending on the key signature. For more information, see Section 6.1.2 [Accidentals|,
page 61, or Section 2.2.2 [Accidentals and key signatures|, page 17.

\key g \major
f1
fis

¢

Pa
L4

#
il

= oy

r @)
\ W]

P>

Commonly tweaked properties

A natural sign is printed to cancel any previous accidentals. This can be suppressed by setting
the Staff.printKeyCancellation property.
\key d \major
a b cis d
\key g \minor
a bes c d
\set Staff.printKeyCancellation = ##f
\key d \major
abcis d
\key g \minor
a bes c d

() bl # | l
? b R e
0y, — — ——
4 n | |
Y 1D | o—
Yy, I
See also

Program reference:
KeySignature.

6.4.3 Time signature

Time signature indicates the metrum of a piece: a regular pattern of strong and weak beats. It
is denoted by a fraction at the start of the staff.
The time signature is set with the \time command
\time 2/4 c'2 \time 3/4 c'2.

P>
NS



Chapter 6: Basic notation 81

Commonly tweaked properties

The symbol that is printed can be customized with the style property. Setting it to #' () uses
fraction style for 4/4 and 2/2 time,

\time 4/4 c'1
\time 2/2 c'1
\override Staff.TimeSignature #'style = #'()
\time 4/4 c'1
\time 2/2 c'1

)" 4 )
/\ r ) F (D) A
[ [an Y W] A (D] €)
ANV 4 A
[Y) o -© -© o

There are many more options for its layout. See Section 7.7.6 [Ancient time signatures],
page 153, for more examples.

\time sets the property timeSignatureFraction, beatLength and
measureLength in  the Timing  context, which is  normally  aliased  to
Score. The property measureLength determines where bar lines should be inserted, and how
automatic beams should be generated. Changing the value of timeSignatureFraction also
causes the symbol to be printed.

More options are available through the Scheme function set-time-signature. In combina-
tion with the Measure_
grouping_engraver, it will create
signs. Such signs ease reading rhythmically complex modern music. In the following example,
the 9/8 measure is subdivided in 2, 2, 2 and 3. This is passed to set-time-signature as the
third argument (2 2 2 3)

\score {
\relative c'' {
#(set-time-signature 9 8 '(2 2 2 3))
g8[ gl dl d] gl gl a8[( bes gl) |
#(set-time-signature 5 8 '(3 2))
ad. g4
}
\layout {
\context {
\Staff
\consists "Measure_grouping_engraver"

}

MeasureGz



Chapter 6: Basic notation 82

See also

Program reference:
and Timing_translator.

Examples:

Bugs
Automatic beaming does not use the measure grouping specified with set-time-signature.
6.4.4 Partial measures

Partial measures, such as an anacrusis or upbeat, are entered using the
\partial 16%5 c16 cis d dis e | a2. c,4 | b2

0 . sl

~
1T

ry) 4 1

The syntax for this command is

\partial duration
where duration is the rhythmic length to be added before the next bar.
This is internally translated into

\set Timing.measurePosition = -length of duration

The property measurePosition contains a rational number indicating how much of the
measure has passed at this point. Note that this is a negative number; \partial 4 is internally
translated to mean “there
is a quarter note left in the bar.”

Bugs

This command does not take into account grace notes at the start of the music. When a piece
starts with graces notes in the pickup, then the \partial should follow the grace notes

\grace f16
\partial 4
gl

a2 g2

y Y

P>

\partial is only intended to be used at the beginning of a piece. If you use it after the
beginning, some odd warnings may occur.

6.4.5 Bar lines

Bar lines delimit measures, but are also used to indicate repeats. Normally they are inserted
automatically. Line breaks may only happen on bar lines.

Special types of bar lines can be forced with the \bar command



Chapter 6: Basic notation 83

c4 \bar "|:" c4

RS EE

o) 1 1

The following bar types are available

0 | | | | | | | 1| | 1| | |
/\ r ) | 1D Ol | | | | 11 oo | |
[ fan Y U | 1D Q| | | | | 1 g0 | |
A\2V4 | | | | | | | 1| | 1| | |
e 4 o 4 4 4 o o &
l. dashed unbroken | |:
3
/I I
/\ 0 | 10
[ £anY . | 1D
A\V4 . | |
) o ¢ o 4 o 449 4 o 0 4
broken | |:
B
[ fav X | :
ANIVA |
e &
In addition, you can specify "||:", which is equivalent to "|:" except at line breaks, where

it gives a double bar line at the end of the line and a start repeat at the beginning of the next
line.

To allow a line break where there is no visible bar line, use
\bar nn

This will insert an invisible bar line and allow line breaks at this point (without increasing the
bar number counter).

In scores with many staves, a \bar command in one staff is automatically applied to all staves.
The resulting bar lines are connected between different staves of a StaffGroup, PianoStaff, or
GrandStaff.

<<
\new StaffGroup <<
\new Staff {
e'd d'
\bar "||"
f' e!
}
\new Staff { \clef bass c4 ge g }
>>
\new Staff { \clef bass c2 c2 }
>>



Chapter 6: Basic notation 84
o)
)" 4

4\ r £}
[ (YA W]
Do
|
) [ )
:

7=

)
J
7

r £}
\ 7

Commonly tweaked properties

The command \bar bartype is a short cut for doing \set Timing.whichBar = bartype. When-
ever whichBar is set to a string, a bar line of that type is created.

A bar line is created whenever the whichBar property is set. At the start of a measure it is
set to the contents of Timing.defaultBarType. The contents of repeatCommands are used to
override default measure bars.

You are encouraged to use \repeat for repetitions. See Section 6.7 [Repeats|, page 105.

See also
In this manual: Section 6.7 [Repeats], page 105, Section 6.4.7 [System start delimiters], page 84.

Program reference:
(created at Staff
level), SpanBar
(across staves).

6.4.6 Unmetered music

Bar lines and bar numbers are calculated automatically. For unmetered music (cadenzas, for
example), this is not desirable. To turn off automatic bar lines and bar numbers, use the
commands \cadenzaOn and \cadenzaOff.

cdded
\cadenzaOn

c4 c d8 dd f4 g4.
\cadenzaOff

\bar |||u

d4 e d c

Bugs
LilyPond will only insert line breaks and page breaks at a barline. Unless the unmetered music
ends before the end of the staff line, you will need to insert invisible bar lines

\bar nn

to indicate where breaks can occur.

6.4.7 System start delimiters
Many scores consist of more than one staff. These staves can be joined in four different ways

e The group is started with a brace at the left, and bar lines are connected. This is done with
the GrandStaff
context.



Chapter 6: Basic notation 85

\new GrandStaff
\relative <<
\new Staff { c1 c }
\new Staff { c ¢ }
>>

e P

o 4 ©

e The group is started with a bracket, and bar lines are connected. This is done with the
StaffGroup context

\new StaffGroup
\relative <<
\new Staff { cl1 c }
\new Staff { c ¢ }

>>

0

g\ r £)

U

ANV

[Y) o -©
0

4\ r £)

[ [an Y W]

ANV

[Y) o -©

e The group is started with a bracket, but bar lines are not connected. This is done with the
ChoirStaff context.

\new ChoirStaff
\relative <<
\new Staff { c1 c }
\new Staff { c ¢ }

>>

O

7\ r £}

[ fan YA W]

ANV

() -© o
Q

7\ r £}

[ fan Y W]

ANV

[Y) o o

e The group is started with a vertical line. Bar lines are not connected. This is the default
for the score.

\relative <<
\new Staff { c1 c }
\new Staff { c ¢ }
>>



Chapter 6: Basic notation 86

()
)" 4
4\ r £)
[ fan YA W]
P
[y o -©
()
)" 4
4\ y £)
[ fan YA W]
ANIVJ
[y o ©
See also
The bar lines at the start of each system are Sy
SystemStartBrace, and SystemStartBracke

Only one of these types is created in every context, and that type is determined by the property
systemStartDelimiter.

Commonly tweaked properties
System start delimiters may be deeply nested,

\new StaffGroup
\relative <<
\set StaffGroup.systemStartDelimiterHierarchy
= #' (SystemStartSquare (SystemStartBracket a (SystemStartSquare b)) d)
\new Staff { cl
\new Staff { cl
\new Staff { c1
\new Staff { cl
\new Staff { cl

s e~

-~
N (@4

A U PO U P

-©-

6.4.8 Staff symbol

Notes, dynamic signs, etc., are grouped with a set of horizontal lines, called a staff (plural
‘staves’). In LilyPond, these lines are drawn using a separate layout object called staff symbol.

The staff symbol may be tuned in the number, thickness and dis-
tance of lines, using properties. This is demonstrated in the example files
‘staff/changing-the-number-of-lines-in-a-staff.ly’ and

In addition, staves may be started and stopped at will. This is done with \startStaff and
\stopStaff.



Chapter 6: Basic notation 87

b4 b

\override Staff.StaffSymbol #'line-count = 2
\stopStaff \startStaff

b b

\revert Staff.StaffSymbol #'line-count
\stopStaff \startStaff

b b

0

In combination with Frenched staves, this may be used to typeset ossia sections. An example
is shown here

ossia

Q D) i — i
@ 2 7 e ———
[Y) ¢ @

See also

Program reference:

Examples:

6.4.9 Writing music in parallel
Music for multiple parts can be interleaved

\parallelMusic #'(voiceA voiceB) {

r8 g|16[ Cll] ell[ gl Cll ell] r8 g116[ Cll] e||[ gl Cll ell] I
c'2 c'2 |
r8 a'16[ d''1 £''[a' d'' £''] r8 a'16[ d"'1 £''[a' d'" £''] |
c'2 c'2 |

}
\new StaffGroup <<
\new Staff \new Voice \voiceA
\new Staff \new Voice \voiceB
>>

[ |

d —o e
'y ; ;
0
g\ r £)
U
ANV
[Y) < =




Chapter 6: Basic notation

% ()

. _®
Vi

==

£

DO
k)

3

g

< <

This works quite well for piano music
music = {
\key ¢ \major
\time 4/4
\parallelMusic #'(voiceA voiceB voiceC voiceD) {
% Bar 1
r8 g’16[ Cll] ell[gl cll ell] r8 g|16[ Cll] el’[gl Cl’
e''] |
c'2 c'2 |
r8 al6[ d'] £'[ ad' £'] r8 a6l d'] f'[ad' '] |
c2 c2 |

% Bar 2

a'8 b' c'' 4" e'' £ g
d'4 da' d' d' |
cl6def defg efga f
a,4 a,4 a,4 a

% Bar 3 ...

\score {
\new PianoStaff <<
\music
\new Staff <<
\voiceA \\
\voiceB
>>
\new Staff {
\clef bass
<<
\voiceC \\
\voiceD
>>

>>

e g e ]

¢
)
YN
—
—
—

\ [ )
N/
ole

o~

N

—1 Ne

88



Chapter 6: Basic notation 89

6.5 Connecting notes

This section deals with notation that affects groups of notes.

6.5.1 Ties

A tie connects two adjacent note heads of the same pitch. The tie in effect extends the length
of a note. Ties should not be confused with slurs, which indicate articulation, or phrasing slurs,
which indicate musical phrasing. A tie is entered using the tilde symbol <~’

eI el <CI e| gI> ~ <Cl eI gl>
O —
~— -~
SN~—~

When a tie is applied to a chord, all note heads whose pitches match are connected. When
no note heads match, no ties will be created. Chords may be partially tied by placing the tie
inside the chord,

<c”" e g” b> <c e g b>

A tie is just a way of extending a note duration, similar to the augmentation dot. The
following example shows two ways of notating exactly the same concept

G

Ties are used either when the note crosses a bar line, or when dots cannot be used to denote the
rhythm. When using ties, larger note values should be aligned to subdivisions of the measure,
such as

[ not
)" 4 N N
£\ o & r & £
[ [an YA O] Ji [y 1 [
() 4 & < @
N— N~~—

If you need to tie a lot of notes over bars, it may be easier to use automatic note splitting
(see Section 6.2.7 [Automatic note splitting], page 71). This mechanism automatically splits
long notes, and ties them across bar lines.

When a second alternative of a repeat starts with a tied note, you have to repeat the tie.
This can be achieved with \repeatTie,

~

A
A (o ¢ §
(“ﬁ‘_




Chapter 6: Basic notation 90

Commonly tweaked properties

Ties are sometimes used to write out arpeggios. In this case, two tied notes need not be
consecutive. This can be achieved by setting the tieWaitForNote property to true. The same
feature is also useful, for example, to tie a tremolo to a chord. For example,

\set tieWaitForNote = ##t

\grace { c16[” e~ g~ } <c, e g>2
\repeat "tremolo" 8 { c32” c'~ } <c c¢,>1
e8” ¢” a” £ <e' c a £>2

0 =
'l
* r £) ~ O Ve
AU | o -~ 7
\J v
JJ o+ — < o -
SN—— N

Ties may be engraved manually by changing the tie-configuration property. The first
number indicates the distance from the center of the staff in staff-spaces, and the second number
indicates the direction (1=up, -1=down).

<c e g>2" <c e g> |

\override TieColumn #'tie-configuration =
#'((0.0 . 1) (-2.0 . 1) (-4.0 . 1))

<c e g>7" <c e g> |

)" 4

7\ r @) —

'c“ \ U7 - -
~—.
~—

Predefined commands

\tieUp, \tieDown,
\tieNeutral, \tieDotted,
\tieDashed, \tieSolid.
See also

In this manual: Section 6.2.7 [Automatic note splitting], page 71.

Program reference:

Bugs
Switching staves when a tie is active will not produce a slanted tie.

Changing clefs or octavations during a tie is not really well-defined. In these cases, a slur
may be preferable.

6.5.2 Slurs
A slur indicates that notes are to be played bound or legato. They are entered using parentheses

f( g a) a8 b( a4 g2 f4)
<c e>2( <b d>2)

- -p-'-/-'\ —




Chapter 6: Basic notation 91

The direction of a slur can be specified with \slurDIR, where DIR is either Up, Down, or
Neutral (automatically selected).

However, there is a convenient shorthand for forcing slur directions. By adding _ or ~ before
the opening parentheses, the direction is also set. For example,

c4_( c) c( ¢)

Only one slur can be printed at once. If you need to print a long slur over a few small slurs,
please see Section 6.5.3 [Phrasing slurs], page 91.

Commonly tweaked properties

Some composers write two slurs when they want legato chords. This can be achieved in LilyPond
by setting doubleSlurs,

\set doubleSlurs = #i#t
<c e>4 (<4 f> <c e> <d f> )

Predefined commands

\slurUp, \slurDown,
\slurNeutral, \slurDashed,
\slurDotted, \slurSolid.

See also

Program reference:
ternals document, Slur.

6.5.3 Phrasing slurs

A phrasing slur (or phrasing mark) connects notes and is used to indicate a musical sentence.
It is written using \ ( and \) respectively

\time 6/4 c'\( d( e) £( e) d\)

Typographically, the phrasing slur behaves almost exactly like a normal slur. However, they
are treated as different objects. A \slurUp will have no effect on a phrasing slur; instead, use
\phrasingSlurUp, \phrasingSlurDown, and \phrasingSlurNeutral.

You cannot have simultaneous phrasing slurs.



Chapter 6: Basic notation 92

Predefined commands

\phrasingSlurUp, \phrasingSlurDow
\phrasingSlurNeutral.

See also

Program reference:

6.5.4 Laissez vibrer ties

L.v. ties (laissez vibrer) indicate that notes must not be damped at the end. It is used in
notation for piano, harp and other string and percussion instruments. They can be entered
using \laissezVibrer,

<c f g>\laissezVibrer

See also

Program reference:
LaissezVibrerTieColumn

Example files:

6.5.5 Automatic beams
LilyPond inserts beams automatically

\time 2/4 c8 c¢c ¢ ¢ \time 6/8 c ¢ c c8. c16 c8

When these automatic decisions are not good enough, beaming can be entered explicitly. It is
also possible to define beaming patterns that differ from the defaults. See Section 9.1.2 [Setting
automatic beam behavior|, page 223, for details.

Individual notes may be marked with \noBeam to prevent them from being beamed

\time 2/4 c8 c\noBeam c c

)

ANV 4 L/ 1/

o) r—
See also

Program reference:



Chapter 6: Basic notation 93

6.5.6 Manual beams

In some cases it may be necessary to override the automatic beaming algorithm. For example,
the autobeamer will not put beams over rests or bar lines. Such beams are specified manually
by marking the begin and end point with [ and ]

{
r4 r8[ g' a r8] r8 gl | al] r8

N h— | |

S e e

Commonly tweaked properties

Normally, beaming patterns within a beam are determined automatically. If necessary, the
properties stemLeftBeamCount and stemRightBeamCount can be used to override the defaults.
If either property is set, its value will be used only once, and then it is erased
{
f8[ ri6
f g al
f8[ r16
\set stemLeftBeamCount = #1
f g al

o)
)’ A
4\ r ) & I & I

B EEe

The property subdivideBeams can be set in order to subdivide all 16th or shorter beams at
beat positions, as defined by the beatLength property.
cl6[ c ccccccl
\set subdivideBeams = ##t
cl6[ c c c cc c c]
\set Score.beatlLength = #(ly:make-moment 1 8)
cl6[ c ccccccl

0

ANV Il Il | | | Il
U T T | I 'l T

For more information about make-moment, see Section 8.4.2 [Time administration|, page 208.

Line breaks are normally forbidden when beams cross bar lines. This behavior can be changed
by setting breakable.

Bugs
Kneed beams are inserted automatically when a large gap is detected between the note heads.
This behavior can be tuned through the auto-knee-gap object.

Automatically kneed cross-staff beams cannot be used together with hidden staves. See
Section 8.3.2 [Hiding staves|, page 202.

Beams do not avoid collisions with symbols around the notes, such as texts and accidentals.



Chapter 6: Basic notation 94

6.5.7 Grace notes

Grace notes are ornaments that are written out. The most common ones are acciaccatura, which
should be played as very short. It is denoted by a slurred small note with a slashed stem. The
appoggiatura is a grace note that takes a fixed fraction of the main note, and is denoted as a
slurred note in small print without a slash. They are entered with the commands \acciaccatura
and \appoggiatura, as demonstrated in the following example

b4 \acciaccatura d8 c4 \appoggiatura e8 d4
\acciaccatura { gi6[ f] } e4

Both are special forms of the \grace command. By prefixing this keyword to a music
expression, a new one is formed, which will be printed in a smaller font and takes up no logical
time in a measure.

c4 \grace cl6 c4
\grace { c16[ d16] } c2 c4

o) A
o

¢

Unlike \acciaccatura and \appoggiatura, the \grace command does not start a slur.

Internally, timing for grace notes is done using a second,
timing. Every point in time consists of two rational numbers: one denotes the logical time, one
denotes the grace timing. The above example is shown here with timing tuples

n N =
: - — : P
S | |

1 1 2 -1 2 2

The placement of grace notes is synchronized between different staves. In the following
example, there are two sixteenth grace notes for every eighth grace note

<< \new Staff { e4 \grace { c16[ d e f] } e4 }
\new Staff { c4 \grace { g8[ bl } c4 } >>

4\ r £}

[ {ar Y O]

A\AV4

[y

() -—

¢



Chapter 6: Basic notation 95

If you want to end a note with a grace, use the \afterGrace command. It takes two
arguments: the main note, and the grace notes following the main note.

cl \afterGrace d1 { c16[ d] } c4

0 g

b G2 {F

ANV, |

U |

This will put the grace notes after a ‘space’

lasting 3/4 of the length of the main note. The fraction 3/4 can be changed by setting
afterGraceFraction, ie.

#(define afterGraceFraction (cons 7 8))
will put the grace note at 7/8 of the main note.
The same effect can be achieved manually by doing

\new Voice {
<< { d1~\trill_( }
{ s2 \grace { c16[ d] } } >>
c4)

}
) 4r A
?§§:(::£tiztzzq[:
[y

By adjusting the duration of the skip note (here it is a half-note), the space between the main-
note and the grace is adjusted.

A \grace section will introduce special typesetting settings, for example, to produce smaller
type, and set directions. Hence, when introducing layout tweaks, they should be inside the grace
section, for example,

\new Voice {
\acciaccatura {
\stemDown
f16->
\stemNeutral

}
gl
}

y
il

The overrides should also be reverted inside the grace section.

The layout of grace sections can be changed throughout the music using the function add-
grace-property. The following example undefines the Stem direction for this grace, so that
stems do not always point up.



Chapter 6: Basic notation 96

\new Staff {
#(add-grace-property 'Voice 'Stem 'direction '())

3
Another option is to change the variables startGraceMusic, stopGraceMusic,
startAcciaccaturaMusic, stopAcciaccaturaMusic, startAppoggiaturaMusic,

stopAppoggiaturaMusic. More information is in the file ‘1y/grace-init.1ly’.

The slash through the stem in acciaccaturas can be obtained in other situations by \override
Stem #'stroke-style = #"grace".

Commonly tweaked properties

Grace notes may be forced to use floating spacing,

7 SIS SO
.
)
¢
[ ¥
(1
.

L1
L1
L1
¢
L VIR
L1
L1
¢
LY

See also

Program reference:

Bugs
A score that starts with a \grace section needs an explicit \new Voice declaration, otherwise

the main note and the grace note end up on different staves.

Grace note synchronization can also lead to surprises. Staff notation, such as key signatures,
bar lines, etc., are also synchronized. Take care when you mix staves with grace notes and staves
without, for example,

<< \new Staff { e4 \bar "|:" \grace c16 d4 }
\new Staff { c4 \bar "[:" d4 } >>
o) A
)\I r £) #"=-
U | |OE 1D
ANV | | | |
eJ
o) o
| | | |
| 1D | 1D
/. | |0 1D
ANV | | | | |
U |

This can be remedied by inserting grace skips of the corresponding durations in the other staves.
For the above example

\new Staff { c4 \bar "|:" \grace s16 d4 }

Grace sections should only be used within sequential music expressions. Nesting or juxta-
posing grace sections is not supported, and might produce crashes or other errors.



Chapter 6: Basic notation 97

6.6 Expressive marks

Expressive marks help musicians to bring more to the music than simple notes and rhythms.

6.6.1 Articulations

A variety of symbols can appear above and below notes to indicate different characteristics of
the performance. They are added to a note by adding a dash and the character signifying the
articulation. They are demonstrated here

o + 1 A -
e rirrir
U IC_. lc__ lc_+ Ic-| Ic_> lc_/\ lc__

The meanings of these shorthands can be changed. See ‘ly/script-init.ly’ for examples.

The script is automatically placed, but the direction can be forced as well. Like other pieces
of LilyPond code, _ will place them below the staff, and ~ will place them above.

c''4"" c'ra”
% A
Y, T

Other symbols can be added using the syntax note\name. Again, they can be forced up or
down using ~ and _, e.g.,

c\fermata c~\fermata c_\fermata

) D

/.
ANV I

o/

Here is a chart showing all scripts available,

o) A '
S ? ? -
U I I I |

accent marcato staccatissimo espressivo

[ _ _ - \/ ™
- * d =
e | | | |

staccato tenuto portato wupbow downbow

TN (<€

A o 0 n v
& £ F £ —
U | |

flageolet thumb 1lheel rheel 1toe rtoe



Chapter 6: Basic notation 98

) o 4r ~w
£

SE N

I |
open stopped turn reverseturn trill prall

+ N [Vl
—r .

[ A A o
A\AV4

U |
mordent prallprall prallmordent upprall

() “w s ety von
&' £ £ —
UI | |

downprall upmordent downmordent pralldown

f) v han S. A

& ? =
e) | |

I
prallup lineprall signumcongruentiae shortfermata

n .~ T3 = %
& e e —
UI | | |

fermata longfermata verylongfermata segno

n o i
Fﬁ
U |

coda varcoda

Commonly tweaked properties

The vertical ordering of scripts is controlled with the script-priority property.
The lower this number, the closer it will be put to the note. In this example,
the TextScript (the
sharp symbol) first has the lowest priority, so it is put lowest in the first example. In the second,
the prall trill (the Script)
has the lowest, so it is on the inside. When two objects have the same priority, the order in
which they are entered decides which one comes first.

\once \override TextScript #'script-priority = #-100

a4~\prall~\markup { \sharp }

\once \override Script #'script-priority = #-100
a4~ \prall“\markup { \sharp }

4

N (o

P>
-



Chapter 6: Basic notation 99

See also

Program reference:

Bugs

These signs appear in the printed output but have no effect on the MIDI rendering of the music.

6.6.2 Fingering instructions
Fingering instructions can be entered using
note-digit
For finger changes, use markup texts
c4-1 c-2 c-3 c-4
c"\markup { \finger "2 - 3" }

1 2 3 4 2-3

an
N (@4

P>

4 o o o @

You can use the thumb-script to indicate that a note should be played with the thumb (e.g.,
in cello music)

<a_\thumb a'-3>8 <b_\thumb b'-3>

ow
ow

Fingerings for chords can also be added to individual notes of the chord by adding them after
the pitches

< c-1 e-2 g-3 b-5 >4

W ot

=0

Commonly tweaked properties

You may exercise greater control over fingering chords by setting fingeringOrientations
\set fingeringOrientations = #'(left down)
<c-1 es-2 g-4 bes-5 > 4
\set fingeringOrientations = #'(up right down)
<c-1 es-2 g-4 bes-5 > 4




Chapter 6: Basic notation 100

Using this feature, it is also possible to put fingering instructions very close to note heads in
monophonic music,
\set fingeringOrientations = #'(right)
<es'-2>4

wl ]

See also

Program reference:

Examples:

6.6.3 Dynamics

Absolute dynamic marks are specified using a command after a note c4\ff. The available

dynamic marks are \ppppp, \pppp, \PPP; \PP, \p, \mp, \mf, \f, \ff \fff, \ffff, \fp, \sf,
\sff, \sp, \spp, \sfz, and \rfz.

c\ppp c\pp ¢ \p c\mp c\mf c\f c\ff c\fff
c2\fp c\sf c\sff c\sp c\spp c\sfz c\rfz

0

ANV

PP
/
| I I BN

PP PR affff fo of Sf P PP ofe
S5

A crescendo mark is started with \< and terminated with \! or an absolute dynamic. A
decrescendo is started with \> and is also terminated with \! or an absolute dynamic. \cr and
\decr may be used instead of \< and \>. Because these marks are bound to notes, you must
use spacer notes if multiple marks are needed during one note

c\< c\! d\> e\!
<< f1 { s4 s4\< s4\! \> s4\! } >>

0 o

A hairpin normally starts at the left edge of the beginning note and ends on the right edge of
the ending note. If the ending note falls on the downbeat, the hairpin ends on the immediately
preceding barline. This may be modified by setting the hairpinToBarline property,

\set hairpinToBarline = ##f

c4\< c2. c4\!




Chapter 6: Basic notation 101

In some situations the \espressivo articulation mark may be suitable to indicate a crescendo
and decrescendo on the one note,

c2 b4 a gl\espressivo

o) |
)" 4 |
Bt freresl—s
ryj 1 | ==
This may give rise to very short hairpins. Use minimum-length
in Voice.

Hairpin to lengthen them, for example
\override Voice.Hairpin #'minimum-length = #5
Hairpins may be printed with a circled tip (al niente notation) by setting the circled-tip
property,
\override Hairpin #'circled-tip = ##t
c2\< c\!
c4\> c\< c2\!

()

fes U [

\N\3V I 1

'y I 1
o—— ——o—_

You can also use text saying cresc. instead of hairpins

\setTextCresc
c\< d e f\!
\setHairpinCresc
e\> d c b\!
\setTextDecresc
c\> d e f\!
\setTextDim

e\> d c b\!

EESER e S SR S SE S s=

e

| | |
cresc.- —— decr.- - dim.- -

You can also supply your own texts

\set crescendoText = \markup { \italic "cresc. poco" }
\set crescendoSpanner = #'dashed-line
a'2\< a a a\!\mf

| |
I I
r ) ] ]
\ O~ (7 [#) [#)

P

cresc. poco- mf’

To create new dynamic marks or text that should be aligned with dynamics, see Section 8.1.11
[New dynamic marks], page 188.

Vertical positioning of dynamics is handled by



Chapter 6: Basic notation 102

Commonly tweaked properties

Dynamics that occur at, begin on, or end on, the same note will be vertically aligned. If you
want to ensure that dynamics are aligned when they do not occur on the same note, you can
increase the staff-padding property.

\override DynamicLineSpanner #'staff-padding = #4
You may also use this property if the dynamics are colliding with other notation.

Crescendi and decrescendi that end on the first note of a new line are not printed. To change
this behavior, use

\override Score.Hairpin #'after-line-breaking = #it

Text style dynamic changes (such as cresc. and dim.) are printed with a dashed line showing
their extent. To surpress printing this line, use

\override DynamicTextSpanner #'dash-period = #-1.0

Predefined commands

\dynamicUp, \dynamicDown,
\dynamicNeutral.

See also

Program reference:
Hairpin. Vertical positioning of  these symbols is handled by
DynamicLineSpanner.

6.6.4 Breath marks

Breath marks are entered using \breathe
c'4 \breathe d4

q?hgc"—‘

o !

Commonly tweaked properties

The glyph of the breath mark can be tuned by overriding the text property of the
BreathingSign layout object with any markup text. For example,
c'd
\override BreathingSign #'text
= #(make-musicglyph-markup "scripts.rvarcomma")
\breathe
d4

0 /
e

o

See also

Program reference:

Examples:



Chapter 6: Basic notation 103

6.6.5 Trills

Short trills are printed like normal articulation; see Section 6.6.1 [Articulations|, page 97.
Long running trills are made with \startTrillSpan and \stopTrillSpan,

\new Voice {
<< { c¢1 \startTrillSpan }
{ s2. \grace { d16[\stopTrillSpan e] } } >>
cd }

n g
o

ANV |

e) |

Trills that should be executed on an explicitly specified pitch can be typeset with the com-
mand pitchedTrill,

\pitchedTrill c4\startTrillSpan fis
f\stopTrillSpan

DO

dran
DA

The first argument is the main note. The pitch of the second is printed as a stemless note
head in parentheses

Predefined commands

\startTrillSpan, \stopTrillSpan.

See also

Program reference:

6.6.6 Glissando

A glissando is a smooth change in pitch. It is denoted by a line or a wavy line between two
notes. It is requested by attaching \glissando to a note

c2\glissando c'
\override Glissando #'style = #'zigzag
c2\glissando c,

5 =

o) E E

)" 4 T
£\ o 7 [#)
[ Fan Y. W | |
SV | |
y, | |

See also

Program reference:

Example files:
; ‘expressive/line-styles.ly’



Chapter 6: Basic notation 104

Bugs

Printing text over the line (such as gliss.) is not supported.

6.6.7 Arpeggio

You can specify an arpeggio sign (also known as broken chord) on a chord by attaching an
\arpeggio to a chord

<c e g c>\arpeggio

A square bracket on the left indicates that the player should not arpeggiate the chord

\arpeggioBracket
<c' e g c>\arpeggio

The direction of the arpeggio is sometimes denoted by adding an arrowhead to the wiggly
line
\new Voice {
\arpeggioUp
<c e g c>\arpeggio
\arpeggioDown
<c e g c>\arpeggio

Commonly tweaked properties

When an arpeggio crosses staves, you may attach an arpeggio to the chords in both staves and set
PianoStaff.connectArpeggios
\new PianoStaff <<
\set PianoStaff.connectArpeggios = ##t
\new Staff { <c' e g c>\arpeggio }
\new Staff { \clef bass <c,, e g>\arpeggio }
>>

P
q»
A




Chapter 6: Basic notation 105

Predefined commands

\arpeggio, \arpeggioUp,
\arpeggioDown, \arpeggioNeutral,
\arpeggioBracket.

See also

Notation manual: Section 6.5.1 [Ties|, page 89, for writing out arpeggios.
Program reference:
Bugs

It is not possible to mix connected arpeggios and unconnected arpeggios in one
PianoStaff at the same point in time.

6.6.8 Falls and doits

Falls and doits can be added to notes using the \bendAfter command,

0 )
e e
g

6.7 Repeats

Repetition is a central concept in music, and multiple notations exist for repetitions.

6.7.1 Repeat types
The following types of repetition are supported

unfold Repeated music is fully written (played) out. This is useful when entering repetitious
music. This is the only kind of repeat that is included in MIDI output.

volta Repeats are not written out, but alternative endings (volte) are printed, left to right
with brackets. This is the standard notation for repeats with alternatives. These
are not played in MIDI output by default.

tremolo  Make tremolo beams. These are not played in MIDI output by default.

percent  Make beat or measure repeats. These look like percent signs. These are not played in
MIDI output by default. Percent repeats must be declared within a Voice context.

6.7.2 Repeat syntax
LilyPond has one syntactic construct for specifying different types of repeats. The syntax is
\repeat variant repeatcount repeatbody
If you have alternative endings, you may add

\alternative {
alternativel
alternativeZ2
alternatived3

}

where each alternative is a music expression. If you do not give enough alternatives for all of
the repeats, the first alternative is assumed to be played more than once.

Standard repeats are used like this



Chapter 6: Basic notation

cl
\repeat volta 2 { c4 d e f }
\repeat volta 2 { f e d ¢ }

Q#:D:I 5 4

o !

With alternative endings
cl

\repeat volta 2 {c4 d e f}
\alternative { {d2 4} {f f,} }

. EEE
@ - =) |
. o |
7 . | | o/l |

ANV | | I | | | I [,

o !

Repeats with upbeats may be created.
\new Staff {
\partial 4 e |
\repeat volta 4 { c2 d2 | e2 f2 | }
\alternative { { gd gge } {aaaal b2. } }
}

[1-3. Il &
o) o > o o

R
\

TTTD

[ [av YA
ANV

oJ

Ties may be added to a second ending,
cl
\repeat volta 2 {c4 de f " }
\alternative { {f2 d} {f\repeatTie f,} }

[1. I 2

—~

0
S)— | [

o !

)
TTT®

P
r’
|
T

TTT®

106

It is possible to shorten volta brackets by setting voltaSpannerDuration. In the next ex-
ample, the bracket only lasts one measure, which is a duration of 3/4.

\relative c''{
\time 3/4
ccec

\set Staff.voltaSpannerDuration = #(ly:make-moment 3 4)

\repeat "volta" 5 { ddd }
\alternative { { ee e f f f }

{gegegltl}



Chapter 6: Basic notation 107

n [1-4 Il's.
o o o o O
A H |
ANV | | | | | I | | |
e/ (N ' '

If you want to start a repeat at the beginning of a line and have a double bar at the end of
the previous line, use
... \bar "||:" \break
\repeat volta 2 { ...

see Section 6.4.5 [Bar lines|, page 82 for more information.

See also

Examples:

Brackets for the repeat are normally only printed over the topmost staff. This can be adjusted
by moving Volta_engraver to the Staff context where you want the brackets to appear; see
Section 9.2.4 [Modifying context plug-ins|, page 230 and

‘repeats/volta-multi-staff.ly’ .

Bugs
A nested repeat like

\repeat ...
\repeat ...
\alternative

is ambiguous, since it is is not clear to which \repeat the \alternative belongs. This ambiguity
is resolved by always having the \alternative belong to the inner \repeat. For clarity, it is
advisable to use braces in such situations.

Timing information is not remembered at the start of an alternative, so after a repeat timing
information must be reset by hand; for example, by setting Score.measurePosition or entering
\partial. Similarly, slurs or ties are also not repeated.

Volta brackets are not vertically aligned.

6.7.3 Repeats and MIDI

With a little bit of tweaking, all types of repeats can be present in the MIDI output. This is
achieved by applying the \unfoldRepeats music function. This function changes all repeats to
unfold repeats.

\unfoldRepeats {
\repeat tremolo 8 {c'32 e' }
\repeat percent 2 { c¢''8 4"’
\repeat volta 2 {c'4 4d' e' f'
\alternative {
{g aa g}
{f' e" d' ¢' }

}
}

}
}
\bar n I "

DO




Chapter 6: Basic notation 108

When creating a score file using \unfoldRepeats for MIDI, it is necessary to make two
\score blocks: one for MIDI (with unfolded repeats) and one for notation (with volta, tremolo,
and percent repeats). For example,

\score {
. .music..
\layout { .. }
}
\score {
\unfoldRepeats ..music..
\midi { .. }
+

6.7.4 Manual repeat commands

The property repeatCommands can be used to control the layout of repeats. Its value is a Scheme
list of repeat commands.

start-repeat
Print a | : bar line.

end-repeat
Print a : | bar line.

(volta text)
Print a volta bracket saying text: The text can be specified as a text string or as
a markup text, see Section 8.1.5 [Text markup], page 175. Do not forget to change
the font, as the default number font does not contain alphabetic characters;

(volta #f)
Stop a running volta bracket.
c4
\set Score.repeatCommands = #'((volta "93") end-repeat)
c4 c4
\set Score.repeatCommands = #'((volta #f))
c4 c4

A2V | | | | |
o) | — | |
See also
Program reference:
RepeatedMusic, VoltaRepeatedMusic
and UnfoldedRepeatedMusic

6.7.5 Tremolo repeats

To place tremolo marks between notes, use \repeat with tremolo style

\new Voice \relative c' {
\repeat "tremolo" 8 { c16 di16 }
\repeat "tremolo" 4 { c16 di16 }
\repeat "tremolo" 2 { c16 d16 }
}



Chapter 6: Basic notation 109

DO

-

[ Fan)

St

o O =5 &

Tremolo marks can also be put on a single note. In this case, the note should not be
surrounded by braces.

\repeat "tremolo" 4 c'16

Similar output is obtained using the tremolo subdivision, described in Section 6.7.6 [Tremolo
subdivisions|, page 109.

See also
In this manual: Section 6.7.6 [Tremolo subdivisions], page 109, Section 6.7 [Repeats]|, page 105.

Program reference:
StemTremolo.

6.7.6 Tremolo subdivisions

Tremolo marks can be printed on a single note by adding

after the note. The number indicates the duration of the subdivision, and it must be at least 8.
A length value of 8 gives one line across the note stem. If the length is omitted, the last value
(stored in tremoloFlags) is used

c'2:8 ¢c':32 | ¢': c': |

N (o

Iz St
-

Bugs

Tremolos entered in this way do not carry over into the MIDI output.

See also

In this manual: Section 6.7.5 [Tremolo repeats], page 108.

Elsewhere:

6.7.7 Measure repeats

In the percent style, a note pattern can be repeated. It is printed once, and then the pattern
is replaced with a special sign. Patterns of one and two measures are replaced by percent-like
signs, patterns that divide the measure length are replaced by slashes. Percent repeats must be
declared within a Voice context.

\new Voice \relative c' {

\repeat "percent" 4 { c4 }

\repeat "percent" 2 { c2 es2 f4 fis4 g4 c4 }
}

P
q»
"N
™
"N
A
Q]




Chapter 6: Basic notation 110

Measure repeats of more than 2 measures get a counter, if you switch on the
countPercentRepeats property,

\new Voice {
\set countPercentRepeats = #i#t
\repeat "percent" 4 { c1 }

}
() 2 3 4
A—Ffro [ 4 v 4 IV 4
[ {an Y 97 7. y 43 y &
A3V
[Y)

Isolated percents can also be printed. This is done by putting a multi-measure rest with a
different print function,

\override MultiMeasureRest #'stencil
= #ly:multi-measure-rest::percent

R1
See also
Program reference:
PercentRepeat, DoublePercentRepes
Perce

DoublePercentRepeatCounter,
PercentRepeatedMusic



Chapter 7: Instrument-specific notation 111

7 Instrument-specific notation

This chapter explains how to use notation for specific instruments.

7.1 Piano music

Piano staves are two mnormal staves coupled with a brace. The staves are
largely independent, but sometimes voices can cross between the two staves.
The same notation is also used for harps and other key instruments. The
PianoStaff is especially built to handle this cross-staffing behavior. In this section we discuss
the PianoStaff
and some other pianistic peculiarities.

Bugs

Dynamics are not  centered, but  workarounds do  exist. See  the
‘piano centered dynamics’ template in Section D.2 [Piano templates]|, page 366.

7.1.1 Automatic staff changes
Voices can be made to switch automatically between the top and the bottom staff. The syntax
for this is

\autochange ...music...

This will create two staves inside the current PianoStaff, called up and down. The lower staff
will be in bass clef by default.

A \relative section that is outside of \autochange has no effect on the pitches of music,
so, if necessary, put \relative inside \autochange like

\autochange \relative ... ...
The autochanger switches on basis of the pitch (middle C is the turning point), and it looks
ahead skipping over rests to switch in advance. Here is a practical example

\new PianoStaff
\autochange \relative c'

{
gdabcdrdag
}
()
)" 4
g\ r £)
U
ANIVJ
oJ
&
) —F( | y 2|
\ U | [y !
See also

In this manual: Section 7.1.2 [Manual staff switches|, page 112.

Program reference:

Bugs
The staff switches may not end up in optimal places. For high quality output, staff switches
should be specified manually.

\autochange cannot be inside \times.



Chapter 7: Instrument-specific notation 112

7.1.2 Manual staff switches
Voices can be switched between staves manually, using the command
\change Staff = staffname music

The string staffname is the name of the staff. It switches the current voice from its cur-
rent staff to the Staff called staffname. Typically staffname is "up" or "down". The
Staff referred to must already exist, so usually the setup for a score will start with a setup of
the staves,

<<
\new Staff = "up" {
\skip 1 * 10 7% keep staff alive
}
\new Staff = "down" {
\skip 1 * 10 % idem
}
>>

and the Voice
is inserted afterwards

\context Staff = down
\new Voice { ... \change Staff = up ... }

7.1.3 Pedals

Pianos have pedals that alter the way sound is produced. Generally, a piano has three pedals,
sustain, una corda, and sostenuto.

Piano pedal instruction can be expressed by attaching \sustainDown, \sustainUp,
\unaCorda, \treCorde, \sostenutoDown and \sostenutoUp to a note or chord

c'4\sustainDown c'4\sustainUp

N &1

P

o &

Tep. #

What is printed can be modified by setting pedalXStrings, where X
is one of the pedal types: Sustain, Sostenuto or UnaCorda. Refer to
SustainPedal in the program reference for more information.

Pedals can also be indicated by a sequence of brackets, by setting the pedalSustainStyle
property to bracket objects

\set Staff.pedalSustainStyle = #'bracket
c\sustainDown d e
b\sustainUp\sustainDown

b g \sustainUp a \sustainDown \bar "|."

|
|
[—

0 .
e lole, o




Chapter 7: Instrument-specific notation 113

A third style of pedal notation is a mixture of text and brackets, obtained by setting the
pedalSustainStyle property to mixed
\set Staff.pedalSustainStyle = #'mixed
c\sustainDown d e

b\sustainUp\sustainDown
b g \sustainUp a \sustainDown \bar "|."

0
GCr el
.

A2V
e) | ! | |
Fed. A

The default “Ped.’
style for sustain and damper pedals corresponds to style #'text. The sostenuto pedal uses mixed

style by default.
c\sostenutoDown d e c, f g a\sostenutoUp

0

Vi

e A
Sost. Ped. |

For fine-tuning the appearance of a pedal bracket, the properties edge-
width, edge-height, and shorten-pair of PianoPedalBracket objects (see
PianoPedalBracket in the Program reference) can be modified. For example, the
bracket may be extended to the right edge of the note head

\override Staff.PianoPedalBracket #'shorten-pair = #'(0 . -1.0)
c\sostenutoDown d e c, f g a\sostenutoUp

() |
o— |
e
Sost. Ped. |
See also

In this manual: Section 6.5.4 [Laissez vibrer ties], page 92.

7.1.4 Staff switch lines

Whenever a voice switches to another staff, a line connecting the notes can be printed automat-
ically. This is switched on by setting followVoice to true

\new PianoStaff <<
\new Staff="one" {
\set followVoice = #itt
cl
\change Staff=two
b2 a

}
\new Staff="two" { \clef bass \skip 1%*2 }



Chapter 7: Instrument-specific notation

>>

0
)" 4
4\ &)
[ fan Y W]
S -
\
0 pol
ray o
0 e |
\ U] !
See also

Program reference:

Predefined commands
\showStaffSwitch,

7.1.5 Cross staff stems

114

\hideStaffSwitc

Chords that cross staves may be produced by increasing the length of the stem in the lower

staff, so it reaches the stem in the upper staff, or vice versa.

stemExtend = {
\once \override Stem #'length = #10
\once \override Stem #'cross-staff = #i#t

¥

noFlag = \once \override Stem #'flag-style = #'no-flag

\new PianoStaff <<

\new Staff {
\stemDown \stemExtend
f'4
\stemExtend \noFlag
f'8

}

\new Staff {
\clef bass
a4 a8

}
>>

Vi

7.2 Chord names

7.2.1 Introducing chord names

LilyPond has support for printing chord names. Chords may be entered in musical chord nota-
tion, i.e., < .. > but they can also be entered by name. Internally, the chords are represented

as a set of pitches, so they can be transposed



Chapter 7: Instrument-specific notation 115

twoWays = \transpose c c' {
\chordmode {
cl f:sus4d bes/f
b
<c e g>
<f bes c'>
<f bes d'>

<< \new ChordNames \twoWays
\new Voice \twoWays >>

suséd suséd 6/sus4
C F Bh/F C F Fo
)" 4 [ Q) ~F ~F ] [P
4\ o < h hes
[ [an YA O] > vV L
8} P4 O O

This example also shows that the chord printing routines do not try to be intelligent. The
last chord (f bes d) is not interpreted as an inversion.

Note that the duration of chords must be specified outside the <>.
<c e g>2

7.2.2 Chords mode

In chord mode sets of pitches (chords) are entered with normal note names. A chord is entered
by the root, which is entered like a normal pitch

\chordmode { es4. d8 c2 }

The mode is introduced by the keyword \chordmode.

Other chords may be entered by suffixing a colon and introducing a modifier (which may
include a number if desired)

\chordmode { el:m el:7 el:m7 }

oo
ay

AP
an

The first number following the root is taken to be the
of the chord, thirds are added to the root until it reaches the specified number

\chordmode { c¢:3 c:5 ¢:6 ¢c:7 ¢:8 ¢c:9 ¢c:10 c:11 }




Chapter 7: Instrument-specific notation 116

More complex chords may also be constructed adding separate steps to a chord. Additions
are added after the number following the colon and are separated by dots

\chordmode { ¢:5.6 ¢:3.7.8 ¢c:3.6.13 }

Chord steps can be altered by suffixing a - or + sign to the number
\chordmode { c:7+ c:5+.3- ¢:3-.5-.7- }

Removals are specified similarly and are introduced by a caret. They must come after the
additions

\chordmode { ¢~°3 ¢c:7°5 ¢c:9°3.5 }

" 4 T

o) - -

Modifiers can be used to change pitches. The following modifiers are supported

m The minor chord. This modifier lowers the 3rd and (if present) the 7th step.

dim The diminished chord. This modifier lowers the 3rd, 5th and (if present) the 7th
step.

aug The augmented chord. This modifier raises the 5th step.

maj The major 7th chord. This modifier raises the 7th step if present.

sus The suspended 4th or 2nd. This modifier removes the 3rd step. Append either 2 or

4 to add the 2nd or 4th step to the chord.

Modifiers can be mixed with additions

\chordmode { c:sus4 c:7sus4 c:dim7 c:m6 }

Since an unaltered 11 does not sound good when combined with an unaltered 13, the 11 is
removed in this case (unless it is added explicitly)

\chordmode { c¢:13 ¢:13.11 ¢c:m13 }



Chapter 7: Instrument-specific notation 117

An inversion (putting one pitch of the chord on the bottom), as well as bass notes, can be
specified by appending /pitch to the chord

\chordmode { cl c/g c/f }

r @)
\ U7

Gz e

S
©

el
$16¢0

A bass note can be added instead of transposed out of the chord, by using /+pitch.
\chordmode { cl1 c/+g c/+f }

r )
\ U7

e

S
-©-

d4%
o

Chords is a mode similar to \lyricmode, etc. Most of the commands continue to work, for
example, r and \skip can be used to insert rests and spaces, and property commands may be
used to change various settings.

Bugs

Each step can only be present in a chord once. The following simply produces the augmented
chord, since 5+ is interpreted last

\chordmode { c:5.5-.5+ }

7.2.3 Printing chord names

For displaying printed chord names, use the
context. The chords may be entered either using the notation described above, or directly
using < and >

harmonies = {
\chordmode {al b c} <d' f' a'> <e' g' b'>
}
<<
\new ChordNames \harmonies
\new Staff \harmonies
>>

A B C Dm Em
() Ho
)" 4 114 Pol- D24
/\ e 1l€> P~ A =4 Py
N U TO ! -~F Pay <« b4
SV P4 [ Q) b4
ry) S ©



Chapter 7: Instrument-specific notation 118

You can make the chord changes stand out by setting
to true. This will only display chord names when there is a change in the chords scheme and
at the start of a new line

harmonies = \chordmode {
cl:m c:m \break c:m c:m d

}
<<
\new ChordNames {
\set chordChanges = ##t
\harmonies }
\new Staff \transpose c c' \harmonies
>>
Cm
0) | Q@ | @
)’ 4 VX ® ] DEd
4\ e < [ @)
|
ANV
oJ
Cm D
50 1 | #
Y D4 VX @] P-4
7\ [ Q] [ Q] T
[ farY
ANV
oJ
The previous examples all show chords over a staff. This is not mneces-
sary. Chords may also be printed separately. It may be mnecessary to add
Volta_engraver and Bar_

engraver for showing repeats.

\new ChordNames \with {
\override BarLine #'bar-size = #4
\consists Bar_engraver
\consists "Volta_engraver"

}

\chordmode { \repeat volta 2 {
fl:maj7 £:7 bes:7

c:maj7

} \alternative {

es e

}

}
T
1. 2.

FELF B | CT B | E

The default chord name layout is a system for Jazz music, proposed by Klaus Ignatzek (see
Appendix A [Literature list], page 341). It can be tuned through the following properties

chordNameExceptions
This is a list that contains the chords that have special formatting.

The exceptions list should be encoded as



Chapter 7: Instrument-specific notation 119

{ <c f g bes>1 \markup { \super "7" "wahh" } }

To get this information into chordNameExceptions takes a little manoeuvring. The
following code transforms chExceptionMusic (which is a sequential music) into a
list of exceptions.

(sequential-music-to-chord-exceptions chExceptionMusic #t)
Then,

(append
(sequential-music-to-chord-exceptions chExceptionMusic #t)
ignatzekExceptions)

adds the new exceptions to the default ones, which are defined in ‘ly/chord
-modifier-init.ly’.

For an example of tuning this property, see also

-name-exceptions.ly’

majorSevenSymbol
This property contains the markup object used for the 7th step, when it is ma-
jor. Predefined options are whiteTriangleMarkup and blackTriangleMarkup. See
‘chords/chord-name-major7.1ly’ for an example.

chordNameSeparator
Different parts of a chord name are normally separated by a slash. By setting
chordNameSeparator, you can specify other separators, e.g.,

\new ChordNames \chordmode {
c:7sus4
\set chordNameSeparator
= \markup { \typewriter "|" }
c:7sus4

7/susd ~7|susd
c/isust

chordRootNamer
The root of a chord is wusually printed as a letter with an op-
tional alteration. The transformation from pitch to letter is done
by this function. Special note names (for example, the German
‘H” for a B-chord) can be produced by storing a new function in this
property.

chordNoteNamer

The default is to print single pitch, e.g., the bass note, using the chordRootNamer.
The chordNoteNamer property can be set to a specialized function to change this
behavior. For example, the base can be printed in lower case.

chordPrefixSpacer
The ‘m’
for minor chords is usually printed right after the root of the chord. By set-
ting chordPrefixSpacer, you can fix a spacer between the root and
‘m’. The spacer is not used when the root is altered.

The predefined variables \germanChords, \semiGermanChords, \italianChords and
\frenchChords set these variables. The effect is demonstrated here,



Chapter 7: Instrument-specific notation 120

default E/D Cm B/B B#/B# Bb/Bb
german E/d Cm H/h H#/his B/b
semi-german E/d Cm H/h H#/h is Bb/b
talian Mi/Re Dom  Si/Si  Si#/sitsib/sib
french Mi/Ré Dom Si/Si  Si#/si#sib/sib
0 o xQ Q
GCi8 |1a [ FO | *° [ ©
J To° S p— o bo

There are also two other chord name schemes implemented: an alternate Jazz chord notation,
and a systematic scheme called Banter chords. The alternate Jazz notation is also shown on the
chart in Section C.1 [Chord name chart], page 344. Turning on these styles is demonstrated in
‘chords/chord-names-jazz.ly .

Predefined commands

\germanChords, \semiGermanChords.
\italianChords.

See also

Examples:

Init files: ‘scm/chords-ignatzek.scm’, and ‘scm/chord-entry.scm’.

Bugs

Chord names are determined solely from the list of pitches. Chord inversions are not identified,
and neither are added bass notes. This may result in strange chord names when chords are
entered with the < .. > syntax.

7.3 Vocal music

Since LilyPond input files are text, there are two issues to consider when working with vocal
music:

e Song texts must be entered as text, not notes. For example, the input d should be interpreted
as a one letter syllable, not the note D.
e Song texts must be aligned with the notes of their melody.

There are a few different ways to define lyrics; we shall begin by examining the simplest
method, and gradually increase complexity.

Commonly tweaked properties

Checking to make sure that text scripts and lyrics are within the margins is a relatively large
computational task. To speed up processing, lilypond does not perform such calculations by
default; to enable it, use

\override Score.PaperColumn #'keep-inside-line = ##t
To make lyrics avoid barlines as well, use

\layout {
\context {
\Lyrics
\consists "Bar_engraver"
\consists "Separating_line_group_engraver"



Chapter 7: Instrument-specific notation 121

\override BarLine #'transparent = ##t
b
b

7.3.1 Setting simple songs

The easiest way to add lyrics to a melody is to append
\addlyrics { the lyrics %}

to a melody. Here is an example,
\time 3/4

\relative { c2 e4 g2. }
\addlyrics { play the game }

0) .
)’ 4 |
e <
play the game

More stanzas can be added by adding more \addlyrics sections

\time 3/4

\relative { c2 e4 g2. }
\addlyrics { play the game }
\addlyrics { speel het spel }
\addlyrics { joue le jeu }

!
| P

J
play the game
speel het spel

joue le jeu

Gz e

The command \addlyrics cannot handle polyphony settings. For these cases you should use
\lyricsto and \lyricmode, as will be introduced in Section 7.3.2 [Entering lyrics|, page 121.

7.3.2 Entering lyrics

Lyrics are entered in a special input mode, which can be introduced by the keyword \1lyricmode,
or by using \addlyrics or \lyricsto. In this mode you can enter lyrics, with punctuation and
accents, and the input d is not parsed as a pitch, but rather as a one letter syllable. Syllables
are entered like notes, but with pitches replaced by text. For example,

\lyricmode { Twin-4 kle4 twin- kle litt- le star2 7}

There are two main methods to specify the horizontal placement of the syllables, either by
specifying the duration of each syllable explicitly, like in the example above, or by automatically
aligning the lyrics to a melody or other voice of music, using \addlyrics or \lyricsto.

A word or syllable of lyrics begins with an alphabetic character, and ends with any space or
digit. The following characters can be any character that is not a digit or white space.

Any character that is not a digit or white space will be regarded as part of the syllable; one

important consequence of this is that a word can end with }, which often leads to the following
mistake:



Chapter 7: Instrument-specific notation 122

\lyricmode { lah- lah}

In this example, the } is included in the final syllable, so the opening brace is not balanced
and the input file will probably not compile.

Similarly, a period which follows an alphabetic sequence is included in the resulting string. As
a consequence, spaces must be inserted around property commands: do not write

\override Score.LyricText #'font-shape = #'italic
but instead use
\override Score . LyricText #'font-shape = #'italic

In order to assign more than one syllable to a single note, you can surround them with quotes
or use a _ character, to get spaces between syllables, or use tilde symbol (7) to get a lyric tie.

\time 3/4

\relative { c2 e4 g2 e4 }

\addlyrics { gran- de_a- mi- go }
\addlyrics { pu- "ro y ho-" nes- to }
\addlyrics { pu- ro“y~ho- nes- to }

L

QL

G

= @

gran- de a- mi- go
pu- ro y ho- nes- to
pu-ro y ho-nes- to

The lyric ties is implemented with the Unicode character U+203F, so be sure to have a font
(Like DejaVuLGC) installed that includes this glyph.

To enter lyrics with characters from non-English languages, or with accented and special
characters (such as the heart symbol or slanted quotes), simply insert the characters directly
into the input file and save it with utf-8 encoding. See Section 10.1.7 [Text encoding], page 248,
for more info.

\relative { e4 f e d e f €2 }
\addlyrics { He said: Let my peo ple go. }

DO

y O - i i
| |

- @
He said: “Let my peo ple go”.

To use normal quotes in lyrics, add a backslash before the quotes. For example,

\relative c' { \time 3/4 e4 e4. €8 d4 e d c2. }
\addlyrics { "\"I" am so lone- "ly\"" said she }

0]
)4
7\
%) 5 }
o o =

"I am solone-ly"said she




Chapter 7: Instrument-specific notation 123

The full definition of a word start in Lyrics mode is somewhat more complex.

A word in Lyrics mode begins with: an alphabetic character, _, 7, !, :, ', the control
characters ~A through “F, ~Q through “W, °Y, ~~, any 8-bit character with ASCII code over 127,
or a two-character combination of a backslash followed by one of =, ', ", or ~

To define identifiers containing lyrics, the function 1lyricmode must be used.

verselne = \lyricmode { Joy to the world the Lord is come }

\score {
<<
\new Voice = "one" \relative c'' {
\autoBeamOff
\time 2/4
c4 b8. al6 g4. £8 e4 d c2
}
\addlyrics { \verseOne }
>>
}
See also

Program reference:
LyricSpace.

7.3.3 Aligning lyrics to a melody
Lyrics are printed by interpreting them in the context called
\new Lyrics \lyricmode ...
There are two main methods to specify the horizontal placement of the syllables:

e by automatically aligning the lyrics to a melody or other voice of music, using \addlyrics
or \lyricsto.

e or by specifying the duration of each syllable explicitly, using \1yricmode

7.3.3.1 Automatic syllable durations

The lyrics can be aligned under a given melody automatically. This is achieved by combining
the melody and the lyrics with the \1yricsto expression

\new Lyrics \lyricsto name

This aligns the lyrics to the notes of the
context called name, which must already exist. Therefore normally the Voice is specified
first, and then the lyrics are specified with \lyricsto. The command \lyricsto switches to
\lyricmode mode automatically, so the \1yricmode keyword may be omitted.

The following example uses different commands for entering lyrics.

<<
\new Voice = "one" \relative c'' {
\autoBeamOff
\time 2/4
c4 b8. al6 gd4. £8 e4 d c2
}
\new Lyrics \lyricmode { Joy4 to8. thel6 world'4. the8 Lord4 is come.2 }
\new Lyrics \lyricmode { Joy to the earth! the Sa -- viour reigns. }
\new Lyrics \lyricsto "one" { No more let sins and sor -- rows grow. }
>>

Vo:



Chapter 7: Instrument-specific notation 124

g % R ! .
T ‘. ‘|

A

o | Y =
Joy to theworld!the Lord is come.
Joy to the earth! the Sa - viour

No morelet sins and sor-rows grow.

8
reigns.

The second stanza is not properly aligned because the durations were not specified. A solution
for that would be to use \lyricsto.

The \addlyrics command is actually just a convenient way to write a more complicated
LilyPond structure that sets up the lyrics.

{ MUSIC }
\addlyrics { LYRICS }

is the same as

\new Voice = "blah" { music }
\new Lyrics \lyricsto "blah" { LYRICS }

7.3.3.2 Another way of entering lyrics

Lyrics can also be entered without \addlyrics or \lyricsto. In this case, syllables are entered
like notes — but with pitches replaced by text — and the duration of each syllable must be entered
explicitly. For example:

play2 the4 game2.
sink2 or4 swim2.

The alignment to a melody can be specified with the associatedVoice property,

\set associatedVoice = #"lala"

The wvalue of the property (here: "lala") should be the mname of a
Voice context. Without this setting, extender lines will not be formatted properly.

Here is an example demonstrating manual lyric durations,

<< \new Voice = "melody" {
\time 3/4
c2 ed g2.

}

\new Lyrics \lyricmode {
\set associatedVoice = #"melody"
play2 the4 game2.

T >>
0] .
)’ 4 |
e <
play the game

The following example is a comparison of the different commands for entering lyrics:



Chapter 7: Instrument-specific notation 125

<<
\new Voice = "one" \relative c'' {
\autoBeamOff
\time 2/4
c4 b8. al6 g4. £8 e4 d c2
}
\new Lyrics \lyricmode { Joy4 to8. thel6 world!4. the8 Lord4 is come.2 }
\new Lyrics \lyricmode { Joy to the earth! the Sa -- viour reigns. }
\new Lyrics \lyricsto "one" { No more let sins and sor -- rows grow. }
>>
0 !
I SEE=Er="x=
¢J ! r - <
Joy to theworld!the Lord is come.
Joy to the earth! the Sa - viour
No morelet sins and sor-rows grow.
8
reigns.

The second stanza is not properly aligned because the durations were not specified. A solution
for that, as shown with the third stanza, would be to use \lyricsto.

See also

Program reference:

7.3.3.3 Assigning more than one syllable to a single note

In order to assign more than one syllable to a single note, you can surround them with quotes
or use a _ character, to get spaces between syllables, or use tilde symbol (~) to get a lyric tie’.
\time 3/4
\relative { c2 e4 g2 e4 }
\addlyrics { gran- de_a- mi- go }
\addlyrics { pu- "ro y ho-" nes- to }
\addlyrics { pu- ro“y~ho- nes- to }

0 .

)" 4 ¢ |
= .
) & g

gran- de a- mi- go
pu- ro y ho- nes- to
pu-rQ y ho-nes- to
See also

Program reference:

1 The lyric ties is implemented with the Unicode character U+203F, so be sure to have a font (Like DejaVuLGC)
installed that includes this glyph.



Chapter 7: Instrument-specific notation 126

7.3.3.4 More than one note on a single syllable

Sometimes, particularly in Medieval music, several notes are to be sung on one single syllable;
such vocalises are called melismas, or melismata.

You can define melismata entirely in the lyrics, by entering _ for every note that is part of
the melisma.

{ \set melismaBusyProperties = #'()
cd(e) ff(e)ee }

\addlyrics

{Ky--__ri_____ e}
o)
)’ 4 )
7\ r ) | | |
'c“ \ U7 || | | |
Y, N & N

Ky - ri e

In this case, you can also have ties and slurs in the melody if you set melismaBusyProperties,
as is done in the example above.

However, the \1yricsto command can also detect melismata automatically: it only puts one
syllable under a tied or slurred group of notes. If you want to force an unslurred group of notes
to be a melisma, insert \melisma after the first note of the group, and \melismaEnd after the
last one, e.g.,

<<

\new Voice = "lala" {
\time 3/4
f4 g8
\melisma
fef
\melismaEnd
e2

}

\new Lyrics \lyricsto "lala" {
la di __ daah

}
>>

et

la di__ daah

c@jo

In addition, notes are considered a melisma if they are manually beamed, and automatic
beaming (see Section 9.1.2 [Setting automatic beam behavior|, page 223) is switched off.

A complete example of a SATB score setup is in section Section D.4 [Vocal ensembles],
page 374.
Predefined commands

\melisma, \melismaEnd



Chapter 7: Instrument-specific notation 127

See also
Program reference:
translator.

‘vocal/lyric-combine.ly’ .

Bugs

Melismata are not detected automatically, and extender lines must be inserted by hand.

