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Introduction

The Cryst package, previously known &rystGAP, provides functions for the computation with affine crylstal
graphic groups, in particular space groups. For the defmitif the standard crystallographic notions we refer to the
International Tables [Hah95], in particular the chapteMigndratschek [Won95], and to the introductory chapter in
[BBNWZ78]. The principal algorithms used in this package described in [EGN97].

The present version faBAP 4 has been considerably reworked from an earlier versiorG#P 3.4.4. Most of
the porting toGAP 4 has been done by Franz Gahler. Besides affine crystaibgrgroups acting from the right,
also affine crystallographic groups acting from the leftaoev fully supported. Many algorithms have been added,
extended, or improved in other ways.

Our warmest thanks go the Max Neunhoffer, whose extenssting of theGAP 4 version ofCryst in connection
with XGAP uncovered several bugs and led to many performance impevism

Crystis implemented in th&AP 4 language, and runs on any system suppofBA® 4. However, certain commands
may require that other GAP packages sucBARAT or XGAP are installed. In particular, the routines in Section 2.8
are likely to requireCARAT, and the function WyckoffGraph (see 2.7.9) requiXé3AP. Both CARAT and XGAP

are available only under Unix.

TheCryst package is loaded with the command

gap> LoadPackage( "cryst" );
true

Cryst has been developed by

Bettina Eick
Fachbereich Mathematik und Informatik
Technische Universitat Braunschweig
Pockelsstr. 14, D-38106 Braunschweig, Germany
e-mail:b.eick@tu-bs.de

Franz Gahler
Fakultat fur Mathematik, Universitat Bielefeld
Postfach 10 01 31, D-33501 Bielefeld, Germany
e-mail:gaehler@math.uni-bielefeld.de

Werner Nickel
Fachbereich Mathematik, AG2, Technische Universitaniadt,
Schlossgartenstralle 7, D-64289 Darmstadt, Germany
e-mail:nickel@mathematik.tu-darmstadt.de

Please send bug reports, suggestions and other commenisabthese e-mail addresses.
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Affine
crystallographic
groups

An affine crystallographic grou@ is a subgroup of the group of all Euclidean motionslafimensional space, with
the property that its subgroupof all pure translations is a discrete normal subgroup ofefiimdex. If the rank of the
translation subgroup is d, G is called a space group. The quoti€iT is called the point group d&.

In this package, affine crystallographic groups are repteseas groups of augmented matrices of dimendient.
Most functions assume a group of rational matrices, but sorag also work with cyclotomic matrix groups. In
particular, it is possible to compute the translation basan affine crystallographic group given in a cyclotomic-rep
resentation, and to pass to a rational representation hygating with that basis. Further functionality for cyaatic
crystallographic groups is currently not guaranteed.

Augmented matrices can take one of two forms. Matrices ofdha
[MO]
[t1]

act from the right on row vector, 1). Such a matrix is said to be an affine matrix acting on the rightce inGAP
all groups act from the right, this is the preferred représtéon of an affine transformation.

The second representation of affine transformations is gynanted matrices of the form

[Mt]
[01]

which act from the left on column vectofs, 1). Such matrices are said to be affine matrices acting on theTlef
is the representation usually adopted by crystallographer

Cryst supports affine crystallographic groups in both represiems Every affine crystallographic group is con-
structed in one of these two representations.

Affine crystallographic groups in different representatichould never be mixed, however. It is recommended to
adopt one of the two representations, and then to stick taltr@sion. In order to facilitate this, there is a globalivar
ableCrystGroupDefaultAction, whose value is eithetightAction or LeftAction. The initial value iSRigh-
tAction, but this can be changed with

SetCrystGroupDefaultAction( action ) F

whereaction must be eitheRightAction or LeftAction. Constructor functions without explicit representation
qualifier then will construct an affine crystallographicgpan the representation specified@yystGroupDefault-
Action.
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Section 1. Construction 5

2.1 Construction

AffineCrystGroupOnRight ( gens) F
AffineCrystGroupOnRight ( genlist ) F
AffineCrystGroupOnRight ( genlist, identity ) F

returns the matrix group generated ggnsor genlist which must be affine matrices acting on the right, as affine
crystallographic group acting on the right. An already gnggroupsS of affine matrices acting on the right can be
converted to an affine crystallographic group acting on idptet with

AsAffineCrystGroupOnRight( S ) F

The property

IsAffineCrystGroupOnRight( S ) P
is true exactly for those groups which have been constructed inlibeeatwo ways.

