SHOGUN
3.2.1
|
Namespaces | |
implementation | |
special_purpose | |
Classes | |
struct | Block |
Generic class Block which wraps a matrix class and contains block specific information, providing a uniform way to deal with matrix blocks for all supported backend matrices. More... | |
Functions | |
template<class Matrix > | |
Block< Matrix > | block (Matrix matrix, index_t row_begin, index_t col_begin, index_t row_size, index_t col_size) |
template<Backend backend = linalg_traits<Core>::backend, class Matrix > | |
void | matrix_product (Matrix A, Matrix B, Matrix C, bool transpose_A=false, bool transpose_B=false, bool overwrite=true) |
template<Backend backend = linalg_traits<Core>::backend, class Matrix > | |
void | add (Matrix A, Matrix B, Matrix C, typename Matrix::Scalar alpha=1.0, typename Matrix::Scalar beta=1.0) |
template<Backend backend = linalg_traits<Core>::backend, class Matrix > | |
void | subtract (Matrix A, Matrix B, Matrix C, typename Matrix::Scalar alpha=1.0, typename Matrix::Scalar beta=1.0) |
template<Backend backend = linalg_traits<Core>::backend, class Matrix > | |
void | scale (Matrix A, Matrix B, typename Matrix::Scalar alpha) |
template<Backend backend = linalg_traits<Core>::backend, class Matrix > | |
void | elementwise_product (Matrix A, Matrix B, Matrix C) |
template<Backend backend = linalg_traits<Core>::backend, class Matrix > | |
implementation::elementwise_square < backend, Matrix > ::ReturnType | elementwise_square (Matrix m) |
template<Backend backend = linalg_traits<Core>::backend, class Matrix , class ResultMatrix > | |
void | elementwise_square (Matrix m, ResultMatrix result) |
template<Backend backend = linalg_traits<Redux>::backend, class Vector > | |
Vector::Scalar | dot (Vector a, Vector b) |
template<Backend backend = linalg_traits<Redux>::backend, class Matrix > | |
Matrix::Scalar | sum (Matrix m, bool no_diag=false) |
template<Backend backend = linalg_traits<Redux>::backend, class Matrix > | |
Matrix::Scalar | sum_symmetric (Matrix m, bool no_diag=false) |
template<Backend backend = linalg_traits<Redux>::backend, class Matrix > | |
Matrix::Scalar | sum_symmetric (Block< Matrix > b, bool no_diag=false) |
template<Backend backend = linalg_traits<Redux>::backend, class Matrix > | |
implementation::colwise_sum < backend, Matrix > ::ReturnType | colwise_sum (Matrix m, bool no_diag=false) |
template<Backend backend = linalg_traits<Redux>::backend, class Matrix , class Vector > | |
void | colwise_sum (Matrix m, Vector result, bool no_diag=false) |
template<Backend backend = linalg_traits<Redux>::backend, class Matrix > | |
implementation::rowwise_sum < backend, Matrix > ::ReturnType | rowwise_sum (Matrix m, bool no_diag=false) |
template<Backend backend = linalg_traits<Redux>::backend, class Matrix , class Vector > | |
void | rowwise_sum (Matrix m, Vector result, bool no_diag=false) |
template<Backend backend = linalg_traits<Redux>::backend, class Vector > | |
Vector::Scalar | vector_sum (Vector a) |
template<Backend backend = linalg_traits<Redux>::backend, class Matrix > | |
Matrix::Scalar | max (Matrix m) |
template<Backend backend = linalg_traits<Core>::backend, class Matrix , class Vector > | |
void | set_rows_const (Matrix A, Vector v) |
void shogun::linalg::add | ( | Matrix | A, |
Matrix | B, | ||
Matrix | C, | ||
typename Matrix::Scalar | alpha = 1.0 , |
||
typename Matrix::Scalar | beta = 1.0 |
||
) |
Block<Matrix> shogun::linalg::block | ( | Matrix | matrix, |
index_t | row_begin, | ||
index_t | col_begin, | ||
index_t | row_size, | ||
index_t | col_size | ||
) |
Method that returns a block object. Suited for Eigen3/SGMatrix
matrix | the matrix on which the block is defined |
row_begin | the row index at which the block starts |
col_begin | the col index at which the block starts |
row_size | the number of rows in the block |
col_size | the number of cols in the block |
implementation::colwise_sum<backend,Matrix>::ReturnType shogun::linalg::colwise_sum | ( | Matrix | m, |
bool | no_diag = false |
||
) |
Wrapper method for internal implementation of matrix colwise sum of values that works with generic dense matrices
m | the matrix whose colwise sum of co-efficients has to be computed |
no_diag | if true, diagonal entries are excluded from the sum (default - false) |
void shogun::linalg::colwise_sum | ( | Matrix | m, |
Vector | result, | ||
bool | no_diag = false |
||
) |
Wrapper method for internal implementation of matrix colwise sum of values that works with generic dense matrices
m | the matrix whose colwise sum of co-efficients has to be computed |
no_diag | if true, diagonal entries are excluded from the sum (default - false) |
result | Pre-allocated vector for the result of the computation |
Vector::Scalar shogun::linalg::dot | ( | Vector | a, |
Vector | b | ||
) |
void shogun::linalg::elementwise_product | ( | Matrix | A, |
Matrix | B, | ||
Matrix | C | ||
) |
implementation::elementwise_square<backend,Matrix>::ReturnType shogun::linalg::elementwise_square | ( | Matrix | m | ) |
Wrapper method for internal implementation of square of co-efficients that works with generic dense matrices.