7.3.3.5 Extenders and hyphens

Melismata are indicated with a horizontal line centered between a syllable and the next one.
Such a line is called an extender line, and it is entered as ‘ __ ’ (note the spaces before and after
the two underscore characters).

¢

Centered hyphens are entered as ¢ —-’ between syllables of a same word (note the spaces
before and after the two hyphen characters). The hyphen will be centered between the syllables,
and its length will be adjusted depending on the space between the syllables.

In tighly engraved music, hyphens can be removed. Whether this happens can be controlled
with the minimum-distance (minimum distance between two syllables) and the minimum-length
(threshold below which hyphens are removed).

See also

Program reference:

LyricHyphen

7.3.4 Working with lyrics and identifiers

To define identifiers containing lyrics, the function \1lyricmode must be used. You do not have
to enter durations though, if you add \addlyrics or \lyricsto when invoking your identifier.

verseOne = \lyricmode { Joy to the world the Lord is come }

\score {
<<
\new Voice = "one" \relative c'' {
\autoBeamOff
\time 2/4
c4 b8. al6 g4. £8 e4d d c2
}
\addlyrics { \verseOne }
>>

}
For different or more complex orderings, the best way is to setup the hierarchy of staves and
lyrics first, e.g.,
\new ChoirStaff <<

\new Voice = "soprano" { music }
\new Lyrics = "sopranoLyrics" { s1 }
\new Lyrics = "tenorLyrics" { s1 }
\new Voice = "tenor" { music }

>>

and then combine the appropriate melodies and lyric lines

\context Lyrics = sopranoLyrics \lyricsto "soprano"
the lyrics

The final input would resemble



Chapter 7: Instrument-specific notation 128

<<\new ChoirStaff << setup the music >>
\lyricsto "soprano" etc

\lyricsto "alto" etc

etc

>>

See also

Program reference:
Lyrics.

7.3.5 Flexibility in placement

Often, different stanzas of one song are put to one melody in slightly differing ways. Such
variations can still be captured with \lyricsto.

7.3.5.1 Lyrics to multiple notes of a melisma

One possibility is that the text has a melisma in one stanza, but multiple syllables in another
one. One solution is to make the faster voice ignore the melisma. This is done by setting
ignoreMelismata in the Lyrics context.

There is one tricky aspect: the setting for ignoreMelismata must be set one syllable before
the non-melismatic syllable in the text, as shown here,
i
<<
\relative \new Voice = "lahlah" {
\set Staff.autoBeaming = ##f
c4
\slurDotted
£8.[( gi6])
ad
}
\new Lyrics \lyricsto "lahlah" {
more slow -- ly
}
\new Lyrics \lyricsto "lahlah" {
\set ignoreMelismata = ##t J, applies to "fas"

go fas -- ter
\unset ignoreMelismata
still
b
>>
h

The ignoreMelismata applies to the syllable
so it should be entered before

4 9

go’.
The reverse is also possible: making a lyric line slower than the standard. This can be
achieved by insert \skips into the lyrics. For every \skip, the text will be delayed another
note. For example,
\relative { c c g' }
\addlyrics {
twin -- \skip 4
kle



Chapter 7: Instrument-specific notation 129

()

)" 4

4\ y £)

'(\\ \ W &

[Y) o &
twin - kle

7.3.5.2 Divisi lyrics

You can display alternate (or divisi) lyrics by naming voice contexts and attaching lyrics to
those specific contexts.

\score{ <<

\new Voice = "melody" {
\relative c' {
c4
<<
{ \voiceOne c8 e }
\new Voice = "splitpart" { \voiceTwo c4 }
>>
\oneVoice c4 ¢ | ¢
}
}

\new Lyrics \lyricsto "melody" { we shall not o- ver- come }
\new Lyrics \lyricsto "splitpart" { will }
>> }

N &1

 J L ‘ o @ E

P

we shall not o- ver- come
will

You can use this trick to display different lyrics for a repeated section.

\score{ <<
\new Voice = "melody" \relative c' {
c2elgel cl|
\new Voice = "verse" \repeat volta 2 {c4 de f | gl | }

a2 b | ci}
\new Lyrics = "mainlyrics" \lyricsto melody \lyricmode {
do mi sol mi do
la si do %
\context Lyrics = "mainlyrics" \lyricsto verse \lyricmode {
do re mi fa sol }
\new Lyrics = "repeatlyrics" \lyricsto verse \lyricmode {
dodo rere mimi fafa solsol }
>>
}
0 .
)’ 4 | | | | |
/\ r ) | | | 1D Q| |
[ [ YA W | | -~ | 1D O Q| |
SV | ~ b - | | ~F | |
eJ < o -
do mi sol mi do do re mi fa sol

dodo rere mimi fafa solsol



Chapter 7: Instrument-specific notation 130

[ @)

[,

T

(<2}
G

la si do

7.3.5.3 Switching the melody associated with a lyrics line

More complex variations in text underlay are possible. It is possible to switch the melody for
a line of lyrics during the text. This is done by setting the associatedVoice property. In the
example

n  — 33—

"4 K N

4\ y £) | )

o < = rr
Ju - ras - sic Park

Ty-ran - nosau-rus Rex

the text for the first stanza is set to a melody called

\new Lyrics \lyricsto "lahlah" {
Ju -- ras -- sic Park

}

The second stanza initially is set to the lahlah context, but for the syllable
‘ran’, it switches to a different melody. This is achieved with

\set associatedVoice = alternative
Here, alternative is the name of the Voice context containing the triplet.

Again, the command must be one syllable too early, before
“T'y’ in this case.

\new Lyrics \lyricsto "lahlah" {
\set associatedVoice = alternative 7, applies to "ran"

Ty --

ran --

no --

\set associatedVoice = lahlah % applies to "rus"
sau -- rus Rex

¥

The underlay is switched back to the starting situation by assigning lahlah to associatedVoice

7.3.5.4 Lyrics independent of notes

In some complex vocal music, it may be desirable to place lyrics completely independently of
notes. Music defined inside lyricrhythm disappears into the Devnull context, but the rhythms
can still be used to place the lyrics.
voice = {

c''2

\tag #'music { c¢''2 }

\tag #'lyricrhythm { c''4. c''8 }

d''1

lyr = \lyricmode { I like my cat! }

<<



Chapter 7: Instrument-specific notation 131

\new Staff \keepWithTag #'music \voice

\new Devnull="nowhere" \keepWithTag #'lyricrhythm \voice
\new Lyrics \lyricsto "nowhere" \lyr

\new Staff { ¢'8 ¢c' ¢' ¢' ¢' ¢' ¢c' ¢’

c' c¢c'cc'cc'c ¢}

>>
()
- - 7z ©
fes—C—
N3V I
Y, |
A I like my cat!
- )
111111 S I o m——
eJ 40000 edee 60900 dddded

7.3.6 Spacing lyrics
To increase the spacing between lyrics, set the minimum-distance property of LyricSpace.

{
cccc
\override Lyrics.LyricSpace #'minimum-distance = #1.0
cccec
X
\addlyrics {
longtext longtext longtext longtext
longtext longtext longtext longtext
b

r £}
\ U7

P

& - - o
longtext longtext longtext longtext

2.0
)" 4
4\

[anY

ANIVJ

dJ € - & &

longtext longtext longtext longtext

—~

To make this change for all lyrics in the score, set the property in the layout.

\score {
\relative c' {
cccc
cccc
b
\addlyrics {
longtext longtext longtext longtext
longtext longtext longtext longtext
}
\layout {
\context {



Chapter 7: Instrument-specific notation 132

\Lyrics
\override LyricSpace #'minimum-distance = #1.0
}
}
}

o)
)’ 4
4\ r £}
[ (oY W]
ANV
e - -

- -
longtext longtext longtext longtext

20
)’ 4
(s

ANV

J 4 R R <

longtext longtext longtext longtext

—~

7.3.7 More about stanzas

7.3.7.1 Adding stanza numbers
Stanza numbers can be added by setting stanza, e.g.,

\new Voice {

\time 3/4 g2 e4 a2 f4 g2.
} \addlyrics {

\set stanza = "1. "

Hi, my name is Bert.
} \addlyrics {

\set stanza = "2. "
Oh, che -- ri, je t'aime
}
0) . | .
)" 4 | | |
4\ | | |
[ Fan) -~ [~ e
SY = =g
[y

1. Hi, mynameis Bert.
2. Oh,che-ri, je t'aime

These numbers are put just before the start of the first syllable.

7.3.7.2 Adding dynamics marks

Stanzas differing in loudness may be indicated by putting a dynamics mark before each stanza.
In Lilypond, everthing coming in front of a stanza goes into the StanzaNumber object; dynamics
marks are no different. For technical reasons, you have to set the stanza outside \lyricmode:

text = {
\set stanza = \markup { \dynamic "ff" "1. " }
\lyricmode {
Big bang
}
}



Chapter 7: Instrument-specific notation

<<
\new Voice = "tune" {
\time 3/4
g'4 c'2
}
\new Lyrics \lyricsto "tune" \text
>>
o)
A —

oJ <
Jf1. Bigbang

7.3.7.3 Adding singer names

133

Names of singers can also be added. They are printed at the start of the line, just like in-
strument names. They are created by setting vocalName. A short version may be entered as

shortVocalName.

\new Voice {

\time 3/4 g2 e4 a2 f4 g2.

} \addlyrics {

\set vocalName = "Bert "

Hi, my name is Bert.
} \addlyrics {

\set vocalName = "Ernie "
Oh, che -- ri, je t'aime
}
o) . .
)4 | ) |
/\ | | |
[ Fan = | 7 e
;\J_U [~ 4 ‘ L4
Bert Hi, mynameis Bert.
Ernie Oh, che - ri, je t'aime

7.3.7.4 Printing stanzas at the end

Sometimes it is appropriate to have one stanza set to the music, and the rest added in verse
form at the end of the piece. This can be accomplished by adding the extra verses into a
\markup section outside of the main score block. Notice that there are two different ways to
force linebreaks when using \markup.

melody = \relative c' {
edcd| eeee |
dded | c1 |

}

text = \lyricmode {

\set stanza = "1." Ma- ry had a lit- tle lamb,

its fleece was white as snow.

}

\scoreq{ <<



Chapter 7: Instrument-specific notation 134

\new Voice = "one" { \melody %}
\new Lyrics \lyricsto "one" \text
>>
\layout { }
}

\markup { \column{
\line{ Verse 2. }
\line{ All the children laughed and played }
\line{ To see a lamb at school. }
}
}
\markup{
\wordwrap-string #"
Verse 3.

Mary took it home again,

It was against the rule."

¥

r @) |
\ U7

|
o s ° ©

1. Ma-ryhada lit-tlelamb, its fleece was white as snow.

P

Verse 2.
All the children laughed and played
To see a lamb at school.

Verse 3.
Mary took it home again,
It was against the rule.

7.3.7.5 Printing stanzas at the end in multiple columns

When a piece of music has many verses, they are often printed in multiple columns across the
page. An outdented verse number often introduces each verse. The following example shows
how to produce such output in Lilypond.

melody = \relative c' {
ccccldddd
}

text = \lyricmode {
\set stanza = "1." This is verse one.
It has two lines.

\score{ <<
\new Voice = "one" { \melody }
\new Lyrics \lyricsto "one" \text



Chapter 7: Instrument-specific notation 135

>>
\layout { }
}

\markup {
\fill-line {
\hspace #0.1 % moves the column off the left margin; can be removed if
% space on the page is tight
\column {
\line { \bold "2."
\column {
"This is verse two."

"It has two lines."

3
X

\hspace #0.1 %, adds vertical spacing between verses

\line { \bold "3."
\column {
"This is verse three."

"It has two lines."

}
}

+
\hspace #0.1
% still too close, add more " " pairs until the result
% looks good
\column {
\line { \bold "4."
\column {
"This is verse four."
"It has two lines."

}
}

\hspace #0.1 % adds vertical spacing between verses

\line { \bold "5."
\column {
"This is verse five."
"It has two lines."

% adds horizontal spacing between columns; if they are

}
}
}

\hspace #0.1 % gives some extra space on the right margin; can
% be removed if page space is tight

}
}

r @)
\ W]

P

4 @0 @ R [
1. Thisis verse one. It has two lines.



Chapter 7: Instrument-specific notation

2. This is verse two.
It has two lines.

3. This is verse three.
It has two lines.

See also

Program reference:
StanzaNumber,

7.3.8 Ambitus

136
4. This is verse four.
It has two lines.
5. This is verse five.
It has two lines.
VocalName.

The term ambitus denotes a range of pitches for a given voice in a part of music. It may also
denote the pitch range that a musical instrument is capable of playing. Ambits are printed on
vocal parts, so performers can easily determine it meets their capabilities.

Ambits are denoted at the beginning of a piece near the initial clef. The range is graphically
specified by two note heads that represent the minimum and maximum pitch. To print such

ambits, add the
engraver to the
context, for example,

\layout {

\context {
\Voice

\consists Ambitus_engraver

}
}

This results in the following output

9

-
Fo be?
LI 4 1L
:jtllw T 17
U Tll
|

ANV

oJ

If you  have  multiple  voices

a  single  ambitus  per  staff
Ambitus_engraver to the
context rather than to the

context. Here is an example,

\new Staff \with {

\consists "Ambitus_engraver"

}
<<

\new Voice \with {

\remove "Ambitus_engraver"

} \relative c'' {

\override Ambitus #'X-offset

\voiceOne
cd ade £f2
}
\new Voice \with {

\remove "Ambitus_engraver"

} \relative c' {
\voiceTwo

Ambitus_
Voice

a single staff and you = want

than per each  voice, add  the

Staff
Voice

.0



Chapter 7: Instrument-specific notation 137

es4 £ g as b2

This example uses one advanced feature,
\override Ambitus #'X-offset = #-1.0

This code moves the ambitus to the left. The same effect could have been achieved with extra-
offset, but then the formatting system would not reserve space for the moved object.

See also

Program reference:
AmbitusLine, AmbitusNoteHead,
AmbitusAccidental.

Examples:

)

Ayt

Bugs

There is no collision handling in the case of multiple per-voice ambitus.

7.3.9 Other vocal issues

‘Parlato’ is spoken without pitch but still with rhythm; it is notated by cross noteheads. This
is demonstrated in Section 8.4.5 [Special noteheads|, page 210.

7.4 Rhythmic music

Rhythmic music is primarily used for percussion and drum notation, but it can also be used to
show the rhythms of melodies.

7.4.1 Showing melody rhythms

Sometimes you might want to show only the rhythm of a melody. This can be done with the
rhythmic staff. All pitches of notes on such a staff are squashed, and the staff itself has a single
line

\new RhythmicStaff {
\time 4/4
cd e8 f g2 | r4 gr2 | g1:32 | rl1 |

b
—e—J—ﬂ—J—'—#—J—-—l—E—I—-—'

See also

Program reference:



Chapter 7: Instrument-specific notation 138

7.4.2 Entering percussion

Percussion notes may be entered in \drummode mode, which is similar to the standard mode for
entering notes. Each piece of percussion has a full name and an abbreviated name, and both
can be used in input files

\drums {
hihat hh bassdrum bd

X X
£ | ]

The complete list of drum names is in the init file ‘1y/drumpitch-init.1ly’.

See also

Program reference:
event.

7.4.3 Percussion staves

A percussion part for more than one instrument typically uses a multiline staff where each
position in the staff refers to one piece of percussion.

To typeset the music, the notes must be interpreted in a
and DrumVoice
contexts

up = \drummode { crashcymbal4 hihat8 halfopenhihat hh hh hh openhihat }
down = \drummode { bassdrum4 snare8 bd r bd sn4 }
\new DrumStaff <<
\new DrumVoice { \voiceOne \up }
\new DrumVoice { \voiceTwo \down }
>>

/

=

The above example shows verbose polyphonic notation. The short polyphonic
notation, described in Section 6.3.3 [Basic polyphony|, page 73, can also be used if the
DrumVoices are instantiated by hand first. For example,

\new DrumStaff <<

\new DrumVoice = "1" { s1 *2 }
\new DrumVoice = "2" { s1 *2 }
\drummode {
bd4 sn4 bd4 sné
<<
{ \repeat unfold 16 hhil6 }
\\
{ bd4 sn4 bd4 sn4d }
>>
}

>>



Chapter 7: Instrument-specific notation 139

mnme Jor

| r .

There are also other layout possibilities. To use these, set the property drumStyleTable in
context DrumVoice.
The following variables have been predefined

drums-style
This is the default. It typesets a typical drum kit on a five-line staff

X

cb hc bd sn SS tomh tommh

_‘ .

@
tomml toml tomfh tomfl

The drum scheme supports six different toms. When there are fewer toms, simply
select the toms that produce the desired result, i.e., to get toms on the three middle
lines you use tommh, tomml, and tomfh.

timbales-style
This typesets timbales on a two line staff

" * L 4

X

timh sshtimlsslcb

congas-style
This typesets congas on a two line staff

0 +

X

cgh cgho cghmsshcgl cglocglmssl



Chapter 7: Instrument-specific notation 140

bongos-style
This typesets bongos on a two line staff

boh boho bohmsshbol bolobolmssl

percussion-style
To typeset all kinds of simple percussion on one line staves.

0 +
H—x—x—x e o e » o e —x— 0 e ——

tritriotrimguiguisquilcbcl tambcabmarhc

If you do not like any of the predefined lists you can define your own list at the top of your
file

#(define mydrums ' (

(bassdrum default  #f -1)
(snare default  #f 0)
(hihat cross #f 1)
(pedalhihat  xcircle  "stopped" 2)
(lowtom diamond  #f 3)))

up = \drummode { hh8 hh hh hh hhp4 hhp }
down = \drummode { bd4 sn bd toml8 toml }

\new DrumStaff <<
\set DrumStaff.drumStyleTable = #(alist->hash-table mydrums)
\new DrumVoice { \voiceOne \up }

\new DrumVoice { \voiceTwo \down }
>>

See also

Init files: ‘ly/drumpitch-init.ly’.
Program reference:

DrumVoice.

Bugs

Because general MIDI does not contain rim shots, the sidestick is used for this purpose instead.



Chapter 7: Instrument-specific notation 141

7.4.4 Ghost notes

Ghost notes for drums and percussion may be created using the \parenthesize command
detailed in Section 8.5.8 [Parentheses|, page 217. However, the default \drummode does not
include the Parenthesis_engraver plugin which allows this. You must add the plugin explicitly
in the context definition as detailed in Section 9.2.3 [Changing context properties on the fly],
page 229.
\new DrumStaff \with {
\consists "Parenthesis_engraver"

} <<
\context DrumVoice = "1" { s1 *2 }
\context DrumVoice = "2" { s1 *2 }
\drummode {
<<
{
hh8[ hh] <hh sn> hhil6
< \parenthesize sn > hh < \parenthesize
sn > hh8 <hh sn> hh
FA\{
bd4 r4 bd8 bd r8 bd
}
>>
}
>>

] | ™ | |
:Hﬁf—&mrx—%x
F— 77

Also note that you must add chords (< > brackets) around each \parenthesize statement.

7.5 Guitar

7.5.1 String number indications
String numbers can be added to chords, by indicating the string number with \number,

®
@

@

See also
Program reference:

‘guitar//string-number.ly’ .

7.5.2 Tablatures basic

Tablature notation is used for notating music for plucked string instruments. Pitches are not
denoted with note heads, but by numbers indicating on which string and fret a note must be
played. LilyPond offers limited support for tablature.



Chapter 7: Instrument-specific notation 142

The string number associated to a note is given as a backslash followed by a number, e.g.,
c4\3 for a C quarter on the third string. By default, string 1 is the highest one, and the tuning
defaults to the standard guitar tuning (with 6 strings). The notes are printed as tablature, by

using TabStaff
and TabVoice
contexts

\new TabStaff {
a,4\5 c'\2 a\3 e'\1
e\4 c'\2 a\3 e'\1

b
— 0 0—
F— 1— 1—

U d o> d
-B——0

When no string is specified, the first string that does not give a fret number less than
minimumFret is selected. The default value for minimumFret is 0

el6 fis gis a b4
\set TabStaff.minimumFret = #8
el6 fis gis a b4

AWE. ¥
A5 i
%}? b \ W o ‘ [ I o
P a N.
J f K) 1—2 hd
.A. v 2_4 I O.
B i 9—11-12
2
\

Commonly tweaked properties

To print tablatures with stems down and horizontal beams, initialize the TabStaff with this
code:

\stemDown
\override Beam #'damping = #100000
See also
Program reference:
TabVoice.
Bugs
Chords are not handled in a special way, and hence the automatic string selector may easily
select the same string to two notes in a chord.
7.5.3 Non-guitar tablatures

You can change the tuning of the strings. A string tuning is given as a Scheme list with one
integer number for each string, the number being the pitch (measured in semitones relative
to middle C) of an open string. The numbers specified for stringTuning are the numbers of



Chapter 7: Instrument-specific notation 143

semitones to subtract or add, starting the specified pitch by default middle C, in string order.
LilyPond automatically calculates the number of strings by looking at stringTuning.
In the next example, stringTunings is set for the pitches e, a, d, and g
\new TabStaff <<
\set TabStaff.stringTunings = #'(-5 -10 -15 -20)
{

—F529 7529

o)

LilyPond comes with predefined string tunings for banjo, mandolin, guitar and bass guitar.
\set TabStaff.stringTunings = #bass-tuning

The default string tuning is guitar-tuning (the standard EADGBE tuning). Some other
predefined tunings are guitar-open-g-tuning, mandolin-tuning and banjo-open-g-tuning.

See also

The file ‘scm/output-1lib.scm’ contains the predefined string tunings. Program reference:
Tab_note_heads_engraver.

Bugs

No guitar special effects have been implemented.

7.5.4 Banjo tablatures

LilyPond has basic support for five stringed banjo. When making tablatures for five stringed
banjo, use the banjo tablature format function to get correct fret numbers for the fifth string:

\new TabStaff <<
\set TabStaff.tablatureFormat = #fret-number-tablature-format-banjo
\set TabStaff.stringTunings = #banjo-open-g-tuning
{
\stemDown
g8 d' g'\babged' |
g4 d''8\5 b' a'\2 g'\5 e'\2 4' |
gl

S
S
<]
>

A\
5

A€o 2——0
_3

=]
=]
|

12

— o

—S
— <

A number of common tunings for banjo are predefined in LilyPond: banjo-c-tuning
(gCGBD), banjo-modal-tuning (gDGCD), banjo-open-d-tuning (aDF#AD) and banjo-
open-dm-tuning (aDFAD).

These tunings may be converted to four string banjo tunings using the four-string-banjo
function:



Chapter 7: Instrument-specific notation 144

\set TabStaff.stringTunings = #(four-string-banjo banjo-c-tuning)

See also

The file ‘scm/output-1lib.scm’ contains predefined banjo tunings.

7.5.5 Fret diagrams

Fret diagrams can be added to music as a markup to the desired note. The markup contains
information about the desired fret diagram, as shown in the following example

\new Voice {
d'"\markup \fret-diagram #"6-x;5-x;4-0;3-2;2-3;1-2;"
d' 4' d'
fis'“\markup \override #'(size . 0.75) {
\override #'(finger-code . below-string) {
\fret-diagram-verbose #'((place-fret 6 2 1) (barre 6 1 2)
(place-fret 5 4 3) (place-fret 4 4 4)
(place-fret 3 3 2) (place-fret 2 2 1)
(place-fret 1 2 1))
}
}
fis' fis' fis'
c'"\markup \override #'(dot-radius . 0.35) {
\override #'(finger-code . in-dot) {
\override #'(dot-color . white) {
\fret-diagram-terse #"x;3-1-(;5-2;5-3;5-4;3-1-);"

}
}
}
c' c' c'
}
XXO X
(U"r iii
i
n 342 [
)" 4
/\ r )
'(\\ \ U7 %
:j LK 4 n 4 o 0 o

There are three different fret-diagram markup interfaces: standard, terse, and verbose. The
three interfaces produce equivalent markups, but have varying amounts of information in the
markup string. Details about the markup interfaces are found at Section 8.1.8 [Overview of text
markup commands], page 179.

You can set a number of graphical properties according to your prefer-
ence. Details about the property interface to fret diagrams are found at
fret-diagram-interface.

See also

Examples:

7.5.6 Right hand fingerings
Right hand fingerings in chords can be entered using note-\rightHandFinger finger



Chapter 7: Instrument-specific notation 145

<c-\rightHandFinger #1 e-\rightHandFinger #2 >

for brevity, you can abbreviate \rightHandFinger to something short, for example RH,
#(define RH rightHandFinger)

Commonly tweaked properties

You may exercise greater control over right handing fingerings by setting
strokeFingerOrientations,

#(define RH rightHandFinger)

{
\set strokeFingerQOrientations = #'(up down)
<c-\RH #1 es-\RH #2 g-\RH #4 > 4
\set strokeFingerOrientations = #'(up right down)
<c-\RH #1 es-\RH #2 g-\RH #4 > 4

The letters used for the fingerings are contained in the property digit-names, but they
can also be set individually by supplying \rightHandFinger with a string argument, as in the
following example

#(define RH rightHandFinger)
{
\set strokeFingerOrientations = #'(right)
\override StrokeFinger #'digit-names = ##("x" "y" "z" "!" "@")
<c-\RH #5 >4
<c-\RH "@">4

See also

Internalls:

7.5.7 Other guitar issues

This example demonstrates how to include guitar position and barring indications.

\clef "G_8"
bl6 di16 gl6 bl6 el6
\textSpannerDown



Chapter 7: Instrument-specific notation 146

\override TextSpanner #'bound-details #'left #'text = #"XII "
gl6\startTextSpan
bl6 el6 gl6 el6 blé gl6\stopTextSpan

el6 bl6 gl6 di6

1%
e

T

o 2]

o = X .

Stopped (X) note heads are used in guitar music to signal a place where the guitarist must play
a certain note or chord, with its fingers just touching the strings instead of fully pressing them.
This gives the sound a percussive noise-like sound that still maintains part of the original pitch.
It is notated with cross noteheads; this is demonstrated in Section 8.4.5 [Special noteheads],
page 210.

7.6 Bagpipe

7.6.1 Bagpipe definitions

LilyPond contains special definitions for music for the Scottish highland bagpipe; to use them,
add

\include "bagpipe.ly"
at the top of your input file. This lets you add the special gracenotes common to bagpipe music
with short commands. For example, you could write \taor instead of

\grace { \small G32[ d G e] }

bagpipe.ly also contains pitch definitions for the bagpipe notes in the appropiate octaves,

so you do not need to worry about \relative or \transpose.

\include "bagpipe.ly"

{ \grg G4 \grg a \grg b \grg c \grg d \grg e \grg f \grA g A }

NENEIEEP

e 1 1

Bagpipe music nominally uses the key of D Major (even though that isn’t really true).
However, since that is the only key that can be used, the key signature is normally not written
out. To set this up correctly, always start your music with \hideKeySignature. If you for some
reason want to show the key signature, you can use \showKeySignature instead.

Some modern music use cross fingering on ¢ and f to flatten those notes. This can be indicated
by cflat or £flat. Similarly, the piobaireachd high g can be written gflat when it occurs in
light music.

7.6.2 Bagpipe example
This is what the well known tune Amazing Grace looks like in bagpipe notation.

\include "bagpipe.ly"
\layout {
indent = 0.0\cm



Chapter 7: Instrument-specific notation 147

\context { \Score \remove "Bar_number_engraver" }

}

\header {
title = "Amazing Grace"
meter = "Hymn"
arranger = "Trad. arr."

}

{
\hideKeySignature
\time 3/4
\grg \partial 4 a8. di16
\slurd d2 \grg £f8[ e32 d16.]
\grg 2 \grg 8 e
\thrwd d2 \grg b4
\grG a2 \grg a8. d16
\slurd d2 \grg f8[ e32 d16.]
\grg £2 \grg e8. f16
\dblA A2 \grg A4
\grg A2 £8. A16
\grg A2 \hdblf £8[ e32 d16.]
\grg 2 \grg £8 e
\thrwd d2 \grg b4
\grG a2 \grg a8. di6
\slurd d2 \grg £8[ e32 d16.]
\grg f2 e4
\thrwd d2.
\slurd 42
\bar n | . n

Amazing Grace

Hymn Trad. arr.

>
e

‘LW
=
=
=
i
=

N
o

0
\

d
il

Q#<3

TTT®

il

EEL )
q

TN
[y
0

G

TTe




Chapter 7: Instrument-specific notation 148

AU . W N, =
= ] o

oJ

T
O
T

TTT®

(il

7.7 Ancient notation
Support for ancient notation includes features for mensural notation and Gregorian Chant no-
tation. There is also limited support for figured bass notation.
Many graphical objects provide a style property, see
e Section 7.7.1 [Ancient note heads|, page 148,

Section 7.7.2 [Ancient accidentals|, page 149,
e Section 7.7.3 [Ancient rests|, page 149,

[
[
e Section 7.7.4 [Ancient clefs|, page 150,
e Section 7.7.5 [Ancient flags], page 152,
[

e Section 7.7.6 [Ancient time signatures|, page 153.

By manipulating such a grob property, the typographical appearance of the affected graphical
objects can be accommodated for a specific notation flavor without the need for introducing any
new notational concept.

In addition to the standard articulation signs described in section Section 6.6.1 [Articulations],
page 97, specific articulation signs for ancient notation are provided.

e Section 7.7.7 [Ancient articulations|, page 154

Other aspects of ancient notation can not that easily be expressed in terms of just changing
a style property of a graphical object or adding articulation signs. Some notational concepts are
introduced specifically for ancient notation,

e Section 7.7.8 [Custodes|, page 154,
e Section 7.7.9 [Divisiones|, page 155,
e Section 7.7.10 [Ligatures], page 156.
If this all is too much of documentation for you, and you just want to dive into typesetting
without worrying too much about the details on how to customize a context, you may have

a look at the predefined contexts. Use them to set up predefined style-specific voice and staff
contexts, and directly go ahead with the note entry,

e Section 7.7.11 [Gregorian Chant contexts|, page 164,
e Section 7.7.12 [Mensural contexts]|, page 164.

There is limited support for figured bass notation which came up during the baroque period.
e Section 7.7.14 [Figured bass|, page 166

Here are all suptopics at a glance:

7.7.1 Ancient note heads

For ancient notation, a mnote head style other than the default style may
be chosen. This is accomplished by setting the style property of the
NoteHead object to baroque, neomensural, mensural or petrucci. The baroque
style differs from the default style only in using a square shape for \breve note heads. The
neomensural style differs from the baroque style in that it uses rhomboidal heads for whole
notes and all smaller durations. Stems are centered on the note heads. This style is particularly
useful when transcribing mensural music, e.g., for the incipit. The mensural style produces
note heads that mimic the look of note heads in historic printings of the 16th century. Finally,
the petrucci style also mimicks historic printings, but uses bigger note heads.

The following example demonstrates the neomensural style



Chapter 7: Instrument-specific notation 149

\set Score.skipBars = ##t
\override NoteHead #'style = #'neomensural
a'\longa a'\breve a'l a'2 a'4 a'8 a'l6

()
)" 4
7\ y £) 1
[ fan Y. O — | — O o7
SV |
[Y)
When typesetting a piece in Gregorian Chant notation, the

Gregorian_ligature_engraver will automatically select the proper note heads, so
there is no need to explicitly set the note head style. Still, the note head style
can be set, e.g., to vaticana_punctum to produce punctum neumes. Similarly, a
Mensural_ligature_engraver is used to automatically assemble mensural ligatures. See
Section 7.7.10 [Ligatures|, page 156, for how ligature engravers work.

See also

Section C.5 [Note head styles], page 363, gives an overview over all available note head styles.

7.7.2 Ancient accidentals

Use the glyph-name-alist property of grob
and KeySignature
to select ancient accidentals.

vaticana medicaea hufnagel mensural
- ) b b x

As shown, not all accidentals are supported by each style. When trying to access
an unsupported accidental, LilyPond will switch to a different style, as demonstrated in
‘ancient/ancient-accidentals.ly’ .

Similarly to local accidentals, the style of the key signature can be controlled by the glyph-
name-alist property of the KeySignature
grob.

See also

In this manual: Section 6.1 [Pitches|, page 60, Section 6.1.3 [Cautionary accidentals|, page 62,
and Section 9.1.1 [Automatic accidentals|, page 219, give a general introduction of the use of

accidentals. Section 6.4.2 [Key signature|, page 79, gives a general introduction of the use of key
signatures.

Program reference:

Examples:

7.7.3 Ancient rests

Use the style property of grob Rest
to select ancient rests. Supported styles are classical, neomensural, and mensural.
classical differs from the default style only in that the quarter rest looks like a horizontally
mirrored 8th rest. The neomensural style suits well for, e.g., the incipit of a transcribed
mensural piece of music. The mensural style finally mimics the appearance of rests as in
historic prints of the 16th century.

The following example demonstrates the neomensural style



Chapter 7: Instrument-specific notation 150

\set Score.skipBars = ##t
\override Rest #'style = #'neomensural
r\longa r\breve rl r2 r4 r8 rié

N @]
o

P

There are mno 32th and 64th rests specifically for the mensural or neo-
mensural style. Instead, the rests from the default style will be taken. See
‘pitches/rests’ for a chart of all rests.

There are no rests in Gregorian Chant notation; instead, it uses Section 7.7.9 [Divisiones],
page 155.

See also

In this manual: Section 6.1.9 [Rests|, page 66, gives a general introduction into the use of rests.

7.7.4 Ancient clefs

LilyPond supports a variety of clefs, many of them ancient.

The following table shows all ancient clefs that are supported via the \clef command. Some
of the clefs use the same glyph, but differ only with respect to the line they are printed on.
In such cases, a trailing number in the name is used to enumerate these clefs. Still, you can
manually force a clef glyph to be typeset on an arbitrary line, as described in Section 6.4.1 [Clef],
page 78. The note printed to the right side of each clef in the example column denotes the c'
with respect to that clef.

Description Supported Clefs Example

modern style mensural C clef neomensural-cl, neomensural-c2,

neomensural-c3, neomensural-c4

petrucci style mensural C clefs, for use petrucci-c1, petrucci-c2,
on different staff lines (the examples petrucci-c3, petrucci-c4,

show the 2nd staff line C clef) petrucci-cb
petrucci style mensural F clef petrucci-f

E t
petrucci style mensural G clef petrucci-g

é
* |



Chapter 7: Instrument-specific notation

historic style mensural C clef

historic style mensural F clef

historic style mensural G clef

Editio Vaticana style do clef

Editio Vaticana style fa clef

Editio Medicaea style do clef

Editio Medicaea style fa clef

historic style hufnagel do clef

historic style hufnagel fa clef

historic style hufnagel combined do/fa

clef

Modern style means

mensural-cl, mensural-c2,
mensural-c3, mensural-c4

mensural-f

mensural-g

vaticana-dol, vaticana-do2,
vaticana-do3

vaticana-fal, vaticana-fa2

medicaea-dol, medicaea-do2,
medicaea-do3

medicaea-fal, medicaea-fa2

hufnagel-dol, hufnagel-do2,

hufnagel-do3

hufnagel-fal, hufnagel-fa2

hufnagel-do-fa

is typeset in contemporary editions of transcribed mensural music.”

Petrucci style means

spired by printings published by the famous engraver Petrucci (1466-1539).”

m

4+

i

i

é
* |

T

151



Chapter 7: Instrument-specific notation 152

Historic style means as
was typeset or written in historic editions (other than those of Petrucci).”

Editio XXX style means “as
is/was printed in Editio XXX.”

Petrucci used C clefs with differently balanced left-side vertical beams, depending on which
staff line it is printed.

See also
In this manual: see Section 6.4.1 [Clef], page 78.

Bugs

The mensural g clef is mapped to the Petrucci g clef.

7.7.5 Ancient flags

Use the flag-style property of grob Stem
to select ancient flags. Besides the default flag style, only the mensural style is supported

\override Stem #'flag-style = #'mensural

\override Stem #'thickness = #1.0

\override NoteHead #'style = #'mensural

\autoBeam0Off

c'8 d'8 e'8 £'8 c'16 d'16 e'16 £'16 c'32 d'32 e'32 £'32 s8
c''8d''8e''8f''8 c''16 d''16 e''16 £''16 c''32 d''32 e''32 £''32

N &1
D
D

P>

P

Note that the innermost flare of each mensural flag always is vertically aligned with a staff
line.

There is no particular flag style for neo-mensural notation. Hence, when typesetting the
incipit of a transcribed piece of mensural music, the default flag style should be used. There are
no flags in Gregorian Chant notation.

Bugs
The attachment of ancient flags to stems is slightly off due to a change in early 2.3.x.

Vertically aligning each flag with a staff line assumes that stems always end either exactly
on or exactly in the middle between two staff lines. This may not always be true when using
advanced layout features of classical notation (which however are typically out of scope for
mensural notation).



Chapter 7: Instrument-specific notation 153

7.7.6 Ancient time signatures

There is limited support for mensural time signatures. The glyphs are hard-wired to particular
time fractions. In other words, to get a particular mensural signature glyph with the \time n/m
command, n and m have to be chosen according to the following table

C C O O

\time 4/4 \time 6/4
\time 2/2 \time 6/8

@) ) O] ®

\time 3/2 \time 9/4
\time 3/4 \time 9/8

9) D

\time 4/8
\time 2/4

Use the style property of grob TimeSigna
to select ancient time signatures. Supported styles are neomensural and mensural. The above
table uses the neomensural style. This style is appropriate for the incipit of transcriptions of
mensural pieces. The mensural style mimics the look of historical printings of the 16th century.

The following examples show the differences in style,

A default numbered mensural neomensural
)" 4 )
4\ fle A a o )
[ fan Y \ D7 ) \L \\ % A
ANV A
e) o o o o

5 single-digit

Ué’ 5

©

See also

This manual: Section 6.4.3 [Time signature|, page 80, gives a general introduction to the use of
time signatures.

Bugs
Ratios of note durations do not change with the time signature. For example, the ratio of 1
brevis = 3 semibrevis (tempus perfectum) must be made by hand, by setting

breveTP = #(ly:make-duration -1 0 3 2)

{ c\breveTP f1 }
This sets breveTP to 3/2 times 2 = 3 times a whole note.

The 01d6/8alt symbol (an alternate symbol for 6/8) is not addressable with \time. Use a
\markup instead



Chapter 7: Instrument-specific notation 154

7.7.7 Ancient articulations

In addition to the standard articulation signs described in section Section 6.6.1 [Articulations],
page 97, articulation signs for ancient notation are provided. These are specifically designed for
use with notation in Editio Vaticana style.
\include "gregorian-init.ly"
\score {
\new VaticanaVoice {
\override TextScript #'font-family = #'typewriter
\override TextScript #'font-shape = #'upright
\override Script #'padding = #-0.1
al\ictus_"ictus" \break
a\circulus_"circulus" \break
a\semicirculus_"semicirculus" \break
a\accentus_"accentus" \break
\[ a_"episem" \episemInitium \pes b \flexa a b \episemFinis \flexa a \]

ictus
circulus

semicirculus
accentus

—oiog
episem

Bugs
Some articulations are vertically placed too closely to the correpsonding note heads.

The episem line is not displayed in many cases. If it is displayed, the right end of the episem
line is often too far to the right.

7.7.8 Custodes

A custos (plural: custodes; Latin word for
is a symbol that appears at the end of a staff. It anticipates the pitch of the first note(s) of the
following line thus helping the performer to manage line breaks during performance.

Custodes were frequently used in music notation until the 17th century. Nowadays, they
have survived only in a few particular forms of musical notation such as contemporary editions
of Gregorian chant like the editio vaticana. There are different custos glyphs used in different
flavors of notational style.

For typesetting custodes, just put a
engraver into the Staff
context when declaring the \layout block, as shown in the following example

\layout {
\context {
\Staff
\consists Custos_engraver
Custos \override #'style = #'mensural

gu

Custos



Chapter 7: Instrument-specific notation 155

}
}

The result looks like this

The custos glyph is selected by the style property. The styles supported are vaticana,
medicaea, hufnagel, and mensural. They are demonstrated in the following fragment

vaticanamedicaeahufnagelmensural
i i v w

See also

Program reference:

Examples:
9

Ay

7.7.9 Divisiones

A divisio (plural: divisiones; Latin word for

vision’) is a staff context symbol that is used to structure Gregorian music into phrases and
sections. The musical meaning of divisio minima, divisio maior, and divisio maxima can
be characterized as short, medium, and long pause, somewhat like the breathmarks from
Section 6.6.4 [Breath marks|, page 102. The finalis sign not only marks the end of a chant, but
is also frequently used within a single antiphonal/responsorial chant to mark the end of each
section.

To use divisiones, include the file ‘gregorian-init.1ly’. It contains definitions that you can
apply by just inserting \divisioMinima, \divisioMaior, \divisioMaxima, and \finalis at
proper places in the input. Some editions use virgula or caesura instead of divisio minima.
Therefore, ‘gregorian-init.1ly’ also defines \virgula and \caesura

divisio maxima
divisio maior
divisio minima

AT A AT AR AT R
virgula
finalis caesura

y 2
7

I U




Chapter 7: Instrument-specific notation 156

Predefined commands

\virgula, \caesura,
\divisioMinima, \divisioMaior,
\divisioMaxima, \finalis.

See also

In this manual: Section 6.6.4 [Breath marks|, page 102.
Program reference:

Examples:

7.7.10 Ligatures

A ligature is a graphical symbol that represents at least two distinct notes. Ligatures originally
appeared in the manuscripts of Gregorian chant notation to denote ascending or descending
sequences of notes.

Ligatures are entered by enclosing them in \[ and \]. Some ligature styles may
need additional input syntax specific for this particular type of ligature. By default, the
LigatureBracket engraver just puts a square bracket above the ligature

\transpose c c' {
\[gcafd \]

agft
\[efag)\l]
}
T 1 1
() | | ) | )
Ao | — —
[y & I

To select a specific style of ligatures, a proper ligature engraver has to be added to the
Voice context, as explained in the following subsections. Only white mensural ligatures are
supported with certain limitations.

Bugs

Ligatures need special spacing that has not yet been implemented. As a result, there is too
much space between ligatures most of the time, and line breaking often is unsatisfactory. Also,
lyrics do not correctly align with ligatures.

Accidentals must not be printed within a ligature, but instead need to be collected and
printed in front of it.

The syntax still uses the deprecated infix style \ [ music expr \]. For consistency reasons, it
will eventually be changed to postfix style note\[ ... note\]. Alternatively, the file ‘gregorian
-init.1ly’ can be included; it provides a scheme function

\ligature music expr

with the same effect and is believed to be stable.

7.7.10.1 White mensural ligatures

There is limited support for white mensural ligatures.



Chapter 7: Instrument-specific notation 157

To engrave white mensural ligatures, in the layout block put
the Mensural_ligature_
engraver into the Voice con-
text, and remove the Ligature_
bracket_engraver, like this

\layout {
\context {
\Voice

\remove Ligature_bracket_engraver
\consists Mensural_ligature_engraver

3
3

There is no additional input language to describe the shape of a white mensural ligature.
The shape is rather determined solely from the pitch and duration of the enclosed notes. While
this approach may take a new user a while to get accustomed to, it has the great advantage
that the full musical information of the ligature is known internally. This is not only required
for correct MIDI output, but also allows for automatic transcription of the ligatures.

For example,

\set Score.timing = ##f

\set Score.defaultBarType = "empty"

\override NoteHead #'style = #'neomensural

\override Staff.TimeSignature #'style = #'neomensural
\clef "petrucci-g"

\[ c'\maxima g \]

\[ d\longa c\breve f e d \]

\[ c'\maxima d'\longa \]

\[ e'l a g\breve \]

fal
\
= = =
A= |
R
Without replacing Ligature_
bracket_engraver with Mensural_

ligature_engraver, the same music transcribes to the following

QD
)
|
|
I

Bugs

Horizontal spacing is poor.

7.7.10.2 Gregorian square neumes ligatures

There is limited support for Gregorian square neumes notation (following the style of the Editio
Vaticana). Core ligatures can already be typeset, but essential issues for serious typesetting are
still lacking, such as (among others) horizontal alignment of multiple ligatures, lyrics alignment
and proper handling of accidentals.



Chapter 7: Instrument-specific notation 158

The following table contains the extended neumes table of the 2nd volume of the Antiphonale
Romanum (Liber Hymnarius), published 1983 by the monks of Solesmes.

Neuma aut Figurae Figurae Figurae
Neumarum Elementa Rectae Liquescentes Liquescentes
Auctae Deminutae

1. Punctum

b d f
a ce
ne ine
2. Virga
g

3. Apostropha vel Stropha

h 1
4 R
4. Oriscus
J
N
5. Clivis vel Flexa
m



Chapter 7: Instrument-specific notation

6. Podatus vel Pes

7. Pes Quassus

8. Quilisma Pes

9. Podatus Initio Debilis

10. Torculus

N

159



Chapter 7: Instrument-specific notation

11. Torculus Initio Debilis

12. Porrectus

E
13. Climacus

1’0

H
14. Scandicus

"oy

160



Chapter 7: Instrument-specific notation 161

15. Salicus

16. Trigonus

A

Unlike most other neumes notation systems, the input language for neumes does not reflect
the typographical appearance, but is designed to focus on musical meaning. For example, \[ a
\pes b \flexa g \] produces a Torculus consisting of three Punctum heads, while \[ a \flexa
g \pes b \] produces a Porrectus with a curved flexa shape and only a single Punctum head.
There is no command to explicitly typeset the curved flexa shape; the decision of when to typeset
a curved flexa shape is based on the musical input. The idea of this approach is to separate the
musical aspects of the input from the notation style of the output. This way, the same input
can be reused to typeset the same music in a different style of Gregorian chant notation.

The following table shows the code fragments that produce the ligatures in the above neumes
table. The letter in the first column in each line of the below table indicates to which ligature in
the above table it refers. The second column gives the name of the ligature. The third column
shows the code fragment that produces this ligature, using g, a, and b as example pitches.

# Name Input Language

a  Punctum \[b\]

b  Punctum Inclinatum \[ \inclinatum b \]

¢ Punctum Auctum \ [ \auctum \ascendens b \]
Ascendens

d Punctum Auctum \[ \auctum \descendens b \]
Descendens

¢  Punctum Inclinatum \[ \inclinatum \auctum b \]
Auctum

f  Punctum Inclinatum \[ \inclinatum \deminutum b \]
Parvum

g Virga \[ \virga b \]

h  Stropha \[ \stropha b \]



Stropha Aucta
Oriscus
Clivis vel Flexa

Clivis Aucta
Descendens
Clivis Aucta
Ascendens
Cephalicus

Podatus vel Pes

Pes Auctus
Descendens
Pes Auctus
Ascendens
Epiphonus

Pes Quassus

Pes Quassus
Auctus Descendens

Quilisma Pes

Quilisma Pes
Auctus Descendens
Pes Initio Debilis

Pes Auctus Descendens
Initio Debilis
Torculus

Torculus Auctus
Descendens

Torculus Deminutus
Torculus Initio Debilis

Torculus Auctus
Descendens Initio Debilis
Torculus Deminutus
Initio Debilis

Porrectus

Porrectus Auctus
Descendens

Porrectus Deminutus

Chapter 7: Instrument-specific notation 162

\[ \stropha \auctum b \]

\[ \oriscus b \]

\[ b \flexa g \]

\[ b \flexa \auctum \descendens g \]

\[ b \flexa \auctum \ascendens g \]

\[ b \flexa \deminutum g \]

\[ g \pes b \]

\[ g \pes \auctum \descendens b \]

\[ g \pes \auctum \ascendens b \]

\[ g \pes \deminutum b \]

\[ \oriscus g \pes \virga b \]

\[ \oriscus g \pes \auctum \descendens b \]
\[ \quilisma g \pes b \]

\[ \quilisma g \pes \auctum \descendens b \]
\[ \deminutum g \pes b \]

\[ \deminutum g \pes \auctum \descendens b \]
\[ a \pes b \flexa g \]

\[ a \pes b \flexa \auctum \descendens g \]
\[ a \pes b \flexa \deminutum g \]

\[ \deminutum a \pes b \flexa g \]

\[ \deminutum a \pes b \flexa \auctum \descendens g \]
\[ \deminutum a \pes b \flexa \deminutum g \]
\[a \flexa g \pes b \]

\[ a \flexa g \pes \auctum \descendens b \]

\[ a \flexa g \pes \deminutum b \]



Chapter 7: Instrument-specific notation 163

H Climacus \[ \virga b \inclinatum a \inclinatum g \]
I  Climacus Auctus \[ \virga b \inclinatum a \inclinatum \auctum g \]
J  Climacus Deminutus \[ \virga b \inclinatum a \inclinatum \deminutum g \]
K Scandicus \[ g \pes a \virga b \]
L Scandicus Auctus \[ g \pes a \pes \auctum \descendens b \]
Descendens
M Scandicus Deminutus \[ g \pes a \pes \deminutum b \]
N Salicus \[ g \oriscus a \pes \virga b \]
O Salicus Auctus Descendens \[ g \oriscus a \pes \auctum \descendens b \]

P Trigonus \[ \stropha b \stropha b \stropha a \]

The ligatures listed above mainly serve as a limited, but still representative pool of Gregorian
ligature examples. Virtually, within the ligature delimiters \[ and \], any number of heads
may be accumulated to form a single ligature, and head prefixes like \pes, \flexa, \virga,
\inclinatum, etc. may be mixed in as desired. The use of the set of rules that underlies the
construction of the ligatures in the above table is accordingly extrapolated. This way, infinitely
many different ligatures can be created.

Augmentum dots, also called morae, are added with the music function \augmentum. Note
that \augmentum is implemented as a unary music function rather than as head prefix. It applies
to the immediately following music expression only. That is, \augmentum \virga c will have
no visible effect. Instead, say \virga \augmentum c or \augmentum {\virga c}. Also note that
you can say \augmentum {a g} as a shortcut for \augmentum a \augmentum g.

\include "gregorian-init.ly"
\score {
\new VaticanaVoice {
\[ \augmentum a \flexa \augmentum g \]
\augmentum g
}
}

IR D

Predefined commands
The following head prefixes are supported

\virga, \stropha,
\inclinatum, \auctum,
\descendens, \ascendens,
\oriscus, \quilisma,
\deminutum, \cavum,
\linea.

Head prefixes can be accumulated, though restrictions apply. For example, either
\descendens or \ascendens can be applied to a head, but not both to the same head.



Chapter 7: Instrument-specific notation 164

Two adjacent heads can be tied together with the \pes and \flexa infix commands for a
rising and falling line of melody, respectively.

Use the unary music function \augmentum to add augmentum dots.

Bugs

When an \augmentum dot appears at the end of the last staff within a ligature, it is sometimes
vertically placed wrong. As a workaround, add an additional skip note (e.g. s8) as last note of
the staff.

\augmentum should be implemented as a head prefix rather than a unary music function,
such that \augmentum can be intermixed with head prefixes in arbitrary order.

7.7.11 Gregorian Chant contexts

The predefined VaticanaVoiceContext and VaticanaStaffContext can be used to engrave
a piece of Gregorian Chant in the style of the Editio Vaticana. These contexts initialize all
relevant context properties and grob properties to proper values, so you can immediately go
ahead entering the chant, as the following excerpt demonstrates
\include "gregorian-init.ly"
\score {
<<
\new VaticanaVoice = "cantus" {
\[ c'\melisma c' \flexa a \]
\[ a \flexa \deminutum g\melismaEnd \]
f \divisioMinima
\[ f\melisma \pes a c' c' \pes d'\melismaEnd \]
¢' \divisioMinima \break
\[ c'\melisma c' \flexa a \]
\[ a \flexa \deminutum g\melismaEnd \] f \divisioMinima
}
\new Lyrics \lyricsto "cantus" {
San- ctus, San- ctus, San- ctus

San- ctus, San- ctus,

e

—

San- ctus

7.7.12 Mensural contexts

The predefined MensuralVoiceContext and MensuralStaffContext can be used to engrave
a piece in mensural style. These contexts initialize all relevant context properties and grob
properties to proper values, so you can immediately go ahead entering the chant, as the following
excerpt demonstrates

\score {
<<



Chapter 7: Instrument-specific notation 165
\new MensuralVoice = "discantus" \transpose c c¢' {
\override Score.BarNumber #'transparent = ##t {
c'l\melisma bes a g\melismaEnd
f\breve
\[ f1\melisma a c'\breve d'\melismaEnd \]
c'\longa
c'\breve\melisma al gl\melismaEnd
fis\longa~\signumcongruentiae
}
}
\new Lyrics \lyricsto "discantus" {
San -- ctus, San -- ctus, San -- ctus
}
>>
}
fal
Q "
VA) AN \) A
g C ¥ xQ [\ 3
© A% = ~
San - - - ctus,
fal
‘7‘/& = »
4
San - - - - ctus,
o S.
LY
a N— "
‘G R S
San - - ctiis
7.7.13 Musica ficta accidentals
In  European music from  before about 1600, singers  were  often  ex-
pected to chromatically alter notes at their own initiative. This is called
‘Musica Ficta’.  In modern transcriptions, these accidentals are usually printed over
the note.

Support for such suggested accidentals is included, and can be switched on by setting

suggestAccidentals to true.
fis gis
\set suggestAccidentals =
ais bis

#H#t

by

DO

r )




Chapter 7: Instrument-specific notation

See also

Program reference:
engraver engraver and the
object.

7.7.14 Figured bass

LilyPond has support for figured bass

<<

\new Voice { \clef bass dis4 c d ais g fis}
\new FiguredBass \figuremode {

<6 >4 < T7\+>8 <6+ [_1] >

< 6 > <6 5 [3+] >

< _ >4 <6 5/>4

}

>>
)4 = #f
=i T
6 +746 6 6
(4] S
[43)

166

AccidentalSugge

The support for figured bass consists of two parts: there is an input mode, introduced
by \figuremode, where you can enter bass figures as numbers, and there is a context

called FiguredBass that takes
care of making BassFigure
objects.

In figures input mode, a group of bass figures is delimited by < and >. The duration is entered
after the >

<4 6>

4

6

Accidentals are added when you append -, !, and + to the numbers. A plus sign is added

when you append \+, and diminished fifths and sevenths can be obtained with 5/ and 7/.

<4- 6+ TI1> <B++> <3--> <7/> r <6\+ 5/>

b4 x5 B3 F +6
46 5]
b7

Spaces may be inserted by using _.

Brackets are introduced with [ and J.

You can also

include text strings and text markups, see Section 8.1.8 [Overview of text markup commands],

page 179.



Chapter 7: Instrument-specific notation 167

< [4 6] 8 [_! 12] > < 5 \markup { \number 6 \super (1) } >

43
i

It is also possible to use continuation lines for repeated figures,

<<

\new Staff {
\clef bass
cd cc

b

\figures {
\set useBassFigureExtenders = ##t
<4 6> <3 6> <3 7>

| HE
N

In this case, the extender lines always replace existing figures.

The FiguredBass context doesn’t pay attention to the actual bass line. As a consequence,
you may have to insert extra figures to get extender lines below all notes, and you may have to
add \! to avoid getting an extender line, e.g.

4)——e" o o o o> by

Z U r
6 5 6 6
b4

When using continuation lines, common figures are always put in the same vertical position.
When this is unwanted, you can insert a rest with r. The rest will clear any previous alignment.
For example, you can write

<4 6>8 r8
instead of
<4 6>4

Accidentals and plus signs can appear before or after the numbers, depending on the
figuredBassAlterationDirection and figuredBassPlusDirection properties

*6 45 6 +6 54 6 6+ 5% 6 6+ #5 6
b4 4 4 b4



Chapter 7: Instrument-specific notation 168

Although the support for figured bass may superficially resemble chord sup-
port, it is much simpler. The \figuremode mode simply stores the numbers and
FiguredBass context prints them as entered. There is no conversion to pitches and no
realizations of the bass are played in the MIDI file.

Internally, the code produces markup texts. You can use any of the markup text properties to
override formatting. For example, the vertical spacing of the figures may be set with baseline-
skip.

Figured bass can also be added to Staff contexts directly. In this case, their vertical position
is adjusted automatically.

6 44—
4 10 6—
- »
0 5
A€ e
SEES R

Commonly tweaked properties

By default, this method produces figures above the notes. To get figures below the notes, use

\override Staff.BassFigureAlignmentPositioning #'direction = #DOWN

Bugs

When using figured bass above the staff with extender lines and implicitBassFigures the lines
may become swapped around. Maintaining order consistently will be impossible when multiple
figures have overlapping extender lines. To avoid this problem, please use stacking-dir on
BassFigureAlignment.

See also

Program reference:

BassFigureAlignment, BassFigureli
BassFigureBracket, and BassFigureContir
objects and FiguredBass

context.

7.8 Other instrument specific notation
This section includes extra information for writing for instruments.

7.8.1 Artificial harmonics (strings)

Artificial harmonics are notated with a different notehead style. They are entered by marking
the harmonic pitch with \harmonic.

<c g'\harmonic>4



Chapter 8: Advanced notation 169

8 Advanced notation

This chapter deals with rarely-used and advanced notation.

8.1 Text

This section explains how to include text (with various formatting) in your scores.

To write accented and special text (such as characters from other languages), simply insert
the characters directly into the lilypond file. The file must be saved as UTF-8. For more
information, see Section 10.1.7 [Text encoding], page 248.

8.1.1 Text scripts

It is possible to place arbitrary strings of text or Section 8.1.5 [Text markupl, page 175, above

or below notes by using a string c™"text". By default, these indications do not influence the
note spacing, but by using the command \fatText, the widths will be taken into account

c4d""longtext" \fatText c4_"longlongtext" c4

N longtext
£\

)" 4

y £)
U
SV
() o o P

longlongtext

ey

To prevent text from influencing spacing, use \emptyText.
More complex formatting may also be added to a note by using the markup command,

c'4"\markup { bla \bold bla }

bla bla

The \markup is described in more detail in Section 8.1.5 [Text markupl, page 175.

Predefined commands
\fatText, \emptyText.

Commonly tweaked properties

Checking to make sure that text scripts and lyrics are within the margins is a relatively large
computational task. To speed up processing, lilypond does not perform such calculations by
default; to enable it, use

\override Score.PaperColumn #'keep-inside-line = ##t

See also
In this manual: Section 8.1.5 [Text markup|, page 175.

Program reference:



Chapter 8: Advanced notation 170

8.1.2 Text and line spanners

Some performance indications, e.g., rallentando and accelerando and trills are written as text
and are extended over many measures with lines, sometimes dotted or wavy.

These all use the same routines as the glissando for drawing the texts and the lines, and
tuning their behavior is therefore also done in the same way. It is done with a spanner, and
the routine responsible for drawing the spanners is 1y:line-interface: :print. This routine
determines the exact location of the two span points and draws a line in between, in the style
requested.

Here is an example of the different line styles available, and how to tune them.

d2 \glissando 4'2

\once \override Glissando #'dash-fraction = #0.5
d,2 \glissando d'2

\override Glissando #'style = #'dotted-line

d,2 \glissando d'2
\override Glissando #'style
d,2 \glissando d'2
\override Glissando #'style
d,2 \glissando d'2

#'zigzag

#'trill

2 2 y-)

Hﬁ{

{
A §

Vol
e &
|

|

t

TTO

TTTO

TTO
\

P

The information that determines the end-points is computed on-the-fly for every graphic
object, but it is possible to override these.
e2 \glissando f
\once \override Glissando #'bound-details #'right #'Y = #-2
e2 \glissando f

\
TTT®

P

The Glissando object, like any other using the 1y:line-interface: :print routine, carries
a nested association list. In the above statement, the value for Y is set to -2 for the association
list corresponding to the right end point. Of course, it is also possible to adjust the left side
with left instead of right.

If Y is not set, the value is computed from the vertical position of right attachment point of
the spanner.

In case of a line break, the values for the span-points are extended with contents of the
left-broken and right-broken sublists, for example
\override Glissando #'breakable = ##T
\override Glissando #'bound-details #'right-broken #'Y = #-3

cl \glissando \break
f1

0

o

oJ




Chapter 8: Advanced notation 171

2

The following properties can be used for the

Y This sets the Y-coordinate of the end point, in staff space. By default, it is the
center of the bound object, so for a glissando it points to the vertical center of the
note head.

For horizontal spanners, such as text spanner and trill spanners, it is hardcoded to
0.

attach-dir
This determines where the line starts and ends in X-direction, relative to the bound
object. So, a value of -1 (or LEFT) makes the line start/end at the left side of the
note head it is attached to.

X This is the absolute coordinate of the end point. It is usually computed on the fly,
and there is little use in overriding it.

stencil  Line spanners may have symbols at the beginning or end, which is contained in this
sub-property. This is for internal use, it is recommended to use text.

text This is a markup that is evaluated to yield stencil. It is used to put cresc. and tr
on horizontal spanners.

\override TextSpanner #'bound-details #'left #'text
= \markup { \small \bold Slower }

c2\startTextSpan b c a\stopTextSpan

o Slower_ _ _

)\l o (7 ~ 7 I

[ [« YA 2| | | 7

ANV | | |

U | I |

stencil-align-dir-y
stencil-offset

Without setting this, the stencil is simply put there at the end-point, as defined
by the X and Y sub properties. Setting either stencil-align-dir-y or stencil-
offset will move the symbol at the edge relative to the end point of the line

\override TextSpanner #'bound-details #'left #'stencil-align-dir-y = #DOWN
\override TextSpanner #'bound-details #'right #'stencil-align-dir-y = #UP

\override TextSpanner #'bound-details #'left #'text = #"gggg"
\override TextSpanner #'bound-details #'right #'text = #"hhhh"
c4"\startTextSpan ¢ ¢ ¢ \stopTextSpan

sa8s- "hhhh

N (o

Iz St
-

arrow

padding

4 o 0 &

Setting this sub property to #t produce an arrowhead at the end of the line.

This sub property controls the space between the specified end-point of the line and
the actual end. Without padding, a glissando would start and end in the center of
each note head.



Chapter 8: Advanced notation 172

See also

Program reference:

Glissando, VoiceFollower,
TrillSpanner, line-

spanner—interface.

Examples:

‘expressive/line-arrows.ly’

8.1.3 Text spanners

Some performance indications, e.g., rallentando or accelerando, are written as text and are
extended over many measures with dotted lines. Such texts are created using text spanners;
attach \startTextSpan and \stopTextSpan to the first and last notes of the spanner.

The string to be printed, as well as the style, is set through object properties

cl

\textSpannerDown

\override TextSpanner #'bound-details #'left #'text
\markup { \upright "rall" }

c2\startTextSpan b c\stopTextSpan a

\break

\textSpannerUp

\override TextSpanner #'bound-details #'left #'text
\markup { \italic "rit" }

c2\startTextSpan b c\stopTextSpan a

0]

)" 4

/\ r ) )
[ [an Y W] |
ANV |
() © < Z < —

rall

4 g ril.

)" 4

/\

[ [an)

ANV

dJ z < =

Predefined commands

\textSpannerUp, \textSpannerDown,
\textSpannerNeutral.

Commonly tweaked properties
To print a solid line, use

\override TextSpanner #'dash-fraction = #'()

See also

Program reference:



Chapter 8: Advanced notation 173

8.1.4 Text marks

The \mark command is primarily used for Section 8.2.3 [Rehearsal marks|, page 192, but it can
also be used to put signs like coda, segno, and fermata on a bar line. Use \markup to access the
appropriate symbol (symbols are listed in Section C.4 [The Feta font], page 348).

cl \mark \markup { \musicglyph #"scripts.ufermata" }
cl

N

o
N (o1
-
o

[ © )

P

\mark is only typeset above the top stave of the score. If you specify the \mark command at a
bar line, the resulting mark is placed above the bar line. If you specify it in the middle of a bar,
the resulting mark is positioned between notes. If it is specified before the beginning of a score
line, it is placed before the first note of the line. Finally, if the mark occurs at a line break, the
mark will be printed at the beginning of the next line. If there is no next line, then the mark
will not be printed at all.