AffineCrystGroupOnLeft ( gens) F
AffineCrystGroupOnLeft ( genlist ) F
AffineCrystGroupOnLeft ( genlist, identity ) F

returns the matrix group generated ¢gnsor genlist which must be affine matrices acting on the left, as affine
crystallographic group acting on the left. An already @rgtgroupS of affine matrices acting on the left can be
converted to an affine crystallographic group acting on éfftawith

AsAffineCrystGroupOnLeft( S ) F
The property
IsAffineCrystGroupOnLeft( S ) P

is true exactly for those groups which have been constructed inlibeeatwo ways.

It is recommended to adopt one representation for affindaltggraphic groups, and then to stick to it. To facilitate
this, routines are provided which assume a default reptasen.

AffineCrystGroup( gens) F
AffineCrystGroup( genlist ) F
AffineCrystGroup( genlist, identity ) F

callsAffineCrystGroupOnRight or AffineCrystGroupOnLeft with the same arguments, depending on the value
of CrystGroupDefaultAction.

AsAffineCrystGroup( S) F

callsAsAffineCrystGroupOnRight or AsAffineCrystGroupOnLeft with the same argument, depending on the
value ofCrystGroupDefaultAction.

IsAffineCrystGroup( S ) F

callsIsAffineCrystGroupOnRight or IsAffineCrystGroupOnLeft with the same argument, depending on the
value ofCrystGroupDefaultAction.

TransposedMatrixGroup( S ) A

returns the transpose of the affine crystallographic gi@up Sis acting on the right, its transpose is acting on the
left, and vice versa.
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6 Chapter 2. Affine crystallographic groups

2.2 Point group

The point groug of an affine crystallographic growis the quotien&T, whereT is the normal subgroup of all pure
translationsP is isomorphic to the group generated by the linear partsl afftshe matrices contained i& In Cryst
this latter group is identified with the point group&f

PointGroup( S ) A
returns the point group &.

IsPointGroup( P ) P
returnstrue if and only if P has been constructed as the point group of an affine crygtafbic grous.
AffineCrystGroup0fPointGroup( P ) A
returns the affine crystallographic gro8pfrom whichP has been constructed.

PointHomomorphism( S ) A
returns a homomorphism from the affine crystallographiaignm its point group.

IsPointHomomorphism( H ) P

returnstrue if and only if H has been constructed as theintHomomorphism of an affine crystallographic group.

2.3 Translation lattice

The vectors by which the pure translations in an affine ciggfeaphic group translate form a discrete latticecalled
the translation lattice d$.

TranslationBasis( S ) A
returns a basis of the translation latticeSfThe basis returned is unigue for the translation lattice.
InternalBasis( S ) A

returns a basis used internally for many computations.nsists of the translation badsof S, extended by further
standard basis vectorsBfhas not full rank.

If a generating seB of the translation lattice dbis known from somewhere, this knowledge can be add&ixih
AddTranslationBasis( S, B ) F

This function must do further work, so the¢tTranslationBasis cannot be used for this purpose. If doubts arise

about the correctness of the translation basis that hasaaksd by hand, one can check the correctness of the stored

value with
CheckTranslationBasis( S ) F

An affine crystallographic grouf acting ond-dimensional Euclidean space is callegpace groupif its translation
lattice has rankl.

IsSpaceGroup( S ) P

tests if the affine crystallographic gro&is a space group.

Since many computations are done internally in theernalBasis of S we say thaSSis in standard form if the
InternalBasis is the standard basis of Euclidean row space or column spesgeectively. This means that the
translation lattice is generated by the fksttandard basis vectors, wheses the rank of the translation lattice.

IsStandardAffineCrystGroup( S ) P

checks ifSis in standard form.
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Section 4. Special methods 7

IsStandardSpaceGroup( S ) P
checks ifSis a space group in standard form.
StandardAffineCrystGroup( S ) F

returns a conjugate &which is in standard form.
If an space group is a semi-direct product of its point groith s translation subgrougis said to be symmorphic.

IsSymmorphicSpaceGroup( S ) P

checks if the space grouis symmorphic.

