OPEN TRACE FORMAT 2

USER MANUAL
1.5.1 (revision 4026)

Tue Dec 9 2014 16:23:25

OTF2 LICENSE AGREEMENT

COPYRIGHT ©2009-2012,

RWTH Aachen University, Germany
COPYRIGHT ©2009-2012,

Gesellschaft fuer numerische Simulation mbH, Germany
COPYRIGHT ©2009-2014,

Technische Universitaet Dresden, Germany
COPYRIGHT ©2009-2012,

University of Oregon, Eugene, USA
COPYRIGHT ©2009-2014,

Forschungszentrum Juelich GmbH, Germany
COPYRIGHT ©2009-2014,

German Research School for Simulation Sciences GmbH, Germany
COPYRIGHT ©2009-2013,

Technische Universitaet Muenchen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the names of

RWTH Aachen University,

Gesellschaft fuer numerische Simulation mbH Braunschweig,

Technische Universitaet Dresden,

University of Oregon, Eugene,

Forschungszentrum Juelich GmbH,

German Research School for Simulation Sciences GmbH, or the

Technische Universitaet Muenchen,

nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

ii

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

iii

Contents

Contents

1 Open Trace Format 2
1.1 Introduction
1.2 Getstarted

Appendix A OTF2 INSTALL
Appendix B Deprecated List

Appendix C Module Documentation
C.1 Usageof OTF2tools
C2 OTF2configtool
C3 OTR2printtool,
C4 OTF2snapshotstool
CS5 OTF2markertool
C.6 OTF2estimatortool
C7 OTF2records
C.8 Listofall definitionrecords
C.9 ClockProperties
C.10 Paradigm
C.11 ParadigmProperty
C.12 MappingTable
C.I3 ClockOffseto o
C.14 String
CAS Attribute
C.16 SystemTreeNode
C.17 LocationGroup o
Cd8 Location oot
CI9Region.« . e
C20 Callsite o v
C21 Callpath
C22 Group o v i e
C.23 MetricMember

Page

CONTENTS

C24 MetricClass o v it 34
C.25 MetricInstance 34
C26Comm e 35
C.27 Parametero 36
C28 RmaWin 36
C.29 MetricClassRecorder 37
C.30 SystemTreeNodeProperty 37
C.31 SystemTreeNodeDomain 38
C.32 LocationGroupProperty 38
C.33 LocationProperty 39
C.34 CartDimension L 40
C.35 CartTopology i 40
C.36 CartCoordinateot i i 41
C.37 SourceCodeLocation 42
C.38 CallingContext vt 42
C.39 InterruptGeneratorot 43
C40 Listofalleventrecords 43
C41 BufferFlush 43
C.42 MeasurementOnOffo 43
CA3 Enter. 44
Cdd Leave o o i 44
Cd45 MpiSend 45
Cd46 Mpilsend 46
CA47 MpilsendComplete 46
C.48 MpilrecvRequest 47
CA49 MpiRecv oL 47
C.50 Mpilrecvo 48
C.51 MpiRequestTest L o 49
C.52 MpiRequestCancelled 49
C.53 MpiCollectiveBegin 50
C.54 MpiCollectiveEnd Lo 50
CS55 OmpFork 51
CS560mploin. 51
C.57 OmpAcquireLock 52
C.58 OmpReleaseLock, 53
C.59 OmpTaskCreate 53
C.60 OmpTaskSwitch 54
C.61 OmpTaskComplete 54
C.62 Metric v v i e e 55
C.63 ParameterString 56
C.64 ParameterInto 57
C.65 ParameterUnsignedInt 57
C.66 RmaWinCreate 58
C.67 RmaWinDestroy Lo 58

vi

CONTENTS

C.68 RmaCollectiveBegin 59
C.69 RmaCollectiveEnd 59
C.70 RmaGroupSync oo i 60
C.71 RmaRequestlock L oL 60
C.72 RmaAcquireLock 61
C.73 RmaTryLock 62
C.74 RmaReleaseLock 62
C75RmaSync 63
C.76 RmaWaitChange 64
C77 RmaPut 64
C78 RmaGet 65
C.79 RmaAtomic o 65
C.80 RmaOpCompleteBlocking 66
C.81 RmaOpCompleteNonBlocking 67
C.82 RmaOpTest i i 67
C.83 RmaOpCompleteRemote 68
C.84 ThreadFork 68
C.85 ThreadJoin 69
C.86 ThreadTeamBegin 69
C.87 ThreadTeamEnd 70
C.88 ThreadAcquireLock 70
C.89 ThreadReleaseLock 71
C.90 ThreadTaskCreate 72
C.91 ThreadTaskSwitch 72
C.92 ThreadTaskComplete 73
C.93 ThreadCreate 74
C.94 ThreadBegin 74
C.95 ThreadWait 75
CO96 ThreadEnd L 75
C.97 CallingContextSample 76
C.98 Listof all markerrecords 77
CO99 DefMarker. 77
C.l00Marker 78
C.101List of all snapshotrecords 78
C.1028napshotStart oL 78
C.103SnapshotEnd 79
C.104MeasurementOnOffSnap 80
C.A0SEnterSnap o 80
C.106MpiSendSnap 81
C.10MpilsendSnap 82
C.108MpilsendCompleteSnap 82
C.109MpiRecvSnap 83
C.110MpilrecvRequestSnap 84
C.I1IMpilrecvSnap 84

vii

CONTENTS

C.112MpiCollectiveBeginSnap 85
C.113MpiCollectiveEndSnap 86
C.1140mpForkSnap o o 86
C.1150mpAcquireLockSnap 87
C.1160mpTaskCreateSnap 88
C.1170mpTaskSwitchSnap 88
C.ll8MetricSnap o e 89
C.119%ParameterStringSnap 90
C.120ParameterIntSnap Lo 91
C.121ParameterUnsignedIntSnap 91
C.1220TF2 usageexamples 92
C.123Usage in writing mode - a simple example 92
C.124How to use the attribute list for writing additional attributes to
eventrecordso 96
C.1250TF2 callbacks o 97
C.126Controlling OTF2 flush behavior in writing mode 97
C.126.1Detailed Description 98
C.126.2Typedef Documentation 98
C.127Memory pooling for OTF2 99
C.127.1Detailed Description 99
C.127.2Typedef Documentation 100
C.1280perating OTF2 in an collective context 101
C.128.1Detailed Description 102
C.128.2Typedef Documentation 103
C.1290perating OTF2 in a multi-threads context 107
C.129.1Detailed Description 108
C.129.2Typedef Documentation 108
C.130Usage in reading mode - MPI example 110
C.131Usage in writing mode - MPl example 116
C.132Usage in reading mode - a simple example 124
Appendix D Data Structure Documentation 131
D.1 OTF2_AttributeValue Union Reference 131
D.1.1 Detailed Description 133
D.2 OTF2_CollectiveCallbacks Struct Reference 133
D.2.1 Detailed Description 133
D.3 OTF2_CollectiveContext Struct Reference 133
D.3.1 Detailed Description 133
D.4 OTF2_FlushCallbacks Struct Reference 134
D.4.1 Detailed Description 134
D.5 OTF2_Lock Struct Reference 134
D.5.1 Detailed Description 134
D.6 OTF2_LockingCallbacks Struct Reference 135
D.6.1 Detailed Description 135

viii

CONTENTS

D.7 OTF2_MemoryCallbacks Struct Reference 135
D.7.1 Detailed Description 136

D.8 OTF2_MetricValue Union Reference 136
D.8.1 Detailed Description 136

D.9 OTF2_MPI_UserData Struct Reference 136
D.9.1 Detailed Description 136

D.10 OTF2_Pthread_UserData Struct Reference 136
D.10.1 Detailed Description 137
Appendix E File Documentation 139
E.1 otf2/OTF2_ErrorCodes.h File Reference 139
E.1.1 Detailed Description 143
E.1.2 Typedef Documentation 143
E.1.3 Enumeration Type Documentation 144
E.1.4 Function Documentation 147

E.2 otf2/otf2.h File Reference 148
E.2.1 Detailed Description 149

E.3 otf2/OTF2_Archive.h File Reference 149
E.3.1 Detailed Description 155
E.3.2 Define Documentation 155

E.3.3 Typedef Documentation 155
E.3.4 Function Documentation 155

E.4 otf2/OTF2_AttributeList.h File Reference 181
E.4.1 Detailed Description 187

E.4.2 Function Documentation 187

E.5 otf2/OTF2_AttributeValue.h File Reference 210
E.5.1 Detailed Description 216
E.5.2 Function Documentation 217

E.6 otf2/OTF2_Callbacks.h File Reference 247
E.6.1 Detailed Description 249

E.7 otf2/OTF2_Definitions.h File Reference 249
E.7.1 Detailed Description 255
E.7.2 Enumeration Type Documentation 255

E.8 otf2/OTF2_DefReader.h File Reference 264
E.8.1 Detailed Description 265
E.8.2 Function Documentation 265

E.9 otf2/OTF2_DefReaderCallbacks.h File Reference 266
E.9.1 Detailed Description 274
E.9.2 Typedef Documentation 274

E.9.3 Function Documentation 293

E.10 otf2/OTF2_DefWriter.h File Reference 310
E.10.1 Detailed Description 313
E.10.2 Function Documentation 313

E.11 otf2/OTF2_Events.h File Reference 331

ix

CONTENTS

E.11.1 Detailed Description 333
E.11.2 Enumeration Type Documentation 333
E.12 otf2/OTF2_EventSizeEstimator.h File Reference 337
E.12.1 Detailed Description 343
E.12.2 Function Documentation 344
E.13 otf2/OTF2_EvtReader.h File Reference 374
E.13.1 Detailed Description 376
E.13.2 Function Documentation 376
E.14 otf2/OTF2_EvtReaderCallbacks.h File Reference 379
E.14.1 Detailed Description 393
E.14.2 Typedef Documentation 393
E.14.3 Function Documentation 436
E.15 otf2/OTF2_EvtWriter.h File Reference 469
E.15.1 Detailed Description 476
E.15.2 Function Documentation 476
E.16 otf2/OTF2_GeneralDefinitions.h File Reference 516
E.16.1 Detailed Description 524
E.16.2 Enumeration Type Documentation 524
E.17 otf2/OTF2_GlobalDefReader.h File Reference 535
E.17.1 Detailed Description 535
E.17.2 Function Documentation 536
E.18 otf2/OTF2_GlobalDefReaderCallbacks.h File Reference 537
E.18.1 Detailed Description 544
E.18.2 Typedef Documentation 544
E.18.3 Function Documentation 564
E.19 otf2/OTF2_GlobalDefWriter.h File Reference 583
E.19.1 Detailed Description 586
E.19.2 Function Documentation 587
E.20 otf2/OTF2_GlobalEvtReader.h File Reference 607
E.20.1 Detailed Description 607
E.20.2 Function Documentation 607
E.21 otf2/OTF2_GlobalEvtReaderCallbacks.h File Reference 609
E.21.1 Detailed Description 622
E.21.2 Typedef Documentation 623
E.21.3 Function Documentation 662
E.22 otf2/OTF2_GlobalSnapReader.h File Reference 701
E.22.1 Detailed Description 701
E.22.2 Function Documentation 702
E.23 otf2/OTF2_GlobalSnapReaderCallbacks.h File Reference 703
E.23.1 Detailed Description 708
E.23.2 Typedef Documentation 709
E.23.3 Function Documentation 725
E.24 otf2/OTF2_IdMap.h File Reference 738

E.24.1 Detailed Description 739

CONTENTS

E.24.2 Typedef Documentation 740
E.24.3 Enumeration Type Documentation 740
E.24.4 Function Documentation 740
E.25 otf2/OTF2_Marker.h File Reference 744
E.25.1 Detailed Description 745
E.25.2 Enumeration Type Documentation 746
E.26 otf2/OTF2_MarkerReader.h File Reference 746
E.26.1 Detailed Description 747
E.26.2 Function Documentation 747
E.27 otf2/OTF2_MarkerReaderCallbacks.h File Reference 748
E.27.1 Detailed Description 750
E.27.2 Typedef Documentation 750
E.27.3 Function Documentation 751
E.28 otf2/OTF2_MarkerWriter.h File Reference 754
E.28.1 Detailed Description 755
E.28.2 Function Documentation 755
E.29 otf2/OTF2_MPI_Collectives.h File Reference 756
E.29.1 Detailed Description 758
E.29.2 Function Documentation 758
E.30 otf2/OTF2_OpenMP_Locks.h File Reference 759
E.30.1 Detailed Description 760
E.30.2 Function Documentation 760
E.31 otf2/OTF2_Pthread_Locks.h File Reference 761
E.31.1 Detailed Description 761
E.31.2 Function Documentation 761
E.32 otf2/OTF2_Reader.h File Reference 762
E.32.1 Detailed Description 768
E.32.2 Function Documentation 768
E.33 otf2/OTF2_SnapReader.h File Reference 797
E.33.1 Detailed Description 798
E.33.2 Function Documentation 798
E.34 otf2/OTF2_SnapReaderCallbacks.h File Reference 800
E.34.1 Detailed Description 806
E.34.2 Typedef Documentation 806
E.34.3 Function Documentation 822
E.35 otf2/OTF2_SnapWriter.h File Reference 834
E.35.1 Detailed Description 837
E.35.2 Typedef Documentation 837
E.35.3 Function Documentation 838
E.36 otf2/OTF2_Thumbnail.h File Reference 852
E.36.1 Detailed Description 853
E.36.2 Function Documentation 853

xi

Chapter 1

Open Trace Format 2

1.1 Introduction

The OTF2 library provides an interface to write and read trace data.