Commonly tweaked properties

To print the mark at the end of the current line, use

\override Score.RehearsalMark
#'break-visibility = #begin-of-line-invisible
\mark is often useful for adding text to the end of bar. In such cases, changing the #'self-
alignment is very useful

\override Score.RehearsalMark
#'break-visibility = #begin-of-line-invisible
clcccdccec
\once \override Score.RehearsalMark #'self-alignment-X = #right
\mark "D.S. al Fine "

0 D.S. al Fine
X0 o o 'S ) -
[ [an Y W]

ANV | | | |
ryj N B —

Text marks may be aligned with notation objects other than bar lines,

\relative {

cl
\key cis \major
\clef alto

\override Score.RehearsalMark #'break-align-symbols = #'(key-signature)
\mark "on key"

cis

\key ces \major

\override Score.RehearsalMark #'break-align-symbols = #'(clef)

\clef treble

\mark "on clef"

ces

\override Score.RehearsalMark #'break-align-symbols = #'(time-signature)
\key d \minor



Chapter 8: Advanced notation 174

\clef tenor
\time 3/4
\mark "on time"

C
}
on key on clef

0 [T A kb oL o1, o h

)" 4 Pay 1L, el & \J WL G, 1D h | o, 1] 1 ¢
ﬁ«—(—ﬂﬁﬁ T tut—o T e W L H5 L TR

& g ——© e L P g

[Y) © ' o © )
4+ on time

) ,

The text marks will, by default, be aligned with the middle of the notation object, but this
can be changed by overriding the break-align-anchor-alignment and break-align-anchor
properties for the appropriate grob.

{
\override Score.RehearsalMark #'break-align-symbols = #'(key-signature)
cl
\key cis \major

% the RehearsalMark will be aligned with the left edge of the KeySignature
\once \override Staff.KeySignature #'break-align-anchor-alignment = #LEFT
\mark \default

cisl

\key ces \major

% the RehearsalMark will be aligned with the right edge of the KeySignature
\once \override Staff.KeySignature #'break-align-anchor-alignment = #RIGHT
\mark \default

cesl

% the RehearsalMark will be aligned with the right edge of the KeySignature
% and then shifted right by an additional 2 units.

\once \override Staff.KeySignature #'break-align-anchor = #2

\mark \default

cesl
() ¥ 17, u bR o1 (3
)" 4 P LTTeF L, WL 1L 1D b 1
/\ r ) L LTI T &L Y1 D,
[ [an Y W] T ™1 & 1 eV D1
ANV 7 1 7' VD
e — — — —
o o o E o

Although text marks are normally only printed above the topmost staff, you may alter this
to print them on every staff,



Chapter 8: Advanced notation

{
\new Score \with {
\remove "Mark_engraver"
}
<<
\new Staff \with {
\consists "Mark_engraver
}
{ c''1 \mark "foo" c'' }
\new Staff \with {
\consists "Mark_engraver"
}
{ ¢'1 \mark "foo" c' }
>>
}
0 foo
X y £) [ @ ] [ @)
[ [an Y W]
74
f foo
)" 4
/\ y £)
[ [an Y W]
ANV
[y o o
See also

Program reference:

8.1.5 Text markup

Use \markup to typeset text. Commands are entered with the backslash \. To enter \ and #,

use double quotation marks.

ci"\markup { hello }
cl_\markup { hi there }

c1™\markup { hi \bold there, is \italic {anyone home?} }

cl_\markup { "\special {weird} #characters" }

hi there, is anyone home?

o) hello

)" 4

4\ r £)

[ [an YA O]

ANV

[Y) © -© -© -©

hi there

\special {weird} #characters

175

See Section 8.1.8 [Overview of text markup commands]|, page 179, for a list of all commands.

\markup is primarily used for

but it can also be used anywhere text is called in lilypond

\header{ title = \markup{ \bold { foo \italic { bar! } } } }

\score{
\relative c'' {

\override Score.RehearsalMark

#'break-visibility = #begin-of-line-invisible
\override Score.RehearsalMark #'self-alignment-X = #right

TextScripts



Chapter 8: Advanced notation 176

\set Staff.instrumentName = \markup{ \column{ Alto solo } }
c2”\markup{ don't be \flat }
\override TextSpanner #'bound-details #'left #'text = \markup{\italic rit }

b2\startTextSpan
a2\mark \markup{ \large \bold Fine }
r2\stopTextSpan
\bar "[|"
}
\addlyrics { bar, foo \markup{ \italic bar! } }
}
foo bar!
Fine
A don't be, rie.o_ - - - - - - - - - - =
Alto X o 77 P -
[ [ YA W | 7
solo o !
bar, foo bar!

A \markup command can also be placed on its own, away from any \score block, see Sec-
tion 10.1.4 [Multiple scores in a book], page 246.

\markup{ Here is some text. }

Here is some text.

The markup in the example demonstrates font switching commands. The command \bold
and \italic apply to the first following word only; to apply a command to more than one word,
enclose the words with braces,

\markup { \bold { hi there } }
For clarity, you can also do this for single arguments, e.g.,
\markup { is \italic { anyone } home }

In markup mode you can compose expressions, similar to mathematical expressions, XML
documents, and music expressions. You can stack expressions grouped vertically with the com-
mand \column. Similarly, \center-align aligns texts by their center lines:

c1"\markup { \column { a bbbb \line { ¢ d } } }
c1”\markup { \center-align { a bbbb ¢ } }
c1”\markup { \line { a b c } }

a a
bbbb bbbb
cd c abe

N (@

P
an



Chapter 8: Advanced notation 177

Lists with no previous command are not kept distinct. The expression
\center-align { {ab}{cd?}}

is equivalent to

\center-align { a b ¢ d }

To keep lists of words distinct, please use quotes " or the \line command

\fatText

c4"\markup{ \center-align { on three lines } }
c4"\markup{ \center-align { "all one line" } }
c4"\markup{ \center-align { { on three lines } } }
c4"\markup{ \center-align { \line { on one line } } }

on on
three three
0 lines all one line lines on one line
A
U | |
ANV | |
e) - - - -

Markups can be stored in variables and these variables may be attached to notes, like

allegro = \markup { \bold \large { Allegro } }
{ a”\allegro b c 4 }

Some objects have alignment procedures of their own, which cancel out any effects
of alignments applied to their markup arguments as a whole. For example, the
RehearsalMark is horizontally centered, so using \mark \markup { \left-align .. } has no
effect.

In addition, vertical placement is performed after creating the text markup object. If you
wish to move an entire piece of markup, you need to use the #’padding property or create an
‘anchor’ point inside the markup (generally with \hspace #0).

\fatText

c'4"\markup{ \raise #5 "not raised" }

\once \override TextScript #'padding = #3
c'4"\markup{ raised }

c'4"\markup{ \hspace #0 \raise #1.5 raised }

raised
raised—
N not raised® E
Z
ANV |
U |

Some situations (such as dynamic marks) have preset font-related properties. If you are
creating text in such situations, it is advisable to cancel those properties with normal-text.
See Section 8.1.8 [Overview of text markup commands], page 179, for more details.

See also

This manual: Section 8.1.8 [Overview of text markup commands|, page 179.
Program reference:

Init files: ‘scm/new-markup.scm’.



Chapter 8: Advanced notation 178

Bugs

Kerning or generation of ligatures is only done when the TEX backend is used. In this case,
LilyPond does not account for them so texts will be spaced slightly too wide.

Syntax errors for markup mode are confusing.

8.1.6 Nested scores

It is possible to nest music inside markups, by adding a \score block to a markup expression.
Such a score must contain a \layout block.

\relative {
c4 d"\markup {
\score {
\relative { c4 d e £ }
\layout { }

DO

~
D
—m

]
.

)" 4
£\ r ) )
[ [av Y O I

o e

8.1.7 Page wrapping text

Whereas \markup is used to enter a non-breakable block of text, \markuplines can be used at
top-level to enter lines of text that can spread over multiple pages:

\markuplines {
\justified-lines {
A very long text of justified lines.

b
\justified-lines {
An other very long paragraph.

\markuplines accepts a list of markup, that is either the result of a markup list command,
or a list of markups or of markup lists. The built-in markup list commands are described in
Section 8.1.9 [Overview of text markup list commands|, page 187.

See also

This manual: Section 8.1.9 [Overview of text markup list commands], page 187, Section 12.4.4
[New markup list command definition], page 313.

Predefined commands

\markuplines



Chapter 8: Advanced notation 179

8.1.8 Overview of text markup commands

The following commands can all be used inside \markup { }.

\arrow-head axis (integer) direction (direction) filled (boolean)
Produce an arrow head in specified direction and axis. Use the filled head if filled
is specified.

\beam width (number) slope (number) thickness (number)
Create a beam with the specified parameters.

\bigger arg (markup)
Increase the font size relative to current setting.

\bold arg (markup)
Switch to bold font-series.

\box arg (markup)
Draw a box round arg. Looks at thickness, box-padding and font-size properties
to determine line thickness and padding around the markup.

\bracket arg (markup)
Draw vertical brackets around arg.

\caps arg (markup)
Emit arg as small caps.

\center-align args (list of markups)
Put args in a centered column.

\char num (integer)
Produce a single character. For example, \char #65 produces the letter
‘A

\circle arg (markup)
Draw a circle around arg. Use thickness, circle-padding and font-size prop-
erties to determine line thickness and padding around the markup.

\column args (list of markups)
Stack the markups in args vertically. The property baseline-skip determines the
space between each markup in args.

\combine ml (markup) m2 (markup)
Print two markups on top of each other.

\concat args (list of markups)
Concatenate args in a horizontal line, without spaces inbetween. Strings and sim-
ple markups are concatenated on the input level, allowing ligatures. For example,
\concat { "f" \simple #"i" } is equivalent to "fi".

\dir-column args (list of markups)
Make a column of args, going up or down, depending on the setting of the
#'direction layout property.

\doubleflat
Draw a double flat symbol.

\doublesharp
Draw a double sharp symbol.

\draw-circle radius (number) thickness (number) fill (boolean)
A circle of radius radius, thickness thickness and optionally filled.



Chapter 8: Advanced notation 180

\draw-line dest (pair of numbers)
A simple line. Uses the thickness property.

\dynamic arg (markup)

Use the dynamic font. This font only contains S,

f, m, z, p, and r. When  producing  phrases, like

‘piu £, the normal words (like ‘pit
should be done in a different font. The recommended font for this is bold and

italic.

\epsfile axis (number) size (number) file-name (string)
Inline an EPS image. The image is scaled along axis to size.

\fill-line markups (list of markups)
Put markups in a horizontal line of width Iline-width. The markups are spaced or
flushed to fill the entire line. If there are no arguments, return an empty stencil.

\filled-box xext (pair of numbers) yext (pair of numbers) blot (number)
Draw a box with rounded corners of dimensions xext and yext. For example,
\filled-box #'(-.3 . 1.8) #'(-.3 . 1.8) #0
creates a box extending horizontally from -0.3 to 1.8 and vertically from -0.3 up to
1.8, with corners formed from a circle of diameter 0 (i.e. sharp corners).

\finger arg (markup)

Set the argument as small numbers.
\flat

Draw a flat symbol.

\fontCaps arg (markup)
Set font-shape to caps.

\fontsize increment (number) arg (markup)
Add increment to the font-size. Adjust baseline skip accordingly.

\fraction argl (markup) arg2 (markup)
Make a fraction of two markups.

\fret-diagram definition-string (string)
Make a (guitar) fret diagram. For example, say
\markup \fret-diagram #"s:0.75;6-x;5-x;4-0;3-2;2-3;1-2;"
for fret spacing 3/4 of staff space, D chord diagram
Syntax rules for definition-string:
— Diagram items are separated by semicolons.

— Possible items:

e s:number — Set the fret spacing of the diagram (in staff spaces). Default: 1.
e t:number — Set the line thickness (in staff spaces). Default: 0.05.

e h:number — Set the height of the diagram in frets. Default: 4.

e w:number — Set the width of the diagram in strings. Default: 6.

e f:number — Set fingering label type (0 = none, 1 = in circle on string, 2 =

below string). Default: 0.
e d:number — Set radius of dot, in terms of fret spacing. Default: 0.25.

e p:number — Set the position of the dot in the fret space. 0.5 is centered;
1 is on lower fret bar, 0 is on upper fret bar. Default: 0.6.



Chapter 8: Advanced notation 181

e c:stringl-string2-fret — Include a barre mark from stringl to string2 on
fret.

e string-fret — Place a dot on string at fret. If fret is ‘o’, string is identified
as open. If fret is ‘x’, string is identified as muted.

e string-fret-fingering — Place a dot on string at fret, and label with fingering
as defined by the f: code.

— Note: There is no limit to the number of fret indications per string.
\fret-diagram-terse definition-string (string)
Make a fret diagram markup using terse string-based syntax.
Here an example
\markup \fret-diagram-terse #"x;x;0;2;3;2;"
for a D chord diagram.
Syntax rules for definition-string:
e Strings are terminated by semicolons; the number of semicolons is the number
of strings in the diagram.
e Mute strings are indicated by ‘x’.
e Open strings are indicated by ‘o’.
e A number indicates a fret indication at that fret.
e If there are multiple fret indicators desired on a string, they should be separated
by spaces.
e Fingerings are given by following the fret number with a -, followed by the
finger indicator, e.g. ‘3-2’ for playing the third fret with the second finger.

e Where a barre indicator is desired, follow the fret (or fingering) symbol with
-( to start a barre and -) to end the barre.

\fret-diagram-verbose marking-list (list)
Make a fret diagram containing the symbols indicated in marking-list.

For example,

\markup \fret-diagram-verbose
#' ((mute 6) (mute 5) (open 4)
(place-fret 3 2) (place-fret 2 3) (place-fret 1 2))

produces a standard D chord diagram without fingering indications.

Possible elements in marking-list:

(mute string-number)
Place a small
at the top of string string-number.

(open string-number)
Place a small
at the top of string string-number.

(barre start-string end-string fret-number)
Place a barre indicator (much like a tie) from string start-string to string
end-string at fret fret-number.

(place-fret string-number fret-number finger-value)
Place a fret playing indication on string string-number at fret fret-
number with an optional fingering label finger-value. By default, the
fret playing indicator is a solid dot. This can be changed by setting



Chapter 8: Advanced notation 182

the value of the variable dot-color. If the finger part of the place-fret
element is present, finger-value will be displayed according to the set-
ting of the variable finger-code. There is no limit to the number of fret
indications per string.

\fromproperty symbol (symbol)
Read the symbol from property settings, and produce a stencil from the markup
contained within. If symbol is not defined, it returns an empty markup.

\general-align axis (integer) dir (number) arg (markup)
Align arg in axis direction to the dir side.

\halign dir (number) arg (markup)
Set horizontal alignment. If dir is -1, then it is left-aligned, while +1 is right. Values
inbetween interpolate alignment accordingly.

\hbracket arg (markup)
Draw horizontal brackets around arg.

\hcenter-in length (number) arg (markup)
Center arg horizontally within a box of extending length/2 to the left and right.

\hcenter arg (markup)
Align arg to its X center.

\hspace amount (number)
This produces a invisible object taking horizontal space. For example,

\markup { A \hspace #2.0 B }

puts extra space between A and B, on top of the space that is normally inserted
before elements on a line.

\huge arg (markup)
Set font size to +2.

\italic arg (markup)
Use italic font-shape for arg.

\justify-field symbol (symbol)
Justify the data which has been assigned to symbol.

\justify args (list of markups)
Like wordwrap, but with lines stretched to justify the margins. Use \override
#' (line-width . X) to set the line width; X is the number of staff spaces.

\justify-string arg (string)
Justify a string. Paragraphs may be separated with double newlines

\large arg (markup)
Set font size to +1.

\larger arg (markup)
Copy of the bigger-markup command.

\left-align arg (markup)
Align arg on its left edge.

\line args (list of markups)
Put args in a horizontal line. The property word-space determines the space be-
tween each markup in args.

\lookup glyph-name (string)
Lookup a glyph by name.



Chapter 8: Advanced notation 183

\lower amount (number) arg (markup)
Lower arg by the distance amount. A negative amount indicates raising; see also
\raise.

\magnify sz (number) arg (markup)
Set the font magnification for its argument. In the following example, the middle A
is 10% larger:

A \magnify #1.1 { A } A

Note: Magnification only works if a font name is explicitly selected. Use \fontsize
otherwise.

\markalphabet num (integer)
Make a markup letter for num. The letters start with A to Z and continue with
double letters.

\markletter num (integer)
Make a markup letter for num. The letters start with A to Z (skipping letter I),
and continue with double letters.

\medium arg (markup)
Switch to medium font series (in contrast to bold).

\musicglyph glyph-name (string)
glyphOname is converted to a musical symbol; for example, \musicglyph
#"accidentals.natural" selects the mnatural sign from the music font.
See user manual,
The Feta font for a complete listing of the possible glyphs.

\natural

Draw a natural symbol.

\normal-size-sub arg (markup)
Set arg in subscript, in a normal font size.

\normal-size-super arg (markup)
Set arg in superscript with a normal font size.

\normal-text arg (markup)
Set all font related properties (except the size) to get the default normal text font,
no matter what font was used earlier.

\normalsize arg (markup)
Set font size to default.

\note-by-number log (number) dot-count (number) dir (number)
Construct a note symbol, with stem. By using fractional values for dir, you can
obtain longer or shorter stems.

\note duration (string) dir (number)
This produces a note with a stem pointing in dir direction, with the duration for the
note head type and augmentation dots. For example, \note #"4." #-0.75 creates
a dotted quarter note, with a shortened down stem.

\null
An empty markup with extents of a single point.
\number arg (markup)
Set font family to number, which yields the font used for time signatures and finger-

ings. This font only contains numbers and some punctuation. It doesn’t have any
letters.



Chapter 8: Advanced notation 184

\on-the-fly procedure (symbol) arg (markup)
Apply the procedure markup command to arg. procedure should take a single
argument.

\override new-prop (pair) arg (markup)
Add the first argument in to the property list. Properties may be any sort of property
supported by font-
interface and text-
interface, for example

\override #'(font-family . married) "bla"

\pad-around amount (number) arg (markup)
Add padding amount all around arg.

\pad-markup padding (number) arg (markup)
Add space around a markup object.

\pad-to-box x-ext (pair of numbers) y-ext (pair of numbers) arg (markup)
Make arg take at least x-ext, y-ext space.

\pad-x amount (number) arg (markup)
Add padding amount around arg in the X direction.

\page-ref label (symbol) gauge (markup) default (markup)
Reference to a page number. label is the label set on the referenced page (using the
\label command), gauge a markup used to estimate the maximum width of the
page number, and default the value to display when label is not found.

\postscript str (string)
This inserts str directly into the output as a PostScript command string. Due to
technicalities of the output backends, different scales should be used for the TEX
and PostScript backend, selected with -f.

For the TEX backend, the following string prints a rotated text

0 0 moveto /ecrml0 findfont
1.75 scalefont setfont 90 rotate (hello) show

The magical constant 1.75 scales from LilyPond units (staff spaces) to TEX dimen-
sions.

For the postscript backend, use the following

gsave /ecrml10 findfont
10.0 output-scale div
scalefont setfont 90 rotate (hello) show grestore

\put-adjacent argl (markup) axis (integer) dir (direction) arg2 (markup)
Put arg2 next to argl, without moving argl.

\raise amount (number) arg (markup)
Raise arg by the distance amount. A negative amount indicates lowering, see also
\lower.

c1”\markup { C \small \raise #1.0 \bold { "9/7+" } }

() -©




Chapter 8: Advanced notation 185

The argument to \raise is the vertical displacement amount, measured in (global)
staff spaces. \raise and \super raise objects in relation to their surrounding
markups.

If the text object itself is positioned above or below the staff, then \raise cannot be
used to move it, since the mechanism that positions it next to the staff cancels any
shift made with \raise. For vertical positioning, use the padding and/or extra-
offset properties.

\right-align arg (markup)
Align arg on its right edge.

\roman arg (markup)
Set font family to roman.

\rotate ang (number) arg (markup)
Rotate object with ang degrees around its center.

\sans arg (markup)
Switch to the sans serif family.

\score score (unknown)
Inline an image of music.

\semiflat
Draw a semiflat.

\semisharp
Draw a semi sharp symbol.

\sesquiflat
Draw a 3/2 flat symbol.

\sesquisharp

Draw a 3/2 sharp symbol.
\sharp

Draw a sharp symbol.
\simple str (string)

A simple text string; \markup { foo } is equivalent with \markup { \simple #"foo"
.

\slashed-digit num (integer)
A feta number, with slash. This is for use in the context of figured bass notation.

\small arg (markup)
Set font size to -1.

\smallCaps text (markup)
Turn text, which should be a string, to small caps.

\markup \smallCaps "Text between double quotes"

\smaller arg (markup)
Decrease the font size relative to current setting.

\stencil stil (unknown)
Use a stencil as markup.

\strut

Create a box of the same height as the space in the current font.



Chapter 8: Advanced notation 186

\sub arg (markup)
Set arg in subscript.

\super arg (markup)
Raising and lowering texts can be done with \super and \sub:

c1™\markup { E "=" \concat { "mc" \super "2" } }
2
0 E =mc
)’ 4
o t——
o ©

\teeny arg (markup)
Set font size to -3.

\text arg (markup)
Use a text font instead of music symbol or music alphabet font.

\tied-lyric str (string)
Like simple-markup, but use tie characters for
tilde symbols.

\tiny arg (markup)
Set font size to -2.

\translate offset (pair of numbers) arg (markup)
This translates an object. Its first argument is a cons of numbers.
A \translate #(cons 2 -3) { BC } D
This moves ‘B
C’ 2 spaces to the right, and 3 down, relative to its surroundings. This command

cannot be used to move isolated scripts vertically, for the same reason that \raise
cannot be used for that.

\translate-scaled offset (pair of numbers) arg (markup)
Translate arg by offset, scaling the offset by the font-size.

\transparent arg (markup)
Make the argument transparent.

\triangle filled (boolean)
A triangle, either filled or empty.

\typewriter arg (markup)
Use font-family typewriter for arg.

\upright arg (markup)
Set font shape to upright. This is the opposite of italic.

\vcenter arg (markup)
Align arg to its Y center.

\verbatim-file name (string)
Read the contents of a file, and include it verbatim.

\whiteout arg (markup)
Provide a white underground for arg.

\with-color color (list) arg (markup)
Draw arg in color specified by color.



Chapter 8: Advanced notation 187

\with-dimensions x (pair of numbers) y (pair of numbers) arg (markup)
Set the dimensions of arg to x and y.

\with-url url (string) arg (markup)
Add a link to URL url around arg. This only works in the PDF backend.

\wordwrap-field symbol (symbol)
Wordwrap the data which has been assigned to symbol.

\wordwrap args (list of markups)
Simple wordwrap. Use \override #'(line-width . X) to set the line width, where
X is the number of staff spaces.

\wordwrap-string arg (string)
Wordwrap a string. Paragraphs may be separated with double newlines.

8.1.9 Overview of text markup list commands

The following commands can all be used with \markuplines.

\column-lines args (list of markups)
Like \column, but return a list of lines instead of a single markup. baseline-skip
determines the space between each markup in args.

\justified-lines args (list of markups)
Like \justify, but return a list of lines instead of a single markup. Use \override
#' (line-width . X) to set the line width; X is the number of staff spaces.

\override-lines new-prop (pair) args (list of markups)
Like \override, for markup lists.

\wordwrap-lines args (list of markups)
Like \wordwrap, but return a list of lines instead of a single markup. Use \override
#' (line-width . X) to set the line width, where X is the number of staff spaces.

8.1.10 Font selection

By setting the object properties described below, you can select a font from the preconfigured
font families. LilyPond has default support for the feta music fonts. Text fonts are selected
through Pango/FontConfig. The serif font defaults to New Century Schoolbook, the sans and
typewriter to whatever the Pango installation defaults to.

e font-encoding is a symbol that sets layout of the glyphs. This should only be set to select
different types of non-text fonts, e.g.
fetaBraces for piano staff braces, fetaMusic the standard music font, including ancient
glyphs, fetaDynamic for dynamic signs and fetaNumber for the number font.

e font-family is a symbol indicating the general class of the typeface. Supported are roman
(Computer Modern), sans, and typewriter.

e font-shape is a symbol indicating the shape of the font. There are typically several font
shapes available for each font family. Choices are italic, caps, and upright.

e font-series is a symbol indicating the series of the font. There are typically several font
series for each font family and shape. Choices are medium and bold.

Fonts selected in the way sketched above come from a predefined style sheet. If you want to
use a font from outside the style sheet, then set the font-name property,

{
\override Staff.TimeSignature #'font-name
\override Staff.TimeSignature #'font-size

#"Charter"
#2



Chapter 8: Advanced notation 188

\time 3/4
c'1_\markup {
\override #'(font-name . "Vera Bold")
{ This text is in Vera Bold }
}
}
()
X
[ [an)
A\N\3V L
[y o

This text is in Vera Bold

Any font can be used, as long as it is available to Pango/FontConfig. To get a full list of all
available fonts, run the command

lilypond -dshow-available-fonts blabla
(the last argument of the command can be anything, but has to be present).
The size of the font may be set with the font-size property. The resulting size is taken
relative to the text-font-size as defined in the \paper block.

It is also possible to change the default font family for the entire document. This is done by
calling the make-pango-font-tree from within the \paper block. The function takes names
for the font families to use for roman, sans serif and monospaced text. For example,

\paper {
myStaffSize = #20

#(define fonts
(make-pango-font-tree "Times New Roman"
"Nimbus Sans"
"Luxi Mono"
(/ myStaffSize 20)))

{

c'"\markup { roman: foo \sans bla \typewriter bar }

[} roman: foo bla bar
4\

See also

Examples:
-family-override.ly’ .

8.1.11 New dynamic marks

It is possible to print new dynamic marks or text that should be aligned with dynamics. Use
make-dynamic-script to create these marks. Note that the dynamic font only contains the
characters f,m,p,r,s and z.

Some situations (such as dynamic marks) have preset font-related properties. If you are
creating text in such situations, it is advisable to cancel those properties with normal-text.
See Section 8.1.8 [Overview of text markup commands], page 179, for more details.



Chapter 8: Advanced notation 189

sfzp = #(make-dynamic-script "sfzp")
\relative c' {

cd c c\sfzp c
}

N @]

G

o o O @

sfzp

It is also possible to print dynamics in round parenthesis or square brackets. These are often
used for adding editorial dynamics.

rndf = \markup{ \center-align {\line { \bold{\italic (}
\dynamic f \bold{\italic )} }} }

boxf = \markup{ \bracket { \dynamic f } }

{ c'1_\rndf c'1_\boxf }

r )
\ U7

P

©-

H

8.2 Preparing parts

This section describes various notation that are useful for preparing individual parts.

8.2.1 Multi measure rests

Rests for one full measure (or many bars) are entered using ‘R’. It is specifically meant for full
bar rests and for entering parts: the rest can expand to fill a score with rests, or it can be printed
as a single multi-measure rest. This expansion is controlled by the property Score.skipBars. If
this is set to true, empty measures will not be expanded, and the appropriate number is added
automatically

\time 4/4 r1 | R1 | R1x2 \time 3/4 R2. \time 2/4 R2 \time 4/4
\set Score.skipBars = ##t R1x17 R1*4

o) 17 4
4 v ()

(es—C % | O, —1
N3 2 2

[y

The 1 in R1 is similar to the duration notation used for notes. Hence, for time signatures
other than 4/4, you must enter other durations. This can be done with augmentation dots or
fractions

\set Score.skipBars = ##t
\time 3/4

R2. | R2.x2

\time 13/8

R1%13/8

R1%13/8%12 |

\time 10/8 R4x*5x4 |



Chapter 8: Advanced notation 190

N 2 12 4
" 4 L] A9 0O
7\ ¢) W | | ) ) L | J LVJ | |
'(\\ 8 I 1 | |
dJ

An R spanning a single measure is printed as either a whole rest or a breve, centered in the
measure regardless of the time signature.
If there are only a few measures of rest, LilyPond prints
rests’ (a series of rectangles) in the staff. To replace that with a simple rest, use
MultiMeasureRest.expand-limit.
\set Score.skipBars = #it
R1x2 | R1x5 | R1%9
\override MultiMeasureRest #'expand-limit = 1
R1%2 | R1x5 | R1x9

9259259

Texts can be added to multi-measure rests by using the note-markup syntax Section 8.1.5
[Text markupl, page 175. A variable (\fermataMarkup) is provided for adding fermatas
\set Score.skipBars = ##t
\time 3/4
R2.*10"\markup { \italic "ad lib." }
R2."\fermataMarkup

ad lib.
0 10 ~
Gy =
ANV
o

Warning! This text is created by MultiMeasureRestText, not TextScript.

\override TextScript #'padding = #5

R1""low"

\override MultiMeasureRestText #'padding = #5
R17"high"

high

[ low
[ fan Y W]
SV

e

If you want to have text on the left end of a multi-measure rest, attach the text to a zero-
length skip note, i.e.,
s1%0”""Allegro"
R1x4

See also

Program reference:
MultiMeasureRest.

The layout object MultiMeasureRestNumk
is for the default number, and MultiMeasureR
for user specified texts.



Chapter 8: Advanced notation 191

Bugs
It is not possible to use fingerings (e.g., R1-4) to put numbers over multi-measure rests. And
the pitch of multi-measure rests (or staff-centered rests) can not be influenced.

There is no way to automatically condense multiple rests into a single multi-measure rest.
Multi-measure rests do not take part in rest collisions.

Be careful when entering multi-measure rests followed by whole notes. The following will
enter two notes lasting four measures each

R1%4 cis cis

When skipBars is set, the result will look OK, but the bar numbering will be off.

8.2.2 Metronome marks
Metronome settings can be entered as follows
\tempo duration = per-minute

In the MIDI output, they are interpreted as a tempo change. In the layout output, a
metronome marking is printed

\tempo 8.=120 c''1

o) ﬁ =120
SﬁE

Commonly tweaked properties
To change the tempo in the MIDI output without printing anything, make the metronome
marking invisible

\once \override Score.MetronomeMark #'transparent = ##t

To print other metronome markings, use these markup commands

c4"\markup {

(
\smaller \general-align #Y #DOWN \note #"16." #1

\smaller \general-align #Y #DOWN \note #"8" #1
)}

(N=d)

See Section 8.1.5 [Text markup], page 175, for more details.

See also

Program reference:



Chapter 8: Advanced notation 192

Bugs
Collisions are not checked. If you have notes above the top line of the staff (or notes with
articulations, slurs, text, etc), then the metronome marking may be printed on top of musical

symbols. If this occurs, increase the padding of the metronome mark to place it further away
from the staff.

\override Score.MetronomeMark #'padding = #2.5

8.2.3 Rehearsal marks

To print a rehearsal mark, use the \mark command

cl \mark \default
cl \mark \default
cl \mark #8

cl \mark \default
cl \mark \default

A B H J

)" 4
/\ o O [ Q) O O O
U
ANV
[Y)
The letter ‘T

is skipped in accordance with engraving traditions. If you wish to include the letter
‘I’, then use

\set Score.markFormatter = #format-mark-alphabet

The mark is incremented automatically if you use \mark \default, but you can also use
an integer argument to set the mark manually. The value to use is stored in the property
rehearsalMark.

The style is defined by the property markFormatter. It is a function taking the current mark
(an integer) and the current context as argument. It should return a markup object. In the
following example, markFormatter is set to a canned procedure. After a few measures, it is set
to function that produces a boxed number.

\set Score.markFormatter = #format-mark-numbers
cl \mark \default

cl \mark \default

\set Score.markFormatter
cl \mark \default

cl \mark \default

cl

#format-mark-box—numbers

1 2 B M

P>

The file ‘scm/translation-functions.scm’ contains the definitions of format-mark-
numbers (the default format), format-mark-box-numbers, format-mark-letters and
format-mark-box-letters. These can be used as inspiration for other formatting functions.

You may use format-mark-barnumbers, format-mark-box-barnumbers, and format-mark-
circle-barnumbers to get bar numbers instead of incremented numbers or letters.

Other styles of rehearsal mark can be specified manually



Chapter 8: Advanced notation 193

\mark "A1"

Score.markFormatter does not affect marks specified in this manner. However, it is possible
to apply a \markup to the string.

\mark \markup{ \box A1l }
Music glyphs (such as the segno sign) may be printed inside a \mark

cl \mark \markup { \musicglyph #"scripts.segno" }

cl \mark \markup { \musicglyph #"scripts.coda" }

cl \mark \markup { \musicglyph #"scripts.ufermata" }
cl

X 0~

N (e

U
an

See Section C.4 [The Feta font], page 348, for a list of symbols which may be printed with
\musicglyph.

The horizontal location of rehearsal marks can be adjusted by setting break-align-symbol

cl
\key cis \major
\clef alto

\override Score.RehearsalMark #'break-align-symbol
\mark "on-key"

cis

\key ces \major

\override Score.RehearsalMark #'break-align-symbol
\clef treble

\mark "on clef"

#'key-signature

#'clef

ces
on-key on clef
0) w P T
)’ 4 o | L oLl o LV J ML 1L 1D |
) ! UHLThb (Y1 D
“wC B 7L - e 1”0
ANV . T L /)
o) o ' Y ©

break-align-symbol may also accept the following values: ambitus, breathing-sign, clef,
custos, staff-bar, left-edge, key-cancellation, key-signature, and time-signature.
Setting break-align-symbol will only have an effect if the symbol appears at that point in the
music.

See also
This manual: Section 8.1.4 [Text marks|, page 173.
Program reference:

Init files: ‘scm/translation-functions.scm’ contains the definition of format-mark-
numbers and format-mark-letters. They can be used as inspiration for other formatting
functions.

Examples:



Chapter 8: Advanced notation 194

8.2.4 Bar numbers

Bar numbers are printed by default at the start of the line. The number itself is stored in the
currentBarNumber property, which is normally updated automatically for every measure.

\repeat unfold 4 {c4 c c c} \break
\set Score.currentBarNumber = #50
\repeat unfold 4 {c4 c c c}

Bar numbers may only be printed at bar lines; to print a bar number at the beginning of a
piece, an empty bar line must be added

\set Score.currentBarNumber = #50
\bar nn

\repeat unfold 4 {c4 c c c} \break
\repeat unfold 4 {c4 c c c}

N @]

o

P>

P

Bar numbers can be typeset at regular intervals instead of at the beginning of
each line.  This is illustrated in the following example, whose source is available as
‘staff/making-bar-numbers-appear-at-regular-intervals.ly’ .




Chapter 8: Advanced notation 195

Bar numbers can be removed entirely by removing the Bar number engraver from the score.

\layout {
\context {
\Score
\remove "Bar_number_engraver"
}
}
\relative c''{
c4 ¢ ¢ ¢ \break
cd ccc

}

See also

Program reference:

Examples:
Bugs
Bar numbers can collide with the StaffGroup
bracket, if there is one at the top. To solve this, the padding property of

BarNumber can be used to position the number correctly.

8.2.5 Instrument names

In an orchestral score, instrument names are printed at the left side of the staves.

This can be achieved by setting Staff.ins’
and Staff.shortInstrumentName,
or PianoStaff.instrumentName
and PianoStaff.shortInstrumentName.

This will print text before the start of the staff. For the first staff, instrumentName is used, for
the following ones, shortInstrumentName is used.

\set Staff.instrumentName = "Ploink "
\set Staff.shortInstrumentName = "Plk "
cl

\break

Cll

4]
"4

Ploink o5 €0———
[Y) ©-



Chapter 8: Advanced notation 196
2 -©-

Plk

You can also use markup texts to construct more complicated instrument names, for example

\set Staff.instrumentName = \markup {
\column { "Clarinetti"
\line { "in B" \smaller \flat } } }
c''1l

01arinetti§%*E
in B},

eJ

If you wish to center the instrument names, you must center all of them

{ <<
\new Staff {

\set Staff.instrumentName = \markup {

\center-align { "Clarinetti"
\line { "in B" \smaller \flat } } }

c''1
}
\new Staff {

\set Staff.instrumentName = \markup{ \center-align { Vibraphone }}

c''1
+
>>
}
Clarinetti Q
b (&2
w
in o
0
Vibraphone-fps—C <
4

For longer instrument names, it may be useful to increase the indent setting in the \layout
block.

To center instrument names while leaving extra space to the right,

\new StaffGroup \relative
<<
\new Staff {
\set Staff.instrumentName
cl c1

\markup { \hcenter-in #10 "blabla" }

}

\new Staff {
\set Staff.instrumentName
cl ci

\markup { \hcenter-in #10 "blo" }

}

>>



Chapter 8: Advanced notation 197

0
blabla €
VUV
() -© o
()
)" 4
blo (€
ANV,
[Y) -© o

To add instrument names to other contexts (such as GrandStaff, ChoirStaff, or
StaffGroup), the engraver must be added to that context.

\layout{
\context {\GrandStaff \consists "Instrument_name_engraver"}

3

More information about adding and removing engravers can be found in Section 9.2.4 [Modifying
context plug-ins|, page 230.

Instrument names may be changed in the middle of a piece,

\set Staff.instrumentName = "First"
\set Staff.shortInstrumentName = "one"
cl ¢ ¢ ¢ \break

cl ¢ ¢ ¢ \break

\set Staff.instrumentName = "Second"
\set Staff.shortInstrumentName = "two"
cl ¢ ¢ ¢ \break

cl ¢ ¢ ¢ \break

o

First A

7N
q1]
d1l
q1]
dlll

(S

P

one

dill
dill
q1]
d1ll

9

0
Second fas
A1V
[Y)

d1]
d1]
q1]
d1]

=
w

g
o
P

d1l]
d1]
q1]
d1]

See also

Program reference:



Chapter 8: Advanced notation 198

8.2.6 Instrument transpositions

The key of a transposing instrument can also be specified. This applies to many wind instru-
ments, for example, clarinets (B-flat, A, and E-flat), horn (F) and trumpet (B-flat, C, D, and
E-flat).

The transposition is entered after the keyword \transposition

\transposition bes %% B-flat clarinet
This command sets the property instrumentTransposition. The value of this property is used
for MIDI output and quotations. It does not affect how notes are printed in the current staff.
To change the printed output, see Section 6.1.8 [Transposel, page 65.

The pitch to use for \transposition should correspond to the real sound heard when a c'
written on the staff is played by the transposing instrument. For example, when entering a score
in concert pitch, typically all voices are entered in C, so they should be entered as

clarinet = {
\transposition c'

}
saxophone = {
\transposition c'

}

The command \transposition should be used when the music is entered from a (transposed)
orchestral part. For example, in classical horn parts, the tuning of the instrument is often
changed during a piece. When copying the notes from the part, use \transposition, e.g.,

\transposition d'
Cl4"||in DII
\transposition g'
Cl4"||in Gll

8.2.7 Ottava brackets

‘Ottava’ brackets introduce an extra transposition of an octave for the staff. They are created
by invoking the function set-octavation

\relative c''' {
a2 b
#(set-octavation 1)
ab
#(set-octavation 0)
ab
}
- £ 8va--; -5 2

N &1

P
p—_—
N\

T

The set-octavation function also takes -1 (for 8va bassa), 2 (for 15ma), and -2 (for 15ma
bassa) as arguments. Internally the function sets the properties ottavation (e.g., to "8va" or
"8vb") and centralCPosition. For overriding the text of the bracket, set ottavation after
invoking set-octavation, i.e.,



Chapter 8: Advanced notation 199

{
#(set-octavation 1)
\set Staff.ottavation = #"8"
Cl L
}
81
See also

Program reference:

Bugs

set-octavation will get confused when clef changes happen during an octavation bracket.

8.2.8 Different editions from one source

The \tag command marks music expressions with a name. These tagged expressions can be
filtered out later. With this mechanism it is possible to make different versions of the same
music source.

In the following example, we see two versions of a piece of music, one for the full score, and
one with cue notes for the instrumental part

cl
<<
\tag #'part <<
R1 \\
{
\set fontSize = #-1
c4d_"cue" f2 g4 }
>>

\tag #'score R1
>>

cl

The same can be applied to articulations, texts, etc.: they are made by prepending
-\tag #your-tag

to an articulation, for example,
cl-\tag #'part "4

This defines a note with a conditional fingering indication.

By applying the \keepWithTag and \removeWithTag commands, tagged expressions can be
filtered. For example,

<<
the music
\keepWithTag #'score the music
\keepWithTag #'part the music
>>

would yield



Chapter 8: Advanced notation 200

4
I(\) (s O = [ @)
both Hes—€ P
ANV [7] =
o | |
[0 cue 4
)" 4 |l
part fs—C— 1=
ANV [7] =
JJ r | |
[0 cue
)’ A
score @ | S— = O
e)

The arguments of the \tag command should be a symbol (such as #'score or #'part),
followed by a music expression. It is possible to put multiple tags on a piece of music with
multiple \tag entries,

\tag #'original-part \tag #'transposed-part

See also

Examples:
-filter.ly’

Bugs

Multiple rests are not merged if you create the score with both tagged sections.

8.3 Orchestral music

Orchestral music involves some special notation, both in the full score and the individual parts.
This section explains how to tackle some common problems in orchestral music.

8.3.1 Automatic part combining

Automatic part combining is used to merge two parts of music onto a staff. It is aimed at
typesetting orchestral scores. When the two parts are identical for a period of time, only one
is shown. In places where the two parts differ, they are typeset as separate voices, and stem
directions are set automatically. Also, solo and a due parts are identified and can be marked.

The syntax for part combining is
\partcombine musicexprl musicexpr2

The following example demonstrates the basic functionality of the part combiner: putting
parts on one staff, and setting stem directions and polyphony

\new Staff \partcombine
\relative g' { gga(b) ccrr}
\relative g' { ggrireegg}

N a2z Solo SoloIl
)" 4 - | | | | |
U |

The first g appears only once, although it was specified twice (once in each part).
Stem, slur, and tie directions are set automatically, depending whether there is a
solo or unisono. The first part (with context called one) always gets up stems, and
‘Solo’, while  the second  (called two) always gets down stems and
‘Solo IT".

If you just want the merging parts, and not the textual markings, you may set the property
printPartCombineTexts to false



Chapter 8: Advanced notation 201

\new Staff <<
\set Staff.printPartCombineTexts = ##f
\partcombine
\relative g' { g a( b) r }
\relative g' { grd r £ }
>>

f

oJ

To change the text that is printed for solos or merging, you may set the soloText,
soloIIText, and aDueText properties.

\new Staff <<
\set Score.soloText = #"ichi"
\set Score.soloIIText = #"ni"
\set Score.aDueText = #"tachi"
\partcombine
\relative g' { g4 g a( b) r }
\relative g' { g4 g
>>

g tachiichi ;

Both arguments to \partcombine will be interpreted as
contexts. If using relative octaves, \relative should be specified for both music expressions,
ie.,

\partcombine
\relative ... musicexprl
\relative ... musicexpr2

A \relative section that is outside of \partcombine has no effect on the pitches of musicexprl
and musicexpr2.

See also

Program reference:

Bugs
When printPartCombineTexts is set, when the two voices play the same notes on and off, the
part combiner may typeset a2 more than once in a measure.

\partcombine cannot be inside \times.

\partcombine cannot be inside \relative.

Internally, the \partcombine interprets both arguments as Voices named one and two,
and then decides when the parts can be combined. Consequently, if the arguments switch to
differently named Voice
contexts, the events in those will be ignored.



Chapter 8: Advanced notation 202

8.3.2 Hiding staves

In orchestral scores, staff lines that only have rests are usually removed; this saves some space.

This style is called ‘French
Score’. For Lyrics,
ChordNames and FiguredBass,

this is switched on by default. When the lines of these contexts turn out empty after the
line-breaking process, they are removed.

For normal staves, a specialized
context is available, which does the same: staves containing nothing (or only multi-measure
rests) are removed. The context definition is stored in \RemoveEmptyStaffContext variable.
Observe how the second staff in this example disappears in the second line

\layout {
\context { \RemoveEmptyStaffContext }
}

{

\relative c' <<
\new Staff { e4 f g a \break cl }
\new Staff { c4 d e f \break R1 }
>>

SESE

2

The first system shows all staves in full. If empty staves should
be removed from the first system too, set remove-first to true in
VerticalAxisGroup.

\override Score.VerticalAxisGroup #'remove-first = #it

To remove other types of contexts, use \AncientRemoveEmptyStaffContext or
\RemoveEmptyRhythmicStaffContext.

Another application is making ossia sections, i.e., alternative melodies on a separate piece of
staff, with help of a Frenched staff.

8.3.3 Quoting other voices

With quotations, fragments of other parts can be inserted into a part directly. Before a part
can be quoted, it must be marked especially as quotable. This is done with the \addQuote
command.

\addQuote name music
Here, name is an identifying string. The music is any kind of music. Here is an example of
\addQuote

Staff



Chapter 8: Advanced notation 203

\addQuote clarinet \relative c' {
f4 fis g gis
}
This command must be entered at toplevel, i.e., outside any music blocks.
After calling \addQuote, the quotation may then be done with \quoteDuring or \cueDuring,
\quoteDuring #name music
During a part, a piece of music can be quoted with the \quoteDuring command.
\quoteDuring #"clarinet" { s2. }

This would cite three quarter notes (the duration of s2.) of the previously added clarinet
voice.

More precisely, it takes the current time-step of the part being printed, and extracts the notes
at the corresponding point of the \addQuoted voice. Therefore, the argument to \addQuote
should be the entire part of the voice to be quoted, including any rests at the beginning.

Quotations take into account the transposition of both source and target instruments, if they
are specified using the \transposition command.

\addQuote clarinet \relative c' {
\transposition bes

f4 fis g gis
}
{
e'8 f'8 \quoteDuring #"clarinet" { s2 }
}
o)

SRS

The type of events that are present in cue notes can be trimmed with the quotedEventTypes
property. The default value is (note-event rest-event), which means that only notes and
rests of the cued voice end up in the \quoteDuring. Setting

\set Staff.quotedEventTypes =
#' (note-event articulation-event dynamic-event)

will quote notes (but no rests), together with scripts and dynamics.

Bugs

Only the contents of the first Voice
occurring in an \addQuote command will be considered for quotation, so music can not contain
\new and \context Voice statements that would switch to a different Voice.

Quoting grace notes is broken and can even cause LilyPond to crash.

Quoting nested triplets may result in poor notation.

See also

In this manual: Section 8.2.6 [Instrument transpositions], page 198.
Examples:
) ‘parts/quote-transportation.ly’

Program reference:



Chapter 8: Advanced notation 204

8.3.4 Formatting cue notes

The previous section deals with inserting notes from another voice. There is a more advanced
music function called \cueDuring, which makes formatting cue notes easier.

The syntax is
\cueDuring #name #updown music

This will insert notes from the part name into a
called cue. This happens simultaneously with music, which usually is a rest. When the cue
notes start, the staff in effect becomes polyphonic for a moment. The argument updown
determines whether the cue notes should be notated as a first or second voice.

smaller = {
\set fontSize = #-2
\override Stem #'length-fraction = #0.8
\override Beam #'thickness = #0.384
\override Beam #'length-fraction = #0.8

+

\addQuote clarinet \relative {
R1%20
r2 r8 c' f £

\new Staff \relative <<

% setup a context for cue notes.
\new Voice = "cue" { \smaller \skip 1%21 }

\set Score.skipBars = ##t

\new Voice {

R1x20
\cueDuring #"clarinet" #UP {
R1
}
gd g2.
}
>>
0 20 .
¢ F
o Ctt=—F
o — O
v -

Here are a couple of hints for successful cue notes
e Cue notes have smaller font sizes.
e the cued part is marked with the instrument playing the cue.

e when the original part takes over again, this should be marked with the name of the original
instrument.

Any other changes introduced by the cued part should also be undone. For example, if the
cued instrument plays in a different clef, the original clef should be stated once again.



Chapter 8: Advanced notation 205

The macro \transposedCueDuring is useful to add cues to instruments which use a com-
pletely different octave range (for example, having a cue of a piccolo flute within a contra bassoon
part).

picc = \relative c''' {
\clef "treble~8"
R1 |
c8 cce g2 |
ad g g2 |
}
\addQuote "picc" { \picc }

cbsn = \relative c, {
\clef "bass_8"

cdrgr
\transposedCueDuring #"picc" #UP c,, { R1 } |
cdrgr |
}
<<
\context Staff = "picc" \picc
\context Staff = "cbsn" \cbsn
>>

a 7] »
e = |eeell |
;‘J_V | I -

(-

. IPPEEIN

&) | RN RN | RN RN
0 r d | &
Z (/ i [y [N d & &
5 ‘ L ‘

8.3.5 Aligning to cadenzas

In an orchestral context, cadenzas present a special problem: when constructing a score that
includes a cadenza, all other instruments should skip just as many notes as the length of the
cadenza, otherwise they will start too soon or too late.

A solution to this problem are the functions mmrest-of-length and skip-of-length. These
Scheme functions take a piece of music as argument, and generate a \skip or multi-rest, exactly
as long as the piece. The use of mmrest-of-length is demonstrated in the following example.

cadenza = \relative c' {
cd d8 << {efglr \\ {add. > >
gd f2 g4 g

}

\new GrandStaff <<
\new Staff { \cadenza c'4 }
\new Staff {
#(ly:export (mmrest-of-length cadenza))
c'4
}
>>



Chapter 8: Advanced notation 206

"4 N K —
A N W —
H—- A F—o @

eJ o @ : &
"4

4\ y £) - L_J

fes U

A\3Y

U .‘.

8.4 Contemporary notation

In the 20th century, composers have greatly expanded the musical vocabulary. With
this expansion, many innovations in musical notation have been tried. The book
‘Music Notation in the 20th century’ by Kurt Stone gives a comprehensive overview (see
Appendix A [Literature list], page 341).

This section describes notation that does not fit into traditional notation categories, such
as pitches, tuplet beams, and articulation. For contemporary notation that fits into traditional
notation categories, such as microtones, nested tuplet beams, and unusual fermatas, please see
those sections of the documentation.

8.4.1 Polymetric notation

Double time signatures are not supported explicitly, but they can be faked. In the next example,
the markup for the time signature is created with a markup text. This markup text is inserted in
the TimeSignature grob. See
also ‘contemporary/compound-time-signat

% create 2/4 + 5/8
tsMarkup =\markup {
\override #'(baseline-skip . 2) \number {
\column { "2" "4" }
\vcenter "+"
\bracket \column { "5" "8" }
}
}

{
\override Staff.TimeSignature #'stencil = #ly:text-interface::print
\override Staff.TimeSignature #'text = #tsMarkup

\time 3/2

c'2 \bar ":" c'4 c'4.
}

0)

)’ 4 ) D

4\ A ) ] .

[ [« Y /A 0

VYV x ®) 0

[y, = ¢ o

Each staff can also have its own time signature. This is done by moving
the Timing_
translator to the Staff
context.

\layout {

\context { \Score
\remove "Timing_translator"
\remove "Default_bar_line_engraver"



Chapter 8: Advanced notation

\context {
\Staff
\consists "Timing_translator"
\consists "Default_bar_line_engraver"

}
}
Now, each staff has its own time signature.
<<
\new Staff {
\time 3/4
cdcclccc
}
\new Staff {
\time 2/4
cdclcclcec
}
\new Staff {
\time 3/8
cd. c8 cccd. c8 c c
}
>>
n &
X — .
[ [an) | | | | |
ANV | | | | |
() 4 @ P 4 o ¢
()
g2
[ (oY /1
NV X
() 4 & 2 4 -
n 3
A —
[ [an) I | | I | |
ANV | | | | | |
[Y) 4 ¢ 64 o -

207

A different form of polymetric notation is where note lengths have different values across

staves.

This notation can be created by setting a common time signature for each staff but replacing
it manually using timeSignatureFraction to the desired fraction. Then the printed durations
in each staff are scaled to the common time signature. The latter is done with \compressMusic,

which is used similar to \times, but does not create a tuplet bracket. The syntax is

\compressMusic #'(numerator . denominator) musicexpr

In this example, music with the time signatures of 3/4, 9/8, and 10/8 are used in parallel.
In the second staff, shown durations are multiplied by 2/3, so that 2/3 * 9/8 = 3/4, and in the

third staff, shown durations are multiplied by 3/5, so that 3/5 * 10/8 = 3/4.

\relative c' { <<
\new Staff {
\time 3/4
cdccl|lccec
}
\new Staff {
\time 3/4



Chapter 8: Advanced notation 208

\set Staff.timeSignatureFraction
\compressMusic #'(2 . 3)
\repeat unfold 6 { c8[ c c] }

# (09 .8

}
\new Staff {
\time 3/4
\set Staff.timeSignatureFraction
\compressMusic #'(3 . 5) {
\repeat unfold 2 { c8[ ¢ c] }
\repeat unfold 2 { c8[ c] }
| c4. c4. \times 2/3 { c8 c c } c4

#'(10 . 8)

}
}
>> }
L3
e
& o & & & &
[0
eJ
Q 1 [ 1 [ 1 1

O P U

Bugs

When using different time signatures in parallel, the spacing is aligned vertically, but bar lines
distort the regular spacing.

8.4.2 Time administration

Time is administered by the Time_
signature_engraver, which usually lives in the
context. The bookkeeping deals with the following variables

currentBarNumber
The measure number.

measurelength

The length of the measures in the current time signature. For a 4/4 time this is 1,
and for 6/8 it is 3/4.

measurePosition

The point within the measure where we currently are. This quantity is reset to 0
whenever it exceeds measureLength. When that happens, currentBarNumber is
incremented.

timing If set to true, the above variables are updated for every time step. When set to
false, the engraver stays in the current measure indefinitely.

Timing can be changed by setting any of these variables explicitly. In the next example, the
4/4 time signature is printed, but measureLength is set to 5/4. After a while, the measure is
shortened by 1/8, by setting measurePosition to 7/8 at 2/4 in the measure, so the next bar
line will fall at 2/4 + 3/8. The 3/8 arises because 5/4 normally has 10/8, but we have manually
set the measure position to be 7/8 and 10/8 - 7/8 = 3/8.



Chapter 8: Advanced notation 209

\set Score.measurelLength = #(ly:make-moment 5 4)
cl c4

cl c4

c4 c4

\set Score.measurePosition = #(ly:make-moment 7 8)
b8 b b

c4 cl

p—
N (@4

G

As the example illustrates, 1y :make-moment n m constructs a duration of n/m of a whole note.
For example, 1y:make-moment 1 8 is an eighth note duration and ly:make-moment 7 16 is the
duration of seven sixteenths notes.

8.4.3 Proportional notation (introduction)

See Section 11.6.5 [Proportional notation], page 288.
TODO: remove all this stuff?

Notes can be spaced proportionally to their time-difference by assigning a duration to
proportionalNotationDuration
<<
\set Score.proportionalNotationDuration = #(ly:make-moment 1 16)
\new Staff { c8[ c cccc] c4c2r2}

\new Staff { c2 \times 2/3 { c8 c ¢c } c4 c1 }
>>

o~

O U

\V]

e P>

[ © )

Setting this property only affects the ideal spacing between consecutive notes. For true
proportional notation, the following settings are also required.

e True proportional notation requires that symbols are allowed
to  overstrike each  other. That is achieved by  removing the
Separating_line_group_engraver from
context.



Chapter 8: Advanced notation 210

e Spacing influence of prefatory matter (clefs, bar lines, etc.) is re-
moved by setting the strict-note-spacing property to #t in
SpacingSpanner grob.

e Optical spacing tweaks are switched by setting uniform-stretching in
SpacingSpanner to true.

See also
Examples:
-spacing.ly’, ‘spacing/proportion;
-strict-grace-notes.ly’, and ‘spacing/p:

-strict-notespacing.ly’
An example of strict proportional notation is in the example file ‘input/proportional.ly’.

8.4.4 Clusters

A cluster indicates a continuous range of pitches to be played. They can be denoted as the
envelope of a set of notes. They are entered by applying the function makeClusters to a
sequence of chords, e.g.,

\makeClusters { <c e > <b f'> }

Ordinary notes and clusters can be put together in the same staff, even simultaneously. In
such a case no attempt is made to automatically avoid collisions between ordinary notes and
clusters.

See also

Program reference:
ClusterSpannerBeacon, Cluster_
spanner_engraver.

Examples:

dy' .
Bugs

Music expressions like << { g8 €8 } a4 >> are not printed accurately. Use <g a>8 <e a>8 instead.

8.4.5 Special noteheads

Different noteheads are used by various instruments for various meanings — crosses are used for
‘parlato’ with vocalists, stopped notes on guitar; diamonds are used for harmonics on string
instruments, etc. There is a shorthand (\harmonic) for diamond shapes; the other notehead
styles are produced by tweaking the property

c4 d

\override NoteHead #'style = #'cross

e f

\revert NoteHead #'style

e d <c f\harmonic> <d a'\harmonic>

Xl
WEEN




Chapter 8: Advanced notation 211

To see all notehead styles, please see Section C.5 [Note head styles|, page 363.

See also

Program reference:

8.4.6 Feathered beams

Feathered beams are printed by setting the grow-direction property of a Beam. The
\featherDurations function can be used to adjust note durations.

\featherDurations #(ly:make-moment 5 4)

{
\override Beam #'grow-direction = #LEFT
cl6[ c c c cc c]

¥

f

e) 40 6 o o o

Bugs

The \featherDuration command only works with very short music snippets.

8.4.7 Improvisation

Improvisation is sometimes denoted with slashed note heads. Such note heads can be created by
adding a Pitch_squash_
engraver to the Voice
context. Then, the following command

\set squashedPosition = #0
\override NoteHead #'style = #'slash

switches on the slashes.

There are shortcuts \improvisationOn (and an accompanying \improvisationOff) for this
command sequence. They are used in the following example

\new Voice \with {
\consists Pitch_squash_engraver
} \transpose c c' {
e8 e g a al6(bes)(a8) g \improvisationOn
e8
“e27e8 f4 fis8
“fis2 \improvisationOff al6(bes) a8 g e

>
N
)
LIV
N
I
=
N
B
)

T‘:



Chapter 8: Advanced notation 212

8.4.8 Selecting notation font size

The easiest method of setting the font size of any context is by setting the fontSize property.

c8
\set fontSize = #-4
c f
\set fontSize = #3
g

4\ r £)

Gt 1Je

[y o 4

It does not change the size of variable symbols, such as beams or slurs.

Internally, the fontSize context property will cause the font-size property to be set in all
layout objects. The value of font-size is a number indicating the size relative to the standard
size for the current staff height. Each step up is an increase of approximately 12% of the font size.
Six steps is exactly a factor two. The Scheme function magstep converts a font-size number
to a scaling factor. The font-size property can also be set directly, so that only certain layout
objects are affected.

c8
\override NoteHead #'font-size = #-4
c f
\override NoteHead #'font-size = #3
g

4\ f £)

Gt e

[y o 4

Font size changes are achieved by scaling the design size that is closest to the desired size.
The standard font size (for font-size equals 0), depends on the standard staff height. For a
20pt staff, a 10pt font is selected.

The font-size property can only be set on layout objects that use fonts. These are the ones
supporting the font-
interface layout interface.

Predefined commands

The following commands set fontSize for the current voice:

\tiny, \small,
\normalsize.

8.5 Educational use

With the amount of control that LilyPond offers, one can make great teaching tools in addition
to great musical scores.



Chapter 8: Advanced notation 213

8.5.1 Balloon help
FElements of notation can be marked and named with the help of a square balloon. The primary
purpose of this feature is to explain notation.

The following example demonstrates its use.

\new Voice \with { \consists "Balloon_engraver" }

{
\balloonGrobText #'Stem #'(3 . 4) \markup { "I'm a Stem" }
<c-\balloonText #'(-2 . -2) \markup { Hello } >8
}
/I'm a Stem
o)
)’ 4
bHe o~
ANV = L1
oJ Hello H

There are two music functions, balloonText and balloonGrobText. The latter takes the name
of the grob to adorn, while the former may be used as an articulation on a note. The other
arguments are the offset and the text of the label.

See also

Program reference:
balloon-interface.

8.5.2 Blank music sheet

A blank music sheet can be produced also by using invisible notes, and removing Bar_number_
engraver.

\layout{ indent = #0 }
emptymusic = {
\repeat unfold 2 % Change this for more lines.
{ si\break }
\bar n | . n
b
\new Score \with {
\override TimeSignature #'transparent = ##t
% un-comment this line if desired
% \override Clef #'transparent = ##t
defaultBarType = #""
\remove Bar_number_engraver
} <<

% modify these to get the staves you want
\new Staff \emptymusic
\new TabStaff \emptymusic

>>

PN (P




Chapter 8: Advanced notation 214

PN (LD

8.5.3 Hidden notes

Hidden (or invisible or transparent) notes can be useful in preparing theory or composition
exercises.

c4 d4

\hideNotes

ed f4

\unHideNotes

gd a

8.5.4 Shape note heads

In shape note head notation, the shape of the note head corresponds to the harmonic function
of a note in the scale. This notation was popular in the 19th century American song books.

Shape note heads can be produced by setting \aikenHeads or \sacredHarpHeads, depending
on the style desired.

\aikenHeads

c8 d4 e8 a2 gl

\sacredHarpHeads

c8 d4. e8 a2 gi

o~
N|e]

~—

Y]
N

P>

~—

Shapes are determined on the step in the scale, where the base of the scale is determined by
the \key command

Shape note heads are implemented through the shapeNoteStyles property. Its value is a
vector of symbols. The k-th element indicates the style to use for the k-th step of the scale.
Arbitrary combinations are possible, e.g.

\set shapeNoteStyles = ##(cross triangle fa #f mensural xcircle diamond)
c8 d4. e8 a2 gl

N @]

~—

<

P

|

|

)] |
EvAD &

8.5.5 Easy Notation note heads
The

‘easy
play’ note head includes a note name inside the head. It is used in music for beginners



Chapter 8: Advanced notation 215

\setEasyHeads
c'2e'4f' | g'1

0)
&e
g @ °°

—
o
N

The command \setEasyHeads overrides settings for the
object. To make the letters readable, it has to be printed in a large font size. To print with a
larger font, see Section 11.2.1 [Setting the staff size], page 264.

Predefined commands

\setEasyHeads

8.5.6 Analysis brackets

Brackets are used in musical analysis to indicate structure in musical pieces.  Lily-
Pond supports a simple form of nested horizontal brackets. To wuse this, add
the Horizontal_bracket_
engraver to Staff

context. A bracket is started with \startGroup and closed with \stopGroup

\score {
\relative c'' {
c4\startGroup\startGroup
c4\stopGroup
c4\startGroup
c4\stopGroup\stopGroup
}
\layout {
\context {
\Staff \consists "Horizontal_bracket_engraver"

31}

0

Vi

Y
o /7

See also

Program reference:

8.5.7 Coloring objects

Individual objects may be assigned colors. You may use the color names listed in the Section C.3
[List of colors|, page 346.

\override NoteHead #'color = #red

c4d c

\override NoteHead #'color = #(xll-color 'LimeGreen)
d

\override Stem #'color = #blue



Chapter 8: Advanced notation 216

e
"4 .
A i
[ fan YA W] |
NIV 2
[Y) o o

The full range of colors defined for X11 can be accessed by using the Scheme function x11-
color. The function takes one argument that can be a symbol

\override Beam #'color = #(xll-color 'MediumTurquoise)
or a string
\override Beam #'color = #(xll-color "MediumTurquoise")

The first form is quicker to write and is more efficient. However, using the second form it is
possible to access X11 colors by the multi-word form of its name

\override Beam #'color = #(xll-color "medium turquoise")

If x11-color cannot make sense of the parameter then the color returned defaults to black. It
should be obvious from the final score that something is wrong.