2.4 Special methods

In the representation by augmented matrices, affine ctggtalphic groups are infinite matrix groups. Their infinity
is relatively trivial in the sense that they have an abeliamral subgroup of finite index. Nevertheless, for many
operations special methods have to be installed that asaattémpt algorithms that never finish. These methods all
make essential use of the exactness of the sequence of haptiem0 -> T -> S -> P -> 1, whereT is the
translation subgroup &, andP its point group.

All operations for general groups that make sense for affipstallographic groups should work also in that case. In
particular, there should be no restrictions for finifef ineCrystGroups. For infinite groups, some restrictions apply,
however. For instance, algorithms from the orbit-stabilfamily can work only if the orbits generated are finite. & ot
however, thallormalizer, Centralizer andRepresentativeActionin anAffineCrystGroup work even if the
corresponding orbit is infinite.

Some methods installed for affine crystallographic group&ta special behavior.
\" (S, conj)
If Sis anAffineCrystGroupOnRight,the groupconj* S * conj-1is returnedconjmust be an affine matrix acting

on the right. IfSis anAffineCrystGroupOnLeft, the groupconj™-1 * S * conjis returnedconjmust be an affine
matrix acting on the left.

IsomorphismFpGroup( P ) A

returns an isomorphism from tPeintGroup P to an isomorphi&pGroup F. If P is solvableF is given in a power-
commutator presentation.

IsomorphismFpGroup( S ) A

returns an isomorphism from the f ineCrystGroup Sto an isomorphi&@pGroup F. If Sis solvableF is given in
a power-commutator presentation. The presentatidhisfan extension of the presentation of the point grBugd S
used inIsomorphismFpGroup( P ).

If the package polycyclic is installe€ryst automatically loads it, and then provides special method3gomor-
phismPcpGroup.

IsomorphismPcpGroup( P ) A

with P a solvablePointGroup, returns an isomorphism frof to an isomorphi®cpGroup pcp. For details about
PcpGroups, we refer to the documentation of the package polycyclic.

IsomorphismPcpGroup( S ) A

with Sa solvableAffineCrystGroup (i.e., one with a solvablBointGroup), returns an isomorphism froto an
isomorphicPcpGroup pcp. The presentation gicpis an extension of the presentation of the point grBugd Sused
in IsomorphismPcpGroup( P ).
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2.5 Maximal subgroups

Since anAffineCrystGroup has infinitely many maximal subgroups in general, in the catamon of maximal
subgroups it must be further specified which maximal subgsare desired. Recall that a maximal subgroup of an
AffineCrystGroupis either latticeequal or classequal. A latticeequal sobghas the same translation lattice as the
parent, while a classequal subgroup has the same point geaihye parent. In the classequal case a maximal subgroup
always has prime-power index, whereas in the latticeecass this is so only in dimensions up to 3.

MaximalSubgroupClassReps( S, flags) O
returns a list of conjugacy class representatives of mabsmtagroups of thaffineCrystGroup S.
ConjugacyClassesMaximalSubgroups( S, flags ) (0]

returns a list of conjugacy classes of maximal subgrouplseftfineCrystGroup S.

In these two functions, the argumdiagsspecifies which maximal subgroups are compufiedsis a record which
may have the following components:

flags.primes := [pl .. pr]
only maximal subgroups of p-power index for the given prippese computed

flags.latticeequal := true
only latticeequal maximal subgroups are computed

flags.classequal := true
only classequal maximal subgroups are computed

flags.latticeequal andflags.classequal must not both be bound andue. flags.primes may be omitted
only if flags.latticeequalis bound andrue.

gap> S := SpaceGroupIT(3,222);

SpaceGroupOnRightIT(3,222,°27)

gap> L := MaximalSubgroupClassReps( S, rec( primes := [3,5] ) );

[ <matrix group with 7 generators>, <matrix group with 8 generators>,
<matrix group with 8 generators> ]

gap> List( L, IndexInParent );

[ 3, 27, 125 ]

gap> L := MaximalSubgroupClassReps( S,

> rec( classequal := true, primes := [3,5] ) );

[ <matrix group with 8 generators>, <matrix group with 8 generators> ]

gap> List( L, IndexInParent );

[ 27, 125 1]
gap> L := MaximalSubgroupClassReps( S,
> rec( latticeequal := true, primes := [3,5] ) );

[ <matrix group with 7 generators> ]

gap> List( L, IndexInParent );

(3]

gap> L := MaximalSubgroupClassReps( S, rec( latticeequal := true ) );