OTF2 is developed within the Score-P project. The Score-P project is funded by
the German Federal Ministry of Education and Research. OTF2 is available under
the BSD open source license that allows free usage for academic and commercial
applications.

1.2 Get started

OTF2 usage examples
OTF?2 records

OTF?2 callbacks
Usage of OTF2 tools

CHAPTER 1. OPEN TRACE FORMAT 2

Appendices

Appendix A

OTF2 INSTALL

For generic installation instructions see below.
When building for an Intel MIC platform, carefully follow the
platform-specific instructions below.

Configuration of OTF2

KAk KAk Ak Ak kA hAk Ak Ah Ak kA kA hh kKK

‘configure’ configures OTF2 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...
To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:

-h, —--help display this help and exit
—-help=short display options specific to this package
—-help=recursive display the short help of all the included packages

-V, —-version display version information and exit

-q, —-—-quiet, --silent do not print ‘checking ...’ messages
——cache-file=FILE cache test results in FILE [disabled]

-C, —-config-cache alias for ‘--cache-file=config.cache’

-n, ——no-create do not create output files
——-srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:

——prefix=PREFIX install architecture-independent files in PREFIX
[/opt/otf2]

——exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[PREFIX]

By default, ‘make install’ will install all the files in
‘/opt/otf2/bin’, ‘/opt/otf2/1lib’ etc. You can specify
an installation prefix other than ‘/opt/otf2’ using ‘--prefix’,

APPENDIX A. OTF2 INSTALL

for instance ‘--prefix=S$HOME’ .

For better control, use the options below.

Fine tuning of the installation directories:

—-bindir=DIR
--sbindir=DIR
——libexecdir=DIR
—--sysconfdir=DIR
—--sharedstatedir=DIR
——localstatedir=DIR
——1libdir=DIR
——includedir=DIR
—-—oldincludedir=DIR
—-—datarootdir=DIR
--datadir=DIR
——infodir=DIR
—-—localedir=DIR
—--mandir=DIR
——docdir=DIR
——htmldir=DIR
——dvidir=DIR
—--pdfdir=DIR
—--psdir=DIR

Program names:

——program-prefix=PREFIX
——program-suffix=SUFFIX

user executables [EPREFIX/bin]

system admin executables [EPREFIX/sbin]

program executables [EPREFIX/libexec]

read-only single-machine data [PREFIX/etc]

modifiable architecture-independent data [PREFIX/com]
modifiable single-machine data [PREFIX/var]

object code libraries [EPREFIX/1ib]

C header files [PREFIX/include]

C header files for non-gcc [/usr/include]

read-only arch.-independent data root [PREFIX/share]
read-only architecture-independent data [DATAROOTDIR]
info documentation [DATAROOTDIR/info]
locale-dependent data [DATAROOTDIR/locale]

man documentation [DATAROOTDIR/man]

documentation root [DATAROOTDIR/doc/otf2]

html documentation [DOCDIR]

dvi documentation [DOCDIR]

pdf documentation [DOCDIR]

ps documentation [DOCDIR]

prepend PREFIX to installed program names
append SUFFIX to installed program names

——-program-transform—-name=PROGRAM run sed PROGRAM on installed program names

System types:

—-build=BUILD configure for building on BUILD [guessed]
——host=HOST cross—-compile to build programs to run on HOST [BUILD]

Optional Features:

-—-disable-option—-checking ignore unrecognized —--enable/--with options

——disable-FEATURE

——enable-FEATURE [=ARG]
—-—enable-silent-rules
——disable-silent-rules

do not include FEATURE (same as ——-enable-FEATURE=no)
include FEATURE [ARG=yes]
less verbose build output (undo: ‘make V=1")
verbose build output (undo: ‘make V=0')

—-—-disable-dependency-tracking speeds up one-time build
——enable-dependency-tracking do not reject slow dependency extractors

——enable-platform-mic
——enable—-debug

Force build for Intel MIC platform [no]
activate internal debug output [no]

—-—enable-backend-test-runs

——enable—-shared [=PKGS]
——enable-static [=PKGS]

Run tests at make check [no]. If disabled, tests are
still build at make check. Additionally, scripts
(scorep_xtests.sh) containing the tests are
generated in <builddir>/build-backend.

build shared libraries [default=no]

build static libraries [default=yes]

——enable-fast-install [=PKGS]

—-—disable-libtool-lock

optimize for fast installation [default=yes]
avoid locking (might break parallel builds)

Optional Packages:
——with-PACKAGE [=ARG] use PACKAGE [ARG=yes]
——without-PACKAGE do not use PACKAGE (same as ——-with-PACKAGE=no)
——with-sionlib[=<sionlib-bindir>]
Use an already installed sionlib. Provide path to
sionconfig. Auto-detected if already in $PATH.

—-—with-pic try to use only PIC/non-PIC objects [default=use
both]
—--with-gnu-1d assume the C compiler uses GNU 1ld [default=no]

——with-sysroot=DIR Search for dependent libraries within DIR
(or the compiler’s sysroot if not specified).

Some influential environment variables:
CC_FOR_BUILD
C compiler command for the frontend build
CXX_FOR_BUILD
C++ compiler command for the frontend build
F77_FOR_BUILD
Fortran 77 compiler command for the frontend build
FC_FOR_BUILD
Fortran compiler command for the frontend build
CPPFLAGS_FOR_BUILD
(Objective) C/C++ preprocessor flags for the frontend build,
e.g. —-I<include dir> if you have headers in a nonstandard
directory <include dir>
CFLAGS_FOR_BUILD
C compiler flags for the frontend build
CXXFLAGS_FOR_BUILD
C++ compiler flags for the frontend build
FFLAGS_FOR_BUILD
Fortran 77 compiler flags for the frontend build
FCFLAGS_FOR_BUILD
Fortran compiler flags for the frontend build
LDFLAGS_FOR_BUILD
linker flags for the frontend build, e.g. -L<lib dir> if you
have libraries in a nonstandard directory <lib dir>
LIBS_FOR_BUILD
libraries to pass to the linker for the frontend build, e.g.

—-l<library>

CcC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -l<library>

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. —-I<include dir> if
you have headers in a nonstandard directory <include dir>

CXX C++ compiler command

CXXFLAGS C++ compiler flags

CPP C preprocessor

CXXCPP C++ preprocessor

PYTHON The python interpreter to use. Not a build requirement, but

needed when developing. Python 2.5 or above, but no python 3.
Use PYTHON=: to disable python support.

APPENDIX A. OTF2 INSTALL

Use these variables to override the choices made by ‘configure’ or to help
it to find libraries and programs with nonstandard names/locations.

Please report bugs to <support@score-p.org>.
Platform-specific instructions
khkhkkhkkhkhkhkkhkkhkhkhkhkkhkhAkhrkhkkhkhkhkhkkhhkhrhkkhkkhhhkh*k

Intel MIC

Building OTF2 for the Intel MIC platform requires some extra care, and in
some cases two installations into the same location. Therefore, we strongly
recommend to strictly follow the procedure as described below.

1. Ensure that Intel compilers are installed and available in $PATH, and
that the Intel Manycore Platform Software Stack (MPSS) is installed.

2. Configure OTF2 to use the MIC platform:
./configure —--enable-platform-mic [other options, e.g., '——prefix’]
3. Build and install:
make; make install
On non-cross compiling systems (e.g., typical Linux clusters), that’s it.
On cross-compiling systems (e.g., Cray XC30 with Xeon Phi daughter board), a
second installation of OTF2 *on top* of the Jjust installed one is required to

provide a single installation serving login nodes, compute nodes, and MIC:

4. Remove MIC program binaries, object files, and configure-generated files
from the source code directory:

make distclean

5. Reconfigure for login/compute nodes using xidentical directory optionsx
(e.g., "——prefix’ or ’'—--bindir’) as in step 2:

./configure [other options as usid in step 2]

This will automatically detect the already existing native MIC build and
enable the required support in the login node tools.

6. Build and install:
make; make install
Note that this approach also works with VPATH builds (even with with two

separate build directories) as long as the same options defining directory
locations are passed in steps 2 and 5.

Installation Instructions

KAkXAKA AR AR KA AR A XA A XA A XKk h kK

Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005,
2006, 2007, 2008, 2009 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without warranty of any kind.

Basic Installation

Briefly, the shell commands ‘./configure; make; make install’ should
configure, build, and install this package. The following
more—-detailed instructions are generic; see the ‘README’ file for
instructions specific to this package. Some packages provide this
‘INSTALL’ file but do not implement all of the features documented
below. The lack of an optional feature in a given package is not
necessarily a bug. More recommendations for GNU packages can be found
in x*note Makefile Conventions: (standards)Makefile Conventions.

The ‘configure’ shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a ‘Makefile’ in each directory of the package.
It may also create one or more ‘.h’ files containing system-dependent
definitions. Finally, it creates a shell script ‘config.status’ that
you can run in the future to recreate the current configuration, and a
file ‘config.log’ containing compiler output (useful mainly for
debugging ‘configure’).

It can also use an optional file (typically called ‘config.cache’
and enabled with ‘--cache-file=config.cache’ or simply ‘-C’) that saves
the results of its tests to speed up reconfiguring. Caching is
disabled by default to prevent problems with accidental use of stale
cache files.

If you need to do unusual things to compile the package, please try
to figure out how ‘configure’ could check whether to do them, and mail
diffs or instructions to the address given in the ‘README’ so they can
be considered for the next release. If you are using the cache, and at
some point ‘config.cache’ contains results you don’t want to keep, you
may remove or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create
‘configure’ by a program called ‘autoconf’. You need ‘configure.ac’ if
you want to change it or regenerate ‘configure’ using a newer version
of ‘autoconf’.

The simplest way to compile this package is:

1. ‘cd’ to the directory containing the package’s source code and type
‘./configure’ to configure the package for your system.

APPENDIX A. OTF2 INSTALL

Running ‘configure’ might take a while. While running, it prints
some messages telling which features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with
the package, generally using the just-built uninstalled binaries.

4. Type ‘make install’” to install the programs and any data files and
documentation. When installing into a prefix owned by root, it is
recommended that the package be configured and built as a regular
user, and only the ‘make install’ phase executed with root
privileges.

5. Optionally, type ‘make installcheck’ to repeat any self-tests, but
this time using the binaries in their final installed location.
This target does not install anything. Running this target as a
regular user, particularly if the prior ‘make install’ required
root privileges, verifies that the installation completed
correctly.

6. You can remove the program binaries and object files from the
source code directory by typing ‘make clean’. To also remove the
files that ‘configure’ created (so you can compile the package for
a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly
for the package’s developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.

7. Often, you can also type ‘make uninstall’ to remove the installed
files again. 1In practice, not all packages have tested that
uninstallation works correctly, even though it is required by the
GNU Coding Standards.

8. Some packages, particularly those that use Automake, provide ‘make
distcheck’, which can by used by developers to test that all other
targets like ‘make install’ and ‘make uninstall’ work correctly.
This target is generally not run by end users.

Compilers and Options

Some systems require unusual options for compilation or linking that
the ‘configure’ script does not know about. Run ‘./configure --help’
for details on some of the pertinent environment variables.

You can give ‘configure’ initial values for configuration parameters
by setting variables in the command line or in the environment. Here

is an example:

./configure CC=c99 CFLAGS=-g LIBS=-lposix

10

*Note Defining Variables::, for more details.

Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you can use GNU ‘make’. ‘cd’” to the
directory where you want the object files and executables to go and run
the ‘configure’ script. ‘configure’ automatically checks for the
source code in the directory that ‘configure’ is in and in ‘..’. This
is known as a "VPATH" build.

With a non-GNU ‘make’, it is safer to compile the package for one
architecture at a time in the source code directory. After you have
installed the package for one architecture, use ‘make distclean’ before
reconfiguring for another architecture.

On MacOS X 10.5 and later systems, you can create libraries and
executables that work on multiple system types—--known as "fat" or
"universal" binaries--by specifying multiple ‘-arch’ options to the
compiler but only a single ‘-arch’ option to the preprocessor. Like
this:

./configure CC="gcc -arch 1386 —-arch x86_64 —arch ppc —arch ppc64" \
CXX="g++ —arch 1386 -arch x86_64 -arch ppc —-arch ppc64" \
CPP="gcc —-E" CXXCPP="g++ —E"

This is not guaranteed to produce working output in all cases, you
may have to build one architecture at a time and combine the results
using the ‘lipo’ tool if you have problems.

Installation Names

By default, ‘make install’ installs the package’s commands under
‘/usr/local/bin’, include files under ‘/usr/local/include’, etc. You
can specify an installation prefix other than ‘/usr/local’ by giving
‘configure’ the option ‘--prefix=PREFIX’, where PREFIX must be an
absolute file name.

You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
pass the option ‘--exec-prefix=PREFIX’ to ‘configure’, the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give
options like ‘--bindir=DIR’ to specify different values for particular
kinds of files. Run ‘configure --help’ for a list of the directories
you can set and what kinds of files go in them. In general, the
default for these options is expressed in terms of ‘${prefix}’, so that
specifying just ‘--prefix’ will affect all of the other directory
specifications that were not explicitly provided.