This example illustrates the use of x11-color. Notice that the stem color remains black after
being set to (x11-color 'Boggle), which is deliberate nonsense.

{
\override Staff.StaffSymbol #'color = #(xll-color 'SlateBlue2)
\set Staff.instrumentName = \markup {
\with-color #(xll-color 'mavy) "Clarinet"
}
\time 2/4
gislls all
\override Beam #'color = #(xll-color "medium turquoise")
gis'' a''
\override NoteHead #'color = #(xl1l-color "LimeGreen")
gisll all
\override Stem #'color = #(x1l-color 'Boggle)
gis'' a''
}

Clarinet (g =1L
8} x

See also

Appendix: Section C.3 [List of colors], page 346.

Bugs
Not all x11 colors are distinguishable in a web browser. For web use normal colors are recom-
mended.

An x11 color is not necessarily exactly the same shade as a similarly named normal color.

Notes in a chord cannot be colored with \override; use \tweak instead. See Section 9.3.5
[Objects connected to the input], page 240, for details.



Chapter 8: Advanced notation

8.5.8 Parentheses

217

Objects may be parenthesized by prefixing \parenthesize to the music event,

<
c
\parenthesize d

g
>4-\parenthesize -.

This only functions inside chords, even for single notes

< \parenthesize NOTE>

8.5.9 Grid lines

Vertical lines can be drawn between staves synchronized with the notes.

\layout {
\context {
\Staff
\consists "Grid_point_engraver" %) sets of grid
gridInterval = #(ly:make-moment 1 4)
}
}

\new Score \with {
\consists "Grid_line_span_engraver"
%% centers grid lines horizontally below noteheads
\override NoteColumn #'X-offset = #-0.5

}

\new ChoirStaff <<
\new Staff {
\stemUp
\relative {
c'4. d8 e8 f g4
}
}
\new Staff {
%% centers grid lines vertically

\override Score.GridLine #'extra-offset = #'( 0.0 .

\stemDown
\clef bass
\relative ¢ {

cd g' f e
}

}
>>

1.0)



Chapter 8: Advanced notation 218

L/ QQ?D

$
#

Examples:



Chapter 9: Changing defaults 219

9 Changing defaults

The purpose of LilyPond’s design is to provide the finest output quality as

a default. Nevertheless, it may happen that you mneed to change this de-
fault layout. The layout 1is controlled through a large number of proverbial
‘knobs and switches.”  This chapter does not list each and every knob. Rather, it

outlines what groups of controls are available and explains how to lookup which knob to use
for a particular effect.

The controls available for tuning are described in a separate document, the Program reference
manual. That manual lists all different variables, functions and options available in LilyPond.
It is written as a HTML document, which is available on-line, but is also included with the
LilyPond documentation package.

There are four areas where the default settings may be changed:

e Automatic notation: changing the automatic creation of notation elements. For example,
changing the beaming rules.

e Qutput: changing the appearance of individual objects. For example, changing stem direc-
tions or the location of subscripts.

e Context: changing aspects of the translation from music events to notation. For example,
giving each staff a separate time signature.

e Page layout: changing the appearance of the spacing, line breaks, and page dimensions.
These modifications are discussed in Chapter 10 [Non-musical notation|, page 244, and
Chapter 11 [Spacing issues]|, page 259.

Internally, LilyPond uses Scheme (a LISP dialect) to provide infrastructure. Overriding
layout decisions in effect accesses the program internals, which requires Scheme input. Scheme
elements are introduced in a .1y file with the hash mark #.!

9.1 Automatic notation

This section describes how to change the way that accidentals and beams are automatically
displayed.

9.1.1 Automatic accidentals

Common rules for typesetting accidentals have been placed in a function. This function is called
as follows

#(set-accidental-style 'STYLE)

Optionally, the function can take two arguments: the name of the accidental style, and an
optional argument that denotes the context that should be changed:

#(set-accidental-style 'STYLE #('CONTEXT#))

If no context name is supplied, Staff is the default, but you may wish to apply the accidental
style to a single Voice instead.

The following accidental styles are supported:

default  This is the default typesetting behavior. It corresponds to 18th century common
practice: Accidentals are remembered to the end of the measure in which they occur
and only on their own octave.

'default

1 Appendix B [Scheme tutorial], page 342, contains a short tutorial on entering numbers, lists, strings, and
symbols in Scheme.



http://lilypond.org/doc/stable/Documentation/user/lilypond-internals/

Chapter 9: Changing defaults

220

rFr
d

voice

The normal behavior is to remember the accidentals on Staff-level. This variable,
however, typesets accidentals individually for each voice. Apart from that, the rule
is similar to default.

\new Staff <<
#(set-accidental-style 'voice)

{ ...}

>>

As a result, accidentals from one voice do not get canceled in other voices, which is
often an unwanted result: in the following example, it is hard to determine whether
the second ‘a’ should be played natural or sharp.

'voice
| | .
P | V| 1L |
r .| — j:
‘“—E; T &

4

L v 1

modern

i
d

The voice option should be used if the voices are to be read solely by individual
musicians. If the staff is to be used by one musician (e.g., a conductor) then modern
or modern-cautionary should be used instead.

This
rule corresponds to the common practice in the 20th century. This rule prints the
same accidentals as default, but temporary accidentals also are canceled in other
octaves. Furthermore, in the same octave, they also get canceled in the following
measure: in the following example, notice the two natural signs which appear in the
second bar of the upper staff.

'modern




Chapter 9: Changing defaults 221

modern-cautionary
This rule is similar to modern, but the
tra’ accidentals (the ones not typeset by default) are typeset as cautionary
accidentals. ~ They are printed in reduced size or (by default) with paren-
theses — this can be set by definig the cautionary-style property of the
AccidentalSuggestion object.

'modern-cautionary

modern-voice
This rule is wused for multivoice accidentals to be read both by musi-
cians playing one voice and musicians playing all voices.  Accidentals are

typeset for each voice, but they are canceled across voices in the same
Staff.

'modern-voice

A=
TN

e
sis e
$

modern-voice-cautionary
This rule is the same as modern-voice, but with the extra accidentals (the ones not
typeset by voice) typeset as cautionaries. Even though all accidentals typeset by
default are typeset by this variable, some of them are typeset as cautionaries.

'modern-voice-cautionary

9| |0
Hiw —o
[y




Chapter 9: Changing defaults 222

piano

This
accidental style takes place in a GrandStaff context. However, you have to explicitly
set it for each individual Staff of the GrandStaff:

\new GrandStaff { <<
\new Staff = "up" { <<
#(set-accidental-style 'piano)
{ ...}
>> }
\new Staff = "down"{ <<
#(set-accidental-style 'piano)
{ ...}
>> }
>> }

This rule reflects 20th century practice for piano notation. Its behavior is very
similar to modern style, but here accidentals also get canceled across the staves in the
same GrandStaff
or PianoStaff.

piano-cautionary

Same as #(set-accidental-style 'piano) but with the extra accidentals typeset
as cautionaries.

'‘piano-cautionary

no-reset

This
is the same as default but with accidentals lasting
‘forever’ and not only until the next measure:

1
no-reset



Chapter 9: Changing defaults 223
o) | | |

#o s
Fr e
I.Q.
: s et
) \ W2 | | | f
! | |
forget This is sort of the opposite of no-reset: Accidentals are not remembered at all

— and hence all accidentals are typeset relative to the key signature, regardless of
what was before in the music

'forget

o
P B = =

See also

Program reference:
engraver, Accidental,
AccidentalSuggestion and AccidentalPla

Bugs

Simultaneous notes are considered to be entered in sequential mode. This means that in a chord
the accidentals are typeset as if the notes in the chord happen one at a time, in the order in
which they appear in the input file. This is a problem when accidentals in a chord depend on
each other, which does not happen for the default accidental style. The problem can be solved
by manually inserting ! and ? for the problematic notes.

9.1.2 Setting automatic beam behavior

In normal time signatures, automatic beams can start on any note but can only end in a
few positions within the measure: beams can end on a beat, or at durations specified by the
properties in autoBeamSettings. The properties in autoBeamSettings consist of a list of rules
for where beams can begin and end. The default autoBeamSettings rules are defined in ‘scm/
auto-beam.scm’.
In order to add a rule to the list, use
#(override-auto-beam-setting '(be p q n m) a b [context])
e be is either "begin" or "end".
e p/q is the duration of the note for which you want to add a rule. A beam is considered to
have the duration of its shortest note. Set p and q to '*' to have this apply to any beam.
e n/m is the time signature to which this rule should apply. Set n and m to '*' to have this
apply in any time signature.
e a/b is the position in the bar at which the beam should begin/end.
e context is optional, and it specifies the context at which the change should be made. The
default is 'Voice. #(score-override-auto-beam-setting '(A B CD) EF) is equivalent
to #(override-auto-beam-setting '(AB CD) EF 'Score).



Chapter 9: Changing defaults 224

For example, if automatic beams should always end on the first quarter note, use
#(override-auto-beam-setting '(end * * * *) 1 4)

You can force the beam settings to only take effect on beams whose shortest note is a certain
duration

\time 2/4

#(override-auto-beam-setting '(end 1 16 * *) 1 16)
al6 aaaaaaal

a32 a aaal6aaaaal
#(override-auto-beam-setting '(end 1 32 * %) 1 16)
a32 a a a al6 aaaaal

eJ

3 f\ —
"4
[Y)

You can force the beam settings to only take effect in certain time signatures

\time 5/8

#(override-auto-beam-setting '(end * * 5 8) 2 8)
c8 cddd

\time 4/4

e8ef feedd

\time 5/8

c8 cddd

You can also remove a previously set beam-ending rule by using
#(revert-auto-beam-setting '(be p q n m) a b [context])
be, p, q, n, m, a, b and context are the same as above. Note that the default rules are specified
in ‘scm/auto-beam.scm’, so you can revert rules that you did not explicitly create.
\time 4/4
al6aaaaaaaaaaaaaaa

#(revert-auto-beam-setting '(end 1 16 4 4) 1 4)
al6 aaaaaaaaaaaaaaa

g

[\]
P>



Chapter 9: Changing defaults 225

The rule in a revert-auto-beam-setting statement must exactly match the original rule. That
is, no wildcard expansion is taken into account.

\time 1/4

#(override-auto-beam-setting '(end 1 16 1 4) 1 8)

al6é a a a

#(revert-auto-beam-setting '(end 1 16 * *) 1 8) % this won't revert it!
aaaa

#(revert-auto-beam-setting '(end 1 16 1 4) 1 8) ¥ this will

aaaa

>

If automatic beams should end on every quarter in 5/4 time, specify all endings

*) 1 4 'Staff)
*) 1 2 'Staff)
*) 3 4 'Staff)
x) 5 4 'Staff)

#(override-auto-beam-setting '(end
#(override-auto-beam-setting ' (end
#(override-auto-beam-setting '(end
#(override-auto-beam-setting '(end

* X X ¥
¥ X X %
* X X ¥

The same syntax can be used to specify beam starting points. In this example, automatic
beams can only end on a dotted quarter note

#(override-auto-beam-setting '(end * * * x) 3 8)
#(override-auto-beam-setting '(end * * * *) 1 2)
#(override-auto-beam-setting '(end * * * *) 7 8)

In 4/4 time signature, this means that automatic beams could end only on 3/8 and on the
fourth beat of the measure (after 3/4, that is 2 times 3/8, has passed within the measure).

If any unexpected beam behaviour occurs, check the default automatic beam settings in ‘scm/
auto-beam.scm’ for possible interference, because the beam endings defined there will still apply
on top of your own overrides. Any unwanted endings in the default vales must be reverted for
your time signature(s).

For example, to typeset (3 4 3 2)-beam endings in 12/8, begin with

%h% revert default values in scm/auto-beam.scm regarding 12/8 time
#(revert-auto-beam-setting '(end * * 12 8) 3 8)
#(revert-auto-beam-setting '(end * * 12 8) 3 4)
#(revert-auto-beam-setting '(end * * 12 8) 9 8)

%%% your new values

#(override-auto-beam-setting '(end 1 8 12 8) 3 8)
#(override-auto-beam-setting '(end 1 8 12 8) 7 8)
#(override-auto-beam-setting '(end 1 8 12 8) 10 8)

If beams are used to indicate melismata in songs, then automatic beaming should be switched
off with \autoBeamOff.

Predefined commands

\autoBeamOff, \autoBeam0On.



Chapter 9: Changing defaults 226

Commonly tweaked properties

Beaming patterns may be altered with the beatGrouping property,

\time 5/16

\set beatGrouping = #'(2 3)
c8[""(2+3)" c16 c8]

\set beatGrouping = #'(3 2)
c8[""(3+2)" c16 c8]

o) (2+3) (3+2)

ANI VA L 0)

Bugs

If a score ends while an automatic beam has not been ended and is still accepting notes, this
last beam will not be typeset at all. The same holds polyphonic voices, entered with << ... \\

. >>. If a polyphonic voice ends while an automatic beam is still accepting notes, it is not
typeset.

9.2 Interpretation contexts

This section describes what contexts are, and how to modify them.

9.2.1 Contexts explained

When music is printed, a lot of notational elements must be added to the output. For example,
compare the input and output of the following example:

cis4 cis2. g4

70

The input is rather sparse, but in the output, bar lines, accidentals, clef, and time signature
are added. LilyPond interprets the input. During this step, the musical information is inspected
in time order, similar to reading a score from left to right. While reading the input, the program
remembers where measure boundaries are, and which pitches require explicit accidentals. This
information can be presented on several levels. For example, the effect of an accidental is limited
to a single staff, while a bar line must be synchronized across the entire score.

Within LilyPond, these rules and bits of information are grouped in Contexts. Some examples

of contexts are Voice,
Staff, and Score. They are
hierarchical, for example: a Staff
can contain many Voices,

and a Score can



Chapter 9: Changing defaults 227

contain many Staff
contexts.

Staves

~IR
|

Fes
T

e3:8

Each context has the responsibility for enforcing some notation rules, creating
some notation objects and maintaining the associated properties. For example,
the Voice context may intro-
duce an accidental and then the
context maintains the rule to show or suppress the accidental for the re-
mainder of the measure. The synchronization of bar lines is handled at
Score context.

However, in some music we may not want the bar lines to be synchronized — consider a
polymetric score in 4/4 and 3/4 time. In such cases, we must modify the default settings of

the Score
and Staff
contexts.

For very simple scores, contexts are created implicitly, and you need not be aware of them.
For larger pieces, such as anything with more than one staff, they must be created explicitly to
make sure that you get as many staves as you need, and that they are in the correct order. For
typesetting pieces with specialized notation, it can be useful to modify existing or to define new
contexts.

A complete description of all available contexts is in the program reference, see Translation
= Context.

9.2.2 Creating contexts

For scores with only one voice and one staff, contexts are created automatically. For more
complex scores, it is necessary to create them by hand. There are three commands that do this.

e The easiest command is \new, and it also the quickest to type. It is prepended to a music
expression, for example

\new type music expression

where type is a context name (like Staff or Voice). This command creates a new context,
and starts interpreting the music expression with that.

A practical application of \new is a score with many staves. Each part that should be on
its own staff, is preceded with \new Staff.

<<
\new Staff { c4 c }
\new Staff { d4 4 }
>>

Staff



Chapter 9: Changing defaults 228

0
U | |
0
o—
[ £a YA W2
ANV I
U 1

The \new command may also give a name to the context,

\new type = id music
However, this user specified name is only used if there is no other context already earlier
with the same name.

e Like \new, the \context command also directs a music expression to a context object, but
gives the context an explicit name. The syntax is

\context type = id music

This form will search for an existing context of type type called id. If that context does not
exist yet, a new context with the specified name is created. This is useful if the context is
referred to later on. For example, when setting lyrics the melody is in a named context

\context Voice = "tenor" music
so the texts can be properly aligned to its notes,
\new Lyrics \lyricsto "tenor" lyrics
Another possible use of named contexts is funneling two different music expressions into
one context. In the following example, articulations and notes are entered separately,
music = { c4 c4 }
arts = { s4-. s4-> }
They are combined by sending both to the same

context,
<<
\new Staff \context Voice = "A" \music
\context Voice = "A" \arts
>>
QEEEE
ryj —

With this mechanism, it is possible to define an Urtext (original edition), with the option
to put several distinct articulations on the same notes.
e The third command for creating contexts is
\context type music
This is similar to \context with = id, but matches any context of type type, regardless of
its given name.

This variant is used with music expressions that can be interpreted at several levels.
For example, the \applyOutput command (see Section 12.5.2 [Running a function on
all layout objects|, page 314). Without an explicit \context, it is usually applied to
Voice

\applyOutput #'context #function 7 apply to Voice
To have it interpreted at the Score
or Staff
level use these forms

\applyOutput #'Score #function

\applyOutput #'Staff #function



Chapter 9: Changing defaults 229

9.2.3 Changing context properties on the fly

Each context can have different properties, variables contained in that context. They can be
changed during the interpretation step. This is achieved by inserting the \set command in the
music,

\set context.prop = #value

For example,

R1x%2
\set Score.skipBars = ##t
R1x%2
0 2
-— |
|
ANV

eJ

This command skips measures that have no notes. The result is that multi-rests are con-
densed. The value assigned is a Scheme object. In this case, it is #t, the boolean True value.

If the context argument is left out, then the current bottom-most context (typically

ChordNames, Voice,
or Lyrics)
is used. In this example,
c8 ccc
\set autoBeaming = ##f
c8 ccc
o)
ANV . | vV J J J
o) 5 r—r—r—

the context argument to \set is left out, so automatic beaming is switched off in the current
Voice. Note that the bottom-most context does not always contain the property that you wish
to change — for example, attempting to set the skipBars property (of the bottom-most context,
in this case Voice) will have no effect.

R1x2
\set skipBars = ##t
R1x2

e
i
i
i
i

P

Contexts are hierarchical, so if a bigger context was specified, for exam-
ple Staff, then the change
would also apply to all Voices
in the current stave. The change is applied
the-fly’, during the music, so that the setting only affects the second group of eighth notes.

There is also an \unset command,
\unset context.prop

which removes the definition of prop. This command removes the definition only if it is set in
context, so

or



Chapter 9: Changing defaults 230

\set Staff.autoBeaming = ##f

introduces a property setting at Staff level. The setting also applies to the current Voice.
However,

\unset Voice.autoBeaming

does not have any effect. To cancel this setting, the \unset must be specified on the same level
as the original \set. In other words, undoing the effect of Staff.autoBeaming = ##f requires

\unset Staff.autoBeaming

Like \set, the context argument does not have to be specified for a bottom context, so the
two statements

\set Voice.autoBeaming = ##t
\set autoBeaming = ##t

are equivalent.
Settings that should only apply to a single time-step can be entered with \once, for example
in
c4
\once \set fontSize = #4.7
cd
cd

the property fontSize is unset automatically after the second note.

A full description of all available context properties is in the program reference, see Transla-
tion = Tunable context properties.

9.2.4 Modifying context plug-ins

Notation contexts (like Score and Staff) not only store properties, they also contain plug-ins
called ‘engravers’
that create notation elements. For example, the Voice context contains a Note_head_engraver
and the Staff context contains a Key_signature_engraver.

For a full a description of each plug-in, see Program reference = Translation = Engravers.
Every context described in Program reference = Translation = Context. lists the engravers
used for that context.

It can be useful to shuffle around these plug-ins. This is done by starting a new context with
\new or \context, and modifying it,

\new context \with {
\consists ...
\consists ...
\remove ...
\remove ...
etc.

..music..
}

where the ... should be the name of an engraver. Here is a simple example which removes
Time_signature_engraver and Clef_engraver from a Staff context,



Chapter 9: Changing defaults 231

<<
\new Staff {
f2 g
3
\new Staff \with {
\remove "Time_signature_engraver"
\remove "Clef_engraver"

A

£2 g2
}
>>

o) .
)" 4 |
/\ r ) |
[ [« YA W ~
\\_\l L= 4
J .
>

In the second staff there are no time signature or clef symbols. This is a rather crude method
of making objects disappear since it will affect the entire staff. This method also influences the
spacing, which may or may not be desirable. A more sophisticated method of blanking objects
is shown in Section 5.3 [Common tweaks]|, page 54.

The next example shows a practical application. Bar lines and time signatures are normally
synchronized across the score. This is done by the Timing_translator and Default_bar_line_
engraver. This plug-in keeps an administration of time signature, location within the measure,
etc. By moving thes engraver from Score to Staff context, we can have a score where each
staff has its own time signature.

\new Score \with {
\remove "Timing_translator"
\remove "Default_bar_line_engraver"
} <<
\new Staff \with {
\consists "Timing_ translator"
\consists "Default_bar_line_engraver"
Ao
\time 3/4
cd ccccc
b
\new Staff \with {
\consists "Timing_translator"
\consists "Default_bar_line_engraver"
Ao
\time 2/4
cd ccccc

>>



Chapter 9: Changing defaults 232

Q

4\

[ FanY

ANV

[Y) 4 o 0 ¢ ¢ ¢
Q )

4\ A~

[ FanY J A

sV X

[Y) 4 o 0 ¢ ¢ ¢

9.2.5 Layout tunings within contexts

Each context is responsible for creating certain types of graphical objects. The settings used for
printing these objects are also stored by context. By changing these settings, the appearance of
objects can be altered.

The syntax for this is
\override context.name #'property = #value

Here name is the mname of a graphical object, like Stem or NoteHead,
and  property is an  internal  variable of = the = formatting  system (
‘grob property’ or ‘layout
property’). The latter is a symbol, so it must be quoted. The subsection Section 9.3.1
[Constructing a tweak|, page 236, explains what to fill in for name, property, and value. Here
we only discuss the functionality of this command.

The command
\override Staff.Stem #'thickness = #4.0

makes stems thicker (the default is 1.3, with staff line thickness as a unit). Since the command
specifies Staff
as context, it only applies to the current staff. Other staves will keep their normal appearance.
Here we see the command in action:

cd
\override Staff.Stem #'thickness = #4.0
c4
c4
c4
)
U | | | | ] | |

The \override command changes the definition of the Stem within the current
Staff. After the command is interpreted all stems are thickened.

Analogous to \set, the context argument may be left out, causing the default context
Voice to be used. Adding \once applies the change during one timestep only.
c4
\once \override Stem #'thickness = #4.0
c4
c4

The \override must be done before the object is started. Therefore, when altering Spanner
objects such as slurs or beams, the \override command must be executed at the moment when
the object is created. In this example,



Chapter 9: Changing defaults 233

\override Slur #'thickness = #3.0
c8[( ¢
\override Beam #'thickness = #0.6
c8 cl)

()

D Z

[Y)

the slur is fatter but the beam is not. This is because the command for Beam comes after the
Beam is started, so it has no effect.

Analogous to \unset, the \revert command for a context undoes an \override command;
like with \unset, it only affects settings that were made in the same context. In other words,
the \revert in the next example does not do anything.

\override Voice.Stem #'thickness = #4.0
\revert Staff.Stem #'thickness

Some tweakable options are called ‘sub-
properties’ and reside inside properties. To tweak those, use commands of the form

\override context.name #'property #'subproperty = #value
such as
\override Stem #'details #'beamed-lengths = #'(4 4 3)

See also

Internals:

RevertProperty, PropertySet,
Backend, and A1l

layout objects.

Bugs

The back-end is not very strict in type-checking object properties. Cyclic references in Scheme
values for properties can cause hangs or crashes, or both.

9.2.6 Changing context default settings

The adjustments of the previous subsections (Section 9.2.3 [Changing context properties on the
fly], page 229, Section 9.2.4 [Modifying context plug-ins|, page 230, and Section 9.2.5 [Layout
tunings within contexts|, page 232) can also be entered separately from the music in the \layout
block,

\layout {
\context {
\Staff
\set fontSize = #-2

\override Stem #'thickness = #4.0
\remove "Time_signature_engraver"

}
}

The \Staff command brings in the existing definition of the staff context so that it can be
modified.

The statements



Chapter 9: Changing defaults 234

\set fontSize = #-2
\override Stem #'thickness = #4.0
\remove "Time_signature_engraver"

affect all staves in the score. Other contexts can be modified analogously.
The \set keyword is optional within the \layout block, so
\context {

fontSize = #-2
}

will also work.

Bugs

It is not possible to collect context changes in a variable and apply them to a \context definition
by referring to that variable.

The \RemoveEmptyStaffContext will overwrite your current \Staff settings. If you wish
to change the defaults for a staff which uses \RemoveEmptyStaffContext, you must do so after
calling \RemoveemptyStaffContext, ie

\layout {
\context {
\RemoveEmptyStaffContext

\override Stem #'thickness = #4.0
}
}

9.2.7 Defining new contexts

Specific contexts, like Staff
and Voice, are made of simple building blocks. It is possible to create new types of contexts
with different combinations of engraver plug-ins.

The next example shows how to build a different type of
context from scratch. It will be similar to Voice, but only prints centered slash noteheads. It
can be used to indicate improvisation in jazz pieces,

o) | ad lib undress
)’ 4 | 1
jﬁj_r_br y i d— —"— (@)
J — while playing :)
These settings are defined within a \context block inside a \layout block,
\layout {
\context {
}
}
In the following discussion, the example input shown should go in place of the ... in the

previous fragment.

First it is necessary to define a name for the new context:



Chapter 9: Changing defaults 235

\name ImproVoice

Since it is similar to the Voice,
we want commands that work on (existing) Ve
to remain working. This is achieved by giving the new context an alias
Voice,

\alias Voice

The context will print notes and instructive texts, so we need to add the engravers which
provide this functionality,

\consists Note_heads_engraver
\consists Text_engraver

but we only need this on the center line,

\consists Pitch_squash_engraver
squashedPosition = #0

The Pitch_squash_
engraver modifies note heads (created by Not
heads_engraver) and sets their vertical position to the value of squashedPosition, in this
case 0, the center line.

The notes look like a slash, and have no stem,

\override NoteHead #'style = #'slash
\override Stem #'transparent = ##t

All these plug-ins have to cooperate, and this is achieved with a special plug-
in, which must be marked with the keyword \type. This should always be
Engraver_group,

\type "Engraver_group"
Put together, we get

\context {
\name ImproVoice
\type "Engraver_group"
\consists "Note_heads_engraver"
\consists "Text_engraver"
\consists Pitch_squash_engraver
squashedPosition = #0
\override NoteHead #'style = #'slash
\override Stem #'transparent = #it
\alias Voice

¥

Contexts form hierarchies. We want to hang the
under Staff,
just like normal Voices. Therefore, we modify the Staff definition with the \accepts
command,

\context {
\Staff
\accepts ImproVoice

}

The opposite of \accepts is \denies, which is sometimes needed when reusing existing
context definitions.

Putting both into a \layout block, like



Chapter 9: Changing defaults 236

\layout {
\context {
\name ImproVoice

}
\context {
\Staff
\accepts "ImproVoice"
}
}
Then the output at the start of this subsection can be entered as
\relative c'' {
a4 d8 bes8
\new ImproVoice {
c4""ad 1lib" c
c4 c”"undress"
c c_"while playing :)"
}
al
+

9.2.8 Aligning contexts

New contexts may be aligned above or below exisiting contexts. This could be useful in setting
up a vocal staff (Section D.4 [Vocal ensembles|, page 374) and in ossia,

r )

C@o

()

)" 4

o €
AN\ _t
[Y) ¢ o o0 ¢

9.2.9 Vertical grouping of grobs

ey

s

The VerticalAlignment and Vertical AxisGroup grobs work together. Vertical AxisGroup groups
together different grobs like Staff, Lyrics, etc. VerticalAlignment then vertically aligns the differ-
ent grobs grouped together by Vertical AxisGroup. There is usually only one VerticalAlignment
per score but every Staff, Lyrics, etc. has its own Vertical AxisGroup.

9.3 The \override command

In the previous section, we have already touched on a command that changes layout details: the
\override command. In this section, we will look in more detail at how to use the command
in practice. The general syntax of this command is:

\override context.layout_object #'layout_property = #value

This will set the layout_property of the specified layout_object, which is a member of the
context, to the value.

9.3.1 Constructing a tweak

Commands which change output generally look like
\override Voice.Stem #'thickness = #3.0

To construct this tweak we must determine these bits of information:



Chapter 9: Changing defaults 237

e the context: here Voice.
e the layout object: here Stem.
e the layout property: here thickness.
e a sensible value: here 3.0.
Some tweakable options are called
properties’ and reside inside properties. To tweak those, use commands in the form
\override Stem #'details #'beamed-lengths = #'(4 4 3)

For many properties, regardless of the data type of the property, setting the property to false
( ##f ) will result in turning it off, causing Lilypond to ignore that property entirely. This is
particularly useful for turning off grob properties which may otherwise be causing problems.

We demonstrate how to glean this information from the notation manual and the program
reference.

9.3.2 Navigating the program reference

Suppose we want to move the fingering indication in the fragment below:
c-2
\stemUp
f

%
yi
AV

o !

If you visit the documentation on fingering instructions (in Section 6.6.2 [Fingering instruc-
tions|, page 99), you will notice:

See also

Program reference:

The programmer’s reference is available as an HTML document. It is highly recommended
that you read it in HTML form, either online or by downloading the HTML documentation.
This section will be much more difficult to understand if you are using the PDF manual.

Follow the link to Fingering.

At the top of the page, you will see

Fingering objects are created by:
engraver and New_
fingering_engraver.

By following related links inside the program reference, we can follow the flow of information
within the program:

° Fingering:
Fingering objects are created by:
engraver

° Fingering_engraver:
Music types accepted:
event

° fingering-
event: Music event type fingering-event 1is in Music expressions named

FingerEvent

‘sub-



Chapter 9: Changing defaults 238

This path goes against the flow of information in the program: it starts from the output,
and ends at the input event. You could also start at an input event, and read with the flow of
information, eventually ending up at the output object(s).

The program reference can also be browsed like a normal document. It contains chapters on

Music definitions on Translation,

and the Backend.
Every chapter lists all the definitions used and all properties that may be tuned.

9.3.3 Layout interfaces

The HTML page that we found in the previous section describes the layout object called
Fingering. Such an object is a symbol within the score. It has properties that store num-
bers (like thicknesses and directions), but also pointers to related objects. A layout object is
also called a Grob, which is short for Graphical Object. For more details about Grobs, see
grob-interface.

The page for Fingering lists the definitions for the Fingering object. For example, the page
says
padding (dimension, in staff space):
0.5
which means that the number will be kept at a distance of at least 0.5 of the note head.

Each layout object may have several functions as a notational or typographical element. For
example, the Fingering object has the following aspects

e Its size is independent of the horizontal spacing, unlike slurs or beams.

e It is a piece of text. Granted, it is usually a very short text.

e That piece of text is typeset with a font, unlike slurs or beams.

e Horizontally, the center of the symbol should be aligned to the center of the notehead.

e Vertically, the symbol is placed next to the note and the staff.

e The vertical position is also coordinated with other superscript and subscript symbols.

Each of these aspects is captured in so-called interfaces, which are listed on the

Fingering page at the bottom

This object supports the following interfaces:

interface, self-
alignment-interface,

position-interface,

interface, text-

script-interface,

interface, finger-
interface, and grob-
interface.

Clicking any of the links will take you to the page of the respective object interface.
Each interface has a number of properties. Some of them are not user-serviceable (
‘Internal properties’), but others can be modified.

We have been talking of the Fingering object, but actually it does not amount to much. The
initialization file (see Section 5.4 [Default files], page 56) ‘scm/define-grobs.scm’ shows the
soul of the ‘object’,

(Fingering
((padding . 0.5)
(avoid-slur . around)
(slur-padding . 0.2)

side-
text-

font-



Chapter 9: Changing defaults 239

(staff-padding . 0.5)

(self-alignment-X . 0)

(self-alignment-Y . 0)

(script-priority . 100)

(stencil . ,ly:text-interface::print)

(direction . ,ly:script-interface::calc-direction)

(font-encoding . fetaNumber)

(font-size . -5) ; don't overlap when next to heads.

(meta . ((class . Item)

(interfaces . (finger-interface
font-interface
text-script-interface
text-interface
side-position-interface
self-alignment-interface
item-interface))))))

As you can see, the Fingering object is nothing more than a bunch of variable settings, and
the webpage in the Program Reference is directly generated from this definition.

9.3.4 Determining the grob property

Recall that we wanted to change the position of the 2 in
c-2
\stemUp
f

%
A
SV

o !

Since the 2 is vertically positioned next to its note, we have to meddle with the interface
associated with this positioning. This is done using side-position-interface. The page for
this interface says

side-position-interface

Position a victim object (this one) next to other objects (the support). The property
direction signifies where to put the victim object relative to the support (left or
right, up or down?)

Below this description, the variable padding is described as
padding  (dimension, in staff space)
Add this much extra space between objects that are next to each other.
By increasing the value of padding, we can move the fingering away from the notehead. The
following command inserts 3 staff spaces of white between the note and the fingering:
\once \override Voice.Fingering #'padding = #3

Inserting this command before the Fingering object is created, i.e., before c2, yields the
following result:

\once \override Voice.Fingering #'padding = #3
c-2

\stemUp

f



Chapter 9: Changing defaults 240

e

o !

In this case, the context for this tweak is Ve
This fact can also be deduced from the program reference, for the page for the
Fingering_engraver plug-in says

Fingering_engraver is part of contexts: . ..

9.3.5 Objects connected to the input
In some cases, it is possible to take a short-cut for tuning graphical objects. For objects that
result directly from a piece of the input, you can use the \tweak function, for example

<

c
\tweak #'color #red d

g
\tweak #'duration-log #1 a

>4-\tweak #'padding #10 -.

As you can see, properties are set in the objects directly, without mentioning the grob name
or context where this should be applied.

This technique only works for objects that are directly connected to an
event from the input, for example

e note heads, caused by chord-pitch (i.e., notes inside a chord)
e articulation signs, caused by articulation instructions
It notably does not work for stems and accidentals (these are caused by note heads, not by

music events) or clefs (these are not caused by music inputs, but rather by the change of a
property value).

There are very few objects which are directly connected to output. A normal note (like c4)
is not directly connected to output, so

\tweak #'color #red c4

does not change color. See Section 12.3.1 [Displaying music expressions|, page 305, for details.

9.3.6 Using Scheme code instead of \tweak

The main disadvantage of \tweak is its syntactical inflexibility. For example, the following
produces a syntax error.

F = \tweak #'font-size #-3 -\flageolet

\relative c'' {
c4~\F c4_\F
}



Chapter 9: Changing defaults 241

With other words, \tweak doesn’t behave like an articulation regarding the syntax; in particular,
it can’t be attached with ‘*” and ‘_’.

Using Scheme, this problem can be circumvented. The route to the result is given in
Section 12.3.4 [Adding articulation to notes (example)], page 308, especially how to use
\displayMusic as a helping guide.

F = #(let ((m (make-music 'ArticulationEvent
'articulation-type "flageolet")))
(set! (ly:music-property m 'tweaks)
(acons 'font-size -3
(ly:music-property m 'tweaks)))
m)

\relative c'' {
c4~\F c4_\F
}

Here, the tweaks properties of the flageolet object ‘m” (created with make-music) are extracted
with ly:music-property, a new key-value pair to change the font size is prepended to the
property list with the acons Scheme function, and the result is finally written back with set!.
The last element of the 1let block is the return value, ‘m’ itself.

9.3.7 \set vs. \override

We have seen two methods of changing properties: \set and \override. There are actually
two different kinds of properties.

Contexts can have properties, which are usually named in studlyCaps. They mostly control
the translation from music to notatino, eg. localKeySignature (for determining whether to
print accidentals), measurePosition (for determining when to print a barline). Context prop-
erties can change value over time while interpreting a piece of music; measurePosition is an
obvious example of this. Context properties are modified with \set.

There is a special type of context property: the element description. These
properties are named in StudlyCaps (starting with capital letters). They contain the
‘default settings’ for said graphical object as an association list. See ‘scm/define-grobs.scm’
to see what kind of settings there are. Element descriptions may be modified with \override.

\override is actually a shorthand;
\override context.name #'property = #value
is more or less equivalent to

\set context.name #'property = #(cons (cons 'property value) <previous value of con-
text)

The value of context (the alist) is used to initalize the properties of individual grobs. Grobs
also have properties, named in Scheme style, with dashed-words. The values of grob properties
change during the formatting process: formatting basically amounts to computing properties
using callback functions.

fontSize is a special property: it is equivalent to entering \override ... #'font-size for
all pertinent objects. Since this is a common change, the special property (modified with \set)
was created.

9.3.8 Difficult tweaks

There are a few classes of difficult adjustments.

e One type of difficult adjustment is the appearance of spanner objects, such as slur and tie.
Initially, only one of these objects is created, and they can be adjusted with the normal



Chapter 9: Changing defaults 242

mechanism. However, in some cases the spanners cross line breaks. If this happens, these
objects are cloned. A separate object is created for every system that it is in. These are
clones of the original object and inherit all properties, including \overrides.

In other words, an \override always affects all pieces of a broken spanner. To change only
one part of a spanner at a line break, it is necessary to hook into the formatting process.
The after-line-breaking callback contains the Scheme procedure that is called after the
line breaks have been determined, and layout objects have been split over different systems.
In the following example, we define a procedure my-callback. This procedure

e determines if we have been split across line breaks

o if yes, retrieves all the split objects

e checks if we are the last of the split objects

o if yes, it sets extra-offset.

This procedure is installed into Tie,
so the last part of the broken tie is translated up.

#(define (my-callback grob)
(let*x (
; have we been split?
(orig (ly:grob-original grob))

; if yes, get the split pieces (our siblings)
(siblings (if (ly:grob? orig)
(ly:spanner-broken-into orig) '() )))

(if (and (>= (length siblings) 2)
(eq? (car (last-pair siblings)) grob))
(ly:grob-set-property! grob 'extra-offset '(-2 . 5)))))

\relative c'' {
\override Tie #'after-line-breaking =
#my-callback
cl ~ \break c2 ~ ¢

}
ng P
[y,

A\ VA —
e 1

When applying this trick, the new after-line-breaking callback should also call the
old one after-line-breaking, if there is one. For example, if using this with Hairpin,
ly:hairpin::after-line-breaking should also be called.

e Some objects cannot be changed with \override for technical reasons. Examples of
those are NonMusicalPaperColumn and PaperColumn. They can be changed with the
\overrideProperty function, which works similar to \once \override, but uses a dif-
ferent syntax.



Chapter 9: Changing defaults 243

\overrideProperty
#"Score.NonMusicalPaperColumn" % Grob name
#'line-break-system—-details % Property name
#' ((next-padding . 20)) % Value

Note, however, that \override, applied to NoteMusicalPaperColumn and PaperColumn,
still works as expected within \context blocks.



Chapter 10: Non-musical notation 244

10 Non-musical notation

This section deals with general lilypond issues, rather than specific notation.

10.1 Input files

The main format of input for LilyPond are text files. By convention, these files end with ‘. 1y’.

10.1.1 File structure (introduction)

A basic example of a lilypond input file is
\version "2.11.15"

\score {
{37 % this is a single music expression;
% all the music goes in here.
\header { }
\layout { }
\midi { }
3

There are many variations of this basic pattern, but this example serves as a useful starting
place.

The major part of this manual is concerned with entering various forms of music in LilyPond.
However, many music expressions are not valid input on their own, for example, a .1y file
containing only a note

c'4
will result in a parsing error. Instead, music should be inside other expressions, which may be
put in a file by themselves. Such expressions are called toplevel expressions; see Section 10.1.2
[File structure|, page 244, for a list of all such expressions.

10.1.2 File structure

A .1y file contains any number of toplevel expressions, where a toplevel expression is one of the
following

e An output definition, such as \paper, \midi, and \layout. Such a definition at the toplevel
changes the default settings for the block entered.

e A direct scheme expression, such as #(set-default-paper-size "a7" 'landscape) or
#(ly:set-option 'point-and-click #f).

e A \header block. This sets the global header block. This is the block containing the
definitions for book-wide settings, like composer, title, etc.

e A \score block. This score will be collected with other toplevel scores, and combined as a
single \book.

This behavior can be changed by setting the variable toplevel-score-handler at toplevel.
The default handler is defined in the init file ‘scm/1ily.scm’.

The \score must begin with a music expression, and may contain only one music expression.

e A \book block logically combines multiple movements (i.e., multiple \score blocks) in one
document. If there are a number of \scores, one output file will be created for each \book
block, in which all corresponding movements are concatenated. The only reason to explicitly
specify \book blocks in a .1y file is if you wish multiple output files from a single input
file. One exception is within lilypond-book documents, where you explicitly have to add a
\book block if you want more than a single \score or \markup in the same example.

This behavior can be changed by setting the variable toplevel-book-handler at toplevel.
The default handler is defined in the init file ‘scm/1ily.scm’.



Chapter 10: Non-musical notation 245

e A compound music expression, such as
{c'44d" e'2}
This will add the piece in a \score and format it in a single book together with all other
toplevel \scores and music expressions. In other words, a file containing only the above
music expression will be translated into
\book {
\score {
\new Staff {
\new Voice {
{c'4dd" e'2 }
}
}
}
\layout { }
\header { }
}
This behavior can be changed by setting the variable toplevel-music-handler at toplevel.
The default handler is defined in the init file ‘scm/1ily.scm’.

e A markup text, a verse for example

\markup {
2. The first line verse two.

¥

Markup texts are rendered above, between or below the scores or music expressions, wher-
ever they appear.

e An identifier, such as
foo={cdded?l
This can be used later on in the file by entering \foo. The name of an identifier should
have alphabetic characters only; no numbers, underscores or dashes.
The following example shows three things that may be entered at toplevel

\layout {
% movements are non-justified by default
ragged-right = ##t

}
\header {

title = "Do-re-mi"
}

{c'44d e2}
At any point in a file, any of the following lexical instructions can be entered:
e \version
e \include
e \sourcefilename

e \sourcefileline

10.1.3 A single music expression

A \score must contain a single music expression. However, this music expression may be of
any size. Recall that music expressions may be included inside other expressions to form larger



Chapter 10: Non-musical notation 246

expressions. All of these examples are single music expressions; note the curly braces { } or
angle brackets << >> at the beginning and ending of the music.

{c'4dc" c'" c'"?}
{

{ |4 Cl CI Cl}
{d'44d" 4" 4a'}

}

N (&

P
an

<<
\new Staff { c'4 ¢' c' c' }
\new Staff { d4'4 4' 4' 4' }

>>
0

7\ r )

[ [ YA W

ANV

[y ¢ o o
Q

4\ r £}

[ (YA W]

.

\new GrandStaff <<
\new StaffGroup <<
\new Staff { \flute }
\new Staff { \oboe }
>>
\new StaffGroup <<
\new Staff { \violinI }
\new Staff { \violinII }
>>
>>

}
10.1.4 Multiple scores in a book

A document may contain multiple pieces of music and texts. Examples of these are an etude
book, or an orchestral part with multiple movements. Each movement is entered with a \score
block,

\score {
..music..

}

and texts are entered with a \markup block,

\markup {
..text..
}
All the movements and texts which appear in the same .1y file will normally be typeset in
the form of a single output file.



Chapter 10: Non-musical notation 247

\score {

}
\markup {

}

\score {

}

However, if you want multiple output files from the same .1y file, then you can add multiple
\book blocks, where each such \book block will result in a separate output. If you do not specify
any \book block in the file, LilyPond will implicitly treat the full file as a single \book block,
see Section 10.1.2 [File structure], page 244. One important exception is within lilypond-book
documents, where you explicitly have to add a \book block, otherwise only the first \score or
\markup will appear in the output.

The header for each piece of music can be put inside the \score block. The piece name
from the header will be printed before each movement. The title for the entire book can be put
inside the \book, but if it is not present, the \header which is at the top of the file is inserted.

\header {
title = "Eight miniatures"
composer = "Igor Stravinsky"
}
\score {
\header { piece = "Romanze" }
}
\markup {
..text of second verse..
}
\markup {
..text of third verse..
}
\score {

\header { piece = "Menuetto" }

¥

10.1.5 Extracting fragments of notation

It is possible to quote small fragments of a large score directly from the output. This can be
compared to clipping a piece of a paper score with scissors.
This is done by definining the measures that need to be cut out separately. For example,
including the following definition
\layout {
clip-regions
= #(list
(cons
(make-rhythmic-location 5 1 2)
(make-rhythmic-location 7 3 4)))
}
will extract a fragment starting halfway the fifth measure, ending in the seventh measure. The
meaning of 5 1 2 is: after a 1/2 note in measure 5, and 7 3 4 after 3 quarter notes in measure 7.



Chapter 10: Non-musical notation 248

More clip regions can be defined by adding more pairs of rhythmic-locations to the list.

In order to use this feature, LilyPond must be invoked with -dclip-systems. The clips are
output as EPS files, and are converted to PDF and PNG if these formats are switched on as
well.

For more information on output formats, see Section 13.1 [Invoking lilypond], page 316.

See also

Examples:

10.1.6 Including LilyPond files
A large project may be split up into separate files. To refer to another file, use
\include "otherfile.ly"

The line \include "file.ly" is equivalent to pasting the contents of file.ly
into the current file at the place where you have the \include. For example, for a
large project you might write separate files for each instrument part and create a
‘full score’ file which brings together the individual instrument files.

The initialization of LilyPond is done in a number of files that are included by default when
you start the program, normally transparent to the user. Run lilypond —verbose to see a list of
paths and files that Lily finds.

Files placed in directory ‘PATH/T0/share/lilypond/VERSION/1ly/’ (where VERSION is in
the form 2.6.1%)
are on the path and available to \include. Files in the current working directory are available
to \include, but a file of the same name in LilyPond’s installation takes precedence. Files are
available to \include from directories in the search path specified as an option when invoking
lilypond --include=DIR which adds DIR to the search path.

The \include statement can use full path information, but with the Unix convention ‘/’
rather than the DOS/Windows ‘\’. For example, if ‘stuff.ly’ is located one directory higher
than the current working directory, use

\include "../stuff.ly"

10.1.7 Text encoding

LilyPond uses the Pango library to format multi-lingual texts, and does not perform any input-
encoding conversions. This means that any text, be it title, lyric text, or musical instruction
containing non-ASCII characters, must be utf-8. The easiest way to enter such text is by using
a Unicode-aware editor and saving the file with utf-8 encoding. Most popular modern editors
have utf-8 support, for example, vim, Emacs, jEdit, and GEdit do.

To use a Unicode escape sequence, use

#(ly:export (ly:wide-char->utf-8 #x2014))

See also
‘text/utf-8.1y’

10.2 Titles and headers

Almost all printed music includes a title and the composer’s name; some pieces include a lot
more information.



Chapter 10: Non-musical notation 249

10.2.1 Creating titles
Titles are created for each \score block, as well as for the full input file (or \book block).

The contents of the titles are taken from the \header blocks. The header block for a book
supports the following

dedication
The dedicatee of the music, centered at the top of the first page.

title The title of the music, centered just below the dedication.
subtitle Subtitle, centered below the title.

subsubtitle
Subsubtitle, centered below the subtitle.

poet Name of the poet, flush-left below the subtitle.
composer Name of the composer, flush-right below the subtitle.
meter Meter string, flush-left below the poet.

opus Name of the opus, flush-right below the composer.
arranger Name of the arranger, flush-right below the opus.

instrument
Name of the instrument, centered below the arranger. Also centered at the top of
pages (other than the first page).

piece Name of the piece, flush-left below the instrument.

breakbefore
This forces the title to start on a new page (set to ##t or ##f).

copyright
Copyright notice, centered at the bottom of the first page. To insert the copyright
symbol, see Section 10.1.7 [Text encoding], page 248.

tagline  Centered at the bottom of the last page.

Here is a demonstration of the fields available. Note that you may use any Section 8.1.5 [Text
markup|, page 175, commands in the header.

\paper {
line-width = 9.0\cm
paper-height = 10.0\cm
}
\book {
\header {
dedication = "dedicated to me"
title = \markup \center-align { "Title first line" "Title second line,
longer" }

subtitle = "the subtitle,"
subsubtitle = #(string-append "subsubtitle LilyPond version "
(1ilypond-version))

poet = "Poet"
composer = \markup \center-align { "composer" \small "(1847-1973)" }
texttranslator = "Text Translator"

meter = \markup { \teeny "m" \tiny "e" \normalsize "t" \large "e" \huge



Chapter 10: Non-musical notation

llr" }
arranger = \markup { \fontsize #8.5 "a" \fontsize #2.5 "r" \fontsize
#-2.5 "r" \fontsize #-5.3 "a" \fontsize #7.5 "nger" }

instrument = \markup \bold \italic "instrument"

piece = "Piece"

}

}

\score {

}

{

c'l1 }

\header {

}

piece = "piecel"
opus = "opusl"

\markup {

}

and now...

\score {

}

{

c'l1 }

\header {

}

piece = "piece2"
opus = "opus2"

dedicated to me

Title first line
Title second line,longer
the subtitle,
subsubtitle LilyPond version 2.11.28
Poet instrument composer
(1847-1973)

mete?l El]?rarlgg‘alf

piecel opusl

P

250



Chapter 10: Non-musical notation 251

2 instrument
and now...

piece2 opus2

N e/

Jz St

Music engraving by LilyPond 2.11.28—www.lilypond.org

As demonstrated before, you can use multiple \header blocks. When same fields appear in
different blocks, the latter is used. Here is a short example.

\header {
composer = "Composer"
3
\header {
piece = "Piece"
}
\score {
\new Staff { c'4 }
\header {
piece = "New piece" J overwrite previous one
}
+

If you define the \header inside the \score block, then normally only the piece and opus
headers will be printed. Note that the music expression must come before the \header.

\score {
{c4}
\header {
title = "title" Y not printed
piece = '"piece"
opus = "opus"

piece opus

You may change this behavior (and print all the headers when defining \header inside \score)
by using



Chapter 10: Non-musical notation 252

\paper{
printallheaders=#i#t
b

The default footer is empty, except for the first page, where the copyright field from \header
is inserted, and the last page, where tagline from \header is added. The default tagline is

“Music engraving by LilyPond (version)”.!

Headers may be completely removed by setting them to false.

\header {
tagline = ##f
composer = ##f

}
10.2.2 Custom titles

A more advanced option is to change the definitions of the following variables in the \paper
block. The init file ‘1y/titling-init.1ly’ lists the default layout

bookTitleMarkup
This is the title added at the top of the entire output document. Typically, it has
the composer and the title of the piece

scoreTitleMarkup
This is the title put over a \score block. Typically, it has the name of the movement
(piece field).

oddHeaderMarkup
This is the page header for odd-numbered pages.

evenHeaderMarkup
This is the page header for even-numbered pages. If unspecified, the odd header is
used instead.

By default, headers are defined such that the page number is on the outside edge,
and the instrument is centered.

oddFooterMarkup
This is the page footer for odd-numbered pages.

evenFooterMarkup
This is the page footer for even-numbered pages. If unspecified, the odd header is
used instead.

By default, the footer has the copyright notice on the first, and the tagline on the
last page.

The following definition will put the title flush left, and the composer flush right on a single
line.

\paper {
bookTitleMarkup = \markup {
\fill-line {
\fromproperty #'header:title
\fromproperty #'header:composer
}
}
}

1 Nicely printed parts are good PR for us, so please leave the tagline if you can.



Chapter 10: Non-musical notation 253

10.2.3 Reference to page numbers

A particular place of a score can be marked using the \label command, either at top-level or
inside music. This label can then be refered to in a markup, to get the number of the page
where the marked point is placed, using the \page-ref markup command.

\header { tagline = ##f }
\book {
\label #'firstScore
\score {
{
c'1
\pageBreak \mark A \label #'markA
Cl
}
}

\markup { The first score begins on page \page-ref #'firstScore "O" "7" }
\markup { Mark A is on page \page-ref #'markA "O" "7" }

N @]

>

©
2
A
2 0
)" 4
(s
SP
J e

The first score begins on page 1

Mark A is on page 2

The \page-ref markup command takes three arguments:
1. the label, a scheme symbol, eg. #'firstScore;
2. a markup that will be used as a gauge to estimate the dimensions of the markup;
3. a markup that will be used in place of the page number if the label is not known;

The reason why a gauge is needed is that, at the time markups are interpreted, the page
breaking has not yet occured, so the page numbers are not yet known. To work around this
issue, the actual markup interpretation is delayed to a later time; however, the dimensions of
the markup have to be known before, so a gauge is used to decide these dimensions. If the book
has between 10 and 99 pages, it may be "00", ie. a two digit number.

Predefined commands
\label \page-ref




Chapter 10: Non-musical notation 254

10.2.4 Table of contents

A table of contents is included using the \markuplines \table-of-contents command. The
elements which should appear in the table of contents are entered with the \tocItem command,
which may be used either at top-level, or inside a music expression.

\markuplines \table-of-contents
\pageBreak

\tocItem \markup "First score"
\score {
{
c' ho...
\tocItem \markup "Some particular point in the first score"
a % ...
b
b

\tocItem \markup "Second score"
\score {
{
e ho...
}
}

The markups which are used to format the table of contents are defined in the \paper block.
The default ones are tocTitleMarkup, for formatting the title of the table, and tocItemMarkup,
for formatting the toc elements, composed of the element title and page number. These variables
may be changed by the user:

\paper {
%% Translate the toc title into French:
tocTitleMarkup = \markup \huge \column {
\fill-line { \null "Table des matires" \null }
\hspace #1
}
%% use larfer font size
tocItemMarkup = \markup \large \fill-line {
\fromproperty #'toc:text \fromproperty #'toc:page
}
}

Note how the toc element text and page number are refered to in the tocItemMarkup defini-
tion.

New commands and markups may also be defined to build more elaborated table of contents:
e first, define a new markup variable in the \paper block
e then, define a music function which aims at adding a toc element using this markup paper
variable.
In the following example, a new style is defined for entering act names in the table of contents

of an opera:

\paper {
tocActMarkup = \markup \large \column {
\hspace #1
\fill-line { \null \italic \fromproperty #'toc:text \null }



Chapter 10: Non-musical notation 255

\hspace #1
}
}

tocAct =
#(define-music-function (parser location text) (markup?)
(add-toc-item! 'tocActMarkup text))

Table of Contents

Atto Primo
Coro. Viva il nostro Alcide 1
Cesare. Presti omai 1'Egizzia terra 1
Atto Secondo
Sinfonia 1
Cleopatra. V'adoro, pupille, saette d'Amore 1
See also
Init files: ‘ly/toc-init.ly’.
Predefined commands
\table-of-contents \tocItem

10.3 MIDI output

MIDI (Musical Instrument Digital Interface) is a standard for connecting and controlling digital
instruments. A MIDI file is a series of notes in a number of tracks. It is not an actual sound
file; you need special software to translate between the series of notes and actual sounds.

Pieces of music can be converted to MIDI files, so you can listen to what was entered. This is
convenient for checking the music; octaves that are off or accidentals that were mistyped stand
out very much when listening to the MIDI output.

Bugs
Many musically interesting effects, such as swing, articulation, slurring, etc., are not translated
to midi.

The midi output allocates a channel for each staff, and one for global settings. Therefore the
midi file should not have more than 15 staves (or 14 if you do not use drums). Other staves will
remain silent.

Not all midi players correctly handle tempo changes in the midi output. Players that are
known to work include timidity.


http://timidity.sourceforge.net/

Chapter 10: Non-musical notation 256

10.3.1 Creating MIDI files

To create a MIDI from a music piece of music, add a \midi block to a score, for example,

\score {
...music...
\midi {
\context {
\Score
tempoWholesPerMinute = #(ly:make-moment 72 4)
}
}
}

The tempo can be specified using the \tempo command within the actual music, see Sec-
tion 8.2.2 [Metronome marks|, page 191. An alternative, which does not result in a metronome
mark in the printed score, is shown in the example above. In this example the tempo of quarter
notes is set to 72 beats per minute. This kind of tempo specification can not take dotted note
lengths as an argument. In this case, break the dotted notes into smaller units. For example, a
tempo of 90 dotted quarter notes per minute can be specified as 270 eighth notes per minute

tempoWholesPerMinute = #(ly:make-moment 270 8)

If there is a \midi command in a \score, only MIDI will be produced. When notation is
needed too, a \layout block must be added

\score {
...music...
\midi { }
\layout { }

}

Ties, dynamics, and tempo changes are interpreted. Dynamic marks, crescendi and de-
crescendi translate into MIDI volume levels. Dynamic marks translate to a fixed fraction of the
available MIDI volume range, crescendi and decrescendi make the volume vary linearly between
their two extremes. The fractions can be adjusted by dynamicAbsoluteVolumeFunction in
Voice context. For each type of MIDI instrument, a volume range can be defined. This gives
a basic equalizer control, which can enhance the quality of the MIDI output remarkably. The
equalizer can be controlled by setting instrumentEqualizer, or by setting

\set Staff.midiMinimumVolume = #0.2
\set Staff.midiMaximumVolume = #0.8

To remove dynamics from the MIDI output, insert the following lines in the \midi{} section.
\midi {
\context {
\Voice
\remove "Dynamic_performer"

}
}

Bugs

Unterminated (de)crescendos will not render properly in the midi file, resulting in silent passages
of music. The workaround is to explicitly terminate the (de)crescendo. For example,

{ a\< b c d\f }
will not work properly but



Chapter 10: Non-musical notation 257

{ a\< b c A\'!\f }
will.
MIDI output is only created when the \midi command is within a \score block. If you put

it within an explicitly instantiated context ( i.e. \new Score ) the file will fail. To solve this,
enclose the \new Score and the \midi in a \score block.

\score {
\new Score { ...notes... }
\midi

}

10.3.2 MIDI block
The MIDI block is analogous to the layout block, but it is somewhat simpler. The \midi block
is similar to \layout. It can contain context definitions.

Context definitions follow precisely the same syntax as within the \layout block. Translation
modules for sound are called performers. The contexts for MIDI output are defined in ‘ly/
performer-init.ly’.

10.3.3 MIDI instrument names
The MIDI instrument name is set by the Staff.midiInstrument property. The instrument
name should be chosen from the list in Section C.2 [MIDI instruments|, page 345.

\set Staff.midiInstrument = "glockenspiel"
...notes. ..

If the selected instrument does not exactly match an instrument from the list of MIDI in-
struments, the Grand Piano ("acoustic grand") instrument is used.

10.4 Displaying LilyPond notation
Displaying a music expression in LilyPond notation can be done using the music function
\displayLilyMusic. For example,

{
\displayLilyMusic \transpose c a, { c e g a bes }
}
will display
{ a, cis e fis g }
By default, LilyPond will print these messages to the console along with all the other mes-

sages. To split up these messages and save the results of \display{STUFF}, redirect the output
to a file.

lilypond file.ly >display.txt

10.5 Skipping corrected music

When entering or copying music, usually only the music near the end (where you are adding
notes) is interesting to view and correct. To speed up this correction process, it is possible to
skip typesetting of all but the last few measures. This is achieved by putting

showLastLength = R1%b5
\score { ... %}
in your source file. This will render only the last 5 measures (assuming 4/4 time signature) of

every \score in the input file. For longer pieces, rendering only a small part is often an order
of magnitude quicker than rendering it completely



Chapter 10: Non-musical notation 258

Skipping parts of a score can be controlled in a more fine-grained fashion with the property
Score.skipTypesetting. When it is set, no typesetting is performed at all.

This property is also used to control output to the MIDI file. Note that it skips all events,
including tempo and instrument changes. You have been warned.

\relative c'' {
c8 d

\set Score.skipTypesetting = ##t
eeeeeecee
\set Score.skipTypesetting = ##f

cdbbesagc2}

d-w—,_;‘;—ljt

@%o

|
[

0,

In polyphonic music, Score.skipTypesetting will affect all voices and staves, saving even
more time.



Chapter 11: Spacing issues 259

11 Spacing issues

The global paper layout is determined by three factors: the page layout, the line breaks, and
the spacing. These all influence each other. The choice of spacing determines how densely each
system of music is set. This influences where line breaks are chosen, and thus ultimately, how
many pages a piece of music takes.

Globally speaking, this procedure happens in four steps: first, flexible distances (
‘springs’) are chosen, based on durations. All possible line breaking combinations are tried, and
a ‘badness’
score is calculated for each. Then the height of each possible system is estimated. Finally, a
page breaking and line breaking combination is chosen so that neither the horizontal nor the
vertical spacing is too cramped or stretched.

11.1 Paper and pages

This section deals with the boundaries that define the area that music can be printed inside.

11.1.1 Paper size
To change the paper size, there are two commands,
#(set-default-paper-size "a4")
\paper {
#(set-paper-size "a4")
}

The first command sets the size of all pages. The second command sets the size of the pages
that the \paper block applies to — if the \paper block is at the top of the file, then it will apply
to all pages. If the \paper block is inside a \book, then the paper size will only apply to that
book.

Support for the following paper sizes are included by default, a6, a5, a4, a3, legal, letter,
11x17 (also known as tabloid).

Extra sizes may be added by editing the definition for paper-alist in the initialization file
‘scm/paper.scm’.

If the symbol landscape is supplied as an argument to set-default-paper-size, the pages
will be rotated by 90 degrees, and wider line widths will be set correspondingly.

#(set-default-paper-size "a6" 'landscape)

Setting the paper size will adjust a number of \paper variables (such as margins). To use a
particular paper size with altered \paper variables, set the paper size before setting the variables.

11.1.2 Page formatting
LilyPond will do page layout, set margins, and add headers and footers to each page.
The default layout responds to the following settings in the \paper block.

first-page-number
The value of the page number of the first page. Default is 1.

print-first-page—-number
If set to true, will print the page number in the first page. Default is
false.

print-page-number
If set to false, page numbers will not be printed. Default is true.



Chapter 11: Spacing issues 260

paper-width
The width of the page. The default is taken from the current paper
size, see Section 11.1.1 [Paper size], page 259.

paper-height
The height of the page. The default is taken from the current paper
size, see Section 11.1.1 [Paper size], page 2509.

top-margin
Margin between header and top of the page. Default is bmm.

bottom-margin
Margin between footer and bottom of the page. Default is 6mm.

left-margin
Margin between the left side of the page and the beginning of the music.
Unset by default, which means that the margins is determined based on
the paper-width and line-width to center the score on the paper.

line-width
The length of the systems. Default is paper-width minus 20mm.

head-separation
Distance between the top-most music system and the page header. De-
fault is 4mm.

foot-separation
Distance between the bottom-most music system and the page footer.
Default is 4mm.

page-top-space
Distance from the top of the printable area to the center of the first
staff. This only works for staves which are vertically small. Big staves
are set with the top of their bounding box aligned to the top of the
printable area. Default is 12mm.

ragged-bottom
If set to true, systems will not be spread vertically across the page. This
does not affect the last page. Default is false.

This should be set to true for pieces that have only two or three systems
per page, for example orchestral scores.

ragged-last-bottom
If set to false, systems will be spread vertically to fill the last page.
Default is true.

Pieces that amply fill two pages or more should have this set to true.

system-count
This variable, if set, specifies into how many lines a score should be
broken. Unset by default.

between-system-space
This dimensions determines the distance between systems. It is the
ideal distance between the center of the bottom staff of one system and
the center of the top staff of the next system. Default is 20mm.

Increasing this will provide a more even appearance of the page at the
cost of using more vertical space.



Chapter 11: Spacing issues 261

between-system-padding
This dimension is the minimum amount of white space that will always
be present between the bottom-most symbol of one system, and the
top-most of the next system. Default is 4mm.

