User’s Guide

to
PARI / GP

(version 2.17.1)
The PARI Group

Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS.
Université de Bordeaux, 351 Cours de la Libération
F-33405 TALENCE Cedex, FRANCE

e-mail: pari@math.u-bordeaux.fr

Home Page:
https://pari.math.u-bordeaux.fr/

Copyright (© 2000-2024 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright © 2000-2024 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

Chapter 1: Overview of the PARI system oo, 5
1.1 Introduction e 5
1.2 Multiprecision kernels / Portability 6
1.3 The PARI types 7
1.4 The PARI philosophy e 9
1.5 Operations and functions 11

Chapter 2: The gp Calculator oo, 13
2.1 Introductiono 13
2.2 The general gp input line 15
2.3 The PARI types o e 17
2.4 GP operators e 29
2.5 Variables and symbolic expressions L L Lo 33
2.6 Variables and Scope 36
2.7 User defined functions 39
2.8 Member functions 48
2.9 Strings and Keywords 49
2.10 Errors and error TE€COVETY« v v v i e e e e e e 51
2.11 Interfacing GP with other languages. oL 57
212 Defaultso 57
2.13 Simple metacommandsl 58
2.14 The preferences file L 62
2.15 Using readline 64
2.16 GNU Emacs and PariEmacs 66

Chapter 3: Functions and Operations Available in PARTand GP 67
3.1 Programming in GP: control statements L. 69
3.2 Programming in GP: other specific functions 86
3.3 Parallel programming 119
3.4 GP defaults 123
3.5 Standard monadic or dyadic operators 135
3.6 Conversions and similar elementary functions or commands 144
3.7 Combinatoricso e 169
3.8 Arithmetic functions L 177
3.9 Polynomials and power series oo 245
3.10 Vectors, matrices, linear algebra and sets L. 273
3.11 Transcendental functions L 313
3.12 Sums, products, integrals and similar functions oL 336
3.13 General number fields 375
3.14 Associative and central simple algebras L. 492
3.15 Elliptic curves e e e e e e 521
3.16 Hypergeometric Motives L 577
317 L-functionso Lo 583
3.18 Modular formso 604
3.19 Modular symbols 640
3.20 Plotting functions 661

Index . . . 671

Chapter 1:
Overview of the PARI system

1.1 Introduction.

PARI/GP is a specialized computer algebra system, primarily aimed at number theorists, but has
been put to good use in many other different fields, from topology or numerical analysis to physics.

Although quite an amount of symbolic manipulation is possible, PARI does badly compared to
systems like Magma, Maple, Mathematica, Maxima, or Sagemath on such tasks, e.g. multivariate
polynomials, formal integration, etc. On the other hand, the three main advantages of the system
are its speed, the possibility of using directly data types which are familiar to mathematicians,
and its extensive algebraic number theory module (in the above-mentioned systems, Magma and
Sagemath provide similar features).

Non-mathematical strong points include the possibility to program either in high-level scripting
languages or with the PARI library, a mature system (development started in the mid eighties) that
was used to conduct and disseminate original mathematical research, while building a large user
community, linked by helpful mailing lists and a tradition of great user support from the developers.
And, of course, PARI/GP is Free Software, covered by the GNU General Public License, either
version 2 of the License or (at your option) any later version.

PARI is used in three different ways:

1) as a library libpari, which can be called from an upper-level language application, for
instance written in ANSI C or C++;

2) as a sophisticated programmable calculator, named gp, whose language GP contains most
of the control instructions of a standard language like C;

3) the compiler gp2c translates GP code to C, and loads it into the gp interpreter. A
typical script compiled by gp2c runs 3 to 10 times faster. The generated C code can be edited and
optimized by hand. It may also be used as a tutorial to 1ibpari programming.

The present Chapter 1 gives an overview of the PARI/GP system; gp2c is distributed separately
and comes with its own manual. Chapter 2 describes the GP programming language and the gp
calculator. Chapter 3 describes all routines available in the calculator. Programming in library
mode is explained in Chapters 4 and 5 in a separate booklet: User’s Guide to the PARI library
(libpari.pdf).

A tutorial for gp is provided in the standard distribution: A tutorial for PARI/GP (tuto-
rial.pdf) and you should read this first. You can then start over and read the more boring stuff
which lies ahead. You can have a quick idea of what is available by looking at the gp general
reference card (refcard.pdf; other more specialized reference cards are available). In case of need,
you can refer to the complete function description in Chapter 3.

How to get the latest version. Everything can be found on PARI’s home page:
https://pari.math.u-bordeaux.fr/.

From that point you may access all sources, some binaries, version information, the complete mailing
list archives, frequently asked questions and various tips. All threaded and fully searchable.

How to report bugs. Bugs are submitted online to our Bug Tracking System, available from
PARTI’s home page, or directly from the URL

https://pari.math.u-bordeaux.fr/Bugs/.

Further instructions can be found on that page.

1.2 Multiprecision kernels / Portability.

The PARI multiprecision kernel comes in three non exclusive flavors. See Appendix A for how
to set up these on your system; various compilers are supported, but the GNU gcc compiler is the
definite favorite.

A first version is written entirely in ANSI C, with a C4++-compatible syntax, and should be
portable without trouble to any 32 or 64-bit computer having no drastic memory constraints. We
do not know any example of a computer where a port was attempted and failed.

In a second version, time-critical parts of the kernel are written in inlined assembler. At present
this includes

e the whole ix86 family (Intel, AMD, Cyrix) starting at the 386, up to the Xbox gaming
console, including the Opteron 64 bit processor.

e three versions for the Sparc architecture: version 7, version 8 with SuperSparc processors,
and version 8 with MicroSparc I or II processors. UltraSparcs use the MicroSparc II version;

e the DEC Alpha 64-bit processor;

e the Intel Itanium 64-bit processor;

e the PowerPC equipping old macintoshs (G3, G4, etc.);
e the HPPA processors (both 32 and 64 bit);

e the MIPS processors (both 32 and 64 bit);

e the RISC-V 64 bit processors.

A third version uses the GNU MP library to implement most of its multiprecision kernel. It
improves significantly on the native one for large operands, say 100 decimal digits of accuracy or
more. You should enable it if GMP is present on your system. Parts of the first version are still in
use within the GMP kernel, but are scheduled to disappear.

A historical version of the PARI/GP kernel, written in 1985, was specific to 680x0 based
computers, and was entirely written in MC68020 assembly language. It ran on SUN-3/xx, Sony
News, NeXT cubes and on 680x0 based Macs. It is no longer part of the PARI distribution; to run
PARI with a 68k assembler micro-kernel, use the GMP kernel!

Mathematical notations and conventions.

e Standard rings and fields. We denote Z the ring of integers, Q the field of rational numbers,
R the field of real numbers and C the field of complex numbers (containing en element i such that
i? = —1). Given a prime power ¢, F, denotes the finite field with ¢ elements. Given a prime number
p, vp denotes the p-adic valuation Z, is ring of p-adic integers, Q,, the field of p-adic numbers and
C,, the p-adic completion of the algebraic closure of Q,. We write |z|, = p~) for z € C,.

e Intervals. We write [a,b] for the closed interval {z € R:a < x < b},]a,b[for the open
interval {z € R:a < z < b} and similarly |a, b] and [a, b] for half-open intervals.

e Linear Algebra. Let K be some field and m,n < 0 be integers. Elements in the vector space
K™ are represented as column vectors (of length n). Elements of the algebra Homg (K™, K™) are
represented as m x m matrices; due to an unfortunate historical design decision, m x 0 matrices
do not exist in PARI unless m = 0. If M is an m X n matrix, we use the notation M to
denote its transpose (an n x m matrix). The (right) kernel of a matrix M is the vector space
{v € K™ Mv = 0}. Similarly, the image of M is the span of its columns.

1.3 The PARI types.

The GP language is not typed in the traditional sense; in particular, variables have no type.
In library mode, the type of all PARI objects is GEN, a generic type. On the other hand, it is
dynamically typed: each object has a specific internal type, depending on the mathematical object
it represents.

The crucial word is recursiveness: most of the PARI types are recursive. For example, the basic
internal type t_COMPLEX exists. However, the components (i.e. the real and imaginary part) of such
a “complex number” can be of any type. The only sensible ones are integers (we are then in Z[i]),
rational numbers (Q[i]), real numbers (R[i] = C), or even elements of Z/nZ (in (Z/nZ)[t]/(t>+1)),
or p-adic numbers when p = 3mod4 (Q,[i]). This feature must not be used too rashly in library
mode: for example you are in principle allowed to create objects which are “complex numbers of
complex numbers”. (This is not possible under gp.) But do not expect PARI to make sensible use
of such objects: you will mainly get nonsense.

On the other hand, it is allowed to have components of different, but compatible, types, which
can be freely mixed in basic ring operations + or x. For example, taking again complex numbers,
the real part could be an integer, and the imaginary part a rational number. On the other hand,
if the real part is a real number, the imaginary part cannot be an integer modulo n !

Let us now describe the types. As explained above, they are built recursively from basic
types which are as follows. We use the letter T' to designate any type; the symbolic names t_xxx
correspond to the internal representations of the types.

type t_INT Z Integers (with arbitrary precision)

type t_REAL R Real numbers (with arbitrary precision)
type t_INTMOD Z/nZ Intmods (integers modulo n)

type t_FRAC Q Rational numbers (in irreducible form)
type t_FFELT F, Finite field element

type t_COMPLEX T7i] Complex numbers

type t_PADIC Q, p-adic numbers

type t_QUAD Q[w] Quadratic Numbers (where [Z[w] : Z] = 2)
type t_POLMOD TIX]/(P) Polmods (polynomials modulo P € T[X])

7

type t_POL T[X] Polynomials

type t_SER T((X)) Power series (finite Laurent series)
type t_RFRAC T(X) Rational functions (in irreducible form)
type t_VEC ™ Row (i.e. horizontal) vectors

type t_COL ™ Column (i.e. vertical) vectors
type t_MAT M o (T') Matrices

type t_LIST ™ Lists

type t_STR Character strings

type t_CLOSURE Functions

type t_ERROR Error messages

type t_INFINITY —oo and +oo

and where the types T in recursive types can be different in each component. The first nine basic
types, from t_INT to t_POLMOD, are called scalar types because they essentially occur as coefficients
of other more complicated objects. Type t_POLMOD is used to define algebraic extensions of a base
ring, and as such is a scalar type.

In addition, there exist the type t_QFB for integral binary quadratic forms, and the internal
type t_VECSMALL. The latter holds vectors of small integers, whose absolute value is bounded by 23!
(resp. 253) on 32-bit, resp. 64-bit, machines. They are used internally to represent permutations,
polynomials or matrices over a small finite field, etc.

Every PARI object (called GEN in the sequel) belongs to one of these basic types. Let us have
a closer look.

1.3.1 Integers and reals. They are of arbitrary and varying length (each number carrying in its
internal representation its own length or precision) with the following mild restrictions (given for
32-bit machines, the restrictions for 64-bit machines being so weak as to be considered nonexistent):
integers must be in absolute value less than 2536870815 (j e, roughly 161614219 decimal digits). The
precision of real numbers is also at most 161614219 significant decimal digits, and the binary
exponent must be in absolute value less than 229, resp. 26!, on 32-bit, resp. 64-bit machines.

Integers and real numbers are nonrecursive types.

1.3.2 Intmods, rational numbers, p-adic numbers, polmods, and rational functions.
These are recursive, but in a restricted way.

For intmods or polmods, there are two components: the modulus, which must be of type
integer (resp. polynomial), and the representative number (resp. polynomial).

For rational numbers or rational functions, there are also only two components: the numerator
and the denominator, which must both be of type integer (resp. polynomial).

Finally, p-adic numbers have three components: the prime p, the “modulus” p¥, and an ap-
proximation to the p-adic number. Here Z, is considered as the projective limit <li_mZ /p*Z via
its finite quotients, and Q,, as its field of fractions. Like real numbers, the codewords contain an

exponent, giving the p-adic valuation of the number, and also the information on the precision of
the number, which is redundant with p*, but is included for the sake of efficiency.

1.3.3 Finite field elements. The exact internal format depends of the finite field size, but it
includes the field characteristic p, an irreducible polynomial T' € F,[X] defining the finite field
F,[X]/(T) and the element expressed as a polynomial in (the class of) X.

1.3.4 Complex numbers and quadratic numbers. Quadratic numbers are numbers of the
form a + bw, where w is such that [Z[w] : Z] = 2, and more precisely w = v/d/2 when d = 0mod 4,
and w = (1 +v/d)/2 when d = 1 mod 4, where d is the discriminant of a quadratic order. Complex
numbers correspond to the important special case w = v/—1.

Complex numbers are partially recursive: the two components a and b can be of type t_INT,
t_REAL, t_INTMOD, t_FRAC, or t_PADIC, and can be mixed, subject to the limitations mentioned
above. For example, a+bi with a and b p-adic is in Q,[i], but this is equal to Q, when p = 1 mod 4,
hence we must exclude these p when one explicitly uses a complex p-adic type. Quadratic numbers
are more restricted: their components may be as above, except that t_REAL is not allowed.

1.3.5 Polynomials, power series, vectors, matrices. They are completely recursive, over a
commutative base ring: their components can be of any type, and types can be mixed (however
beware when doing operations). Note in particular that a polynomial in two variables is simply a
polynomial with polynomial coefficients. Polynomials or matrices over noncommutative rings are
not supported.

In the present version 2.17.1 of PARI, it is not possible to handle conveniently power series of
power series, i.e. power series in several variables. However power series of polynomials (which are
power series in several variables of a special type) are OK. This is a difficult design problem: the
mathematical problem itself contains some amount of imprecision, and it is not easy to design an
intuitive generic interface for such beasts.

1.3.6 Strings. These contain objects just as they would be printed by the gp calculator.

1.3.7 Zero. What is zero? This is a crucial question in all computer systems. The answer we
give in PARI is the following. For exact types, all zeros are equivalent and are exact, and thus
are usually represented as an integer zero. The problem becomes nontrivial for imprecise types:
there are infinitely many distinct zeros of each of these types! For p-adics and power series the
answer is as follows: every such object, including 0, has an exponent e. This p-adic or X-adic zero
is understood to be equal to O(p®) or O(X¢) respectively.

Real numbers also have exponents and a real zero is in fact O(2¢) where e is now usually a
negative binary exponent. This of course is printed as usual for a floating point number (0.00 - - - or
0.Exx depending on the output format) and not with a O symbol as with p-adics or power series.
With respect to the natural ordering on the reals we make the following convention: whatever its
exponent a real zero is smaller than any positive number, and any two real zeroes are equal.

1.4 The PARI philosophy.

The basic principles which govern PARI is that operations and functions should, firstly, give
as exact a result as possible, and secondly, be permitted if they make any kind of sense.

In this respect, we make an important distinction between exact and inexact objects: by
definition, types t_REAL, t_PADIC or t_SER are imprecise. A PARI object having one of these
imprecise types anywhere in its tree is inezact, and ezact otherwise. No loss of accuracy (rounding
error) is involved when dealing with exact objects. Specifically, an exact operation between exact
objects will yield an exact object. For example, dividing 1 by 3 does not give 0.333-- -, but the
rational number (1/3). To get the result as a floating point real number, evaluate 1./3 or 0.+1/3.

9

Conversely, the result of operations between imprecise objects, although inexact by nature,
will be as precise as possible. Consider for example the addition of two real numbers x and y. The
accuracy of the result is a priori unpredictable; it depends on the precisions of z and y, on their
sizes, and also on the size of = + y. From this data, PARI works out the right precision for the
result. Even if it is working in calculator mode gp, where there is a notion of default precision, its
value is only used to convert exact types to inexact ones.

In particular, if an operation involves objects of different accuracies, some digits will be dis-
regarded by PARI. It is a common source of errors to forget, for instance, that a real number is
given as r 4+ 2° where r is a rational approximation, e a binary exponent and ¢ is a nondescript
real number less than 1 in absolute value. Hence, any number less than 2¢ may be treated as an
exact zero:

? 0.E-38 + 1.E-100

%1 = 0.E-38
? 0.E100 + 1
%2 = 0.E100

As an exercise, if a = 2°(-100), why doa + 0. and a * 1. differ?

The second principle is that PARI operations are in general quite permissive. For instance
taking the exponential of a vector should not make sense. However, it frequently happens that one
wants to apply a given function to all elements in a vector. This is easily done using a loop, or
using the apply built-in function, but in fact PARI assumes that this is exactly what you want to
do when you apply a scalar function to a vector. Taking the exponential of a vector will do just
that, so no work is necessary. Most transcendental functions work in the same way™.

In the same spirit, when objects of different types are combined they are first automatically
mapped to a suitable ring, where the computation becomes meaningful:

? 1/3 + Mod(1,5)

%1 = Mod(3, 5)

? I+ 0(579)

%2 =2 + 5 + 2%¥572 + 573 + 3%574 + 4%5°5 + 24576 + 3%5°7 + 0(579)
? Mod(1,15) + Mod(1,10)

%3 = Mod(2, 5)

The first example is straightforward: since 3 is invertible mod 5, (1/3) is easily mapped to
Z/5Z. In the second example, I stands for the customary square root of —1; we obtain a 5-adic
number, 5-adically close to a square root of —1. The final example is more problematic, but there
are natural maps from Z/15Z and Z/10Z to Z/5Z, and the computation takes place there.

* An ambiguity arises with square matrices. PARI always considers that you want to do com-
ponentwise function evaluation in this context, hence to get for example the standard exponential
of a square matrix you would need to implement a different function.

10

1.5 Operations and functions.

The available operations and functions in PARI are described in detail in Chapter 3. Here is
a brief summary:

1.5.1 Standard arithmetic operations.

Of course, the four standard operators +, -, *, / exist. We emphasize once more that division is, as
far as possible, an exact operation: 4 divided by 3 gives (4/3). In addition to this, operations on
integers or polynomials, like \ (Euclidean division), % (Euclidean remainder) exist; for integers, \/
computes the quotient such that the remainder has smallest possible absolute value. There is also
the exponentiation operator ~, when the exponent is of type integer; otherwise, it is considered as a
transcendental function. Finally, the logical operators ! (not prefix operator), && (and operator),
|| (or operator) exist, giving as results 1 (true) or 0 (false).

1.5.2 Conversions and similar functions.

Many conversion functions are available to convert between different types. For example floor,
ceiling, rounding, truncation, etc.... Other simple functions are included like real and imaginary
part, conjugation, norm, absolute value, changing precision or creating an intmod or a polmod.

1.5.3 Transcendental functions.

They usually operate on any complex number, power series, and some also on p-adics. The list is
ever-expanding and of course contains all the elementary functions (exp/log, trigonometric func-
tions), plus many others (modular functions, Bessel functions, polylogarithms...). Recall that by
extension, PARI usually allows a transcendental function to operate componentwise on vectors or
matrices.

1.5.4 Arithmetic functions.

Apart from a few like the factorial function or the Fibonacci numbers, these are functions which
explicitly use the prime factor decomposition of integers. The standard functions are included. A
number of factoring methods are used by a rather sophisticated factoring engine (to name a few,
Shanks’s SQUFOF, Pollard’s rho, Lenstra’s ECM, the MPQS quadratic sieve). These routines
output strong pseudoprimes, which may be certified by the APRCL test.

There is also a large package to work with algebraic number fields. All the usual operations on
elements, ideals, prime ideals, etc. are available. More sophisticated functions are also implemented,
like solving Thue equations, finding integral bases and discriminants of number fields, computing
class groups and fundamental units, computing in relative number field extensions, Galois and class
field theory, and also many functions dealing with elliptic curves over Q or over local fields.

1.5.5 Other functions.

Quite a number of other functions dealing with polynomials (e.g. finding complex or p-adic roots,
factoring, etc), power series (e.g. substitution, reversion), linear algebra (e.g. determinant, charac-
teristic polynomial, linear systems), and different kinds of recursions are also included. In addi-
tion, standard numerical analysis routines like univariate integration (using the double exponential
method), real root finding (when the root is bracketed), polynomial interpolation, infinite series
evaluation, and plotting are included.

And now, you should really have a look at the tutorial before proceeding.

11

12

EMACS:

Chapter 2:
The gp Calculator

2.1 Introduction.

Originally, gp was designed as a debugging device for the PARI system library. Over the
years, it has become a powerful user-friendly stand-alone calculator. The mathematical functions
available in PARI and gp are described in the next chapter. In the present one, we describe the
specific use of the gp programmable calculator.

If you have GNU Emacs and use the PariEmacs package, you can work in a special Emacs shell,
described in Section 2.16. Specific features of this Emacs shell are indicated by an EMACS sign in
the left margin.

We briefly mention at this point GNU TeXmacs (https://www.texmacs.org/), a free wysiwyg
editing platform that allows to embed an entire gp session in a document, and provides a nice
alternative to PariEmacs.

2.1.1 Startup.
To start the calculator, the general command line syntax is:
gp [-D key=vall [files]

where items within brackets are optional. The [files| argument is a list of files written in the GP
scripting language, which will be loaded on startup. There can be any number of arguments of the
form -D key=wal, setting some internal parameters of gp, or defaults: each sets the default key to
the value val. See Section 2.12 below for a list and explanation of all defaults. These defaults can
be changed by adding parameters to the input line as above, or interactively during a gp session,
or in a preferences file also known as gprc.

If a preferences file (to be discussed in Section 2.14) is found, gp then reads it and executes the
commands it contains. This provides an easy way to customize gp. The files argument is processed
right after the gprc.

A copyright banner then appears which includes the version number, and a lot of useful tech-
nical information. After the copyright, the computer writes the top-level help information, some
initial defaults, and then waits after printing its prompt, which is ’? ’ by default . Whether ex-
tended on-line help and line editing are available or not is indicated in this gp banner, between the
version number and the copyright message. Consider investigating the matter with the person who
installed gp if they are not. Do this as well if there is no mention of the GMP kernel.

13

2.1.2 Getting help.

To get help, type a ? and hit return. A menu appears, describing the main categories of
available functions and how to get more detailed help. If you now type ?n with n = 1,2,..., you
get the list of commands corresponding to category n and simultaneously to Section 3.n of this
manual. If you type ?functionname where functionname is the name of a PARI function, you will
get a short explanation of this function.

If extended help (see Section 2.13.1) is available on your system, you can double or triple the ?
sign to get much more: respectively the complete description of the function (e.g. ??sqrt), or a list
of gp functions relevant to your query (e.g. ???"elliptic curve" or ??7"quadratic field").

If gp was properly installed (see Appendix A), a line editor is available to correct the command
line, get automatic completions, and so on. See Section 2.15 or ??readline for a short summary
of the line editor’s commands.

If you type ?\ you will get a short description of the metacommands (keyboard shortcuts).