[ <matrix group with 7 generators>, <matrix group with 7 generators>,
<matrix group with 7 generators>, <matrix group with 7 generators>,
<matrix group with 6 generators> ]

gap> List( L, IndexInParent );

[ 2,2, 2,3, 4]
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2.6 Space groups with a given point group

SpaceGroupsByPointGroupOnRight( P ) O
SpaceGroupsByPointGroupOnRight ( P, norm ) O
SpaceGroupsByPointGroupOnRight ( P, norm, orbsflag ) (0]

whereP is any finite subgroup oBL(d, Z), returns a list of all space groups (acting on the right) wmitint groupP,

up to conjugacy in the full translation group of Euclideaa@p. All these space groups are returnetffdineCryst-
GroupOnRight in standard representation. If a second argument is presbith must be a list of elements of the
normalizer ofP in GL(d, Z), only space groups inequivalent under conjugation witlsehelements are returned. If
these normalizer elements, together withgenerate the full normalizer &f in GL(d, Z), then exactly one repre-
sentative of each space group type is obtained. If the thigdraentorbsflag which must befalse or true, is also
present andrue, all space groups up to conjugacy in the full translatiorugrare returned, but these space groups
are collected into orbits under the conjugation action wl#ments froomorm

gap> P := Group([ [ [ -1, 01, [0, -111, [ [-1,01, [0,1111);

Group(L [ [ -1, 01, [o0,-111, [[-1,01, 00,1110

gap> norm := Generators0fGroup( NormalizerInGLnZ( P ) );

tect-t,01J1,0o0,-111,cc-t,01,00,1211,00[-1,01, [0, -111,
tft,0731,00,-111, 000,121, 01,0711

gap> SpaceGroupsByPointGroupOnRight( P );

[ <matrix group with 4 generators>, <matrix group with 4 generators>,
<matrix group with 4 generators>, <matrix group with 4 generators> ]

gap> SpaceGroupsByPointGroupOnRight( P, norm );

[ <matrix group with 4 generators>, <matrix group with 4 generators>,
<matrix group with 4 generators> ]

gap> SpaceGroupsByPointGroupOnRight( P, norm, true );

[ [ <matrix group with 4 generators> ],
[ <matrix group with 4 generators>, <matrix group with 4 generators> ],
[ <matrix group with 4 generators> ] ]

SpaceGroupTypesByPointGroupOnRight ( P ) O
SpaceGroupTypesByPointGroupOnRight ( P, orbsflag ) O

returns a list of space group type representatives (actirth@right) of the point group. As in the case ofpace-
GroupsByPointGroupOnRight, if the boolean argumemrbsflagis present andrue, not only space group type
representatives, but all space groups up to conjugacy ifuthranslation group are returned. These are then col-
lected into lists of space groups of the same space group type

gap> SpaceGroupTypesByPointGroupOnRight( P );

[ <matrix group with 4 generators>, <matrix group with 4 generators>,
<matrix group with 4 generators> ]

gap> SpaceGroupTypesByPointGroupOnRight( P, true );

[ [ <matrix group with 4 generators> ],
[ <matrix group with 4 generators>, <matrix group with 4 generators> ],
[ <matrix group with 4 generators> ] ]

SpaceGroupsByPointGroupOnLeft( P ) O
SpaceGroupsByPointGroupOnLeft ( P, norm ) O
SpaceGroupsByPointGroupOnLeft ( P, norm, orbsflag) (0]

works the same way &paceGroupsByPointGroupOnRight, except that the space groups acting from the left are
returned.
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SpaceGroupTypesByPointGroupOnLeft( P ) O
SpaceGroupTypesByPointGroupOnLeft( P, orbsflag ) O

works the same way @&paceGroupTypesByPointGroupOnRight, except that the space groups acting from the left
are returned.

SpaceGroupsByPointGroup( P ) O
SpaceGroupsByPointGroup( P, norm ) O
SpaceGroupsByPointGroup( P, norm, orbsflag) (0]

callsSpaceGroupByPointGroupOnRight Or SpaceGroupByPointGroupOnLeft with the same arguments, depend-
ing on the value o€rystGroupDefaultAction.

SpaceGroupTypesByPointGroupOnLeft( P ) O
SpaceGroupTypesByPointGroupOnLeft( P, orbsflag) (0]

calls eitherSpaceGroupTypesByPointGroupOnRight Or SpaceGroupTypesByPointGroupOnLeft with the same
arguments, depending on the variabtgstGroupDefaultAction.