Increasing this will put systems whose bounding boxes almost touch
farther apart.

page-breaking-between-system-padding
This variable tricks the page breaker into thinking that between-
system-padding is set to something different than it really is. For
example, if this variable is set to something substantially larger than
between-system-padding, then the page-breaker will put fewer sys-
tems on each page.

horizontal-shift
All systems (including titles and system separators) are shifted by this
amount to the right. Page markup, such as headers and footers are
not affected by this. The purpose of this variable is to make space for
instrument names at the left. Default is 0.

after-title-space
Amount of space between the title and the first system. Default is bmm.

before-title-space
Amount of space between the last system of the previous piece and the
title of the next. Default is 10mm.

between-title-space
Amount of space between consecutive titles (e.g., the title of the book
and the title of a piece). Default is 2mm.

printallheaders
Setting this to #t will print all headers for each \score in the output.
Normally only the piece and opus \headers are printed.

systemSeparatorMarkup
This contains a markup object, which will be inserted between systems.
This is often used for orchestral scores. Unset by default.

The markup command \slashSeparator is provided as a sensible de-
fault, for example



Chapter 11: Spacing issues 262

N\

310 puodA[I MMM—EZ 1T g PUOJATIT Aq SutaeI3uUa JISNN

blank-page-force
The penalty for having a blank page in the middle of a score. This is
not used by ly:optimal-breaking since it will never consider blank
pages in the middle of a score. Default value is 10.

blank-last-page-force
The penalty for ending the score on an odd-numbered page. Default
value is 0.

page-spacing-weight
The relative importance of page (vertical) spacing and line (horizontal)
spacing. High values will make page spacing more important. Default
value is 10.

auto-first-page—number
The page breaking algorithm is affected by the first page number being
odd or even. If this variable is set to #t, the page breaking algorithm
will decide whether to start with an odd or even number. This will
result in the first page number remaining as is or being increased by
one.

Commonly tweaked properties

The header and footer are created by the functions make-footer and make-header, defined in
\paper. The default implementations are in ly /paper-defaults.ly and ly/titling-init.ly.



Chapter 11: Spacing issues 263

The page layout itself is done by two functions in the \paper block, page-music-height and
page-make-stencil. The former tells the line-breaking algorithm how much space can be spent
on a page, the latter creates the actual page given the system to put on it.

You can define paper block values in Scheme. In that case mm, in, pt, and cm are variables
defined in paper-defaults.ly with values in millimeters. That is why the value 2 ¢cm must be
multiplied in the example

\paper {
#(define bottom-margin (* 2 cm))
}

Example:
\paper{
paper-width = 2\cm
top-margin = 3\cm
bottom-margin = 3\cm
ragged-last-bottom = ##t
}

This second example centers page numbers at the bottom of every page.
\paper {
print-page-number = ##t
print-first-page-number = ##t
oddHeaderMarkup = \markup \fill-line { " " }
evenHeaderMarkup = \markup \fill-line { " " }
oddFooterMarkup = \markup { \fill-line {
\bold \fontsize #3 \on-the-fly #print-page-number-check-first
\fromproperty #'page:page-number-string } }
evenFooterMarkup = \markup { \fill-line {
\bold \fontsize #3 \on-the-fly #print-page-number-check-first
\fromproperty #'page:page-number-string } }
}

You can also define these values in Scheme. In that case mm, in, pt, and cm are variables
defined in ‘paper-defaults.ly’ with values in millimeters. That is why the value must be
multiplied in the example

\paper {
#(define bottom-margin (* 2 cm))
}

The header and footer are created by the functions make-footer and make-header, defined
in \paper. The default implementations are in ‘1y/paper-defaults.ly’ and ‘ly/titling-init
Ly’

The page layout itself is done by two functions in the \paper block, page-music-height
and page-make-stencil. The former tells the line-breaking algorithm how much space can be

spent on a page, the latter creates the actual page given the system to put on it.

Bugs
The option right-margin is defined but doesn’t set the right margin yet. The value for the right
margin has to be defined adjusting the values of left-margin and line-width.

The default page header puts the page number and the instrument field from the \header
block on a line.

The titles (from the \header{} section) are treated as a system, so ragged-bottom and
ragged-last-bottom will add space between the titles and the first system of the score.



Chapter 11: Spacing issues 264

11.2 Music layout

11.2.1 Setting the staff size

To set the staff size globally for all scores in a file (or in a book block, to be precise), use
set-global-staff-size.
#(set-global-staff-size 14)
This sets the global default size to 14pt staff height and scales all fonts accordingly.
To set the staff size individually for each score, use
\score{
\layout{
#(layout-set-staff-size 15)

}
}

The Feta font provides musical symbols at eight different sizes. Each font is tuned for a
different staff size: at a smaller size the font becomes heavier, to match the relatively heavier
staff lines. The recommended font sizes are listed in the following table:

font name staff height (pt) staff height (mm) use

fetall 11.22 3.9 pocket scores

fetal3 12.60 4.4

fetald 14.14 5.0

fetal6 15.87 5.6

fetal8 17.82 6.3 song books

feta20 20 7.0 standard parts

feta23 22.45 7.9

feta26 25.2 8.9

These fonts are available in any sizes. The context property fontSize and the layout property

staff-space (in StaffSymbol)

can be used to tune the size for individual staves. The sizes of individual staves are relative to
the global size.

See also

This manual: Section 8.4.8 [Selecting notation font size], page 212.

11.2.2 Score layout

While \paper contains settings that relate to the page formatting of the whole document,
\layout contains settings for score-specific layout.

\layout {
indent = 2.0\cm
\context { \Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-6 . 6)
}
\context { \Voice



Chapter 11: Spacing issues 265

\override TextScript #'padding = #1.0
\override Glissando #'thickness = #3
+
}

See also
This manual: Section 9.2.6 [Changing context default settings|, page 233.

11.3 Displaying spacing
To graphically display the dimensions of vertical properties that may be altered for page for-

matting, set annotate-spacing in the \paper block, like this

#(set-default-paper-size "a6" 'landscape)

\book {

\score { { c4 } }

\paper { annotate-spacing = ##t }
}

w

©

~

wv

© —
N % !
i -
- o) =
~ =S .
O ! Ul
S oY
k=] & '
a = O
o)) —~+ U~ ¢

(<]

ey L=
] =
—~+

91LWT1S- JUDIXEIUDIXD- A

uo;leJedas-1004IGG'V
uotleJedas-peauIOG'V

9oeds-dol-abed | €879

310 puod A MMM—EZ TT'Z PUOJAIIT Aq SuraeiSue OISN\




Chapter 11: Spacing issues 266

Some unit dimensions are measured in staff spaces, while others are measured in millimeters.
The pairs (a,b) are intervals, where a is the lower edge and b the upper edge of the interval.

11.4 Breaks

11.4.1 Line breaking

Line breaks are normally computed automatically. They are chosen so that lines look neither
cramped nor loose, and that consecutive lines have similar density.

Occasionally you might want to override the automatic breaks; you can do this by specifying
\break. This will force a line break at this point. Line breaks can only occur at places where
there are bar lines. If you want to have a line break where there is no bar line, you can force an
invisible bar line by entering \bar "". Similarly, \noBreak forbids a line break at a point.

For line breaks at regular intervals use \break separated by skips and repeated with \repeat:

<< \repeat unfold 7 {
s1 \noBreak s1 \noBreak
s1 \noBreak s1 \break }
the real music
>>

This makes the following 28 measures (assuming 4/4 time) be broken every 4 measures, and
only there.

Predefined commands
\break, and \noBreak.

See also
Internals:

A linebreaking configuration can be saved as a .ly file automatically. This
allows vertical alignments to be stretched to fit pages in a second format-
ting run. This is fairly new and complicated. More details are available in
‘spacing’

Bugs

Line breaks can only occur if there is a
bar line. A note which is hanging over a bar line is not proper, such as

c4 c2 c2 \break % this does nothing

c2 c4 | % a break here would work
cd c2 c4 ~ \break % as does this break
c4d c2 c4

n N

, ol o elep &
ANV | | |
o) | | |
40

‘proper



Chapter 11: Spacing issues 267

This can be avoided by removing the Forbid_line_break_engraver and adding the line
breaks in another voice:

\new Staff <<
\new Voice \with {
\remove Forbid_line_break_engraver
A
c'd c'2c'2c'2c'4
}
\new Voice {
s1 \break si

}
>>

N @]

P

2:££::::::::

< @

5

11.4.2 Page breaking

The default page breaking may be overriden by inserting \pageBreak or \noPageBreak com-
mands. These commands are analogous to \break and \noBreak. They should be inserted at
a bar line. These commands force and forbid a page-break from happening. Of course, the
\pageBreak command also forces a line break.

The \pageBreak and \noPageBreak commands may also be inserted at top-level, between
scores and top-level markups.

Page breaks are computed by the page-breaking function. LilyPond provides three al-
gorithms for computing page breaks, ly:optimal-breaking, ly:page-turn-breaking and
ly:minimal-breaking. The default is 1y:optimal-breaking, but the value can be changed in
the \paper block:

\paper{
#(define page-breaking ly:page-turn-breaking)
}

The old page breaking algorithm is called optimal-page-breaks. If you are having trouble
with the new page breakers, you can enable the old one as a workaround.

Predefined commands

\pageBreak \noPageBreak

11.4.3 Optimal page breaking

The 1y:optimal-breaking function is LilyPond’s default method of determining page breaks.
It attempts to find a page breaking that minimizes cramping and stretching, both horizontally
and vertically. Unlike 1y:page-turn-breaking, it has no concept of page turns.



Chapter 11: Spacing issues 268

11.4.4 Optimal page turning

Often it is necessary to find a page breaking configuration so that there is a rest at the end of
every second page. This way, the musician can turn the page without having to miss notes. The
ly:page-turn-breaking function attempts to find a page breaking minimizing cramping and
stretching, but with the additional restriction that it is only allowed to introduce page turns in
specified places.

There are two steps to using this page breaking function. First, you must enable it in the
\paper block, as explained in Section 11.4.2 [Page breaking|, page 267. Then you must tell the
function where you would like to allow page breaks.

There are two ways to achieve the second step. First, you can specify each potential page
turn manually, by inserting \allowPageTurn into your input file at the appropriate places.

If this is too tedious, you can add a Page_turn_engraver to a Staff or Voice context.
The Page_turn_engraver will scan the context for sections without notes (note that
it does not scan for rests; it scans for the absence of notes. This is so that single-staff
polyphony with rests in one of the parts does not throw off the Page_turn_engraver).
When it finds a sufficiently long section without notes, the Page_turn_engraver
will insert an \allowPageTurn at the final barline in that section, unless there is a
‘special’ barline (such as a double bar), in which case the \allowPageTurn will be inserted at
the final ‘special’
barline in the section.

The Page_turn_engraver reads the context property minimumPageTurnLength to determine
how long a note-free section must be before a page turn is considered. The default value for
minimumPageTurnLength is #(ly:make-moment 1 1). If you want to disable page turns, you
can set it to something very large.

\new Staff \with { \consists "Page_turn_engraver" 7

{
ad b cd |
R1 | % a page turn will be allowed here
ad b cd |
\set Staff.minimumPageTurnLength = #(ly:make-moment 5 2)
R1 | % a page turn will not be allowed here
a4 b r2 |
R1*2 | % a page turn will be allowed here
al
}

The Page_turn_engraver detects volta repeats. It will only allow a page turn during the
repeat if there is enough time at the beginning and end of the repeat to turn the page back.
The Page_turn_engraver can also disable page turns if the repeat is very short. If you set the
context property minimumRepeatLengthForPageTurn then the Page_turn_engraver will only
allow turns in repeats whose duration is longer than this value.

The page turning commands, \pageTurn, \noPageTurn and \allowPageTurn, may also be
used at top-level, between scores and top-level markups.
Predefined commands
\pageTurn \noPageTurn
\allowPageTurn
Bugs

There should only be one Page_turn_engraver in a score. If there is more than one, they will
interfere with each other.



Chapter 11: Spacing issues 269

11.4.5 Minimal page breaking

The ly:minimal-breaking function performs minimal computations to calculate the page
breaking: it fills a page with as many systems as possible before moving to the next one.
Thus, it may be prefered for scores with many pages, where the other page breaking functions
could be too slow or memory demanding, or a lot of texts. It is enabled using:

\paper {
#(define page-breaking ly:minimal-breaking)
}

11.4.6 Explicit breaks

Lily sometimes rejects explicit \break and \pageBreak commands. There are two commands
to override this behavior:

\override NonMusicalPaperColumn #'line-break-permission = ##f
\override NonMusicalPaperColumn #'page-break-permission = ##f

When line-break-permission is overriden to false, Lily will insert line breaks at explicit
\break commands and nowhere else. When page-break-permission is overriden to false, Lily
will insert page breaks at explicit \pageBreak commands and nowhere else.

\paper {
indent = #0
ragged-right = ##t
ragged-bottom = ##t

}
\score {
\new Score \with {
\override NonMusicalPaperColumn #'line-break-permission = ##f
\override NonMusicalPaperColumn #'page-break-permission = ##f
A
\new Staff {
\repeat unfold 2 { ¢'8 ¢'8 ¢'8 ¢'8 } \break
\repeat unfold 4 { c'8 ¢'8 c'8 ¢'8 } \break
\repeat unfold 6 { c¢'8 ¢c'8 c¢'8 c'8 } \break
\repeat unfold 8 { c'8 c'8 c'8 c'8 } \pageBreak
\repeat unfold 8 { ¢'8 ¢'8 ¢'8 c¢'8 } \break
\repeat unfold 6 { ¢'8 ¢c'8 ¢'8 c'8 } \break
\repeat unfold 4 { c'8 ¢'8 c'8 ¢'8 } \break
\repeat unfold 2 { ¢'8 ¢'8 ¢'8 ¢c'8 }
}
}
}
0
€
ANV

¢

o
Vil
{1l
Al
o
1l
1l
Al
o
Vil
1l
Al
o
Yl
o
Al



Chapter 11: Spacing issues 270

=
Iz St

deddsded sadsdess seddsdss

Iz St

AP

Iz St

Iz St

| | | |
| | | |

[ 1 1 1
P - -

P>

11.4.7 Using an extra voice for breaks

Line- and page-breaking information usually appears within note entry directly.

\new Score {
\new Staff {
\repeat unfold 2 { c'4 c'4 c'4 c'4 }
\break
\repeat unfold 3 { c¢'4 c'4 c'4 c'4 }
}
}

This makes \break and \pageBreak commands easy to enter but mixes music entry with
information that specifies how music should lay out on the page. You can keep music entry
and line- and page-breaking information in two separate places by introducing an extra voice to
contain the breaks. This extra voice contains only skips together with \break, pageBreak and
other breaking layout information.

\new Score {
\new Staff <<
\new Voice {
sl * 2 \break

sl * 3 \break
sl * 6 \break
sl * 5 \break

}

\new Voice {
\repeat unfold 2 { c'4 c'4 c'4 c'4 }



Chapter 11: Spacing issues

\repeat unfold 3 { c'4 c'4 c'4 c'4 }
\repeat unfold 6 { c'4 c'4 c'4 c'4 }
\repeat unfold 5 { c'4 c'4 c'4 c'4 }

}
>>
}

0

4\ r £}

[ [« YA O

ANV

[Y) o - ™ o - ™ o o
3

0

/\

[ [an

ANV

g 4 ™ ™ ™ ™ 4 @ ™ ™ ™ &
60

)4

/\

[ [an)

ANV

) 446 0000 00 0o d o9de oed
12 o

)" 4

7\

[ [an)

ANV

e/ o 6 6 6 ¢ 6 06 6 ¢ o o 4 o 4 4 o 4 4

271

This pattern becomes especially helpful when overriding line-break-system-details and
the other useful but long properties of NonMusicalPaperColumnGrob, as explained in Sec-
tion 11.5 [Vertical spacing], page 272.

\new Score {
\new Staff <<
\new Voice {

}

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 0))
sl * 2 \break

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 35))
sl * 3 \break

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 70))
sl * 6 \break

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 105))
sl * 5 \break

\new Voice {

\repeat unfold 2 { c'4 c'4 c'4 c'4 }



Chapter 11: Spacing issues 272

\repeat unfold 3 { c'4 c'4 c'4 c'4 }
\repeat unfold 6 { c'4 c'4 c'4 c'4 }
\repeat unfold 5 { c'4 c'4 c'4 c'4 }

}
>>
}

0

7\ r £)

[ [an YA O]

ANV

[Y) & & & & & & & &

P>

P>

P>

4 o o o O O O O O O 0 o o e o o e

11.5 Vertical spacing

Vertical spacing is controlled by three things: the amount of space available (i.e., paper size and
margins), the amount of space between systems, and the amount of space between staves inside
a system.

11.5.1 Vertical spacing inside a system

The height of each system is determined automatically. To prevent staves from bumping into
each other, some minimum distances are set. By changing these, you can put staves closer
together. This reduces the amount of space each system requires, and may result in having
more systems per page.

Normally staves are stacked vertically. To make staves maintain a distance, their verti-
cal size is padded. This is done with the property minimum-Y-extent. When applied to a
VerticalAxisGroup, it controls the size of a horizontal line, such as a staff or a line of lyrics.
minimum-Y-extent takes a pair of numbers, so if you want to make it smaller than its default
#'(-4 . 4) then you could set

\override Staff.VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)

This sets the vertical size of the current staff to 3 staff spaces on either side of the center staff
line. The value (-3 . 3) is interpreted as an interval, where the center line is the 0, so the first
number is generally negative. The numbers need not match; for example, the staff can be made
larger at the bottom by setting it to (-6 . 4).

After page breaks are determined, the vertical spacing within each system is reevaluated in
order to fill the page more evenly; if a page has space left over, systems are stretched in order to
fill that space. The amount of stretching can be configured though the max-stretch property of



Chapter 11: Spacing issues 273

the VerticalAlignment
grob. To disable this stretching entirely, set max-stretch to zero.

In some situations, you may want to stretch most of a system while leaving
some parts fixed. For example, if a piano part occurs in the middle of an or-
chestral score, you may want to leave the piano staves close to each other while
stretching the rest of the score. The keep-fixed-while-stretching property of
VerticalAxisGroup can be used to achieve this. When set to ##t, this property keeps its staff
(or line of lyrics) from moving relative to the one directly above it. In the example above, you
would override keep-fixed-while-stretching to ##t in the second piano staft:

#(set-default-paper-size "a6")
#(set-global-staff-size 14.0)

\book {

\paper {
ragged-last-bottom = ##f

X

\score {
\new GrandStaff
<<
\new StaffGroup
<<
\new Staff {c' 4' e'
\new Staff {c' d' e'
\new Staff {c' d' e'
>>

H Hh Hh
O

\new PianoStaff
<<
\new Staff {c' d' e' f'}
\new Staff \with {
\override VerticalAxisGroup #'keep-fixed-while-stretching = ##t
+
{c' d' e' £'}
>>

\new StaffGroup
<<
\new Staff {c' d' e'
\new Staff {c' d' e'
>>
>>
}
+



Chapter 11: Spacing issues 274

P

P>

Gy o d

P>

P

P>
qn

P>
@

Music engraving by LilyPond 2.11.28—www.lilypond.org

See also

Internals: Vertical alignment of staves is handled by the
object. The context parameters specifying the vertical extent are described in connection with
the Axis_group_engraver.

Example files:
‘spacing/alignment-vertical-spa

11.5.2 Vertical spacing between systems
Space between systems are controlled by four \paper variables,
\paper {
between-system-space = 1.5\cm
between-system-padding = #1
ragged-bottom=##f
ragged-last-bottom=##f
}

When only a couple of flat systems are placed on a page, the resulting vertical spacing may
be non-eleguant: one system at the top of the page, and the other at the bottom, with a huge
gap between them. To avoid this situation, the space added between the systems can be limited.
This feature is activated by setting to #t the page-limit-inter-system-space variable in the
\paper block. The paper variable page-limit-inter-system-space-factor determines how
much the space can be increased: for instance, the value 1.3 means that the space can be 30%
larger than what it would be on a ragged-bottom page.



Chapter 11: Spacing issues 275

In the following example, if the inter system space were not limited, the second system of
page 1 would be placed at the page bottom. By activating the space limitation, the second
system is placed closer to the first one. By setting page-limit-inter-system-space-factor
to 1, the spacing would the same as on a ragged-bottom page, like the last one.

#(set-default-paper-size "a6")
\book {
\paper {
page-limit-inter-system-space = ##t
page-limit-inter-system-space-factor = 1.3

oddFooterMarkup = \markup "page bottom"
evenFooterMarkup = \markup "page bottom"
oddHeaderMarkup = \markup \fill-line {
"page top" \fromproperty #'page:page-number-string }
evenHeaderMarkup = \markup \fill-line {
"page top" \fromproperty #'page:page-number-string }
b
\new Staff << \repeat unfold 4 { g'4 g' g' g' \break }
{ s1*2 \pageBreak } >>

page top 1
0 . .
A —— !
O e o
oJ
2 .
)’ 4 |
/\ |
L
oJ

page bottom



Chapter 11: Spacing issues 276

page top 2

3_()
4
y

| 1HEE
| 1HEN
| 1HEE

s cf
Q)
Q)
Q)

page bottom

11.5.3 Explicit staff and system positioning

One way to understand the VerticalAxisGroup and \paper settings explained in the previous
two sections is as a collection of different settings that primarily concern the amount of vertical
padding different staves and systems running down the page.

It is possible to approach vertical spacing in a different way using NonMusicalPaperColumn
#'line-break-system-details. Where VerticalAxisGroup and \paper settings specify ver-
tical padding, NonMusicalPaperColumn #'line-break-system-details specifies exact vertical
positions on the page.

NonMusicalPaperColumn #'line-break-system-details accepts an associative list of five
different settings:

e X-offset

e Y-offset

e alignment-offsets

e alignment-extra-space

e fixed-alignment-extra-space

Grob overrides, including the overrides for NonMusicalPaperColumn below, can occur in any

of three different places in an input file:

e in the middle of note entry directly

e in a \context block

e in the \with block

When we override NonMusicalPaperColumn, we use the usual \override command
in \context blocks and in the \with block. On the other hand, when we override



Chapter 11: Spacing issues 277

NonMusicalPaperColumn in the middle of note entry, use the special \overrideProperty
command. Here are some example NonMusicalPaperColumn overrides with the special
\overrideProperty command:

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((X-offset . 20))

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((Y-offset . 40))

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((X-offset . 20) (Y-offset . 40))

\override NonMusicalPaperColumn
#'line-break-system-details #'((alignment-offsets . (0 -15)))

\override NonMusicalPaperColumn
#'line-break-system-details #'((X-offset . 20) (Y-offset . 40)
(alignment-offsets . (0 -15)))

To understand how each of these different settings work, we begin by looking at an example
that includes no overrides at all.

o
N|ef

DO P

’-
D
»
N

N

DO P

¢
¢
)
¢
)
)
¢
¢
)
¢
¢
)

3

4
4'
.
J

|
.
4
4

|

3

PO (7
[}
L}
.
)
)
[}
L
L}
.
L}
L}
.

>

—
S

1
J
:
:
|

)

P Q7
L
L}
)
)
)
L}
L
L
.
L
L}
)

)

)
.
.
|
.
.
|



Chapter 11: Spacing issues 278

13()
)" 4

o

N3V,

0 o o o 06099 o6 09099 o999

Q

7\

'c“

o ¥ o o o o — o o o o @ o —o
18()

)" 4

7\

[ Fan)

PO Q7
L
L
)
L

3

]

@ @ @

This score isolates line- and page-breaking information in a dedicated voice. This technique of
creating a breaks voice will help keep layout separate from music entry as our example becomes
more complicated. See Section 11.4.7 [Using an extra voice for breaks|, page 270.

Explicit \breaks evenly divide the music into six measures per line. Vertical spacing results
from LilyPond’s defaults. To set the vertical startpoint of each system explicitly, we can set the
Y-offset pair in the line-break-system-details attribute of the NonMusicalPaperColumn
grob:

o
N (@4

DO P

ey
D

—
N (@4

'S

.
|
.
|
.
.

5

P Q7
L
L}
)
)
)
L}
L
L
.
L
L}
)

)

T 1
4
4
|
J
|

7

[ FanY

ANV,

¢ 6 6 06 6 ¢ 0 ¢ o ¢4
0

/\

'(\\

< @ o o @ — oo o o
10n

)" 4

7\

[ FanY

ANV

¢ 6 ¢ 066 ¢ 0 ¢ o0 ¢4
0

7\

'(\\

—3;0 — @ — @ — @& ® @ @



Chapter 11: Spacing issues 279

13()
)" 4

N el
L
.
]
¢
]
L
L}
]
L}
¢
.
]
.
]
¢
.
)
[
L

3

.
.
.
|
.
|
.
.
.
.

H
o'}
DO

3

P ¢/
L
L
)
L

3

]
.
.

Note that 1ine-break-system-details takes an associative list of potentially many values,
but that we set only one value here. Note, too, that the Y-offset property here determines the
exact vertical position on the page at which each new system will render.

Now that we have set the vertical startpoint of each system explicitly, we can also set the
vertical startpoint of each staff within each system manually. We do this using the alignment-
offsets subproperty of line-break-system-details.

()

)" 4

/\ y £) )

[ fan Y W] | | | | | | |
SV | | | | | | |
() o 0 0 ¢ 0 0 ¢ o ¢
()

)" 4

7\ y £)

[ v Y W]

N

.
|
.
|
.
.

)

P Q7
L
L}
)
)
)
L}
LY
)
)
L
L
)

3

]
.
.
.
|
.
.
|

3

e

il
4
i
|
J
|



Chapter 11: Spacing issues 280

10()
)" 4

N el
¢
.
]
¢
]
)
[
]
L}
.
]

3

]
.
.
.
|
.
|

—_
w

G

¢
¢
)
¢
)
¢
)
)
)
)
¢
)
¢
)
¢
¢
¢
¢
¢
¢

'\‘165-:3
.
4
.
.
|
.
.
.
|
.
.
.
.
.

—
oo

PO S
.
.
]
.

Note that here we assign two different values to the 1ine-break-system-details attribute
of the NonMusicalPaperColumn grob. Though the line-break-system-details attribute alist
accepts many additional spacing parameters (including, for example, a corresponding X-offset
pair), we need only set the Y-offset and alignment-offsets pairs to control the vertical
startpoint of every system and every staff. Finally, note that alignment-offsets specifies the
vertical positioning of staves but not of staff groups.

Q
7\ I )
[ v Y W]
\\3Y;
[Y) ¢ 6 00 06 6 00 0 90 0@
4 ()
)" 4
/\ &)
'(“ \ U
o o @ Vo o o o |0 o o @
7\ r £) | | |
AU | | |

]
:



281

Chapter 11: Spacing issues

o o O @

o O @ @O

iy

dJ 6 ¢ 0 ¢

o o O @

¢ o ¢

0

e ¢ ¢ 4 4

KAK 4

4

o o 0 @

o o O @

KAK 4

J ¢ ¢ 0 ¢

10()

13

o o o @

o o O @

o o 0 @

o o O @

dJ ¢ ¢ ¢ @

B K

e @ @

o] 9 9 o o [ @

<

\




Chapter 11: Spacing issues 282

18()
)" 4

DO AP
[
LY
)
[

3

I
.
|

3

:

Some points to consider:
e When using alignment-offsets, lyrics count as a staff.

e The units of the numbers passed to X-offset, Y-offset and alignment-offsets are
interpreted as multiples of the distance between adjacent staff lines. Positive values move
staves and lyrics up, negative values move staves and lyrics down.

e Because the NonMusicalPaperColumn #'line-break-system-details settings given here
allow the positioning of staves and systems anywhere on the page, it is possible to violate
paper or margin boundaries or even to print staves or systems on top of one another.
Reasonable values passed to these different settings will avoid this.

11.5.4 Two-pass vertical spacing

Warning: two-pass vertical spacing is deprecated and will be removed in a future version of
LilyPond. Systems are now stretched automatically in a single pass. See Section 11.5.1 [Vertical
spacing inside a system], page 272.

In order to automatically stretch systems so that they should fill the space left on a page, a
two-pass technique can be used:

1. In the first pass, the amount of vertical space used to increase the height of each system is
computed and dumped to a file.

2. In the second pass, spacing inside the systems are stretched according to the data in the
page layout file.

The ragged-bottom property adds space between systems, while the two-pass technique adds
space between staves inside a system.

To allow this behaviour, a tweak-key variable has to be set in each score \layout block, and
the tweaks included in each score music, using the \scoreTweak music function.

%% include the generated page layout file:
\includePagelLayoutFile

\score {
\new StaffGroup <<
\new Staff <<
%% Include this score tweaks:
\scoreTweak "scoreA"
{ \clef french c''1l \break c''1l }
>>
\new Staff { \clef soprano g'l g'l }
\new Staff { \clef mezzosoprano e'l e'l }
\new Staff { \clef alto gl gl }
\new Staff { \clef bass cl cl }
>>
\header {
piece = "Score with tweaks"

}



Chapter 11: Spacing issues 283

%% Define how to name the tweaks for this score:
\layout { #(define tweak-key "scoreA") }
}

For the first pass, the dump-tweaks option should be set to generate the page layout file.

lilypond -dbackend=null -d dump-tweaks <file>.ly
lilypond <file>.ly

11.5.5 Vertical collision avoidance

Intuitively, there are some objects in musical notation that belong to the staff and there are
other objects that should be placed outside the staff. Objects belonging outside the staff include
things such as rehearsal marks, text and dynamic markings (from now on, these will be called
outside-staff objects). LilyPond’s rule for the vertical placement of outside-staff objects is to
place them as close to the staff as possible but not so close that they collide with another object.

LilyPond uses the outside-staff-priority property to determine whether a grob is an
outside-staff object: if outside-staff-priority is a number, the grob is an outside-staff object.
In addition, outside-staff-priority tells LilyPond in which order the objects should be
placed.

First, LilyPond places all the objects that do not belong outside the staff. Then it sorts the
outside-staff objects according to their outside-staff-priority (in increasing order). One by
one, LilyPond takes the outside-staff objects and places them so that they do not collide with
any objects that have already been placed. That is, if two outside-staff grobs are competing for
the same space, the one with the lower outside-staff-priority will be placed closer to the
staff.

c4_"Text"\pp

r2.

\once \override TextScript #'outside-staff-priority = #1
c4d_"Text"\pp % this time the text will be closer to the staff

r2.

% by setting outside-staff-priority to a non-number, we

% disable the automatic collision avoidance

\once \override TextScript #'outside-staff-priority = ##f

\once \override DynamicLineSpanner #'outside-staff-priority = ##f
c4_"Text"\pp % now they will collide

0
:)V : I - -
PP Text PP=
Text PP

The vertical padding between an outside-staff object and the previously-positioned grobs can
be controlled with outside-staff-padding.

\once \override TextScript #'outside-staff-padding = #0
a'""This text is placed very close to the note"

\once \override TextScript #'outside-staff-padding = #3
c""This text is padded away from the previous text"
c”"This text is placed close to the previous text"



Chapter 11: Spacing issues 284

This text is placed close to the previous text
This text is padded away from the previous text

This text is placed very close to the note
o 22

N &1

P

By default, outside-staff objects are placed without regard to their horizontal distance from
the previously-posititioned grobs. This can lead to situations in which objects are placed very
close to each other horizontally. Setting outside-staff-horizontal-padding causes an object
to be offset vertically so that such a situation doesn’t occur.

% the markup is too close to the following note

c2™"Text"
c''2
% setting outside-staff-horizontal-padding fixes this
R1
\once \override TextScript #'outside-staff-horizontal-padding = #1
c,,2 7 "Text"
c''2
Text Text
2 2
o = =
7\ r ) L] 7
[ Fan YA W2 ]
ANIVJ ] ]
ry) | |

11.6 Horizontal Spacing

11.6.1 Horizontal spacing overview

The spacing engine translates differences in durations into stretchable distances
( ‘springs’)
of differring lengths. Longer durations get more space, shorter durations get less. The shortest
durations get a fixed amount of space (which is controlled by shortest-duration-space in the
SpacingSpanner object). The longer the duration, the more space it gets: doubling a duration
adds a fixed amount (this amount is controlled by spacing-increment) of space to the note.

For example, the following piece contains lots of half, quarter, and 8th notes; the eighth note
is followed by 1 note head width (NHW). The quarter note is followed by 2 NHW, the half by
3 NHW, etc.

c2 c4. c8 c4. c8 c4. c8 c8

c8 cd4 c4 c4
Q
g\ r £)
[ fan YA W] 1
ANV ) ) ) | |
[Y) 5 6 4 ¢ 4 é o e ¢

Normally, spacing-increment is set to 1.2 staff space, which is approximately the width of
a note head, and shortest-duration-space is set to 2.0, meaning that the shortest note gets
2.4 staff space (2.0 times the spacing-increment) of horizontal space. This space is counted
from the left edge of the symbol, so the shortest notes are generally followed by one NHW of
space.



Chapter 11: Spacing issues 285

If one would follow the above procedure exactly, then adding a single 32nd note to a score
that uses 8th and 16th notes, would widen up the entire score a lot. The shortest note is no
longer a 16th, but a 32nd, thus adding 1 NHW to every note. To prevent this, the shortest
duration for spacing is not the shortest note in the score, but rather the one which occurs most
frequently.

The most common shortest duration is determined as follows: in every measure, the shortest
duration is determined. The most common shortest duration is taken as the basis for the spacing,
with the stipulation that this shortest duration should always be equal to or shorter than an
8th note. The shortest duration is printed when you run 1ilypond with the --verbose option.

These durations may also be customized. If you set the common-shortest-duration in
SpacingSpanner, then this sets the base duration for spacing. The maximum duration for this
base (normally an 8th), is set through base-shortest-duration.

Notes that are even shorter than the common shortest note are followed by a space that is
proportional to their duration relative to the common shortest note. So if we were to add only
a few 16th notes to the example above, they would be followed by half a NHW:

c2 cd. c8 c4. c16[ c] c4. c8 c8 c8 c4 c4 c4

In the introduction (see Section 1.1 [Engraving], page 2), it was explained that stem
directions influence spacing. This is controlled with the stem-spacing-correction property in
the NoteSpacing, object.
These are generated for every Voice
context. The StaffSpacing object (generated in
context) contains the same property for controlling the stem/bar line spacing. The following
example shows these corrections, once with default settings, and once with exaggerated
corrections:

P
T
Ly
L
T
s
i)

Proportional notation is supported; see Section 11.6.5 [Proportional notation], page 288.

See also

Internals:

NoteSpacing, StaffSpacing,
SeparationItem, and SeparatingGroupSpar
Bugs

There is no convenient mechanism to manually override spacing. The following work-around
may be used to insert extra space into a score.

\once \override Score.SeparationItem #'padding = #1

No work-around exists for decreasing the amount of space.



Chapter 11: Spacing issues 286

11.6.2 New spacing area

New sections with different spacing parameters can be started with newSpacingSection. This
is useful when there are sections with a different notions of long and short notes.

In the following example, the time signature change introduces a new section, and hence the
16ths notes are spaced wider.

\time 2/4

c4 c8 c

c8 c c4 cl16[ c c8] c4
\newSpacingSection

\time 4/16

cl6[ c c8]
O ) 4
"f\“ % | —| 1 | AL f— |
ANIVAEES 3 | | | | | I | 10 | | |
e) 4 06 06 s -y

The \newSpacingSection command creates a new
object, and hence new \overrides may be used in that location.

11.6.3 Changing horizontal spacing

Horizontal spacing may be altered with the base-shortest-duration property. Here we com-
pare the same music; once without altering the property, and then altered. Larger values of
ly:make-moment will produce smaller music. Note that 1y:make-moment constructs a duration,
so 1 4 is a longer duration than 1 16.

\score {
\relative c'' {
gdee2 | f4dd2 | c4def | g4geg2l
gdee2 | f4dd2 | cdegg |l c,1|
ddddd| ddef2 | edeece | edf g2]|
ghee2 | f4dd2 | cdegg |l c,1|

}
}
() L
— ) — — |
_‘
- @ &
6
0 | .
7\ I‘I I
o ® o o o o & —
11n
)" 4 ) L )
| || |,
:j‘ i 0-0‘ -©




Chapter 11: Spacing issues 287

\score {
\relative c'' {
gdee2 | f4dd2 | c4ddef | g4geg2l
ghee2 | f4dd2 | cdegg |l c,1|
d4ddd| ddef2 | edeece | edf g2|
gdee2 | f4dd2 | cdegg |l c,1|

}
\layout {
\context {
\Score
\override SpacingSpanner
#'base-shortest-duration = #(ly:make-moment 1 16)
}
}
}
o)
)" 4 )
7\ r £} I I
o ¢ & o
4
f ; .
7\ | |
-~ |
bl -~
U L=
fn
4 . !
(s ! '
P > o
e o ©-
10 f
)’ 4
7\ | | | |
[ farY | | | | -~
3 o Z o—+¢ o o
13
O i . . i
s —
[y, o< o ° ©

Commonly tweaked properties

By default, spacing in tuplets depends on various non-duration factors (such as accidentals,
clef changes, etc). To disregard such symbols and force uniform equal-duration spacing, use
Score.SpacingSpanner #'uniform-stretching. This property can only be changed at the
beginning of a score,

\new Score \with {
\override SpacingSpanner #'uniform-stretching = ##t
T} <<
\new Staff{
\times 4/5 {



Chapter 11: Spacing issues 288

c8 c8 c8 c8 c8

}
c8 c8 c8 c8
}
\new Staff{
c8 c8 c8 c8
\times 4/5 {
c8 c8 c8 c8 c8
}
}
>>
()
A —
5
()
\‘_\Ijll |
U | I— L

When strict-note-spacing is set, notes are spaced without regard for clefs, bar lines, and
grace notes,

\override Score.SpacingSpanner #'strict-note-spacing = #i#t
\new Staff { c8[ c \clef alto c \grace { c16[ c] } c8 c c] «¢32[ ¢32] }

[ .ﬂ.ﬂﬂ. . 0 00
TR

11.6.4 Line length

The most basic settings influencing the spacing are indent and line-width. They are set in
the \layout block. They control the indentation of the first line of music, and the lengths of
the lines.

If ragged-right is set to true in the \layout block, then systems ends at their natural
horizontal length, instead of being spread horizontally to fill the whole line. This is useful for
short fragments, and for checking how tight the natural spacing is.

The option ragged-last is similar to ragged-right, but only affects the last line of the
piece. No restrictions are put on that line. The result is similar to formatting text paragraphs.
In a paragraph, the last line simply takes its natural horizontal length.

\layout {
indent = #0
line-width = #150
ragged-last = ##t
+

11.6.5 Proportional notation

LilyPond supports proportional notation, a type of horizontal spacing in which each note con-
sumes an amount of horizontal space exactly equivalent to its rhythmic duration. This type of
proportional spacing is comparable to horizontal spacing on top of graph paper. Some late 20th-



Chapter 11: Spacing issues 289

and early 21st-century scores use proportional notation to clarify complex rhythmic relationships
or to faciliate the placement of timelines or other graphics directly in the score.

LilyPond supports five different settings for proportional notation, which may be used to-
gether or alone:

e proportionalNotationDuration

e uniform-stretching

e strict-note-spacing

e \remove Separating_line_group_engraver

e \override PaperColumn #'used = ##t

In the examples that follow, we explore these five different proportional notation settings and
examine how these settings interact.

We start with the following one-measure example, which uses classical spacing with ragged-
right turned on.

\new Score <<
\new RhythmicStaff {
c'2
c'l6 c'16 c'16 c'16
\times 4/5 {
c'l6 c'16 c'16 c'16 c'16
}

}
>>

I ’ ’ 4 I ’ ’ ’ 4

Notice that the half note which begins the measure takes up far less than half of the horizontal
space of the measure. Likewise, the sixteenth notes and sixteenth-note quintuplets (or twentieth
notes) which end the measure together take up far more than half the horizontal space of the
measure.

In classical engraving, this spacing may be exactly what we want because we can borrow
horizontal space from the half note and conserve horizontal space across the measure as a whole.

On the other hand, if we want to insert a measured timeline or other graphic above or
below our score, we need proportional notation. We turn proportional notation on with the
proportionalNotationDuration setting.

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 20)
} <<
\new RhythmicStaff {
c'2
c'16 c'16 c¢'16 c'16
\times 4/5 {
c'l16 c'16 c'16 c'16 c'16
}

}
>>



Chapter 11: Spacing issues 290
5

e d DD DBl
L U2

The half note at the beginning of the measure and the faster notes in the second half of the
measure now occupy equal amounts of horizontal space. We could place a measured timeline or
graphic above or below this example.

The proportionalNotationDuration setting is a context setting that lives in
Score. Recall that context settings appear in one of three locations in our input file — in a
\with block, in a \context block, or directly in music entry preceeded by the \set command.
As with all context settings, users can pick which of the three different locations they would
like to set proportionalNotationDuration.

The proportionalNotationDuration setting takes a single argument, which is the refer-
ence duration against which all music will be spaced. The LilyPond Scheme function make-
moment takes two arguments — a numerator and denominator which together express some
fraction of a whole note. The call #(1y:make-moment 1 20) therefore produces a reference du-
ration of a twentieth note. The values #(1y:make-moment 1 16), #(1ly:make-moment 1 8), and
#(1ly:make-moment 3 97) are all possible as well.

How do we select the right reference duration to pass to proportionalNotationDuration?
Usually by a process of trial and error, beginning with a duration close to the fastest (or smallest)
duration in the piece. Smaller reference durations space music loosely; larger reference durations
space music tightly.

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 8)
} <<
\new RhythmicStaff {
c'2
c'16 c'16 c¢'16 c'16
\times 4/5 {
c'l6 c'16 c'16 c'16 c'16
}

}
>>

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 16)
} <<
\new RhythmicStaff {
c'2
c'l6 c'16 c'16 c'16
\times 4/5 {
c'l16 c'16 ¢'16 c'16 c'16
b
3

>>

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 32)
} <<
\new RhythmicStaff {
c'2
c'16 c'16 c'16 c'16
\times 4/5 {



Chapter 11: Spacing issues 291

c'l16 c'16 c'16 c'16 c'16
+
+

>>

®
Q

e P s S v v e

Note that too large a reference duration — such as the eighth note, above — spaces music too
tightly and can cause notehead collisions. Note also that proportional notation in general takes
up more horizontal space that does classical spacing. Proportional spacing provides rhythmic
clarity at the expense of horizontal space.

Next we examine how to optimally space overlapping tuplets.

We start by examining what happens to our original example, with classical spacing, when
we add a second staff with a different type of tuplet.

\new Score <<
\new RhythmicStaff {
c'2
c'l6 c'16 c'16 c'16
\times 4/5 {
c'l6 c'16 c'16 c'16 c'16
}
}
\new RhythmicStaff {
\times 8/9 {
c'8 ¢c'8 ¢c'8c'8c'8c'8c'8<c'8<c'8
}

}
>>

5

e d LIS
I

The spacing is bad because the evenly notes of the bottom staff do not stretch uniformly. Clas-
sical engraving includes very few complex triplets and so classical engraving rules can generate
this type of result. Setting proportionalNotationDuration remedies this situation consider-
ably.



Chapter 11: Spacing issues 292

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 20)
} <<
\new RhythmicStaff {
c'2
c'16 c'16 c'16 c'16
\times 4/5 {
c'16 c¢'16 c'16 c'16 c'16
}
}
\new RhythmicStaff {
\times 8/9 {
c'8 c'8c'8c'8c'8c'8c'8c'8c'8
}

}
>>

5

o e ddddIddd]
I N Y N I H

But if we look very carefully we can see that notes of the second half of the 9-tuplet space
ever so slightly more widely than do the notes of the first half of the 9-tuplet. To ensure uniform
stretching, we turn on uniform-stretching, which is a property of SpacingSpanner

\new Score \with {
proportionalNotationDuration = #(ly:make-moment 1 20)
\override SpacingSpanner #'uniform-stretching = ##t
} <<
\new RhythmicStaff {
c'2
c'16 c'16 c'16 c'16
\times 4/5 {
c'16 c'16 c'16 c'16 c'16
}
}
\new RhythmicStaff {
\times 8/9 {
c'8 c'8c'8c'8c'8c'8c'8c'8c'8
}

}
>>

o eI
A Y Y R

Our two-staff example now spaces exactly, our rhythmic relationships are visually clear, and
we can include a measured timeline or graphic if we want.




Chapter 11: Spacing issues 293

The SpacingSpanner is an abstract grob that lives in the
context. As with our settings of proportionalNotationDuration, overrides to the
SpacingSpanner can occur in any of three different places in our input file — in the Score \with
block, in a Score \context block, or in note entry directly.

There is by default only one SpacingSpanner per Score. This means that, by default,
uniform-stretching is either turned on for the entire score or turned off for the entire score.
We can, however, override this behavior and turn on different spacing features at different
places in the score. We do this with the command \newSpacingSection. See Section 11.6.2
[New spacing areal, page 286, for more info.

Next we examine the effects of the Separating_line_group_engraver and see why propor-
tional scores frequently remove this engraver. The following example shows that there is a small
amount of “preferatory”
space just before the first note in each system.

\paper {
indent = #0
}

\new Staff {
c'l
\break
c'1

©-

The amount of this preferatory space is the same whether after a time signature, a key
signature or a clef. Separating_line_group_engraver is responsible for this space. Removing
Separating_line_group_engraver reduces this space to zero.

\paper {
indent = #0
}

\new Staff \with {

\remove Separating_line_group_engraver
P A

c'l

\break

c'1




Chapter 11: Spacing issues 294

2

Nonmusical elements like time signatures, key signatures, clefs and accidentals are prob-
lemmatic in proportional notation. None of these elements has rhythmic duration. But all of
these elements consume horizontal space. Different proportional scores approach these problems
differently.

It may be possible to avoid spacing problems with key signatures simply by not having any.
This is a valid option since most proportional scores are contemporary music. The same may
be true of time signatures, especially for those scores that include a measured timeline or other
graphic. But these scores are exceptional and most proportional scores include at least some
time signatures. Clefs and accidentals are even more essential.

So what strategies exist for spacing nonmusical elements in a proportional context? One
good option is the strict-note-spacing property of SpacingSpanner. Compare the two scores
below:

\new Staff {
\set Score.proportionalNotationDuration = #(ly:make-moment 1 16)
c''8
c''8
c''8
\clef alto
d's
d'2

\new Staff {
\set Score.proportionalNotationDuration = #(ly:make-moment 1 16)
\override Score.SpacingSpanner #'strict-note-spacing = ##t
c''8
c''8
c''8
\clef alto
d's
d'2

}
0
D—- 9
e
0
o

A1V

eJ

i

T8

Both scores are proportional, but the spacing in the first score is too loose because of the
clef change. The spacing of the second score remains strict, however, because strict-note-
spacing is turned on. Turning on strict-note-spacing causes the width of time signatures,
key signatures and clefs to play no part in the spacing algorithm. Accidentals are a different
matter, however. By default, all accidentals consume a little extra space, as the following pair
of scores shows.



Chapter 11: Spacing issues 295

\new Staff {

\set Score.proportionalNotationDuration = #(ly:make-moment 1 32)
c'16
c'16
c'16
c'16
c'16
c'16
c'1l6
c'16

\new Staff {

\set Score.proportionalNotationDuration = #(ly:make-moment 1 32)
c'16

cis'l6

c'16

c'l6

c'16

c'l6

c'16

c'16
()
- )
[ [an YA O] b
ANV | | | | | | | |
[Y) & 4 o 6 o 4 4
()
X y £)
[ [an Y W] A - " | f " Y ¥
ANV | M| 1 | | | | | |
[Y) & #‘L qli 4 €6 o e @

Both scores are proportional but the second score exhibits spacing irregularities due to acci-
dentals. Turning on strict-note-spacing does not work for accidentals. Instead, we override
the X-extent of all accidentals to zero and then move the accidentals to the left of the notes
they modify.

\new Staff {

\set Score.proportionalNotationDuration = #(ly:make-moment 1 32)
\override Accidental #'X-extent = #'(0 . 0)
\override Accidental #'extra-offset = #'(-1 . 0)
c'l6

cis'16

c'16

c'l6

c'l6

c'l6

c'16

c'16



Chapter 11: Spacing issues 296

r )
\ U7

| t " " |
4 ] ] ] ] ]

-dl-ﬂ:dl-hdl--d-d--d--d--d-

e

In addition to the settings given here, there are other settings that frequently appear in
proportional scores. These include:

e \override SpacingSpanner #'strict-grace-spacing = ##t
tupletFulllLength = ##t

\override Beam #'breakable = ##t

\override Glissando #'breakable = ##t

\override TextSpanner #'breakable = ##t
e \remove Forbid_line_break_engraver in the Voice context
These settings space grace notes strictly, extend tuplet brackets to mark both rhythmic

start- and stop-points, and allow spanning elements to break across systems and pages. See the
respective parts of the manual for these related settings.



Chapter 12: Interfaces for programmers 297

12 Interfaces for programmers

Advanced tweaks may be performed by using Scheme. If you are not familiar with Scheme, you
may wish to read our Appendix B [Scheme tutorial], page 342.

12.1 Music functions

This section discusses how to create music functions within LilyPond.

12.1.1 Overview of music functions

Making a function which substitutes a variable into LilyPond code is easy. The general form of
these functions is

function =
#(define-music-function (parser location varl var2... )
(vari-type? var2-type?...)
#{
...music...
#1)
where
argi ith variable
argi-type? type of variable
...muslic... normal LilyPond input, using variables as #$varl.

There following input types may be used as variables in a music function. This list is not
exhaustive; see other documentation specifically about Scheme for more variable types.

Input type argi-type? notation
Integer integer?
Float (decimal number) number?
Text string string?
Markup markup?
Music expression ly:music?
A pair of variables pair?
The parser and location argument are mandatory, and are used in some
advanced situations. The parser argument is used to access to the value
of another LilyPond wvariable. The location argument is used to set the

‘origin’ of the music expression that is built by the music function, so that in case of
a syntax error LilyPond can tell the user an appropriate place to look in the input file.
12.1.2 Simple substitution functions

Here is a simple example,

padText = #(define-music-function (parser location padding) (number?)

#{
\once \override TextScript #'padding = #$padding
#1)
\relative c''' {

c4”"piu mosso" b a b
\padText #1.8
c4”"piu mosso" d e £
\padText #2.6



Chapter 12: Interfaces for programmers 298

c4”"piu mosso" fis a g

}

. piu mosso P11 MOSSO
piu mosso #
& o 2 i :5 & .5
= F. o £
|
|

.
T

N &1

P>

Music expressions may be substituted as well,

custosNote = #(define-music-function (parser location note)
(1y:music?)
#{

\once \override Voice.NoteHead #'stencil =
#ly:text-interface: :print

\once \override Voice.NoteHead #'text =
\markup \musicglyph #"custodes.mensural.uQ"

\once \override Voice.Stem #'stencil = ##f

$note

#3})

{ c' d" e' £' \custosNote g' }

0
)’ 4
7\ r @)
[ (oY W]

Multiple variables may be used,

tempoMark = #(define-music-function (parser location padding marktext)
(number? string?)
#{
\once \override Score . RehearsalMark #'padding = $padding
\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0 . -inf.0)
\mark \markup { \bold $marktext }
#1)

\relative c'' {
c2 e
\tempoMark #3.0 #"Allegro"

g cC

DO
k)




Chapter 12: Interfaces for programmers 299

12.1.3 Paired substitution functions

Some \override commands require a pair of numbers (called a cons cell in Scheme). To pass
these numbers into a function, either use a pair? variable, or insert the cons into the music
function.

manualBeam =
#(define-music-function (parser location beg-end)
(pair?)
#{
\once \override Beam #'positions = #$beg-end
#1)

\relative {
\manualBeam #'(3 . 6) c8 d e f

}
or
manualBeam =
#(define-music-function (parser location beg end)
(number? number?)
#{
\once \override Beam #'positions = #(cons $beg $end)
#3)
\relative {
\manualBeam #3 #6 c8 d e f
}
o T
& C
o <40

12.1.4 Mathematics in functions

Music functions can involve Scheme programming in addition to simple substitution,

AltOn = #(define-music-function (parser location mag) (number?)
#{ \override Stem #'length = #$(* 7.0 mag)
\override NoteHead #'font-size =
#$ (inexact->exact (*x (/ 6.0 (log 2.0)) (log mag))) #})

A1t0ff = {
\revert Stem #'length
\revert NoteHead #'font-size

}

{ c'2 \AltOn #0.5 c'4 c'
\AltOn #1.5 c' c' \ALtOff c'2 }

a—
N (o]

P




Chapter 12: Interfaces for programmers 300

This example may be rewritten to pass in music expressions,
withAlt = #(define-music-function (parser location mag music) (number? ly:music?)
#{ \override Stem #'length = #$(* 7.0 mag)
\override NoteHead #'font-size =
#$ (inexact->exact (*x (/ 6.0 (log 2.0)) (log mag)))

$music

\revert Stem #'length

\revert NoteHead #'font-size #})

{ c'2 \withAlt #0.5 {c'4 c'}
\withAlt #1.5 {c' c'} c'2 }

! !
A\ V4 |
¢ & 44 0 0 5
12.1.5 Void functions
A music function must return a music expression, but sometimes we may want to have a function
which does not involve music (such as turning off Point and Click). To do this, we return a void

music expression.

That is why the form that is returned is the (make-music ...). With the 'void property
set to #t, the parser is told to actually disregard this returned music expression. Thus the
important part of the void music function is the processing done by the function, not the music
expression that is returned.

noPointAndClick =

#(define-music-function (parser location) ()
(ly:set-option 'point-and-click #f)
(make-music 'SequentialMusic 'void #t))

\noPointAndClick % disable point and click

12.1.6 Functions without arguments
In most cases a function without arguments should be written with an identifier,
dolce = \markup{ \italic \bold dolce }
However, in rare cases it may be useful to create a music function without arguments,
displayBarNum =
#(define-music-function (parser location) ()
(if (eq? #t (ly:get-option display-bar-numbers))
#{ \once \override Score.BarNumber #'break-visibility = ##f #}
#{#1}))
To actually display bar numbers where this function is called, invoke lilypond with
lilypond -d display-bar-numbers FILENAME.ly

12.1.7 Overview of available music functions

The following commands are music functions

allowPageTurn -
(undocumented; fixme)

assertBeamQuant - | (pair) r (pair)
(undocumented; fixme)



Chapter 12: Interfaces for programmers

includePagelayoutFile -
(undocumented; fixme)

transposition - pitch-note (music)
(undocumented; fixme

)
afterGrace - main (music) grace (music)
(undocumented; fixme)
(
)

applyOutput - ctx (symbol) proc (procedure)
(undocumented; fixme

parenthesize - arg (music)
(undocumented; fixme)

oldaddlyrics - music (music) Iyrics (music)
(undocumented; fixme)

pageTurn -
(undocumented; fixme)

compressMusic - fraction (pair of numbers) music (music)
(undocumented; fixme)

featherDurations - factor (moment) argument (music)
(undocumented; fixme)

parallelMusic - voice-ids (list) music (music)
(undocumented; fixme)

resetRelativeOctave - reference-note (music)
(undocumented; fixme)

displayMusic - music (music)
(undocumented; fixme)

acciaccatura - music (music)
(undocumented; fixme)

balloonGrobText - grob-name (symbol) offset (pair of numbers) text (markup)
(undocumented; fixme)

instrumentSwitch - name (string)
(undocumented; fixme)

spacingTweaks - parameters (list)
(undocumented; fixme)

makeClusters - arg (music)
(undocumented; fixme)

octave - pitch-note (music)
(undocumented; fixme)

noPageTurn -
(undocumented; fixme)

clef - type (string)
(undocumented; fixme)

bendAfter - delta (integer)
(undocumented; fixme)

301



Chapter 12: Interfaces for programmers

partcombine - partl (music) part2 (music)
(undocumented; fixme)

grace - music (music)
(undocumented; fixme)

noPageBreak -
(undocumented; fixme)

pageBreak -
(undocumented; fixme)

shiftDurations - dur (integer) dots (integer) arg (music)
(undocumented; fixme)

tag - tag (symbol) arg (music)
(undocumented; fixme)

bar - type (string)
(undocumented; fixme)

unfoldRepeats - music (music)
(undocumented; fixme)

balloonText - offset (pair of numbers) text (markup)
(undocumented; fixme)

quoteDuring - what (string) main-music (music)
(undocumented; fixme)

barNumberCheck - n (integer)
(undocumented; fixme)

addInstrumentDefinition - name (string) Ist (list)
(undocumented; fixme)

scoreTweak - name (string)
(undocumented; fixme)

label - Jabel (symbol)
(undocumented; fixme)

autochange - music (music)
(undocumented; fixme)

addQuote - name (string) music (music)
(undocumented; fixme)

rightHandFinger - finger (number or string)
(undocumented; fixme)

endSpanners - music (music)
(undocumented; fixme

)
musicMap - proc (procedure) mus (music)
(undocumented; fixme)

applyMusic - func (procedure) music (music)
(undocumented; fixme)

killCues - music (music)
(undocumented; fixme)

302



Chapter 12: Interfaces for programmers 303

keepWithTag - tag (symbol) music (music)
(undocumented; fixme)
tweak - sym (symbol) val (any type) arg (music)
(undocumented; fixme)
transposedCueDuring - what (string) dir (direction) pitch-note (music) main-music (music)
(undocumented; fixme)
displayLilyMusic - music (music)
(undocumented; fixme)
tocItem - text (markup)
Add a line to the table of content, using the tocItemMarkup paper variable markup
appoggiatura - music (music)
(undocumented; fixme)
cueDuring - what (string) dir (direction) main-music (music)
(undocumented; fixme)
removeWithTag - tag (symbol) music (music)
(undocumented; fixme)
breathe -
(undocumented; fixme)
overrideProperty - name (string) property (symbol) value (any type)
(undocumented; fixme)
withMusicProperty - sym (symbol) val (any type) music (music)
(undocumented; fixme)

assertBeamSlope - comp (procedure)
(undocumented; fixme)

pitchedTrill - main-note (music) secondary-note (music)
(undocumented; fixme)

applyContext - proc (procedure)
(undocumented; fixme)

12.2 Programmer interfaces

This section contains information about mixing LilyPond and Scheme.

12.2.1 Input variables and Scheme
The input format supports the notion of variables: in the following example, a music expression
is assigned to a variable with the name traLaLa.
tralala = { c'4 d'4 }
There is also a form of scoping: in the following example, the \layout block also contains a
tralala variable, which is independent of the outer \tralLaLa.
tralala = { c'4 d'4 }
\layout { tralala = 1.0 }
In effect, each input file is a scope, and all \header, \midi, and \layout blocks are scopes
nested inside that toplevel scope.

Both variables and scoping are implemented in the GUILE module system. An anonymous
Scheme module is attached to each scope. An assignment of the form



Chapter 12: Interfaces for programmers 304

tralala = { c'4 d'4 }
is internally converted to a Scheme definition
(define tralala Scheme value of ~... ')
This means that input variables and Scheme variables may be freely mixed. In the following

example, a music fragment is stored in the variable traLala, and duplicated using Scheme. The
result is imported in a \score block by means of a second variable twice:

tralala = { ¢'4 d'4 }

%% dummy action to deal with parser lookahead
#(display "this needs to be here, sorry!")

#(define newLa (map ly:music-deep-copy
(1ist tralala tralLala)))

#(define twice
(make-sequential-music newla))

{ \twice }
()
Vi
A
[{an¥ 9]
ANV
[Y) & &

Due to parser lookahead

In this example, the assignment happens after parser has verified that nothing interesting
happens after tralala = { ... }. Without the dummy statement in the above example, the
newLa definition is executed before traLala is defined, leading to a syntax error.

The above example shows how to ‘ex-
port’ music expressions from the input to the Scheme interpreter. The opposite is also possible.
By wrapping a Scheme value in the function 1y:export, a Scheme value is interpreted as if it
were entered in LilyPond syntax. Instead of defining \twice, the example above could also
have been written as

{ #(1ly:export (make-sequential-music (list newLa))) }

Scheme code is evaluated as soon as the parser encounters it. To define some Scheme code
in a macro (to be called later), use Section 12.1.5 [Void functions|, page 300, or

#(define (nopc)
(ly:set-option 'point-and-click #f))

#(nopc)
{c'd}
Bugs
Mixing Scheme and LilyPond identifiers is not possible with the --safe option.

12.2.2 Internal music representation

When a music expression is parsed, it is converted into a set of Scheme music objects. The
defining property of a music object is that it takes up time. Time is a rational number that
measures the length of a piece of music in whole notes.

A music object has three kinds of types:



Chapter 12: Interfaces for programmers 305

e music name: FEach music expression has a name. For example, a note leads to
a NoteEvent, and
\simultaneous leads to a Simultaneous
A list of all expressions available is in the Program reference manual, under
Music expressions.

° ‘type’ or interface: Each
music name has several ‘types’
or interfaces, for example, a note is an event, but it is also a note-event, a rhythmic-
event, and a melodic-event. All classes of music are listed in the Program reference,
under Music
classes.

e (C++ object: Each music object is represented by an object of the C++ class Music.

The actual information of a music expression is stored in properties. For example, a
NoteEvent has pitch and duration properties that store the pitch and duration
of that note. A list of all properties available is in the internals manual, under
Music properties.

A compound music expression is a music object that contains other music objects in its
properties. A list of objects can be stored in the elements property of a music object, or a sin-

gle ‘child’ music object in the
element object. For example, Sequent
has its children in elements, and GraceMusic

has its single argument in element. The body of a repeat is stored in the element property of
RepeatedMusic, and the alternatives in elements.

12.3 Building complicated functions

This section explains how to gather the information necessary to create complicated music
functions.

12.3.1 Displaying music expressions

When writing a music function it is often instructive to inspect how a music expression is stored
internally. This can be done with the music function \displayMusic

{
\displayMusic { c'4\f }
}
will display
(make-music
'SequentialMusic
'elements
(list (make-music
'EventChord
'elements
(list (make-music
'NoteEvent
'duration
(1y:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 0 0))
(make-music
'AbsoluteDynamicEvent



Chapter 12: Interfaces for programmers 306

'text
"£")))))

By default, LilyPond will print these messages to the console along with all the other mes-
sages. To split up these messages and save the results of \display{STUFF}, redirect the output
to a file.

lilypond file.ly >display.txt
With a bit of reformatting, the above information is easier to read,

(make-music 'SequentialMusic
'elements (list (make-music 'EventChord
'elements (list (make-music 'NoteEvent
'"duration (ly:make-duration 2 0 1 1)
'pitch (ly:make-pitch 0 0 0))
(make-music 'AbsoluteDynamicEvent
'text "£")))))

A { ... } music sequence has the name SequentialMusic, and its inner expressions are
stored as a list in its 'elements property. A note is represented as an EventChord expres-
sion, containing a NoteEvent object (storing the duration and pitch properties) and any extra
information (in this case, an AbsoluteDynamicEvent with a "f" text property.

12.3.2 Music properties
The NoteEvent object is the first object of the 'elements property of someNote.

someNote = c'
\displayMusic \someNote
===>
(make-music
'EventChord
'elements
(list (make-music
'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 0 0))))
The display-scheme-music function is the function used by \displayMusic to display the
Scheme representation of a music expression.
#(display-scheme-music (first (ly:music-property someNote 'elements)))
===>
(make-music
'NoteEvent
'"duration
(ly:make-duration 2 0 1 1)
'pitch
(1y :make-pitch 0 0 0))
Then the note pitch is accessed through the 'pitch property of the NoteEvent object,
#(display-scheme-music
(ly:music-property (first (ly:music-property someNote 'elements))
'pitch))
===>
(ly :make-pitch 0 0 0)
The note pitch can be changed by setting this 'pitch property,



Chapter 12: Interfaces for programmers

307

#(set! (ly:music-property (first (ly:music-property someNote 'elements))

'pitch)
(ly:make-pitch O 1 0)) ;; set the pitch to d'.
\displayLilyMusic \someNote
===>
d '

12.3.3 Doubling a note with slurs (example)

Suppose we want to create a function which translates input like ‘a’ into ‘a( a)’. We begin by
examining the internal representation of the music we want to end up with.