Finally, typing 7. will return the list of available (pre-defined) member functions. These
are functions attached to specific kind of objects, used to retrieve easily some information from
complicated structures (you can define your own but they won’t be shown here). We will soon
describe these commands in more detail.

More generally, commands starting with the symbols \ or 7, are not computing commands, but
are metacommands which allow you to exchange information with gp. The available metacommands
can be divided into default setting commands (explained below) and simple commands (or keyboard
shortcuts, to be dealt with in Section 2.13).

2.1.3 Input.

Just type in an instruction, e.g. 1 + 1, or Pi. No action is undertaken until you hit the
<Return> key. Then computation starts, and a result is eventually printed. To suppress printing
of the result, end the expression with a ; sign. Note that many systems use ; to indicate end of
input. Not so in gp: a final semicolon means the result should not be printed. (Which is certainly
useful if it occupies several screens.)

2.1.4 Interrupt, Quit.

Typing quit at the prompt ends the session and exits gp. At any point you can type Ctrl-C
(that is press simultaneously the Control and C keys): the current computation is interrupted and
control given back to you at the gp prompt, together with a message like

*** at top-level: gcd(a,b)
KKk T

% gcd: user interrupt after 236 ms.

telling you how much time elapsed since the last command was typed in and in which GP function
the computation was aborted. It does not mean that that much time was spent in the function,
only that the evaluator was busy processing that specific function when you stopped it.

14

2.2 The general gp input line.

The gp calculator uses a purely interpreted language GP. The structure of this language is
reminiscent of LISP with a functional notation, f(x,y) rather than (f x y): all programming
constructs, such as if, while, etc...are functions®, and the main loop does not really execute,
but rather evaluates (sequences of) expressions. Of course, it is by no means a true LISP, and has
been strongly influenced by C and Perl since then.

2.2.1 Introduction. User interaction with a gp session proceeds as follows. First, one types a
sequence of characters at the gp prompt; see Section 2.15 for a description of the line editor. When
you hit the <Return> key, gp gets your input, evaluates it, then prints the result and assigns it to
an “history” array.

More precisely, the input is case-sensitive and, outside of character strings, blanks are com-
pletely ignored. Inputs are either metacommands or sequences of expressions. Metacommands are
shortcuts designed to alter gp’s internal state, such as the working precision or general verbosity
level; we shall describe them in Section 2.13, and ignore them for the time being.

The evaluation of a sequence of instructions proceeds in two phases: your input is first digested
(byte-compiled) to a bytecode suitable for fast evaluation, in particular loop bodies are compiled
only once but a priori evaluated many times; then the bytecode is evaluated.

An expression is formed by combining constants, variables, operator symbols, functions and
control statements. It is evaluated using the conventions about operator priorities and left to right
associativity. An expression always has a value, which can be any PARI object:

71+ 1

%l =2 \\ an ordinary integer

? x

%2 = x \\ @ polynomial of degree 1 in the unknown x

? print("Hello")

Hello \\ void return value, 'Hello’ printed as side effect

7?7 f(x) = x72
W = (x)->x"2 \\ a user function

In the third example, Hello is printed as a side effect, but is not the return value. The print
command is a procedure, which conceptually returns nothing. But in fact procedures return a
special void object, meant to be ignored (but which evaluates to 0 in a numeric context, and
stored as 0 in the history or results). The final example assigns to the variable £ the function
2+ 22, the alternative form f = x->x"2 achieving the same effect; the return value of a function
definition is, unsurprisingly, a function object (of type t_CLOSURE).

Several expressions are combined on a single line by separating them with semicolons (’;’).
Such an expression sequence will be called a seq. A seq also has a value, which is the value of the
last expression in the sequence. Under gp, the value of the seq, and only this last value, becomes
an history entry. The values of the other expressions in the seq are discarded after the execution
of the seq is complete, except of course if they were assigned into variables. In addition, the value
of the seq is printed if the line does not end with a semicolon ;.

* Not exactly, since not all their arguments need be evaluated. For instance it would be stupid
to evaluate both branches of an if statement: since only one will apply, only this one is evaluated.

15

2.2.2 The gp history of results.

This is not to be confused with the history of your commands, maintained by readline. The
gp history contains the results they produced, in sequence.

The successive elements of the history array are called %1, %2, ...As a shortcut, the latest
computed expression can also be called %, the previous one %¢, the one before that %°¢ ¢ and so on.

When you suppress the printing of the result with a semicolon, it is still stored in the history,
but its history number will not appear either. It is a better idea to assign it to a variable for later
use than to mentally recompute what its number is. Of course, on the next line, you may just use

%

The time used to compute that history entry is also stored as part of the entry and can be
recovered using the %# operator: %#1, %#2 %#¢; %# by itself returns the time needed to compute
the last result (the one returned by %). The output is a vector with two components [cpu, reall
where cpu is the CPU time and real is the wall clock time.

Remark. The history “array” is in fact better thought of as a queue: its size is limited to 5000
entries by default, after which gp starts forgetting the initial entries. So %1 becomes unavailable as
gp prints %5001. You can modify the history size using histsize.

2.2.3 Special editing characters. A GP program can of course have more than one line. Since
your commands are executed as soon as you have finished typing them, there must be a way to tell
gp to wait for the next line or lines of input before doing anything. There are three ways of doing
this.

The first one is to use the backslash character \ at the end of the line that you are typing,
just before hitting <Return>. This tells gp that what you will write on the next line is the physical
continuation of what you have just written. In other words, it makes gp forget your newline
character. You can type a \ anywhere. It is interpreted as above only if (apart from ignored
whitespace characters) it is immediately followed by a newline. For example, you can type

73+ \
4

instead of typing 3 + 4.

The second one is a variation on the first, and is mostly useful when defining a user function
(see Section 2.7): since an equal sign can never end a valid expression, gp disregards a newline
immediately following an =.

? a-=
123
%1 = 123

The third one is in general much more useful, and uses braces { and }. An opening brace {
signals that you are typing a multi-line command, and newlines are ignored until you type a closing
brace }. There are two important, but easily obeyed, restrictions: first, braces do not nest; second,
inside an open brace-close brace pair, all input lines are concatenated, suppressing any newlines.
Thus, all newlines should occur after a semicolon (;), a comma (,) or an operator (for clarity’s
sake, never split an identifier over two lines in this way). For instance, the following program

16

would silently produce garbage, since this is interpreted as a=bb=c which assigns the value of ¢ to
both bb and a. It should have been written

{

2.3 The PARI types.

We see here how to input values of the different data types known to PARI. Recall that blanks are
ignored in any expression which is not a string (see below).

A note on efficiency. The following types are provided for convenience, not for speed: t_INTMOD,
t_FRAC, t_PADIC, t_QUAD, t_POLMOD, t_RFRAC. Indeed, they always perform a reduction of some
kind after each basic operation, even though it is usually more efficient to perform a single reduction
at the end of some complex computation. For instance, in a convolution product), 4jen TiY; 0
Z/NZ — common when multiplying polynomials! —, it is quite wasteful to perform n reductions
modulo N. In short, basic individual operations on these types are fast, but recursive objects
with such components could be handled more efficiently: programming with libpari will save large
constant factors here, compared to GP.

2.3.1 Integers (t_INT). After an (optional) leading + or -, type in the decimal digits of your
integer. No decimal point!

? 1234567

%1 = 1234567

? -3

%2 = -3

? 1. \\ oops, not an integer
%3 = 1.000000000000000000000000000

Integers can be input in hexadecimal notation by prefixing them with 0x; hexadecimal digits
(a,...,f) can be input either in lowercase or in uppercase:

? OxF
%4 = 15

? Oxlabcd
%5 = 109517

Integers can also be input in binary by prefixing them with Ob:

? 0b010101
%6 = 21

17

2.3.2 Real numbers (t_REAL).

Real numbers are represented (approximately) in a floating point system, internally in base 2,
but converted to base 10 for input / output purposes. A t_REAL object has a given bit accuracy
(or bit precision) ¢ > 0; it comprises

e a sign s: +1, —1 or 0;
e a mantissa m: a multiprecision integer, 0 < m < 2;

e an exponent e: a small integer in [—258,2B[, where B = 31 on a 32-bit machine and 63
otherwise.

This data may represent any real number z such that
|z — sm2¢| < 2¢7%.

We consider that a t_REAL with sign s = 0 has accuracy ¢ = 0, so that its mantissa is useless, but
it still has an exponent e and acts like a machine epsilon for all accuracies < e.

After an (optional) leading + or -, type a number with a decimal point. Leading zeroes may
be omitted, up to the decimal point, but trailing zeroes are important: your t_REAL is assigned
an internal precision, which is the supremum of the input precision, one more than the number of
decimal digits input, and the default realprecision. For example, if the default precision is 38
digits, typing 2. yields a precision of 38 digits, but 2.0...0 with 45 zeros gives a number with
internal decimal precision at least 45, although less may be printed.

You can also use scientific notation with the letter E or e. As usual, en is interpreted as x10"
for all integers n. Since the result is converted to a t_REAL, you may often omit the decimal point
in this case: 6.02 E 23 or 1le-5 are fine, but e10 is not.

By definition, 0.E n returns a real 0 of exponent n, whereas 0. returns a real 0 “of default
precision” (of exponent —realprecision), see Section 1.3.7, behaving like the machine epsilon for
the current default accuracy: any float of smaller absolute value is indistinguishable from 0.

Note on output formats. A zero real number is printed in e format as 0. Exxz where zx is the
(usually negative) decimal exponent of the number (cf. Section 1.3.7). This allows the user to check
the accuracy of that particular zero.

When the integer part of a real number z is not known exactly because the exponent of x is
greater than the internal precision, the real number is printed in e format.

Technical note. The internal precision is actually expressed in bits and can be viewed and
manipulated globally in interactive use via realprecision (decimal digits, as explained above;
shortcut \p) or realbitprecision (bits; shortcut \pb), the latter allowing finer granularity. See
Section 3.11 for details. In programs we advise to leave this global variable alone and adapt precision
locally for a given sequence of computations using localbitprec.

Note that most decimal floating point numbers cannot be converted exactly in binary, the
(binary) number actually stored is a rounded version of the (decimal) number input. Analogously,
a decimal output is rounded from the internal binary representation.

18

2.3.3 Intmods (t_INTMOD). To create the image of the integer a in Z/bZ (for some nonzero integer
b), type Mod (a,b); not ajb. Internally, all operations are done on integer representatives belonging
to [0,b — 1].

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo b.

If x is a t_INTMOD Mod(a,b), the following member function is defined:

x.mod: return the modulus b.

2.3.4 Rational numbers (t_FRAC). All fractions are automatically reduced to lowest terms, so it
is impossible to work with reducible fractions. To enter n/m just type it as written. As explained
in Section 3.5.8, floating point division is not performed, only reduction to lowest terms.

Note that rational computation are almost never the fastest method to proceed: in the PARI
implementation, each elementary operation involves computing a ged. It is generally a little more
efficient to cancel denominators and work with integers only:

7?7 P = Pol(vector(1073,i, 1/1)); \\ big polynomial with small rational coeffs
? P2

time = 1,392 ms.

7 ¢ = content(P); c"2 * (P/c)”2; \\ same computation in integers

time = 1,116 ms.

And much more efficient (but harder to setup) to use homomorphic imaging schemes and modular
computations. As the simple example below indicates, if you only need modular information, it
is very worthwhile to work with t_INTMODs directly, rather than deal with t_FRACs all the way
through:

? p = nextprime(1077);

? sum(i=1, 1075, 1/i) % p
time = 13,288 ms.

%1 = 2759492

? sum(i=1, 10°5, Mod(1/i, p))
time = 60 ms.

%2 = Mod (2759492, 10000019)

2.3.5 Finite field elements (t_FFELT). Let T' € F,[X]| be a monic irreducible polynomial defining
your finite field over F,,, for instance obtained using ffinit. Then the ffgen function creates a
generator of the finite field as an F,-algebra, namely the class of X in F),[X]/(T'), from which you
can build all other elements. For instance, to create the field Fgs, we write

7 T = ffinit(2, 8);

7 y = ffgen(T, ’y);

7 y°0 \\ the unit element in the field
w3 =1

? y°8

% =y 6+ yb5+y4+y3+y+1

The second (optional) parameter to ffgen is only used to display the result; it is customary to
use the name of the variable we assign the generator to. If g is a t_FFELT, the following member
functions are defined:

19

g.pol: the polynomial (with reduced integer coefficients) expressing g in term of the field
generator.

g.p: the characteristic of the finite field.

g.f: the dimension of the definition field over its prime field; the cardinality of the definition
field is thus p/.

g.mod: the minimal polynomial (with reduced integer coefficients) of the field generator.

2.3.6 Complex numbers (t_COMPLEX). To enter x + iy, type x + I*xy. (That’s I, not i!) The
letter I stands for v/—1. The “real” and “imaginary” parts x and y can be of type t_INT, t_REAL,
t_INTMOD, t_FRAC, or t_PADIC.

2.3.7 p-adic numbers (t_PADIC):. Typing 0(p~k), where p is a prime and k is an integer,
yields a p-adic 0 of accuracy k, representing any p-adic number whose valuation is > k. To input a
general nonzero p-adic number, write a suitably precise rational or integer approximation and add
0(p~k) to it. For example, you can type in the 7-adic number

2x77(-1) + 3 + 4x7 + 2x772 + 0(7°3)
exactly as shown, or equivalently as 905/7 + 0(773).

Note that it is not checked whether p is indeed prime but results are undefined if this is not
the case: you can try to work on 10-adics if you want, but disasters will happen as soon as you do
something nontrivial. For instance:

?7t=2x (1/10 + 0(1075));
7 lift(t)
%2 = 2/10 \\ not reduced (invalid t_FRAC)
7 factor(x"2-t)
*** at top-level: factor(x~2-%1)
koK e et
*x** factor: impossible inverse in Fl_inv: Mod(2, 10000).

Note that 0(25) is not the same as 0(5°2); you want the latter!
If a is a t_PADIC, the following member functions are defined:
a.mod: returns the modulus p*.

a.p: returns p.

Note that this type is available for convenience, not for speed: internally, t_PADICs are stored
as p-adic units modulo some p*. Each elementary operation involves updating p* (multiplying or
dividing by powers of p) and a reduction mod p*. In particular, additions are slow.

?n = 1+0(2°20); for (i=1,10"6, n++)
time = 841 ms.
? n = Mod(1,27°20); for (i=1,10"6, n++)
time = 441 ms.
?7n=1; for (i=1,10"6, n++)
time = 328 ms.

The penalty attached to maintaining p* decreases steeply as p increases (and updates become
rare). But t_INTMODs remain at least 25% more efficient. (On the other hand, they do not allow
denominators!)

20

2.3.8 Quadratic numbers (t_QUAD). This type is used to work in the quadratic order of discrim-
inant d, where d is a nonsquare integer congruent to 0 or 1 (modulo 4). The command

w = quadgen(d,’w)

assigns to w the “canonical” generator for the integer basis of the order of discriminant d, i.e. w =
Vd/2 if d = 0mod 4, and w = (1++/d)/2 if d = 1 mod 4 and set its name to w. The name ’w is used
for printing and we advise to store it in a variable of the same name. Beware, two t_QUADs with
different discriminants can be printed in the same way and not be equal; however, gp will refuse to
add or multiply them for example, so use different names for different discriminants.

Since the order is Z + wZ, any other element can be input as a = z+y*w for some integers x
and y. In fact, you may work in its fraction field Q(\/ZZ) and use t_FRAC values for z and y.

The following member functions are defined:
a.disc retrieves the discriminant d;
a.mod: returns the minimal polynomial T" of w;

a.pol: returns the t_POL z 4+ wy. In particular [x,y] = Vecrev(a.pol) recovers x and y.
The components z and y are also obtained via real(a) and imag(z) respectively.

2.3.9 Polmods (t_POLMOD). Exactly as for intmods, to enter x mody (where x and y are poly-
nomials), type Mod(x,y), not x%y. Note that when y is an irreducible polynomial in one variable,
polmods whose modulus is y are simply algebraic numbers in the finite extension defined by the
polynomial y. This allows us to work easily in number fields, finite extensions of the p-adic field
Q,, or finite fields.

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo y. If p is a t_POLMOD, the following member functions are defined:

p-pol: return a representative of the polynomial class of minimal degree.

p.mod: return the modulus.

Important remark. Mathematically, the variables occurring in a polmod are not free variables.
But internally, a congruence class in R[t]/(y) is represented by its representative of lowest degree,
which is a t_POL in R[t], and computations occur with polynomials in the variable . PARI will not
recognize that Mod(y, y~2 + 1) is “the same” as Mod(x, x"2 + 1), since x and y are different
variables.

To avoid inconsistencies, polmods must use the same variable in internal operations (i.e. be-
tween polmods) and variables of lower priority for external operations, typically between a poly-
nomial and a polmod. See Section 2.5.3 for a definition of “priority” and a discussion of (PARI’s
idea of) multivariate polynomial arithmetic. For instance:

? Mod(x, x"2+ 1) + Mod(x, x72 + 1)

%1 = Mod(2%x, x"2 + 1) \\ 2i (or —2i), with i® = —1
? x + Mod(y, y°2 + 1)

h2 = x + Mod(y, y~2 + 1) \\ in Q(i)[x]

? y + Mod(x, x72 + 1)

%3 = Mod(x + y, x°2 + 1) \\ in Q(y)[i]

The first two are straightforward, but the last one may not be what you want: y is treated here as
a numerical parameter, not as a polynomial variable.

21

If the main variables are the same, it is allowed to mix t_POL and t_POLMODs. The result is
the expected t_POLMOD. For instance

? x + Mod(x, x”2 + 1)

%1 = Mod(2*x, x~2 + 1)
2.3.10 Polynomials (t_POL). Type the polynomial in a natural way, not forgetting to put a “«”
between a coefficient and a formal variable;

71 4+ 2%x + 3%x72
%l = 3%x"2 + 2xx + 1

This assumes that x is still a ”free variable”.

?7x=1; 1 + 2%x + 3*%x"2
%2 =6

generates an integer, not a polynomial! It is good practice to never assign values to polynomial
variables to avoid the above problem, but a foolproof construction is available using ’x instead of x:
’x is a constant evaluating to the free variable with name x, independently of the current value
of x.

?7x=1; 1+ 2%¥’x + 3%’x72
%3 = 1 + 2*%x + 3%x"2
7?7 x ="7x; 1+ 2%x + 3%x72
%4 = 1 + 2xx + 3*x72

You may also use the functions Pol or Polrev:

? Pol([1,2,3]) \\ Pol creates a polynomial in x by default
%1 = x72 + 2%x + 3

? Polrev([1,2,3])

%2 = 3*xx"2 + 2xx + 1

? Pol([1,2,31, ’y) \\ we use ’y, safer than y

%3 =y 2 + 2%y + 3

The latter two are much more efficient constructors than an explicit summation (the latter is
quadratic in the degree, the former linear):

? for (i=1, 1074, Polrev(vector(100, i,i)))
time = 124ms

? for (i=1, 1074, sum(i = 1, 100, (i+1) * ’x7i))
time = 3,98bms

Polynomials are always printed as univariate polynomials over a commutative base ring, with
monomials sorted by decreasing degree:

7 (x+y+1)°2
%1 = x"2 + (2%y + 2)*x + (y™2 + 2%y + 1)

(Univariate polynomial in x whose coefficients are polynomials in y.) See Section 2.5 for valid vari-
able names, and a discussion of multivariate polynomial rings. Polynomials over noncommutative
rings are not supported.

22

2.3.11 Power series (t_SER). Typing 0(X"k), where k is an integer, yields an X-adic 0 of accu-
racy k, representing any power series in X whose valuation is > k. Of course, X can be replaced by
any other variable name! To input a general nonzero power series, type in a polynomial or rational
function (in X, say), and add 0(X"k) to it. The discussion in the t_POL section about variables
remains valid; a constructor Ser replaces Pol and Polrev. Power series over noncommutative rings
are not supported.

Caveat. Power series with inexact coeflficients sometimes have a nonintuitive behavior: if k£ signif-
icant terms are requested, an inexact zero is counted as significant, even if it is the coefficient of
lowest degree. This means that useful higher order terms may be disregarded.

If a series with a zero leading coefficient must be inverted, then as a desperation measure that
coefficient is discarded, and a warning is issued:

?7C=0.+7+0(y°2);
7 1/C

%% _/_: Warning: normalizing a series with O leading term.
h2 =y~ -1+ 0(1)

The last output could be construed as a bug since it is a priori impossible to deduce such a result
from the input (0. represents any sufficiently small real number). But it was thought more useful
to try and go on with an approximate computation than to raise an early exception.

If the series precision is insufficient, errors may occur (mostly division by 0), which could have
been avoided by a better global understanding of the computation:

?7A=1/(y+0.); B=1. + 0(y);
? B * denominator (A)
%2 = 0.E-38 + 0(y)

7 A/B

xx*x at top-level: A/B

oKk -

**%% _/_: impossible inverse in gdiv: 0.E-38 + 0(y).
? A%B

%4 = 1.0000000000000000000000000000000000000*y~-1 + 0(y~0)

2.3.12 Rational functions (t_RFRAC). As for fractions, all rational functions are automatically
reduced to lowest terms. All that was said about fractions in Section 2.3.4 remains valid here.

2.3.13 Binary quadratic forms (t_QFB). These are input using the function Qfb. For example,
both Qfb(1,2,3) and Qfb([1,2,3]) create the binary form ¢ = x? + 2zy + 3y?. It is imaginary
since its discriminant 22 — 4 x 3 = —8 is negative. Although imaginary forms could be positive or
negative definite, only positive definite forms are implemented.

The discriminant can be retrieved via q.disc. The individual components are obtained via
either of

[a,b,c] = Vec(q);

a = component(q,1);
b = component(q,2);
c = component(q,3);

See also the function qfbprimeform which creates a prime form of given discriminant.

23

2.3.14 Row and column vectors (t_VEC and t_COL). To enter a row vector, type the compo-

W

nents separated by commas “,”, and enclosed between brackets “[” and “]”, e.g. [1,2,3]. To

enter a column vector, type the vector horizontally, and add a tilde “~” to transpose. [] yields the
empty (row) vector. The function Vec can be used to transform any object into a vector (see Chap-
ter 3). The construction [i..j], where ¢ < j are two integers returns the vector [i,i+1,...,5 — 1, 7]

7 [1,2,3]

%1 = [1, 2, 3]

7 [-2..3]

%2 = [-2, -1, 0, 1, 2, 3]
Let the variable v contain a (row or column) vector:

e v[m] refers to its m-th entry; you can assign any value to v[m], i.e. write something like
vlm] = expr.

e v[i..j], where i < j, returns the vector slice containing elements v[i], ..., v[j]; you can not
assign a result to v[i..j].

e v[~i] returns the vector whose i-th entry has been removed; you can not assign a result to
v[~i].
In the last two constructions v[i..j] and v[~i], ¢ and j are allowed to be negative integers, in
which case, we start counting from the end of the vector: e.g., —1 is the index of the last element.