2.7 Wyckoff positions

A Wyckoff position of a space groupis an equivalence class of points in Euclidean space, hatafglizers which are
conjugate subgroups & Apart from a subset of lower dimension, which contains proivith even bigger stabilizers,
a Wyckoff position consists of aB-orbit of some affine subspaée In Cryst, a Wyckoff positionW is specified by
such a representative affine subspace.

WyckoffPositions( S ) A

returns the list of Wyckoff positions of the space gr&ip

gap> S := SpaceGroupIT(2,14);
SpaceGroupOnRightIT(2,14,°1°)
gap> W := WyckoffPositions(S);
[ < Wyckoff position, point group 3, translation := [ 0, 0 ],

basis := [ ] >

, < Wyckoff position, point group 3, translation := [ 2/3, 1/3 1],
basis := [ 1 >

» < Wyckoff position, point group 3, translation := [ 1/3, 2/3 1],
basis := [ ] >

, < Wyckoff position, point group 2, tranmslation := [ 0, 0 ],
basis := [ [ 1, -1 ] 1] >

, < Wyckoff position, point group 1, translation := [ 0, 0 ],

basis := [ [ 1,01, [0, 111>
]

In the previous example&s has three kinds of special points (the basis is empty), wheygeesentatives all have a
stabilizer with the same point group (with label 1), one kaidpecial line (the basis has length 1), and the general
position.

WyckoffPositionsByStabilizer( S, sub) O

whereSis a space group anslba subgroup of the point group or a list of such subgroups,raetes only the
Wyckoff positions whose representatives have a stabilizér a point group equal to the subgrosipbor contained
in the listsuh respectively.
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gap> sub := Group([ [ [0, -1 1, [ -1, 011 1);
Group(L [ [0, -1 1, [ -1, 011 D)
gap> IsSubgroup( PointGroup( S ), sub );

true
gap> WyckoffPositionsByStabilizer( S, sub );
[ < Wyckoff position, point group 1, translation := [ 0, 0 ],
basis := [ [ 1, -1 11>
]
IsWyckoffPosition( obj ) R

checks whetheobj is a Wyckoff position.

gap> ForAll( W, IsWyckoffPosition );
true

WyckoffBasis( W ) O

returns a basis of the representative affine subspace ofyhkdff positionW.

gap> WyckoffBasis( W[4] );
(01, -171]

WyckoffTranslation( W ) (o)
returns a point of the representative affine subspace of ghekd®¥f positionW.

gap> WyckoffTranslation( W[3] );
[ 1/3, 2/3 1]

WyckoffSpaceGroup( W ) 0]
returns the space group of whittis a Wyckoff position.

gap> WyckoffSpaceGroup( W[1] );
SpaceGroupOnRightIT(2,14,°1°)

WyckoffStabilizer( W ) O

returns the stabilizer of the (generic) points in the repnéstive affine subspace of the Wyckoff positidh This
stabilizer is a subgroup of the space group\gfand thus amffineCrystGroup.

gap> stab := WyckoffStabilizer( W[4] );

Group(L [ [ O, -1, 01, [-1,0,01]1, [0,0,11101
gap> IsAffineCrystGroupOnRight( stab );

true

WyckoffOrbit( W ) O

determines the orbit of the representative affine subspamfethe Wyckoff positionW under the space groupof

W (modulo lattice translations). The affine subspaces indHi# are then converted into a list of Wyckoff positions,
which is returned. The Wyckoff positions in this list aretjulifferent representations &¥. Their WyckoffBasis
andwWyckoffTranslation are chosen such that the induced parametrizations of tgiesentative subspaces are
mapped onto each other under the space group operation.



12 Chapter 2. Affine crystallographic groups

gap> orb := WyckoffOrbit( W[4] );
[ < Wyckoff position, point group 2, translation := [ 0, 0 ],
basis := [ [ 1, -1 11 >

, < Wyckoff position, point group 2, translation := [ 0, 0 ],
basis := [ [ 1, 21 ] >
, < Wyckoff position, point group 2, translation := [ 0, 0 ],

basis := [ [ -2, -1 11 >
]
gap> Set(orb);
[ < Wyckoff position, point group 2, tramslation := [ 0, 0 ],
basis := [ [ 1, -1 ] 1] >

]
9» WyckoffGraph( W [, def 1 ) 0]
» WyckoffGraph( S [, def ] ) O

displays the incidence relations of a set of Wyckoff posisigraphically. This function is available only und&sAP.
In the first form,W is a list of Wyckoff positions, which must belong to the sameace group. In the second for@®,
is a space group; in this case, the function is applied to ¢imepdete list of Wyckoff positions o8. In both forms, a
second argumendef, is possible, which is a record with optional componeritsle, width andheight, specifying
the title, width and height of the graphic sheet on which trapf will be displayed.