\displayMusic{ a'( a') }
===>
(make-music
'SequentialMusic
'elements
(1list (make-music
'EventChord
'elements
(list (make-music
'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 5 0))
(make-music
'SlurEvent
'span-direction
-1)))
(make-music
'EventChord
'elements
(list (make-music
'NoteEvent
'duration
(1y :make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 5 0))
(make-music
'SlurEvent
'span-direction
1)))))
The bad news is that the SlurEvent  expressions
‘inside’ the note (or more precisely, inside the EventChord expression).

Now we examine the input,

(make-music
'SequentialMusic
'elements
(1list (make-music

'EventChord
'elements
(list (make-music

must  be added



Chapter 12: Interfaces for programmers 308

'NoteEvent

'duration

(ly:make-duration 2 0 1 1)

'pitch

(1y:make-pitch 0 5 0))))))

So in our function, we need to clone this expression (so that we have two notes to build

the sequence), add SlurEvents to the 'elements property of each one, and finally make a
SequentialMusic with the two EventChords.

doubleSlur = #(define-music-function (parser location note) (ly:music?)
"Return: { note ( note ) }.
“note' is supposed to be an EventChord."
(let ((note2 (ly:music-deep-copy note)))
(set! (ly:music-property note 'elements)
(cons (make-music 'SlurEvent 'span-direction -1)
(ly:music-property note 'elements)))
(set! (ly:music-property note2 'elements)
(cons (make-music 'SlurEvent 'span-direction 1)
(ly:music-property note2 'elements)))
(make-music 'SequentialMusic 'elements (list note note2))))

12.3.4 Adding articulation to notes (example)

The easy way to add articulation to notes is to merge two music expressions into one context,
as explained in Section 9.2.2 [Creating contexts|, page 227. However, suppose that we want to
write a music function which does this.

A $variable inside the #{...#} notation is like using a regular \variable in classical
LilyPond notation. We know that

{ \music -. -> }
will not work in LilyPond. We could avoid this problem by attaching the articulation to a fake
note,

{ << \music s1*0-.-> }
but for the sake of this example, we will learn how to do this in Scheme. We begin by examining
our input and desired output,

% input

\displayMusic c4

(make-music

'EventChord

'elements

(1ist (make-music
'NoteEvent
"duration
(1y :make-duration 2 0 1 1)
'pitch
(ly:make-pitch -1 0 0))))

% desired output
\displayMusic c4->

(make-music
'EventChord



Chapter 12: Interfaces for programmers 309

'elements

(list (make-music
'NoteEvent
"duration
(1y :make-duration 2 0 1 1)
'pitch
(ly:make-pitch -1 0 0))

(make-music

"ArticulationEvent
'articulation-type
"marcato")))

We see that a note (c4) is represented as an EventChord expression, with a NoteEvent
expression in its elements list. To add a marcato articulation, an ArticulationEvent expression
must be added to the elements property of the EventChord expression.

To build this function, we begin with

(define (add-marcato event-chord)
"Add a marcato ArticulationEvent to the elements of “event-chord',
which is supposed to be an EventChord expression."
(let ((result-event-chord (ly:music-deep-copy event-chord)))
(set! (ly:music-property result-event-chord 'elements)
(cons (make-music 'ArticulationEvent
'articulation-type "marcato")
(ly:music-property result-event-chord 'elements)))
result-event-chord))

The first line is the way to define a function in Scheme: the function name is add-marcato,
and has one variable called event-chord. In Scheme, the type of variable is often clear from its
name. (this is good practice in other programming languages, too!)

"Add a marcato..."

is a description of what the function does. This is not strictly necessary, but just like clear
variable names, it is good practice.

(let ((result-event-chord (ly:music-deep-copy event-chord)))

let is used to declare local variables. Here we use one local variable, named result-event-
chord, to which we give the value (1y:music-deep-copy event-chord). ly:music-deep-copy
is a function specific to LilyPond, like all functions prefixed by ly:. It is use to make a copy
of a music expression. Here we copy event-chord (the parameter of the function). Recall that
our purpose is to add a marcato to an EventChord expression. It is better to not modify the
EventChord which was given as an argument, because it may be used elsewhere.

Now we have a result-event-chord, which is a NoteEventChord expression and is a copy
of event-chord. We add the marcato to its elements list property.

(set! place new-value)

Here, what we want to set (the
is the ‘elements’
property of result-event-chord expression.

(ly:music-property result-event-chord 'elements)

ly:music-property is the function used to access music properties (the 'elements,
'"duration, 'pitch, etc, that we see in the \displayMusic output above). The new value is
the former elements property, with an extra item: the MarcatoEvent expression, which we
copy from the \displayMusic output,

‘place’)



Chapter 12: Interfaces for programmers 310

(cons (make-music 'ArticulationEvent
'articulation-type "marcato")
(ly:music-property result-event-chord 'elements))

cons is used to add an element to a list without modifying the original list. This is what we
want: the same list as before, plus the new ArticulationEvent expression. The order inside
the elements property is not important here.

Finally, once we have added the MarcatoEvent to its elements property, we can return
result-event-chord, hence the last line of the function.

Now we transform the add-marcato function into a music function,

addMarcato = #(define-music-function (parser location event-chord)
(ly:music?)
"Add a marcato ArticulationEvent to the elements of “event-chord',
which is supposed to be an EventChord expression."
(let ((result-event-chord (ly:music-deep-copy event-chord)))
(set! (ly:music-property result-event-chord 'elements)
(cons (make-music 'ArticulationEvent
'articulation-type "marcato")
(ly:music-property result-event-chord 'elements)))
result-event-chord))

We may verify that this music function works correctly,

\displayMusic \addMarcato c4

12.4 Markup programmer interface

Markups are implemented as special Scheme functions which produce a Stencil object given a
number of arguments.

12.4.1 Markup construction in Scheme
The markup macro builds markup expressions in Scheme while providing a LilyPond-like syntax.
For example,
(markup #:column (#:line (#:bold #:italic "hello" #:raise 0.4 "world")
#:bigger #:line ("foo" "bar" "baz")))
is equivalent to:
\markup \column { \line { \bold \italic "hello" \raise #0.4 "world" }
\bigger \line { foo bar baz } }

This example demonstrates the main translation rules between regular LilyPond markup syntax
and Scheme markup syntax.

LilyPond Scheme

\markup markupl (markup markupl)
\markup { markup1l (markup markupl
markup2 ... } markup2 ... )
\command #: command

\variable variable
\center-align{ ... } #:center-align ( ... )
string "string"

#scheme-arg scheme-arg

The whole Scheme language is accessible inside the markup macro. For example, You may use
function calls inside markup in order to manipulate character strings. This is useful when defining
new markup commands (see Section 12.4.3 [New markup command definition|, page 311).



Chapter 12: Interfaces for programmers 311

Bugs

The markup-list argument of commands such as #:1ine, #:center, and #:column cannot be a
variable or the result of a function call.

(markup #:1line (function-that-returns-markups))

is invalid. One should use the make-line-markup, make-center-markup, or make-column-
markup functions instead,

(markup (make-line-markup (function-that-returns-markups)))

12.4.2 How markups work internally
In a markup like
\raise #0.5 "text example"

\raise is actually represented by the raise-markup function. The markup expression is stored
as

(list raise-markup 0.5 (list simple-markup "text example"))

When the markup is converted to printable objects (Stencils), the raise-markup function is
called as

(apply raise-markup
\layout object
list of property alists
0.5
the "text example" markup)

The raise-markup function first creates the stencil for the text example string, and then it
raises that Stencil by 0.5 staff space. This is a rather simple example; more complex examples
are in the rest of this section, and in ‘scm/define-markup-commands.scm’.

12.4.3 New markup command definition

New markup commands can be defined with the define-markup-command Scheme macro.

(define-markup-command (command-name layout props argl arg2 ...)
(argl-type? arg2-type? ...)
. .command body. .)

The arguments are
argi ith command argument

argi-type? a type predicate for the ith argument

layout the ‘layout’
definition
props a list of alists, containing all active properties.

As a simple example, we show how to add a \smallcaps command, which selects a small
caps font. Normally we could select the small caps font,
\markup { \override #'(font-shape . caps) Text-in-caps }
This selects the caps font by setting the font-shape property to #'caps for interpreting Text-
in-caps.

To make the above available as \smallcaps command, we must define a function using
define-markup-command. The command should take a single argument of type markup. There-
fore the start of the definition should read



Chapter 12: Interfaces for programmers 312

(define-markup-command (smallcaps layout props argument) (markup?)

What follows is the content of the command: we should interpret the argument as a markup,
i.e.,

(interpret-markup layout ... argument)

This interpretation should add ' (font-shape . caps) to the active properties, so we substitute
the following for the ... in the above example:

(cons (list '(font-shape . caps) ) props)
The variable props is a list of alists, and we prepend to it by cons’ing a list with the extra
setting.

Suppose that we are typesetting a recitative in an opera and we would like to define a
command that will show character names in a custom manner. Names should be printed with
small caps and moved a bit to the left and top. We will define a \character command which
takes into account the necessary translation and uses the newly defined \smallcaps command:

#(define-markup-command (character layout props name) (string?)
"Print the character name in small caps, translated to the left and
top. Syntax: \\character #\"name\""

(interpret-markup layout props
(markup #:hspace O #:translate (cons -3 1) #:smallcaps name)))

There is one complication that needs explanation: texts above and below the staff are moved
vertically to be at a certain distance (the padding property) from the staff and the notes. To
make sure that this mechanism does not annihilate the vertical effect of our #:translate, we
add an empty string (#:hspace 0) before the translated text. Now the #:hspace 0 will be put
above the notes, and the name is moved in relation to that empty string. The net effect is that
the text is moved to the upper left.

The final result is as follows:

{
c''"\markup \character #"Cleopatra"
e'"\markup \character #"Giulio Cesare"
}
CLEOPATRA GIULIO CESARE
o)
; —
SIS —o

We have used the caps font shape, but suppose that our font does not have a small-caps
variant. In that case we have to fake the small caps font by setting a string in upcase with the
first letter a little larger:

#(define-markup-command (smallcaps layout props str) (string?)
"Print the string argument in small caps."
(interpret-markup layout props
(make-line-markup
(map (lambda (s)
(if (= (string-length s) 0)
S
(markup #:large (string-upcase (substring s 0 1))
#:translate (cons -0.6 0)
#:tiny (string-upcase (substring s 1)))))
(string-split str #\Space)))))



Chapter 12: Interfaces for programmers 313

The smallcaps command first splits its string argument into tokens separated by spaces
((string-split str #\Space)); for each token, a markup is built with the first letter made
large and upcased (#:1large (string-upcase (substring s 0 1))), and a second markup built
with the following letters made tiny and upcased (#:tiny (string-upcase (substring s 1))).
As LilyPond introduces a space between markups on a line, the second markup is translated to
the left (#:translate (cons -0.6 0) ...). Then, the markups built for each token are put in
a line by (make-line-markup ...). Finally, the resulting markup is passed to the interpret-
markup function, with the layout and props arguments.

Note: there is now an internal command \smallCaps which can be used to set text in small
caps. See Section 8.1.8 [Overview of text markup commands|, page 179, for details.

12.4.4 New markup list command definition

Markup list commands are defined with the define-markup-list-command Scheme macro,
which is similar to the def ine-markup-command macro described in Section 12.4.3 [New markup
command definition|, page 311, except that where the later returns a single stencil, the former

returns a list stencils.

In the following example, a \paragraph markup list command is defined, which returns a
list of justified lines, the first one being indented. The indent width is taken from the props
argument.

#(define-markup-list-command (paragraph layout props args) (markup-list?)
(let ((indent (chain-assoc-get 'par-indent props 2)))
(interpret-markup-list layout props
(make-justified-lines-markup-list (cons (make-hspace-markup indent)

args)))))

Besides the usual layout and props arguments, the paragraph markup list command takes
a markup list argument, named args. The predicate for markup lists is markup-1ist?.

First, the function gets the indent width, a property here named par-indent, from the prop-
erty list props If the property is not found, the default value is 2. Then, a list of justified
lines is made using the make-justified-lines-markup-list function, which is related to the
\justified-lines built-in markup list command. An horizontal space is added at the begin-
ing using the make-hspace-markup function. Finally, the markup list is interpreted using the
interpret-markup-list function.

This new markup list command can be used as follows:

\markuplines {

\paragraph {
The art of music typography is called \italic {(plate) engraving.}
The term derives from the traditional process of music printing.
Just a few decades ago, sheet music was made by cutting and stamping
the music into a zinc or pewter plate in mirror image.

}

\override-lines #'(par-indent . 4) \paragraph {
The plate would be inked, the depressions caused by the cutting
and stamping would hold ink. An image was formed by pressing paper
to the plate. The stamping and cutting was completely done by
hand.

X

12.5 Contexts for programmers



Chapter 12: Interfaces for programmers 314

12.5.1 Context evaluation
Contexts can be modified during interpretation with Scheme code. The syntax for this is
\applyContext function

function should be a Scheme function taking a single argument, being the context to apply
it to. The following code will print the current bar number on the standard output during the
compile:

\applyContext
#(lambda (x)
(format #t "\nWe were called in barnumber ~a.\n"
(1y:context-property x 'currentBarNumber)))

12.5.2 Running a function on all layout objects

The most versatile way of tuning an object is \applyOutput. Its syntax is
\applyOutput context proc

where proc is a Scheme function, taking three arguments.

When interpreted, the function proc is called for every layout object found in the context
context, with the following arguments:

e the layout object itself,
e the context where the layout object was created, and
e the context where \applyQutput is processed.

In addition, the cause of the layout object, i.e., the music expression or object that was
responsible for creating it, is in the object property cause. For example, for a note head, this is

a NoteHead event,
and for a Stem object,
thisis a NoteHead
object.

Here is a function to use for \applyOutput; it blanks note-heads on the center-line:
(define (blanker grob grob-origin context)
(if (and (memq (ly:grob-property grob 'interfaces)
note-head-interface)
(eq? (ly:grob-property grob 'staff-position) 0))
(set! (ly:grob-property grob 'transparent) #t)))

12.6 Scheme procedures as properties

Properties (like thickness, direction, etc.) can be set at fixed values with \override, e.g.
\override Stem #'thickness = #2.0
Properties can also be set to a Scheme procedure,
\override Stem #'thickness = #(lambda (grob)
(if (= UP (ly:grob-property grob 'direction))
2.0

7.0))
cbagbaghb




Chapter 12: Interfaces for programmers 315

In this case, the procedure is executed as soon as the value of the property is requested during
the formatting process.

Most of the typesetting engine is driven by such callbacks. Properties that typically use
callbacks include

stencil  The printing routine, that constructs a drawing for the symbol
X-offset The routine that sets the horizontal position
X-extent The routine that computes the width of an object

The procedure always takes a single argument, being the grob.

If routines with multiple arguments must be called, the current grob can be inserted with a
grob closure. Here is a setting from AccidentalSuggestion,

(X-offset
, (1y:make-simple-closure
<+
, (ly :make-simple-closure
(1ist ly:self-alignment-interface::centered-on-x-parent))
, (ly:make-simple-closure
(1ist ly:self-alignment-interface::x-aligned-on-self)))))
In this example, both ly:self-alignment-interface::x-aligned-on-self and ly:self-
alignment-interface: :centered-on-x-parent are called with the grob as argument. The
results are added with the + function. To ensure that this addition is properly executed, the
whole thing is enclosed in 1y:make-simple-closure.

In fact, using a single procedure as property value is equivalent to
(ly :make-simple-closure (ly:make-simple-closure (list proc)))

The inner ly:make-simple-closure supplies the grob as argument to proc, the outer ensures
that result of the function is returned, rather than the simple-closure object.



Chapter 13: Running LilyPond 316

13 Running LilyPond

This chapter details the technicalities of running LilyPond.

Some of these commands are run from the command-line. By
‘command-line’, we mean the command line in  the operating Sys-
tem. Windows  users  might be  more  familiar  with  the  terms
‘DOS shell’ or ‘com-
mand  shell’; OSX  wusers might be more familiar with  the  terms
‘terminal’ or ‘console’.

OSX users should also consult Section 13.2 [Notes for the MacOS X app|, page 320.

Describing how to use this part of an operating system is outside the scope of this manual;
please consult other documentation on this topic if you are unfamiliar with the command-line.

13.1 Invoking lilypond

The 1ilypond executable may be called as follows from the command line.
lilypond [option]... file...

When invoked with a filename that has no extension, the ‘.1y’ extension is tried first. To
read input from stdin, use a dash (-) for file.

When ‘filename.ly’ is processed it will produce ‘filename.tex’ as output (or ‘filename.ps’
for PostScript output). If ‘filename.ly’ contains more than one \score block, then the rest of
the scores will be output in numbered files, starting with ‘filename-1.tex’. Several files can
be specified; they will each be processed independently.!

13.1.1 Command line options
The following options are supported:
-e,-—evaluate=expr

Evaluate the Scheme expr before parsing any .1y’ files. Multiple -e options may
be given, they will be evaluated sequentially.

The expression will be evaluated in the guile-user module, so if you want to use
definitions in expr, use

lilypond -e '(define-public a 42)'
on the command-line, and include
#(use-modules (guile-user))
at the top of the .1y file.
-f,-—format=format
which formats should be written. Choices for format are svg, ps, pdf, png, tex,
dvi.
Example: 1ilypond -fpng filename.ly
-d,--define-default=var=val

This sets the internal program option var to the Scheme value val. If val is not
supplied, then #t is used. To switch off an option, no- may be prefixed to var, e.g.

-dno-point-and-click

is the same as

1 The status of GUILE is not reset after processing a .1y file, so be careful not to change any system defaults
from within Scheme.



Chapter 13: Running LilyPond 317

—-dpoint-and-click="'#f"'

Here are a few interesting options.

‘help’

Running 1ilypond -dhelp will print all of the —-d options available.

‘paper-size’

‘safe’

‘backend’

This option sets the default paper-size,
-dpaper-size=\"letter\"
Note that the string must be enclosed in escaped quotes ( \" ).

Do not trust the .1y input.

When LilyPond formatting is available through a web server, either the
--safe or the --jail option MUST be passed. The --safe option will
prevent inline Scheme code from wreaking havoc, for example

#(system "rm -rf /")
{
c4~#(1ly:export (ly:gulp-file "/etc/passwd"))

}
The -dsafe option works by evaluating in-line Scheme expressions
in a special safe module. This safe module is derived from GUILE
‘safe-rbrs’ module, but adds a number of functions of the LilyPond
API. These functions are listed in ‘scm/safe-1ily.scm’.

In addition, safe mode disallows \include directives and disables the
use of backslashes in TEX strings.

In safe mode, it is not possible to import LilyPond variables into Scheme.

safe does mot detect resource overuse. It is still possible to make the
program hang indefinitely, for example by feeding cyclic data structures
into the backend. Therefore, if using LilyPond on a publicly accessible
webserver, the process should be limited in both CPU and memory
usage.

The safe mode will prevent many useful LilyPond snippets from being

compiled. The --jail is a more secure alternative, but requires more
work to set up.

the output format to use for the back-end. Choices for format are

tex for TEX output, to be processed with LaTEX. If present, the
file ‘file.textmetrics’ is read to determine text extents.

texstr dump text strings to ‘.texstr’ file, which can be run
through (La)TgX, resulting in a .textmetrics file, which
contains the extents of strings of text. Warning: this func-
tionality is currently missing due to heavy restructuring of
the source code.

ps for PostScript.

Postscript files include TTF, Typel and OTF fonts. No
subsetting of these fonts is done. When using oriental char-
acter sets, this can lead to huge files.

eps for encapsulated PostScript. This dumps every page (sys-
tem) as a separate ‘EPS’ file, without fonts, and as one col-
lated ‘EPS’ file with all pages (systems) including fonts.

This mode is used by default by lilypond-book.



Chapter 13: Running LilyPond 318

-h,--help

Svg for SVG (Scalable Vector Graphics). This dumps every
page as a separate ‘SVG’ file, with embedded fonts. You
need a SVG viewer which supports embedded fonts, or a
SVG viewer which is able to replace the embedded fonts
with OTF fonts. Under Unix, you may use Inkscape (ver-
sion 0.42 or later), after copying the OTF fonts in direc-
tory ‘PATH/TO/share/lilypond/VERSION/fonts/otf/’ to
‘~/.fonts/’ .

scm for a dump of the raw, internal Scheme-based drawing com-
mands.

Example: 1ilypond -dbackend=svg filename.ly
‘preview’ Generate an output file containing the titles and the first system

‘print-pages’
Generate the full pages, the default. -dno-print-pages is useful in
combination with -dpreview.

Show a summary of usage.

-H,--header=FIELD

Dump a header field to file BASENAME.FIELD

--include, -I=directory

Add directory to the search path for input files.

-i,-—-init=file

Set init file to file (default: ‘init.1y’).

-o0,——output=FILE

--ps

—-—-dvi

--png

--pdf

Set the default output file to FILE. The appropriate suffix will be added (ie .pdf
for pdf, .tex for tex, etc).

Generate PostScript.

Generate DVI files. In this case, the TEX backend should be specified, i.e., -
dbackend=tex.

Generate pictures of each page, in PNG format. This implies ——ps. The resolution
in DPI of the image may be set with

—dresolution=110

Generate PDF. This implies —--ps.

-j,——jail=user,group, jail,dir

Run LilyPond in a chroot jail.

The --jail option provides a more flexible alternative to --safe when LilyPond
formatting is available through a web server or whenever LilyPond executes exter-
nally provided sources.

The --jail option works by changing the root of LilyPond to jail just before starting
the actual compilation process. The user and group are then changed to match those
provided, and the current directory is changed to dir. This setup guarantees that
it is not possible (at least in theory) to escape from the jail. Note that for --jail
to work LilyPond must be run as root, which is usually accomplished in a safe way
using sudo.


http://www.inkscape.org

Chapter 13: Running LilyPond 319

Setting up a jail is a slightly delicate matter, as we must be sure that LilyPond is
able to find whatever it needs to compile the source inside the jail. A typical setup
comprises the following items:

Setting up a separate filesystem

A separate filesystem should be created for LilyPond, so that it can be
mounted with safe options such as noexec, nodev, and nosuid. In this
way, it is impossible to run executables or to write directly to a device
from LilyPond. If you do not want to create a separate partition, just
create a file of reasonable size and use it to mount a loop device. A
separate filesystem also guarantees that LilyPond cannot write more
space than it is allowed.

Setting up a separate user

A separate user and group (say, ‘lily’/‘lily’) with low privileges
should be used to run LilyPond inside the jail. There should be a
single directory writable by this user, which should be passed in dir.

Preparing the jail

LilyPond needs to read a number of files while running. All these files
are to be copied into the jail, under the same path they appear in the
real root filesystem. The entire content of the LilyPond installation
(e.g., ‘/usr/share/lilypond’) should be copied.

If problems arise, the simplest way to trace them down is to run Lily-
Pond using strace, which will allow you to determine which files are
missing.

Running LilyPond

-v,—--version

In a jail mounted with noexec it is impossible to execute any external
program. Therefore LilyPond must be run with a backend that does
not require any such program. As we already mentioned, it must be
also run with superuser privileges (which, of course, it will lose imme-
diately), possibly using sudo. It is a good idea to limit the number of
seconds of CPU time LilyPond can use (e.g., using ulimit -t), and, if
your operating system supports it, the amount of memory that can be
allocated.

Show version information.

-V,--verbose

Be verbose: show full paths of all files read, and give timing information.

-w,--warranty

Show the warranty with which GNU LilyPond comes. (It comes with NO WAR-

RANTY!)

13.1.2 Environment variables

Lilypond recognizes the following environment variables:

LILYPOND_DATADIR

This specifies a directory where locale messages and data files will be looked up by
default. The directory should contain subdirectories called ‘1y/’, ‘ps/’, ‘tex/’, etc.

LANG This selects the language for the warning messages.



Chapter 13: Running LilyPond 320

LILYPOND_GC_YIELD
With this variable the memory footprint and performance can be adjusted. It is a
percentage tunes memory management behavior. With higher values, the program
uses more memory, with smaller values, it uses more CPU time. The default value
is 70.

13.2 Notes for the MacOS X app

The scripts (such as lilypond-book, convert-ly, abc2ly, and even lilypond itself) are also included
inside MacOS X .app. They can be run from the command line by invoking them directly, e.g.

path/to/LilyPond.app/Contents/Resources/bin/lilypond

The same is true of the other scripts in that directory, including lilypond-book, convert-ly,
abc2ly, etc.

Alternatively, you may create scripts which add the path automatically. Create a directory
to store these scripts,

mkdir -p “/bin
cd “/bin
Create a file called 1ilypond which contains
exec path/to/LilyPond.app/Contents/Resources/bin/lilypond "$@"

Create similar files 1ilypond-book, convert-1ly, and any other helper programs you use
(abc2ly, midi2ly, etc). Simply replace the bin/lilypond with bin/convert-1y (or other
program name) in the above file.

Make the file executable,
chmod u+x lilypond

Now, add this directory to your path. Modify (or create) a file called .profile in your home
directory such that it contains

export PATH=$PATH:~/bin
This file should end with a blank line.
Note that path/to will generally be /Applications/.

13.3 Updating with convert-ly

The LilyPond input syntax is routinely changed to simplify it or improve it in different ways.
As a side effect of this, the LilyPond interpreter often is no longer compatible with older input
files. To remedy this, the program convert-1ly can be used to deal with most of the syntax
changes between LilyPond versions.

It uses \version statements in the input files to detect the old version number. In most
cases, to upgrade your input file it is sufficient to run?

convert-ly -e myfile.ly

If there are no changes to myfile.ly and file called myfile.ly. NEW is created, then myfile.ly is
already updated.

convert-1ly always converts up to the last syntax change handled by it. This means that
the \version number left in the file is usually lower than the version of convert-1ly itself.

To upgrade LilyPond fragments in texinfo files, use
convert-ly —--from=... --to=... --no-version *.itely

To see the changes in the LilyPond syntax between two versions, use

2 MacOS X users may execute this command under the menu entry ‘Compile > Update syntax’.



Chapter 13: Running LilyPond 321

convert-ly -—-from=... --to=... -s

To upgrade many files at once, combine convert-1ly with standard unix commands. This
example will upgrade all .1y files in the current directory

for £ in *.ly; do convert-ly -e $f; done;
In general, the program is invoked as follows:
convert-ly [option]... file...

The following options can be given:

-e,——edit
Do an inline edit of the input file. Overrides ——output.

-f,-—from=from-patchlevel
Set the version to convert from. If this is not set, convert-1y will guess this, on
the basis of \version strings in the file.

-n,--no-version
Normally, convert-1y adds a \version indicator to the output. Specifying this
option suppresses this.

-8, ——show-rules
Show all known conversions and exit.

--to=to-patchlevel
Set the goal version of the conversion. It defaults to the latest available version.

-h, —-help
Print usage help.

Bugs
Not all language changes are handled. Only one output option can be specified. Automatically

updating scheme and lilypond scheme interfaces is quite unlikely; be prepared to tweak scheme
code manually.

There are a few things that the convert-ly cannot handle. Here's a list of
limitations
that the community has complained about.

This bug report structure has been chosen because convert-ly has a structure
that doesn't

allow to smoothly implement all needed changes. Thus this is just a wishlist,
placed

here for reference.

1.6->2.0:

Doesn't always convert figured bass correctly, specifically things like {<

>}. Mats' comment on working around this:
To be able to run convert-ly
on it, I first replaced all occurencies of '{<' to some dummy like '{#'
and similarly I replaced '>}' with '&}'. After the conversion, I could
then change back from '{ #' to '{ <' and from '& }' to '> }'.

Doesn't convert all text markup correctly. In the old markup syntax,

it was possible to group a number of markup commands together within

parentheses, e.g.



Chapter 13: Running LilyPond 322

-#'((bold italic) "string")
This will incorrectly be converted into
-\markup{{\bold italic} "string"}
instead of the correct
—\markup{\bold \italic "string"}
2.0->2.2:
Doesn't handle \partcombine
Doesn't do \addlyrics => \lyricsto, this breaks some scores with multiple
stanzas.
2.0->2.4:
\magnify isn't changed to \fontsize.
- \magnify #m => \fontsize #f, where f = 61ln(m)/1n(2)
remove-tag isn't changed.
- \applyMusic #(remove-tag '. . .) => \keepWithTag #'.
first-page-number isn't changed.
- first-page-number no => print-first-page-number = ##f
Line breaks in header strings aren't converted.
- \\\\ as line break in \header strings => \markup \center-align <
"First Line" "Second Line" >
Crescendo and decrescendo terminators aren't converted.

- \rced => \!
- \rc => \!
2.2->2.4:

\turnOff (used in \set Staff.VoltaBracket = \turnOff) is not properly
converted.

2.4.2->2.5.9

\markup{ \center-align <{ ... }> } should be converted to:
\markup{ \center-align {\line { ... }} }

but now, \line is missing.
2.4->2.6

Special LaTeX characters such as $°$ in text are not converted to UTF8.
2.8

\score{} must now begin with a music expression. Anything else
(particularly \header{}) must come after the music.

13.4 Reporting bugs

If you have input that results in a crash or an erroneous output, then that is a bug. There is a

list of current bugs on our google bug tracker,
http://code.google.com/p/lilypond/issues/list

If you have discovered a bug which is not listed, please report the bug by following the
directions on

http://lilypond.org/web/devel/participating/bugs

Please construct submit Section 4.6 [Minimal examples|, page 49, of bug reports. We do not
have the resources to investigate reports which are not as small as possible.

13.5 Error messages

Different error messages can appear while compiling a file:

Warning  Something looks suspect. If you are requesting something out of the ordinary then
you will understand the message, and can ignore it. However, warnings usually
indicate that something is wrong with the input file.


http://code.google.com/p/lilypond/issues/list
http://lilypond.org/web/devel/participating/bugs

Chapter 13: Running LilyPond 323

Error Something is definitely wrong. The current processing step (parsing, interpreting,
or formatting) will be finished, but the next step will be skipped.

Fuatal error
Something is definitely wrong, and LilyPond cannot continue. This happens rarely.
The most usual cause is misinstalled fonts.

Scheme error
Errors that occur while executing Scheme code are caught by the Scheme inter-
preter. If running with the verbose option (-V or --verbose) then a call trace of
the offending function call is printed.

Programming error
There was some internal inconsistency. These error messages are intended to help
the programmers and debuggers. Usually, they can be ignored. Sometimes, they
come in such big quantities that they obscure other output. In this case, file a
bug-report.

Aborted (core dumped)
This signals a serious programming error that caused the program to crash. Such
errors are considered critical. If you stumble on one, send a bug-report.

If warnings and errors can be linked to some part of the input file, then error messages have
the following form

filename :lineno:columnno: message
offending input line

A line-break is inserted in the offending line to indicate the column where the error was
found. For example,

test.ly:2:19: error: not a duration: 5:
{c'4e's
g' ¥
These locations are LilyPond’s best guess about where the warning or error occurred, but
(by their very nature) warnings and errors occur when something unexpected happens. If you
can’t see an error in the indicated line of your input file, try checking one or two lines above the
indicated position.

13.6 Editor support
There is support from different editors for LilyPond.

Emacs Emacs has a ‘lilypond-mode’, which provides keyword autocompletion, indenta-
tion, LilyPond specific parenthesis matching and syntax coloring, handy compile
short-cuts and reading LilyPond manuals using Info. If ‘lilypond-mode’ is not
installed on your platform, then read the installation instructions.

VIM

For VIM, a ‘vimrc’ is supplied, along with syntax coloring tools. For more informa-
tion, refer to the installation instructions.

LilyPondTool
Created as a plugin for the jEdit text editor, LilyPondTool is the most feature-
rich text-based tool for editing LilyPond scores. Its features include a Document
Wizard with lyrics support to set up documents easier, and embedded PDF viewer
with advanced point-and-click support. For screenshots, demos and installation
instructions, visit http://lilypondtool.organum.hu


http://www.vim.org
http://www.jedit.org
http://lilypondtool.organum.hu

Chapter 13: Running LilyPond 324

All these editors can be made to jump into the input file to the source of a symbol in the
graphical output. See Section 13.7 [Point and click], page 324.

In addition, several other text editors provide some support for LilyPond, including
TexShop  The TexShop editor for Mac OS X can be extended to run LilyPond, lilypond-book

and convert-ly from within the editor, using the extensions available at http://www
.dimi.uniud.it/vitacolo/freesoftware.html.

13.7 Point and click

Point and click lets you find notes in the input by clicking on them in the PDF viewer. This
makes it easier to find input that causes some error in the sheet music.

When this functionality is active, LilyPond adds hyperlinks to the PDF file. These hyperlinks
are sent to the web-browser, which opens a text-editor with the cursor in the right place.

To make this chain work, you should configure your PDF viewer to follow hyperlinks using
the ‘1ilypond-invoke-editor’ script supplied with LilyPond.

For Xpdf on Unix, the following should be present in ‘xpdfrc’
urlCommand "lilypond-invoke-editor %s"

The program ‘lilypond-invoke-editor’ is a small helper program. It will invoke an editor
for the special textedit URIs, and run a web browser for others. It tests the environment
variable EDITOR for the following patterns,
emacs this will invoke

emacsclient —-—no-wait +line:column file

vim this will invoke

gvim --remote +:line:normchar file

nedit this will invoke
nc —noask +line file'
The environment variable LYEDITOR is used to override this. It contains the command line to

start the editor, where %(file)s, %(column)s, %(1line)s is replaced with the file, column and
line respectively. The setting

emacsclient --no-wait +%(line)s:%(column)s %(file)s
for LYEDITOR is equivalent to the standard emacsclient invocation.

The point and click links enlarge the output files significantly. For reducing the size of PDF
and PS files, point and click may be switched off by issuing

#(ly:set-option 'point-and-click #f)
in a ‘.1y’ file. Alternately, you may pass this as an command-line option

lilypond -dno-point-and-click file.ly

3 On unix, this file is found either in ‘/etc/xpdfrc’ or as ‘.xpdfrc’ in your home directory.


http://www.uoregon.edu/~koch/texshop/index.html
http://www.dimi.uniud.it/vitacolo/freesoftware.html
http://www.dimi.uniud.it/vitacolo/freesoftware.html

Chapter 14: 1ilypond-book: Integrating text and music 325

14 lilypond-book: Integrating text and music

If you want to add pictures of music to a document, you can simply do it the way you would do
with other types of pictures. The pictures are created separately, yielding PostScript output or
PNG images, and those are included into a IXTEX or HTML document.

lilypond-book provides a way to automate this process: This program extracts snippets of
music from your document, runs 1ilypond on them, and outputs the document with pictures
substituted for the music. The line width and font size definitions for the music are adjusted to
match the layout of your document.

This procedure may be applied to KTEX, HTML, Texinfo or DocBook documents.

14.1 An example of a musicological document

Some texts contain music examples. These texts are musicological treatises, songbooks, or
manuals like this. Such texts can be made by hand, simply by importing a PostScript figure
into the word processor. However, there is an automated procedure to reduce the amount of
work involved in HTML, IXTEX, Texinfo and DocBook documents.

A script called 1ilypond-book will extract the music fragments, format them, and put back
the resulting notation. Here we show a small example for use with I¥TEX. The example also
contains explanatory text, so we will not comment on it further.

\documentclass [adpaper]{article}
\begin{document}

Documents for Qcommand{lilypond-book} may freely mix music and text.
For example,

\begin{lilypond}
\relative c' {
c2 g'2 \times 2/3 { f8 e d } c'2 g4
}
\end{1lilypond}

Options are put in brackets.

\begin[fragment,quote,staffsize=26,verbatim]{1ilypond}
c'4 f16
\end{1lilypond}

Larger examples can be put into a separate file, and introduced with
\verb+\lilypondfile+.

\lilypondfile[quote,noindent]{screech-boink.ly}

\end{document}
Under Unix, you can view the results as follows

cd input/tutorial

mkdir -p out/

lilypond-book --output=out --psfonts lilybook.tex
lilypond-book (GNU LilyPond) 2.6.0

Reading lilybook.tex...



Chapter 14: 1ilypond-book: Integrating text and music 326

..lots of stuff deleted..
Compiling out/lilybook.tex. ..
cd out

latex lilybook

lots of stuff deleted

xdvi lilybook

To convert the file into a PDF document, run the following commands

dvips -o -Ppdf -h lilybook.psfonts lilybook
ps2pdf lilybook.ps

If you are running latex in twocolumn mode, remember to add -t landscape to the dvips
options.

Running 1ilypond-book and latex creates a lot of temporary files, which would clutter up
the working directory. To remedy this, use the ——output=dir option. It will create the files in
a separate subdirectory ‘dir’.

Running dvips will produce many warnings about fonts. They are not harmful; please ignore
them.

Finally the result of the IXTEX example shown above.! This finishes the tutorial section.

1 This tutorial is processed with Texinfo, so the example gives slightly different results in layout.



Chapter 14: 1ilypond-book: Integrating text and music

327

Documents for 1ilypond-book may freely mix music and text. For example,

() . 3
)" 4 | |
4\ r £) | 7 |
[ fan YA W] -~ | | ‘
ANV, e ‘ |
[Y) !

-~

Options are put in brackets.

c'4 £16

N
-

ey

A\3V/

e

[y,

Larger examples can be put into a separate file, and introduced with \1ilypondfile.

Screech and boink
Random complex notation

!

Han-Wen Nienhuys
—_—
AN VD Q | 1 —
:}V (& ] |
3

0

N
¥

S=

(@ NI =

re




Chapter 14: 1ilypond-book: Integrating text and music 328

14.2 Integrating BETpX and music

XTEX is the de-facto standard for publishing layouts in the exact sciences. It is built on top of
the TEX typesetting engine, providing the best typography available anywhere.

See The Not So Short Introduction to ETEX for an overview on how to use IMTEX.
Music is entered using

\begin[options,go,here]{lilypond}
YOUR LILYPOND CODE
\end{1lilypond}

or
\lilypondfile[options,go,here]l{filename}
or
\1lilypond{ YOUR LILYPOND CODE }
Running 1ilypond-book yields a file that can be further processed with KXTEX.
We show some examples here. The lilypond environment

\begin[quote,fragment,staffsize=26]{lilypond}
c'd' e' f' g'2 g'2
\end{1lilypond}

produces

N |®

p—

t@*:

o @

The short version
\lilypond[quote,fragment,staffsize=11]{<c' e' g'>}

produces

LAt

Currently, you cannot include { or } within \1ilypond{}, so this command is only useful with
the fragment option.

The default line width of the music will be adjusted by examining the commands in the
document preamble, the part of the document before \begin{document}. The 1ilypond-book
command sends these to INTEX to find out how wide the text is. The line width for the music
fragments is then adjusted to the text width. Note that this heuristic algorithm can fail easily;
in such cases it is necessary to use the line-width music fragment option.

Each snippet will call the following macros if they have been defined by the user:
\preLilyPondExample called before the music
\postLilyPondExample called after the music

\betweenLilyPondSystem[1] is called between systems if 1i1ypond-book has split the snip-
pet into several postscript files. It must be defined as taking one parameter and will be passed the
number of files already included in this snippet. The default is to simply insert a \linebreak.

For printing the ITEX document you need a DVI to PostScript translator like dvips. To use
dvips to produce a PostScript file, add the following options to the dvips command line:


http://www.ctan.org/tex-archive/info/lshort/english/

Chapter 14: 1ilypond-book: Integrating text and music 329

-o -Ppdf -h file.psfonts
where the filepsfonts file is obtained from 1ilypond-book, See Section 14.7 [Invoking lilypond-
book], page 333, for details. PDF can then be produced with a PostScript to PDF translator
like ps2pdf (which is part of GhostScript). Running dvips will produce some warnings about
fonts; these are harmless and may be ignored.

If you are running latex in twocolumn mode, remember to add -t landscape to the dvips
options.

Sometimes it is useful to display music elements (such as ties and slurs) as if they continued
after the end of the fragment. This can be done by breaking the staff and suppressing inclusion
of the rest of the lilypond output.

In BTEX, define \betweenLilyPondSystem in such a way that inclusion of other systems is
terminated once the required number of systems are included. Since \betweenLilypondSystem
is first called after the first system, including only the first system is trivial.

\def\betweenlLilyPondSystem#1{\endinput}

\begin[fragment] {1lilypond}
c'INC e'( ¢c'” \break c' d) e f\)

\end{1lilypond}
If a greater number of systems is  requested, a TeX  conditional
must be used before the \endinput. In  this  example, replace

‘2’ by the number of systems you want in the output,
\def\betweenLilyPondSystem#1{
\ifnum##1<2\else\endinput\fi
}

Remember that the definition of \betweenLilyPondSystem is effective until TEX quits the
current group (such as the IXTEX environment) or is overridden by another definition (which is,
in most cases, for the rest of the document). To reset your definition, write

\let\betweenLilyPondSystem\undefined
in your LaTeX source.
This may be simplified by defining a TEX macro
\def\onlyFirstNSystems#1{
\def\betweenlLilyPondSystem##1{\ifnum##1<#1\else\endinput\fi}
}
and then saying only how many systems you want before each fragment,
\onlyFirstNSystems{3}
\begin{lilypond}...\end{1lilypond}
\onlyFirstNSystems{1}
\begin{lilypond}...\end{lilypond}

14.3 Integrating Texinfo and music

Texinfo is the standard format for documentation of the GNU project. An example of a Texinfo
document is this manual. The HTML, PDF, and Info versions of the manual are made from the
Texinfo document.

In the input file, music is specified with

@lilypond[options,go,here]
YOUR LILYPOND CODE
Q@end lilypond

or



Chapter 14: 1ilypond-book: Integrating text and music 330

@lilypond[options,go,here]{ YOUR LILYPOND CODE }
or
@lilypondfile[options,go,herel{filename}

When lilypond-book is run on it, this results in a Texinfo file (with extension ‘.texi’)
containing @image tags for HTML and info output. For the printed edition, the raw TEX output
of LilyPond is included in the main document.

We show two simple examples here. A 1ilypond environment

@lilypond[fragment]
Cl dl el f' g|2 gl
Q@end lilypond

produces
)4 | |
7\ r £} | |
[ (av YA W] = =
L= 4 L= 4

< o @

The short version
@lilypond[fragment,staffsize=11]{<c' e' g'>}

produces

LAt

Contrary to INTEX, @lilypond{...} does not generate an in-line image. It always gets a
paragraph of its own.

When using the Texinfo output format, 1ilypond-book also generates bitmaps of the music
(in PNG format), so you can make an HTML document with embedded music.

14.4 Integrating HTML and music

Music is entered using

<lilypond fragment relative=2>
\key c¢ \minor c4 es g2
</lilypond>

lilypond-book then produces an HTML file with appropriate image tags for the music frag-
ments:

0 1| .a

ANV I

e) |

For inline pictures, use <lilypond ... />, where the options are separated by a colon from
the music, for example

Some music in <lilypond relative=2: a b c/> a line of text.
To include separate files, say

<lilypondfile optionl option2 ...>filename</lilypondfile>



Chapter 14: 1ilypond-book: Integrating text and music 331

14.5 Integrating DocBook and music

For inserting LilyPond snippets it is good to keep the conformity of our DocBook document,
thus allowing us to use DocBook editors, validation etc. So we don’t use custom tags, only
specify a convention based on the standard DocBook elements.

Common conventions

For inserting all type of snippets we use the mediaobject and inlinemediaobject element, so
our snippets can be formatted inline or not inline. The snippet formatting options are always
provided in the role property of the innermost element (see in next sections). Tags are chosen
to allow DocBook editors format the content gracefully. The DocBook files to be processed with
lilypond-book should have the extension ‘.1lyxml’.

Including a LilyPond file

This is the most simple case. We must use the ‘.1y’ extension for the included file, and insert
it as a standard imageobject, with the following structure:

<mediaobject>
<imageobject>
<imagedata fileref="musicl.ly" role="printfilename" />
</imageobject>
</mediaobject>

Note that you can use mediaobject or inlinemediaobject as the outermost element as you
wish.

Including LilyPond code

Including LilyPond code is possible by using a programlisting, where the language is set to
lilypond with the following structure:
<inlinemediaobject>
<textobject>
<programlisting language="lilypond" role="fragment verbatim staffsize=16 ragged-rij
\context Staff \with {
\remove Time_signature_engraver
\remove Clef_engraver}
{ c4( fis) }
</programlisting>
</textobject>
</inlinemediaobject>

As you can see, the outermost element is a mediaobject or inlinemediaobject, and there
is a textobject containing the programlisting inside.

Processing the DocBook document

Running 1ilypond-book on our ‘. lyxml’ file will create a valid DocBook document to be further
processed with ‘.xm1’ extension. If you use dblatex, it will create a PDF file from this document
automatically. For HTML (HTML Help, JavaHelp etc.) generation you can use the official
DocBook XSL stylesheets, however, it is possible that you have to make some customization for
it.

14.6 Music fragment options

In the following, a ‘Lily-
Pond command’ refers to any command described in the previous sections which is handled by


http://dblatex.sourceforge.net

Chapter 14: 1ilypond-book: Integrating text and music 332

lilypond-book to produce a music snippet. For simplicity, LilyPond commands are only shown
in BTEX syntax.

Note that the option string is parsed from left to right; if an option occurs multiple times,
the last one is taken.

The following options are available for LilyPond commands:

staffsize=ht
Set staff size to ht, which is measured in points.

ragged-right
Produce ragged-right lines with natural spacing (i.e., ragged-right = ##t is added
to the LilyPond snippet). This is the default for the \1ilypond{} command if no
line-width option is present. It is also the default for the 1ilypond environment
if the fragment option is set, and no line width is explicitly specified.

packed Produce lines with packed spacing (i.e., packed = ##t is added to the LilyPond
snippet).

line-width

line-width=size\unit
Set line width to size, using unit as units. unit is one of the following strings: cm,
mm, in, or pt. This option affects LilyPond output (this is, the staff length of the
music snippet), not the text layout.

If used without an argument, set line width to a default value (as computed with a
heuristic algorithm).

If no line-width option is given, lilypond-book tries to guess a default for
lilypond environments which don’t use the ragged-right option.

notime Do not print the time signature, and turns off the timing (key signature, bar lines)
in the score.

fragment Make 1lilypond-book add some boilerplate code so that you can simply enter, say,
c'd
without \layout, \score, etc.

nofragment
Don’t add additional code to complete LilyPond code in music snippets. Since this
is the default, nofragment is redundant normally.

indent=size\unit
Set indentation of the first music system to size, using unit as units. unit is one of
the following strings: cm, mm, in, or pt. This option affects LilyPond, not the text
layout.

noindent Set indentation of the first music system to zero. This option affects LilyPond, not
the text layout. Since no indentation is the default, noindent is redundant normally.

quote Reduce line length of a music snippet by 2 % 0.4in
and put the output into a quotation  block. The  value
‘0.41in’ can be controlled with the exampleindent option.

exampleindent
Set the amount by which the quote option indents a music snippet.

relative

relative=n
Use relative octave mode. By default, notes are specified relative to middle C. The
optional integer argument specifies the octave of the starting note, where the default
1 is middle C.



Chapter 14: 1ilypond-book: Integrating text and music 333

LilyPond also uses 1ilypond-book to produce its own documentation. To do that, some
more obscure music fragment options are available.

verbatim The argument of a LilyPond command is copied to the output file and enclosed
in a verbatim block, followed by any text given with the intertext option (not
implemented yet); then the actual music is displayed. This option does not work
well with \1ilypond{} if it is part of a paragraph.

texidoc  (Only for Texinfo output.) If lilypond is called with the ‘--header=texidoc’
option, and the file to be processed is called ‘foo.1ly’, it creates a file ‘foo.texidoc’
if there is a texidoc field in the \header. The texidoc option makes 1ilypond-
book include such files, adding its contents as a documentation block right before
the music snippet.

Assuming the file ‘foo.1ly’ contains

\header {
texidoc = "This file demonstrates a single note."

}
{c'd4}

and we have this in our Texinfo document ‘test.texinfo’
@lilypondfile[texidoc]{foo.1ly}

the following command line gives the expected result

lilypond-book --process="lilypond --format=tex --tex \
--header=texidoc test.texinfo

Most LilyPond test documents (in the ‘input’ directory of the distribution) are
small ‘.1y’ files which look exactly like this.

printfilename
If a LilyPond input file is included with \1ilypondfile, print the file name right
before the music snippet. For HTML output, this is a link.

fontload This option includes fonts in all of the generated EPS-files for this snippet. This
should be used if the snippet uses any font that LaTeX cannot find on its own.

14.7 Invoking lilypond-book

lilypond-book produces a file with one of the following extensions: ‘.tex’, ‘.texi’, ‘.html’
or ‘.xml’, depending on the output format. All of ‘.tex’, ‘.texi’ and ‘.xml’ files need further
processing.

lilypond-book can also create a PSFONTS file, which is required by dvips to produce
Postscript and PDF files.

To produce PDF output from the lilypond-book file (here called yourfile.lytex) via LaTeX,
you should do

lilypond-book --psfonts yourfile.lytex
latex yourfile.tex
dvips -o -h yourfile.psfonts -Ppdf yourfile.dvi
ps2pdf yourfile.ps
The ‘.dvi’ file created by this process will not contain noteheads. This is normal; if you
follow the instructions, they will be included in the ‘.ps’ and ‘.pdf’ files.

To produce a PDF file through PDF(La)TeX, use

lilypond-book --pdf yourfile.pdftex
pdflatex yourfile.tex



Chapter 14: 1ilypond-book: Integrating text and music 334

To produce a Texinfo document (in any output format), follow the normal procedures for
Texinfo (this is, either call texi2dvi or makeinfo, depending on the output format you want
to create). See the documentation of Texinfo for further details.

lilypond-book accepts the following command line options:

-f format

--format=format
Specify the document type to process: html, latex, texi (the default) or docbook.
If this option is missing, 1ilypond-book tries to detect the format automatically.

The texi document type produces a Texinfo file with music fragments in the DVI
output only. For getting images in the HTML version, the format texi-html must
be used instead.

[Note: Currently, texi is the same as texi-html.]

-F filter

-—filter=filter
Pipe snippets through filter. lilypond-book will not —filter and —process at the
same time.

Example:

lilypond-book --filter='convert-ly --from=2.0.0 -' my-book.tely

-h
--help Print a short help message.

-I dir
—-include=dir

Add dir to the include path.

-o dir

—--output=dir
Place generated files in directory dir. Running lilypond-book generates lots of
small files that LilyPond will process. To avoid all that garbage in the source
directory use the ‘—-output’ command line option, and change to that directory
before running latex or makeinfo:

lilypond-book --output=out yourfile.lytex
cd out

--padding=amount
Pad EPS boxes by this much. amount is measured in milimeters, and is 3.0 by
default. This option should be used if the lines of music stick out of the right
margin.
The width of a tightly clipped systems can vary, due to notation elements that stick
into the left margin, such as bar numbers and instrument names. This option will
shorten each line and move each line to the right by the same amount.

-P process

—--process=command
Process LilyPond snippets using command. The default command is 1ilypond.
lilypond-book will not —filter and —process at the same time.

--psfonts
extract all PostScript fonts into ‘file.psfonts’ for dvips. This is necessary for
dvips -h file.psfonts.



Chapter 14: 1ilypond-book: Integrating text and music 335

-V
—--verbose
Be verbose.
-V
—--version
Print version information.

Bugs
The Texinfo command @pagesizes is not interpreted. Similarly, X TEX commands that change
margins and line widths after the preamble are ignored.

Only the first \score of a LilyPond block is processed.

14.8 Filename extensions

You can use any filename extension for the input file, but if you do not use the recommended
extension for a particular format you may need to manually specify the output format. See
Section 14.7 [Invoking lilypond-book], page 333, for details. Otherwise, 1ilypond-book auto-
matically selects the output format based on the input filename’s extension.

extension output format
‘. html’ HTML
‘Litely’ Texinfo
‘.latex’ ITEX
‘.lytex’ ETEX

‘. lyxml’ DocBook
‘.tely’ Texinfo
‘. tex’ BTEX
‘.texi’ Texinfo
‘.texinfo’ Texinfo

¢ xml’ HTML

14.9 Many quotes of a large score

If you need to quote many fragments of a large score, you can also use the clip systems feature,
see Section 10.1.5 [Extracting fragments of notation|, page 247.

14.10 Inserting LilyPond output into OpenOffice.org
LilyPond notation can be added to OpenOffice.org with OOoLilyPond

14.11 Imserting LilyPond output into other programs

To insert LilyPond output in other programs, use 1lilypond instead of 1ilypond-book. Each
example must be created individually and added to the document; consult the documentation
for that program. Most programs will be able to insert lilypond output in ‘PNG’, ‘EPS’, or ‘PDF’
formats.

To reduce the white space around your lilypond score, use the following options

\paper{
indent=0\mm
line-width=120\mm
oddFooterMarkup=##f
oddHeaderMarkup=##f
bookTitleMarkup = ##f


http://ooolilypond.sourceforge.net

Chapter 14: 1ilypond-book: Integrating text and music 336

scoreTitleMarkup = ##f
b

{ct}
To produce a useful ‘eps’ file, use

lilypond -dbackend=eps -dno-gs-load-fonts -dinclude-eps-fonts myfile.ly



Chapter 15: Converting from other formats 337

15 Converting from other formats

Music can be entered also by importing it from other formats. This chapter documents the tools
included in the distribution to do so. There are other tools that produce LilyPond input, for
example GUI sequencers and XML converters. Refer to the website for more details.

These are separate programs from lilypond itself, and are run on the command-line.

By ‘command-line’,
we mean the command line in the operating system. Windows users might be more familiar with
the terms ‘DOS shell’ or
‘command  shell’; OSX  users might be more familiar with the terms
‘terminal’ or ‘console’.

OSX users should also consult Section 13.2 [Notes for the MacOS X app]|, page 320.

Describing how to use this part of an operating system is outside the scope of this manual;
please consult other documentation on this topic if you are unfamiliar with the command-line.

15.1 Invoking midi2ly
midi2ly translates a Type 1 MIDI file to a LilyPond source file.

MIDI (Music Instrument Digital Interface) is a standard for digital instruments: it specifies
cabling, a serial protocol and a file format. The MIDI file format is a de facto standard format
for exporting music from other programs, so this capability may come in useful when importing
files from a program that has a convertor for a direct format.

midi2ly converts tracks into
and channels into Voice
contexts. Relative mode is used for pitches, durations are only written when necessary.

¢

It is possible to record a MIDI file using a digital keyboard, and then convert it to ‘.1ly’.
However, human players are not rhythmically exact enough to make a MIDI to LY conversion
trivial. When invoked with quantizing (-s and -d options) midi21y tries to compensate for these
timing errors, but is not very good at this. It is therefore not recommended to use midi21ly for
human-generated midi files.

It is invoked from the command-line as follows,
midi2ly [option]... midi-file

Note that by ‘command-
line’, we mean the command line of the operating system. See Chapter 15 [Converting from
other formats|, page 337, for more information about this.

The following options are supported by midi2ly.

-a, ——absolute-pitches
Print absolute pitches.

-d, ——duration-quant=DUR
Quantize note durations on DUR.

-e, ——explicit-durations
Print explicit durations.

-h,--help
Show summary of usage.

-k, --key=acc [:minor]
Set default key. acc > 0 sets number of sharps; acc < 0 sets number of flats. A
minor key is indicated by ‘:1’.

Staff


http://lilypond.org

Chapter 15: Converting from other formats 338

-0, ——output=file
Write output to file.

-s, ——-start-quant=DUR
Quantize note starts on DUR.

-t, ——allow-tuplet=DUR*NUM/DEN
Allow tuplet durations DUR*NUM /DEN.

-V, ——-verbose
Be verbose.
-v, ——version

Print version number.

-w, ——warranty
Show warranty and copyright.

-x, ——text-lyrics
Treat every text as a lyric.

Bugs

Overlapping notes in an arpeggio will not be correctly rendered. The first note will be read and
the others will be ignored. Set them all to a single duration and add phrase markings or pedal
indicators.

15.2 Invoking etf2ly

ETF (Enigma Transport Format) is a format used by Coda Music Technology’s Finale product.
etf21ly will convert part of an ETF file to a ready-to-use LilyPond file.

It is invoked from the command-line as follows.
etf2ly [option]... etf-file

Note that by ‘command-
line’, we mean the command line of the operating system. See Chapter 15 [Converting from
other formats|, page 337, for more information about this.

The following options are supported by etf2ly:

~h,--help
this help

-o0,——output=FILE
set output filename to FILE

-v,—--version
version information

Bugs

The list of articulation scripts is incomplete. Empty measures confuse etf2ly. Sequences of
grace notes are ended improperly.

15.3 Invoking musicxml2ly

MusicXML is an XML dialect for representing music notation.

musicxml2ly extracts the notes from part-wise MusicXML files, and writes it to a .ly file. It
is invoked from the command-line.


http://www.recordarde.com/xml.html

Chapter 15: Converting from other formats 339

Note that by ‘command-
line’, we mean the command line of the operating system. See Chapter 15 [Converting from
other formats|, page 337, for more information about this.

The following options are supported by musicxml21ly:

-h,--help
print usage and option summary.

-o,--output=file
set output filename to file. (default: print to stdout)

-v,—--version
print version information.

15.4 Invoking abc2ly
ABC is a fairly simple ASCII based format. It is described at the ABC site:
http://www.walshaw.plus.com/abc/abc2mtex/abc. txt.
abc2ly translates from ABC to LilyPond. It is invoked as follows:
abc2ly [option]... abc-file
The following options are supported by abc2ly:

-h,--help
this help

-0,-—output=file
set output filename to file.

-v,--version
print version information.

There is a rudimentary facility for adding LilyPond code to the ABC source file. If you say:
%ALY voices \set autoBeaming = ##f

This will cause the text following the keyword
to be inserted into the current voice of the LilyPond output file.

Similarly,
%WLY slyrics more words
will cause the text following the
keyword to be inserted into the current line of lyrics.
Bugs

The ABC standard is not very
dard’. For extended features (e.g., polyphonic music) different conventions exist.

Multiple tunes in one file cannot be converted.
ABC synchronizes words and notes at the beginning of a line; abc21ly does not.

abc2ly ignores the ABC beaming.

‘slyrics’

‘stan-


http://www.walshaw.plus.com/abc/abc2mtex/abc.txt

Chapter 15: Converting from other formats 340

15.5 Generating LilyPond files

LilyPond itself does not come with support for any other formats, but there are some external
tools that also generate LilyPond files.

These tools include
e Denemo, a graphical score editor.
e Rumor, a realtime monophonic MIDI to LilyPond converter.
e lyqi, an Emacs major mode.
e xml2ly, which imports MusicXML
e Notekdit which imports MusicXML
e Rosegarden, which imports MIDI
e FOMUS, a LISP library to generate music notation


http://denemo.sourceforge.net/
http://www.volny.cz/smilauer/rumor/rumor.html
http://nicolas.sceaux.free.fr/lilypond/lyqi.html
http://www.nongnu.org/xml2ly/
http://www.musicxml.com/xml.html
http://noteedit.berlios.de
http://www.musicxml.com/xml.html
http://www.rosegardenmusic.com
http://common-lisp.net/project/fomus/

Appendix A: Literature list 341

Appendix A Literature list

If you need to know more about music notation, here are some interesting titles to read.

Ignatzek 1995
Klaus Ignatzek, Die Jazzmethode fr Klavier. Schott’s Shne 1995. Mainz, Germany
ISBN 3-7957-5140-3.

A tutorial introduction to playing Jazz on the piano. Omne of the first chapters
contains an overview of chords in common use for Jazz music.

Gerou 1996
Tom Gerou and Linda Lusk, Essential Dictionary of Music Notation. Alfred Pub-
lishing, Van Nuys CA ISBN 0-88284-768-6.

A concise, alphabetically ordered list of typesetting and music (notation) issues,
covering most of the normal cases.

Read 1968
Gardner Read, Music Notation: A Manual of Modern Practice. Taplinger Publish-
ing, New York (2nd edition).

A standard work on music notation.

Ross 1987 Ted Ross, Teach yourself the art of music engraving and processing. Hansen House,
Miami, Florida 1987.

This book is about music engraving, i.e., professional typesetting. It contains di-
rections on stamping, use of pens and notational conventions. The sections on
reproduction technicalities and history are also interesting.

Schirmer 2001
The G.Schirmer/AMP Manual of Style and Usage. G.Schirmer/AMP, NY, 2001.
(This book can be ordered from the rental department.)

This manual specifically focuses on preparing print for publication by Schirmer. It
discusses many details that are not in other, normal notation books. It also gives a
good idea of what is necessary to bring printouts to publication quality.

Stone 1980
Kurt Stone, Music Notation in the Twentieth Century. Norton, New York 1980.
This book describes music notation for modern serious music, but starts out with a

thorough overview of existing traditional notation practices.

The source archive includes a more elaborate BibTEX bibliography of over 100 entries in
‘Documentation/bibliography/’. It is also available online from the website.



Appendix B: Scheme tutorial 342

Appendix B Scheme tutorial

LilyPond uses the Scheme programming language, both as part of the input syntax, and as
internal mechanism to glue modules of the program together. This section is a very brief
overview of entering data in Scheme. If you want to know more about Scheme, see http://www
.schemers.org.

The most basic thing of a language is data: numbers, character strings, lists, etc. Here is a
list of data types that are relevant to LilyPond input.

Booleans Boolean values are True or False. The Scheme for True is #t and False is #f.

Numbers Numbers are entered in the standard fashion, 1 is the (integer) number one, while
-1.5 is a floating point number (a non-integer number).

Strings Strings are enclosed in double quotes,
"this is a string"
Strings may span several lines
"this
is
a string"
Quotation marks and newlines can also be added with so-called escape sequences.
The string a said "b" is entered as
lla Said \llb\ll n

Newlines and backslashes are escaped with \n and \\ respectively.

In a music file, snippets of Scheme code are introduced with the hash mark #. So, the previous
examples translated in LilyPond are

##t ##f

#1 #-1.5

#"this is a string"
#"this

is

a string"

For the rest of this section, we will assume that the data is entered in a music file, so we add
#s everywhere.

Scheme can be used to do calculations. It uses prefiz syntax. Adding 1 and 2 is written as
(+ 1 2) rather than the traditional 1 + 2.

#(+ 1 2)
= #3

The arrow = shows that the result of evaluating (+ 1 2) is 3. Calculations may be nested;
the result of a function may be used for another calculation.

#(+ 1 (x 3 4))
= #(+ 1 12)
= #13

These calculations are examples of evaluations; an expression like (* 3 4) is replaced by its
value 12. A similar thing happens with variables. After defining a variable

twelve = #12

variables can also be used in expressions, here


http://www.schemers.org
http://www.schemers.org

Appendix B: Scheme tutorial 343

twentyFour = #(x 2 twelve)

the number 24 is stored in the variable twentyFour. The same assignment can be done in
completely in Scheme as well,

#(define twentyFour (* 2 twelve))
The name of a variable is also an expression, similar to a number or a string. It is entered as
#'twentyFour

The quote mark ' prevents the Scheme interpreter from substituting 24 for the twentyFour.
Instead, we get the name twentyFour.

This syntax will be used very frequently, since many of the layout tweaks involve assigning
(Scheme) values to internal variables, for example

\override Stem #'thickness = #2.6

This instruction adjusts the appearance of stems. The value 2.6 is put into the thickness
variable of a Stem object. thickness is measured relative to the thickness of staff lines, so
these stem lines will be 2.6 times the width of staff lines. This makes stems almost twice
as thick as their normal size. To distinguish between variables defined in input files (like
twentyFour in the example above) and variables of internal objects, we will call the lat-
ter ‘properties’ and
the former ‘identifiers.’
So, the stem object has a thickness property, while twentyFour is an identifier.