11

APPENDIX A. OTF2 INSTALL

The most portable way to affect installation locations is to pass the
correct locations to ‘configure’; however, many packages provide one or
both of the following shortcuts of passing variable assignments to the
‘make install’ command line to change installation locations without
having to reconfigure or recompile.

The first method involves providing an override variable for each
affected directory. For example, ‘make install
prefix=/alternate/directory’ will choose an alternate location for all
directory configuration variables that were expressed in terms of
‘${prefix}’. Any directories that were specified during ‘configure’,
but not in terms of ‘${prefix}’, must each be overridden at install
time for the entire installation to be relocated. The approach of
makefile variable overrides for each directory variable is required by
the GNU Coding Standards, and ideally causes no recompilation.
However, some platforms have known limitations with the semantics of
shared libraries that end up requiring recompilation when using this
method, particularly noticeable in packages that use GNU Libtool.

The second method involves providing the ‘DESTDIR’ variable. For
example, ‘make install DESTDIR=/alternate/directory’ will prepend

‘/alternate/directory’ before all installation names. The approach of
‘DESTDIR’ overrides is not required by the GNU Coding Standards, and
does not work on platforms that have drive letters. On the other hand,

it does better at avoiding recompilation issues, and works well even
when some directory options were not specified in terms of ‘${prefix}’
at ‘configure’ time.

Optional Features

If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving ‘configure’ the
option ‘--program-prefix=PREFIX’ or ‘--program-suffix=SUFFIX’.

Some packages pay attention to ‘-—-enable-FEATURE’ options to
‘configure’, where FEATURE indicates an optional part of the package.

They may also pay attention to ‘--with-PACKAGE’ options, where PACKAGE
is something like ‘gnu-as’ or ‘x’ (for the X Window System). The
‘README’ should mention any ‘--enable-’ and ‘--with-’ options that the

package recognizes.

For packages that use the X Window System, ‘configure’ can usually
find the X include and library files automatically, but if it doesn’t,
you can use the ‘configure’ options ‘--x-includes=DIR’ and
‘-—x-libraries=DIR’ to specify their locations.

Some packages offer the ability to configure how verbose the

execution of ‘make’ will be. For these packages, running ‘./configure
——enable-silent-rules’ sets the default to minimal output, which can be
overridden with ‘make V=1’; while running ‘./configure

——disable-silent-rules’ sets the default to verbose, which can be
overridden with ‘make V=0'.

12

Particular systems

On HP-UX, the default C compiler is not ANSI C compatible. TIf GNU
CC is not installed, it is recommended to use the following options in
order to use an ANSI C compiler:
./configure CC="cc -Ae -D_XOPEN_SOURCE=500"

and if that doesn’t work, install pre-built binaries of GCC for HP-UX.

On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot

parse its ‘<wchar.h>’ header file. The option ‘-nodtk’ can be used as
a workaround. If GNU CC is not installed, it is therefore recommended
to try

./configure CC="cc"
and if that doesn’t work, try

./configure CC="cc -nodtk"

On Solaris, don’t put ‘/usr/ucb’ early in your ‘PATH’. This
directory contains several dysfunctional programs; working variants of
these programs are available in ‘/usr/bin’. So, if you need ‘/usr/ucb’

in your ‘PATH’, put it _after_ ‘/usr/bin’.

On Haiku, software installed for all users goes in ‘/boot/common’,
not ‘/usr/local’. It is recommended to use the following options:

./configure --prefix=/boot/common

Specifying the System Type

There may be some features ‘configure’ cannot figure out
automatically, but needs to determine by the type of machine the package
will run on. Usually, assuming the package is built to be run on the
same architectures, ‘configure’ can figure that out, but if it prints
a message saying it cannot guess the machine type, give it the
‘--build=TYPE’ option. TYPE can either be a short name for the system
type, such as ‘sun4’, or a canonical name which has the form:

CPU-COMPANY-SYSTEM
where SYSTEM can have one of these forms:

oS
KERNEL-0S

See the file ‘config.sub’ for the possible values of each field. If
‘config.sub’ isn’t included in this package, then this package doesn’t
need to know the machine type.

13

APPENDIX A. OTF2 INSTALL

If you are _building_ compiler tools for cross-compiling, you should
use the option ‘--target=TYPE’ to select the type of system they will
produce code for.

If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with ‘--host=TYPE’.

Sharing Defaults

If you want to set default values for ‘configure’ scripts to share,
you can create a site shell script called ‘config.site’ that gives
default values for variables like ‘CC’, ‘cache_file’, and ‘prefix’.
‘configure’ looks for ‘PREFIX/share/config.site’ if it exists, then
‘PREFIX/etc/config.site’ if it exists. Or, you can set the
‘CONFIG_SITE’ environment variable to the location of the site script.
A warning: not all ‘configure’ scripts look for a site script.

Defining Variables

Variables not defined in a site shell script can be set in the
environment passed to ‘configure’. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the ‘configure’ command line, using ‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified ‘gcc’ to be used as the C compiler (unless it is
overridden in the site shell script).

Unfortunately, this technique does not work for ‘CONFIG_SHELL’ due to
an Autoconf bug. Until the bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

‘configure’ Invocation

‘configure’ recognizes the following options to control how it
operates.

‘—-—help’
_hl
Print a summary of all of the options to ‘configure’, and exit.

‘-—help=short’

‘-—help=recursive’
Print a summary of the options unique to this package’s
‘configure’, and exit. The ‘short’ wvariant lists options used

14

only in the top level, while the ‘recursive’ variant lists options
also present in any nested packages.

‘-—version’

\7VI
Print the version of Autoconf used to generate the ‘configure’
script, and exit.

‘--cache-file=FILE’
Enable the cache: use and save the results of the tests in FILE,
traditionally ‘config.cache’. FILE defaults to ‘/dev/null’ to
disable caching.

‘—-—config-cache’
_C/

\

Alias for ‘--cache-file=config.cache’.

‘-—quiet’

‘--silent’

\7ql
Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to ‘/dev/null’ (any error
messages will still be shown).

‘-—srcdir=DIR’
Look for the package’s source code in directory DIR. Usually
‘configure’ can determine that directory automatically.

‘--prefix=DIR’
Use DIR as the installation prefix. +note Installation Names::
for more details, including other options available for fine-tuning
the installation locations.

‘-—no-create’

\ ’

-n
Run the configure checks, but stop before creating any output
files.

‘configure’ also accepts some other, not widely useful, options. Run
‘configure --help’ for more details.

15

APPENDIX A. OTF2 INSTALL

16

Appendix B

Deprecated List

Global OTF2_AttributeList_AddString(OTF2_AttributeList xattributeList, OTF2_AttributeRef attribute,
Use OTF2_AttributeList_AddStringRef{) instead.

Global OTF2_AttributeList_GetString(const OTF2_AttributeList xattributeList, OTF2_AttributeRef attri
Use OTF2_AttributeList_GetStringRef{) instead.

Global OTF2_EventSizeEstimator_GetSizeOfOmpA cquireLockEvent(OTF2_EventSizeEstimator xestimat
In version 1.2

Global OTF2_EventSizeEstimator_GetSizeOfOmpForkEvent(OTF2_EventSizeEstimator xestimator)
In version 1.2

Global OTF2_EventSizeEstimator_GetSizeOfOmpJoinEvent(OTF2_EventSizeEstimator *estimator)
In version 1.2

Global OTF2_EventSizeEstimator_GetSizeOfOmpReleaseLockEvent(OTF2_EventSizeEstimator xestimat
In version 1.2

Global OTF2_EventSizeEstimator_GetSizeOfOmpTaskCompleteEvent(OTF2_EventSizeEstimator x«estim:
In version 1.2

Global OTF2_EventSizeEstimator_GetSizeOfOmpTaskCreateEvent(OTF2_EventSizeEstimator xestimato
In version 1.2

APPENDIX B. DEPRECATED LIST

Global OTF2_EventSizeEstimator_GetSizeOfOmpTaskSwitchEvent(OTF2_EventSizeEstimator xestimato
In version 1.2

Global OTF2_EvtWriter_OmpAcquireLock(OTF2_EvtWriter «writer, OTF2_AttributeList xattributeList
In version 1.2

Global OTF2_EvtWriter_ OmpFork(OTF2_EvtWriter «writer, OTF2_AttributeList xattributeList, OTF2_
In version 1.2

Global OTF2_EvtWriter_OmpJoin(OTF2_EvtWriter xwriter, OTF2_AttributeList xattributeList, OTF2_]
In version 1.2

Global OTF2_EvtWriter_OmpReleaseLock(OTF2_EvtWriter «writer, OTF2_AttributeList xattributeList,
In version 1.2

Global OTF2_EvtWriter_OmpTaskComplete(OTF2_EvtWriter «writer, OTF2_AttributeList xattributeLis
In version 1.2

Global OTF2_EvtWriter_OmpTaskCreate(OTF2_EvtWriter «writer, OTF2_AttributeList x«attributeList, (
In version 1.2

Global OTF2_EvtWriter_OmpTaskSwitch(OTF2_EvtWriter xwriter, OTF2_AttributeList xattributeList, (
In version 1.2

Group records_event In version 1.2
In version 1.2
In version 1.2
In version 1.2
In version 1.2
In version 1.2

In version 1.2

18

Appendix C

Module Documentation

C.1 Usage of OTF2 tools

Modules

* OTF?2 config tool

* OTF?2 print tool

* OTF2 snapshots tool
* OTF2 marker tool

* OTF2 estimator tool

C.2 OTF2 config tool

A call to otf2-config has the following syntax:

Usage: otf2-config [OPTION]... COMMAND
Commands :
—-—cflags prints additional compiler flags. They already contain

the include flags
-—cppflags prints the include flags for the OTF2 headers

—-—1libs prints the required libraries for linking
--1ldflags prints the required linker flags
--cc prints the C compiler name

—-—features <FEATURE-CATEGORY>
prints available features selected by <FEATURE-CATEGORY>.
Available feature categories:
* substrates
* compressions
* targets
——help prints this usage information

APPENDIX C. MODULE DOCUMENTATION

—--version prints the version number of the OTF2 package and
-—otf2-revision

prints the revision number of the OTF2 package
——common-revision

prints the revision number of the common package
—-—-interface-version

prints the interface version number

Options:
—-—target <TARGET>
displays the requested information for the given <TARGET>.
On non-cross compiling systems, the ’"backend’ target is ignored.

——backend equivalent to ’'—--target backend’ (deprecated)
-—-cuda specifies that the required flags are for the CUDA compiler
nvcce

C.3 OTF2 print tool

A call to oft2-print has the following syntax:

Usage: otf2-print [OPTION]... [-—-] ANCHORFILE
Print selected content of the OTF2 archive specified by ANCHORFILE.

Options:
-A, —--show-all print all output including definitions and anchor
file
-G, —--show-global-defs print all global definitions
-I, --show-info print information from the anchor file
-T, —--show-thumbnails print the headers from all thumbnails
-M, --show-mappings print mappings to global definitions
-C, ——-show-clock-offsets

print clock offsets to global timer
——timestamps=<FORMAT>
format of the timestamps. <FORMAT> is one of:

plain - no formatting is done (default)
offset - timestamps are relative to the global offset
(taken form the ClockProperties definition)
-L, ——location <LID> limit output to location <LID>
-s, ——step <N> step through output by steps of <N> events
——time <MIN> <MAX> limit output to events within time interval
—-—-system-tree output system tree to dot-file
—--silent only validate trace and do not print any events

——unwind-calling-context
Unwind the calling context for each calling context

sample
-d, ——debug turn on debug mode
-V, —-version print version information
-h, --help print this help information

20

C.4 OTF2 snapsheots tool

C.4 OTF2 snapshots tool

A call to oft2-snapshots has the following syntax:

Usage: otf2-snapshots [OPTION]... ANCHORFILE
Append snapshots to existing otf2 traces at given ’break’ timestamps.

Options:
-n, ——number <BREAKS> Number of breaks (distributed regularly)
if -p and -t are not set, the default for -n is 10
breaks.
-p <TICK_RATE> Create break every <TICK_RATE> ticks
if both, -n and -p are specified the one producing
more breaks wins.
——progress Brief mode, print progress information.
—--verbose Verbose mode, print break timestamps, i.e. snapshot
informations to stdout.
-V, —--version Print version information.
-h, --help Print this help information.

C.5 OTF2 marker tool

A call to oft2-marker has the following syntax:

Usage: otf2-marker [OPTION] [ARGUMENTS]... ANCHORFILE
Read or edit a marker file.

Options:

Print all markers sorted by group.

——def <GROUP> [<CATEGORY>]
Print all marker definitions of group <GROUP> or of
category <CATEGORY> from group <GROUP>.

—-—-defs-only Print only marker definitions.

——add-def <GROUP> <CATEGORY> <SEVERITY>
Add a new marker definition.

——add <GROUP> <CATEGORY> <TIME> <SCOPE> <TEXT>
Add a marker to an existing definition.

——remove—-def <GROUP> [<CATEGORY>]
Remove all marker classes of group <GROUP> or only the
category <CATEGORY> of group <GROUP>; and all according
markers.