Each vertex of the graph represents a Wyckoff position.is&stare arranged in horizontal layers, determined by the
dimensions of the Wyckoff position and the sizeof its stabilizer. For each layer, the lig, s ] is displayed at
the right border of the graphic sheet. The vertical pos#tiohthe layers are ordered according to the dimension of
the Wyckoff position (primary criterion, smaller dimensiabove) and the size of the stabilizer (secondary criterion
bigger stabilizer above). Two Wyckoff positions are corirddf the closure of the lower one contains the upper
one. Two Wyckoff positions are connected by a line only ifrthis no Wyckoff position in between. The connection
line is labelled with the number of affine subspaces conthineghe lower Wyckoff position that contain a fixed
representative affine subspace of the upper Wyckoff pasikor instance, if the lower Wyckoff position consists of a
space group orbit of lines (and thus the upper one of an ofpibints), the label of the connection line is the number
of lines in the orbit which cross a fixed representative pofrihe upper Wyckoff position.

The initial layout of the graph is not always optimal. In pewtar, several connection lines can be drawn on top of
each other, so that it is not easy to see who is connected vhitmwWith the left mouse button, the graph can be
rearranged, however. Just drag each vertex to a more sujpédte. Note, however, that a vertex can not leave its
layer. For more details, please consult K&AP manual.

By right-clicking on a vertex, a popup menu with information the Wyckoff position of that vertex appears. It
informs on the size of th@yckoffStabilizer, the dimension of the Wyckoff position, the length of theckof -
f0rbit (modulo lattice translations), the translation and babis epresentative affine subspace, the isomorphims
type of theWyckoffStabilizer, and the ConjugacyClassinfo of the point grd@pf the WyckoffStabilizer.
The ConjugacyClassinfo lists for each conjugacy classarhehts of the number of that class, the order, trace and
determinant of its elements, and the size of the class. Tifasmation is useful to identify the geometric operation
of the stabilizer. The isomorphism type and Conjugacy®@fdssnay not be displayed initially. It this case, they can
be obtained by left-clicking on them, or by left-clicking &me button labelle@ll. Unfortunately, the popup window
cannot be resized automatically, and since the Conjugasg@ifo needs several lines for the display, the informatio
may be hidden behind the border of the window. You will haveise the slider of the popup window to make it
visible, or resize the window with the help of your window rager. Alternatively, you can right-click again on the
same vertex, in which case a new popup window of sufficieet appears.
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2.8 Normalizers

At present, most of the functions in this section requird tha GAP packageCARAT is installed (and compiled).
Otherwise, they are available only for space groups fronctlstallographic groups catalogue or the International
Tables (section 2.11).

NormalizerPointGroupInGLnZ( P ) A

returns the normalizer of thRointGroup P in the group of all unimodular transformations of the lagtgpanned
by the InternalBasis B of the AffineCrystGroup S of P. If Sis in standard representation, this is the same
asNormalizer( GL(dim,Integers), P ), otherwiseitifNormalizer( GL(dim,Integers), P"(B"-1) )"B.
This notion probably makes sense onh\Sifs a space group. Note thBtmust have elements with integer entries
(which is the case iSis a space group).

CentralizerPointGroupInGLnZ( P ) A

returns the centralizer of tieointGroup P in the group of all unimodular transformations of the ladtgpanned

by theInternalBasis B of the AffineCrystGroup S of P. If Sis in standard representation, this is the same as
Centralizer( GL(dim,Integers), P ), otherwiseiti€entralizer( GL(dim,Integers), P~ (B"-1) )"B.

This notion probably makes sense onh\Sifs a space group. Note thRtmust have elements with integer entries
(which is the case iBis a space group).