Two-dimensional offsets (X and Y coordinates) as well as object sizes (intervals with a left
and right point) are entered as pairs. A pair' is entered as (first . second) and, like symbols,
they must be quoted,

\override TextScript #'extra-offset = #'(1 . 2)

This assigns the pair (1, 2) to the extra-offset property of the TextScript object. These
numbers are measured in staff-spaces, so this command moves the object 1 staff space to the
right, and 2 spaces up.

The two elements of a pair may be arbitrary values, for example
# . 2)
#' (#t . #£)
#'("blah-blah" . 3.14159265)
A list is entered by enclosing its elements in parentheses, and adding a quote. For example,
#'(1 2 3)
#'(1 2 "string" #f)

We have been using lists all along. A calculation, like (+ 1 2) is also a list (containing the
symbol + and the numbers 1 and 2). Normally lists are interpreted as calculations, and the
Scheme interpreter substitutes the outcome of the calculation. To enter a list, we stop the
evaluation. This is done by quoting the list with a quote ' symbol. So, for calculations do not
use a quote.

Inside a quoted list or pair, there is no need to quote anymore. The following is a pair of
symbols, a list of symbols and a list of lists respectively,

#' (stem . head)
#' (staff clef key-signature)
#'((1) (2))

I Tn Scheme terminology, the pair is called cons, and its two elements are called car and cdr respectively.



Appendix C: Notation manual tables 344

Appendix C Notation manual tables

C.1 Chord name chart

The following charts shows two standard systems for printing chord names, along with the
pitches they represent.

Ignatzek (default) C Cm C+ C°
b3 5 b3 b5
Alternative {) C C C# C
:jl V] -g b_g "§- pv\v-g
pet  C' cm’ A o7 ISAY
atg € 7 F3b5H7 b3b5 47
Q\\Jv © b"s" -15 » -15»- bV«E»—
per  CP cm? cos c°
Ay P 347 ci5 47 735
;\JU * 45’- b"g" *r-‘g’_ Vb*;»—
Dt C° Ccm® c? cm?
alt g C° ch3 6 9 9 b3
g8 g 8 i3S
Def cm* cm' cm7h° 7o
Als 5 913 b3 cl1b3 c9 b3 b5 o7 b9
;\Jy b-c:b- b-:»- Vb-q - -©-
C7/1#9 C11 CW#H CB
o 749 11 9 #11 13
Am O ] H" Y T ; ﬁ I-q )-
bv -‘E.- s ©- -©-




Appendix C: Notation manual tables 345
7/411/b13 7/85/89 7/49/811 7/b13
Def C91#11:11 b13 C7#:|i5# #9 C7#:|i§1: #11 C11 b13
Alt C C C C
*0 ﬁ.["z" T s !":*
;\Jy -©- # -15»- ©- -©-
7/b9/b13 7/811 /\/9 7/b13
Def C11 bo b13 C9#:|¢11 C9 #7 C11 b13
Alt C C C C
0p be e N e
;\Jy -©- -15»- -45;- ©-
7/b9/b13 7/b9/13 /N9 /N\/13
bt b9 b13 “13 b9 " #7 “13 #7
Alt C C C C
34 [0 Il)<§>- | -
8} -45’- -1:D- “© -“©-
/\/411 7/b9/13 4 7/sus4
Def C # C cSus c7/sus
C9 #7 #11 C13 e} add4 5 C add4 57
M g I8 |
51 -©- -©- .‘e.p -(e.p
Def C9/sus4 Cadd9 Cmaddll
e C add4 579 C add9 gl;B addll
S 8 g

C.2 MIDI instruments

The following is a list of names that can be used for the midiInstrument property.

lead 7 (fifths)
lead 8 (bass+lead)

contrabass
tremolo strings

acoustic grand
bright acoustic

electric grand pizzicato strings pad 1 (new age)
honky-tonk orchestral strings pad 2 (warm)
electric piano 1 timpani pad 3 (polysynth)
electric piano 2 string ensemble 1 pad 4 (choir)
harpsichord string ensemble 2 pad 5 (bowed)
clav synthstrings 1 pad 6 (metallic)
celesta synthstrings 2 pad 7 (halo)
glockenspiel choir aahs pad 8 (sweep)

fx 1 (rain)
fx 2 (soundtrack)

voice oohs
synth voice

music box
vibraphone



Appendix C: Notation manual tables

marimba
xylophone
tubular bells
dulcimer
drawbar organ
percussive organ
rock organ
church organ
reed organ
accordion
harmonica
concertina

acoustic guitar (nylon)
acoustic guitar (steel)
electric guitar (jazz)
electric guitar (clean)
electric guitar (muted)

overdriven guitar
distorted guitar

guitar harmonics

acoustic bass

electric bass (finger)
electric bass (pick)

fretless bass

slap bass 1
slap bass 2
synth bass 1
synth bass 2
violin
viola

cello

C.3 List of colors

Normal colors

orchestra hit
trumpet
trombone

tuba

muted trumpet
french horn
brass section
synthbrass 1
synthbrass 2
soprano sax
alto sax

tenor sax
baritone sax
oboe

english horn
bassoon
clarinet
piccolo

flute

recorder

pan flute
blown bottle
shakuhachi
whistle
ocarina

lead 1 (square)
lead (sawtooth)
lead 3 (calliope)
lead (chiff)
lead 5 (charang)
lead 6 (voice)

D O W N

fx
fx
fx

(crystal)
(atmosphere)
(brightness)
fx 6 (goblins)

fx 7 (echoes)

fx 8 (sci-fi)
sitar

banjo

shamisen

koto

kalimba

bagpipe

fiddle

shanai

tinkle bell
agogo

steel drums
woodblock

taiko drum
melodic tom
synth drum
reverse cymbal
guitar fret noise
breath noise
seashore

bird tweet
telephone ring
helicopter
applause

gunshot

~N O O bW

Usage syntax is detailed in Section 8.5.7 [Coloring objects|, page 215.

black white red green
blue cyan magenta yellow
grey darkred darkgreen  darkblue
darkcyan darkmagenta darkyellow

X color names

X color names come several variants:

Any name that

‘light slate blue’).

The word
always be spelled
‘DarkSlateGray’).

is spelled as a single
‘LightSlateBlue’) can also be spelled as space separated words without capitalisation (e.g.

Some names can take a numerical suffix (e.g.

Salmon4’).

word  with

capitalisation

346

(e.g.

‘grey’ can
‘gray’ (e.g.



Appendix C: Notation manual tables 347
Color Names without a numerical suffix:

snow GhostWhite WhiteSmoke gainsboro FloralWhite
0ldLace linen AntiqueWhite PapayaWhip BlanchedAlmond
bisque PeachPuff NavajoWhite moccasin cornsilk

ivory LemonChiffon seashell honeydew MintCream

azure AliceBlue lavender LavenderBlush  MistyRose

white black DarkSlateGrey  DimGrey SlateGrey
LightSlateGrey grey LightGrey MidnightBlue navy

NavyBlue CornflowerBlue DarkSlateBlue SlateBlue MediumSlateBlue
LightSlateBlue MediumBlue RoyalBlue blue DodgerBlue
DeepSkyBlue SkyBlue LightSkyBlue SteelBlue LightSteelBlue
LightBlue PowderBlue PaleTurquoise  DarkTurquoise MediumTurquoise
turquoise cyan LightCyan CadetBlue MediumAquamarine
aquamarine DarkGreen DarkOliveGreen DarkSeaGreen SeaGreen
MediumSeaGreen LightSeaGreen PaleGreen SpringGreen LawnGreen
green chartreuse MediumSpringGreen GreenYellow LimeGreen
YellowGreen ForestGreen OliveDrab DarkKhaki khaki
PaleGoldenrod LightGoldenrodYellow LightYellow yellow gold
LightGoldenrod goldenrod DarkGoldenrod RosyBrown IndianRed
SaddleBrown sienna peru burlywood beige

wheat SandyBrown tan chocolate firebrick
brown DarkSalmon salmon LightSalmon orange
DarkOrange coral LightCoral tomato OrangeRed

red HotPink DeepPink pink LightPink
PaleVioletRed maroon MediumVioletRed VioletRed magenta

violet plum orchid MediumOrchid DarkOrchid
DarkViolet BlueViolet purple MediumPurple thistle
DarkGrey DarkBlue DarkCyan DarkMagenta DarkRed
LightGreen

Color names with a numerical suffix

In the following names the suffix N can be a number in the range 1-4:

snowN seashellN AntiqueWhiteN  bisquelN PeachPuffN
NavajoWhiteN LemonChiffonN  cornsilkN ivoryN honeydewN
LavenderBlushN MistyRoseN azureN SlateBlueN RoyalBlueN
blueN DodgerBlueN SteelBlueN DeepSkyBlueN SkyBlueN
LightSkyBlueN LightSteelBlueN LightBlueN LightCyanN PaleTurquoiseN
CadetBlueN turquoiseN cyanN aquamarineN DarkSeaGreenN
SeaGreenN PaleGreenN SpringGreenN greenlN chartreuseN
0liveDrabN DarkOliveGreenN khakiN LightGoldenrodN LightYellowN
yellowN goldN goldenrodN DarkGoldenrodN RosyBrownN
IndianRedN siennal burlywoodN wheatN tanN

chocolateN firebrickN brownN salmonN LightSalmonN
orangelN DarkOrangeN coralN tomatoN OrangeRedN
redN DeepPinkN HotPinkN pinkN LightPinkN
PaleVioletRedN maroonN VioletRedN magental orchidN

plumN MediumOrchidN  DarkOrchidN purpleN MediumPurpleN
thistleN

Grey Scale

A grey scale can be obtained using:



Appendix C: Notation manual tables 348

greyN
Where N is in the range 0-100.

C.4 The Feta font

The following symbols are available in the Emmentaler font and may be accessed directly using
text markup such as g~ \markup { \musicglyph #"scripts.segno" }, see Section 8.1.5 [Text
markup|, page 175.

space plus +
comma y hyphen -
period . zero 0
one 1 two 2
three 3 four 4
five 5 six 6
seven 7 eight 8
nine 9 f S
m m p p
r T s S
z z rests.o



Appendix C: Notation manual tables

rests.1

rests.lo

rests.M2

rests.2

rests.3

rests.5

rests.7

accidentals.sharp

.slashslash.stem

accidentals.sharp
.slashslashslash.stem

accidentals.natural

accidentals.flat.slash

accidentals
.mirroredflat.flat

accidentals
.mirroredflat.backslash

rests.0o

rests.M3

rests.M1

rests.2classical

rests.4

rests.6

accidentals.sharp

accidentals.sharp

.slashslashslash.stemstem

accidentals.sharp
.slashslash.stemstemstem

accidentals.flat

accidentals.flat

.slashslash

accidentals.mirroredflat

accidentals.flatflat

349



Appendix C: Notation manual tables

accidentals
.flatflat

accidentals.rightparen

arrowheads.

arrowheads.

arrowheads.

arrowheads.

.slash

open.01

open.11

close.01

close.1l1

dots.dot

noteheads

noteheads.

noteheads.

noteheads.

noteheads.

noteheads

.dM2

s0O

s2

sldiamond

sOtriangle

.ultriangle

%

accidentals.doublesharp

accidentals.leftparen

arrowheads.

arrowheads.

arrowheads

arrowheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads

noteheads

open.OM1

open.1M1

.close.OM1

close.1M1

uM2

sM1

sl

s0@diamond

s2diamond

.dltriangle

.u2triangle

350



Appendix C: Notation manual tables

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads

noteheads

d2triangle

slslash

sOcross

S2Cross

s0do

uldo

u2do

ulre

u2re

sOmi

s2mi

.dofa

.d1lfa

noteheads.

noteheads.

noteheads.

noteheads.

noteheads

noteheads

noteheads.

noteheads

noteheads

noteheads.

noteheads.

noteheads.

noteheads

351

sOslash /7
s2slash /
slcross <
s2xcircle ®
.d1do A
.d2do A
sOre —]
.dlre o
.d2re v
slmi °
uofa —
ulfa <
.u2fa -



Appendix C: Notation manual tables

noteheads.d2fa

noteheads.slla

noteheads.s0Oti

noteheads.dlti

noteheads.d2ti

scripts

scripts

scripts

scripts

scripts.

scripts.

scripts

scripts.

.dfermata

.dshortfermata

.dlongfermata

.dverylongfermata

sforzato

staccato

.dstaccatissimo

uportato

noteheads.s0Ola

noteheads.s2la

noteheads.ulti

noteheads.u2ti

scripts.

scripts.

scripts.

scripts.

scripts.

scripts

scripts.

scripts.

scripts

ufermata

ushortfermata

ulongfermata

uverylongfermata

thumb

.espr

ustaccatissimo

tenuto

.dportato

352



Appendix C: Notation manual tables

scripts.

scripts.

scripts.

scripts.

scripts.

scripts

scripts

scripts.

scripts

scripts.

scripts.

scripts.

scripts.

umarcato

open

upbow

reverseturn

trill

.dpedalheel

.dpedaltoe

segno

.varcoda

lcomma

lvarcomma

trill_element

arpeggio.arrow.l1

scripts

scripts.

scripts

scripts.

scripts.

scripts.

scripts.

scripts.

scripts.

scripts.

scripts.

scripts

.dmarcato

stopped

.downbow

turn

upedalheel

upedaltoe

flageolet

coda

rcomma

rvarcomma

arpeggio

.arpeggio

.arrow.M1

scripts

.trilelement

353



Appendix C: Notation manual tables 354

scripts.prall ~ scripts.mordent AV
scripts.prallprall M scripts.prallmordent e
scripts.upprall o scripts.upmordent M
scripts.pralldown wen scripts.downprall (.
scripts.downmordent (oA scripts.prallup YW
scripts.lineprall lwv scripts.caesura )
flags.u3 flags.u4

flags.u5 g flags.ub g
flags.d3 2 flags.ugrace

7
flags.dgrace ~ flags.d4 ﬂ
flags.d5 ? flags.d6 ?

clefs.C IB clefs.C change IB

clefs.F 9 clefs.F_change 9:



Appendix C: Notation manual tables 355

clefs.G clefs.G_change é)
clefs.percussion I clefs.percussion_change Il
clefs.tab i clefs.tab change 3{
B B
timesig.C44 C timesig.C22 (l}
pedal.* & pedal.M -
pedal.. . pedal.P X
pedal.d ) pedal.e 3
pedal.Ped P brackettips.up 7
brackettips.down ~ accordion.accDiscant @
accordion.accDot o accordion.accFreebase @
accordion.accStdbase @ accordion.accBayanbase g
accordion.accOldEE ® rests.M3neomensural 1|

rests.M2neomensural | rests.Mlneomensural 1



Appendix C: Notation manual tables

rests.

rests.

rests

rests

rests.

rests.

rests

Oneomensural

2neomensural

.4neomensural

.M2mensural

Omensural

2mensural

.4mensural

noteheads.sM3neomensural

noteheads.sMlneomensural

noteheads.s2harmonic

noteheads.slneomensural

noteheads.slmensural

noteheads.sM2mensural

rests.lneomensural

rests.3neomensural

rests.M3mensural

rests.Mlmensural

rests.lmensural

rests.3mensural

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

noteheads.

slneomensural

sM2neomensural

s@harmonic

sOneomensural

s2neomensural

sM3mensural

sMlmensural

356



Appendix C: Notation manual tables

noteheads.sOmensural

noteheads.s2mensural

noteheads.slpetrucci

noteheads
.svaticana.punctum

noteheads.svaticana
.linea.punctum

noteheads.svaticana
.inclinatum

noteheads
.svaticana.vlpes

noteheads
.svaticana.vupes

noteheads
.svaticana.vplica

noteheads.svaticana
.vepiphonus

noteheads.svaticana
.reverse.vplica

noteheads.svaticana
.cephalicus

noteheads.ssolesmes
.incl.parvum

noteheads.slmensural

noteheads.sOpetrucci

noteheads.s2petrucci

noteheads.svaticana
.punctum.cavum

noteheads.svaticana
.linea.punctum.cavum

noteheads.svaticana.lpes

noteheads.svaticana.upes

noteheads
.svaticana.plica

noteheads
.svaticana.epiphonus

noteheads.svaticana
.reverse.plica

noteheads.svaticana
.inner.cephalicus

noteheads
.svaticana.quilisma

noteheads
.ssolesmes.auct.asc

(=]

357



Appendix C: Notation manual tables 358

noteheads " noteheads.ssolesmes N
.ssolesmes.auct.desc .incl.auctum

noteheads R noteheads.ssolesmes s
.ssolesmes.stropha .stropha.aucta

noteheads " noteheads.smedicaea .
.ssolesmes.oriscus .inclinatum

noteheads s noteheads L
.smedicaea.punctum .smedicaea.rvirga

noteheads noteheads Y
.smedicaea.virga r .shufnagel.punctum

noteheads t noteheads.shufnagel. lpes -
.shufnagel.virga

clefs.vaticana.do ¢ clefs.vaticana.do_change ¢

clefs.vaticana.fa $ clefs.vaticana.fa change $

clefs.medicaea.do F clefs.medicaea.do_change k

clefs.medicaea.fa 1# clefs.medicaea.fa change ¢

clefs.neomensural.c ’F#‘ clefs.neomensural %4
.c_change

clefs.petrucci.cl E clefs.petrucci.cl change H

clefs.petrucci.c2 h clefs.petrucci.c2 change H



Appendix C: Notation manual tables

clefs

clefs

clefs.

clefs

clefs.

clefs

clefs.

clefs

clefs.

clefs.

clefs.

custodes.hufnagel.

custodes.hufnagel.

.petrucci.

.petrucci.

petrucci.

.mensural.

petrucci.

.mensural.

petrucci.

.mensural.

hufnagel

hufnagel.

hufnagel

.do

fa

.do.

fa

uo

u2

"

clefs.petrucci.

clefs.petrucci.

clefs.petrucci.

clefs.mensural.

clefs.petrucci.

clefs.mensural.

clefs.petrucci.

clefs.mensural

clefs.hufnagel

clefs.hufnagel.

clefs.hufnagel

.do.fa_change

c3_change

c4 change

c5 change

c_change

f change

f change

g _change

.g_change

.do_change

fa_change

custodes.hufnagel.ul

custodes.hufnagel.do

359

he i Bt



Appendix C: Notation manual tables

custodes.hufnagel.

custodes.medicaea.

custodes.medicaea.

custodes.medicaea

custodes.vaticana.

custodes.vaticana.

custodes.vaticana

custodes.mensural.

custodes.mensural.

custodes.mensural

accidentals.medicaeaMl

accidentals.vaticana0®

accidentals.mensuralMl

dl

uo

u2

.dl

uo

u2

.dl

uo

u2

.dl

custodes.hufnagel

custodes.medicaea.

custodes.medicaea

custodes.medicaea

custodes.vaticana.

custodes.vaticana

custodes.vaticana

custodes.mensural.

custodes.mensural

custodes.mensural

accidentals.vaticanaMl

accidentals.mensurall

accidentals.hufnagelMl

.d2

ul

.do

.d2

ul

.do

.d2

ul

.do

.d2

360



Appendix C: Notation manual tables

flags

flags

flags

flags

flags

flags.

flags

flags

flags

flags.

flags.

flags.

.mensuralu03

.mensuralu23

.mensuraldl3

.mensuralu®4

.mensuralu24

mensuraldl4

.mensuralu05

.mensuralu25

.mensuraldl5

mensuralu06

mensuralu26

mensuraldl6

—~n

flags.

flags.

flags.

flags.

flags.

flags.

flags.

flags.

flags.

flags.

flags.

flags.

mensuralul3

mensurald@3

mensurald23

mensuralul4d

mensuraldo4

mensurald24

mensuralul5

mensurald@5

mensurald25

mensuralul6

mensurald@6

mensurald26

N

361



Appendix

timesig

timesig

timesig

timesig

timesig.

timesig

timesig.

timesig.

timesig.

timesig.

timesig.

scripts.

scripts.

C: Notation manual tables

.mensural44

.mensural32

.mensural94

.mensural68

mensural48

.mensural24

neomensural2?2

neomensural64

neomensural34

neomensuralo98

neomensural68alt

ictus

daccentus

timesig

timesig

timesig

timesig

timesig

timesig.

timesig.

timesig.

timesig.

timesig.

timesig.

scripts.

scripts.

.mensural2?2

.mensural64

.mensural34

.mensuralos

.mensural68alt

neomensural44

neomensural32

neomensural94

neomensural68

neomensural48

neomensural24

uaccentus

usemicirculus

362



Appendix C: Notation manual tables 363

scripts.dsemicirculus . scripts.circulus
scripts.augmentum . scripts S
.usignumcongruentiae
scripts oo dots.dotvaticana
.dsignumcongruentiae 5

C.5 Note head styles

The following styles may be used for note heads.

default | baroque
[ | [ |
# & o o ol D © = =
FPrTe e et e TR TR
9 neomensural mensural
= = = e H =
B b a i BB
17 petrucci harmonic
| |
1;: & 0y 5 C : N o o
* 9 = =‘ lslp o o &
95 harmonic-black harmonic-mixed
|| ||
# T — * 3 ¥ o Q & Q
. 4 . 4 " QO e -
[ [
33 dllarrllond clrosls
* T oo o <= 3 $3 3
T T o | o | o x = 3 £3 £3
[ [
xcircle triangle
41 L |
1& o ® ® | — . Z— - — ——
Pt v g
49 slash




Appendix D: Templates 364

Appendix D Templates

This section of the manual contains templates with the LilyPond score already set up for you.
Just add notes, run LilyPond, and enjoy beautiful printed scores!

D.1 Single staff

D.1.1 Notes only

The first example gives you a staff with notes, suitable for a solo instrument or a melodic
fragment. Cut and paste this into a file, add notes, and you’re finished!

\version "2.11.15"
melody = \relative c' {
\clef treble
\key c \major
\time 4/4

ad bcd
+

\score {
\new Staff \melody
\layout { }
\midi {}

-
N (o]

P ddl

P

D.1.2 Notes and lyrics

The next example demonstrates a simple melody with lyrics. Cut and paste, add notes, then
words for the lyrics. This example turns off automatic beaming, which is common for vocal
parts. If you want to use automatic beaming, you’ll have to change or comment out the relevant
line.
\version "2.11.15"
melody = \relative c' {
\clef treble
\key c¢ \major
\time 4/4

ad b cd

text = \lyricmode {
Aaa Bee Cee Dee

¥

\score{
<<

\new Voice = "one" {



Appendix D: Templates 365

\autoBeamOff
\melody
}
\new Lyrics \lyricsto "one" \text
>>
\layout { }
\midi { }
}
o)
X r £}
[ [ YA W
ANV ||
JJ —= &

.‘.
AaaBee Cee Dee

D.1.3 Notes and chords

Want to prepare a lead sheet with a melody and chords? Look no further!

\version "2.11.15"
melody = \relative c' {
\clef treble
\key ¢ \major
\time 4/4

f4 e8[ c] d4 g |
a2 ~ a2 |
}

harmonies = \chordmode {
c4d:m f:min7 g:maj c:aug d2:dim b:sus

¥

\score {
<<
\new ChordNames {
\set chordChanges = ##t
\harmonies
}
\new Staff \melody
>>

\layout{ }
\midi { }

CmEmM’GEC+ D° B

f

r £}

| |
o L

D.1.4 Notes, lyrics, and chords.

This template allows you to prepare a song with melody, words, and chords.



Appendix D: Templates 366

\version "2.11.15"
melody = \relative c' {
\clef treble
\key c \major
\time 4/4

abcd

text = \lyricmode {
Aaa Bee Cee Dee

harmonies = \chordmode {
a2 c2

\score {
<<
\new ChordNames {
\set chordChanges = #it
\harmonies
}
\new Voice = "one" {
\autoBeamOff
\melody
}
\new Lyrics \lyricsto "one" \text
>>
\layout { }
\midi { }

A C

;:'J'L'

AaaBee Cee Dee

-
N (o]

P

D.2 Piano templates

D.2.1 Solo piano

Here is a simple piano staff.
\version "2.11.15"
upper = \relative c'' {

\clef treble
\key c \major
\time 4/4

abcd



Appendix D: Templates 367

lower = \relative c {

\clef bass
\key c \major
\time 4/4
a2 c
}
\score {
\new PianoStaff <<
\set PianoStaff.instrumentName = "Piano "
\new Staff = "upper" \upper
\new Staff = "lower" \lower
>>
\layout { }
\midi { }
}
) |
\y | o—|
|
. [J)
Piano

[,
N
p—
N (@

\

D.2.2 Piano and melody with lyrics

Here is a typical song format: one staff with the melody and lyrics, with piano accompaniment
underneath.

\version "2.11.15"
melody = \relative c'' {
\clef treble
\key ¢ \major
\time 4/4

abcd

text = \lyricmode {
Aaa Bee Cee Dee

¥

upper = \relative c'' {
\clef treble
\key c \major
\time 4/4

abcd



Appendix D: Templates 368

lower = \relative c {
\clef bass
\key c \major
\time 4/4

a2 c

}

\score {
<<
\new Voice = "mel" {
\autoBeamOff
\melody

}
\new Lyrics \lyricsto mel \text

\new PianoStaff <<
\new Staff = "upper" \upper
\new Staff = "lower" \lower
>>
>>
\layout {
\context { \RemoveEmptyStaffContext }
}
\midi { }

>

: —*

| |
Aaa Bee Cee Dee

> ¢

i
TN

¢

\ [ )
e
ole

-~

N (¢

\

D.2.3 Piano centered lyrics

Instead of having a full staff for the melody and lyrics, you can place the lyrics between the
piano staff (and omit the separate melody staff).

\version "2.11.15"
upper = \relative c'' {
\clef treble
\key c \major
\time 4/4

abcd



Appendix D: Templates 369

lower = \relative c {
\clef bass
\key c \major
\time 4/4

a2 c

text = \lyricmode {
Aaa Bee Cee Dee

\score {
\new GrandStaff <<
\new Staff = upper { \new Voice = "singer" \upper }
\new Lyrics \lyricsto "singer" \text
\new Staff = lower {
\clef bass
\lower
}
>>
\layout {
\context { \GrandStaff \accepts "Lyrics" }
\context { \Lyrics \consists "Bar_engraver" }
}
\midi { }

: —f

| |
Aaa Bee Cee Dee
|

rax |
—J feo I
Z \ W] 7]

D.2.4 Piano centered dynamics

Many piano scores have the dynamics centered between the two staves. This requires a bit of
tweaking to implement, but since the template is right here, you don’t have to do the tweaking
yourself.
\version "2.11.15"
upper = \relative c'' {
\clef treble
\key c \major
\time 4/4

abcd
lower = \relative c {

\clef bass
\key c \major



Appendix D: Templates

\time 4/4

a2 c

dynamics = {
s2\fff\> s4
s\!\pp

}

pedal = {
s2\sustainDown s2\sustainUp

}

\score {
\new PianoStaff <<
\new Staff = "upper" \upper
\new Dynamics = "dynamics" \dynamics
\new Staff = "lower" <<
\clef bass
\lower
>>
\new Dynamics = "pedal" \pedal
>>
\layout {
\context {
\type "Engraver_group"
\name Dynamics
\alias Voice % So that \cresc works, for example.
\consists "Output_property_engraver"

\override VerticalAxisGroup #'minimum-Y-extent = #'(-1
\override DynamicLineSpanner #'Y-offset = #0
pedalSustainStrings = #'("Ped." "*Ped." "x")
pedalUnaCordaStrings = #'("una corda" "" "tre corde")

\consists "Piano_pedal_engraver"
\consists "Script_engraver"
\consists "Dynamic_engraver"
\consists "Text_engraver"

\override TextScript #'font-size = #2
\override TextScript #'font-shape = #'italic

\consists "Skip_event_swallow_translator"

\consists "Axis_group_engraver"
}
\context {

\PianoStaff

\accepts Dynamics

}

1

370



Appendix D: Templates 371

}
}
\score {
\new PianoStaff <<
\new Staff = "upper" << \upper \dynamics >>
\new Staff = "lower" << \lower \dynamics >>
\new Dynamics = "pedal" \pedal
>>
\midi {
\context {
\type "Performer_group"
\name Dynamics
\consists "Piano_pedal_performer"
3
\context {
\PianoStaff
\accepts Dynamics

}

[,

o, *

D.3 String quartet

D.3.1 String quartet
This template demonstrates a string quartet. It also uses a \global section for time and key
signatures.

\version "2.11.15"

global= {
\time 4/4
\key c \major
}

violinOne = \new Voice { \relative c''{
\set Staff.instrumentName = "Violin 1 "

c2 d el
\bar "|." }}

violinTwo = \new Voice { \relative c''{
\set Staff.instrumentName = "Violin 2 "



Appendix D: Templates 372

g2 f el

\bar "[|." }}

viola = \new Voice { \relative c' {
\set Staff.instrumentName = "Viola "
\clef alto

e2 d ci

\bar "|." }}

cello = \new Voice { \relative c' {
\set Staff.instrumentName = "Cello "
\clef bass

c2 b al
\bar "|."}}

\score {

\new StaffGroup <<
\new Staff << \global \violinOne >>
\new Staff << \global \violinTwo >>
\new Staff << \global \viola >>
\new Staff << \global \cello >>

>>

\layout { }

\midi { }

AN

DO U

O

Violin 1

m
T
T

Violin 2

D
q
|

o)

Viola

D e
LR
TN
0

¢

v‘.
Cello 7€

D.3.2 String quartet parts

The previous example produces a nice string quartet, but what if you needed to print parts?
This template demonstrates how to use the \tag feature to easily split a piece into individual
parts.

You need to split this template into separate files; the filenames are contained in comments
at the beginning of each file. piece.ly contains all the music definitions. The other files —
score.ly, vnl.ly, vn2.1ly, vla.ly, and vlc.ly — produce the appropiate part.
hhhhlh piece.ly
\version "2.11.15"



Appendix D: Templates

global= {
\time 4/4
\key c \major
}
Violinone = \new Voice { \relative c''{
\set Staff.instrumentName = "Violin 1 "
c2 d el
\bar "|." }} o3k % ok sk sk ok ok ook ok ok ok sk ok sk s ok ok sk ok ok sk ok ok sk ok ok sk ok ok
Violintwo = \new Voice { \relative c''{
\set Staff.instrumentName = "Violin 2 "
g2 f el
\bar "|." F}  Tokkkskskskokokokokokokokskokokokokkokokokokkokkkok ok kokok ok
Viola = \new Voice { \relative c' {
\set Staff.instrumentName = "Viola "
\clef alto
e2 d ci
\bar "|." }} 9, 3 sk >k ke sk ok ke sk ok ok ok ok ok K ok ok 3k ok 3k 3k ok 3k 3 ok 3k 3k ok 3k ok ok K
Cello = \new Voice { \relative c' {
\set Staff.instrumentName = "Cello "
\clef bass
c2 b al
\bar "|."}} o3k ok sk s ok ok sk ok ok ok ok sk ok sk sk ok sk ok ok ok sk sk ook sk ok ok kok ok ok

music = {
<<

\tag #'score \tag #'vnl \new Staff { << \global \Violinone >> }
\tag #'score \tag #'vn2 \new Staff { << \global \Violintwo>> }
\tag #'score \tag #'vla \new Staff { << \global \Viola>> }
\tag #'score \tag #'vlc \new Staff { << \global \Cello>> }

>>

hhlehts score.ly

\version "2.11.15"

\include "piece.ly"

#(set-global-staff-size 14)

\score {
\new StaffGroup \keepWithTag #'score \music
\layout { }
\midi { }

373



Appendix D: Templates 374

Hhhht vnl.ly

\version "2.11.15"

\include "piece.ly"

\score {
\keepWithTag #'vnl \music
\layout { }

}

Dhhhh vn2.1ly

\version "2.11.15"

\include "piece.ly"

\score {
\keepWithTag #'vn2 \music
\layout { }

}

Tohthts vlia.ly

\version "2.11.15"

\include "piece.ly"

\score {
\keepWithTag #'vla \music
\layout { }

}

hhhht vlc.ly

\version "2.11.15"

\include "piece.ly"

\score {
\keepWithTag #'vlc \music
\layout { }

}

D.4 Vocal ensembles

D.4.1 SATB vocal score

Here is a standard four-part SATB vocal score. With larger ensembles, it’s often useful to include
a section which is included in all parts. For example, the time signature and key signatures are
almost always the same for all parts.

\version "2.11.15"

global = {
\key c \major
\time 4/4

}

sopMusic = \relative c'' {



Appendix D: Templates

cd c c8[( b)] c4

{

{

{

}

sopWords = \lyricmode {
hi hi hi hi

}

altoMusic = \relative c'
ed £ de

}

altoWords =\lyricmode {
ha ha ha ha

}

tenorMusic = \relative c' {
gdafg

}

tenorWords = \lyricmode
hu hu hu hu

}

bassMusic = \relative c
cd cgc

}

bassWords = \lyricmode {
ho ho ho ho

}

\score {

\new ChoirStaff <<

\new Lyrics = sopranos { sl }
\new Staff = women <<

\new Voice =
"sopranos" {
\new Voice =

\voiceOne << \global \sopMusic >> }

"altos" { \voiceTwo << \global \altoMusic >> }

>>

\new Lyrics = "altos" { sl }
\new Lyrics = "tenors" { sl }
\new Staff = men <<

\clef bass
\new Voice

\new Voice
"basses"
>>

"tenors" { \voiceOne <<\global \tenorMusic >> }
{

\voiceTwo <<\global \bassMusic >> }

\new Lyrics = basses { sl }

\context Lyrics

\context Lyrics

\context Lyrics =

\context Lyrics
>>

sopranos \lyricsto sopranos \sopWords
altos \lyricsto altos \altoWords
tenors \lyricsto tenors \tenorWords
basses \lyricsto basses \bassWords

375



Appendix D: Templates 376

\layout {
\context {
% a little smaller so lyrics
% can be closer to the staff
\Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)

}
}
}
hi hi hi hi
/0 | | =
ha ha ha ha
hu huhu hu
|

N T P

ho ho ho ho

D.4.2 SATB vocal score and automatic piano reduction

This template adds an automatic piano reduction to the SATB vocal score. This demonstrates
one of the strengths of LilyPond — you can use a music definition more than once. If you make
any changes to the vocal notes (say, tenorMusic), then the changes will also apply to the piano
reduction.

\version "2.11.15"

global = {
\key c \major
\time 4/4

}

sopMusic = \relative c¢'' {
cd c c8[( b)] c4

}

sopWords = \lyricmode {
hi hi hi hi

}

altoMusic = \relative c' {
ed £ de

}

altoWords =\lyricmode {
ha ha ha ha

}

tenorMusic = \relative c' {
gdafg



Appendix D: Templates 377

}

tenorWords = \lyricmode {
hu hu hu hu

}

bassMusic = \relative c {
cd cgc

}

bassWords = \lyricmode {
ho ho ho ho

}

\score {
<<

\new ChoirStaff <<
\new Lyrics = sopranos { sl1 }
\new Staff = women <<
\new Voice =
"sopranos" { \voiceOne << \global \sopMusic >> }
\new Voice =
"altos" { \voiceTwo << \global \altoMusic >> }

>>
\new Lyrics = "altos" { sl }
\new Lyrics = "tenors" { sl }
\new Staff = men <<

\clef bass

\new Voice =
"tenors" { \voiceOne <<\global \tenorMusic >> }
\new Voice =
"basses" {
>>
\new Lyrics = basses { sl }

\voiceTwo <<\global \bassMusic >> }

sopranos \lyricsto sopranos \sopWords
altos \lyricsto altos \altoWords
tenors \lyricsto tenors \tenorWords
basses \lyricsto basses \bassWords

\context Lyrics
\context Lyrics
\context Lyrics
\context Lyrics
>>
\new PianoStaff <<
\new Staff <<

\set Staff.printPartCombineTexts = ##f
\partcombine
<< \global \sopMusic >>
<< \global \altoMusic >>
>>
\new Staff <<
\clef bass
\set Staff.printPartCombineTexts = ##f
\partcombine

<< \global \tenorMusic >>
<< \global \bassMusic >>
>>



Appendix D: Templates 378

>>
>>
\layout {
\context {
% a little smaller so lyrics
% can be closer to the staff
\Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)

}
}
}
hi hi hi hi
/) || pe—
ha ha ha ha
hu huhu hu
] |
N / 1 r |
ho ho ho ho
o) ||
i |
PEEE= =S

D.4.3 SATB with aligned contexts
Here all the lyrics lines are placed using alignAboveContext and alignBelowContext.

\version "2.11.15"

global = {
\key c \major
\time 4/4

}

sopMusic = \relative c'' {
cd c c8[( b)] c4

}

sopWords = \lyricmode {
hi hi hi hi

}

altoMusic = \relative c' {
ed £ de

}
altoWords =\lyricmode {



Appendix D: Templates 379

ha ha ha ha

}

tenorMusic = \relative c' {
gdafg

}

tenorWords = \lyricmode {
hu hu hu hu

}

bassMusic = \relative c {
cd cgc

}

bassWords = \lyricmode {
ho ho ho ho

}

\score {

\new ChoirStaff <<
\new Staff = women <<
\new Voice =
"sopranos" { \voiceOne << \global \sopMusic >> }
\new Voice =
"altos" { \voiceTwo << \global \altoMusic >> }
>>
\new Lyrics \with {alignAboveContext=women} \lyricsto sopranos \sopWords
\new Lyrics \with {alignBelowContext=women} \lyricsto altos \altoWords
% we could remove the line about this with the line below, since we want
% the alto lyrics to be below the alto Voice anyway.
b \new Lyrics \lyricsto altos \altoWords

\new Staff = men <<

\clef bass
\new Voice =

"tenors" { \voiceOne <<\global \tenorMusic >> }
\new Voice =

"basses" { \voiceTwo <<\global \bassMusic >> }

>>

\new Lyrics \with {alignAboveContext=men} \lyricsto tenors \tenorWords
\new Lyrics \with {alignBelowContext=men} \lyricsto basses \bassWords
% again, we could replace the line above this with the line below.
yA \new Lyrics \lyricsto basses \bassWords
>>

\layout {
\context {
% a little smaller so lyrics
% can be closer to the staff
\Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)



Appendix D: Templates 380

\score {
\new ChoirStaff <<
\new Staff = women <<
\new Voice =
"sopranos" { \voiceOne << \global \sopMusic >> }
\new Voice =
"altos" { \voiceTwo << \global \altoMusic >> }
>>

\new Lyrics \with {alignAboveContext=women} \lyricsto sopranos \sopWords
\new Lyrics \lyricsto altos \altoWords

\new Staff = men <<

\clef bass
\new Voice =

"tenors" { \voiceOne <<\global \tenorMusic >> }
\new Voice =

"basses" { \voiceTwo <<\global \bassMusic >> }

>>

\new Lyrics \with {alignAboveContext=men} \lyricsto tenors \tenorWords
\new Lyrics \lyricsto basses \bassWords
>>

\layout {
\context {
% a little smaller so lyrics
% can be closer to the staff
\Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)

hi hi hi hi
/0 ||

ha haha ha
hu huhu hu

ez

ho ho ho ho




Appendix D: Templates 381

hi hi hi hi
/) || =
ha haha ha
hu huhu hu
|

) U R B

ho ho ho ho

D.5 Ancient notation templates

D.5.1 Transcription of mensural music

When transcribing mensural music, an incipit at the beginning of the piece is useful to indicate
the original key and tempo. While today musicians are used to bar lines in order to faster
recognize rhythmic patterns, bar lines were not yet invented during the period of mensural
music; in fact, the meter often changed after every few notes. As a compromise, bar lines are
often printed between the staves rather than on the staves.

\version "2.11.15"

global = {
\set Score.skipBars = #it

% incipit

\once \override Score.SystemStartBracket #'transparent = ##t

\override Score.SpacingSpanner #'spacing-increment = #1.0 % tight spacing

\key f \major

\time 2/2

\once \override Staff.TimeSignature #'style = #'neomensural

\override Voice.NoteHead #'style = #'neomensural

\override Voice.Rest #'style = #'neomensural

\set Staff.printKeyCancellation = ##f

\cadenzaOn % turn off bar lines

\skip 1*10

\once \override Staff.BarLine #'transparent = ##f

\bar "||"

\skip 1%1 % need this extra \skip such that clef change comes
% after bar line

\bar nn

% main

\revert Score.SpacingSpanner #'spacing-increment % CHECK: no effect?
\cadenzaOff J turn bar lines on again

\once \override Staff.Clef #'full-size-change = #i#t

\set Staff.forceClef = ##t

\key g \major

\time 4/4

\override Voice.NoteHead #'style = #'default

\override Voice.Rest #'style = #'default

% FIXME: setting printKeyCancellation back to #t must not



Appendix D: Templates 382

% occur in the first bar after the incipit. Dto. for forceClef.
% Therefore, we need an extra \skip.

\skip 1x1

\set Staff.printKeyCancellation = ##t

\set Staff.forceClef = ##f

\skip 1%7 % the actual music

% let finis bar go through all staves
\override Staff.BarLine #'transparent = ##f

% finis bar
\bar ul.n

discantusNotes = {
\transpose c' c'' {
\set Staff.instrumentName = "Discantus "

% incipit

\clef "neomensural-cl"
c'l. s2 % two bars
\skip 1*8 % eight bars
\skip 1*1 % one bar

% main

\clef "treble"

d'2. 4d'4 |

be'd?2|

c'4de'4.(d'8c' b |

a4) b a2 |

b4.( c'8 d'4) c'4 |

\once \override NoteHead #'transparent = ##t c'l |
b\breve |

discantusLyrics = \lyricmode {
% incipit
Iv-

% main

Ju -- bi -- |

la -- te De —- |
o, om —--

nis ter —— |

ra om— |

) -

altusNotes = {



Appendix D: Templates 383

\transpose c' c'' {
\set Staff.instrumentName = "Altus "

% incipit

\clef "neomensural-c3"
ril % one bar
f1. s2 % two bars
\skip 1*7 7 seven bars
\skip 1*1 % one bar

% main
\clef "treble"
r2 g2. e4 fis g | % two bars

a2 g4 e |

fis g4.( fisl6 e fis4) |

gl |

\once \override NoteHead #'transparent = ##t gl |
g\breve |

altusLyrics = \lyricmode {
% incipit

IvV-

% main

Ju —— bi -- la -- te | % two bars
De —-- o, om —-— |

nis ter —- ra, |

ll.'.ll |

-us. |

tenorNotes = {
\transpose c' c' {
\set Staff.instrumentName = "Tenor "

% incipit

\clef "neomensural-c4"
r\longa 7 four bars
r\breve 7 two bars
rl % one bar
c'l1. s2 % two bars
\skip 1*1 % one bar
\skip 1*1 % one bar

% main

\clef "treble_8"

R1 |

R1 |

R1 |

r2 d'2. d'4 b e' | % two bars



Appendix D: Templates

\once \override NoteHead #'transparent = ##t e'l |

d'\breve |
}
}

tenorLyrics = \lyricmode {
% incipit
Iv-

% main
Ju -— bi —- la -- te | % two bars

-us. |

bassusNotes = {
\transpose c' c' {
\set Staff.instrumentName = "Bassus "

% incipit

\clef "bass"

r\maxima % eight bars
f1. s2 % two bars
\skip 1*1 % one bar

% main

\clef "bass"
R1 |

R1 |
R1 |
R1 |
g2. e4d |

\once \override NoteHead #'transparent = ##t el |

g\breve |

bassusLyrics = \lyricmode {
% incipit
Iv-

% main
Ju -- bi- |

\score {
\new StaffGroup = choirStaff <<
\new Voice =

"discantusNotes" << \global \discantusNotes >>

\new Lyrics =

384



Appendix D: Templates 385

"discantusLyrics" \lyricsto discantusNotes { \discantusLyrics }
\new Voice =
"altusNotes" << \global \altusNotes >>
\new Lyrics =
"altusLyrics" \lyricsto altusNotes { \altusLyrics }
\new Voice =
"tenorNotes" << \global \tenorNotes >>
\new Lyrics =
"tenorLyrics" \lyricsto tenorNotes { \tenorLyrics }
\new Voice =
"bassusNotes" << \global \bassusNotes >>
\new Lyrics =
"bassusLyrics" \lyricsto bassusNotes { \bassusLyrics }
>>
\layout {
\context {
\Score

% no bars in staves
\override BarLine #'transparent = ##t

% incipit should not start with a start delimiter
\remove "System_start_delimiter_engraver"

}

\context {
\Voice

% no slurs
\override Slur #'transparent = ##t

% Comment in the below "\remove" command to allow line

% breaking also at those barlines where a note overlaps

% into the next bar. The command is commented out in this

% short example score, but especially for large scores, you
% will typically yield better line breaking and thus improve
% overall spacing if you comment in the following command.
%\remove "Forbid_line_break_engraver"



Appendix D: Templates 386

T (I E—
Discantus ——& n—C ® =
ANV | |
[Y) ' '
IV- Ju -bi-la-te De -
Al I "i Yl o> I(‘\) #lé — i f
tus H” & & L 9] = |
() '
IV- Ju - bi-late
gy _ Q ﬁ
Tenor ||| lul" cH e — tts—C—— —
ANV
V- ¢
o) o 3 o - -
Bassus ZL€Hi 7
IV-
3
s I I
- | | ()l | ./ o
Y A E——— | |
A o, om - nister - ra, om- .. -us.
"4 ﬁ I — f
/\ ! | | I _‘I
1H—= ¢ — T —
o o * e o
A u De-o0,om-nister - ra, .. -US.
)" 4 IH - P
(s = - - o
J ’ |
Ju -  bi-late ... -us.
&)z - - * O
P L
Ju - bi- ... -us.

D.5.2 Gregorian transcription template

This example demonstrates how to do modern transcription of Gregorian music. Gregorian
music has no measure, no stems; it uses only half and quarter noteheads, and special marks,
indicating rests of different length.

\include "gregorian-init.ly"

\version "2.11.15"

chant = \relative c' {
\set Score.timing = ##f
f4 a2 \divisioMinima
g4 b a2 f2 \divisioMaior
g4( £) £( g) a2 \finalis

3
verba = \lyricmode {
Lo —— rem ip —- sum do —-- lor sit a -- met
3
\score {

\new Staff <<
\new Voice = "melody" {



Appendix D: Templates 387

\chant
}
\new Lyrics = "one" \lyricsto melody \verba
>>

\layout {
\context {
\Staff
\remove "Time_signature_engraver"
\remove "Bar_engraver"
\override Stem #'transparent = ##t
b
\context {
\Voice
\override Stem #'length = #0
}
\context {
\Score
barAlways = #i#t
b
}
b

>

N~—

Lorem ipsum dolor sit a-met

D.6 Jazz combo

This is a much more complicated template, for a jazz ensemble. Note that all instruments are
notated in \key c \major. This refers to the key in concert pitch; LilyPond will automatically
transpose the key if the music is within a \transpose section.

\version "2.11.15"

\header {
title = "Song"
subtitle = "(tune)"
composer = "Me"
meter = "moderato"
piece = "Swing"
tagline = \markup {

\column {

"LilyPond example file by Amelie Zapf,"
"Berlin 07/07/2003"
}
}
texidoc = "Jazz tune for combo
(horns, guitar, piano, bass, drums)."

#(set-global-staff-size 16)
\include "english.ly"



Appendix D: Templates 388

Dol lo o lototofolototole Some maCTOS  %slotstsloostolostotosto oo oo

sl ={
\override NoteHead #'style = #'slash
\override Stem #'transparent = #i#t
b
nsl = {
\revert NoteHead #'style
\revert Stem #'transparent
}
cr = \override NoteHead #'style = #'cross
ncr = \revert NoteHead #'style

%% insert chord name style stuff here.

jzchords = { }

WILIIILILNGL Keys'n' thangs BALILILAILILILIL,

global = {
\time 4/4
}

Key = { \key c \major }
T #HHHHHEY Horns  #t##########

h === Trumpet ------
trpt = \transpose c d \relative c'' {
\Key
clcc
}
trpharmony = \transpose c' d {
\jzchords
}
trumpet = {
\global
\set Staff.instrumentName = #"Trumpet"
\clef treble
<<
\trpt
>>

f —————= Alto Saxophone ------

alto = \transpose c a \relative c' {
\Key
clcc

}

altoharmony = \transpose c' a {



Appendix D: Templates 389

\jzchords
}
altosax = {
\global
\set Staff.instrumentName = #"Alto Sax"
\clef treble
<<
\alto
>>

h —————- Baritone Saxophone ------
bari = \transpose c a' \relative c {
\Key
cl ¢ \sl d47"Solo" d d d \nsl
}
bariharmony = \transpose c' a \chordmode {
\jzchords sl s d2:maj e:m7
}
barisax = {
\global
\set Staff.instrumentName = #"Bari Sax"
\clef treble
<<
\bari
>>

% —==—-- Trombone ------
tbone = \relative c {
\Key
cl cc
}
tboneharmony = \chordmode {
\jzchords
}
trombone = {
\global
\set Staff.instrumentName = #"Trombone"
\clef bass
<<
\tbone
>>

Do #i##EH Rhythn Section ########t###

h —————= Guitar ------
gtr = \relative c'' {
\Key
cl1 \sl b4 b b b \nsl cl
}



Appendix D: Templates

gtrharmony = \chordmode {

\jzchords

sl c2:min7+ d2:maj9

}
guitar = {
\global

\set Staff.instrumentName = #"Guitar"

\clef treble

<<
\gtr
>>
}
ot ———=—= Piano ------
rhUpper = \relative c'' {
\voiceOne
\Key
cl cc
}
rhlower = \relative c' {
\voiceTwo
\Key
el e e
}
lhUpper = \relative c' {
\voiceOne
\Key
glgeg
}
lhLower = \relative c {
\voiceTwo
\Key
cl cc
}
PianoRH = {
\clef treble
\global
\set Staff.midiInstrument = "acoustic grand"
<<
\new Voice = "one" \rhUpper
\new Voice = "two" \rhLower
>>
}
PianoLH = {
\clef bass
\global
\set Staff.midilnstrument = "acoustic grand"
<<

\new Voice
\new Voice

"one" \lhUpper
"two" \lhLower

390



Appendix D: Templates 391

>>

piano = {
<<
\set PianoStaff.instrumentName = #"Piano"
\new Staff = "upper" \PianoRH
\new Staff = "lower" \PianoLH
>>

b —————- Bass Guitar —--———--
Bass = \relative c {
\Key
cl cc
}
bass = {
\global
\set Staff.instrumentName = #"Bass"
\clef bass
<<
\Bass
>>

h —————= Drums -----—-—
up = \drummode {
hh4 <hh sn>4 hh <hh sn> hh <hh sn>4
hh4 <hh sn>4
hh4 <hh sn>4
hh4 <hh sn>4

down = \drummode {
bd4d s bd s bd s bd s bd s bd s

drumContents = {
\global
<<
\set DrumStaff.instrumentName = #"Drums"
\new DrumVoice { \voiceOne \up }
\new DrumVoice { \voiceTwo \down }
>>

Whhhhhhh% It ALl Goes Together Here Llhhlhlolshtotsttotolshhtodshhotstets

\score {
<<
\new StaffGroup = "horns" <<
\new Staff = "trumpet" \trumpet



Appendix D: Templates

\new Staff = "altosax" \altosax
\new ChordNames = "barichords" \bariharmony
\new Staff = "barisax" \barisax
\new Staff = "trombone" \trombone
>>

\new StaffGroup = "rhythm" <<

\new ChordNames = "chords" \gtrharmony
\new Staff = "guitar" \guitar
\new PianoStaff = "piano" \piano

\new Staff = "bass" \bass
\new DrumStaff { \drumContents }
>>
>>

\layout {
\context { \RemoveEmptyStaffContext }
\context {
\Score
\override BarNumber #'padding = #3
\override RehearsalMark #'padding = #2
skipBars = ##t

}
}
\midi { }
}
Song
(tune)
moderato

Swing

392



Appendix D: Template

S

/() 4
X4 © © =
Trumpet] Hos—H#—€
&)
[
0O u#
Y —agtt
Alto Sax "\3 U ) o) (@)
Y A 7
B~ Cfm
O 44 Solo
. )" A I*IJ.'|'|
Bari Sax Cn\u % {‘ O [ ) Il Il Il Il
[J)
Trombone -‘/-)= C o (@) O

CmA DA/9

(L O

"N
"N
"N
"N

O

Guitar

e

e

NS s elais
o

Piano
O O O
y )
O O O
Bass] == {‘ O (@) O

=
Drums S

NEE

ESE=S

fF—

r

D.7 Lilypond-book templates

r

393

These templates are for use with 1ilypond-book. If you're not familiar with this program,
please refer to Chapter 14 [LilyPond-book], page 325.

D.7.1 LaTeX

You can include LilyPond fragments in a LaTeX document.

\documentclass[]{article}

\begin{document}
Normal LaTeX text.

\begin{lilypond}

\relative c''
ad bcd

}
\end{lilypond}

More LaTeX text.

\begin{lilypond}

\relative c''
dd c b a

}
\end{1lilypond}
\end{document}

D.7.2 Texinfo

{

{

You can include LilyPond fragments in Texinfo; in fact, this entire manual is written in Texinfo.

\input texinfo



Appendix D: Templates 394

Gnode Top

Texinfo text
@lilypond[verbatim,fragment,ragged-right]
ad b c d

Q@end lilypond

More Texinfo text
@lilypond[verbatim,fragment,ragged-right]
d4 c b a

Q@end lilypond

Q@bye



Appendix E: Cheat sheet 395

Appendix E Cheat sheet

Syntax Description Example
12816 durations
0}
)" 4
o e — — —
ANV | I/ Y/
ry, | r—r
cd. c4.. augmentation dots
cdefgab scale
0 L
)" 4 | |
Y AN |
)
o
fis bes alteration
\clef treble \clef bass clefs
\time 3/4 \time 4/4 time signature
S
r4d r8 rest
d~d tie




Appendix E: Cheat sheet

\key es \major

note'

note,

c(de)

c\(c(d) e\)

as8[ b]

<< \new Staff ... >>

c—=>c-.

key signature

raise octave

lower octave

slur

phrasing slur

beam

more staves

articulations

396

(\dl

e AP
¢

¢

| | )




Appendix E: Cheat sheet 397

c2\mf c\sfz dynamics
0
. — — —
[ an)
o
mf sfz
a\< a a\! crescendo
0 |
)4 |
[y _
a\> a a\! decrescendo
h | |
)4 | |
J —
<> chord
\partial 8 upstep
0
. € Y 2 — ~
[ (YA W] | |
ANV | |
eJ ! '
\times 2/3 {f g a} triplets
ég 3
\grace grace notes
\lyricmode { twinkle } entering lyrics twinkle
\new Lyrics printing lyrics

twinkle



Appendix E: Cheat sheet

twin —- kle

\chordmode { c:dim f:maj7 }

\context ChordNames

<<{e £} \\ {c a}>>

s4 s8 s16

lyric hyphen

chords

printing chord names

polyphony

spacer rests

Jz et

twin - kle

C°F

398



Appendix F: GNU Free Documentation License 399

Appendix F GNU Free Documentation License

Version 1.1, March 2000

Copyright (©) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document free
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of ‘copy-
left’, which means that derivative works of the document must themselves be free in the
same sense. [t complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License.

The ‘Document’,
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as ‘you’.
A ‘Modified

Version’ of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A ‘Secondary Section’
is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The ‘Invariant
Sections’ are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The ‘Cover
Texts’ are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A ‘Trans-
parent’ copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, whose contents can be viewed



Appendix F: GNU Free Documentation License 400

and edited directly and straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic trans-
lation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart
or discourage subsequent modification by readers is not Transparent. A copy that is
not ‘Transparent’
is called ‘Opaque’.
Examples of suitable formats for Transparent copies include plain Ascil without markup,
Texinfo input format, LaTgX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by propri-
etary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML produced by some word processors
for output purposes only.

The “Ti-
tle Page’ means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in
the title page. For works in formats which do not have any title page as such,
‘Title Page’ means the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Docu-
ment’s license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably



Appendix F: GNU Free Documentation License 401

prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

1. Preserve the section entitled ‘His-
tory’, and its title, and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page. If there is no section
entitled ‘His-
tory’ in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
‘History’ section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it
refers to gives permission.

K. In any section entitled ‘Ac-
knowledgments’ or ‘Ded-
ications’, preserve the section’s title, and preserve in the section all the substance and
tone of each of the contributor acknowledgments and/or dedications given therein.



Appendix F: GNU Free Documentation License 402

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled
dorsements’. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section as
dorsements’ or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled

dorsements’; provided it contains nothing but endorsements of your Modified Version by
various parties—for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled
‘History’ in the wvarious original documents, forming one section enti-
tled ‘History’; likewise

combine any sections entitled
knowledgments’, and any sections entitled
ications’. You must delete all sections entitled
dorsements.’

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

‘En-

‘En-

‘Ac-



Appendix F: GNU Free Documentation License 403

10.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium,
does not as a whole count as a Modified Version of the Document, provided no com-
pilation copyright is claimed for the compilation. Such a compilation is called an
‘aggregate’, and this License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the
original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License
‘or any later version’ applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published
(not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.


http://www.gnu.org/copyleft/

Appendix F: GNU Free Documentation License 404

F.0.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled

Free Documentation License'

If you have no Invariant Sections, write ‘wi
no Invariant Sections’ instead of saying which ones are invariant. If you have no Front-Cover
Texts, write ‘no Front-Cover
Texts’ instead of ‘Front-Cover

Texts being list’; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.