——clear—-def <GROUP> [<CATEGORY>]
Remove all markers of group <GROUP> or only of category
<CATEGORY> of group <GROUP>.

—-—reset Reset all marker.
-V, —--version Print version information.
-h, —--help Print this help information.

Argument descriptions:
<GROUP>, <CATEGORY>, <TEXT>

21

APPENDIX C. MODULE DOCUMENTATION

Arbitrary strings.
<SEVERITY> One of:
* NONE
* LOW
* MEDIUM
* HIGH
<TIME> One of the following formats:
* <TIMESTAMP>
A valid timestamp inside the trace range
"global offset’ and ’'global offset’ + ’'trace
length’ .
* <TIMESTAMP>+<DURATION>
<TIMESTAMP> and <TIMESTAMP> + <DURATION> must be valid
timestamps inside the trace range ’'global
offset’ and ’'global offset’ + ’"trace length’.
* <TIMESTAMP-START>-<TIMESTAMP-END>
Two valid timestamps inside the trace range ’'global
offset’” and ’'global offset’ + 'trace length’, with
<TIMESTAMP-START> <= <TIMESTAMP-END>.
See the CLOCK_PROPERTIES definition with the help
of the ’otf2-print -G’ tool.
<SCOPE> [: <SCOPE-REF>]
The <SCOPE> must be one of:
GLOBAL
LOCATION:<LOCATION—-REF>
LOCATION_GROUP :<LOCATION-GROUP—-REF>
SYSTEM_TREE_NODE :<SYSTEM-TREE-NODE-REF>
GROUP : <GROUP—-REEF'>
* COMM:<COMMUNICATOR-REF>
<SCOPE-REF> must be a valid definition reference of
the specified scope. Use 'otf2-print -G’ for a list of
defined references.
There is no <SCOPE-REF> for <SCOPE> ’'GLOBAL’.
For a scope ’'GROUP’ the type of the referenced
group must be "OTF2_GROUP_TYPE_LOCATIONS’ or
"OTF2_GROUP_TYPE_COMM_LOCATIONS’ .

% ok X

C.6 OTF2 estimator tool

A call to oft2-estimator has the following syntax:

Usage: otf2-estimator [OPTION]...
This tool estimates the size of OTF2 events.
It will open a prompt to type in commands.

Options:
-V, —--version Print version information.
-h, --help Print this help information.
Commands :
list definitions Lists all known definition names.

22

C.7

OTF2 records

list events
list types
set <DEFINITION> <NUMBER>

get Timestamp
get Attributelist

get <EVENT> [ARGS...]

exit

[TYPES...

Lists all known event names.

Lists all known type names.

Specifies the number of definitions of a
type of defintions.

Prints the size an timestamp.

Prints the estimated size for an attribute
list with the given number of entries and
types.

Prints the estimated size of records for
<EVENT>.

Exits the tool.

This tool provides an command line interface to the estimator API of the OTF2

lib

rary.

It is based on an stream based protocol.

Commands are send to the

standard input stream of the program and the result is written to the standard
output stream of the program. All definition and event names are in the

canonical CamelCase form. Numbers are printed in decimal.
ALL_CAPS. See the output of the appropriate list commands. Arguments are
separated with an arbitrary number of white space.

everything after the first white space separator verbatim as an key,

The TYPES are in

The get commands use
which 1is

then printed as the result appended with the estimated size.

Her
def
and

cat
set
set
get
get
get
get
exi
EOC
Tim
Ent
Lea
Met

e is a simple example.
inition.

We want to know the size of an timestamp,

We have at most 4 region definitions and one metric

enter and leave event,

an metric event with 4 wvalues.

<<EOC | otf2-estimator
Region 4

Metric 1

Timestamp

Enter

Leave

Metric 4

t

estamp 9
er 3
ve 3
ric 4 44

C.7 OTF2 records

Modules

e List of all definition records
e List of all event records
¢ List of all marker records

* List of all snapshot records

23

APPENDIX C. MODULE DOCUMENTATION

C.8 List of all definition records

[SystermreeNodeProperty.

<fname

yyyyy

}a - - -[CartCoordinate:

InterruptGenerator:

Yrame

S C—

C.9 ClockProperties

Defines the timer resolution and time range of this trace. There will be no event
with a timestamp less than globalOf fset, and no event with timestamp greater
than (globalOffset + traceLength).

This definition is only valid as a global definition.

Attributes
uint64_t | timerReso- | Ticks per seconds.
lution
uint64_t . globalOff- | A timestamp smaller than all event times-
set | tamps.

24

C.11 ParadigmProperty

uint64_t trace- = A timespan which includes the timespan
Length between the smallest and greatest times-
tamp of all event timestamps.

See also

OTF2_GlobalDefWriter_WriteClockProperties()

Since

Version 1.0

C.10 Paradigm

Attests that the following parallel paradigm was available at the time when the
trace was recorded, and vice versa. Note that this does not attest that the paradigm
was used. For convenience, this also includes a proper name for the paradigm
and a classification. This definition is only allowed to appear at most once in the
definitions per Paradigm.

This definition is only valid as a global definition.

Attributes
OTF2_Paradigm paradigm The paradigm to attest.
OTF2_StringRef name | The name of the paradigm. References a
String definition.
OTF2_-| paradigm- The class of this paradigm.
ParadigmClass Class
See also

OTF2_GlobalDefWriter_WriteParadigm()

Since

Version 1.5

C.11 ParadigmProperty

Extensible annotation for the Paradigm definition.

25

APPENDIX C. MODULE DOCUMENTATION

The tuple (paradigm, property) must be unique.

This definition is only valid as a global definition.

Attributes
OTF2_Paradigm paradigm ' The paradigm to annotate.
OTF2_- property | The property.
ParadigmProperty
OTF2_Type type | The type of this property. Must match
with the defined type of the property.
OTF2_- attribute- | The value of this property.value
AttributeValue Value

See also

OTF2_GlobalDefWriter_WriteParadigmProperty()

Since

Version 1.5

C.12 MappingTable

Mapping tables are needed for situations where an ID is not globally known at
measurement time. They are applied automatically at reading.

This definition is only valid as a local definition.

Attributes
OTF2_- mapping- | Says to what type of ID the mapping table
MappingType Type | has to be applied.
const idMap | Mapping table.
OTF2_IldMapx

See also

OTF2_DefWriter_WriteMappingTable()

Since

Version 1.0

26

C.15 Attribute

C.13 ClockOffset

Clock offsets are used for clock corrections.

This definition is only valid as a local definition.

Attributes
OTF2_TimeStamp time | Time when this offset was determined.
int64_t offset | The offset to the global clock which was
determined at t ime.
double standard- | A possible standard deviation, which can
Deviation | be used as a metric for the quality of the
offset.
See also

OTF2_DefWriter_WriteClockOffset()

Since

Version 1.0

C.14 OTF2 StringRef String

The string definition.

Attributes

‘ const charx ‘ string ‘ The string, null terminated.

See also

OTF2_GlobalDefWriter_WriteString()
OTF2_DefWriter_WriteString()

Since

Version 1.0

C.15 OTF2_AttributeRef Attribute

The attribute definition.

27

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_StringRef name | Name of the attribute. References a
String definition.

OTF2_StringRef | description Description of the attribute. References a
String definition. Since version 1.4.
OTF2_Type type | Type of the attribute value.

See also

OTF2_GlobalDefWriter_Write Attribute()
OTF2_DefWriter_WriteAttribute()

Since

Version 1.0

C.16 OTF2 SystemTreeNodeRef SystemTreeNode

The system tree node definition.

Attributes

OTF2_StringRef name | Free form instance name of this node.
References a String definition.
OTF2_StringRef className | Free form class name of this node Refer-
ences a String definition.

OTF2_- parent | Parent id of this node. May be OTF2_-
SystemTreeNodeRef UNDEFINED_SYSTEM _TREE NODE
to indicate that there is no parent.
References a SystemTreeNode definition.

Supplements

SystemTreeNodeProperty
SystemTreeNodeDomain

See also

OTF2_GlobalDefWriter_WriteSystemTreeNode()
OTF2_DefWriter_WriteSystemTreeNode()

Since

Version 1.0

28

C.18 Location

C.17 OTF2_LocationGroupRef LocationGroup

The location group definition.

Attributes
OTF2_StringRef name | Name of the group. References a String
definition.
OTF2_- location- | Type of this group.
LocationGroupType . GroupType
OTF2_- sys- | Parent of this location group in the sys-
SystemTreeNodeRef | temTreePar- | tem tree. References a SystemTreeNode
ent | definition.

Supplements

LocationGroupProperty

See also

OTF2_GlobalDefWriter_WriteLocationGroup()
OTF2_DefWriter_WriteLocationGroup()

Since

Version 1.0

C.18 OTF2_LocationRef Location

The location definition.

Attributes
OTF2_StringRef name | Name of the location References a String
definition.
OTF2_- location- | Location type.
LocationType Type
uint64_t| numberO- Number of events this location has
fEvents | recorded.
OTF2_- location- | Location group which includes this loca-
LocationGroupRef Group | tion. References a LocationGroup defini-
tion.

APPENDIX C. MODULE DOCUMENTATION

Supplements

LocationProperty

See also

OTF2_GlobalDefWriter_WriteLocation()
OTF2_DefWriter_WriteLocation()

Since

Version 1.0

C.19 OTF2 RegionRef Region

The region definition.

Attributes

OTF2_StringRef name | Name of the region (demangled name if
available). References a String definition.
OTF2_StringRef canonical- | Alternative name of the region (e.g. man-
Name | gled name). References a String defini-
tion. Since version 1.1.
OTF2_StringRef description | A more detailed description of this re-
gion. References a String definition.
OTF2_RegionRole | regionRole Region role. Since version 1.1.
OTF2_Paradigm paradigm ' Paradigm. Since version 1.1.
OTF2_RegionFlag Region flags. Since version 1.1.
regionFlags
OTF2_StringRef sourceFile | The source file where this region was de-
clared. References a String definition.

uint32_t beginLi- Starting line number of this region in the
neNumber | source file.
uint32_t endLi- | Ending line number of this region in the

neNumber | source file.

See also

OTF2_GlobalDefWriter_WriteRegion()
OTF2_DefWriter_WriteRegion()

Since

Version 1.0

30

C.21 Callpath

C.20 OTF2 CallsiteRef Callsite

The callsite definition.

Attributes

OTF2_StringRef | sourceFile | The source file where this call was made.
References a String definition.

uint32_t lineNum- | Line number in the source file where this
ber | call was made.

OTF2_RegionRef | enteredRe- | The region which was called. References
gion | a Region definition.

OTF2_RegionRef | leftRegion | The region which made the call. Refer-
ences a Region definition.

See also

OTF2_GlobalDefWriter_WriteCallsite()
OTF2_DefWriter_WriteCallsite()

Since

Version 1.0

C.21 OTF2_CallpathRef Callpath

The callpath definition.
Attributes
OTF2_CallpathRef parent | The parent of this callpath. References a
Callpath definition.
OTF2_RegionRef region The region of this callpath. References a
Region definition.
See also

OTF2_GlobalDefWriter_WriteCallpath()
OTF2_DefWriter_WriteCallpath()

Since

Version 1.0

31

APPENDIX C. MODULE DOCUMENTATION

C.22 OTF2_GroupRef Group

The group definition.

Attributes

OTF2_StringRef

name

Name of this group References a String
definition.

OTF2_GroupType

groupType

The type of this group. Since version 1.2.

OTF2_Paradigm

paradigm

The paradigm of this communication
group. Since version 1.2.

OTF2_GroupFlag

groupFlags

Flags for this group. Since version 1.2.

uint32_t

num-
berOfMem-
bers

The number of members in this group.

uint64_t

members [
num-
berOfMem-
bers

]

The identifiers of the group members.

See also

OTF2_GlobalDefWriter_WriteGroup()
OTF2_DetWriter_WriteGroup()

Since

Version 1.0

C.23 OTF2 MetricMemberRef MetricMember

A metric is defined by a metric member definition. A metric member is always a
member of a metric class. Therefore, a single metric is a special case of a metric
class with only one member. It is not allowed to reference a metric member id in a
metric event, but only metric class IDs.

Attributes

OTF2_StringRef

name

Name of the metric. References a String
definition.

OTF2_StringRef

description

Description of the metric. References a
String definition.

32

C.23 MetricMember

OTF2_MetricType

metricType

Metric type: PAPI, etc.

OTF2_MetricMode

metric-
Mode

Metric mode: accumulative, fix, relative,
etc.

OTF2_Type

valueType

Type of the value. Only OTF2_TYPE_-
INT64, OTF2_TYPE _UINT64, and
OTF2_TYPE_DOUBLE are valid types.
If this metric member is recorded in an
Metric event, than this type and the type
in the event must match.

OTF2_MetricBase

metricBase

The recorded values should be handled in
this given base, either binary or decimal.
This information can be used if the value
needs to be scaled.

int64_t

exponent

The values inside the Metric events
should be scaled by the factor
base”‘exponent, to get the value in
its base unit. For example, if the metric
values come in as KiBi, than the base
should be OTF2_BASE_BINARY and the
exponent 10. Than the writer does not
need to scale the values up to bytes, but
can directly write the KiBi values into
the Metric event. At reading time, the
reader can apply the scaling factor to get
the value in its base unit, ie. in bytes.