?v=1[1,2,3,4];
? v[2..4]

%2 = [2, 3, 4]

? v[~3]

%3 = [1, 2, 4]
? v[~-1]

%3 = [1, 2, 3]
? v[-3..-1]

% = [2, 3, 4]

Remark. vector is the standard constructor for row vectors whose ¢-th entry is given by a simple
function of i; vectorv is similar for column vectors:

? vector(10, i, i"2+1)
%1 = [2, 5, 10, 17, 26, 37, 50, 65, 82, 101]

The functions Vec and Col convert objects to row and column vectors respectively (as well as
Vecrev and Colrev, which revert the indexing):

? T = poltchebi(5) \\ 5-th Chebyshev polynomial
%1 = 16%x"5 - 20*%x~3 + b*x

? Vec(T)

%2 = [16, 0, -20, 0, 5, 0] \\ coefficients of T

? Vecrev(T)

%3 = [0, 5, 0, -20, 0, 16] \\ ... in reverse order

24

Remark. For v a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[gx) | x <= v, £(x)]
x | x <- v, £(x)]
[gx) | x <= v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))

respectively, and may serve as t_VEC constructors:

? [p | p<- primes(10), isprime(p+2)]
%2 = [3, 5, 11, 17, 29]

returns the primes p (among the first 10 primes) such that (p,p + 2) is a twin pair;

? [p2 | p<- primes(10), p % 4 == 1]
%3 = [25, 169, 289, 841]

returns the squares of the primes congruent to 1 modulo 4, where p runs among the first 10 primes.
To iterate over more than one variable, you may separate clauses with ; as in

? [x+ty | x <= [1..3]; y <= [1..2]]
w4 = [2, 3, 3, 4, 4, 5]

? [[x,y] | x <- [1..4], isprime(x); y <- [2..5], y % 3 == 1]
w5 = [[2, 41, [3, 4]]

2.3.15 Matrices (t_MAT). To enter a matrix, type the components row by row, the components
being separated by commas “,”, the rows by semicolons “;”, and everything enclosed in brackets
“[” and “17, e.g. [x,y; z,t; u,v]. [;] yields an empty (0 x 0) matrix. The function Mat
transforms any object into a matrix, and matrix creates matrices whose (i, j)-th entry is described

by a function f(i,j):

? Mat (1)

% =

[1]

7 matrix(2,2, i,j, 2*i+j)
%2 =

[3 4]

[5 6]
Matrix multiplication assumes that the base ring containing the matrix entries is commutative.
Let the variable M contain a matrix, and let 4, j, k, ! denote four integers:

e M[1i,j] refers to its (i, j)-th entry; you can assign any result to M[1i, j].

25

e M[i,] refers to its i-th row; you can assign a t_VEC of the right dimension to M[i,].
e M[,j] refers to its j-th column; you can assign a t_COL of the right dimension to M[, jJ.

But M[i] is meaningless and triggers an error. The “range” ¢..; and “caret” ~c notations are
available as for vectors; you can not assign to any of these:

e M[i..j, k..1],: < j, k <, returns the submatrix built from the rows i to j and columns
k tol of M.

e M[i..j,] returns the submatrix built from the rows i to j of M.
e M[,i..j] returns the submatrix built from the columns ¢ to j of M.
e M[i..j, “k],i < j, returns the submatrix built from the rows ¢ to j and column k removed.
e M["k,] returns the submatrix with row k& removed.
e M[, k] returns the submatrix with column k& removed.
Finally,
e M[i..j, k] returns the t_COL built from the k-th column (entries i to j).
e M["i, k] returns the t_COL built from the k-th column (entry i removed).
e M[k, i..j] returns the t_VEC built from the k-th row (entries i to 7).
e M[k, ~i] returns the t_VEC built from the k-th row (entry ¢ removed).

?M=1[1,2,3;4,5,6;7,8,9];
? M[1..2, 2..3]

%2 =

[2 3]

[5 6]

7 M[1..2,]
W3 =

[1 2 3]

[4 5 6]

? M[,2..3]
4 =

[2 3]

(5 6]
[8 9]

All this is recursive, so if M is a matrix of matrices of ..., an expression such as M[1,1] [, 3] [4]
= 1is perfectly valid (and actually identical to M[1,1] [4,3] = 1), assuming that all matrices along
the way have compatible dimensions.

26

Technical note (design flaw). Matrices are internally represented as a vector of columns. All
matrices with 0 columns are thus represented by the same object (internally, an empty vector), and
there is no way to distinguish between them. Thus it is not possible to create or represent matrices
with zero columns and an actual nonzero number of rows. The empty matrix [;] is handled as
though it had an arbitrary number of rows, exactly as many as needed for the current computation
to make sense:

? [1,2,3; 4,5,6] * [;]
%1 = [;]

The empty matrix on the first line is understood as a 3 x 0 matrix, and the result as a 2 x 0 matrix.
On the other hand, it is possible to create matrices with a given positive number of columns, each
of which has zero rows, e.g. using Mat as above or using the matrix function.

Note that although the internal representation is essentially the same, a row vector of column
vectors is not a matrix; for example, multiplication will not work in the same way. It is easy to go
from one representation to the other using Vec / Mat, though:

7 [1,2,3;4,5,6]
hl o=
[1 2 3]

[4 5 6]

? Vec(%)

%2 = [[1, 4]1~, [2, 5]~, [3, 6]-]
? Mat (%)

%3 =

[1 2 3]

[4 5 6]
2.3.16 Lists (t_LIST). Lists can be input directly, as in List ([1,2,3,4]); but in most cases, one
creates an empty list, then appends elements using listput:

? L = List(); listput(~L,1); listput(~L,2);
? L
%2 = List([1, 2])

Note the ~L: this means that the function is called with a reference to L and changes L in place.
Elements can be accessed directly as with the vector types described above.

2.3.17 Strings (t_STR). To enter a string, enclose it between double quotes ", as in: "this is a
string". The function Str can be used to transform any object into a string.

27

2.3.18 Small vectors (t_VECSMALL). This type codes in an efficient way vectors containing only
small integers, such as permutations. Most gp functions will refuse to operate on these objects,
notable exceptions being vecsort and conversion functions such as Vec, but you can retrieve
entries and assign to them as for ordinary vectors. You can also convert back and forth between
t_VECSMALL and t_VEC objects using Vec and Vecsmall.

? v = Vecsmall([2, 4, 6])
%1 = Vecsmall([2, 4, 6])
? v[1]

%2 = 2

? v[1] = 3; v

%3 = Vecsmall([3, 2, 3])

? v[2..3]

%4 = Vecsmall([2, 3])
7 v[~2]

%5 = Vecsmall([3, 3])
? Vec(v)

%6 = [3, 2, 3]

Allowed entries for a t_VECMALL are signed integer = such that |z| < 23! on a 32-bit architecture,

resp. x| < 25 on a 64-bit architecture Assigning a larger integer to a t_VECSMALL entry triggers
an exception:

? v[1] = 2763
**%*x at top-level: v[1]=2"63
*okok e
*kok incorrect type in t_VECSMALL assignment (t_INT).

2.3.19 Functions (t_CLOSURE). We will explain this at length in Section 2.7. For the time being,
suffice it to say that functions can be assigned to variables, as any other object, and the following
equivalent basic forms are available to create new ones

f=(x,y) > x"2+y"2

f(x,y) = x72 + y°2
2.3.20 Error contexts (t_ERROR). An object of this type is created whenever an error occurs: it

contains some information about the error and the error context. Usually, an appropriate error is
printed immediately, the computation is aborted, and GP enters the “break loop”:

7 1/0; 1 + 1
***% at top-level: 1/0;1+1
*kk o

x%x _/_: division by a noninvertible object
**%*x Break loop: type ’break’ to go back to the GP prompt

Here the computation is aborted as soon as we try to evaluate 1/0, and 1 4 1 is never executed.
Exceptions can be trapped using iferr, however: we can evaluate some expression and either
recover an ordinary result (no error occurred), or an exception (an error did occur).

? i = Mod(6,12); iferr(1/i, E, print(E)); 1 + 1
error ("impossible inverse modulo: Mod(6, 12).")
%1 =2

28

One can ignore the exception, print it as above, or extract non trivial information from the error
context:

? i = Mod(6,12); iferr(1/i, E, print(component(E,1)));
Mod (6, 12)

We can also rethrow the exception: error(E).

2.3.21 Infinity (t_INFINITY).

There are only two objects of this type +oo and -oo, representing +o0o. This type only contain
only two elements oo and -oo, They are used in functions sur as intnum or polrootsreal, to
encode infinite real intervals. These objects can only be negated and compared to real numbers
(t_INT, t_REAL, t_FRAC), but not included in any computation, i.e. 1+oo0 is an error, not oo again.

2.4 GP operators.

Loosely speaking, an operator is a function, usually attached to basic arithmetic operations, whose
name contains only nonalphanumeric characters. For instance + or -, but also = or +=, or even []
(the selection operator). As all functions, operators take arguments, and return a value; assignment
operators also have side effects: besides returning a value, they change the value of some variable.

Fach operator has a fixed and unchangeable priority, which means that, in a given expression,
the operation with the highest priority is performed first. Unless mentioned otherwise, opera-
tors at the same priority level are left-associative (performed from left to right), unless they are
assignments, in which case they are right-associative. Anything enclosed between parenthesis is
considered a complete subexpression, and is resolved recursively, independently of the surrounding
context. For instance,

a+b+c --> (a+Db) +c \\ left-associative
a=b=c --> a=(b=c) \\ right-associative

Assuming that opi, opsa, ops are binary operators with increasing priorities (think of +, *, =),

X 0p Y Opgy 2 0Py X OP3 Y

is equivalent to
z opy ((y opy z) opy (z op3 y)).

GP contains many different operators, either unary (having only one argument) or binary, plus
a few special selection operators. Unary operators are defined as either prefiz or postfix, meaning
that they respectively precede (op x) and follow (x op) their single argument. Some symbols are
syntactically correct in both positions, like !, but then represent different operators: the ! symbol
represents the negation and factorial operators when in prefix and postfix position respectively.
Binary operators all use the (infix) syntax x op y.

Most operators are standard (+, %, =), some are borrowed from the C language (++, <<),
and a few are specific to GP (\, #). Beware that some GP operators differ slightly from their C
counterparts. For instance, GP’s postfix ++ returns the new value, like the prefix ++ of C, and the
binary shifts <<, >> have a priority which is different from (higher than) that of their C counterparts.
When in doubt, just surround everything by parentheses; besides, your code will be more legible.

29

Here is the list of available operators, ordered by decreasing priority, binary and left-associative
unless mentioned otherwise. An expression is an lvalue if something can be assigned to it. (The
name comes from left-value, to the left of a = operator; e.g. x, or v[1] are lvalues, but x + 1 is
not.)

e Priority 14

: as in x:small, is used to indicate to the GP2C compiler that the variable on the left-hand
side always contains objects of the type specified on the right hand-side (here, a small integer) in
order to produce more efficient or more readable C code. This is ignored by GP.

e Priority 13
() is the function call operator. If f is a closure and args is a comma-separated list of
arguments (possibly empty), f(args) evaluates f on those arguments.

e Priority 12

++ and -- (unary, postfix): if z is an 1value, z++ assigns the value z + 1 to z, then returns
the new value of z. This corresponds to the C statement ++z: there is no prefix ++ operator in GP.
x—- does the same with x — 1. These operators are not associative, i.e. x++++ is invalid, since x++
is not an lvalue.

e Priority 11
.member (unary, postfix): x.member extracts member from structure x (see Section 2.8).

[] is the selection operator. x[i] returns the i-th component of vector x; x[i,j], =[,7]
and x[i,] respectively return the entry of coordinates (i, 7), the j-th column, and the i-th row of
matrix . If the assignment operator (=) immediately follows a sequence of selections, it assigns its
right hand side to the selected component. E.g x[1] [1] = 0 is valid; but beware that (x[1]) [1]
= 0 is not (because the parentheses force the complete evaluation of x[1], and the result is not
modifiable).

e Priority 10

> (unary, postfix): derivative with respect to the main variable. If f is a function (t_CLOSURE),
f is allowed and defines a new function, which will perform numerical derivation when evaluated
at a scalar z; this is defined as (f(z +¢) — f(x — ¢))/2¢ for a suitably small epsilon depending on
current precision.

? (x72 + yxx + y~2)° \\ derive with respect to main variable x

hl = 2%x + y

? SIN = cos’

%2 = cos’

7 SIN(Pi/6) \\ numerical derivation

%3 = -0.5000000000000000000000000000

? cos’(Pi/6) \\ works directly: no need for intermediate SIN

%4 = -0.5000000000000000000000000000
~ (unary, postfix): vector/matrix transpose.
! (unary, postfix): factorial. z! = z(x —1)---1.

(unary, postfix): primorial. For a non-negative integer n, n# is the product of all prime
numbers less than or equal to n.

e Priority 9
(unary, prefix): cardinality; #x returns length(z).

30

! (unary, prefix): logical not. !z returns 1 if z is equal to 0 (specifically, if gequalO(z)==1),
and 0 otherwise.

e Priority 8
~: powering. This operator is right associative: 2 ~374 is understood as 2 ~(374).

e Priority 7
+, - (unary, prefix): - toggles the sign of its argument, + has no effect whatsoever.

e Priority 6
*: multiplication.

/: exact division (3/2 yields 3/2, not 1.5).

\, %: Euclidean quotient and remainder, i.e. if z = qy + r, then x\y = ¢, x%y =r. If z and y
are scalars, then ¢ is an integer and r satisfies 0 < r < |y|; if and y are polynomials, then ¢ and
r are polynomials such that degr < degy and the leading terms of r and = have the same sign.

\/: rounded Euclidean quotient for integers (rounded towards +oo when the exact quotient
would be a half-integer).

<<, >>: left and right binary shift. By definition, x<<n = x 2" if n > 0, and truncate(z2~")
otherwise. Right shift is defined by x>>n = x<<(-n).

e Priority 5
+, —: addition/subtraction.

e Priority 4
<, >, <=, >=: the usual comparison operators, returning 1 for true and 0 for false. For
instance, x<=1 returns 1 if x < 1 and 0 otherwise.

<>, !=: test for (exact) inequality.
==: test for (exact) equality.

===: test whether two objects are identical component-wise. This is stricter than ==: for
instance, the integer 0, a 0 polynomial or a vector with 0 entries, are all tested equal by ==, but
they are not identical.

e Priority 3
&&: logical and.

| I: logical (inclusive) or. Any sequence of logical or and and operations is evaluated from left
to right, and aborted as soon as the final truth value is known. Thus, for instance,

x ==0 || test(1/x)

will never produce an error since test (1/x) is not even evaluated when the first test is true (hence
the final truth value is true). Similarly

type(p) == "t_INT" && isprime(p)
does not evaluate isprime (p) if p is not an integer.

e Priority 2

= (assignment, [value = expr). The result of x = y is the value of the expression y, which
is also assigned to the variable x. This assignment operator is right-associative. This is not the
equality test operator; a statement like x = 1 is always true (i.e. nonzero), and sets x to 1; the

31

equality test would be x == 1. The right hand side of the assignment operator is evaluated before
the left hand side.

It is crucial that the left hand-side be an lvalue there, it avoids ambiguities in expressions like
1 + x = 1. The latter evaluates as 1 + (x = 1), not as (1 + x) = 1, even though the priority
of = is lower than the priority of +: 1 + x is not an lvalue.

If the expression cannot be parsed in a way where the left hand side is an lvalue, raise an error.

?7x+1=1
*okok syntax error, unexpected ’=’, expecting $end or ’;’: x+1=1
*okok e

Assignment to all variables is a deep copy: after x = y, modifying a component of y will not change
x. To globals it is a full copy to the heap. Space used by local objects in local variables is released
when they go out of scope or when the value changes in local scope. Assigning a value to a vector
or matrix entry allocates room for that entry only (on the heap).

op=, where op is any binary operator among +, -, *, %, /, \, \/, <<, or >> (composed assignment
lvalue op= expr). The expression x op= y assigns (x op y) to x, and returns the new value of x.
The result is not an lvalue; thus

(x +=2) =3
is invalid. These assignment operators are right-associative:

7 X =7X; X += x *x= 2
%1 = 3%*x

e Priority 1
-> (function definition): (wars)->expr returns a function object, of type t_CLOSURE.

Remark. Use the op= operators as often as possible since they make complex assignments more
legible. Compare

v[i+j-1] = v[i+j-1] + 1 -—> v[i+j-1]++
M[i,i+j] = M[i,i+j] * 2 -=> M[i,i+j] *= 2
Remark about efficiency. the operators ++ and -- are usually a little more efficient than their
expended counterpart:
? N=10"7;
?1=0; for(k
time = 949 ms.

?71i=0; for(k =1, N, i++)
time = 933 ms.

1, N, i=i+1)

On the other hand, this is not the case for the op= operators which may even be a little less efficient:

?1i=0; for(k =1, N, i=i+10)
time = 949 ms.

?1i=0; for(k =1, N, i+=10)
time = 1,064 ms.

32

2.5 Variables and symbolic expressions.

In this section we use wariable in the standard mathematical sense, symbols representing
algebraically independent elements used to build rings of polynomials and power series, and explain
the all-important concept of variable priority. In the next Section 2.6, we shall no longer consider
only free variables, but adopt the viewpoint of computer programming and assign values to these
symbols: (bound) variables are names attached to values in a given scope.

2.5.1 Variable names. A valid name starts with a letter, followed by any number of keyword
characters: _ or alphanumeric characters ([A-Za-z0-9]). As a rule, the built-in function names are
reserved and cannot be used; see the list with \c, including the constants Pi, Euler, Catalan,
I = +/—1 and oo = oo. Beware in particular of gamma, omega, theta, sum or 0, none of which are
free to use. (We shall see in Section 2.6 how this rule can be circumvented. It is possible to name
a lexical variable gamma.)

GP names are case sensitive. For instance, the symbol i is perfectly safe to use, and will not
be mistaken for I = 1/—1; analogously, o is not synonymous to 0.

In GP you can use up to 16383 variable names (up to 65535 on 64-bit machines). If you ever
need thousands of variables and this becomes a serious limitation, you should probably be using
vectors instead: e.g. instead of variables X1, X2, X3, ..., you might equally well store their values
in X[1], X[2], X[3], ...

2.5.2 Variables and polynomials. The quote operator ’t registers a new free variable with the
interpreter, which will be written as t, and evaluates to a monomial of degree 1 in the said variable.

Caveat. For reasons of backward compatibility, there is no such thing as an “unbound” (unini-
tialized) variable in GP. If you use a valid variable name in an expression, t say, for the first time
before assigning a value into it, it is interpreted as ’t rather than raising an exception. One should
not rely on this feature in serious programs, which would otherwise break if some unexpected as-
signment (e.g. t = 1) occurs: use ’t directly or t = ’t first, then t. A statement like t = ’t in
effect restores t as a free variable.

?7t="t; tt2 +1

%l =t"2 + 1

7t =2; t°2+1
%2 =5

7?7 %1

%3 =t"2 + 1

? eval(%1)

%4 =5

In the above, we initialize t to a monomial, then bind it to 2. Assigning a value to a polynomial
variable does not affect previous expressions involving it; to take into account the new variable’s
value, one must force a new evaluation, using the function eval (see Section 3.9.6).

33

Caveat2. The use of an explicit quote operator avoids the following kind of problems:

?7t="7t; p=1t"2+ 1; subst(p, t, 2)

%l =5

7?7t =2;

? subst(p, t, 3) \\ t is no longer free: it evaluates to 2
x¥*x at top-level: subst(p,t,3)
k% x S ——

**%* variable name expected.
? subst(p, ’t, 3) \\ 0K
%3 = 10

2.5.3 Variable priorities, multivariate objects. A multivariate polynomial in PARI is just a
polynomial (in one variable), whose coefficients are themselves polynomials, arbitrary but for the
fact that they do not involve the main variable. (PARI currently has no sparse representation for
polynomials, listing only nonzero monomials.) All computations are then done formally on the
coefficients as if the polynomial was univariate.

This is not symmetrical. So if I enter x + ’y in a clean session, what happens? This is
understood as

R (yl +0 % yo) x 10 € (Zy])[]

but how do we know that x is “more important” than y ? Why not y! + z x y°, which is the same
mathematical entity after all?

The answer is that variables are ordered implicitly by the interpreter: when a new identifier
(e.g z, or y as above) is input, the corresponding variable is registered as having a strictly lower
priority than any variable in use at this point*. To see the ordering used by gp at any given time,
type variable().

Given such an ordering, multivariate polynomials are stored so that the variable with the
highest priority is the main variable. And so on, recursively, until all variables are exhausted. A
different storage pattern (which could only be obtained via libpari programming and low-level
constructors) would produce an invalid object, and eventually a disaster.

In any case, if you are working with expressions involving several variables and want to have
them ordered in a specific manner in the internal representation just described, the simplest is just
to write down the variables one after the other under gp before starting any real computations.
You may also define variables from your gprc to have a consistent ordering of common variable
names in all your gp sessions, e.g read in a file variables.gp containing

JX; 7y;)z;)t;)a;

There is no way to change the priority of existing variables, but you may always create new ones
with well-defined priorities using varhigher or varlower.

* This is not strictly true: the variables x and y are predefined, and satisfy = > y. Variables of
higher priority than x can be created using varhigher.

34

Important note. PARI allows Euclidean division of multivariate polynomials, but assumes that
the computation takes place in the fraction field of the coefficient ring (if it is not an integral
domain, the result will a priori not make sense). This can become tricky. For instance assume z
has highest priority, then y:

7xhy

%1 =0

7y %hx

w2 =y \\ these two take place in Q(y)|[x]
7 x * Mod(1,y)

#3 = Mod(1, y*x \\in (Q(y)/yQ(y))z] ~ Qlz]
? Mod(x,y)

W =0

In the last example, the division by y takes place in Q(y)[x], hence the Mod object is a coset
in (Q(y)[z])/(yQ(y)[z]), which is the null ring since y is invertible! So be very wary of variable
ordering when your computations involve implicit divisions and many variables. This also affects
functions like numerator/denominator or content:

? denominator(x / y)

% =1

? denominator(y / x)
%2 = x

? content(x / y)

%3 = 1/y

? content(y / x)

% =y

7 content(2 / x)

%5 =2

Can you see why? Hint: x/y = (1/y) * = is in Q(y)[z] and denominator is taken with respect to
Q(y)(x); y/z = (y*2°)/x is in Q(y)(x) so y is invertible in the coefficient ring. On the other hand,
2/x involves a single variable and the coefficient ring is simply Z.