Appendix G: LilyPond command index

Appendix G LilyPond command index

(begin * * * *)
(end * * * x)

\afterGrace

405
\aikenHeads .........cooiiininiiiiiiaain.. 214
\allowPageTurn .........coovuiiuinninnnnnan.... 268
\alternative...........cooiiiiiiiineninnan.n. 105
\applyContext. .......ccoviuiiiiiiiiiieiiinn... 314
\applyOutput . ..ot 314
\arpeggio. ... 104
\arpeggioBracket ........c.ooiuiiiiiiiiiiiannn. 105
\arpeggioDOoWn. . ....vvii 105
\arpeggioNeutral ................ooiiuiin.... 105
\arpeggiolUp. ... ...ooviiiiiiii i 105
\asScendens . .....ooviiiiie e 163
NaQUCEUM . ..ot 163
\augmentum. . ......ooiiiiiiii 164
\autoBeamOff.......... ..., 225
\autoBeamOn............ooviiiiiiiiineennnnnn.. 225
DT o o 82
\DOOK . .ttt 246
\DTEaK. ..ottt 266
DL EVE . .ttt 67
\cadenzalff .......... .o iiiiiiiiiiiiina., 84
\cadenzaln ..........couiiiiine i 84
\CAESUTA . .\ttt ittt e 156
NCaAVUM. . oottt ettt 163
NClef . 78
NCOnteXt et 228
\deminutum............cooiiiiiiiiiii 163
Ndenies .. ..o 235
\descendens . .....oviin i 163
\displayLilyMusc..........oovviuiineinean.n.. 257
\displayLilyMusic............coovuuiinniinnn.n. 305
\displayMusSic. .....cvviiuiiiiniiii .. 305
\divisioMaior........cviiiiiiii 156
\divisioMaxima .............oiiiiiiiiinna... 156
\divisioMinima ..............coiiiiiiiiii.., 156
NdOTian. ..ot 79
NAOLSDOWIL .« vt ettt e e 68
\dotsNeutral........cooiiiiiieeiiiiaeeannn. 68
NAOESUP. « vttt et 68
\dynamicDOWN . . ..vvvv et 102
\dynamicNeutral ..............cooiiiiiiiannn. 102
\dynamicUp.......covviiiiiiiii i 102
\emptyText ....oviiii e 169
N 100
NfatText .ot 169
1 100
R 5 P 100
N 100
\finalis ..ot 156
NfLleXa. ottt 163
< TP 100
\frenchChords...............cooiiiiiiieennnnn.. 120
\germanChords. ........couiiiuiinnininnannnanns 120
\glissando..........coouiiiiiiiiiiiii 103
\BLaCE . .ttt 94
\header in BIEX documents...................... 328
\hideNotesS ...ttt 214
\hideStaffSwitch...........covrririrnnnnnnn.. 114
\inclinatum............ ... .coi ... 163
\include ...t 248
Ndonian. ..ot 79
\italianChords ...........coviurieeiiiinna... 120



Appendix G: LilyPond command index

NKEY et 79, 214
NLabel. .ottt e 253
NL1ayout .o 264
A\linea. . ..ottt 163
NLOCTIAM « oottt e et e 79
R = 67
NLYAiam. et 79
\lyricmode ............oiiiiiiiiiiiiiiii 121, 123
A\LYricSto ..ot 123
\M@JOT . ottt 79
NIATK . oot 173, 192
\markuplines...............ooiiiiiiiiiiiiian... 178
\maxima..........o.oiiiiii 67
NIMELISMA ..\ttt e 126
\melismaEnd............. ..., 126
\mf .. 100
\IMINOT . ottt e 79
\mixolydian.............oiiiiiiiiiiii . 79
NI . oo 100
A 4= P 227
\noBreak ...t 266
\noPageBreak...........coviiiiiiiiiiiiinn 267
\DOPageTUTI. . ..ottt 268
\normalsize............ooiiiiiiiiiiiiii.. 212
\oneVoice ........ooouiiiiiiiii i 7
NOTASCUS - vttt ettt et e 163
Noverride ..........ooiiiiiiiiiii 237
D et 100
\page-ref ...... ... ... i 253
\pageBreak........ ... il 267
\PAGETUITL . .ttt 268
\PAPET . ot 259
\partial ... 82
AP -ttt 163
\phrasingSIurDowWn ............cooiuuinninnn. .. 92
\phrasingSlurNeutral..............ccoveiinnn... 92
\phrasingSlurlUp ..........c.ooiiiiiiinieennnn.. 92
\phrygian ... 79
A < 100
APDP - - v e vttt e e 100
APDPD - v e vttt 100
\property in \lyricmode....................... 122
NQUITISMA .« vttt et 163
\Lelative oottt e 63
\repeat . ...t 105
\repeatTie ........cooviiiiiiiiiiinn., 89, 106
LSt ottt et 66
T Z o 100
\sacredHarpHeads ...............ccooiiiuiiinnnn. 214
\semiGermanChords............oouiiiiiine .. 120
\Set ..o 229
\setEasyHeads..............coiiiiiiiiiiii... 215
ST 100
NSEE L 100
\SfzZ .. o 100
\shiftOff .. ..o 77
\ShiftOn ... 77
\ShiftOnn ... ..o.ouiuiiiiii i 7
\ShiftOnnm ........coeiiiiie e 77
\showStaffSwitch............. ... ... ... ..... 114
ASKLP e ottt 66
\slurDashed ........o.uuiiiiiiiiiieaiiiieennnn 91
\slurDotted.......... ... 91
\SLIUTDOWN . ..o ottt 91
\slurNeutral ......coovuttiiiiiiieniiiieenn 91

406
\SIurSolid......ooviiiiiii i 91
NSTUTUD. . oo 91
\small... ..ot 212
=3 < 100
A SPD -+ttt et 100
\startTrillSpan ............c.ocoiiuiiinnannn... 103
\STemDOWN . . ..ottt 72
\stemNeutral...............oooiiiiiiiiiinan... 72
\sStemUp. . ..o 72
\StopTrillSpan .........o.viiiiiiuninnnnannnnnn 103
\STropha . ..ot 163
\table-of-contents...........covvuiiuieinnnn. 255
A . o 199
\BEmPO. ..ot 191
\tieDashed .........c.oviiiiiiiiiiiiii.. 90
\tieDotted . ...ovvuriiiii 90
NELEDOWIL « oottt et e 90
\tieNeutral .....oovinrtiineiiiie i 90
\tieSolid...... ..o 90
NBLQUD . .ottt 90
Ntdme . 80
\tdmes. .o 68
NEInY . ..o 212
NtocTtem. ... 255
\EranspoSe . ..ovv 65
NtUPLEtDOWIL . . vttt ettt 69
\tupletNeutral ..........cooviiiiiniiiennnnn... 69
NBUPLEtUD .ottt e 69
\tweak. ... 240
\unfoldRepeats ..............oiiuiiiiiiiiian. 107
\unHideNotes...............oiiiiiiii .. 214
NUDSEt. ..o 229
\VIEGa. ..o 163
A\VIrgula . ....oooiiiiii 156
\VOLICEFOUT ..\ttt 77
A\VOLICEOME . ot vttt 7T
\VOiceThree ... .ouvi e 77
AVOLCETWO « vt vttt et et 77
\with. ... 230
|
PP 71
e 89
A
after-title-space......................... 261
annotate-spacing............... ..o 265
AYTANGEY ..o o ittt ittt 249
AUE - 116
auto-first-page-number ....................... 262
autoBeaming............... ... ... 225
autoBeamSettings............... ...l 223
B
barCheckSynchronize............................ 71
base-shortest-duration....................... 285
before-title-space............coiiuiiiiiinnnn. 261

between-system-padding ....................... 260



Appendix G: LilyPond command index

between-system-space ......................... 260
between-title-space.................... ... ... 261
blank-last-page-force........................ 262
blank-page-force.................... ... 262
bookTitleMarkup ........covvvininnnnnnnnn. 252
bottom-margin...............ooiiiiiiiiiiiii 260
breakable ........... ... .. i 93
breakbefore.......... ... il 249
C

chordNameExceptions........................... 118
chordNameSeparator............................ 119
chordNoteNamer ............... ... ... ..uu... 119
chordPrefixSpacer..................... ... 119
chordRootNamer ......................ooiian. 119
common-shortest-duration..................... 285
COMPOSEY .. oottt et it ei e 249
convert-ly.......... ...l 320
copyright .......... ... ... 249
currentBarNumber ...................... ... ... 194

D

dedication............ ... i 249
defaultBarType ..., 84
QiMoo 116

E

evenFooterMarkup.............. ... 252
evenHeaderMarkup........................... ... 252

F

first-page-number............. ... ...l 259
followVoice.... ..o 113
font-interface ........... ... ...l 187
foot-separation.............. ... ... 260

H

head-separation...............oiiii 260
horizontal-shift.......... ... ... i, 261

L

layout file........... ... . i 264
left-margin.................... .. ...l 260
line-width............ ... i 260, 288
ly:minimal-breaking.....................iit 269
ly:optimal-breaking........................... 267
ly:page-turn-breaking ........................ 268

MAjJ oottt 116

407
MELeT . .. 249
minimumFret......... ... ... .. ool 142
minimumPageTurnLength ........................ 268
minimumRepeatLengthForPageTurn.............. 268
modern style accidentals...................... 220
modern-cautionary.............. ... 221
modern-voice......... ... i i 221
modern-voice-cautionary...................... 221
N
no-reset accidental style..................... 222
@)
oddFooterMarkup ................coiiiii.... 252
oddHeaderMarkup ..................... il 252
OPUS + oot ettt ettt 249
outside-staff-horizontal-padding............ 283
outside-staff-padding ........................ 283
outside-staff-priority....................... 283
P
page-breaking-between-system-padding....... 261
page-spacing-weight................ ... ... ... 262
PAGE—tOP=SPACE ...ttt 260
paper-height........................... ... 260
paper-width........ ... .. 259
papersize............. i 259
piano accidentals .................oiiiiiia, 222
Plece. ... 249
pipeSymbol ... 71
PO 249
print-first-page-number...................... 259
print-page-number.................... .. ... 259
printallheaders .......................... 251, 261
R
L 66
R 189
ragged-bottom............... .. ...l 260
ragged-last........... ... . i il 288
ragged-last-bottom................... ... ..., 260
ragged-right......... ... i 288
repeatCommands............oviiiiinnnnnnnnn. 84, 108
S
B 66
scoreTitleMarkup.............................. 252
set-accidental-style ......................... 219
shapeNoteStyles.............................. 214
showLastLength ..., 257
skipTypesetting ..................... ... ... .. 257
SPACING ... 285
Staff.midiInstrument ......................... 257
stem-spacing-correction...................... 285
stemLeftBeamCount .............................. 93
stemRightBeamCount............................. 93
subdivideBeams ......... ... ... il 93
subsubtitle............... .. ..o 249
subtitle ... ..o 249



Appendix G: LilyPond command index

suggestAccidentals............................ 165
B L ettt 116
system-count.............. ... ... ...l 260
systemSeparatorMarkup ........................ 261
T

tagline .......... ... ... 249
teXI . 328

textSpannerDown ............. ... ...l 172

408

textSpannerNeutral.....................ooot. 172
textSpannerUp.............. ... ...l 172
title. .o 249
top-margin.......................LL 260
tremoloFlags................ ... 109
tupletNumberFormatFunction.................... 69

A%

whichBar ........ .. .. .. 84



Appendix H: LilyPond index 409

Appendix H LilyPond index

! NafterGrace . ... ..oooiiiiiie i 95
PP 62 \aikenHeads ... 214
\allowPageTurm . ...covuutet e 268
\alternative.........c.iiiiiiiiinneniinnenn. 105
# \applyContext..........cooviiiiiiiiiiin.... 314
B o 342 NAPPLyOUpUt........... 314
S 342 NATPeEELO......... 104
22 v 342 \arpegg}oBracket """""""""""""""""" 10‘?
HUSYMDOL ..o 343 \arpegg}oDown """"""""""""""""" 105
#(set-accidental-style 'piano-cautionary) .. 222 \arpegg%oNeutral .............................. 105
\arpPeggioUp . oo vt 105
\aSCendens .. ..oovviiii e 163
? NaUCEUM . ..o 163
\augmentum. . ......oooiiiiii 164
e 60 \autoBeamef .............................. 295
\autoBeamOn..........ooiiiiineeiiiineenn.. 225
( DT . o 82
\DOOK . .ttt 246
(begin * % % *) ... 223 \DTEAK. .. oottt 266
(end * * * %) ... ... .. ... ...l 223 Nbreve. . ... 67
\cadenzalff .......... ... ... i, 84
\cadenzaln .........couiiiiiiineeiiiiee . 84
’ \CAESUTA v vttt ettt et et 156
s e e e e e e e e e 60 NCAVUML. « ot ettt et e e e e 163
NClef .. 78
Ncontext .. 228
° \deminutum..........cooviiiiiiiiiii 163
PP 68 \denies ... 235
\descendens...........oiiiiiiiiii 163
\displayLilyMusc...........ccoviuiiniannenn... 257
/ \displayLilyMusic........coovuiuinininunnan... 305
/2 117 \displayMusicC........cooiiuiiiiiiiiiiiinnnnn... 305
2 117 \divisioMaior.......... ..t 156
\divisioMaxima ............oviurieiiiininnn.n, 156
\divisioMinima ..............cciiiiiiiiii... 156
? NAOTdamn . . oo 79
T 62  MotsDown............... 68
\dotsNeutral........ccooiiiiiiieeiiiaeeennnnn. 68
NOESUD. « vttt 68
[ \dynamicDOWn. . ...ovvutttii it 102
Lo 93 \dynamicNeutral .............cocoeiiiiiinin, 102
\dynamicUp ... ...viuuiiiii i 102
\emptyTeXt . oottt 169
] N 100
NfatTeXt ..ot 169
] .............................................. 93 \ff ............................................. 100
NE 100
NE 100
- \FAinalis oottt 156
R EP RS 122,025 Nflexa....oooo 163
< TP 100
\ \frenchChords...........couiiuiiiiiinnn.. 120
\germanChords................ooiiiiiin.... 120
N 100 \glissando..........cooiiiiiiiiiiii 103
A 100 NBLaCe. . i 94
> 100 \header in KX documents...................... 328
NN 73 \hideNotes ...t e 214
\aCCEPES ot 235 \hideStaffSwitch............. ... ... ... ..... 114
NaddLyTics ..o 121 \inclinabum. .......ooiiiiininnnninnennea... 163
\addlyrics........ooiiiiiiiiiii 123 \include ....oviii 248

\aeolian ....ooi 79 Ndonian. . ..o 79



Appendix H: LilyPond index

\italianChords ............... ..., 120
KT vttt 79, 214
\1abel. ..ot 253
N1ayout . .vve i 264
e - P 163
NLOCTIAI « oottt e ettt 79
NLONGa . oottt 67
A\Lydiam. ..ot 79
\lyricmode ............cooiiiiiiiiiia.. 121, 123
NLYricSto .ottt 123
\IAJOT . .t 79
\mark. ... 173, 192
\Markuplines......oouuuiiiininieennieennnn 178
NIMAXIMA L« ¢ttt et e e 67
\melisma ......oouuiiniii i 126
\melismaEnd............. ... ..o 126
IS 100
NIMINOT . ottt 79
\MIKOLYAiam . . .vvv et 79
NIID e 100
A £ =3 P 227
\noBreak ...... ... 266
\noPageBreak..............cooiiiiiiiiiiiii... 267
\noPageTurn . .......oouuiiiiiii i 268
\normalsize..............oiiiiiiiiiiii. 212
NOTICE . . ettt e et e 230
\oneVoice .. .ot 7
NOXiSCUS ...t 163
NOVETTIde .ottt 237
D - et 100
\page-ref ... ... 253
\pageBreak..............oiiiiiiiii i 267
\PageTUuIn . ..ottt 268
N 0 03 252
\PAPET . ot 259
\partial ... 82
AP -ttt 163
\phrasingSlurDowWn ............coovuiiueini.n. .. 92
\phrasingSlurNeutral........................... 92
\phrasingSlurlUp ..........c.ooiuiiiiiiiieennn.. 92
\phrygian ........ ... 79
A < 100
APDP - v e vttt 100
APDPD - v e v et 100
\property in \lyricmode....................... 122
NQUITISMA . vttt et 163
NLelative oottt 63
\repeat . ... 105
\repeatTie ........coviiiiiiiiiiin. 89, 106
=Y P 66
T Z . 100
\sacredHarpHeads ...............ccooiiuiiiannn. 214
\semiGermanChords............oouieininne... 120
\Set ..ot 229
\setEasyHeads..............ooiiiiiiiiiiii... 215
= 100
\SEE Lo 100
\SfzZ .. o 100
\shiftOff ... .. 77
\ShiftOn ... 77
\ShiftOnn ... 7
\ShiftOnnn ........couiiiii i 77
\showStaffSwitch............. ... ... ... ..... 114
ASKAP e vttt 66
\slurDashed ........o.uuiiiiiiiiiieniiiieennnn 91

410
\slurDotted..........ooiriiiiiiiieiiianaan, 91
\SIUTDOWI . o oottt e e e e 91
\slurNeutral.........cooiiiiiieeiiiineennnnn. 91
\SIurSolid . ..ot 91
A\SLIUrUp. ...t 91
\Small. . ..ot 212
= - T 100
A SPD -t vttt e 100
\startTrillSpam .......covuvuiuiniininananenn.. 103
\StemMDOWI . ..ottt 72
\stemNeutral...........coiiiiiieeiiiinnennnnnn. 72
\StemUp. . ..ot 72
\StopTrillSpan .....covuvuiiiennieenanee.. 103
\stropha ... ..o 163
\SUPET . . ..o 186
\table-of-contents.................coiiiinn... 255
A . o 199
NBEIMPO. .ttt 191
\tieDashed ............ooiiiiiiiii .. 90
\tieDotted....... ..ot 90
N =Y Do) + 90
\tieNeutral ........oiiiiiiiiiiie i 90
\tieSolid ..ot 90
\tieUp. ..o 90
NtAme . e 80
NEAmMES . o e 68
\CIny. .o 212
NtoCTtem .ottt 255
\EransSpoSe .. ..ottt 65
\tUPLetDOWN . ...ttt 69
\tupletNeutral ............ooiuiiiiuinininnnn... 69
\tupletUp ...t 69
NBWEAK . . oot 240
\unfoldRepeats ..........coouuiiiuniinninnnnnn. 107
\unHideNotes........ooviiiiiiiiieeiiiiaaan, 214
\UDSEt . oot 229
\VITGa. ..ot 163
\virgula ... 156
\VoiceFour .. ... 7
\voicelne ......ooviiiiii it
\voiceThree ... ... ... 77
\VOLICETWO « ottt et et e i e 7
NWAth. o 230

|

| 71
PP 89
1

15Ma e 198
A

ABC . 339
ACCEIL .« vttt e 97
ACCEINES « vttt e, 20
accessing Scheme ......... ... ... ool 342
ACCIACCATUTA .« 22, 94
ACCIaCCAtULA. o v ittt 301

Accidental ......... ... ..l 149, 223



Appendix H: LilyPond index

accidental, cautionary............... ... ... ...... 62
Accidental, musica ficta.............. ... ... 165
accidental, parenthesized ......................... 62
accidental, reminder........... ... ... o oL 62
Accidental_engraver...................... 166, 223
AccidentalPlacement........................... 223
accidentals........ ... . o i 149
AccidentalSuggestion................ 166, 221, 223
addInstrumentDefinition...................... 302
additions, in chords ............. .. ... . 116
addQuote ... 302
adjusting output ........ ... oo 10
adjusting staff symbol.......... ... ... .o L 86
after-title-space....................l 261
afterGrace....... ... ... il 301
alniente........ ..o 101
alignAboveContext............................. 236
alignBelowContext......................oonn 236
A1l layout objects.............. ...l 233
allowPageTurn..........ooiiiiiinnnnnn, 300
altoclef. ... 78
ambitus. ... ... 136
Ambitus ... 137
Ambitus_engraver............ ..o 136
AmbitusAccidental ............. ... ... 137
AmbitusLine........... ... ... . i il 137
AmbitusNoteHead ............. ... ... ... 137
ANACTUSE .« o e e et ettt e et ettt e et e 22
ANACTUSIS & vttt 22
ANACTUSIS .« vt vttt 82
annotate-spacing............... ...l 265
applyContext..........oooiiiiiiiiiiiiiiiiiL. 303
applyMusic. ... ..o 302
applyOutput........ ... . il 301
appoggiatura......... ... o i i oo 22,94
appoggiatura............... i il 303
ATDegEIO. .ot 104
Arpeggio ...l 105
AYTANGET ..\ttt ettt e 249
arrow-head.......... ... .. il 179
arrow-head-markup...................iia 179
articulation ......... ... .. 20
articulations.......... ... ... il 20
articulations .......... ... . i i 154
Articulations. ....... ... o i 97
artificial harmonics................. ... ... ... .. 168
assertBeamQuant .............. .. ... ... 300
assertBeamSlope ............................LL 303
AUE vt 116
auto-first-page-number....................... 262
auto-knee-gap.......... ... oo 93
autobeam . .......... i 225
autoBeaming...........................LL 225
autoBeamSettings ............. ... ... L 223
autochange ............ooiiiiiiiiiiiiiiiia 302
AutoChangeMusic....................... ... ... 111
Automatic accidentals. ........... ... ... ..o 219
automatic beam generation ..................... 225
automatic beams, tuning........................ 223
automatic part combining............ ... .. L 200
Automatic staff changes......................... 111
automatic syllable durations .................... 123
AXiS_group_engraver................coiiiiinnnn 274

411
B
Backend.........ccoiiiiiiii 233, 238
Bagpipe ... 146
balance ...... ... o 2
balloon ....... .. 213
balloonGrobText ....... ..., 301
balloonTexXt........oiiiiiiiiiiiiiiiii.. 302
Banjo tablatures........... ... ... oo 143
Banter....... ..o 120
bar ... 302
Barcheck...... ..o 71
Bar lines...... .o 82
bar lines, symbolson........... ... ... ... ... 173
Bar numbers......... ... .o 194
Bar_engraver.......... ... 118
barCheckSynchronize............................ 71
baritone clef ....... ... .. 78
BarLine.........c.oouuiiiiii 84
BarNumber ..........c.uuuiiiiiiiiiiiiiiii 195
barNumberCheck .............. . ... .. ... 302
base-shortest-duration....................... 285
bassclef ... .. .. 78
BassFigure................ ... ...l 166
BassFigureAlignment........................... 168
BassFigureBracket............................. 168
BassFigureContinuation....................... 168
BassFigureLine ................ ... ... ... ....... 168
Basso continuo.......... ... oo 166
beam . ..o 21
beam. ... 179
Beam ... 92, 109
beam-markup.............. ... 179
beams and line breaks............ ... . ... ... 93
beams, by hand ......... ... ... 21
beams, kneed . ...... ... ... 93
beams, manual.............. . ..o 93
beats per minute........... ... oo 191
before-title-space............coiiiiiiinann. 261
bendAfter....... ... ... i 301
between-system-padding ....................... 260
between-system-space ......................... 260
between-title-space........................... 261
bigger...... ... 179
bigger-markup............. ... ..o 179
blackness. ... 2
blank-last-page-force........................ 262
blank-page-force.................... ... 262
block comment....... ... ... ool 16
bold. ... 179
bold-markup.......covitiiiiiii 179
bookTitleMarkup .........ccovvviiiiiinnnnnnnn.. 252
bottom-margin.............ccviiiiiiiiiii. 260
DOX .o 179
box-markup............. ... ... oL 179
brace, vertical.......... ... .. i 84
bracket ........o i 179
bracket, vertical......... ... ... .. L 84
bracket-markup .............. ... ... 179
brackets ... 215
breakable ........... ... .. il 93
breakbefore............. ... ..ol 249
breaking lines............ ... ... ... oL 266
breaking pages........... ... .o 288

breathe ........ ... 303



Appendix H: LilyPond index

BreathingSign...................oiiian, 102, 156
broken chord........... ... . .l 104
bugs ... 322

CAdENZA . ..ttt 84
call trace ... 323
calling code during interpreting ................. 314
calling code on layout objects ................... 314
CAPS 179
CapPS—MATKUD .. ..ottt 179
Case sensitive . ...t 11, 16
cautionary accidental.......... ... ... ... 62
center-align............ ... ..o ool 179
center-align-markup........................... 179
changing properties............... ... ... ..... 229
Char . ..o 179
char-markup............... .. ...l 179
ChoirStaff ...... ... ... . i 85
choral scoTe. ..o 126
choral tenor clef........ ... ... ... L 78
chord diagrams ......... ... ... oL 144
chordentry ... i 115
chordmode......... ..o i 115
chord names.................. ... ... 29, 114, 117
chordNameExceptions........................... 118
ChordNames....................... 117, 118, 202, 229
chordNameSeparator............................ 119
chordNoteNamer ............. ... ... ... oL, 119
chordPrefixSpacer.................. .. ... 119
chordRootNamer ............... .. ... ... ...... 119
chords.........o i 27,29, 117
Chords. .« oo 72
Chords mode .......ooviiiiiiii i 115
chords, jazz .........oo i i 120
church modes ......... ... o i il 79
Circle. ... 179
circle-markup.................oiiiii. 179
clef ... 15
Clef . 301
Clef .o 79
clefs .o 150
cluster. ... ... 210
Cluster_spanner_engraver ..................... 210
clusters. ... 117
ClusterSpanner ..................coiiiiiinnnnn. 210
ClusterSpannerBeacon ..............covuvvnnn. 210
COAA .ottt 97, 193
codaonbarline ..............ooiiiiiiiii 173
Coda Technology ..., 338
coloring, syntax.............. ... ... oL 323
Colors, list of ... 346
COLUMM. ..ttt ettt 179
column-1ines.......oviiiiiiiniiiiiiinen.. 187
column-lines-markup-list..................... 187
column-markup..........c.ouuiiiiiniiiiiiiiia. 179
combine ........ ... .. 179
combine-markup .............. ... ...l 179
command line options............ ... ... 316
comments.......... o i i il i 16
common-shortest-duration..................... 285
Completion_heads_engraver ................. 71, 72

COMPOSET ..\ttt et et e s 249

412
compressMuSicC. . ...t 301
COMCAL . .ottt 179
concat-markup...........c.couiiiiiiiiiiiiiii 179
condensing rests ........ ..l 191
context definition ............... ... ... .. 257
Context, creating ...........covviiiiiieennnn... 227
ContextS .. 6
CONVErt=1y ...t 320
copyright ... ... ... . .. 249
copyright ... 252
creating contexts............ .. ... ool 228
CresCendo ... 21, 101
cross staff. ... 113
cross staff stem ........ ... o il 111
cross staff voice, manual................. ... .. ... 25
cueDuring ...l 303
CUBS « ottt ettt 202
cues, formatting ............ i 204
currentBarNumber ............... ... ... .. ... 194
custodes . ..o 154
CUSEOS oo it 154
CUSEOS. .ot 155
Custos_engraver ................ovviiiiiii.... 154
D
DSalFine......ooooiiiiiiiiii i 193
decrescendo ... 21, 101
dedication............. il 249
defaultBarType ..., 84
defining markup commands ..................... 310
QiMoo 116
diminuendo......... . .. i 101
dir-column.............. ...l 179
dir-column-markup............................. 179
displayLilyMusic.............................. 303
displayMusSic.......oouvuuiiiiiiiiiii 301
distance between staves.................. .. ... 272
distance between staves in piano music.......... 111
Distances ... 56
divisio . ..o 155
AIVISIONES . ..ot 155
docbook ..o 328
DocBook, musicin.............................. 325
documents, adding music to............... ... .. 328
DotCOLUMN . ..ottt 68
DOtS ottt 68
dottedmotes ............... ... .. i 14
double flat ... 18
double sharp...............o it 18
double time signatures............. ... ... oL 206
doubleflat.............iiiiiiiiii 179
doubleflat-markup............................. 179
DoublePercentRepeat........................... 110
DoublePercentRepeatCounter................... 110
doublesharp............oooiiiiiiiiiiiiiii.. 179
doublesharp-markup.................. ... ... 179
downbow . ... 97
draw-circle...... ...t 179
draw-circle-markup............................ 179
draw-line . ... 180
draw-line-markup...........cooiiiiiiinininnnnnn. 180
drums ..... .. 138
DrumStaff ...... ... ... .. ... i 138, 140



Appendix H: LilyPond index

DrumVoice.........ooiiiininiiiinnnn.. 138, 139, 140
AUration ... 14
duration ....... ..o 67
AVIPS oo 328
dynamic ............. 180
dynamic-markup ....................oooa 180
DynamicLineSpanner ................... 54, 101, 102
dynamics ... 21
Dynamics........ ... 100
Dynamics, editorial ........... ... ... ... oL 189
Dynamics, parenthesis .......................... 189
DynamicText ............. ... ... ... ... ..... 54, 102

E

easy notation .......... ... .. o ool 214
edITOTS . . ottt 323
EINLACS .+« v v vee e ettt 323
endSpanners..................iiii. 302
Engraver_group ..................oiiiiiiiiii.. 235
ENETAVING ..ottt 4
ENIGINA ..ttt 338
epsfile ... 180
epsfile-markup .................. ... ... 180
1S5 5 ) PN 323
EITOT INESSAZES .+« vt vvvvvvtttenenes 322
errors, message format ........... ... ... ... 323
ESPIESSIVO . .ttt 97
BT . 338
evaluating Scheme ....... ... ... ... L 342
evenFooterMarkup..................ooiiil, 252
evenHeaderMarkup...................ooiiii.. 252
BVENE . oot 240
exceptions, chord names......................... 119
expanding repeats........... . 107
EXPIESSION . v e vttt et 24
extender....... ... .. i i 127
extender line.......... ... oo i 28
extending lilypond ...... ... 10
External programs, generating LilyPond files .... 340
extra-offset . ... i 52, 55

F

fatal error ...... ... 323
FDL, GNU Free Documentation License......... 399
featherDurations ............ooiviiiiunnnaeonn. 301
fermata....... ..o 97
fermata on bar line ............................. 173
fermata on multi-measure rest................... 190
Fetafont............oo i 348
FiguredBass .......................... 166, 168, 202
file searching......... ... o i 318
file size, output ......... i 324
fill-line ... ..ot 180
fill-line-markup..........covuuinnninnnnnnnnn. 180
£i1led-boX ... oot 180
filled-box-markup............................. 180
Finale ........... ... ... 338
finalis. ... 155
finding graphical objects ............. ... ... ... 237
finger..... .. ... 180
finger change.......... ... ... ... . L 99

finger-interface............ ... 238

413
finger-markup........... ...l 180
FingerEvent.............. ... ... ... ... ... 237
fingering ........ . ... 20, 99
Fingering.............ooiiiiiiio... 100, 237, 238
fingering-event ........... ... . ...l 237
Fingering_engraver....................... 237, 240
fingerings, right hand, for guitar................. 145
first-page-number.............. ... ...l 259
flageolet ........ . .. 97
Hags . oo 152
flat ..o 18
flat.. ..o 180
flat-markup............ ... ..o ool 180
follow voice ... ..o 113
followVoice................ ... ... ... 113
font. ... 2
font families, setting ............ ... ... ... .. 188
font magnification.............. .. ... 187, 188
font selection ......... ... ... ool 187
font size ........ 188
font size, setting ............c. i 264
font switching............. ... ... 176
Font, Feta ...... ... ... 348
font-interface.................. 184, 187, 212, 238
fontCaps ... 180
fontCaps-markup ..................... .. ... 180
fontsize ............. ... 180
fontsize-markup................. .. ...l 180
foot marks........ ... 97
foot-separation..........................LL 260
fOOter. .\ttt 252
footer, page. ... ..o 259
Forbid_line_break_engraver.................... 72
foreign languages...... ... ... i i 9
four bar music.......... ..o oo 266
fourth........ ... ... 13
fraction....... ... .. 180
fraction-markup.................. ...l 180
frenchclef ... ... .. . 78
Frenched scores.............. i 202
fret ..o 142
fret diagrams ......... ... 144
fret-diagram............... ... ...l 180
fret-diagram-interface....................... 144
fret-diagram-markup..............ccoiiiiiii.. 180
fret-diagram-terse............................ 181
fret-diagram-terse-markup.................... 181
fret-diagram-verbose ............. ... ... ... 181
fret-diagram-verbose-markup ................. 181
fromproperty......... ... i 182
fromproperty-markup.............ccoiiiiiiii.. 182
full measure rests ......... ... o i 189
G
general-align................ ... ...l 182
general-align-markup .............coouuunnnnn. 182
ghost notes ........ ... i i i 217
Glissando ...t 103, 172
BT ACE . et 302
Grace NObES . .. 22,94
GraceMusic ......... ... i 96, 305
grand staff . ... .o 84
GrandStaff ....... ... ... 84, 222
graphical object descriptions .................... 237



Appendix H: LilyPond index

Gregorian square neumes ligatures .............. 157
Gregorian_ligature_engraver ................. 149
BTOD 238
grob-interface ...l 238
GUILE . ... 342
guitar tablature......... ... ... o oo 141

H

Hairpin........ ... ... i 54, 101, 102
Hal Leonard .......... ... o i 214
half note.......o.uuuuuiii i 14
halign......... ... 182
halign-markup................... ... . ... 182
hbracket ...... ... .. i 182
hbracket-markup............................... 182
hcenter ... ... i 182
hecenter—in........... i 182
hcenter-in-markup............................. 182
hcenter-markup ................... ... ... 182
head-separation............. ... 260
header........ ... i 252
header, page ....... ..o 259
Hidden notes ........ ... o 214
hiding objects......... ... ... 55
Hiding staves .......... ... ... . i 202
horizontal spacing. .............cooiiiiiiiiiia.. 284
horizontal-shift.............................. 261
Horizontal_bracket_engraver ................. 215
HorizontalBracket............................. 215
hspace........ ... ..o 182
hspace-markup.................oooiiiiiiiii 182
html... ... 328
HTML, musicin................oooiiiiiiiaa. 325
hufnagel ....... . ... 148
huge...... ... 182
huge-markup................ ...l 182
hyphens ... . ... 127

I

identifiers ............ i 43, 245
identifiers vs. properties........... ... ... ... 343
IdIOM ..o 9
ImproVoice . ...t 235
includePageLayoutFile ........................ 301
including files........ ... ... . ool 248
indent. ... .. e 288
indentifiers.......... ..o i 38
INAEX .« 10
instrument ........ ... .. 249
instrument names................. .. ... 257
InstrumentName ..............coviiininennnnnnn.. 197
instrumentSwitch.......... ... ... . ... ... ..., 301
interface, layout............. ... ... i 238
Interleaved music .............. ... L 87
internal documentation...................... 10, 237
internal storage ........ ... ... .. i 305
international characters......................... 329
interval ... ..o 13
Invisible notes ............. ... 214
invisible objects........ ... .o o 55
Invisible rest . ........ .. 66
invoking dvips .......... ... i 328

414
Invoking LilyPond .............................. 316
italic. .o 182
italic—markup..........coiiiiiiiiiiiiii 182
item-interface ........ ... ... ..ol 238
J
JATGOM. Lo 9
jazz chords....... .. ... i 120
justified-lines ..............coviiiiiiiiiin, 187
justified-lines-markup-list ................. 187
Justify ..o 182
Justify—field.........ooiiiiiii 182
justify-field-markup ......................... 182
justify-markup....................ooolL 182
justify-string ............. ...l 182
justify-string-markup................... ... 182
K
keepWithTag ........ ... oo oot 199
keepWithTag........................iiii, 303
Key signature............. ..o i 79
key signature, setting ............ ... ... oo 18
KeyCancellation ............coiiiiinnnnnnnn. 80
KeySignature.............cciiiiiiiiinnnnnn. 80, 149
killCues ... 302
kneed beams........... ... oL 93
L
d1abel. .o 302
Laissez vibrer........ ... o i 92
LaissezVibrerTie..................... ... ...... 92
LaissezVibrerTieColumn ........................ 92
landscape. ... 259
LANG .o 319
language ... 9
large. ... 182
large-markup...............oiiiiiiiiiii 182
larger . 182
larger-markup.........cooiiiiiiiiiiii 182
latex. ... .o 328
IATEX, music in. ..o, 325
latind ... 329
layers. ... 73
layout block ....... ... .. 256
layout file......... ... ... i 264
layout interface ........... ... .. oot 238
lead sheet......... oo i 29
Lead sheets........... ... ... ... ... .. L 29
LedgerLineSpanner ...............cooviiiiiiiaan.. 62
left-align.......cooiiiiiiiiiiii 182
left-align-markup...................oiina 182
left-margin................. ...l 260
Ligature_bracket_engraver.................... 157
LigatureBracket ............ ... ... ... ...l 156
Ligatures ... 156
lilypond-internals .......... ..., 10
LILYPOND_DATADIR ..., 319
line ... ..o 182
line breaks....... ... ... ... il 266
line comment .......... ... ... i 16



Appendix H: LilyPond index

line-spanner-interface....................... 172
line-width.......... ... . ... ... ... ... 260, 288
LineBreakEvent ................. ... ... .. ... 266
LISP .o 342
List of colors....... ... i 346
LOOKUP . .« 182
L1ooKkUP—Markup. .. ...t 182
LOWeT .ot 183
lower—-markup..........coooiiiiiiiiiiii... 183
lowering text....... ... oo i 186
LSRR 9
ly:minimal-breaking..................oooii.. 269
ly:optimal-breaking..............cooviiiii... 267
ly:page-turn-breaking ........................ 268
LyricCombineMusic........................ 125, 128
LyricExtender.................. .. ... ... ... 127
LyricHyphen............ ... ... ... ... ... ... 127
Lyrics ..o 121, 225
Lyrics. ..o 28
Lyrics........coviuiiiian.. 123, 125, 128, 202, 229
lyrics and melodies......... ... ... ... .. oL 123
lyrics, identifiers ......... ... ... ool 127
Lyrics, increasing space between................. 131
LyricSpace........cooiiiiiiiiiiiiii... 123
LyricText ............ ... ... ... .. 123, 136

oot 116
magnify ...... ... 183
magnify-markup .......................ooLL 183
MAJ oot 116
majorSevenSymbol............. ... ... ... 119
make-dynamic-script ........ ... oo ool 188
makeClusters..............ooiiiiiiiiiiii... 301
manual staff switches ...... ... ... ..o oo 112
marcato. ... ... 97
INATZITIS « .+ttt 259
markalphabet............ ... .. ...l 183
markalphabet-markup........................... 183
markletter...... ... ... . i 183
markletter-markup............................. 183
markup..... ... o 175
markup text ....... .. 175
measure lines ...t 82
measure NUMbErs . ........ooueeiiiieennn... 194
measure repeats.......... ... oo 109
measure, partial...... ... ... o oL 82
Measure_grouping_engraver..................... 81
MeasureGrouping ............cooiiiiinnnnn. 81
Medicaea, Editio.............coooiiiiiiL 148
medium...... ... . 183
medium-markup................ ..ol 183
MeLiSma. ..ottt 28
meliSma. . ..ot 126, 127
Melisma_translator.................coovviuin.. 127
melismata .......... .o 126
mensural...... ... 148
Mensural ligatures .......... ... 156
Mensural_ligature_engraver.............. 149, 157
MensuralStaffContext........... ... ... 164
MensuralVoiceContext . ... . 164
Meter. ... ..o 80
MEtET . .ottt 249

415
meter, polymetric................ ..l 206
metronome marking............ ... o L 191
MetronomeMark........... ... ..o, 191
mezzosoprano clef. ... ... ..o il 78
middle C.....ooii 13
MIDI ... 255, 337
MIDI block ... i 257
minimumFret...... .. ... 142
minimumPageTurnLength ........................ 268
minimumRepeatLengthForPageTurn.............. 268
modern style accidentals...................... 220
modern-cautionary............. ... 221
modern-voice........... .. 221
modern-voice-cautionary...................... 221
modes, editor ....... ... 323
modifiers, in chords.................. ... ........ 116
mordent .......... 97
movements, multiple............... ... ... oL 246
moving text........ ... oo 186
multi measure rests........... ... oL 189
MultiMeasureRest .............................. 190
MultiMeasureRestMusicGroup................... 190
MultiMeasureRestNumber ....................... 190
MultiMeasureRestText .................... ... 190
multiple voices........ ... ... i 26
Music classes............coiviiiiiiiiin... 305
MUSIC eXPreSSION . . oottt 24
Music expressions ............................. 305
Music properties .............oiiiiiiiiiiiia, 305
Musica ficta ... 165
musical symbols.......... ... 2
musicglyph..... ... ... il 183
musicglyph-markup............................. 183
MUSICMAD « vt 302
musicological analysis................... ... ... 215
MUSICOlOZY . .« oot 325
N
name of Singer ............c.oiiiiiiiiiiii 133
natural ......... . 183
natural-markup ............... ... 183
new contexts. ...... ... 227
New_fingering engraver ....................... 237
NewBassFigure................ ... ... ... ... ..., 168
niente, al ... 101
no-reset accidental style..................... 222
non-empty texts ......... ... oo 169
Non-guitar tablatures.................. ... .. ... 142
noPageBreak........... ... il 302
noPageTurn........ ..., 301
normal-size-sub........... ... 183
normal-size-sub-markup....................... 183
normal-size-super............................. 183
normal-size-super-markup..................... 183
normal-text.............. ... ... 183
normal-text-markup...............oiiiiiiiia 183
normalsize.............. i 183
normalsize-markup............................. 183
notation, explaining.......... ... ... ... . 213
NOLE . . 183
note grouping bracket............ ... .. oL 215
note head styles........ ... ... ... ... 363

note heads, ancient ...................... oL 148



Appendix H: LilyPond index

note heads, easy notation ....................... 214
note heads, practice............. ... ... ... ..... 214
note heads, shape................................ 214
note heads, special .............................. 210
note heads, styles ............... i 73
note names, default .............................. 61
note names, Dutch......... ... ... ... ... ..., 61
note names, other languages...................... 62
note-by-number .......... ... ... ... ... L 183
note-by-number-markup ........................ 183
note-event................ il 138
Note—Markup. ... 183
Note_heads_engraver....................... 71, 235
NoteCollision..............ooiiiniiiiiin.. 76, 78
NoteColumn ...........oiuuuniiiiiininninnnnnnn.n, 77
NoteEvent ........... ... 305
NoteHead ................co... 62, 148, 211, 215, 314
notes, ghost........ ... ... 217
notes, parenthesized.................. ... ... .. 217
NoteSpacing.................oiiiiiiiii, 285
null. ... 183
Null-markup.........ccouiiiiiiiii 183
NUMDET . . ...t 183
number of staff lines, setting ..................... 87
number-markup..........c.cooviiiiiiiiiii.. 183

O

octavation ............ ..o oo 198
OCEAVE . 301
Octave check........ ... ... ... ol 64
oddFooterMarkup ............................... 252
oddHeaderMarkup ............................... 252
oldaddlyrics..........ooooiiiiiiiiii L. 301
on-the-fly..... ..o 184
on-the-fly-markup...................ooinnnn. 184
[0 073 K 97
OpenOfficecorg. ... i 335
optical spacing ......... ... i 2
options, command line.................. ... ... 316
OPUS + o et ettt ettt 249
organ pedal marks ............. ... oL 97
orientation............. .. .o oo 259
OrNAMENtS. .ottt 94, 97
OSSIA « ottt 87, 236
ottava ......... ..o oo 198
OttavaBracket........... ..., 199
outline fonts ......... ... ... 328
output format, setting ............. ... ... ... 318
outside-staff-horizontal-padding............ 283
outside-staff-padding ........................ 283
outside-staff-priority................. ... ... 283
override ............. .. 184
override-lines .......... ... 187
override-lines-markup-list................... 187
override-markup............... ... ... ...l 184
overrideProperty............... ...l 303
OverrideProperty.............oooiiiiiiiiii... 233

P

pad-around.............. ... 184
pad-around-markup...................oa.a 184
Pad-markup..............oiiiiiiii 184

416
pad-markup-markup..............coooiiiiiii.... 184
Pad-to-boxX .......... ... 184
pad-to-box-markup............................. 184
PAA=X . ottt 184
pad-x-markup...............o.iiiiiiiiii 184
padding ... 51, 54, 239
page breaks........ ... ... 288
page breaks, forcing.......... ... ..o oL 249
page formatting........... ... .. oL 259
page layout ....... ... .. L 252, 288
PACE SIZE. ..ottt 259
page-breaking-between-system-padding....... 261
page-ref ... ... 184
page-ref-markup................ ... 184
page-spacing-weight.................... ... ... 262
PAgEe—tOP=SPACE ...ttt 260
pageBreak............ ...l 302
pageTurn .............. i 301
Pango ... 188
PAPET SIZE. . ..ot 259
paper-height...................... ... ...l 260
paper-width........ ... .. i 259
papersize ...l 259
parallelMusic..........ooviiiiiiiiii.. 301
parenthesize............. ... ... ... ... L 301
parenthesized accidental................. ... .. ... 62
part combiner........ .. ... oo i 200
partcombine. ... 302
PartCombineMusic.......... ..., 201
partial measure.......... ... i 22, 82
PDF file.. ..o 12
Pedals...... ..o 112
percent repeats ......... .. ..ol 109
PercentRepeat............... ... ... ... ... 110
PercentRepeatCounter ......................... 110
PercentRepeatedMusic ...............oooiiin, 110
PETCUSSION . .ottt ettt e e e e 138
Petrucci ... oo i 148
phrasing brackets ......... ... ... ..o oL 215
phrasing marks ...... ... ... .l 91
phrasing slurs .......... ... o i 19, 91
phrasing, in lyrics........ ... ... ... ool 132
PhrasingSlur.............. .. ... ... 92
piano accidentals .................oiiiiiial 222
PianoPedalBracket............................. 113
PianoStaff .......... ... ... ... il 104
PianoStaff....................... 105, 111, 195, 222
pPickup ... 22
piece.. ... 249
pipeSymbol ... 71
Pitch names ........ ... . ... ... . i 60
Pitch_squash_engraver.................... 211, 235
Pitched trills........ ... o i 103
pitchedTrill........ ... ... .. i 303
pitches. ... ..o 60
POt .. 249
point and click.......... ... i 324
point and click, command line................... 316
polymetric scores ......... ... i 231
polymetric signatures ............. ... ... ... 206
polyphony........ ... ... 26, 73
portato ...... ... 97
postscript........... ... L 184
PostScript output . ... 317

postscript-markup.................... .. ... 184



Appendix H: LilyPond index

prall ... 97
prall, down. ... ... 97
prall, up ... 97
prallmordent . ....... ... ... .. 97
prallprall....... ... 97
preview image ................. ..o 330
prima volta........ .o i 105
print-first-page-number...................... 259
print-page-number............................. 259
printallheaders .......................... 251, 261
printing chord names............. ... ... ... .. 117
Program reference .......... ... ..o oL 219
Programming error...... ... ... o oL 323
Properties .. ... 10, 229
properties vs. identifiers......................... 343
PropertySet........... ... ... ...l 233
Proportional notation................ ... ... .. .. 209
punctuation............... 121
put-adjacent.......... ... ...l 184
put-adjacent-markup................... ... 184
Q

quarter note ..............iiiiiiiiii 14
quarter tones ........ . 62
quoteDuring.......... ... ...l 302
QuoteMusSic . ...oovti i 203
quotes, in lyrics ........ ... . oo 121, 122
quoting in Scheme ....... ... ... ... ool 343
R

o 66
R o 189
ragged-bottom.......... ... .. ..ol 260
ragged-last.............. ... ...l 288
ragged-last-bottom................ ... ... ... 260
ragged-right........ ... ... 288
TS . ittt 184
raise-markup............. ... 184
raising text ... 186
regular line breaks .......... ... ... ool 266
regular thythms....... ... ... . o i 3
regular Spacing. .. .........uuii 3
Rehearsal marks ............... oo il 192
RehearsalMark...............coovvnn... 175, 177, 193
Relative.... ... i 63
Relative octave specification...................... 63
reminder accidental ........... ... ..o oL 62
removals, in chords.............................. 116
removeWithTag............ ... ... ... ... ... 199
removeWithTag.................................. 303
removing objects....... ... ... oL 55
repeat bars ... 82
repeat, ambiguous ......... ..o oL 107
repeatCommands..............cooviiiiininn... 84, 108
RepeatedMusic............ ... 108, 305
repeating ties......... ... o oo 89
repeats .. ... 105
RepeatSlash.............. ... ... ... ... ... ... 110
reporting bugs ......... ... oo 322
resetRelativeOctave........................... 301
TS L e 14
Rest ..o 66, 149

417
RestCollision..............oooiiiiiiiii .. 78
Rests .o 66
rests, ancient ........ .. 149
Rests, full measure.......... ...t 189
Rests, multi measure............................ 189
Teverseturn. ... .. ... 97
RevertProperty .................ooiiiiii... 233
RhythmicStaff........... ... ... ... ... ... .. 137
right hand fingerings for guitar.................. 145
right-align........... ... .. . o il 185
right-align-markup............................ 185
rightHandFinger ............................... 302
TOMATL. vttt et ettt ettt 185
TOMaN-MATKUP. . .....oviiitte i 185
root of chord....... ... .. . ... il 116
rotate...... ... 185
rotate-markup.............................LLL 185
rotated text........ ... ... i 184
S
S 66
SAILS ¢ ottt e 185
SANS—MATKUD . . ..o v i i 185
SATB . 126
SCale .. 13
Scheme. ... ... i 10, 342
Scheme dump........ ... 318
Scheme error....... ..o 323
Scheme, in-line code .............. ... ... ... 342
SCOT . ottt 185
SCOT e . i 81
Score..........o.i. 208, 226, 227, 228, 290, 293
SCOre-—markup............ooiiiiiiiiiiiiiii... 185
scoreTitleMarkup.............................. 252
scoreTweak ........ooiiiiiiiiiii 302
Script.. ... 98
Script.......... 99
script on multi-measure rest..................... 190
SCTIPES « oot 97
search path ....... ... .. 318
seconda volta ......... ... ... oL 105
SEETIO &« e 97, 193
segno on bar line........... ... ... .. oL 173
self-alignment-interface..................... 238
semi-flats, semi-sharps ........................... 62
semiflat ... 185
semiflat-markup..................iia 185
semisharp.......... ... ... . il 185
semisharp-markup....................... ... ... 185
Separating_line_group_engraver.............. 209
SeparatingGroupSpanner ....................... 285
SeparationItem.................. ... ...l 285
SequentialMusic............................... 305
sesquiflat ... 185
sesquiflat-markup...............ooiiiiiiiiin, 185
sesquisharp.............cciiiiiiiiiii 185
sesquisharp-markup............................ 185
set-accidental-style ...................... ... 219
shapeNoteStyles .........couiiiiinnnnn. 214
Sharp. ... 18
sharp........ ... 185
sharp-markup............................LL 185
Sheet music, empty .........coviiiiiii i 213
shiftDurations .............. . ...t 302



Appendix H: LilyPond index

shorten measures........... ... i 82
showLastLength ................................ 257
side-position-interface............... ... ... 238
signatures, polymetric.......... ..., 206
simple...... ...l 185
simple-markup..............coiiiiiiiiiiii. 185
SimultaneousMusic....................iiiaal 305
SINGEr NAME. ...ttt 133
SKID o 66
SRIPMUSIC .t v vi ettt 67
skipTypesetting ............................... 257
slashed-digit.......................... .. ... 185
slashed-digit-markup ......................... 185
SLUT .o 19
SLUT oo 91
SIUTS . 19
SIUTS . ¢ et 90
slurs versus ties........co i i 20
slurs, phrasing ............. i 19
small... ... 185
small-markup................. ... ... L. 185
SMallCaps .....ooiiiiii 185
smallCaps-markup.............................. 185
smaller ....... ... 185
smaller-markup ............coovviiiiiiiiia... 185
SNIPPetS. .o 9
SONES .ttt 28
soprano clef. ... ... ... .. 78
Sound ... 255
space between staves............ ... oL 272
space inside systems ..., 272
SPace NOte . ....o.vii i 66
spaces, in lyrics ........ ... ool 121, 122
Spacing ........... ool 285
Spacing lyrics. ... 131
Spacing, display of properties ................... 265
spacing, horizontal ................... ... ... ..... 284
spacing, vertical......... ... ... .. ool 272
SpacingSpanner ............iiiiiiiiii 210
SpacingSpanner....................... 284, 285, 286
spacingTweaks.................oiiiiii. 301
SpanBar. . ... 84
Square neumes ligatures......................... 157
staccatissimo........... .o oo 97
staccato...... ... ol 20, 97

Staff.. 67, 84, 112, 136, 154, 195, 202, 206, 209, 215,
221, 226, 227, 228, 229, 232, 234, 235, 285, 337

staff distance ......... ... .. 272
staff group ... 84
staff lines, setting number of ...... ... ... ... ... 87
staff lines, setting thickness of .................... 87
Staff notation........ ... i 78
staff size, setting ......... ... ... il 264
staff switch, manual ......................... 25, 112
staff switching .......... ... ... ... 113
staff, choir..... ... ... o 84
Staff, multiple........ ... ... .. 84
Staff.midilnstrument ......................... 257
StaffGroup ...l 85, 195
StaffSpacing............ ...l 285
StaffSymbol ... 87, 264
stanza number....... ... ... o oo 132
StanzaNumber............... .. ...l 136
start of system............. i 84

Staves, blank sheet.............................. 213

418
Stem ... 72, 152, 314
stem, crossstaff............ .. ...l 111
stem-spacing-correction...................... 285
stemLeftBeamCount ................ ... ... .. ..... 93
stemRightBeamCount............................. 93
StemTremolo. ...t 109
stencil ... ... 185
stencil-markup .............. ... ...l 185
stopped ... 97
String numbers ........ ... o oo 141
StringNumber.............. ... .. ... 141
StrokeFinger............ ... ... il 145
strut......... 185
strut-markup...................ooooooooL L 185
SUD .. 186
sub-markup.......... ...l 186
subbass clef....... ... 78
subdivideBeams ............ ... ... i 93
subsubtitle................... i 249
subtitle .. ... ... 249
suggestAccidentals............................ 165
SUPET . .ottt 186
SuUper-markup................iiiiii 186
SIS ottt 116
SustainPedal............. ..o, 112
SVG (Scalable Vector Graphics)................. 318
switches ... ... 316
syntax coloring ........ ... ..o, 323
system—count............. ... ... ., 260
systemSeparatorMarkup ........................ 261
SystemStartBar ......................oLL 86
SystemStartBrace................ ... ...l 86
SystemStartBracket.............. ... ... oL 86
systemStartDelimiter........................... 86
T
Tab_note_heads_engraver...................... 143
tablature ...... ... . o 141
Tablatures basic ............ ... ... ... 141
TabStaff ....... ... 142
TabVoice ...oviii 142
L2 N 199
Bag 302
tagline ................ 249
tagline....... ... .. 252
tEENY ... 186
teeny-markup............cooiiiiiiiiiiiii 186
Tempo. ..o 191
tenor clef ... ... 78
tenuto........... 97
terminology . ......... . 9
TeXd oo 328
texinfo. . ... 328
Texinfo, music in...............ooiiiiii ... 325
text. . 186
text items, non-empty...............aa 169
text markup ... 175
text on multi-measure rest ............ ... ... .. 190
Text scripts. .. ..ot 169
Text Spanners. ........cooeeiiiiiiinneea... 172
Text, other languages ........................... 169
text-balloon-interface....................... 213
text-interface............... . ...l 184, 238



Appendix H: LilyPond index

text-markup.......... .. ..o il 186
text-script-interface........................ 238
TextScript........ ... ... .. L 98
TextScript ...oovviiii i 169, 175, 177
TextSpanner...................iiiiiiiia, 172
textSpannerDown ............. ... ..ol 172
textSpannerNeutral............................ 172
textSpannerUp............... .. ...l 172
The Fetafont ............ ... .. ... .o ... 183
thickness of staff lines, setting.................... 87
thumb marking ........... ... ... 97
thumbnail ...... ... oo 330
Bie 19, 20
15 L 89
Tie o 90, 242
tied-lyric......... ... il 186
tied-lyric-markup............................. 186
IS oo 19
ties, in lyrics.......... .o 122, 125
Ties, laissez vibrer .......... ... ..o i 92
Time administration ............ ... ... ... ... 208
time signature.......... ... ... il 15
Time signature............. ... oo i 80
time signatures ............. ... oo 153
Time signatures, multiple .................... ... 231
Time_signature_engraver...................... 208
TimeScaledMusic ............ ..., 70
TimeSignature................couuuun.. 82, 153, 206
Timing_translator ......................... 82, 206
tiny ... 186
tiny-markup........... ... oo ool 186
title. . oo 249
titles. oo 252
titling and lilypond-book.............. ... .. ... 328
titling in HTML ... o o 330
tocltem ... ... 303
top-margin................iiiiii 260
trace, Scheme.......... ... ... o il 323
translate.......... ... ..l 186
translate-markup.............cooiiiiiiiinnnnn. 186
translate-scaled........... ..., 186
translate-scaled-markup...................... 186
translating text ... 186
Translation............oooiiiiiiiiniiiina.. 238
transparent............. ... .. Ll 186
Transparent Notes. . ... 214
transparent objects......... ... ... oL 55
transparent-markup................ ... ... ... 186
TranSPOSE. ¢« vttt 65
transposedCueDuring........................... 303
TransposedMusic ..........coiiiiiiiiiiiiiiia, 66
transposition.......... ... ..o 301
Transposition of pitches.......................... 65
transposition, instrument............... ... ... ... 198
transposition, MIDI............ ... ... ... ..., 198
treble clef. ... 78
tremolo beams ........ .. ... . oo oL 108
tremolo marks ....... ... o ool 109
tremoloFlags................ ...l 109
triangle .............. L 186
triangle-markup..............cooiiiiiiiii. 186
trill .o 97
TrillSpanner.............................. 103, 172
triplets. ... 22, 68

tuning automatic beaming ............... ... ... 223

419
tuplet formatting ............... .. ..l 69
TupletBracket...........ooviiiiiiiiiiinennnnnn. 70
TupletNumber............... ... ... ... ... 70
tupletNumberFormatFunction.................... 69
tuplets . ... 22, 68
turn . ... 97
tWeaK. ..o 303
tweaking........ ... 237
Tweaks, distances.......... ... 56
typel fonts ... ..o 328
typeset text. . ... 175
typewriter ...l 186
typewriter-markup............................. 186
typography ........ ... 3,4
U
UnfoldedRepeatedMusic ........................ 108
unfoldRepeats............oooiiiiiiiiiiii. 302
upbeat. ... 82
UPDOW .« oottt 97
Updating a LilyPond file............... ... ..., 320
upright ...... ... oo 186
upright-markup ................. ... ... ... ... 186
\%
varbaritone clef ........ ... ... 78
VATCOARA .+« v vt ettt ettt 97
variables.......... ... ool 10, 38, 43, 245
Vaticana, Editio ............. .. ..o oL 148
VaticanaStaffContext ................. ... ... ... 164
VaticanaVoiceContext.......... ..., 164
VCENLEY ..ottt 186
veenter-markup ... 186
verbatim-file........... ... ... ... oo ool 186
verbatim-file-markup .................. .o 186
VETSIONING . ...ttt 30
vertical spacing .......... ... o i 272, 288
VerticalAlignment ........................ 273, 274
VerticalAxisGroup ................... 202, 272, 273
Viewing music ......... ... oL 12
violin clef ... ... o 78
VocallName .........ouuuiiiiiiiiiiiiiiiiinnn 136

Voice... 67, 73, 74, 101, 112, 123, 124, 136, 156, 157,
201, 203, 204, 211, 226, 227, 228, 229, 232, 234,
235, 237, 240, 256, 285, 337

VoiceFolloWer........oouviiiiunnennnnnnn.. 114, 172
voices, more —on a staff......... ... ... .. o L 26
VOlba. .o 105
volta brackets and ties ...l 89
Volta_engraver .....................oiiinn... 118
VoltaBracket.......coiiiuiiniiniininennnn 108
VoltaRepeatedMusic............................ 108

\%%

R 22 1 0 <P 322
whichBar ... 84
White mensural ligatures........................ 156
whiteout ...... ... .. 186
whiteout-markup................ ... ... ... ... 186
whole note ...ttt 14



Appendix H: LilyPond index

whole rests for a full measure.................... 189
with-color......... ... ... ... il 186
with-color-markup............................. 186
with-dimensions ...............cooviiiiiiiannnn. 187
with-dimensions-markup....................... 187
with-url ... ... 187
with-url-markup..............cooiiiiiiiinnn. 187
withMusicProperty............................. 303

WOXAWLaAD ..ottt 187

420
wordwrap-field ............ ... i 187
wordwrap-field-markup ........................ 187
wordwrap-lines .............. .. ... .l 187
wordwrap-lines-markup-list................... 187
WOrdwrap—markup ........covuuueieiniiineennnnn 187
wordwrap-string............. ... ...l 187
wordwrap-string-markup....................... 187
Writing music in parallel ......... ... ... ... ... 87



	Preface
	Introduction
	Engraving
	Automated engraving
	What symbols to engrave?
	Music representation
	Example applications
	About this manual

	Tutorial
	First steps
	Compiling a file
	Simple notation
	Working on text files
	How to read the tutorial

	Single staff notation
	Relative note names
	Accidentals and key signatures
	Ties and slurs
	Articulation and dynamics
	Automatic and manual beams
	Advanced rhythmic commands

	Multiple notes at once
	Music expressions explained
	Multiple staves
	Piano staves
	Single staff polyphony
	Combining notes into chords

	Songs
	Printing lyrics
	A lead sheet

	Final touches
	Version number
	Adding titles
	Absolute note names
	Organizing pieces with identifiers
	After the tutorial
	How to read the manual


	Putting it all together
	Extending the templates
	How LilyPond files work
	Score is a single musical expression
	An orchestral part

	Working on LilyPond projects
	Suggestions for writing LilyPond files
	General suggestions
	Typesetting existing music
	Large projects

	Saving typing with identifiers and functions
	Style sheets
	Updating old files
	Troubleshooting (taking it all apart)
	Minimal examples

	Tweaking output
	Moving objects
	Fixing overlapping notation
	Common tweaks
	Default files
	Fitting music onto fewer pages
	Advanced tweaks with Scheme
	Avoiding tweaks with slower processing

	Basic notation
	Pitches
	Normal pitches
	Accidentals
	Cautionary accidentals
	Micro tones
	Note names in other languages
	Relative octaves
	Octave check
	Transpose
	Rests
	Skips

	Rhythms
	Durations
	Augmentation dots
	Tuplets
	Scaling durations
	Bar check
	Barnumber check
	Automatic note splitting

	Polyphony
	Chords
	Stems
	Basic polyphony
	Explicitly instantiating voices
	Collision Resolution

	Staff notation
	Clef
	Key signature
	Time signature
	Partial measures
	Bar lines
	Unmetered music
	System start delimiters
	Staff symbol
	Writing music in parallel

	Connecting notes
	Ties
	Slurs
	Phrasing slurs
	Laissez vibrer ties
	Automatic beams
	Manual beams
	Grace notes

	Expressive marks
	Articulations
	Fingering instructions
	Dynamics
	Breath marks
	Trills
	Glissando
	Arpeggio
	Falls and doits

	Repeats
	Repeat types
	Repeat syntax
	Repeats and MIDI
	Manual repeat commands
	Tremolo repeats
	Tremolo subdivisions
	Measure repeats


	Instrument-specific notation
	Piano music
	Automatic staff changes
	Manual staff switches
	Pedals
	Staff switch lines
	Cross staff stems

	Chord names
	Introducing chord names
	Chords mode
	Printing chord names

	Vocal music
	Setting simple songs
	Entering lyrics
	Aligning lyrics to a melody
	Automatic syllable durations
	Another way of entering lyrics
	Assigning more than one syllable to a single note
	More than one note on a single syllable
	Extenders and hyphens

	Working with lyrics and identifiers
	Flexibility in placement
	Lyrics to multiple notes of a melisma
	Divisi lyrics
	Switching the melody associated with a lyrics line
	Lyrics independent of notes

	Spacing lyrics
	More about stanzas
	Adding stanza numbers
	Adding dynamics marks
	Adding singer names
	Printing stanzas at the end
	Printing stanzas at the end in multiple columns

	Ambitus
	Other vocal issues

	Rhythmic music
	Showing melody rhythms
	Entering percussion
	Percussion staves
	Ghost notes

	Guitar
	String number indications
	Tablatures basic
	Non-guitar tablatures
	Banjo tablatures
	Fret diagrams
	Right hand fingerings
	Other guitar issues

	Bagpipe
	Bagpipe definitions
	Bagpipe example

	Ancient notation
	Ancient note heads
	Ancient accidentals
	Ancient rests
	Ancient clefs
	Ancient flags
	Ancient time signatures
	Ancient articulations
	Custodes
	Divisiones
	Ligatures
	White mensural ligatures
	Gregorian square neumes ligatures

	Gregorian Chant contexts
	Mensural contexts
	Musica ficta accidentals
	Figured bass

	Other instrument specific notation
	Artificial harmonics (strings)


	Advanced notation
	Text
	Text scripts
	Text and line spanners
	Text spanners
	Text marks
	Text markup
	Nested scores
	Page wrapping text
	Overview of text markup commands
	Overview of text markup list commands
	Font selection
	New dynamic marks

	Preparing parts
	Multi measure rests
	Metronome marks
	Rehearsal marks
	Bar numbers
	Instrument names
	Instrument transpositions
	Ottava brackets
	Different editions from one source

	Orchestral music
	Automatic part combining
	Hiding staves
	Quoting other voices
	Formatting cue notes
	Aligning to cadenzas

	Contemporary notation
	Polymetric notation
	Time administration
	Proportional notation (introduction)
	Clusters
	Special noteheads
	Feathered beams
	Improvisation
	Selecting notation font size

	Educational use
	Balloon help
	Blank music sheet
	Hidden notes
	Shape note heads
	Easy Notation note heads
	Analysis brackets
	Coloring objects
	Parentheses
	Grid lines


	Changing defaults
	Automatic notation
	Automatic accidentals
	Setting automatic beam behavior

	Interpretation contexts
	Contexts explained
	Creating contexts
	Changing context properties on the fly
	Modifying context plug-ins
	Layout tunings within contexts
	Changing context default settings
	Defining new contexts
	Aligning contexts
	Vertical grouping of grobs

	The \override command
	Constructing a tweak
	Navigating the program reference
	Layout interfaces
	Determining the grob property
	Objects connected to the input
	Using Scheme code instead of \tweak
	\set vs. \override
	Difficult tweaks


	Non-musical notation
	Input files
	File structure (introduction)
	File structure
	A single music expression
	Multiple scores in a book
	Extracting fragments of notation
	Including LilyPond files
	Text encoding

	Titles and headers
	Creating titles
	Custom titles
	Reference to page numbers
	Table of contents

	MIDI output
	Creating MIDI files
	MIDI block
	MIDI instrument names

	Displaying LilyPond notation
	Skipping corrected music

	Spacing issues
	Paper and pages
	Paper size
	Page formatting

	Music layout
	Setting the staff size
	Score layout

	Displaying spacing
	Breaks
	Line breaking
	Page breaking
	Optimal page breaking
	Optimal page turning
	Minimal page breaking
	Explicit breaks
	Using an extra voice for breaks

	Vertical spacing
	Vertical spacing inside a system
	Vertical spacing between systems
	Explicit staff and system positioning
	Two-pass vertical spacing
	Vertical collision avoidance

	Horizontal Spacing
	Horizontal spacing overview
	New spacing area
	Changing horizontal spacing
	Line length
	Proportional notation


	Interfaces for programmers
	Music functions
	Overview of music functions
	Simple substitution functions
	Paired substitution functions
	Mathematics in functions
	Void functions
	Functions without arguments
	Overview of available music functions

	Programmer interfaces
	Input variables and Scheme
	Internal music representation

	Building complicated functions
	Displaying music expressions
	Music properties
	Doubling a note with slurs (example)
	Adding articulation to notes (example)

	Markup programmer interface
	Markup construction in Scheme
	How markups work internally
	New markup command definition
	New markup list command definition

	Contexts for programmers
	Context evaluation
	Running a function on all layout objects

	Scheme procedures as properties

	Running LilyPond
	Invoking lilypond
	Command line options
	Environment variables

	Notes for the MacOS X app
	Updating with convert-ly
	Reporting bugs
	Error messages
	Editor support
	Point and click

	lilypond-book: Integrating text and music
	An example of a musicological document
	Integrating LaTeX{} and music
	Integrating Texinfo and music
	Integrating HTML and music
	Integrating DocBook and music
	Common conventions
	Including a LilyPond file
	Including LilyPond code
	Processing the DocBook document

	Music fragment options
	Invoking lilypond-book
	Filename extensions
	Many quotes of a large score
	Inserting LilyPond output into OpenOffice.org
	Inserting LilyPond output into other programs

	Converting from other formats
	Invoking midi2ly
	Invoking etf2ly
	Invoking musicxml2ly
	Invoking abc2ly
	Generating LilyPond files

	Literature list
	Scheme tutorial
	Notation manual tables
	Chord name chart
	MIDI instruments
	List of colors
	The Feta font
	Note head styles

	Templates
	Single staff
	Notes only
	Notes and lyrics
	Notes and chords
	Notes, lyrics, and chords.

	Piano templates
	Solo piano
	Piano and melody with lyrics
	Piano centered lyrics
	Piano centered dynamics

	String quartet
	String quartet
	String quartet parts

	Vocal ensembles
	SATB vocal score
	SATB vocal score and automatic piano reduction
	SATB with aligned contexts

	Ancient notation templates
	Transcription of mensural music
	Gregorian transcription template

	Jazz combo
	Lilypond-book templates
	LaTeX
	Texinfo


	Cheat sheet
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	LilyPond command index
	LilyPond index