OTF2_StringRef

unit

Unit of the metric. This needs to be the
scale free base unit, ie. "bytes", "oper-
ations", or "seconds". In particular this
unit should not have any scale prefix.

References a String definition.

See also

OTF2_GlobalDefWriter_WriteMetricMember()
OTF2_DefWriter_WriteMetricMember()

Since

Version 1.0

33

APPENDIX C. MODULE DOCUMENTATION

C.24 OTF2 _MetricRef MetricClass

For a metric class it is implicitly given that the event stream that records the metric
is also the scope. A metric class can contain multiple different metrics.

Attributes
uint8_t | numberOf- | Number of metrics within the set.
Metrics
OTF2_- met- List of metric members. References a
MetricMemberRef | ricMembers | MetricMember definition.
[
numberOf-
Metrics
]
OTF2_-| metricOc- | Defines occurrence of a metric set.
MetricOccurrence currence
OTF2_- What kind of locations will record this
RecorderKind | recorderKin¢ metric class, or will this metric class only
be recorded by metric instances. Since
version 1.2.
Supplements
MetricClassRecorder
See also

OTF2_GlobalDefWriter_WriteMetricClass()
OTF2_DefWriter_WriteMetricClass()

Since

Version 1.0

C.25 OTF2_MetricRef Metriclnstance

A metric instance is used to define metrics that are recorded at one location for
multiple locations or for another location. The occurrence of a metric instance is
implicitly of type OTF2_METRIC_ASYNCHRONOUS.

Attributes

34

C.26 Comm

OTF2_MetricRef

metricClass

The instanced MetricClass. This met-
ric class must be of kind OTF2_-
RECORDER_KIND_ABSTRACT. Refer-
ences a MetricClass definition.

OTF2_LocationRef recorder | Recorder of the metric: location ID. Ref-
erences a Location definition.
OTF2_MetricScope metric- | Defines type of scope: location, loca-
Scope | tion group, system tree node, or a generic
group of locations.
uint64_t scope | Scope of metric: ID of a location, loca-

tion group, system tree node, or a generic
group of locations.

See also

OTF2_GlobalDefWriter_WriteMetricInstance()
OTF2_DefWriter_WriteMetricInstance()

Since

Version 1.0

C.26 OTF2 CommRef Comm

The communicator definition.

Attributes

OTF2_StringRef

name

The name given by calling MPI_Comm_-
set_name on this communicator. Or the
empty name to indicate that no name was
given. References a String definition.

OTF2_GroupRef

group

The describing MPI group of this MPI
communicator

The group needs to be of type OTF2_-
GROUP_TYPE_COMM_GROUP or
OTF2_GROUP_TYPE_COMM_SELF.
References a Group definition.

OTF2_CommRef

parent

The parent MPI communicator from
which this communicator was created, if
any. Use OTF2_UNDEFINED_COMM
to indicate no parent. References a Comm
definition.

35

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_GlobalDefWriter_WriteComm()

OTF2_DefWriter_WriteComm()

Since

Version 1.0

C.27 OTF2_ParameterRef Parameter

The parameter definition.

Attributes

OTF2_StringRef

name

Name of the parameter (variable name
etc.) References a String definition.

OTF2_-
ParameterType

parameter-
Type

Type of the parameter, OTF2_-
ParameterType for possible types.

See also

OTF2_GlobalDefWriter_WriteParameter()
OTF2_DefWriter_WriteParameter()

Since

Version 1.0

C.28 OTF2 RmaWinRef RmaWin

A window defines the communication context for any remote-memory access op-

eration.

Attributes

OTF2_StringRef

name

Name, e.g. "GASPI Queue 1’, ’NVidia
Card 2’, etc.. References a String defini-
tion.

OTF2_CommRef

comim

Communicator object used to create the
window. References a Comm definition.

36

C.30 SystemTreeNodeProperty

See also

OTF2_GlobalDefWriter_WriteRmaWin()
OTF2_DefWriter_WriteRmaWin()

Since

Version 1.2

C.29 MetricClassRecorder

The metric class recorder definition.

Attributes

OTF2_MetricRef

metricClass

Parent MetricClass definition to which
this one is a supplementary definition.
References a MetricClass definition.

OTF?2_LocationRef

recorder

The location which recorded the refer-
enced metric class. References a Loca-
tion definition.

See also

OTF2_GlobalDefWriter_WriteMetricClassRecorder()
OTF2_DefWriter_WriteMetricClassRecorder()

Since

Version 1.2

C.30 SystemTreeNodeProperty

An arbitrary key/value property for a SystemTreeNode definition.

Attributes
OTF2_- sys- | Parent SystemTreeNode definition to
SystemTreeNodeRef | temTreeN- | which this one is a supplementary defini-
ode | tion. References a SystemTreeNode defi-
nition.
OTF2_StringRef name | Name of the property. References a

String definition.

37

APPENDIX C. MODULE DOCUMENTATION

OTF2_StringRef value | Property value. References a String defi-
nition.

See also

OTF2_GlobalDefWriter_WriteSystemTreeNodeProperty()
OTF2_DefWriter_WriteSystemTreeNodeProperty()

Since

Version 1.2

C.31 SystemTreeNodeDomain

The system tree node domain definition.

Attributes

OTF2_- sys- | Parent SystemTreeNode definition to
SystemTreeNodeRef | temTreeN- | which this one is a supplementary defini-
ode | tion. References a SystemTreeNode defi-

nition.
OTF2_- sys- | The domain in which the referenced Sys-
SystemTreeDomain | temTreeDo- | temTreeNode operates in.

main

See also

OTF2_GlobalDefWriter_WriteSystemTreeNodeDomain()
OTF2_DefWriter_WriteSystemTreeNodeDomain()

Since

Version 1.2

C.32 LocationGroupProperty

An arbitrary key/value property for a LocationGroup definition.

Attributes

38

C.33 LocationProperty

OTF2_- location- | Parent LocationGroup definition to
LocationGroupRef Group | which this one is a supplementary
definition. References a LocationGroup
definition.
OTF2_StringRef name | Name of the property. References a
String definition.
OTF2_StringRef value | Property value. References a String defi-

nition.

See also

OTF2_GlobalDefWriter_WriteLocationGroupProperty()
OTF2_DefWriter_WriteLocationGroupProperty()

Since

Version 1.3

C.33 LocationProperty

An arbitrary key/value property for a Location definition.

Attributes
OTF2_LocationRef location | Parent Location definition to which this
one is a supplementary definition. Refer-
ences a Location definition.
OTF2_StringRef name Name of the property. References a
String definition.
OTF2_StringRef value | Property value. References a String defi-

nition.

See also

OTF2_GlobalDefWriter_WriteLocationProperty()
OTF2_DefWriter_WriteLocationProperty()

Since

Version 1.3

39

APPENDIX C. MODULE DOCUMENTATION

C.34 OTF2_CartDimensionRef CartDimension

Each dimension in a Cartesian topology is composed of a global id, a name, its
size, and whether it is periodic or not.

Attributes
OTF2_StringRef name | The name of the cartesian topology di-
mension. References a String definition.
uint32_t size | The size of the cartesian topology dimen-
sion.
OTF2_-| cartPeriod- | Periodicity of the cartesian topology di-
CartPeriodicity icity | mension.
See also

OTF2_GlobalDefWriter_WriteCartDimension()
OTF2_DefWriter_WriteCartDimension()

Since

Version 1.3

C.35 OTF2_CartTopologyRef CartTopology

Each topology is described by a global id, a reference to its name, a reference to a
communicator, the number of dimensions, and references to those dimensions. The
topology type is defined by the paradigm of the group referenced by the associated
communicator.

Attributes

OTF2_StringRef name | The name of the topology. References a
String definition.
OTF2_CommRef| communi- | Communicator object used to create the
cator | topology. References a Comm definition.
uint8_t num- Number of dimensions.
berOfDi-
mensions
OTF2_- cartDi- | The dimensions of this topology. Refer-

CartDimensionRef | mensions [| ences a CartDimension definition.

num-
berOfDi-
mensions

1

=

C.36 CartCoordinate

Supplements

CartCoordinate

See also

OTF2_GlobalDefWriter_WriteCartTopology()
OTF2_DefWriter_WriteCartTopology()

Since

Version 1.3

C.36 CartCoordinate

Defines the coordinate of the location referenced by the given rank (w.r.t. the com-
municator associated to the topology) in the referenced topology.

Attributes
OTF2_-| cartTopol- | Parent CartTopology definition to which
CartTopologyRef ogy | this one is a supplementary definition.
References a CartTopology definition.
uint32_t rank | The rank w.r.t. the communicator associ-
ated to the topology referencing this co-
ordinate.
uint8_t num- | Number of dimensions.
berOfDi-
mensions
uint32_t Coordinates, indexed by dimension.
coordinates
[num-
berOfDi-
mensions
I
See also

OTF2_GlobalDefWriter_WriteCartCoordinate()
OTF2_DefWriter_WriteCartCoordinate()

Since

Version 1.3

41

APPENDIX C. MODULE DOCUMENTATION

C.37 OTF2_SourceCodeLocationRef SourceCodeLocation

The definition of a source code location as tuple of the corresponding file name and
line number.

‘When used to attach source code annotations to events, use the OTF2_AttributeList
with a Attribute definition named " SOURCE_CODE_LOCATION" and typed OTF2_
TYPE SOURCE_CODE_LOCATION.

Attributes
OTF2_StringRef file | The name of the file for the source code
location. References a String definition.
uint32_t lineNum- | The line number for the source code lo-
ber | cation.
See also

OTF2_GlobalDefWriter_WriteSourceCodeLocation()
OTF2_DefWriter_WriteSourceCodeLocation()

Since

Version 1.5

C.38 OTF2 CallingContextRef CallingContext

Attributes
uint64_t ip | Instruction pointer as the offset to the
start of the function.
OTF2_RegionRef region | The region. References a Region defini-
tion.
uint32_t offsetLi- | The line offset inside the region.
neNumber
OTF2_- parent | Parent id of this context. References a
CallingContextRef CallingContext definition.
See also

OTF2_GlobalDefWriter_WriteCallingContext()
OTF2_DefWriter_WriteCallingContext()

Since

Version 1.5

42

C.42 MeasurementOnOff

C.39 OTF2_InterruptGeneratorRef InterruptGenerator

Attributes
OTF2_StringRef name | The name of this interrupt generator. Ref-
erences a String definition.
OTF2_StringRef unit | The unit used by this interrupt generator
for the period. References a String defi-
nition.
uint64_t period | The period this interrupt generator gener-
ates interrupts.
See also

OTF2_GlobalDefWriter_WriteInterruptGenerator()
OTF2_DefWriter_WriteInterruptGenerator()

Since

Version 1.5

C.40 List of all event records

C.41 BufferFlush

This event signals that the internal buffer was flushed at the given time.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_TimeStamp stopTime | The time the buffer flush finished.

See also

OTF2_EvtWriter_BufferFlush()

Since

Version 1.0

C.42 MeasurementOnOff

This event signals where the measurement system turned measurement on or off.

43

APPENDIX C. MODULE DOCUMENTATION

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

OTF2_- measure- | Is the measurement turned on (OTF2_-
MeasurementMode | mentMode | MEASUREMENT_ON) or off (OTF2_-
MEASUREMENT _OFF)?

See also

OTF2_EvtWriter_MeasurementOnOff()

Since
Version 1.0
C.43 Enter

An enter record indicates that the program enters a code region.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_RegionRef region | Needs to be defined in a definition
record References a Region definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING REGION is available.

See also

OTF2_EvtWriter_Enter()

Since
Version 1.0
C.44 Leave

A leave record indicates that the program leaves a code region.

44

C.45 MpiSend

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RegionRef region | Needs to be defined in a definition
record References a Region definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_REGION is available.
See also

OTF2_EvtWriter_Leave()

Since
Version 1.0
C.45 MpiSend

A MpiSend record indicates that a MPI message send process was initiated (MPI_-
SEND). It keeps the necessary information for this event: receiver of the message,
communicator, and the message tag. You can optionally add further information
like the message length (size of the send buffer).

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
uint32_t receiver | MPI rank of receiver in
communicator.
OTF2_CommRef| communi- Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able.
uint32_t msgTag | Message tag
uint64_t Message length

msgLength

See also

OTF2_EvtWriter_MpiSend()

45

APPENDIX C. MODULE DOCUMENTATION

Since
Version 1.0
C.46 Mpilsend

A Mpilsend record indicates that a MPI message send process was initiated (MPI_-
ISEND). It keeps the necessary information for this event: receiver of the message,
communicator, and the message tag. You can optionally add further information
like the message length (size of the send buffer).

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
uint32_t receiver | MPI rank of receiver in

communicator.

OTF2_CommRef| communi- Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able.
uint32_t msgTag | Message tag
uint64_t Message length

msgl.ength
uint64_t| requestID | ID of the related request

See also

OTF2_EvtWriter_Mpilsend()

Since

Version 1.0

C.47 MpilsendComplete

Signals the completion of non-blocking send request.

Attributes

OTF2_LocationRef ‘ location | The location where this event happened.