These problems arise because the variable ordering defines an implicit variable with respect
to which division takes place. This is the price to pay to allow % and / operators on polynomials
instead of requiring a more cumbersome divrem(z, y, wvar) (which also exists). Unfortunately,
in some functions like content and denominator, there is no way to set explicitly a main variable
like in divrem and remove the dependence on implicit orderings. This will hopefully be corrected
in future versions.

2.5.4 Multivariate power series. Just like multivariate polynomials, power series are funda-
mentally single-variable objects. It is awkward to handle many variables at once, since PARI’s
implementation cannot handle multivariate error terms like O(z’y?). (It can handle the polyno-
mial O(y’) x x? which is a very different thing, see below.)

The basic assumption in our model is that if variable x has higher priority than y, then y does
not depend on z: setting y to a function of x after some computations with bivariate power series
does not make sense a priori. This is because implicit constants in expressions like O(z*) depend
on y (whereas in O(y?) they can not depend on z). For instance

?70(x) xy

35

%1 = 0(x)
? 0(y) * x
%2 = 0(y)*x

Here is a more involved example:

?7A=1/x"2+1+0x); B=1/x+ 1+ 0(x"3);
? subst(z*A, z, B)

%2 = x"-3 + x"-2 + x"-1 + 1 + 0(x)

7B x A

%3 = x"-3 + x°-2 + x~-1 + 0(1)

7z *x A

%4 = zxx"-2 + z + 0(x)

The discrepancy between %2 and %3 is surprising. Why does %2 contain a spurious constant term,
which cannot be deduced from the input? Well, we ignored the rule that forbids to substitute
an expression involving high-priority variables to a low-priority variable. The result %4 is correct
according to our rules since the implicit constant in O(z) may depend on z. It is obviously wrong
if z is allowed to have negative valuation in z. Of course, the correct error term should be O(zz),
but this is not possible in PARI.

2.6 Variables and Scope.

This section is rather technical, and strives to explain potentially confusing concepts. Skip to
the last subsection for practical advice, if the next discussion does not make sense to you. After
learning about user functions, study the example in Section 2.7.7 then come back.

Definitions.

A scope is an enclosing context where names and values are attached. A user’s function body,
the body of a loop, an individual command line, all define scopes; the whole program defines the
global scope. The argument of eval is evaluated in the enclosing scope.

Variables are bound to values within a given scope. This is traditionally implemented in two
different ways:

e lexical (or static) scoping: the binding makes sense within a given block of program text.
The value is private to the block and may not be accessed from outside. Where to find the value
is determined at compile time.

e dynamic scoping: introducing a local variable, say x, pushes a new value on a stack attached
to the name x (possibly empty at this point), which is popped out when the control flow leaves the
scope. Evaluating x in any context, possibly outside of the given block, always yields the top value
on this dynamic stack.

GP implements both lexical and dynamic scoping, using the keywords™* my (lexical) and local
(dynamic):

x = 0;
£0O
g0

X

my(x = 1); £0

* The names are borrowed from the Perl scripting language.

36

h() = local(x = 1); £QO

The function g returns 0 since the global x binding is unaffected by the introduction of a private
variable of the same name in g. On the other hand, h returns 1; when it calls £ (), the binding stack
for the x identifier contains two items: the global binding to 0, and the binding to 1 introduced in
h, which is still present on the stack since the control flow has not left h yet.

The rule mentionned in the previous section about built-in function names being reserved does
not apply to lexically scoped variables. Those may temporarily shadow an existing function name:

my(gamma = 0) ;

Without the my, this would be invalid since gamma is the I" function.

2.6.1 Scoping rules.

Named parameters in a function definition, as well as all loop indices**, have lexical scope
within the function body and the loop body respectively.

p=0;
forprime (p = 2, 11, print(p)); p \\ prints 0 at the end
x = 0;

f(x) = x++;
£f(1) \\ returns 2, and leave global x unaffected (= 0)

If you exit the loop prematurely, e.g. using the break statement, you must save the loop index in
another variable since its value prior the loop will be restored upon exit. For instance

for(i = 1, n,
if (ok(i), break);
)

if (i > n, return(failure));

is incorrect, since the value of i tested by the (i > n) is quite unrelated to the loop index. One ugly
workaround is

for(i = 1, n,
if (ok(i), isave = i; break);
);

if (isave > n, return(failure));
But it is usually more natural to wrap the loop in a user function and use return instead of break:

try() =
{
for(i =1, n,
if (ok(i), return (i));
)
0 \\ failure
}

A list of variables can be lexically or dynamically scoped (to the block between the declaration
and the end of the innermost enclosing scope) using a my or local declaration:

** More generally, in all iterative constructs which use a variable name (for, prod, sum, vector,
matrix, plot, etc.) the given variable is lexically scoped to the construct’s body.

37

for (i = 1, 10,
my(x, y, z, i2 = i"2); \\ temps needed within the loop body

)

Note how the declaration can include (optional) initial values, 12 = i"2 in the above. Variables
for which no explicit default value is given in the declaration are initialized to 0. It would be more
natural to initialize them to free variables, but this would break backward compatibility. To obtain
this behavior, you may explicitly use the quoting operator:

my(x = ’x, y =y, z = °2);
A more complicated example:

for (i =1, 3,
print("main loop");

my(x = i); \\ local to the outermost loop
for (j = 1, 3,
my (y = x72); \\ local to the innermost loop

print (y + y~2);

X++;

)

When we leave the loops, the values of x, y, i, j are the same as before they were started.

Note that eval is evaluated in the given scope, and can access values of lexical variables:

7 x=1;
7 my(x = 0); eval("x")
%2 =0 \\ we see the local x scoped to this command line, not the global one

Variables dynamically scoped using local should more appropriately be called temporary val-
ues since they are in fact local to the function declaring them and any subroutine called from
within. In practice, you almost certainly want true private variables, hence should use almost
exclusively my.

We strongly recommended to explicitly scope (lexically) all variables to the smallest possible
block. Should you forget this, in expressions involving such “rogue” variables, the value used will
be the one which happens to be on top of the value stack at the time of the call; which depends on
the whole calling context in a nontrivial way. This is in general not what you want.

38

2.7 User defined functions.

User-defined functions are ordinary GP objects, bound to variables just like any other object.
Those variables are subject to scoping rules as any other: while you can define all your functions
in global scope, it is usually possible and cleaner to lexically scope your private helper functions to
the block of text where they will be needed.

Whenever gp meets a construction of the form expr (argument list) and the expression expr
evaluates to a function (an object of type t_CLOSURE), the function is called with the proper
arguments. For instance, constructions like funcs[i] (x) are perfectly valid, assuming funcs is an
array of functions.

As regards argument passing conventions, GP functions support both

e call by value: the function operates on a copy of a variable, changes made to the argument
in the function do not affect the original variable;

e and call by reference: the function receives a reference to the variable and original data is
affected.
2.7.1 Defining a function.

A user function is defined as follows:

(list of formal variables) -> seq.

The list of formal variables is a comma-separated list of distinct variable names and allowed to be
empty. It there is a single formal variable, the parentheses are optional. This list corresponds to
the list of parameters you will supply to your function when calling it. By default, GP functions
use call by value to pass arguments; a variable name may be prefixed by a tilde ~ to use instead a
call by reference.

In most cases you want to assign a function to a variable immediately, as in

R = (x,y) —> sqrt(x"2+y"2);
sq = x —> x72; \\ or equivalently (x) -> x"2

but it is quite possible to define short-lived anonymous functions. The trailing semicolon is not
part of the definition, but as usual prevents gp from printing the result of the evaluation, i.e. the
function object. The construction

f (list of formal variables) = seq
is available as an alias for
f = (list of formal variables) -> seq

Using that syntax, it is not possible to define anonymous functions (obviously), and the above two
examples become:

R(x,y) = sqrt(x"2+y~2);
sq(x) = x72;

The semicolon serves the same purpose as above: preventing the printing of the resulting function
object; compare

? sq(x) = x72; \\ no output
7 sq(x) = x"2 \\ print the result: a function object

39

%2 = (x)->x"2

Of course, the sequence seq can be arbitrarily complicated, in which case it will look better written
on consecutive lines, with properly scoped variables:

{
f(x0, x1, ...) =
my (t0, t1, ...); \\ wariables lexically scoped to the function body

}

Note that the following variant would also work:

f(x0, x1, ...) =
{
my (t0, t1, ...); \\ wariables lexically scoped to the function body

}

(the first newline is disregarded due to the preceding = sign, and the others because of the enclosing
braces). The my statements can actually occur anywhere within the function body, scoping the
variables to more restricted blocks than the whole function body.

Formal parameters are lexically scoped to the function body. It is not allowed to use the same
variable name for different parameters of your function:

? f(x,x) =1
% variable declared twice: f(x,x)=1
%k k R

Finishing touch. You can add a specific help message for your function using addhelp, but the
online help system already handles it. By default ?name will print the definition of the function
name: the list of arguments, as well as their default values, the text of seq as you input it. Just as
\c prints the list of all built-in commands, \u outputs the list of all user-defined functions.

2.7.2 Call by value, call by reference.

By default, arguments are passed by value, not as variables: modifying a function’s argument
in the function body is allowed, but does not modify its value in the calling scope. In fact, a copy
of the actual parameter is assigned to the formal parameter when the function is called. (This is
not litterally true: a form of copy-on-write is implemented so an object is not duplicated unless
modified in the function.) If an argument is prefixed by a tilde ~ in the function declaration and
the call, it is passed by reference. (If either the declaration or the call is missing a tilde, we revert
to a call by value.)

-~

x = [1];

£(v) = v[1l++;

? F(~v) = v[1]++;

7 £(x)

W = 2

7?7 x \\ unchanged
w5 = [1]

? F(~x)

-~

40

%6 = 2

? X \\ incremented

w7 = [2]

? F(x) \\ forgot the ~: call by value

%8 =3

7 x \\ => contents of x did not change

%9 = [2]

? £(~x) \\ adding a ~ in call, missing in declaration
%10 = 3

7 x \\ => call by value

11 = [2]

Caveat. In GP, a call by reference means that the function accesses the value and may change
the original variable content, but only if it is a container type (a vector, list or matrix), as shown
above with the vector z. It will not alter its value in other cases !

? v =1 \\ not a container
? F(~v) = v++

? F(~v)
%3 =2
? v \\ components of v could be altered, not v itself
%4 =1

2.7.3 Functions taking an unlimited number of arguments.

A function taking an unlimited number of arguments is called variadic. To create such a
function, use the syntax

(list of formal variables, varl[..]1) -> seq

The parameter var is replaced by a vector containing all the remaining arguments. The name may
not be prefixed by a tilde to (absurdly) indicate a call by reference.

? £f(c[..]) = sum(i=1,#c,c[i]);

? £(1,2,3)

%1 =6

? sep(s,v[..]) = for(i=1,#v-1,print1(v[il,s)); if (#v, print(v[#v]));
? sep(":", 1, 2, 3)

1:2:3

2.7.4 Backward compatibility (lexical scope). Lexically scoped variables were introduced in
version 2.4.2. Before that, the formal parameters were dynamically scoped. If your script depends
on this behavior, you may use the following trick: replace the initial £f(x) = by

f(x_orig) = local(x = x_orig)

41

2.7.5 Backward compatibility (disjoint namespaces). Before version 2.4.2, variables and
functions lived in disjoint namespaces and it was not possible to have a variable and a function
share the same name. Hence the need for a kill function allowing to reuse symbols. This is no
longer the case.

There is now no distinction between variable and function names: we have PARI objects
(functions of type t_CLOSURE, or more mundane mathematical entities, like t_INT, etc.) and
variables bound to them. There is nothing wrong with the following sequence of assignments:

?7f=1 \\ assigns the integer 1 to £

wlo=1;

?7f0 =1 \\ a function with a constant value
h2 = O->1

?7f=x"2 \\ £ now holds a polynomial

%3 = x"2

7 £(x) = x"2 \\ ... and now a polynomial function

%4 = (x)->x"2

7 g(fun) = fun(Pi);\\ a function taking a function as argument
? g(cos)

%6 = -1.000000000000000000000000000

Previously used names can be recycled as above: you are just redefining the variable. The previous
definition is lost of course.

Important technical note. Built-in functions are a special case since they are read-only (you
cannot overwrite their default meaning), and they use features not available to user functions,
in particular pointer arguments. In the present version 2.17.1, it is possible to assign a built-in
function to a variable, or to use a built-in function name to create an anonymous function, but
some special argument combinations may not be available:

7 issquare(9, &e)

n =1
? e
%2 =3
? g = issquare;
7 g(9)
=1

7 g(9, &e) \\ pointers are not implemented for user functions
*** unexpected &: g(9,&e)
*ok ok S

2.7.6 Function call, Default arguments.

You may now call your function, as in £(1,2), supplying values for the formal variables.
The number of parameters actually supplied may be less than the number of formal variables in
the function definition. An uninitialized formal variable is given an implicit default value of (the
integer) 0, i.e. after the definition

f(x, y) = ...

you may call £(1, 2), supplying values for the two formal parameters, or for example
£(2) equivalent to £(2,0),

42

£0O £(0,0),
£(,3) £(0,3). (“Empty argument” trick)

This implicit default value of 0, is actually deprecated and setting

default(strictargs, 1)
allows to disable it (see Section 3.4.43).

The recommended practice is to explicitly set a default value: in the function definition, you
can append =expr to a formal parameter, to give that variable a default value. The expression gets
evaluated the moment the function is called, and may involve the preceding function parameters:
a default value for z; may involve x; for j < ¢. For instance, after

fx=1,y=2, z=y+l) =

typing in f(3,4) would give you £(3,4,5). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, use the “empty argument” trick:
£(6,,1) would yield £(6,2,1). Of course, £() by itself yields £(1,2,3) as was to be expected.

In short, the argument list is filled with user supplied values, in order. A comma or closing
parenthesis, where a value should have been, signals we must use a default value. When no input
arguments are left, the defaults are used instead to fill in remaining formal parameters. A final
example:

f(x, y=2, z=3) = print(x, ":", y, ":", z);
defines a function which prints its arguments (at most three of them), separated by colons.

7 £(6,7)
6:7:3
? £(,5)
0:5:3
7 £0)
0:2:3

If strictargs is set (recommended), x is now a mandatory argument, and the above becomes:

default(strictargs,1)
£(6,7)

:7:3

£(,5)

xk at top-level: f(,5)
N e —

N O N N

*kk in function f: x,y=2,z=3
*okk B

**k*x missing mandatory argument ’x’ in user function.

43

Example. We conclude with an amusing example, intended to illustrate both user-defined func-
tions and the power of the sumalt function. Although the Riemann zeta-function is included (as
zeta) among the standard functions, let us assume that we want to check other implementations.
Since we are highly interested in the critical strip, we use the classical formula

27 =1)¢(s) =D ()™, Rs>0.

n>1

The implementation is obvious:
ZETA(s) = sumalt(n=1, (-1)"n*n~(-s)) / (2°(1-s) - 1)

Note that n is automatically lexically scoped to the sumalt “loop”, so that it is unnecessary to add
a my(n) declaration to the function body. Surprisingly, this gives very good accuracy in a larger
region than expected:

? check = z -> ZETA(z) / zeta(z);

? check(2)

%1 = 1.000000000000000000000000000

? check(200)

%2 = 1.000000000000000000000000000

? check(0)

%3 = 0.9999999999999999999999999994

? check(-5)

%4 = 1.00000000000000007549266557

? check(-11)

%5 = 0.9999752641047824902660847745

? check(1/2+14.134%I) \\ wvery close to a nontrivial zero

%6 = 1.000000000000000000003747432 + 7.62329066 E-21*I
? check(-1+10%I)

%7 = 1.000000000000000000000002511 + 2.989950968 E-24x*I

Now wait a minute; not only are we summing a series which is certainly no longer alternating (it
has complex coefficients), but we are also way outside of the region of convergence, and still get
decent results! No programming mistake this time: sumalt is a “magic” function®, providing very
good convergence acceleration; in effect, we are computing the analytic continuation of our original
function. To convince ourselves that sumalt is a nontrivial implementation, let us try a simpler
example:

? sum(n=1, 1077, (-1)"n/n, 0.) / (-log(2)) \\ approximates the well-known formula
time = 7,417 ms.

%1 = 0.9999999278652515622893405457

7 sumalt(n=1, (-1)"n/n) / (-log(2)) \\ accurate and fast

time = O ms.

%2 = 1.000000000000000000000000000

No, we are not using a powerful simplification tool here, only numerical computations. Remember,
PARI is not a generalist computer algebra system!

* sumalt is heuristic, but its use can be rigorously justified for a given function, in particular our
¢(s) formula. Indeed, Peter Borwein (An efficient algorithm for the Riemann zeta function, CMS
Conf. Proc. 27 (2000), pp. 29-34) proved that the formula used in sumalt with n terms computes
(1 — 217*)((s) with a relative error of the order of (3 + /8)~"|T'(s)|~!.

44

2.7.7 Beware scopes. Be extra careful with the scopes of variables. What is wrong with the
following definition?

FirstPrimeDiv(x) =

{ my(p);
forprime(p=2, x, if (xVp == 0, break));
p

}

? FirstPrimeDiv(10)

%1 =0

Hint. The function body is equivalent to

{ my(newp = 0);
forprime(p=2, x, if (xVp == 0, break));
newp

¥

Detailed explanation. The index p in the forprime loop is lexically scoped to the loop and is
not visible to the outside world. Hence, it will not survive the break statement. More precisely,
at this point the loop index is restored to its preceding value. The initial my(p), although well-
meant, adds to the confusion: it indeed scopes p to the function body, with initial value 0, but the
forprime loop introduces another variable, unfortunately also called p, scoped to the loop body,
which shadows the one we wanted. So we always return 0, since the value of the p scoped to the
function body never changes and is initially O.

To sum up, the routine returns the p declared local to it, not the one which was local to
forprime and ran through consecutive prime numbers. Here is a corrected version:

? FirstPrimeDiv(x) = forprime(p=2, x, if (x¥p == 0, return(p)))

2.7.8 Recursive functions. Recursive functions can easily be written as long as one pays proper
attention to variable scope. Here is an example, used to retrieve the coefficient array of a multivari-
ate polynomial (a nontrivial task due to PARI’s unsophisticated representation for those objects):

coeffs(P, nvar) =
{ my (d = poldegree(P));
if (d <= 0,
P = simplify(P); for (i=1, nvar, P = [P]);
return (P));
vector(d + 1, i, coeffs(polcoef(P, i-1), nvar-1));

¥

If P is a polynomial in k variables, show that after the assignment v = coeffs(P,k), the coefficient
of 21" ... z}* in P is given by v[n,+1]1[...] [ny+1], provided a monomial M x,iv’“ withn < N
(lexicographically) exists with a non-zero coefficient.

When the operating system allows querying the maximum size of the process stack, we auto-
matically limit the recursion depth:

? dive(n) = dive(n+1)

45

? dive(0);
KKk [...] at: dive(n+1)
*ok ok T
x in function dive: dive(n+1)
*ok ok T
\\ (last 2 lines repeated 19 times)
***x deep recursion.

All Unix variants support this mechanism and the recursion limit may be different from one machine
to the next; other systems may crash on deep recursion. There is no way to increase the limit from
within gp. On a Unix system, you may increase it before launching gp with ulimit or limit,
depending on your shell, and raise the process available stack space (increase stacksize).

2.7.9 Function which take functions as parameters. This is done as follows:

? calc(f, x) = f(x)
? calc(sin, Pi)
%2 = -5.04870979 E-29

7 g(x) = x72;
? calc(g, 3)
W4 =9

If we do not need g elsewhere, we should use an anonymous function here, calc(x->x"2, 3). Here
is a variation:

? funs = [cos, sin, tan, x->x"3+1]; \\ an array of functions
? call(i, x) = funs[i] (x)

evaluates the appropriate function on argument x, provided 1 < ¢ < 4. Finally, a more useful
example:

APPLY(f, v) = vector(#v, i, f(v[il]))
applies the function f to every element in the vector v. (The built-in function apply is more
powerful since it also applies to lists and matrices.)
2.7.10 Defining functions within a function. Defining a single function is easy:

init(x) = (add =y -> x+y);

Basically, we are defining a global variable add whose value is the function y->x+y. The parentheses
were added for clarity and are not mandatory.

? init(5);
? add(2)
%2 =7

A more refined approach is to avoid global variables and return the function:

init(x) =y -> x+y
add = init(5)

Then add (2) still returns 7, as expected! Of course, if add is in global scope, there is no gain, but
we can lexically scope it to the place where it is useful:

my (add = init(5));

46

How about multiple functions then? We can use the last idea and return a vector of functions,
but if we insist on global variables? The first idea

init(x) = add(y) = x+y; mul(y) = xx*y;

does not work since in the construction £() = seq, the function body contains everything until
the end of the expression. Hence executing init defines the wrong function add (itself defining a
function mul). The way out is to use parentheses for grouping, so that enclosed subexpressions will
be evaluated independently:

? init(x) = (add(y) = x+y); (mul(y) = x*y);
? init(5);

7 add(2)

%3 =7

? mul(3)

W4 = 15

This defines two global functions which have access to the lexical variables private to init! The
following would work in exactly the same way:

? inits() = my(x = 5); (add(y) = x+y); (mul(y) = xxy);

2.7.11 Closures as Objects. Contrary to what you might think after the preceding examples,
GP’s closures may not be used to simulate true “objects”, with private and public parts and
methods to access and manipulate them. In fact, closures indeed incorporate an existing context
(they may access lexical variables that existed at the time of their definition), but then may not
change it. More precisely, they access a copy, which they are welcome to change, but a further
function call still accesses the original context, as it existed at the time the function was defined:

init() =

{ my(count = 0);
(inc(O=count++) ;
(dec()=count--);

}

? init();

? inc(Q)

%=1

? inc(Q)

%2 =1

7 dec()

%3 = -1

7 dec()

%4 = -1

47

2.8 Member functions.

Member functions use the ‘dot’ notation to retrieve information from complicated structures.
The built-in structures are bid, ell, galois, ff, nf, bnf, bnr and prid, which will be described at length
in Chapter 3. The syntax structure.member is taken to mean: retrieve member from structure,
e.g. E.j returns the j-invariant of the elliptic curve E, or outputs an error message if E is not a
proper ell structure. To define your own member functions, use the syntax

var.member = seq,

where the formal variable var is scoped to the function body seq. This is of course reminiscent of
a user function with a single formal variable var. For instance, the current implementation of the
ell type is a vector, the j-invariant being the thirteenth component. It could be implemented as

x.j =
{
if (type(x) != "t_VEC" || #x < 14, error("not an elliptic curve: " x));
x[13]
}
As for user functions, you can redefine your member functions simply by typing new definitions.
On the other hand, as a safety measure, you cannot redefine the built-in member functions, so

attempting to redefine x.j as above would in fact produce an error; you would have to call it
e.g. x.myj in order for gp to accept it.