TranslationNormalizer( S ) F

returns the normalizer of the space gr&ip the full translation group. At present, this functionngglemented only
for space groups, not for genetlf ineCrystGroups. The translation normaliz8iN of Smay contain a continuous
subgroupC. A basis of the space of such continuous translations isd@UIN ! . continuousTranslations. Since
this subgroup is not finitely generated, itriet contained in the group generated ®heratorsO0fGroup( TN ).
Properly speaking, the translation normalizer is the sgd\oandC together.

AffineNormalizer( S ) F

returns the affine normalizer of the space gr@ifhe affine normalizeAF contains the translation normalizer as
a subgroup. Similarly as witfiranslationNormalizer, the subgrouf of continuous translations, which is not
finitely generated, is not part of the group that is returtéalvever, a basis of the space of continuous translations is
bound in the componeRF! . continuousTranslations.

AffineInequivalentSubgroups( S, sub) F

takes as input a space gro8pnd list of subgroups d§, and returns a sublist of affine inequivalent subgroupseNot
that the affine normalizer @ must be discrete in the current implementation. If it is dati1 is returned.

For two space groupgSlandS2of the same dimension (and acting from the same side),
ConjugatorSpaceGroups( S1, S2) F

returns an affine matrisn such thas1-m = S2, of fail if no such matrix exists, i.e., if the two space groups are not
equivalent. This function requires that t8AP packageCARAT is installed (and compiled).

2.9 Color groups

A color groupC is a group whose elements are colored in the following wag &lements having the same color as
the identity elemenne (C) form a subgroug of finite indexn. H is called theColorSubgroup of C. Elements of

C have the same color if and only if they are in the same righéttoSH in C. The labelling of the colors, which
runs from 1 ton, is determined by a fixed labelling of the right cosetdHofThe list of right cosets offf is stored in
the attributeColorCosetList. The color of the elements of a coset corresponds to theigosif the coset in that
list. Elements oH by definition have color 1, i.e., the coset with represewmgdthe (C) is always the first element of
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the ColorCosetList of C. Color groups which have a parent inherit their coloringrrthat parent, including the
labelling of the colors. As with other groups, color groupsing no parent are their own parent.

Right multiplication by a fixed elemegtof C induces a permutatiqu(g) of the colors of the parent &. This defines
a natural homomorphism @ into the symmetric group of degree The image of this homomorphism is called the
ColorPermGroup of C, and the homomorphism to it is called thelorHomomorphism of C.

ColorGroup( G, H ) F
constructs a colored copy & with color subgroupd (which should have finite index i@). Color groups constructed
in this way are always their own parent. It is not possiblegtitiseir parent attribute to a different value.

Groups which may be colored include, in particulaff ineCrystGroups, but coloring of any finite group should
work as well.

IsColorGroup( G ) P
checks whethe® is a color group.

ColorSubgroup( G ) A

returns the color subgroup 6.

ColorCosetList( G ) A
returns the color labelling cosets Gf

ColorOfElement( G, elem) F
returns the color of an element Gf

ColorPermGroup( G ) A

returns the ColorPermGroup & which is the permutation group induced Gyacting on the colors of the parent of
G.

ColorHomomorphism( G ) A
returns the homomomorphism froBito its ColorPermGroup.
Subgroup( C, elems) (0]

whereC is a color group, returns the colored subgralpf C generated bglems The parent olJ is set to the parent
of C, from which the coloring ofJ is inherited.

gap> G := Group( (1,2,3), (2,3,4) );

Group([ (1,2,3), (2,3,4) 1)

gap> H := Group( (1,2,3) );

Group([ (1,2,3) 1)

gap> C := ColorGroup( G, H );

Group([ (1,2,3), (2,3,4) 1)

gap> ColorSubgroup( C ) = H;

true

gap> ColorCosetList( C );

[ RightCoset(Group( [ (1,2,3) 1 ),()), RightCoset(Group( [ (1,2,3) 1 ),(1,2)

(3,4)), RightCoset(Group( [ (1,2,3) 1 ),(1,3)(2,4)),

RightCoset (Group( [ (1,2,3) 1 ),(1,4)(2,3)) ]

gap> List( last, x -> ColorOfElement( C, Representative(x) ) );

[1, 2, 3, 4]

gap> U := Subgroup( C, [(1,3)(2,4)] );

Group([ (1,3)(2,4) 1)
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gap> IsColorGroup( U );

true

gap> ColorSubgroup( U );

Group (())

gap> ColorCosetList( U );