46

C.49 MpiRecv

OTF2_TimeStamp | timestamp | The time when this event happened. ‘
uint64_t| requestID | ID of the related request ‘

See also

OTF2_EvtWriter_MpilsendComplete()

Since

Version 1.0

C.48 MpilrecvRequest

Signals the request of an receive, which can be completed later.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
uint64_t| requestID | ID of the requested receive

See also

OTF2_EvtWriter_MpilrecvRequest()

Since
Version 1.0
C.49 MpiRecv

A MpiRecv record indicates that a MPI message was received (MPI_RECYV). It
keeps the necessary information for this event: sender of the message, communi-
cator, and the message tag. You can optionally add further information like the
message length (size of the receive buffer).

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint32_t sender | MPI rank of sender in communicator.

47

APPENDIX C. MODULE DOCUMENTATION

OTF2_CommRef| communi- | Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint32_t msgTag | Message tag
uint64_t Message length
msgLength

See also

OTF2_EvtWriter_MpiRecv()

Since
Version 1.0
C.50 Mpilrecv

A Mpilrecv record indicates that a MPI message was received (MPI_IRECYV). It
keeps the necessary information for this event: sender of the message, communi-
cator, and the message tag. You can optionally add further information like the
message length (size of the receive buffer).

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint32_t sender | MPI rank of sender in communicator.
OTF2_CommRef| communi- | Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint32_t msgTag | Message tag
uint64_t Message length
msgLength
uint64_t | requestID | ID of the related request

See also

OTF2_EvtWriter_Mpilrecv()

48

C.52 MpiRequestCancell

ed

Since

Version 1.0

C.51 MpiRequestTest

This events appears if the program tests if a request has already completed but the

test failed.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint64_t | requestID | ID of the related request

See also

OTF2_EvtWriter_MpiRequestTest()

Since

Version 1.0

C.52 MpiRequestCan

celled

This events appears if the program canceled a request.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

uint64_t

requestID

ID of the related request

See also

OTF2_EvtWriter_MpiRequestCancelled()

Since

Version 1.0

49

APPENDIX C. MODULE DOCUMENTATION

C.53 MpiCollectiveBegin

A MpiCollectiveBegin record marks the begin of an MPI collective operation (MPI_-
GATHER, MPI_SCATTER etc.).

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

See also

OTF2_EvtWriter_MpiCollectiveBegin()

Since

Version 1.0

C.54 MpiCollectiveEnd

A MpiCollectiveEnd record marks the end of an MPI collective operation (MPI_-
GATHER, MPI_SCATTER etc.). It keeps the necessary information for this event:
type of collective operation, communicator, the root of this collective operation.
You can optionally add further information like sent and received bytes.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.

OTF2_CollectiveOp collec- | Determines which collective operation it
tiveOp | is.
OTF2_CommRef| communi- Communicator References a Comm defi-
cator | nition and will be mapped to the global
definition if a mapping table of type
OTF2_MAPPING_COMM is available.

uint32_t root | MPI rank of root in communicator.
uint64_t sizeSent | Size of the sent message.
uint64_t sizeRe- ' Size of the received message.

ceived

See also

OTF2_EvtWriter_MpiCollectiveEnd()

50

C.56 OmpJoin

Since

Version 1.0

C.55 OmpFork

An OmpFork record marks that an OpenMP Thread forks a thread team.

This event record is superseded by the ThreadFork event record and should not be
used when the ThreadFork event record is in use.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint32_t num- | Requested size of the team.
berOfRe-
quest-
edThreads

See also

OTF2_EvtWriter_OmpFork()

Since

Version 1.0

Deprecated

In version 1.2

C.56 OmpdJoin

An OmpJoin record marks that a team of threads is joint and only the master thread

continues execution.

This event record is superseded by the ThreadJoin event record and should not be
used when the ThreadJoin event record is in use.

Attributes

OTF2_LocationRef

location

The location where this event happened. ‘

OTF2_TimeStamp

timestamp

The time when this event happened. ‘

51

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_EvtWriter_OmpJoin()

Since

Version 1.0

Deprecated

In version 1.2

C.57 OmpAcquireLock

An OmpAcquireLock record marks that a thread acquires an OpenMP lock.

This event record is superseded by the ThreadAcquireLock event record and should
not be used when the ThreadAcquireLock event record is in use.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

uint32_t lockID | ID of the lock.

uint32_t acquisi- | A monotonically increasing number to
tionOrder | determine the order of lock acquisitions
(with unsynchronized clocks this is oth-
erwise not possible). Corresponding
acquire-release events have same num-
ber.

See also

OTF2_EvtWriter_OmpAcquireLock()

Since

Version 1.0

Deprecated

In version 1.2

52

C.59 OmpTaskCreate

C.58 OmpReleaseLock

An OmpReleaseLock record marks that a thread releases an OpenMP lock.

This event record is superseded by the ThreadReleaseLock event record and should
not be used when the ThreadReleaseLock event record is in use.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.

uint32_t lockID | ID of the lock.

uint32_t acquisi- A monotonically increasing number to
tionOrder | determine the order of lock acquisitions
(with unsynchronized clocks this is oth-
erwise not possible). Corresponding
acquire-release events have same num-
ber.

See also

OTF2_EvtWriter_OmpReleasel.ock()

Since

Version 1.0

Deprecated

In version 1.2

C.59 OmpTaskCreate

An OmpTaskCreate record marks that an OpenMP Task was/will be created in the
current region.

This event record is superseded by the ThreadlaskCreate event record and should
not be used when the ThreadlaskCreate event record is in use.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint64_t taskID | Identifier of the newly created task in-
stance.

53

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_EvtWriter_OmpTaskCreate()

Since

Version 1.0

Deprecated

In version 1.2

C.60 OmpTaskSwitch

An OmpTaskSwitch record indicates that the execution of the current task will be
suspended and another task starts/restarts its execution. Please note that this may
change the current call stack of the executing location.

This event record is superseded by the ThreadTaskSwitch event record and should
not be used when the ThreadTaskSwitch event record is in use.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.

uint64_t taskID | Identifier of the now active task instance.

See also

OTF2_EvtWriter_OmpTaskSwitch()

Since

Version 1.0

Deprecated

In version 1.2

C.61 OmpTaskComplete

An OmpTaskComplete record indicates that the execution of an OpenMP task has
finished.

54

C.62 Metric

This event record is superseded by the ThreadTaskComplete event record and should
not be used when the ThreadTaskComplete event record is in use.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint64_t taskID | Identifier of the completed task instance.

See also

OTF2_EvtWriter_OmpTaskComplete()

Since

Version 1.0

Deprecated

In version 1.2

C.62 Metric

A metric event is always stored at the location that recorded the metric. A metric
event can reference a metric class or metric instance. Therefore, metric classes
and instances share same ID space. Synchronous metrics are always located right
before the according enter and leave event.

Attributes

OTF2_LocationRef

location

The location where this event happened.

OTF2_TimeStamp

timestamp

The time when this event happened.

OTF2_MetricRef

metric

Could be a metric class or a metric in-
stance. References a MetricClass, or
a Metriclnstance definition and will be
mapped to the global definition if a map-
ping table of type OTF2_MAPPING_-
METRIC is available.

uint8_t

numberOf-
Metrics

Number of metrics with in the set.

OTF2_Type

typelDs [
numberOf-
Metrics

]

List of metric types. These types must
match that of the corresponding Met-
ricMember definitions.

55

APPENDIX C. MODULE DOCUMENTATION

OTF2_MetricValue | metricVal- List of metric values.
ues [
numberOf-
Metrics

]

See also

OTF2_EvtWriter_Metric()

Since

Version 1.0

C.63 ParameterString

A ParameterString record marks that in the current region, the specified string pa-
rameter has the specified value.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_-| parameter Parameter ID. References a Parameter
ParameterRef definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_PARAMETER is
available.
OTF2_StringRef string | Value: Handle of a string definition Ref-
erences a String definition and will be
mapped to the global definition if a map-
ping table of type OTF2_MAPPING_-
STRING is available.

See also

OTF2_EvtWriter_ParameterString()

Since

Version 1.0

56

C.65 ParameterUnsignedInt

C.64 Parameterint

A ParameterInt record marks that in the current region, the specified integer pa-
rameter has the specified value.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_-| parameter Parameter ID. References a Parameter
ParameterRef definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_PARAMETER is
available.
int64_t value | Value of the recorded parameter.

See also

OTF2_EvtWriter_ParameterInt()

Since

Version 1.0

C.65 ParameterUnsignedint

A ParameterUnsignedInt record marks that in the current region, the specified un-
signed integer parameter has the specified value.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_-| parameter | Parameter ID. References a Parameter
ParameterRef definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_PARAMETER is
available.
uint64_t value | Value of the recorded parameter.

See also

OTF2_EvtWriter_ParameterUnsignedInt()

57

APPENDIX C. MODULE DOCUMENTATION

Since

Version 1.0

C.66 RmaWinCreate

An RmaWinCreate record denotes the creation of an RMA window.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_RmaWinRef win | ID of the window created. References a
RmaWin definition and will be mapped to
the global definition if a mapping table
of type OTF2_MAPPING _RMA_WIN is
available.
See also

OTF2_EvtWriter_RmaWinCreate()

Since

Version 1.2

C.67 RmaWinDestroy

An RmaWinDestroy record denotes the destruction of an RMA window.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window destructed. References
a RmaWin definition and will be mapped
to the global definition if a mapping table
of type OTF2_MAPPING_RMA_WIN is
available.
See also

OTF2_EvtWriter_RmaWinDestroy()

58

C.69 RmaCollectiveEnd

Since

Version 1.2

C.68 RmaCollectiveBegin

An RmaCollectiveBegin record denotes the beginnig of a collective RMA opera-
tion.

Attributes

OTF2_LocationRef location | The location where this event happened. ‘
OTF2_TimeStamp | timestamp The time when this event happened. ‘

See also

OTF2_EvtWriter_RmaCollectiveBegin()

Since

Version 1.2

C.69 RmaCollectiveEnd

An RmaCollectiveEnd record denotes the end of a collective RMA operation.

Attributes

OTF2_LocationRef location | The location where this event happened.

OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_CollectiveOp collec- | Determines which collective operation it

tiveOp | is.
OTF2_-| syncLevel Synchronization level of this collective
RmaSyncLevel operation.

OTF2_RmaWinRef win | ID of the window used for this opera-

tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.

uint32_t root | Root process for this operation.

uint64_t | bytesSent | Bytes sent in operation.

uint64_t bytesRe- | Bytes receives in operation.
ceived

59

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_EvtWriter_RmaCollectiveEnd()

Since

Version 1.2

C.70 RmaGroupSync

An RmaGroupSync record denotes the synchronization with a subgroup of pro-
cesses on a window.

Attributes

OTF?2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.

OTF2_-| syncLevel Synchronization level of this collective
RmaSyncLevel operation.
OTF2_RmaWinRef win ID of the window used for this opera-

tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
OTF2_GroupRef group | Group of remote processes involved in
synchronization. References a Group
definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_GROUP is avail-
able.

See also

OTF2_EvtWriter_RmaGroupSync()

Since

Version 1.2

C.71 RmaRequestLock

An RmaRequestLock record denotes the time a lock was requested and with it the
earliest time it could have been granted. It is used to mark (possibly) non-blocking

60

C.72 RmaAcquireLock

lock request, as defined by the MPI standard.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _RMA_WIN is available.
uint32_t remote Rank of the locked remote process.
uint64_t lockld | ID of the lock acquired, if multiple locks
are defined on a window.
OTF2_LockType lockType | Type of lock acquired.

See also

OTF2_EvtWriter_RmaRequestLock()

Since

Version 1.2

C.72 RmaAcquireLock

An RmaAcquireLock record denotes the time a lock was acquired by the process.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint32_t remote Rank of the locked remote process.
uint64_t lockld | ID of the lock acquired, if multiple locks
are defined on a window.
OTF2_LockType lockType | Type of lock acquired.

61

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_EvtWriter_RmaAcquireL.ock()

Since

Version 1.2

C.73 RmaTryLock

An RmaTryLock record denotes the time of an unsuccessful attempt to acquire the
lock.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-

tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint32_t remote Rank of the locked remote process.
uint64_t lockld | ID of the lock acquired, if multiple locks
are defined on a window.
OTF2_LockType lockType | Type of lock acquired.

See also

OTF2_EvtWriter_RmaTryLock()

Since

Version 1.2

C.74 RmaReleaseLock

An RmaReleaseLock record denotes the time the lock was released.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

62

C.75 RmaSync

OTF2_RmaWinRef

win

ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _RMA_WIN is available.

uint32_t

remote

Rank of the locked remote process.

uint64_t

locklId

ID of the lock released, if multiple locks
are defined on a window.

See also

OTF2_EvtWriter_RmaReleaseLock()

Since

Version 1.2

C.75 RmaSync

An RmaSync record denotes the direct synchronization with a possibly remote

process.
Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint32_t remote | Rank of the locked remote process.
OTF?2_- syncType | Type of synchronization.
RmaSyncType

See also

OTF2_EvtWriter_RmaSync()

Since

Version 1.2

63

APPENDIX C. MODULE DOCUMENTATION

C.76 RmaWaitChange
An RmaWaitChange record denotes the change of a window that was waited for.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _RMA_WIN is available.