Member functions use call by reference to pass arguments, your function may modify in place
the contents of a variable (of container type).

Rationale. In most cases, member functions are simple accessors of the form

x.a = x[1];
x.b = x[2];
x.c = x[3];

where x is a vector containing relevant data. There are at least three alternative approaches to the
above member functions: 1) hardcode x[1], etc. in the program text, 2) define constant global
variables AINDEX = 1, BINDEX = 2 and hardcode x[AINDEX], 3) user functions a(x) = x[1] and
SO On.

Even if 2) improves on 1), these solutions are neither elegant nor flexible, and they scale badly.
3) is a genuine possibility, but the main advantage of member functions is that their namespace is
independent from the variables (and functions) namespace, hence we can use very short identifiers
without risk. The j-invariant is a good example: it would clearly not be a good idea to define j (E)
= E[13], because clashes with loop indices are likely.

Beware that there is no guarantee that a built-in member function is a simple accessor and it
could involve a computation. Thus you should not use them on a constant object in tight loops:
store them in a variable before the loop.

Note. Typing \um will output all user-defined member functions.

Member function names. A valid name starts with a letter followed by any number of keyword
characters: _ or alphanumeric characters ([A-Za-z0-9]). The built-in member function names are
reserved and cannot be used (see the list with 7.). Finally, names starting with e or E followed
by a digit are forbidden, due to a clash with the floating point exponent notation: we understand
1.e2 as 100.000.. ., not as extracting member e2 of object 1.

48

2.9 Strings and Keywords.

2.9.1 Strings. GP variables can hold values of type character string (internal type t_STR). This
section describes how they are actually used, as well as some convenient tricks (automatic concate-
nation and expansion, keywords) valid in string context.

As explained above, the general way to input a string is to enclose characters between quotes ".
This is the only input construct where whitespace characters are significant: the string will contain
the exact number of spaces you typed in. Besides, you can “escape” characters by putting a \ just
before them; the translation is as follows

\e: <Escape>
\n: <Newline>
\t: <Tab>

For any other character z, \z is expanded to x. In particular, the only way to put a " into a
string is to escape it. Thus, for instance, "\"a\"" would produce the string whose content is “a”.
This is definitely not the same thing as typing "a", whose content is merely the one-letter string a.

You can concatenate two strings using the concat function. If either argument is a string, the
other is automatically converted to a string if necessary (it will be evaluated first).

? concat("ex", 1+1)

%1 = "ex2"

?a=2; b="ex"; concat(b, a)
%h2 = "ex2"

? concat(a, b)

%3 = "2ex"

Some functions expect strings for some of their arguments: print would be an obvious example,
Str is a less obvious but useful one (see the end of this section for a complete list). While typing
in such an argument, you will be said to be in string context. The rest of this section is devoted to
special syntactical tricks which can be used with such arguments (and only here; you will get an
error message if you try these outside of string context):

e Writing two strings alongside one another will just concatenate them, producing a longer
string. Thus it is equivalent to type in "a " "b" or "a b". A little tricky point in the first
expression: the first whitespace is enclosed between quotes, and so is part of a string; while the
second (before the "b") is completely optional and gp actually suppresses it, as it would with any
number of whitespace characters at this point (i.e. outside of any string).

e If you insert any expression when a string is expected, it gets “expanded”: it is evaluated
as a standard GP expression, and the final result (as would have been printed if you had typed
it by itself) is then converted to a string, as if you had typed it directly. For instance "a" 1+1
"b" is equivalent to "a2b": three strings get created, the middle one being the expansion of 1+1,
and these are then concatenated according to the rule described above. Another tricky point here:
assume you did not assign a value to aaa in a GP expression before. Then typing aaa by itself in
a string context will actually produce the correct output (i.e. the string whose content is aaa), but
in a fortuitous way. This aaa gets expanded to the monomial of degree one in the variable aaa,
which is of course printed as aaa, and thus will expand to the three letters you were expecting.

49

Warning. Expression involving strings are not handled in a special way; even in string context,
the largest possible expression is evaluated, hence print ("a"[1]) is incorrect since "a" is not an
object whose first component can be extracted. On the other hand print("a", [1]) is correct
(two distinct argument, each converted to a string), and so is print("a" 1) (since "a"1 is not
a valid expression, only "a" gets expanded, then 1, and the result is concatenated as explained
above).

2.9.2 Keywords. Since there are cases where expansion is not desirable, we now distinguish
between “Keywords” and “Strings”. String is what has been described so far. Keywords are
special relatives of Strings which are automatically assumed to be quoted, whether you actually
type in the quotes or not. Thus expansion is never performed on them. They get concatenated,
though. The analyzer supplies automatically the quotes you have “forgotten” and treats Keywords
just as normal strings otherwise. For instance, if you type "a"b+b in Keyword context, you will get
the string whose contents are ab+b. In String context, on the other hand, you would get a2xb.

All GP functions have prototypes (described in Chapter 3 below) which specify the types of
arguments they expect: either generic PARI objects (GEN), or strings, or keywords, or unevaluated
expression sequences. In the keyword case, only a very small set of words will actually be meaningful
(the default function is a prominent example).

Reference. The arguments of the following functions are processed in string context:
Str
addhelp (second argument)
default (second argument)
error
extern
plotstring (second argument)
plotterm (first argument)
read and readvec
system
all the printzzz functions
all the writezzx functions

The arguments of the following functions are processed as keywords:
alias
default (first argument)
install (all arguments but the last)
trap (first argument)
whatnow

2.9.3 Useful example. The function Str converts its arguments into strings and concatenate
them. Coupled with eval, it is very powerful. The following example creates generic matrices:

? genmat(u,v,s="x") = matrix(u,v,i,j, eval(Str(s,i,j)))
7 genmat(2,3) + gemnmat(2,3,"m")

%1 =

[x11 + m11 x12 + m12 x13 + mi13]

[x21 + m21 x22 + m22 x23 + m23]

50

2.10 Errors and error recovery.

2.10.1 Errors. Your input program is first compiled to a more efficient bytecode; then the latter
is evaluated, calling appropriate functions from the PARI library. Accordingly, there are two kind
of errors: syntax errors produced by the compiler, and runtime errors produced by the PARI
library either by the evaluator itself, or in a mathematical function. Both kinds are fatal to your
computation: gp will report the error and perform some cleanup (restore variables modified while
evaluating the erroneous command, close open files, reclaim unused memory, etc.).

At this point, the default is to return to the usual prompt, but if the recover option (Sec-
tion 3.4.38) is off then gp exits immediately. This can be useful for batch-mode operation to make
untrapped errors fatal.

When reporting a syntaz error, gp gives meaningful context by copying (part of) the expression
it was trying to compile, indicating where the error occurred with a caret “-, as in

? factor()
xk* too few arguments: factor()

*okok ~—
7 1+

*kk syntax error, unexpected $end: 1+

*okok ~—

possibly enlarged to a full arrow given enough trailing context

7 if (isprime(1+, do_something())
*** syntax error, unexpected ’,’: if(isprime(1+,do_something()))
KRk e

These error messages may be mysterious, because gp cannot guess what you were trying to do, and
the error may occur once gp has been sidetracked. The first error is straightforward: factor has
one mandatory argument, which is missing.

The other two are simple typos involving an ill-formed addition 1 + missing its second
operand. The error messages differ because the parsing context is slightly different: in the first case
we reach the end of input ($end) while still expecting a token, and in the second one, we received
an unexpected token (the comma).

Here is a more complicated one:

? factor(x
x%* syntax error, unexpected $end, expecting)-> or ’,’ or ’)’: factor(x

KKk -

The error is a missing parenthesis, but from gp’s point of view, you might as well have intended to
give further arguments to factor (this is possible and useful, see the description of the function).
In fact gp expected either a closing parenthesis, or a second argument separated from the first by
a comma. And this is essentially what the error message says: we reached the end of the input
($end) while expecting a >)? ora ’,’.

Actually, a third possibility is mentioned in the error message)->, which could never be valid
in the above context, but a subexpression like (x)->sin(x), defining an inline closure would be
valid, and the parser is not clever enough to rule that out, so we get the same message as in

? (x

ol

*** syntax error, unexpected $end, expecting)-> or ’,’ or ’)’: (x
KKk ~

where all three proposed continuations would be valid.

Runtime errors from the evaluator are nicer because they answer a correctly worded query,
otherwise the bytecode compiler would have protested first; here is a slightly pathological case:

7 if (siN(x) < eps, do_something())
*x*kx at top-level: if(siN(x)<eps,do_someth
kK e

*kk not a function in function call

(no arrow!) The code is syntactically correct and compiled correctly, even though the siN function,
a typo for sin, was not defined at this point. When trying to evaluate the bytecode, however, it
turned out that siN is still undefined so we cannot evaluate the function call siN(x).

Library runtime errors are even nicer because they have more mathematical content, which is
easier to grasp than a parser’s logic:

? 1/Mod(2,4)
*** at top-level: 1/Mod(2,4)
* kK N

xk _/_: impossible inverse in Fp_inv: Mod(2, 4).

telling us that a runtime error occurred while evaluating the binary / operator (the _ surrounding
the operator are placeholders), more precisely the Fp_inv library function was fed the argument
Mod(2,4) and could not invert it. More context is provided if the error occurs deep in the call
chain:

? f(x) = 1/x;
7 g(N) = for(i = -N, N, £(i + 0(5)));
7 g(10)
*** at top-level: g(10)
*okk .
*% ok in function g: for(i=-N,N,f(i))
*kk N

*kok in function f: 1/x
*ok ok ~__

xk* _/_: impossible inverse in ginv: 0(5).

In this example, the debugger reports (at least) 3 enclosed frames: last (innermost) is the body of
user function f, the body of g, and the top-level (global scope). In fact, the for loop in ¢g’s body
defines an extra frame, since there exist variables scoped to the loop body.

52

2.10.2 Error recovery.

It is annoying to wait for a program to finish and find out the hard way that there was a
mistake in it (like the division by 0 above), sending you back to the prompt. First you may lose
some valuable intermediate data. Also, correcting the error may not be obvious; you might have to
change your program, adding a number of extra statements and tests to narrow down the problem.

A different situation, still related to error recovery, is when you actually foresee that some
error may occur, are unable to prevent it, but quite capable of recovering from it, given the chance.
Examples include lazy factorization, where you knowingly use a pseudo prime N as if it were prime;
you may then encounter an “impossible” situation, but this would usually exhibit a factor of N,
enabling you to refine the factorization and go on. Or you might run an expensive computation
at low precision to guess the size of the output, hence the right precision to use. You can then
encounter errors like “precision loss in truncation”, e.g when trying to convert 1E1000, known to
38 digits of accuracy, to an integer; or “division by 0”7, e.g inverting OE1000 when all accuracy has
been lost, and no significant digit remains. It would be enough to restart part of the computation
at a slightly higher precision.

We now describe error trapping, a useful mechanism which alleviates much of the pain in the
first situation (the break loop debugger), and provides satisfactory ways out of the second one (the
iferr exception handler).

2.10.3 Break loop.

A break loop is a special debugging mode that you enter whenever a user interrupt (Control-C)
or runtime error occurs, freezing the gp state, and preventing cleanup until you get out of the loop.
By runtime error, we mean an error from the evaluator, the library or a user error (from error),
not syntax errors. When a break loop starts, a prompt is issued (break>). You can type in a gp
command, which is evaluated when you hit the <Return> key, and the result is printed as during
the main gp loop, except that no history of results is kept. Then the break loop prompt reappears
and you can type further commands as long as you do not exit the loop. If you are using readline,
the history of commands is kept, and line editing is available as usual. If you type in a command
that results in an error, you are sent back to the break loop prompt: errors do not terminate the
loop.

To get out of a break loop, you can use next, break, return, or type C-d (EOF), any of which
will let gp perform its usual cleanup, and send you back to the gp prompt. Note that C-4 is slightly
dangerous, since typing it twice will not only send you back to the gp prompt, but to your shell
prompt! (Since C-d at the gp prompt exits the gp session.)

If the break loop was started by a user interrupt Control-C, and not by an error, inputting an
empty line, i.e hitting the <Return> key at the break> prompt, resumes the temporarily interrupted
computation. A single empty line has no effect in case of a fatal error, to avoid getting get out of
the loop prematurely, thereby losing valuable debugging data. Any of next, break, return, or C-d
will abort the computation and send you back to the gp prompt as above.

Break loops are useful as a debugging tool. You may inspect the values of gp variables to
understand why an error occurred, or change gp’s state in the middle of a computation (increase
debugging level, start storing results in a log file, set variables to different values. ..): hit C-c, type
in your modifications, then let the computation go on as explained above. A break loop looks like
this:

?v=0; 1/v

53

xk at top-level: v=0;1/v

ok ok -

%% _/_: impossible inverse in gdiv: O.

*x** Break loop (type ’break’ to go back to the GP prompt)
break>

So the standard error message is printed first. The break> at the bottom is a prompt, and hitting
v then <Return>, we see:

break> v
0

explaining the problem. We could have typed any gp command, not only the name of a variable,
of course. Lexically-scoped variables are accessible to the evaluator during the break loop:

? for(v = -2, 2, print(1/v))
-1/2
-1
*%ok at top-level: for(v=-2,2,print(1/v))
*ok ok S
**%*x _/_: impossible inverse in gdiv: O.
*x** Break loop (type ’break’ to go back to the GP prompt)
break> v
0

Even though loop indices are automatically lexically scoped and no longer exist when the break
loop is run, enough debugging information is retained in the bytecode to reconstruct the evaluation
context. Of course, when the error occurs in a nested chain of user function calls, lexically scoped
variables are available only in the corresponding frame:

? f(x) 1/x;

?7 g(x) = for(i = 1, 10, f(x+i));

? for(j = -5,5, g(j))
*x**x at top-level: for(j=-5,5,g(j))
* Kk .

*% ok in function g: for(i=1,10,f(x+i))

*okok A ——

+ in function f: 1/x

*okok e

*x** _/ : impossible inverse in gdiv: O.

**x* Break loop: type ’break’ to go back to GP prompt

break> [i,j,x] \\ the x in f’s body.
(i, j, 0]
break> dbg_up \\ go up one frame
*** at top-level: for(j=-5,5,g(j))
* Kk .
*kk in function g: for(i=1,10,f(x+i))
*okk .
break> [i,j,x] \\ the x in g’s body, i in the for loop.
[5, j, -5]

The following GP commands are available during a break loop to help debugging:

54

dbg_up(n): go up n frames, as seen above.
dbg_down(n): go down n frames, cancelling previous dbg_up’s.
dbg_x(t): examine ¢, as \x but more flexible.

dbg_err(): returns the current error context t_ERROR. The error components often provide
useful additional information:

7 0(2) + 0(3)
**x* at top-level: 0(2)+0(3)
*okok ——
%%k _+_: inconsistent addition t_PADIC + t_PADIC.
**%%x Break loop: type ’break’ to go back to GP prompt
break> E = dbg_err()
error("inconsistent addition t_PADIC + t_PADIC.")
break> Vec(E)
["e_OP", "+", 0(2), 0(3)]

Note. The debugger is enabled by default, and fires up as soon as a runtime error occurs. If you
do not like this behavior, you may disable it by setting the default breakloop to 0 in for gprc. A
runtime error will send you back to the prompt. Note that the break loop is automatically disabled
when running gp in non interactive mode, i.e. when the program’s standard input is not attached
to a terminal.

Technical Note. When you enter a break loop due to a PARI stack overflow, the PARI stack is
reset so that you can run commands. Otherwise the stack would immediately overflow again! Still,
as explained above, you do not lose the value of any gp variable in the process.

2.10.4 Protecting code. The expression
iferr(statements, ERR, recovery)

evaluates and returns the value of statements, unless an error occurs during the evaluation in which
case the value of recovery is returned. As in an if/else clause, with the difference that statements
has been partially evaluated, with possible side effects. We shall give a lot more details about
the ERR argument shortly; it is the name of a variable, lexically scoped to the recovery expression
sequence, whose value is set by the exception handler to help the recovery code decide what to do
about the error.

For instance one can define a fault tolerant inversion function as follows:

? inv(x) = iferr(1/x, ERR, "oo") \\ ERR is unused...
? for (i=-1,1, print(inv(i)))

-1

00

1

Protected codes can be nested without adverse effect. Let’s now see how ERR can be used; as
written, inv is too tolerant:

? inv("blah")
%2 = "go"

95

Let’s improve it by checking that we caught a “division by 0” exception, and not an unrelated
one like the type error 1 / "blah".

? inv2(x) = {
iferr(1/x,
ERR, if (errname(ERR) != "e_INV", error(ERR)); "oo")
}
? inv2(0)
%3 = "oo" \\ as before
? inv2("blah")
*** at top-level: inv2("blah")
KoKk A
*xx in function inv2: ...f(errname(ERR)!="e_INV",error(ERR));"oo")
*okok N
**x* error: forbidden division t_INT / t_STR.

In the inv2("blah") example, the error type was not expected, so we rethrow the exception:
error (ERR) triggers the original error that we mistakenly trapped. Since the recovery code should
always check whether the error is the one expected, this construction is very common and can be
simplified to

? inv3(x) = iferr(1/x,
ERR, "oo",
errname (ERR) == "e_INV")

More generally
iferr(statements, ERR, recovery, predicate)

only catches the exception if predicate (allowed to check various things about ERR, not only its
name) is nonzero.

Rather than trapping everything, then rethrowing whatever we do not like, we advise to only
trap errors of a specific kind, as above. Of course, sometimes, one just want to trap everything
because we do not know what to expect. The following function check whether install works
correctly in your gp:

broken_install() =
{ \\ can we install?
iferr(install(addii,GG),
ERR, return ("0S"));
\\ can we use the installed function?
iferr(if (addii(1,1) '= 2, return("BROKEN")),
ERR, return("USE"));
return (0);

¥

The function returns 08 if the operating system does not support install, USE if using an installed
function triggers an error, BROKEN if the installed function did not behave as expected, and 0 if
everything works.

The ERR formal parameter contains more useful data than just the error name, which we
recovered using errname (ERR). In fact, a t_ERROR object usually has extra components, which can

56

be accessed as component (ERR, 1), component (ERR,2), and so on. Or globally by casting the error
to a t_VEC: Vec (ERR) returns the vector of all components at once. See Section 3.1.24 for the list
of all exception types, and the corresponding contents of ERR.

2.11 Interfacing GP with other languages.

The PARI library was meant to be interfaced with C programs. This specific use is dealt with
extensively in the User’s guide to the PARI library. Of course, gp itself provides a convenient
interpreter to execute rather intricate scripts (see Section 3.1).

Scripts, when properly written, tend to be shorter and clearer than C programs, and are
certainly easier to write, maintain or debug. You don’t need to deal with memory management,
garbage collection, pointers, declarations, and so on. Because of their intrinsic simplicity, they
are more robust as well. They are unfortunately somewhat slower. Thus their use will remain
complementary: it is suggested that you test and debug your algorithms using scripts, before
actually coding them in C if speed is paramount. The GP2C compiler often eases this part.

The install command (see Section 3.2.41) efficiently imports foreign functions for use under
gp, which can of course be written using other libraries than PARI. Thus you may code only critical
parts of your program in C, and still maintain most of the program as a GP script.

We are aware of three PARI-related Free Software packages to embed PARI in other lan-
guages. We neither endorse nor support any of them, but you may want to give them a try if you
are familiar with the languages they are based on. The first is the Python-based SAGE system
(https://sagemath.org/). The second is the Math: :Pari Perl module (see any CPAN mirror),
written by Ilya Zakharevich. Finally, Michael Stoll and Sam Steingold have integrated PARI into
CLISP (https://clisp.cons.org/), a Common Lisp implementation.

These provide interfaces to gp functions for use in python, perl, or Lisp programs, respectively.

2.12 Defaults.

There are many internal variables in gp, defining how the system will behave in certain situations,
unless a specific override has been given. Most of them are a matter of basic customization (colors,
prompt) and will be set once and for all in your preferences file (see Section 2.14), but some of
them are useful interactively (set timer on, increase precision, etc.).

The function used to manipulate these values is called default, which is described in Sec-
tion 3.2.12. The basic syntax is

default(def, wvalue),

which sets the default def to value. In interactive use, most of these can be abbreviated using gp
metacommands (mostly, starting with \), which we shall describe in the next section.

Available defaults are described in the reference guide, Section 3.4, the most important one
being parisizemax. Just be aware that typing default by itself will list all of them, as well as
their current values (see \d).

57

Note. The suffixes k, M, G or T can be appended to a value which is a numeric argument, with the
effect of multiplying it by 103, 106 and 10° respectively. Case is not taken into account there, so
for instance 30k and 30K both stand for 30000. This is mostly useful to modify or set the defaults
parisize and parisizemax which typically involve a lot of trailing zeroes.

The suffixes kB or KB, MB, GB, TB can be appended to a value which is a numeric argument
representing a memory size, with the usual meaning of counting in units of 210, 220, 230 and 240
bytes respectively. This allows to specify defaults such as parisize or parisizemax in customary
units, such as gigabytes (or more properly gibibytes). For instance, 1k represents 1000 bytes and
1kB represents 1024 bytes.

(somewhat technical) Note. As we saw in Section 2.9, the second argument to default is
subject to string context expansion, which means you can use run-time values. In other words,
something like

a = 3;
default(logfile, "file" a ".log")

logs the output in file3.log.

Some special defaults, corresponding to file names and prompts, expand further the resulting
value at the time they are set. Two kinds of expansions may be performed:

e time expansion: the string is sent through the library function strftime. This means that
%char combinations have a special meaning, usually related to the time and date. For instance, %H
= hour (24-hour clock) and %M = minute [00,59] (on a Unix system, you can try man strftime at
your shell prompt to get a complete list). This is applied to prompt and logfile. For instance,

default (prompt," (%H:%M) 7 ")
will prepend the time of day, in the form (hh:mm) to gp’s usual prompt.

e environment expansion: When the string contains a sequence of the form $SOMEVAR,
e.g. $HOME, the environment is searched and if SOMEVAR is defined, the sequence is replaced by
the corresponding value. Also the ~ symbol has the same meaning as in many shells — ~ by itself
stands for your home directory, and ~user is expanded to user’s home directory. This is applied
to all file names.

2.13 Simple metacommands.

Simple metacommands are meant as shortcuts and should not be used in GP scripts (see Sec-
tion 3.1). Beware that these, as all of gp input, are case sensitive. For example, \Q is not identical
to \q. Two kinds of arguments are allowed: numbers (denoted n below) and names (denoted
filename below); braces are used to denote optional arguments, , e.g. {n} means that a numeric
argument is expected but can be omitted. Names can be optionally surrounded by double quotes
and in this case can contain whitespace, e.g. "a b" and are treated as ordinary character strings,
see Section 2.9 for details.

