SHOGUN  3.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules
Redux.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2014 Soumyajit De
4  * Written (w) 2014 Khaled Nasr
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice, this
11  * list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright notice,
13  * this list of conditions and the following disclaimer in the documentation
14  * and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * The views and conclusions contained in the software and documentation are those
28  * of the authors and should not be interpreted as representing official policies,
29  * either expressed or implied, of the Shogun Development Team.
30  */
31 
32 #ifndef REDUX_H_
33 #define REDUX_H_
34 
39 
40 namespace shogun
41 {
42 
43 namespace linalg
44 {
45 
55 template <Backend backend=linalg_traits<Redux>::backend, class Vector>
56 typename Vector::Scalar dot(Vector a, Vector b)
57 {
59 }
60 
69 template <Backend backend=linalg_traits<Redux>::backend, class Matrix>
70 typename Matrix::Scalar sum(Matrix m, bool no_diag=false)
71 {
73 }
74 
83 template <Backend backend=linalg_traits<Redux>::backend,class Matrix>
84 typename Matrix::Scalar sum_symmetric(Matrix m, bool no_diag=false)
85 {
87 }
88 
97 template <Backend backend=linalg_traits<Redux>::backend,class Matrix>
98 typename Matrix::Scalar sum_symmetric(Block<Matrix> b, bool no_diag=false)
99 {
101  ::compute(b, no_diag);
102 }
103 
112 template <Backend backend=linalg_traits<Redux>::backend,class Matrix>
113 typename implementation::colwise_sum<backend,Matrix>::ReturnType colwise_sum(
114  Matrix m, bool no_diag=false)
115 {
117 }
118 
127 template <Backend backend=linalg_traits<Redux>::backend,class Matrix, class Vector>
128 void colwise_sum(Matrix m, Vector result, bool no_diag=false)
129 {
131 }
132 
141 template <Backend backend=linalg_traits<Redux>::backend,class Matrix>
142 typename implementation::rowwise_sum<backend,Matrix>::ReturnType rowwise_sum(
143  Matrix m, bool no_diag=false)
144 {
146 }
147 
156 template <Backend backend=linalg_traits<Redux>::backend,class Matrix, class Vector>
157 void rowwise_sum(Matrix m, Vector result, bool no_diag=false)
158 {
160 }
161 
169 template <Backend backend=linalg_traits<Redux>::backend, class Vector>
170 typename Vector::Scalar vector_sum(Vector a)
171 {
173 }
174 
176 template <Backend backend=linalg_traits<Redux>::backend, class Matrix>
177 typename Matrix::Scalar max(Matrix m)
178 {
180 }
181 
182 }
183 
184 }
185 #endif // REDUX_H_
static SGVector< T > compute(Matrix m, bool no_diag)
static T compute(Matrix m, bool no_diag)
Vector::Scalar dot(Vector a, Vector b)
Definition: Redux.h:56
static T compute(Matrix m, bool no_diag)
Matrix::Scalar sum(Matrix m, bool no_diag=false)
Definition: Redux.h:70
static SGVector< T > compute(Matrix m, bool no_diag)
implementation::rowwise_sum< backend, Matrix >::ReturnType rowwise_sum(Matrix m, bool no_diag=false)
Definition: Redux.h:142
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
static T compute(Vector a, Vector b)
implementation::colwise_sum< backend, Matrix >::ReturnType colwise_sum(Matrix m, bool no_diag=false)
Definition: Redux.h:113
Vector::Scalar vector_sum(Vector a)
Definition: Redux.h:170
Matrix::Scalar max(Matrix m)
Definition: Redux.h:177
Matrix::Scalar sum_symmetric(Matrix m, bool no_diag=false)
Definition: Redux.h:84

SHOGUN Machine Learning Toolbox - Documentation