See also

OTF2_EvtWriter_RmaWaitChange()

Since
Version 1.2
C.77 RmaPut

An RmaPut record denotes the time a put operation was issued.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _RMA_WIN is available.
uint32_t remote = Rank of the target process.
uint64_t bytes | Bytes sent to target.
uint64_t ID used for matching the corresponding
matchingld | completion record.
See also

OTF2_EvtWriter_RmaPut()

64

C.79 RmaAtomic

Since
Version 1.2
C.78 RmaGet

An RmaGet record denotes the time a get operation was issued.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint32_t remote Rank of the target process.
uint64_t bytes | Bytes received from target.
uint64_t ID used for matching the corresponding
matchingld | completion record.

See also

OTF2_EvtWriter_RmaGet()

Since

Version 1.2

C.79 RmaAtomic

An RmaAtomic record denotes the time a atomic operation was issued.

Attributes

OTF2_LocationRef

location

The location where this event happened.

OTF2_TimeStamp

The time when this event happened.

OTF2_RmaWinRef

timestamp
win

ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.

65

APPENDIX C. MODULE DOCUMENTATION

uint32_t remote Rank of the target process.
OTF2_- type | Type of atomic operation.
RmaAtomicType

uint64_t| bytesSent | Bytes sent to target.

uint64_t bytesRe- | Bytes received from target.
ceived
uint64_t ID used for matching the corresponding
matchingld | completion record.

See also

OTF2_EvtWriter_RmaAtomic()

Since

Version 1.2

C.80 RmaOpCompleteBlocking

An RmaOpCompleteBlocking record denotes the local completion of a blocking
RMA operation.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint64_t ID used for matching the corresponding
matchingld | RMA operation record.
See also

OTF2_EvtWriter_RmaOpCompleteBlocking()

Since

Version 1.2

66

C.82 RmaOpTest

C.81 RmaOpCompleteNonBlocking

An RmaOpCompleteNonBlocking record denotes the local completion of a non-
blocking RMA operation.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint64_t ID used for matching the corresponding
matchingld | RMA operation record.

See also

OTF2_EvtWriter_RmaOpCompleteNonBlocking()

Since

Version 1.2

C.82 RmaOpTest

An RmaOpTest record denotes that a non-blocking RMA operation has been tested
for completion unsuccessfully.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint64_t ID used for matching the corresponding
matchingld RMA operation record.

67

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_EvtWriter_RmaOpTest()

Since

Version 1.2

C.83 RmaOpCompleteRemote

An RmaOpCompleteRemote record denotes the remote completion of an RMA
operation.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _RMA_WIN is available.
uint64_t ID used for matching the corresponding
matchingld | RMA operation record.

See also

OTF2_EvtWriter_RmaOpCompleteRemote()

Since

Version 1.2

C.84 ThreadFork

An ThreadFork record marks that an thread forks a thread team.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_Paradigm model | The threading paradigm this event took
place.

68

C.86 ThreadTeamBegin

uint32_t num- Requested size of the team.
berOfRe-
quest-
edThreads

See also

OTF2_EvtWriter_ThreadFork()

Since

Version 1.2

C.85 ThreadJoin

An ThreadJoin record marks that a team of threads is joint and only the master
thread continues execution.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_Paradigm model | The threading paradigm this event took
place.
See also

OTF2_EvtWriter_ThreadJoin()

Since

Version 1.2

C.86 ThreadTeamBegin

The current location enters the specified thread team.

Attributes

OTF2_LocationRef location | The location where this event happened. \
OTF2_TimeStamp | timestamp The time when this event happened. ‘

69

APPENDIX C. MODULE DOCUMENTATION

OTF2_CommRef Thread team References a Comm defini-
threadTeam | tion and will be mapped to the global def-
inition if a mapping table of type OTF2_-
MAPPING_COMM is available.

See also

OTF2_EvtWriter_ThreadTeamBegin()

Since

Version 1.2

C.87 ThreadTeamEnd

The current location leaves the specified thread team.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_CommRef Thread team References a Comm defini-
threadTeam | tion and will be mapped to the global def-
inition if a mapping table of type OTF2_-
MAPPING _COMM is available.

See also

OTF2_EvtWriter_ThreadTeamEnd()

Since

Version 1.2

C.88 ThreadAcquireLock

An ThreadAcquireLock record marks that a thread acquires an lock.

Attributes

‘ OTF2_LocationRef ‘ location | The location where this event happened.

70

C.89 ThreadReleaseLock

OTF2_TimeStamp

timestamp

The time when this event happened.

OTF2_Paradigm

model

The threading paradigm this event took
place.

lockID

ID of the lock.

acquisi-
tionOrder

A monotonically increasing number to
determine the order of lock acquisitions
(with unsynchronized clocks this is oth-
erwise not possible). Corresponding
acquire-release events have same num-
ber.

See also

OTF2_EvtWriter_Thread AcquireLock()

Since

Version 1.2

C.89 ThreadReleaseLock

An ThreadReleaseLock record marks that a thread releases an lock.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

OTF2_Paradigm

model

The threading paradigm this event took
place.

lockID

ID of the lock.

acquisi-
tionOrder

A monotonically increasing number to
determine the order of lock acquisitions
(with unsynchronized clocks this is oth-
erwise not possible). Corresponding
acquire-release events have same num-
ber.

See also

OTF2_EvtWriter_ThreadReleaselLock()

71

APPENDIX C. MODULE DOCUMENTATION

Since

Version 1.2

C.90 ThreadTaskCreate

An ThreadTaskCreate record marks that an task in was/will be created and will be
processed by the specified thread team.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_CommRef Thread team References a Comm defini-
threadTeam | tion and will be mapped to the global def-
inition if a mapping table of type OTF2_-
MAPPING_COMM is available.

uint32_t creat- Creating thread of this task.
ingThread
uint32_t genera- | Thread-private generation number of

tionNumber | task’s creating thread.

See also

OTF2_EvtWriter_ThreadTaskCreate()

Since

Version 1.2

C.91 ThreadTaskSwitch

An ThreadTaskSwitch record indicates that the execution of the current task will be
suspended and another task starts/restarts its execution. Please note that this may
change the current call stack of the executing location.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

72

C.92 ThreadTaskComplete

OTF2_CommRef

threadTeam

Thread team References a Comm defini-
tion and will be mapped to the global def-
inition if a mapping table of type OTF2_-
MAPPING_COMM is available.

creat-
ingThread

Creating thread of this task.

genera-
tionNumber

Thread-private generation number of
task’s creating thread.

See also

OTF2_EvtWriter_ThreadTaskSwitch()

Since

Version 1.2

C.92 ThreadTaskComplete

An ThreadTaskComplete record indicates that the execution of an OpenMP task

has finished.
Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_CommRef Thread team References a Comm defini-
threadTeam | tion and will be mapped to the global def-
inition if a mapping table of type OTF?2_-
MAPPING_COMM is available.
creat- Creating thread of this task.
ingThread
genera- | Thread-private generation number of
tionNumber | task’s creating thread.

See also

OTF2_EvtWriter_ThreadTaskComplete()

Since

Version 1.2

73

APPENDIX C. MODULE DOCUMENTATION

C.93 ThreadCreate

The location created successfully a new thread.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.

OTF2_CommRef thread- | The thread contingent. References a
Contingent | Comm definition and will be mapped to
the global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able.
uint64_t . sequence- | A threadContingent unique num-
Count | ber. The corresponding ThreadBegin

event does have the same number.

See also

OTF2_EvtWriter_ThreadCreate()

Since

Version 1.3

C.94 ThreadBegin

Marks the begin of a thread created by another thread.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.

OTF2_CommRef thread- | The thread contingent. References a
Contingent | Comm definition and will be mapped to
the global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able.
uint64_t . sequence- | A threadContingent unique num-
Count | ber. The corresponding ThreadCreate

event does have the same number.

74

C.96 ThreadEnd

See also

OTF2_EvtWriter_ThreadBegin()

Since

Version 1.3

C.95 ThreadWait

The location waits for the completion of another thread.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

OTF2_CommRef thread- | The thread contingent. References a
Contingent | Comm definition and will be mapped to
the global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able.
uint64_t| sequence- | A threadContingent unique num-
Count | ber. The corresponding ThreadEnd event

does have the same number.

See also

OTF2_EvtWriter_ThreadWait()

Since

Version 1.3

C.96 ThreadEnd

Marks the end of a thread.
Attributes
OTF2_LocationRef location | The location where this event happened. ‘
OTF2_TimeStamp | timestamp The time when this event happened. \

75

APPENDIX C. MODULE DOCUMENTATION

OTF2_CommRef thread- | The thread contingent. References a
Contingent | Comm definition and will be mapped to
the global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.

uint64_t . sequence- | A threadContingent unique num-
Count | ber. The corresponding ThreadWait event
does have the same number. OTF2_-
UNDEFINED_UINT64 in case no corre-
sponding ThreadWait event exists.

See also

OTF2_EvtWriter_ThreadEnd()

Since

Version 1.3

C.97 CallingContextSample

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF?2_- calling- | References a CallingContext definition
CallingContextRef Context | and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_CALLING _CONTEXT is
available.

76

C.98 List of all marker records

uint32_t unwind- | The unwindContext specifies the first
Distance | context whose ip(return adress) was
still marked since the last sample this
means that no progress was made in the
repsective region The last region that
was not returned from since the last
sample Is one stack level higher, but
may now be at at different line num-
ber OTF2_CallingContextRef unwind-
Context; However, instead of this we
specify the distance (number of inter-
mediate edges) between the calling con-
text and the unwind context Note: un-
windDistance=0 would mean no progress
in the leaf region since the last sample
which is unlikely If not available, UNDE-
FINED should be used.

OTF?2_- interrupt- | References a [InterruptGenerator def-
InterruptGeneratorR¢ Generator | inition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING INTERRUPT -
GENERATOR is available.

See also

OTF2_EvtWriter_CallingContextSample()

Since

Version 1.5

C.98 List of all marker records

C.99 OTF2 MarkerRef DefMarker

Group markers by name and severity.

Attributes
const charx marker- | Group name, e.g., "MUST", ...
Group
const charx marker- | Marker category, e.g., "Argument type
Category | error", ...

77

APPENDIX C. MODULE DOCUMENTATION

OTF2_- severity | The severity for these markers.
MarkerSeverity

See also

OTF2_MarkerWriter_WriteDefMarker()

Since

Version 1.2

C.100 Marker

A user marker instance, with implied time stamp.

Attributes

OTF2_TimeStamp timestamp | The time when this marker happened.
OTF2_TimeStamp duration | A possible duration of this marker. May

be 0.
OTF2_MarkerRef marker | Groups this marker by name and severity.
References a DefMarker definition.
OTF2_- scope | The type of scope of this marker instance.

MarkerScope
uint64_t scopeRef | The scope instance of this marker. De-

pends on scope.

const charx text | A textual description for this marker.

See also

OTF2_MarkerWriter_WriteMarker()

Since

Version 1.2

C.101 List of all snapshot records

C.102 SnapshotStart

This record marks the start of a snapshot.

78

C.103 SnapshotEnd

A snapshot consists of an timestamp and a set of snapshot records. All these snap-
shot records have the same snapshot time. A snapshot starts with one SnapshotStart
record and closes with one SnapshotEnd record. All snapshot records inbetween
are ordered by the origEvent Time, which are also less than the snapshot times-
tamp. Ie. The timestamp of the next event read from the event stream is greater or
equal to the snapshot time.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.

uint64_t num- | Number of snapshot event records in this
berOfRecord snapshot. Excluding the SnapshotEnd
record.

See also

OTF2_SnapWriter_SnapshotStart()

Since

Version 1.2

C.103 SnapshotEnd

This record marks the end of a snapshot. It contains the position to continue reading
in the event trace for this location. Use OTF2_EvtReader_Seek with contReadPos
as the position.

Attributes

OTF?2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
uint64_t| contRead- | Position to continue reading in the event
Pos | trace.

See also

OTF2_SnapWriter_SnapshotEnd()

Since

Version 1.2

79

APPENDIX C. MODULE DOCUMENTATION

C.104 MeasurementOnOffSnap

The last occurrence of an MeasurementOnOff event of this location, if any.

Attributes

OTF?2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.

Time
OTF2_- measure- | Is the measurement turned on (OTF2_-
MeasurementMode | mentMode | MEASUREMENT_ON) or off (OTF2_-
MEASUREMENT_OFF)?

See also

MeasurementOnOff event
OTF2_SnapWriter_MeasurementOnOff()

Since

Version 1.2

C.105 EnterSnap

This record exists for each Enfer event where the corresponding Leave event did
not occur before the snapshot.

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.

OTF2_TimeStamp

origEvent-
Time

The original time this event happended.

OTF2_RegionRef

region

Needs to be defined in a definition
record References a Region definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING REGION is available.

See also

Enter event

80

C.106 MpiSendSnap

OTF2_SnapWriter_Enter()

Since

Version 1.2

C.106 MpiSendSnap

This record exists for each MpiSend event where the matching receive message
event did not occur on the remote location before the snapshot. This could either
be an MpiRecv or an Mpilrecv event. Note that it may so, that a previous Mpilsend
with the same envelope than this one is neither completed not canceled yet, thus
the matching receive may already occurred, but the matching couldn’t be done yet.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.

Time

uint32_t receiver | MPI rank of receiver in

communicator.