Whitespace (or spaces) between the metacommand and its arguments and within unquoted
arguments is optional. This can cause problems with \w, when you insist on having a file name
whose first character is a digit, and with \r or \w, if the file name itself contains a space. In such
cases, just quote filenames or use the underlying read or write function.

58

2.13.1 ?{command}. The gp on-line help interface. If you type ?n where n is a number from 1 to
11, you will get the list of functions in Section 3.n of the manual (the list of sections being obtained

by simply typing 7).

These names are in general not informative enough. More details can be obtained by typing
? function, which gives a short explanation of the function’s calling convention and effects. A help
string is also attached to a symbolic operator, where arguments are replaced by a placeholder
character _:

? “sin

sin(x): sine of x.

7T _k_

x*y: product of x and y.
7?7

la: boolean operator "mnot".
? o7

n!: factorial of n.

o7 _T

x"y: compute x to the power y.

Of course, to have complete information, read Chapter 3 of this manual. The source code is at
your disposal as well, though a trifle less readable.

If the line before the copyright message indicates that extended help is available (this means
perl is present on your system and the PARI distribution was correctly installed), you can add
more 7 signs for extended functionality:

7?7 keyword yields the function description as it stands in this manual, usually in Chapter 2
or 3. If you’re not satisfied with the default chapter chosen, you can impose a given chapter by
ending the keyword with @ followed by the chapter number, e.g. 7?7 Hello@2 will look in Chapter 2
for section heading Hello (which doesn’t exist, by the way).

All operators (e.g. +, &&, etc.) are accepted by this extended help, as well as a few other
keywords describing key gp concepts, e.g. readline (the line editor), integer, nf (“number field”
as used in most algebraic number theory computations), ell (elliptic curves), etc.

In case of conflicts between function and default names (e.g log, simplify), the function has
higher priority. To get the default help, use

7?7 default(log)
7?7 default(simplify)

777 pattern produces a list of sections in Chapter 3 of the manual related to your query. As
before, if pattern ends by @ followed by a chapter number, that chapter is searched instead; you
also have the option to append a simple @ (without a chapter number) to browse through the whole
manual.

If your query contains dangerous characters (e.g ? or blanks) it is advisable to enclose it within
double quotes, as for GP strings (e.g 7?7 "elliptic curve").

Note that extended help is more powerful than the short help, since it knows about operators
as well: you can type 7?7 * or 77 &&, whereas a single 7 would just yield a not too helpful

59

&&: unknown identifier.

message. Also, you can ask for extended help on section number n in Chapter 3, just by typing
7?7 n (where ?n would yield merely a list of functions). Finally, a few key concepts in gp are
documented in this way: metacommands (e.g 7?7 "?7"), defaults (e.g ?? default(log)) not to be
mistaken with ?? log (the natural logarithm) and type names (e.g t_INT or integer), as well as
various miscellaneous keywords such as edit (short summary of line editor commands), operator,
member, "user defined", nf, ell, ...

Last but not least: ?? without argument will open a dvi previewer (xdvi by default, $GPXDVI
if it is defined in your environment) containing the full user’s manual. ??tutorial and ??refcard
do the same with the tutorial and reference card respectively.

Technical note. This functionality is provided by an external perl script that you are free to
use outside any gp session (and modify to your liking, if you are perl-knowledgeable). It is called
gphelp, lies in the doc subdirectory of your distribution (just make sure you run Configure first,
see Appendix A) and is really two programs in one. The one which is used from within gp is
gphelp which runs TEX on a selected part of this manual, then opens a previewer. gphelp -detex
is a text mode equivalent, which looks often nicer especially on a colour-capable terminal (see
misc/gprc.dft for examples). The default help selects which help program will be used from
within gp. You are welcome to improve this help script, or write new ones (and we would like to
know about it so that we may include them in future distributions). By the way, outside of gp you
can give more than one keyword as argument to gphelp.

2.13.2 /*...%/. A comment. Everything between the stars is ignored by gp. These comments
can span any number of lines.

2.13.3 \\. A one-line comment. The rest of the line is ignored by gp.

2.13.4 \a {n}. Prints the object number n (%n) in raw format (see ??output). If the number n
is omitted, print the latest computed object (%).

2.13.5 \b {n}. As \a using “beautified” (prettymatrix) format (see ??output).

2.13.6 \B {n}. As \b using an external prettyprinter (see ??output and ?7prettyprinter). If no
prettyprinter is defined or available, this is identical to \b.

2.13.7 \c. Prints the list of all available hardcoded functions under gp, not including opera-
tors written as special symbols (see Section 2.4). More information can be obtained using the ?

metacommand (see above). For user-defined functions / member functions, see \u and \um.

2.13.8 \d. Prints the defaults as described in the previous section (shortcut for default(), see
Section 3.2.12).

2.13.9 \e {n}. Switches the echo mode on (1) or off (0). If n is explicitly given, set echo to n.

2.13.10 \g {n} {feature}. Sets the debugging level debug to the nonnegative integer n. If feature is
present (such as bnf or qf111), only set the debugging level for that feature, as by using setdebug.

2.13.11 \g feature {n}. Prints the debugging level for given feature (such as bnf or qf111, see
setdebug). If the nonnegative integer n is present set the debugging level for that feature.

60

2.13.12 \gf {n}. Sets the "io" (or file usage) debugging level to the nonnegative integer n. This
is a shortcut for setdebug("io", n).

2.13.13 \gm {n}. Sets the memory debugging level debugmem to the nonnegative integer n.

2.13.14 \h {m-n}. Outputs some debugging info about the hashtable of identifiers used by the
GP parser. If the argument is a number n, outputs the contents of cell n. Ranges can be given in
the form m-n (from cell m to cell n, $ = last cell). If a function name is given instead of a number
or range, outputs info on the internal structure of the hash cell this function occupies (a struct
entree in C). If the range is reduced to a dash (’-’), outputs statistics about hash cell usage.

2.13.15 \1 {logfile}. Switches log mode on and off. If a logfile argument is given, change the
default logfile name to logfile and switch log mode on.

2.13.16 \m. As \b.

2.13.17 \o {n}. Sets output mode to n (0: raw, 1: prettymatrix, 3: external prettyprint). See
??7output

2.13.18 \p {n}. Sets realprecision to n decimal digits. Prints its current value if n is omitted.
2.13.19 \pb {n}. Sets realbitprecision to n bits. Prints its current value if n is omitted.

2.13.20 \ps {n}. Sets seriesprecision to n significant terms. Prints its current value if n is
omitted.

2.13.21 \g. Quits the gp session and returns to the system. Shortcut for quit() (see Sec-
tion 3.2.63).

2.13.22 \r {filename}. Reads into gp all the commands contained in the named file as if they
had been typed from the keyboard, one line after the other. Can be used in combination with the
\w command (see below). Related but not equivalent to the function read (see Section 3.2.64); in
particular, if the file contains more than one line of input, there will be one history entry for each of
them, whereas read would only record the last one. If filename is omitted, re-read the previously
used input file (fails if no file has ever been successfully read in the current session). If a gp binary
file (see Section 3.2.88) is read using this command, it is silently loaded, without cluttering the
history.

Assuming gp figures how to decompress files on your machine, this command accepts com-
pressed files in compressed (.Z) or gzipped (.gz or .z) format. They will be uncompressed on
the fly as gp reads them, without changing the files themselves.

2.13.23 \s. Prints the state of the PARI stack and heap. This is used primarily as a debugging
device for PARI.

2.13.24 \t. Prints the internal longword format of all the PARI types. The detailed bit or byte
format of the initial codeword(s) is explained in Chapter 4, but its knowledge is not necessary for
a gp user.

2.13.25 \u. Prints the definitions of all user-defined functions.

61

2.13.26 \um. Prints the definitions of all user-defined member functions.
2.13.27 \uv. Prints the definitions of all user-defined variables, closures being excluded.

2.13.28 \v. Prints the version number and implementation architecture (680x0, Sparc, Alpha,
other) of the gp executable you are using.

2.13.29 \w {n} {filename}. Writes the object number n (%n) into the named file, in raw format.
If the number n is omitted, writes the latest computed object (%). If filename is omitted, appends
to logfile (the GP function write is a trifle more powerful, as you can have arbitrary file names).

2.13.30 \x {n}. Prints the complete tree with addresses and contents (in hexadecimal) of the
internal representation of the object number n (%n). If the number n is omitted, uses the latest
computed object in gp. As for \s, this is used primarily as a debugging device for PARI, and the
format should be self-explanatory. The underlying GP function dbg_x is more versatile, since it
can be applied to other objects than history entries.

2.13.31 \y {n}. Switches simplify on (1) or off (0). If n is explicitly given, set simplify to n.
2.13.32 #. Switches the timer on or off.

2.13.33 ##. Prints the time taken by the latest computation. Useful when you forgot to turn on
the timer.

2.14 The preferences file.

This file, called gprc in the sequel, is used to modify or extend gp default behavior, in all gp
sessions: e.g customize default values or load common user functions and aliases. gp opens the
gprec file and processes the commands in there, before doing anything else, e.g. creating the PARI
stack. If the file does not exist or cannot be read, gp will proceed to the initialization phase at
once, eventually emitting a prompt. If any explicit command line switches are given, they override
the values read from the preferences file.

2.14.1 Syntax. The syntax in the gprc file (and valid in this file only) is simple-minded, but
should be sufficient for most purposes. The file is read line by line; as usual, white space is ignored
unless surrounded by quotes and the standard multiline constructions using braces, \, or = are
available (multiline comments between /* ... */ are also recognized).

2.14.1.1 Preprocessor:. Two types of lines are first dealt with by a preprocessor:

e comments are removed. This applies to all text surrounded by /* ... */ as well as to
everything following \\ on a given line.

e lines starting with #if boolean are treated as comments if boolean evaluates to false, and
read normally otherwise. The condition can be negated using either #if not, #ifnot or #if !. If
the rest of the current line is empty, the test applies to the next line (same behavior as = under
gp). The following tests can be performed:

EMACS: true if gp is running in an Emacs or TeXmacs shell (see Section 2.16).

READL: true if gp is compiled with readline support (see Section 2.15).

62

VERSION op number: where op is in the set {>, <, <=,>=}, and number is a PARI version
number of the form Magor. Minor.patch, where the last two components can be omitted (i.e. 1 is
understood as version 1.0.0). This is true if gp’s version number satisfies the required inequality.

BITS_IN_LONG == number: number is 32 (resp. 64). This is true if gp was built for a 32-bit
(resp. 64-bit) architecture.

2.14.1.2 Commands:. After preprocessing, the remaining lines are executed as sequence of ex-
pressions (as usual, separated by ; if necessary). Only following kinds of expressions are recognized:

e dft = value, where dft is one of the available defaults (see Section 2.12), which will be set to
value on actual startup. Don’t forget the quotes around strings (e.g. for prompt or help).

e default (dft, walue) as above.
e setdebug(dom, value) set debug level for domain dom to value.

e read "some_GP_file" where some_GP_file is a regular GP script this time, which will be
read just before gp prompts you for commands, but after initializing the defaults. In particular,
file input is delayed until the gprc has been fully loaded. This is the right place to input files
containing alias commands, or your favorite macros.

For instance you could set your prompt in the following portable way:

\\ self modifying prompt looking like (18:03) gp >
prompt = "(%H:%M) \el[imgp\e[m > "

\\ readline wants nonprinting characters to be braced between ~“A/"B pairs
#if READL prompt = "(%H:%M) ~“A\e[im~"Bgp~A\e[m"B > "

\\ escape sequences not supported under emacs
#if EMACS prompt = "(%H:%M) gp > "

Note that any of the last two lines could be broken in the following way

#if EMACS
prompt = "(%H:%M) gp > "

since the preprocessor directive applies to the next line if the current one is empty.

A sample gprec file called misc/gprc.dft is provided in the standard distribution. It is a good
idea to have a look at it and customize it to your needs. Since this file does not use multiline
constructs, here is one (note the terminating ; to separate the expressions):

#if VERSION > 2.2.3

{
read "my_scripts"; \\ syntax errors in older versions
new_galois_format = 1; \\ default introduced in 2.2.4
}
#if ! EMACS
{
colors = "9, 5, no, no, 4, 1, 2";
help = "gphelp -detex -ch 4 -cb 0 -cu 2";
}

63

2.14.2 The gprc location. When gp is started, it looks for a customization file, or gprc in the
following places (in this order, only the first one found will be loaded):

e gp checks whether the environment variable GPRC is set. On Unix, this can be done with something
like:

GPRC=/my/dir/anyname; export GPRC in sh syntax (for instance in your .profile),
setenv GPRC /my/dir/anyname in csh syntax (in your .login or .cshrc file).
env GPRC=/my/dir/anyname gp on the command line launching gp.

If so, the file named by $GPRC is the gprc.

e If GPRC is not set, and if the environment variable HOME is defined, gp then tries
$HOME/ . gprc on a Unix system
$HOME\gprc.txt on a DOS, OS/2, or Windows system.

e If no gprc was found among the user files mentioned above we look for /etc/gprc for a system-
wide gpre file (you will need root privileges to set up such a file yourself).

e Finally, we look in pari’s datadir for a file named
.gprc on a Unix system

gprc.txt on a DOS, OS/2, or Windows system. If you are using our Windows installer, this
is where the default preferences file is written.

)

Note that on Unix systems, the gprc’s default name starts with a ’.
1s commands; you need to type 1ls -a to list it.

and thus is hidden to regular

2.15 Using readline.

This very useful library provides line editing and contextual completion to gp. You are en-
couraged to read the readline user manual, but we describe basic usage here.

A (too) short introduction to readline. In the following, C- stands for “the Control key
combined with another” and the same for M- with the Meta key; generally C- combinations act
on characters, while the M- ones operate on words. The Meta key might be called A1t on some
keyboards, will display a black diamond on most others, and can safely be replaced by Esc in any
case.

Typing any ordinary key inserts text where the cursor stands, the arrow keys enabling you
to move in the line. There are many more movement commands, which will be familiar to the
Emacs user, for instance C-a/C-e will take you to the start/end of the line, M-b/M-f move the
cursor backward/forward by a word, etc. Just press the <Return> key at any point to send your
command to gp.

All the commands you type at the gp prompt are stored in a history, a multiline command
being saved as a single concatenated line. The Up and Down arrows (or C-p/C-n) will move you
through the history, M-</M-> sending you to the start/end of the history. C-r/C-s will start an
incremental backward/forward search. You can kill text (C-k kills till the end of line, M-d to the
end of current word) which you can then yank back using the C-y key (M-y will rotate the kill-ring).
C-_ will undo your last changes incrementally (M-r undoes all changes made to the current line).
C-t and M-t will transpose the character (word) preceding the cursor and the one under the cursor.

64

Keeping the M- key down while you enter an integer (a minus sign meaning reverse behavior)
gives an argument to your next readline command (for instance M-- C-k will kill text back to the
start of line). If you prefer Vi-style editing, M-C-j will toggle you to Vi mode.

Of course you can change all these default bindings. For that you need to create a file named
.inputrc in your home directory. For instance (notice the embedding conditional in case you would
want specific bindings for gp):

$if Pari-GP
set show-all-if-ambiguous
"\C-h": backward-delete-char
"\e\C-h": backward-kill-word
"\C-xd": dump-functions

(: "\C-vO\C-b" # can be annoying when copy-pasting!
[: "\C-v[]\C-b"
$endif

C-x C-r will re-read this init file, incorporating any changes made to it during the current session.

Note. By default, (and [are bound to the function pari-matched-insert which, if “electric
parentheses” are enabled (default: off) will automatically insert the matching closure (respectively
) and 1). This behavior can be toggled on and off by giving the numeric argument —2 to ((M--2(),
which is useful if you want, e.g to copy-paste some text into the calculator. If you do not want a
toggle, you can use M--0 / M--1 to specifically switch it on or off).

Note. In some versions of readline (2.1 for instance), the A1t or Meta key can give funny re-
sults (output 8-bit accented characters for instance). If you do not want to fall back to the Esc
combination, put the following two lines in your .inputrc:

set convert-meta on
set output-meta off

Command completion and online help. Hitting <TAB> will complete words for you. This
mechanism is context-dependent: gp will strive to only give you meaningful completions in a given
context (it will fail sometimes, but only under rare and restricted conditions).

For instance, shortly after a ~, we expect a user name, then a path to some file. Directly after
default(has been typed, we would expect one of the default keywords. After a ’.”, we expect a
member keyword. And generally of course, we expect any GP symbol which may be found in the
hashing lists: functions (both yours and GP’s), and variables.

If, at any time, only one completion is meaningful, gp will provide it together with
e an ending comma if we are completing a default,

e a pair of parentheses if we are completing a function name. In that case hitting <TAB> again
will provide the argument list as given by the online help. (Recall that you can always undo the
effect of the preceding keys by hitting C-_; this applies here.)

Otherwise, hitting <TAB> once more will give you the list of possible completions. Just ex-
periment with this mechanism as often as possible, you will probably find it very convenient. For
instance, you can obtain default(seriesprecision,10), just by hitting def<TAB>se<TAB>10,
which saves 18 keystrokes (out of 27).

65

Hitting M-h will give you the usual short online help concerning the word directly beneath the
cursor, M-H will yield the extended help corresponding to the help default program (usually opens
a dvi previewer, or runs a primitive tex-to-ASCII program). None of these disturb the line you
were editing.

2.16 GNU Emacs and PariEmacs.

If you install the PariEmacs package (see Appendix A), you may use gp as a subprocess in
Emacs. You then need to include in your .emacs file the following lines:

(autoload ’gp-mode "pari" nil t)
(autoload ’gp-script-mode "pari" nil t)
(autoload ’gp "pari" nil t)

(autoload ’gpman "pari" nil t)

(setq auto-mode-alist
(cons ’("\\.gp$" . gp-script-mode) auto-mode-alist))

which autoloads functions from the PariEmacs package and ensures that file with the .gp suffix
are edited in gp-script mode.

Once this is done, under GNU Emacs if you type M-x gp (where as usual M is the Meta key), a
special shell will be started launching gp with the default stack size and prime limit. You can then
work as usual under gp, but with all the facilities of an advanced text editor. See the PariEmacs
documentation for customizations, menus, etc.

66

Chapter 3:
Functions and Operations Available in PARI and GP

The functions and operators available in PARI and in the GP/PARI calculator are numerous and
ever-expanding. Here is a description of the ones available in version 2.17.1. It should be noted that
many of these functions accept quite different types as arguments, but others are more restricted.
The list of acceptable types will be given for each function or class of functions. Except when stated
otherwise, it is understood that a function or operation which should make natural sense is legal.

On the other hand, many routines list explicit preconditions for some of their arguments, e.g.
p is a prime number, or ¢ is a positive definite quadratic form. For reasons of efficiency, all routines
trust the user input and only perform minimal sanity checks. When a precondition is not satisfied,
any of the following may occur: a regular exception is raised, the PARI stack overflows, a SIGSEGV
or SIGBUS signal is generated, or we enter an infinite loop. The function can also quietly return a
mathematically meaningless result: junk in, junk out. In the following, we document the results as
undefined in this case.

In this chapter, we will describe the functions according to a rough classification. The general
entry looks something like:

foo(x, {flag = 0}): short description.
The library syntax is GEN foo(GEN x, long flag = 0).

This means that the GP function foo has one mandatory argument x, and an optional one, flag,
whose default value is 0. (The {} should not be typed, it is just a convenient notation that we will
use throughout to denote optional arguments.) That is, you can type foo(x,2), or foo(x), which
is then understood to mean foo(x,0). As well, a comma or closing parenthesis, where an optional
argument should have been, signals to GP it should use the default. Thus, the syntax foo(x,) is
also accepted as a synonym for our last expression. When a function has more than one optional
argument, the argument list is filled with user supplied values, in order. When none are left, the
defaults are used instead. Thus, assuming that foo’s prototype had been

foo({z =1}, {y = 2}, {2 = 3}),

typing in foo(6,4) would give you foo(6,4,3). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, you can use the “empty arg”
trick alluded to above: foo(6,,1) would yield foo(6,2,1). By the way, foo() by itself yields
foo(1,2,3) as was to be expected.

In this rather special case of a function having no mandatory argument, you can even omit
the (): a standalone foo would be enough (though we do not recommend it for your scripts, for
the sake of clarity). In defining GP syntax, we strove to put optional arguments at the end of the
argument list (of course, since they would not make sense otherwise), and in order of decreasing
usefulness so that, most of the time, you will be able to ignore them.

Finally, an optional argument (between braces) followed by a star, like {z}x, means that any
number of such arguments (possibly none) can be given. This is in particular used by the various
print routines.

67

Flags. A flag is an argument which, rather than conveying actual information to the routine,
instructs it to change its default behavior, e.g. return more or less information. All such flags are
optional, and will be called flag in the function descriptions to follow. There are two different kind
of flags

e generic: all valid values for the flag are individually described (“If flag is equal to 1, then...”).

e binary: use customary binary notation as a compact way to represent many toggles with
just one integer. Let (po,...,pn) be a list of switches (i.e. of properties which take either the value
0 or 1), the number 23 + 2% = 40 means that ps and ps are set (that is, set to 1), and none of the
others are (that is, they are set to 0). This is announced as “The binary digits of flag mean 1: py,
2: p1, 4: p2”, and so on, using the available consecutive powers of 2.

Mnemonics for binary flags. Numeric flags as mentioned above are obscure, error-prone, and
quite rigid: should the authors want to adopt a new flag numbering scheme, it would break backward
compatibility. The only advantage of explicit numeric values is that they are fast to type, so their
use is only advised when using the calculator gp.

As an alternative, one can replace a binary flag by a character string containing symbolic
identifiers (mnemonics). In the function description, mnemonics corresponding to the various
toggles are given after each of them. They can be negated by prepending no_ to the mnemonic, or by
removing such a prefix. These toggles are grouped together using any punctuation character (such
as ', or ’;’). For instance (taken from description of ploth(X = a,b, expr, {flag = 0},{n = 0}))

Binary digits of flags mean: 1 = Parametric, 2 = Recursive, ...

so that, instead of 1, one could use the mnemonic "Parametric; no_Recursive", or simply "Para-
metric" since Recursive is unset by default (default value of flag is 0, i.e. everything unset).
People used to the bit-or notation in languages like C may also use the form "Parametric |
no_Recursive".

Pointers. If a parameter in the function prototype is prefixed with a & sign, as in
foo(zx, &e)

it means that, besides the normal return value, the function may assign a value to e as a side effect.
When passing the argument, the & sign has to be typed in explicitly. As of version 2.17.1, this
pointer argument is optional for all documented functions, hence the & will always appear between
brackets as in Z_issquare(x, {&e}).