m | the matrix whose squared co-efficients matrix has to be computed |
void shogun::linalg::elementwise_square | ( | Matrix | m, |
ResultMatrix | result | ||
) |
void shogun::linalg::matrix_product | ( | Matrix | A, |
Matrix | B, | ||
Matrix | C, | ||
bool | transpose_A = false , |
||
bool | transpose_B = false , |
||
bool | overwrite = true |
||
) |
Performs matrix multiplication
A | First matrix |
B | Second matrix |
C | Result of the operation |
transpose_A | Whether to the transpose of A should be used instead of A |
transpose_B | Whether to the transpose of B should be used instead of B |
overwrite | If true, the values in C are overwritten with the result, otherwise, the result is added to the existing values |
Matrix::Scalar shogun::linalg::max | ( | Matrix | m | ) |
implementation::rowwise_sum<backend,Matrix>::ReturnType shogun::linalg::rowwise_sum | ( | Matrix | m, |
bool | no_diag = false |
||
) |
Wrapper method for internal implementation of matrix rowwise sum of values that works with generic dense matrices
m | the matrix whose rowwise sum of co-efficients has to be computed |
no_diag | if true, diagonal entries are excluded from the sum (default - false) |
void shogun::linalg::rowwise_sum | ( | Matrix | m, |
Vector | result, | ||
bool | no_diag = false |
||
) |
Wrapper method for internal implementation of matrix rowwise sum of values that works with generic dense matrices
m | the matrix whose rowwise sum of co-efficients has to be computed |
no_diag | if true, diagonal entries are excluded from the sum (default - false) |
result | Pre-allocated vector for the result of the computation |
void shogun::linalg::scale | ( | Matrix | A, |
Matrix | B, | ||
typename Matrix::Scalar | alpha | ||
) |
void shogun::linalg::set_rows_const | ( | Matrix | A, |
Vector | v | ||
) |
void shogun::linalg::subtract | ( | Matrix | A, |
Matrix | B, | ||
Matrix | C, | ||
typename Matrix::Scalar | alpha = 1.0 , |
||
typename Matrix::Scalar | beta = 1.0 |
||
) |
Matrix::Scalar shogun::linalg::sum | ( | Matrix | m, |
bool | no_diag = false |
||
) |
Wrapper method for internal implementation of matrix sum of values that works with generic dense matrices
m | the matrix whose sum of co-efficients has to be computed |
no_diag | if true, diagonal entries are excluded from the sum (default - false) |
Matrix::Scalar shogun::linalg::sum_symmetric | ( | Matrix | m, |
bool | no_diag = false |
||
) |
Wrapper method for internal implementation of symmetric matrix sum of values that works with generic dense matrices
m | the matrix whose sum of co-efficients has to be computed |
no_diag | if true, diagonal entries are excluded from the sum (default - false) |
Matrix::Scalar shogun::linalg::sum_symmetric | ( | Block< Matrix > | b, |
bool | no_diag = false |
||
) |
Wrapper method for internal implementation of symmetric matrix-block sum of values that works with generic dense matrix blocks
b | the matrix-block whose sum of co-efficients has to be computed |
no_diag | if true, diagonal entries are excluded from the sum (default - false) |