[ RightCoset (Group( () ),()), RightCoset (Group( O ),(1,3)(2,4)) ]
gap> List( last, x -> ColorOfElement( U, Representative(x) ) );
[1, 3]

2.10 Colored AffineCrystGroups

If CisacolorediffineCrystGroupwhoseColorSubgroupis lattice-equal (translationengleich) with thePoint -
Group of C can consistently be colored. In that case,

1» PointGroup( C ) A

returns a colored point group. Otherwise, HeantGroup of C is an ordinary, uncolored group.

gap> S := SpaceGroupIT( 2, 10 );

SpaceGroupOnRightIT(2,10,°1°)

gap> m := MaximalSubgroupClassReps( S, rec( primes := [2] ) );

[ <matrix group with 4 generators>, <matrix group with 3 generators>,
<matrix group with 4 generators> ]

gap> List( last, x —-> TranslationBasis(x) = TranslationBasis(S) );

[ false, true, false ]

gap> C := ColorGroup( S, m[1] );; IsColorGroup( PointGroup( C ) );

false

gap> C := ColorGroup( S, m[2] );; IsColorGroup( PointGroup( C ) );

true

Two colorings of aspace groupS areequivalentif the two ColorSubgroups are conjugate in the affine normalizer
of S. For instance, a list of inequivalent indexc21orSubgroups of Scan be obtained with the following code:

gap> sub := MaximalSubgroupClassReps( S, rec( primes := [2] ) );

[ <matrix group with 4 generators>, <matrix group with 3 generators>,
<matrix group with 4 generators> ]

gap> sub := Filtered( sub, s -> IndexInParent( s ) = 2 );

[ <matrix group with 4 generators>, <matrix group with 3 generators>,
<matrix group with 4 generators> ]

gap> sub := AffineInequivalentSubgroups( S, sub );

[ <matrix group of size infinity with 4 generators>,
<matrix group of size infinity with 3 generators> ]

Note thatAffineInequivalentSubgroups requires th&sAP packageCARAT to be installed. Otherwise, this func-
tion is supported only fokffineCrystGroups constructed from the crystallographic groups catalog.
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2.11 International Tables

For the user’s convenience, a table with the 17 plane gronggte 230 space groups is includeddryst. These
groups are given in exactly the same settings (i.e., cha@teasis and origin) as in the International Tables. Space
groups with a centered lattice are therefore given in thepramitive basis crystallographers are used to. This is in
contrast to the crystallographic groups catalogue, whigrays a primitive basis is used.

For some of the 3D space groups, two different settings aaéadle. The possible settings are labelled with the
characters1’, ’2°,’b?,’c’,’h? and’r’. If only one setting is available, it is labelled ’. For some space groups
there exists a point with higher symmetry than the originhef 11’ setting. In such cases, a second settifg is
available, which has this high symmetry point as origin.sTégcond setting2’ then is the default setting. Space
groups which have a unique axis can have this axisdirection (settingb’) or c direction (setting c’). ’b’ is the
default setting. Rhombohedral space groups are given inaglo@al basis (settinth’) and in a rhombohedral basis
(setting’r’). ’h’ is the default setting.

SpaceGroupSettingsIT( dim, nr ) F
returns a string, whose characters label the availabliegstf the space group with numb@rand dimensiomlim.

SpaceGroupOnRightIT( dim, nr ) F
SpaceGroupOnRightIT( dim, nr, setting) F

returns space group numbmarin dimensiondim in the representation acting on the right. In the third argnimthe
desired setting can be specified. Otherwise, the space groefurned in the default setting for that space group.

SpaceGroupOnLeftIT( dim, nr ) =
SpaceGroupOnLeftIT( dim, nr, setting) F

returns space group numbmrin dimensiondim in the representation acting on the left. In the third argotmihe
desired setting can be specified. Otherwise, the space groefrned in the default setting for that space group.

SpaceGroupIT( dim, nr ) =
SpaceGroupIT( dim, nr, setting) F

returns eitheSpaceGroupOnRightIT Or SpaceGroupOnLeftIT with the same arguments, depending on the value
of CrystGroupDefaultAction.

gap> SpaceGroupSettingsIT( 3, 146 );
llhrll

gap> SpaceGroupOnRightIT( 3, 146 );
SpaceGroupOnRightIT(3,146,°h’)

gap> SpaceGroupOnRightIT( 3, 146, ’r’ );
SpaceGroupOnRightIT(3,146,’r’)
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