About library programming. The library function foo, as defined at the beginning of this
section, is seen to have two mandatory arguments, z and flag: no function seen in the present
chapter has been implemented so as to accept a variable number of arguments, so all arguments
are mandatory when programming with the library (usually, variants are provided corresponding
to the various flag values). We include an = default value token in the prototype to signal how
a missing argument should be encoded. Most of the time, it will be a NULL pointer, or -1 for a
variable number. Refer to the User’s Guide to the PARI library for general background and details.

68

3.1 Programming in GP: control statements.

A number of control statements are available in GP. They are simpler and have a syntax
slightly different from their C counterparts, but are quite powerful enough to write any kind of
program. Some of them are specific to GP, since they are made for number theorists. As usual,
X will denote any simple variable name, and seq will always denote a sequence of expressions,
including the empty sequence.

Caveat. In constructs like
for (X = a,b, seq)
the variable X is lexically scoped to the loop, leading to possibly unexpected behavior:

n = 5;
for (n = 1, 10,
if (something nice(), break);
);
\\ at this pointn is 5!

If the sequence seq modifies the loop index, then the loop is modified accordingly:

? for (n =1, 10, n += 2; print(n))
3
6
9
12

3.1.1 break({n = 1}). Interrupts execution of current seq, and immediately exits from the n
innermost enclosing loops, within the current function call (or the top level loop); the integer n
must be positive. If n is greater than the number of enclosing loops, all enclosing loops are exited.

3.1.2 breakpoint(). Interrupt the program and enter the breakloop. The program continues when
the breakloop is exited.

7 £(N,x)=my(z=x"2+1) ;breakpoint () ;gcd(N,z"2+1-2) ;

? £(221,3)
xx* at top-level: £(221,3)
k% x Sm———————

*** in function f: my(z=x"2+1);breakpoint();gcd(N,z
*okok R
**%x Break loop: type <Return> to continue; ’break’ to go back to GP
break> z
10
break>
%2 = 13

69

3.1.3 dbg_down({n = 1}). (In the break loop) go down n frames. This allows to cancel a previous
call to dbg_up.

7?7 x=0;

7 g(x) = x-3;

7 £(x) =1/ g(x+1);

? for (x =1, 5, f(x+1))

*ok ok at top-level: for(x=1,5,f(x+1))
ok ok N
**%x in function f: 1/g(x+1)
*ok ok S
**%%x _/_: impossible inverse in gdiv: O.
**%*x Break loop: type ’break’ to go back to GP prompt
break> dbg_up(3) \\ go up 3 frames
*okk at top-level: for(x=1,5,f(x+1))
*ok ok TR
break> x
0
break> dbg_down()
*kk at top-level: for(x=1,5,f(x+1))
*ok ok N
break> x
1
break> dbg_down()
*** at top-level: for(x=1,5,f(x+1))
ok ok A
break> x
1
break> dbg_down ()
*x** at top-level: for(x=1,5,f(x+1))
*ok ok Ao
xxx in function f: 1/g(x+1)
ok ok T
break> x
2

The above example shows that the notion of GP frame is finer than the usual stack of function
calls (as given for instance by the GDB backtrace command): GP frames are attached to variable
scopes and there are frames attached to control flow instructions such as a for loop above.

3.1.4 dbg_err(). In the break loop, return the error data of the current error, if any. See iferr
for details about error data. Compare:

? iferr(1/(Mod(2,12019)~(6!)-1),E,Vec(E))
%1 = ["e_INV", "Fp_inv", Mod(119, 12019)]
7 1/(Mod(2,12019) " (6!)-1)
*** at top-level: 1/(Mod(2,12019)"(6!)-
*okok R
*x** _/ : impossible inverse in Fp_inv: Mod(119, 12019).
**x* Break loop: type ’break’ to go back to GP prompt

70

break> Vec(dbg_err())
["e_INV", "Fp_inv", Mod (119, 12019)]

3.1.5 dbg_up({n = 1}). (In the break loop) go up n frames, which allows to inspect data of the
parent function. To cancel a dbg_up call, use dbg_down.

7?7 x = 0;

7 g(x) = x-3;

7 £(x) =1/ g(x+1);

7?7 for (x =1, 5, £(x+1))
*** at top-level: for(x=1,5,f(x+1))
*okk e
k in function f: 1/g(x+1)
*okok e
*** _/ : impossible inverse in gdiv: O.
%x Break loop: type ’break’ to go back to GP prompt

break> x

2

break> dbg_up()
*** at top-level: for(x=1,5,f(x+1))
* oKk ~
break> x
1
break> dbg_up()
*%k at top-level: for(x=1,5,f(x+1))
*okok A
break> x
1
break> dbg_up()
*okk at top-level: for(x=1,5,f(x+1))
*okok N
break> x
0
break> dbg_down() \\ back up once
*okk at top-level: for(x=1,5,f(x+1))
*okok e
break> x
1

The above example shows that the notion of GP frame is finer than the usual stack of function
calls (as given for instance by the GDB backtrace command): GP frames are attached to variable
scopes and there are frames attached to control flow instructions such as a for loop above.

3.1.6 dbg x(A,{n}). Print the inner structure of A, complete if n is omitted, up to level n
otherwise. This function is useful for debugging. It is similar to \x but does not require A to be a
history entry. In particular, it can be used in the break loop.

3.1.7 for(X = a, b, seq). Evaluates seq, where the formal variable X goes from a to b, where a and

b must be in R. Nothing is done if a > b. If b is set to +oo, the loop will not stop; it is expected
that the caller will break out of the loop itself at some point, using break or return.

71

3.1.8 forcomposite(n = a, {b}, seq). Evaluates seq, where the formal variable n ranges over the
composite numbers between the nonnegative real numbers a to b, including a and b if they are
composite. Nothing is done if a > b.

7 forcomposite(n = 0, 10, print(n))
4
6
8
9
10

Omitting b means we will run through all composites > a, starting an infinite loop; it is expected
that the user will break out of the loop himself at some point, using break or return.

Note that the value of n cannot be modified within seq:

? forcomposite(n = 2, 10, n = [])
*x** at top-level: forcomposite(n=2,10,n=[])

KKk _—

*** index read-only: was changed to [].

3.1.9 fordiv(n, X, seq). Evaluates seq, where the formal variable X ranges through the divisors of
n (see divisors, which is used as a subroutine). It is assumed that factor can handle n, without
negative exponents. Instead of n, it is possible to input a factorization matrix, i.e. the output of
factor(n).

This routine uses divisors as a subroutine, then loops over the divisors. In particular, if n is
an integer, divisors are sorted by increasing size.

To avoid storing all divisors, possibly using a lot of memory, the following (slower) routine
loops over the divisors using essentially constant space:

FORDIV(N)=
{ my(F = factor(N), P = F[,1], E = F[,2]);

forvec(v = vector(#E, i, [0,E[i]]), X = factorback(P, v));
}
? for(i=1, 1076, FORDIV(i))
time = 11,180 ms.
? for(i=1, 1076, fordiv(i, d,))
time = 2,667 ms.

Of course, the divisors are no longer sorted by inreasing size.

72

3.1.10 fordivfactored(n, X, seq). Evaluates seq, where the formal variable X ranges through
[d, factor(d)], where d is a divisors of n (see divisors, which is used as a subroutine). Note that
such a pair is accepted as argument to all multiplicative functions.

It is assumed that factor can handle n, without negative exponents. Instead of n, it is possible
to input a factorization matrix, i.e. the output of factor(n). This routine uses divisors(, 1) as
a subroutine, then loops over the divisors. In particular, if n is an integer, divisors are sorted by
increasing size.

This function is particularly useful when n is hard to factor and one must evaluate multiplica-
tive function on its divisors: we avoid refactoring each divisor in turn. It also provides a small
speedup when n is easy to factor; compare

? A =10"8; B=A + 1075;

7 for (n = A, B, fordiv(n, d, eulerphi(d)));

time = 2,091 ms.

? for (n = A, B, fordivfactored(n, d, eulerphi(d)));

time = 1,298 ms. \\ avoid refactoring the divisors

? forfactored (n = A, B, fordivfactored(n, d, eulerphi(d)));
time = 1,270 ms. \\ also avoid factoring the consecutive n’s !

3.1.11 foreach(V, X, seq). Evaluates seq, where the formal variable X ranges through the com-
ponents of V' (t_VEC, t_COL, t_LIST or t_MAT). A matrix argument is interpreted as a vector
containing column vectors, as in Vec(V).

3.1.12 forell(E, a, b, seq, {flag = 0}). Evaluates seq, where the formal variable E = [name, M, G|
ranges through all elliptic curves of conductors from a to b. In this notation name is the curve
name in Cremona’s elliptic curve database, M is the minimal model, G is a Z-basis of the free part
of the Mordell-Weil group E(Q). If flag is nonzero, select only the first curve in each isogeny class.

? forell(E, 1, 500, my([name,M,G] = E); \
if (#G > 1, print(name)))

389a1

433al

44641

? ¢ = 0; forell(E, 1, 500, c++); c \\ number of curves

%2 = 2214

7?7 ¢ = 0; forell(E, 1, 500, c++, 1); c \\ number of isogeny classes
%3 = 971

The elldata database must be installed and contain data for the specified conductors.

The library syntax is forell(void *data, long (*f)(void*,GEN), long a, long b, long
flag).

73

3.1.13 forfactored(N = a,b, seq). Evaluates seq, where the formal variable N is [n,factor(n)]
and n goes from a to b; a and b must be integers. Nothing is done if a > b.

This function is only implemented for |al, |b| < 2%* (232 on a 32-bit machine). It uses a sieve
and runs in time O(vb 4 b — a). It should be at least 3 times faster than regular factorization as
long as the interval length b — a is much larger than v/b and get relatively faster as the bounds
increase. The function slows down dramatically if primelimit < v/b.

? B = 1079;
? for (N = B, B+10°6, factor(N))
time = 4,538 ms.

? forfactored (N = B, B+10°6, [n,fan] = N)
time = 1,031 ms.

? B = 10°11;

? for (N = B, B+10°6, factor(N))

time = 15,575 ms.

? forfactored (N = B, B+10°6, [n,fan] = N)
time = 2,375 ms.

? B =10"14;

? for (N = B, B+10°6, factor(N))

time = 1min, 4,948 ms.

? forfactored (N = B, B+10°6, [n,fan] = N)

time = 58,601 ms.

The last timing is with the default primelimit (500000) which is much less than v/ B + 106; it
goes down to 26,750ms if primelimit gets bigger than that bound. In any case v/ B + 109 is much
larger than the interval length 10° so forfactored gets relatively slower for that reason as well.

Note that all PARI multiplicative functions accept the [n,fan] argument natively:

? s = 0; forfactored(N = 1, 1077, s += moebius(N)*eulerphi(N)); s
time = 6,001 ms.

%1 = 6393738650

7?7 8 =0; for(N =1, 1077, s += moebius(N)*eulerphi(N)); s

time = 28,398 ms. \\ slower, we must factor N. Twice.

%2 = 6393738650

The following loops over the fundamental dicriminants less than X:

? X = 1078;

? forfactored(d=1,X, if (isfundamental(d),));
time = 34,030 ms.

? for(d=1,X, if (isfundamental(d),))

time = 1min, 24,225 ms.

74

3.1.14 forpart(X = k, seq, {a = k}, {n = k}). Evaluate seq over the partitions X = [x1,...2,] of
the integer k, i.e. increasing sequences x1 < x3 ... < x, of sum z1 +...+x, = k. By convention, 0
admits only the empty partition and negative numbers have no partitions. A partition is given by a
t_VECSMALL, where parts are sorted in nondecreasing order. The partitions are listed by increasing
size and in lexicographic order when sizes are equal:

? forpart(X=4, print(X))
Vecsmall([4])
Vecsmall([1, 3])
Vecsmall([2, 21)
Vecsmall([1, 1, 2])
Vecsmall([1, 1, 1, 11)

Optional parameters n and a are as follows:

e n = nmax (resp. n = [nmin, nmaz]) restricts partitions to length less than nmaxz (resp.
length between nmin and nmax), where the length is the number of nonzero entries.

e a = amaz (resp. a = [amin, amaz)) restricts the parts to integers less than amaz (resp.
between amin and amaz).

By default, parts are positive and we remove zero entries unless amin < 0, in which case we
fix the size #X = nmaz:

\\ at most 3 nonzero parts, all <= 4
? forpart(v=5,print(Vec(v)), 4, 3)

[1, 4]
[2, 3]
[1, 1, 3]
[1, 2, 2]

\\ between 2 and 4 parts less than 5, fill with zeros
? forpart(v=5,print(Vec(v)), [0,5],[2,4])

[0, 0, 1, 4]
[0, 0, 2, 3]
[0, 1, 1, 3]
o, 1, 2, 2]
1, 1, 1, 2]

\\ no partitions of 1 with 2 to 4 nonzero parts
? forpart(v=1,print(v), [0,5],[2,4])
7

The behavior is unspecified if X is modified inside the loop.

The library syntax is forpart(void *data, long (*call) (voidx,GEN), long k, GEN a,
GEN n).

75

3.1.15 forperm(a,p, seq). Evaluates seq, where the formal variable p goes through some per-
mutations given by a t_VECSMALL. If a is a positive integer then P goes through the permu-
tations of {1,2,...,a} in lexicographic order and if a is a small vector then p goes through the
(multi)permutations lexicographically larger than or equal to a.

? forperm(3, p, print(p))
Vecsmall([1, 2, 3])
Vecsmall([1, 3, 2])
Vecsmall([2, 1, 3])
Vecsmall([2, 3, 1])
Vecsmall([3, 1, 2])

2,

Vecsmall([3, 11)

When a is itself a t_VECSMALL or a t_VEC then p iterates through multipermutations

? forperm([2,1,1,3], p, print(p))
Vecsmall([2, 1, 1, 3])

Vecsmall([2, 1, 3, 1])
Vecsmall([2, 3, 1, 11)
Vecsmall([3, 1, 1, 2])
Vecsmall([3, 1, 2, 11)
Vecsmall([3, 2, 1, 11)

3.1.16 forprime(p = a, {b}, seq). Evaluates seq, where the formal variable p ranges over the prime
numbers between the real numbers a to b, including a and b if they are prime. More precisely, the
value of p is incremented to nextprime(p + 1), the smallest prime strictly larger than p, at the
end of each iteration. Nothing is done if a > b.

7 forprime(p = 4, 10, print(p))
5
7

Setting b to +oo means we will run through all primes > a, starting an infinite loop; it is expected
that the caller will break out of the loop itself at some point, using break or return.

Note that the value of p cannot be modified within seq:

? forprime(p = 2, 10, p = [1)
**%* at top-level: forprime(p=2,10,p=[])
KKk T

*** prime index read-only: was changed to [].

76

3.1.17 forprimestep(p = a,b, q, seq). Evaluates seq, where the formal variable p ranges over the
prime numbers in an arithmetic progression in [a, b]: ¢ is either an integer (p =a (mod ¢)) or an
intmod Mod(c,N) and we restrict to that congruence class. Nothing is done if a > b.

7 forprimestep(p = 4, 30, 5, print(p))
19
29
7 forprimestep(p
11

4, 30, Mod(1,5), print(p))

Setting b to +oo means we will run through all primes > a, starting an infinite loop; it is expected
that the caller will break out of the loop itself at some point, using break or return.

Note that the value of p cannot be modified within seq:

? forprimestep(p = 2, 10, 3, p = [1)
*** at top-level: forprimestep(p=2,10,3,p=[1)
*okk Te--

*x** prime index read-only: was changed to [].

3.1.18 forsquarefree(N = a,b, seq). Evaluates seq, where the formal variable N is [n,factor(n)]
and n goes through squarefree integers from a to b; a and b must be integers. Nothing is done if
a >b.

? forsquarefree(N=-3,9,print(N))
[-3, [-1, 1; 3, 1]1]

[-2, [-1, 1; 2, 1]1]

[-1, Mat([-1, 11)]

[1, matrix(0,2)]

[2, Mat([2, 11)]

[3, Mat([3, 11)]

[5, Mat([5, 11)]

(6, [2, 1; 3, 111

[7, Mat([7, 11)]

This function is only implemented for |al, |b] < 264 (232 on a 32-bit machine). It uses a sieve
and runs in time O(v/b+b—a). Tt should be at least 5 times faster than regular factorization as long
as the interval length b — a is much larger than v/b and get relatively faster as the bounds increase
The function slows down dramatically if primelimit < v/b. It is comparable to forfactored, but
about ((2) = 7%/6 times faster due to the relative density of squarefree integers.

? B = 10°9;

? for (N = B, B+10°6, factor(N))

time = 2,463 ms.

? forfactored (N = B, B+10°6, [n,fan] = N)
time = 567 ms.

? forsquarefree (N = B, B+1076, [n,fan] = N)
time = 343 ms.

? B = 10°11;

? for (N = B, B+10°6, factor(N))

time = 8,012 ms.

? forfactored (N = B, B+10°6, [n,fan] = N)

77

time = 1,293 ms.

? forsquarefree (N = B, B+1076, [n,fan] = N)
time = 713 ms.

? B =10"14;

? for (N = B, B+10°6, factor(N))

time = 41,283 ms.

? forsquarefree (N = B, B+1076, [n,fan] = N)

time = 33,399 ms.

The last timing is with the default primelimit (500000) which is much less than v/ B + 10°; it
goes down to 29,253ms if primelimit gets bigger than that bound. In any case v/ B + 106 is much
larger than the interval length 10° so forsquarefree gets relatively slower for that reason as well.

Note that all PARI multiplicative functions accept the [n,fan] argument natively:

? s = 0; forsquarefree(N = 1, 1077, s += moebius(N)*eulerphi(N)); s
time = 2,003 ms.

%1 = 6393738650

?7 s =0; for(N =1, 1077, s += moebius(N)*eulerphi(N)); s

time = 18,024 ms. \\ slower, we must factor N. Twice.

%2 = 6393738650

The following loops over the fundamental dicriminants less than X:

? X = 10°8;

? for(d=1,X, if (isfundamental(d),))

time = 53,387 ms.

? forfactored(d=1,X, if (isfundamental(d),));

time = 13,861 ms.

? forsquarefree(d=1,X, D = quaddisc(d); if (D <= X,));
time = 14,341 ms.

Note that in the last loop, the fundamental discriminants D are not evaluated in order (since
quaddisc(d) for squarefree d is either d or 4d) but the set of numbers we run through is the
same. Not worth the complication since it’s slower than testing isfundamental. A faster, more
complicated approach uses two loops. For simplicity, assume X is divisible by 4:

7 forsquarefree(d=1,X/4, D = quaddisc(d));

time = 3,642 ms.

? forsquarefree(d=X/4+1,X, if (d[1] % 4 == 1,));
time = 7,772 ms.

This is the price we pay for a faster evaluation,
We can run through negative fundamental discriminants in the same way:

? forfactored(d=-X,-1, if (isfundamental(d),));

78

3.1.19 forstep(X = a,b, s, seq). Evaluates seq, where the formal variable X goes from a to b in
increments of s. Nothing is done if s > 0 and a > b or if s < 0 and a < b. The s can be

e a positive real number, preferably an integer: X = a,a + s,a + 2s...

e an intmod Mod(c,N) (restrict to the corresponding arithmetic progression starting at the
smallest integer A > a and congruent to ¢ modulo N): X = A, A+ N, ...

e a vector of steps [s1,. .., S,] (the successive steps in R* are used in the order they appear in
s): X =a,a+ s1,a+ 81+ Sa,...

? forstep(x=5, 10, 2, print(x))

5

7

9

? forstep(x=5, 10, Mod(1,3), print(x))
7

10

? forstep(x=5, 10, [1,2], print(x))

5

6
8
9

Setting b to +oo will start an infinite loop; it is expected that the caller will break out of the loop
itself at some point, using break or return.

3.1.20 forsubgroup(H = G, {bound}, seq). Evaluates seq for each subgroup H of the abelian
group G (given in SNF form or as a vector of elementary divisors).

If bound is present, and is a positive integer, restrict the output to subgroups of index less than
bound. If bound is a vector containing a single positive integer B, then only subgroups of index
exactly equal to B are computed

The subgroups are not ordered in any obvious way, unless G is a p-group in which case
Birkhoff’s algorithm produces them by decreasing index. A subgroup is given as a matrix whose
columns give its generators on the implicit generators of G. For example, the following prints all
subgroups of index less than 2 in G = Z/2Zgy x Z/2Zg>:

7 G = [2,2]; forsubgroup(H=G, 2, print(H))

[1; 1]
[1; 2]
[2; 1]
[1, 0; 1, 1]

The last one, for instance is generated by (g1,91 + g2). This routine is intended to treat huge
groups, when subgrouplist is not an option due to the sheer size of the output.

For maximal speed the subgroups have been left as produced by the algorithm. To print them
in canonical form (as left divisors of G in HNF form), one can for instance use

7 G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf (concat(G,H))))
(2, 1; 0, 1]
(1, 0; 0, 2]

79

[2, 0; 0, 1]
[1, 0; 0, 1]

Note that in this last representation, the index [G : H]| is given by the determinant. See galois-
subcyclo and galoisfixedfield for applications to Galois theory.

The library syntax is forsubgroup(void *data, long (*call)(void*,GEN), GEN G, GEN
bound).

3.1.21 forsubset(nk,s, seq). If nk is a nonnegative integer n, evaluates seq, where the formal
variable s goes through all subsets of {1,2,...,n}; if nk is a pair [n, k] of integers, s goes through
subsets of size k of {1,2,...,n}. In both cases s goes through subsets in lexicographic order among
subsets of the same size and smaller subsets come first.

? forsubset([5,3], s, print(s))
Vecsmall([1, 2, 3])

Vecsmall([1, 2, 4])

Vecsmall([1, 2, 5])
Vecsmall([1, 3, 41)
Vecsmall([1, 3, 5])
Vecsmall([1, 4, 5])
Vecsmall([2, 3, 4])
Vecsmall([2, 3, 5])
Vecsmall([2, 4, 5])
Vecsmall([3, 4, 5])

? forsubset(3, s, print(s))
Vecsmall([])

Vecsmall([1])

Vecsmall([2])

Vecsmall([3])

Vecsmall([1, 2])
Vecsmall([1, 3])
Vecsmall([2, 31)
Vecsmall([1, 2, 31)

The running time is proportional to the number of subsets enumerated, respectively 2" and
binomial(n, k):

? ¢ = 0; forsubset([40,35],s,c++); c
time = 128 ms.

%4 = 658008

? binomial (40,35)

%5 = 658008

80

3.1.22 forvec(X = v, seq,{flag = 0}). Let v be an n-component vector (where n is arbitrary)
of two-component vectors [a;, b;] for 1 < i < n, where all entries a;, b; are real numbers. This
routine lets X vary over the n-dimensional box given by v with unit steps: X is an n-dimensional
vector whose i-th entry X[i] runs through a;,a; +1,a; +2, ... stopping with the first value greater
than b; (note that neither a; nor b; — a; are required to be integers). The values of X are ordered
lexicographically, like embedded for loops, and the expression seq is evaluated with the successive
values of X. The type of X is the same as the type of v: t_VEC or t_COL.

If flag = 1, generate only nondecreasing vectors X, and if flag = 2, generate only strictly
increasing vectors X.

? forvec (X=[[0,1],[-1,1]], print(X));

[0, -1]

[0, 0]

[0, 1]

[1, -1]

[1, 0]

[1, 1]

? forvec (X=[[0,1],[-1,1]1], print(X), 1);

[0, 0]

[0, 1]

[1, 1]

? forvec (X=[[0,1],[-1,1]1], print(X), 2)

[0, 1]

As a shortcut, a vector of the form v = [[0,¢; — 1],...]0,¢, — 1]] can be abbreviated as
v = [e1,...¢,] and flag is ignored in this case. More generally, if v is a vector of nonnegative

integers ¢; the loop runs over representatives of Z" /vZ™; and flag is again ignored. The vector v
may contain zero entries, in which case the loop spans an infinite lattice. The values are ordered
lexicographically, graded by increasing L;-norm on free (¢; = 0) components.

This allows to iterate over elements of abelian groups using their .cyc vector.

? forvec (X=[2,3], print(X));

[0, 0]
[0, 1]
[0, 2]
[1, 0]
[1, 1]
[1, 2]
7 my(i);forvec (X=[0,0], print(X); if (i++ > 10, break));
[0, 0]
[-1, 0]
[0, -1]
[0, 1]
[1, 0]
[-2, 0]
[-1, -1]
[-1, 1]
[0, -2]
[0, 2]

81

[1, -1]
? zn = znstar(36,1);

? forvec (chi = zn.cyc, if (chareval(zn,chi,5) == 5/6, print(chi)));
[1, 0]
(1, 1]

? bnrchar(zn, [5], [6/6]) \\ much more efficient in gemeral

%5 = [[1, 11, [1, o]]

3.1.23 if(a, {seql }, {seq2}). Evaluates the expression sequence seq! if a is nonzero, otherwise the
expression seq2. Of course, seql or seq? may be empty:

if (a,seq) evaluates seq if a is not equal to zero (you don’t have to write the second comma),

and does nothing otherwise,

if (a,,seq) evaluates seq if a is equal to zero, and does nothing otherwise. You could get the

same result using the ! (not) operator: if (!a,seq).

The value of an if statement is the value of the branch that gets evaluated: for instance

x=1if(n % 4 ==1, y, 2);

sets x to y if n is 1 modulo 4, and to z otherwise.

Successive ’else’ blocks can be abbreviated in a single compound if as follows:

if (testl, seql,
test2, seq2,

testn, seqn,
seqdefault);

is equivalent to

if (testl, seql
, if (test2, seq2

b

if (testn, seqn, seqdefault)...));

For instance, this allows to write traditional switch / case constructions:

if (x =
X:

0, do0Q),
1, do1Q),
x == 2, do2Q),
dodefault());

Remark. The boolean operators && and || are evaluated according to operator precedence as

explained in Section 2.4, but, contrary to other operators, the evaluation of the arguments is

stopped as soon as the final truth value has been determined. For instance

if (x '= 0 && £(1/x), ...)

is a perfectly safe statement.

82

Remark. Functions such as break and next operate on loops, such as forxzx, while, until.
The if statement is not a loop. (Obviously!)

3.1.24 iferr(seql, E, seq2,{pred}). Evaluates the expression sequence seq!. If an error occurs,
set the formal parameter E set to the error data. If pred is not present or evaluates to true,
catch the error and evaluate seq2. Both pred and seq2 can reference E. The error type is given
by errname(E), and other data can be accessed using the component function. The code seq2
should check whether the error is the one expected. In the negative the error can be rethrown
using error (E) (and possibly caught by an higher iferr instance). The following uses iferr to
implement Lenstra’s ECM factoring method

? ecm(N, B = 1000!, nb = 100)=
{
for(a = 1, nb,
iferr(ellmul(ellinit([a,1]*Mod(1,N)), [0,1]*Mod(1,N), B),
E, return(gcd(lift(component(E,2)),N)),
errname (E)=="e_INV" && type(component(E,2)) == "t_INTMOD"))
}
? ecm(27101-1)
%2 = 7432339208719

The return value of iferr itself is the value of seqg2 if an error occurs, and the value of seq1
otherwise. We now describe the list of valid error types, and the attached error data FE; in each
case, we list in order the components of F, accessed via component (E, 1), component (E,2), etc.

Internal errors, “system” errors.

e "e ARCH". A requested feature s is not available on this architecture or operating system. FE
has one component (t_STR): the missing feature name s.

e "e BUG". A bug in the PARI library, in function s. E has one component (t_STR): the
function name s.

e "e FILE". Error while trying to open a file. F has two components, 1 (t_STR): the file type
(input, output, etc.), 2 (t_STR): the file name.

e "e IMPL". A requested feature s is not implemented. E has one component, 1 (t_STR): the
feature name s.

e "e PACKAGE". Missing optional package s. E has one component, 1 (t_STR): the package
name s.

83

Syntax errors, type errors.

e "e DIM". The dimensions of arguments x and y submitted to function s does not match up.
E.g., multiplying matrices of inconsistent dimension, adding vectors of different lengths,... E has
three component, 1 (t_STR): the function name s, 2: the argument z, 3: the argument y.

e "e FLAG". A flag argument is out of bounds in function s. F has one component, 1 (t_STR):
the function name s.

e "e NOTFUNC". Generated by the PARI evaluator; tried to use a GEN z which is not a
t_CLOSURE in a function call syntax (asin £ = 1; £(2);). F has one component, 1: the offending
GEN z.

e "e OP". Impossible operation between two objects than cannot be typecast to a sensible
common domain for deeper reasons than a type mismatch, usually for arithmetic reasons. As in
0(2) + 0(3): it is valid to add two t_PADICs, provided the underlying prime is the same; so the
addition is not forbidden a priori for type reasons, it only becomes so when inspecting the objects
and trying to perform the operation. E has three components, 1 (t_STR): the operator name op,
2: first argument, 3: second argument.

e "e TYPE". An argument x of function s had an unexpected type. (As in factor("blah").)
E has two components, 1 (t_STR): the function name s, 2: the offending argument .

e "e TYPE2". Forbidden operation between two objects than cannot be typecast to a sensible
common domain, because their types do not match up. (As in Mod(1,2) + Pi.) E has three
components, 1 (t_STR): the operator name op, 2: first argument, 3: second argument.

e "e PRIORITY". Object o in function s contains variables whose priority is incompatible
with the expected operation. E.g. Po1([x,1], ’y): this raises an error because it’s not possible to
create a polynomial whose coefficients involve variables with higher priority than the main variable.
E has four components: 1 (t_STR): the function name s, 2: the offending argument o, 3 (t_STR):
an operator op describing the priority error, 4 (t_POL): the variable v describing the priority error.
The argument satisfies variable(x) opvariable(v).

e "e VAR". The variables of arguments z and y submitted to function s does not match up.
E.g., considering the algebraic number Mod (t,t~2+1) in nfinit(x"2+1). E has three component,
1 (t_STR): the function name s, 2 (t_POL): the argument z, 3 (t_POL): the argument y.

Overflows.

e "e COMPONENT". Trying to access an inexistent component in a vector/matrix/list in a
function: the index is less than 1 or greater than the allowed length. F has four components, 1
(t_STR): the function name 2 (t_STR): an operator op (< or >), 2 (t_GEN): a numerical limit !
bounding the allowed range, 3 (GEN): the index x. It satisfies = op [.

e "e DOMAIN". An argument is not in the function’s domain. E has five components, 1 (t_STR):
the function name, 2 (t_STR): the mathematical name of the out-of-domain argument 3 (t_STR):
an operator op describing the domain error, 4 (t_GEN): the numerical limit [describing the domain
error, 5 (GEN): the out-of-domain argument x. The argument satisfies op [, which prevents it
from belonging to the function’s domain.

e "e MAXPRIME". A function using the precomputed list of prime numbers ran out of primes.
E has one component, 1 (t_INT): the requested prime bound, which overflowed primelimit or 0
(bound is unknown).

84

e "e MEM". A call to pari_malloc or pari_realloc failed. £ has no component.

e "e OVERFLOW". An object in function s becomes too large to be represented within PARI’s
hardcoded limits. (As in 27272710 or exp(1e100), which overflow in 1g and expo.) E has one
component, 1 (t_STR): the function name s.

e "e PREC". Function s fails because input accuracy is too low. (As in floor(1e100) at
default accuracy.) E has one component, 1 (t_STR): the function name s.

e "e STACK". The PARI stack overflows. £ has no component.

Errors triggered intentionally.

e "e ALARM". A timeout, generated by the alarm function. F has one component (t_STR): the
error message to print.

e "e USER". A user error, as triggered by error(g,...,g,). F has one component, 1 (t_VEC):
the vector of n arguments given to error.

Mathematical errors.

e "e CONSTPOL". An argument of function s is a constant polynomial, which does not make
sense. (As in galoisinit(Pol(1)).) E has one component, 1 (t_STR): the function name s.

e "e COPRIME". Function s expected coprime arguments, and did receive z, y, which were not.
E has three component, 1 (t_STR): the function name s, 2: the argument z, 3: the argument y.

e "e_INV". Tried to invert a noninvertible object z in function s. E has two components, 1
(t_STR): the function name s, 2: the noninvertible z. If x = Mod(a,b) is a t_INTMOD and a is not 0
mod b, this allows to factor the modulus, as gcd(a, b) is a nontrivial divisor of b.

e "e_TRREDPOL". Function s expected an irreducible polynomial, and did receive T', which was
not. (As in nfinit(x"2-1).) E has two component, 1 (t_STR): the function name s, 2 (t_POL):
the polynomial x.

e "e MISC". Generic uncategorized error. E has one component (t_STR): the error message to
print.

e "e MODULUS". moduli z and y submitted to function s are inconsistent. As in

nfalgtobasis(nfinit(t~3-2), Mod(t,t"2+1))

E has three component, 1 (t_STR): the function s, 2: the argument x, 3: the argument y.

e "e PRIME". Function s expected a prime number, and did receive p, which was not. (As in
idealprimedec(nf, 4).) F has two component, 1 (t_STR): the function name s, 2: the argument

p.

e "e ROOTSO". An argument of function s is a zero polynomial, and we need to consider its
roots. (As in polroots(0).) E has one component, 1 (t_STR): the function name s.

e "e_SQRTN". Trying to compute an n-th root of z, which does not exist, in function s. (As in
sqrt (Mod(-1,3)).) E has two components, 1 (t_STR): the function name s, 2: the argument x.

85

3.1.25 next({n = 1}). Interrupts execution of current seq, resume the next iteration of the
innermost enclosing loop, within the current function call (or top level loop). If n is specified,
resume at the n-th enclosing loop. If n is bigger than the number of enclosing loops, all enclosing
loops are exited.

3.1.26 return({z = 0}). Returns from current subroutine, with result z. If z is omitted, return
the (void) value (return no result, like print).

3.1.27 setdebug({D}, {n}). Sets debug level for domain D ton (0 < n < 20). The domain D is a
character string describing a Pari feature or code module, such as "bnf", "qf111" or "polgalois".
This allows to selectively increase or decrease the diagnostics attached to a particular feature. If n
is omitted, returns the current level for domain D. If D is omitted, returns a two-column matrix
which lists the available domains with their levels. The debug default allows to reset all debug
levels to a given value.

? setdebug() [,1] \\ list of all domains

["alg", "arith", "bern", "bnf", "bnr", "bnrclassfield", ..., "zetamult"]
7 \g 1 \\ sets all debug levels to 1
debug = 1

7 setdebug("bnf", 0); \\ kills messages related to bnfinit and bnfisrincipal

3.1.28 until(a, seq). Evaluates seq until a is not equal to 0 (i.e. until a is true). If a is initially
not equal to 0, seq is evaluated once (more generally, the condition on a is tested after execution
of the seq, not before as in while).

3.1.29 while(a, seq). While a is nonzero, evaluates the expression sequence seq. The test is made
before evaluating the seq, hence in particular if a is initially equal to zero the seq will not be
evaluated at all.

3.2 Programming in GP: other specific functions.

In addition to the general PARI functions, it is necessary to have some functions which will
be of use specifically for gp, though a few of these can be accessed under library mode. Before we
start describing these, we recall the difference between strings and keywords (see Section 2.9): the
latter don’t get expanded at all, and you can type them without any enclosing quotes. The former
are dynamic objects, where everything outside quotes gets immediately expanded.

3.2.1 Strchr(z). Deprecated alias for strchr.

The library syntax is GEN pari_strchr (GEN x).

3.2.2 Strexpand({z}x*). Deprecated alias for strexpand

The library syntax is GEN strexpand (GEN vec_x).

3.2.3 Strprintf(fmt, {x}x). Deprecated alias for strprintf.

The library syntax is GEN strprintf (const char *fmt, GEN vec_x).

86

3.2.4 Strtex({z}x). Deprecated alias for strtex.

The library syntax is GEN strtex(GEN vec_x).

3.2.5 addhelp(sym, str). Changes the help message for the symbol sym. The string str is expanded
on the spot and stored as the online help for sym. It is recommended to document global variables
and user functions in this way, although gp will not protest if you don’t.

You can attach a help text to an alias, but it will never be shown: aliases are expanded by
the ? help operator and we get the help of the symbol the alias points to. Nothing prevents you
from modifying the help of built-in PARI functions. But if you do, we would like to hear why you
needed it!

Without addhelp, the standard help for user functions consists of its name and definition.

gp> f(x) = x°2;
gp> 7f
f =

(x)->x"2

Once addhelp is applied to f, the function code is no longer included. It can still be consulted by
typing the function name:

gp> addhelp(f, "Square")
gp> 7f
Square

gp> £
%2 = (x)->x"2

The library syntax is void addhelp(const char *sym, const char *str).
3.2.6 alarm({s = 0}, {code}). If code is omitted, trigger an e ALARM exception after s seconds
(wall-clock time), cancelling any previously set alarm; stop a pending alarm if s = 0 or is omitted.

Otherwise, if s is positive, the function evaluates code, aborting after s seconds. The return
value is the value of code if it ran to completion before the alarm timeout, and a t_ERROR object
otherwise.

7 p = nextprime(10°25); q = nextprime(10°26); N = pxq;
? E = alarm(1, factor(N));

? type(E)

%3 = "t_ERROR"

? print(E)

%4 = error("alarm interrupt after 964 ms.")

? alarm(10, factor(N)); \\ enough time

W5 =

[10000000000000000000000013 1]
[100000000000000000000000067 1]

Here is a more involved example: the function timefact (N,sec) below tries to factor N and gives
up after sec seconds, returning a partial factorization.

\\ Time-bounded partial factorization

87

default(factor_add_primes,1);
timefact (N,sec)=
{
F = alarm(sec, factor(N));
if (type(F) == "t_ERROR", factor(N, 2724), F);
}

We either return the factorization directly, or replace the t_ERROR result by a simple bounded
factorization factor (N, 2°24). Note the factor_add_primes trick: any prime larger than 22
discovered while attempting the initial factorization is stored and remembered. When the alarm
rings, the subsequent bounded factorization finds it right away.

Caveat. It is not possible to set a new alarm within another alarm code: the new timer erases the
parent one.

Caveat2. In a parallel-enabled gp, if the code involves parallel subtasks, then alarm may not
return right away: il will prevent new tasks from being launched but will not interrupt previously
launched secondary threads. This avoids leaving the system in an inconsistent state.

The library syntax is GEN gp_alarm(long s, GEN code = NULL).

3.2.7 alias(newsym, sym). Defines the symbol newsym as an alias for the symbol sym:

? alias("det", "matdet");
? det([1,2;3,4])
%1 = -2

You are not restricted to ordinary functions, as in the above example: to alias (from/to) member
functions, prefix them with ‘_.’; to alias operators, use their internal name, obtained by writing _
in lieu of the operators argument: for instance, ! and !_ are the internal names of the factorial
and the logical negation, respectively.

alias("mod", "_.mod");
alias("add", "_+_");
alias("_.sin", "sin");
mod (Mod (x,x~4+1))

%2 =x"4 + 1

? add(4,6)

%3 = 10

? Pi.sin

%4 = 0.E-37

N N N

N

Alias expansion is performed directly by the internal GP compiler. Note that since alias is
performed at compilation-time, it does not require any run-time processing, however it only affects
GP code compiled after the alias command is evaluated. A slower but more flexible alternative is
to use variables. Compare

? fun = sin;

7 g(a,b) = intnum(t=a,b,fun(t));

? g(0, Pi)

%3 = 2.0000000000000000000000000000000000000
? fun = cos;

? g(0, Pi)

88

%5 = 1.8830410776607851098 E-39
with

? alias(fun, sin);

? g(a,b) = intnum(t=a,b,fun(t));

? g(0,Pi)

%2 = 2.0000000000000000000000000000000000000

? alias(fun, cos); \\ Oops. Does not affect *previous* definition!

? g(0,Pi)

%3 = 2.0000000000000000000000000000000000000

7 g(a,b) = intnum(t=a,b,fun(t)); \\ Redefine, taking new alias into account
? g(0,Pi)

%5 = 1.8830410776607851098 E-39

A sample alias file misc/gpalias is provided with the standard distribution.

The library syntax is void aliasO(const char *newsym, const char *sym).

3.2.8 allocatemem({s = 0}). This special operation changes the stack size after initialization.
The argument s must be a nonnegative integer. If s > 0, a new stack of at least s bytes is allocated.
We may allocate more than s bytes if s is way too small, or for alignment reasons: the current
formula is max(16 * [s/16] ,500032) bytes.

If s = 0, the size of the new stack is twice the size of the old one.

This command is much more useful if parisizemax is nonzero, and we describe this case first.
With parisizemax enabled, there are three sizes of interest:

e a virtual stack size, parisizemax, which is an absolute upper limit for the stack size; this is
set by default(parisizemax, ...).

e the desired typical stack size, parisize, that will grow as needed, up to parisizemax; this
is set by default(parisize, ...).

e the current stack size, which is less that parisizemax, typically equal to parisize but
possibly larger and increasing dynamically as needed; allocatemem allows to change that one
explicitly.

The allocatemem command forces stack usage to increase temporarily (up to parisizemax of
course); for instance if you notice using \gm2 that we seem to collect garbage a lot, e.g.

7 \gm2
debugmem = 2
? default(parisize,"32M")
*x** Warning: new stack size = 32000000 (30.518 Mbytes).
7 bnfinit(’x"2+10730-1)
*kx bnfinit: collecting garbage in hnffinal, i = 1.
% bnfinit: collecting garbage in hnffinal, i = 2.
**x* bnfinit: collecting garbage in hnffinal, i = 3.

and so on for hundred of lines. Then, provided the breakloop default is set, you can interrupt the
computation, type allocatemem(100%1076) at the break loop prompt, then let the computation
go on by typing <Enter>. Back at the gp prompt, the desired stack size of parisize is restored.

89

Note that changing either parisize or parisizemax at the break loop prompt would interrupt the
computation, contrary to the above.

In most cases, parisize will increase automatically (up to parisizemax) and there is no need
to perform the above maneuvers. But that the garbage collector is sufficiently efficient that a given
computation can still run without increasing the stack size, albeit very slowly due to the frequent
garbage collections.

Deprecated: when parisizemax is unset. This is currently still the default behavior in order not
to break backward compatibility. The rest of this section documents the behavior of allocatemem
in that (deprecated) situation: it becomes a synonym for default(parisize,...). In that case,
there is no notion of a virtual stack, and the stack size is always equal to parisize. If more memory
is needed, the PARI stack overflows, aborting the computation.

Thus, increasing parisize via allocatemem or default(parisize,...) before a big compu-
tation is important. Unfortunately, either must be typed at the gp prompt in interactive usage, or
left by itself at the start of batch files. They cannot be used meaningfully in loop-like constructs,
or as part of a larger expression sequence, e.g

allocatemem(); x = 1; \\ This will not set x!

In fact, all loops are immediately exited, user functions terminated, and the rest of the sequence
following allocatemem() is silently discarded, as well as all pending sequences of instructions. We
just go on reading the next instruction sequence from the file we are in (or from the user). In
particular, we have the following possibly unexpected behavior: in

read("file.gp"); x =1

were file.gp contains an allocatemem statement, the x = 1 is never executed, since all pending
instructions in the current sequence are discarded.

The reason for these unfortunate side-effects is that, with parisizemax disabled, increasing the
stack size physically moves the stack, so temporary objects created during the current expression
evaluation are not correct anymore. (In particular byte-compiled expressions, which are allocated
on the stack.) To avoid accessing obsolete pointers to the old stack, this routine ends by a longjmp.

The library syntax is void gp_allocatemem(GEN s = NULL).

3.2.9 apply(f, A). Apply the t_CLOSURE f to the entries of A.
e If A is a scalar, return £ (A).

e If A is a polynomial or power series Y a;x (+O(z)), apply £ on all coefficients and return

> flagx (+0(=™)).

e If A is a vector or list [ay, ..., ay], return the vector or list [f(aq),. .., f(an,)]. If A is a matrix,
return the matrix whose entries are the f(A[i, j]).

? apply(x->x~2, [1,2,3,4])
% = [1, 4, 9, 16]

? apply (x->x"2, [1,2;3,4])
%2 =

[1 4]

[9 16]
7 apply (x->x"2, 4*x"2 + 3*x+ 2)

90

%3 = 16%x72 + 9xx + 4
7 apply(sign, 2 - 3* x + 4%x"2 + 0(x"3))
% =1-x+ x"2 + 0(x"3)

Note that many functions already act componentwise on vectors or matrices, but they almost never
act on lists; in this case, apply is a good solution:

? L = List([Mod(1,3), Mod(2,4)1);

7 1lift (L)
*** at top-level: 1lift(L)
*k ok S

*kx 1ift: incorrect type in 1lift.
7 apply(lift, L);
%2 = List([1, 21)

Remark. For v a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[gx) | x <= v, £(x)]
[x | x <- v, £(x)]
[gx) | x <= v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select (f, Vec(v))
apply(g, Vec(v))

respectively:

? L = List([Mod(1,3), Mod(2,4)]1);
? [1lift(x) | x<-L]
%2 = [1, 2]

The library syntax is genapply(void *E, GEN (*fun) (void*,GEN), GEN a).

3.2.10 arity(C). Return the arity of the closure C, i.e., the number of its arguments.

7 £f1(x,y=0)=x+y;

7 arity(£f1)

Wl =2

? £2(t,s[..])=print(t,":",s);
7 arity(£2)

w2 =2

Note that a variadic argument, such as s in £2 above, is counted as a single argument.

The library syntax is GEN arityO(GEN C).

91

3.2.11 call(f, A). A =[a,...,ay] being a vector and f being a function, returns the evaluation
of f(ay,...,a,