OTF2_CommRef| communi- | Communicator ID. References a Comm

cator | definition and will be mapped to the

global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able.
uint32_t msgTag | Message tag
uint64_t Message length

msglength

See also

MpiSend event
OTF2_SnapWriter_MpiSend()

Since

Version 1.2

81

APPENDIX C. MODULE DOCUMENTATION

C.107 MpilsendSnap

This record exists for each Mpilsend event where an corresponding MpilsendCom-
plete or MpiRequestCancelled event did not occur on this location before the snap-
shot. Or the corresponding MpilsendComplete did occurred (the MpilsendCom-
pleteSnap record exists in the snapshot) but the matching receive message event
did not occur on the remote location before the snapshot. (This could either be
anMpiRecv or an Mpilrecv event.)

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.

Time

uint32_t receiver | MPI rank of receiver in

communicator.

OTF2_CommRef| communi- Communicator ID. References a Comm

cator | definition and will be mapped to the

global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able.
uint32_t msgTag | Message tag
uint64_t Message length

msgLength
uint64_t | requestID | ID of the related request

See also

Mpilsend event
OTF2_SnapWriter_Mpilsend()

Since

Version 1.2

C.108 MpilsendCompleteSnap

This record exists for each Mpilsend event where the corresponding MpilsendCom-
plete event occurred, but where the matching receive message event did not occur
on the remote location before the snapshot. (This could either be an MpiRecv or an
Mpilrecv event.) .

82

C.109 MpiRecvSnap

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.
Time
uint64_t| requestID | ID of the related request

See also

MpilsendComplete event
OTF2_SnapWriter_MpilsendComplete()

Since

Version 1.2

C.109 MpiRecvSnap

This record exists for each MpiRecv event where the matching send message event
did not occur on the remote location before the snapshot. This could either be
an MpiSend or an MpilsendComplete event. Or an MpilrecvRequest occurred be-
fore this event but the corresponding Mpilrecv event did not occurred before this
snapshot. In this case the message matching couldn’t performed yet, because the
envelope of the ongoing MpilrecvRequest is not yet known.

Attributes
OTF?2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time
uint32_t sender | MPI rank of sender in communicator.
OTF2_CommRef| communi- Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint32_t msgTag | Message tag
uint64_t Message length
msgLength

83

APPENDIX C. MODULE DOCUMENTATION

See also

MpiRecv event
OTF2_SnapWriter_MpiRecv()

Since

Version 1.2

C.110 MpilrecvRequestSnap

This record exists for each MpilrecvRequest event where an corresponding Mpi-
Irecv or MpiRequestCancelled event did not occur on this location before the snap-
shot. Or the corresponding Mpilrecv did occurred (the MpilrecvSnap record exists
in the snapshot) but the matching receive message event did not occur on the re-
mote location before the snapshot. This could either be an MpiRecv or an Mpilrecv
event.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.

Time

uint64_t | requestID | ID of the requested receive

See also

MpilrecvRequest event
OTF2_SnapWriter_MpilrecvRequest()

Since

Version 1.2

C.111 MpilrecvSnap

This record exists for each Mpilrecv event where the matching send message event
did not occur on the remote location before the snapshot. This could either be
an MpiSend or an MpilsendComplete event. Or an MpilrecvRequest occurred be-
fore this event but the corresponding Mpilrecv event did not occurred before this
snapshot. In this case the message matching couldn’t performed yet, because the
envelope of the ongoing MpilrecvRequest is not yet known.

84

C.112 MpiCollectiveBeginSnap

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.
Time
uint32_t sender | MPI rank of sender in communicator.
OTF2_CommRef| communi- Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint32_t msgTag | Message tag
uint64_t Message length
msglength
uint64_t| requestID | ID of the related request

See also

Mpilrecv event

OTF2_SnapWriter_Mpilrecv()

Since

Version 1.2

C.112 MpiCollectiveBeginSnap

Indicates that this location started a collective operation but not all of the partici-
pating locations completed the operation yet, including this location.

Attributes

OTF?2_LocationRef

location

The location of the snapshot.

OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time

See also

MpiCollectiveBegin event
OTF2_SnapWriter_MpiCollectiveBegin()

85

APPENDIX C. MODULE DOCUMENTATION

Since

Version 1.2

C.113 MpiCollectiveEndSnap

Indicates that this location completed a collective operation localy but not all of
the participating locations completed the operation yet. The corresponding Mpi-
CollectiveBeginSnap record is still in the snapshot though.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.

Time

OTF2_CollectiveOp collec- | Determines which collective operation it

tiveOp | is.

OTF2_CommRef| communi- | Communicator References a Comm defi-

cator | nition and will be mapped to the global

definition if a mapping table of type

OTF2_MAPPING_COMNM is available.

uint32_t root | MPI rank of root in communicator.
uint64_t sizeSent | Size of the sent message.
uint64_t sizeRe- Size of the received message.

ceived

See also

MpiCollectiveEnd event
OTF2_SnapWriter_MpiCollectiveEnd()

Since

Version 1.2

C.114 OmpForkSnap

This record exists for each OmpFork event where the corresponding OmpJoin did
not occurred before this snapshot.

86

C.115 OmpAcquireLockSnap

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.
Time
uint32_t num- Requested size of the team.
berOfRe-
quest-
edThreads
See also
OmpFork event

OTF2_SnapWriter_OmpFork()

Since

Version 1.2

C.115 OmpAcquireLockSnap

This record exists for each OmpAcquireLock event where the corresponding Om-
pReleaselLock did not occurred before this snapshot yet.

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.
Time
uint32_t lockID | ID of the lock.
uint32_t acquisi- A monotonically increasing number to
tionOrder | determine the order of lock acquisitions
(with unsynchronized clocks this is oth-
erwise not possible). Corresponding
acquire-release events have same num-
ber.
See also
OmpAcquireLock event

OTF2_SnapWriter_OmpAcquireLock()

87

APPENDIX C. MODULE DOCUMENTATION

Since

Version 1.2

C.116 OmpTaskCreateSnap

This record exists for each OmpTaskCreate event where the corresponding Omp-
TaskComplete event did not occurred before this snapshot. Neither on this location
nor on any other location in the current thread team.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.

Time

uint64_t taskID | Identifier of the newly created task in-

stance.

See also

OmpTaskCreate event
OTF2_SnapWriter_OmpTaskCreate()

Since

Version 1.2

C.117 OmpTaskSwitchSnap

This record exists for each OmpTaskSwitch event where the corresponding Omp-
TaskComplete event did not occurred before this snapshot. Neither on this location
nor on any other location in the current thread team.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.

Time

uint64_t taskID | Identifier of the now active task instance.

88

C.118 MetricSnap

See also

OmpTaskSwitch event
OTF2_SnapWriter_OmpTaskSwitch()

Since

Version 1.2

C.118 MetricSnap

This record exists for each referenced metric class or metric instance event this lo-
cation recorded metrics before and provides the last known recorded metric values.

As an exception for metric classes where the metric mode detontes an OTF2_-
METRIC VALUE_RELATIVE mode the value indicates the accumulation of all
previous metric values recorded.

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.

OTF2_TimeStamp

origEvent-
Time

The original time this event happended.

OTF2_MetricRef

metric

Could be a metric class or a metric in-
stance. References a MetricClass, or
a Metriclnstance definition and will be
mapped to the global definition if a map-
ping table of type OTF2_MAPPING_-
METRIC is available.

uint8_t

numberOf-
Metrics

Number of metrics with in the set.

OTF2_Type

typelDs [
numberOf-
Metrics

]

List of metric types. These types must
match that of the corresponding Met-
ricMember definitions.

OTF2_MetricValue

metricVal-
ues [
numberOf-
Metrics

]

List of metric values.

89

APPENDIX C. MODULE DOCUMENTATION

See also

Metric event
OTF2_SnapWriter_Metric()

Since

Version 1.2

C.119 ParameterStringSnap

This record must be included in the snapshot until the leave event for the enter
event occurs which has the greates timestamp less or equal the timestamp of this
record.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.

Time

OTF2_-| parameter Parameter ID. References a Parameter

ParameterRef definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_PARAMETER is
available.
OTF2_StringRef string | Value: Handle of a string definition Ref-
erences a String definition and will be
mapped to the global definition if a map-
ping table of type OTF2_MAPPING_-
STRING is available.

See also

ParameterString event
OTF2_SnapWriter_ParameterString()

Since

Version 1.2

90

C.121 ParameterUnsignedIntSnap

C.120 ParameterintSnap

This record must be included in the snapshot until the leave event for the enter
event occurs which has the greates timestamp less or equal the timestamp of this
record.

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.
Time
OTF2_-| parameter Parameter ID. References a Parameter
ParameterRef definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING _PARAMETER is
available.
int64_t value | Value of the recorded parameter.

See also

ParameterInt event
OTF2_SnapWriter_ParameterInt()

Since
Version 1.2
C.121 ParameterUnsignedintSnap

This record must be included in the snapshot until the leave event for the enter
event occurs which has the greates timestamp less or equal the timestamp of this
record.

Attributes

OTF?2_LocationRef

location

The location of the snapshot.

OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time
OTF2_-| parameter Parameter ID. References a Parameter
ParameterRef definition and will be mapped to the

global definition if a mapping table of
type OTF2_MAPPING _PARAMETER is

available.

APPENDIX C. MODULE DOCUMENTATION

‘ uint64_t ‘ value ‘ Value of the recorded parameter. ‘

See also
ParameterUnsignedInt event
OTF2_SnapWriter_ParameterUnsignedInt()
Since

Version 1.2

C.122 OTF2 usage examples

Modules

» Usage in writing mode - a simple example

* How to use the attribute list for writing additional attributes to event records
* Usage in reading mode - MPI example

» Usage in writing mode - MPI example

» Usage in reading mode - a simple example

C.123 Usage in writing mode - a simple example

This is a short example of how to use the OTF2 writing interface. This exam-

ple is available as source code in the file ot £2_writer_ example.c. See also
otf2_openmp_writer_example.candotf2_ pthread writer_ example.c
when writing with multiple threads.

First include the OTF2 header.

#include <otf2/otf2.h>

For this example an additional include statement is necessary.

#include <stdlib.h>

Furthermore this example uses a function delivering dummy timestamps. Real
world applications will use a timer like clock_gettime.

static OTF2_TimeStamp
get_time (void)

92

file:otf2_writer_example_8c-example.html
file:otf2_openmp_writer_example_8c-example.html
file:otf2_pthread_writer_example_8c-example.html

C.123 Usage in writing mode - a simple example

static uint64_t sequence;
return sequence+t+;

Define a pre and post flush callback. If no memory is left in OTF2’s internal mem-
ory buffer or the writer handle is closed a memory buffer flushing routine is trig-
gered. The pre flush callback is triggered right before a buffer flush. It needs
to return either OTF2_FLUSH to flush the recorded data to a file or OTF2_NO_-
FLUSH to supress flushing data to a file. The post flush callback is triggered right
after a memory buffer flush. It has to return a current timestamp which is recorded
to mark the time spend in a buffer flush. The callbacks are passed via a struct to
OTF2.

static OTF2_FlushType

pre_flush(voidx userData,
OTF2_FileType fileType,
OTF2_LocationRef location,
void#* callerData,
bool final)

return OTF2_FLUSH;

static OTF2_TimeStamp

post_flush(voidx userData,
OTF2_FileType fileType,
OTF2_LocationRef location)

return get_time();

static OTF2_FlushCallbacks flush_callbacks =
{
.otf2_pre_flush = pre_flush,
.otf2_post_flush post_flush

}i

Now everything is prepared to begin with the main program.
int

main(int argc,
charxx argv)

Create new archive handle.

OTF2_Archivex archive = OTF2_Archive_Open("ArchivePath",
"ArchiveName",

93

APPENDIX C. MODULE DOCUMENTATION

OTF2_FILEMODE_WRITE,
1024 « 1024 /» event chunk size */

4 x 1024 % 1024 /% def chunk size
*/l

OTF2_SUBSTRATE_POSIX,

OTF2_COMPRESSION_NONE) ;

Set the previously defined flush callbacks.

OTF2_Archive_SetFlushCallbacks (archive, &flush_callbacks, NULL);

We will operate in an serial context.

OTF2_Archive_SetSerialCollectiveCallbacks (archive);

Now we can create the event files. Though physical files aren’t created yet.

OTF2_Archive_OpenEvtFiles (archive);

Get a local event writer for location O.

OTF2_EvtWriterx evt_writer = OTF2_Archive_GetEvtWriter (archive, 0);

Write an enter and a leave record for region O to the local event writer.

OTF2_EvtWriter_Enter (evt_writer,

NULL,

get_time (),

0 /x region x/);
OTF2_EvtWriter_Leave (evt_writer,

NULL,

get_time (),

0 /* region x/);

Now close the event writer, before closing the event files collectivly.

OTF2_Archive_CloseEvtWriter (archive, evt_writer);

After we wrote all of the events we close the event files again.

OTF2_Archive_CloseEvtFiles (archive);

94

C.123 Usage in writing mode - a simple example

Now write the global definitions by getting an writer object for it.

OTF2_GlobalDefWriterx global_def_writer = OTF2_Archive_GetGlobalDefWriter (

chive);

We need to define the clock used for this trace and the overall timestamp range.

OTF2_GlobalDefWriter WriteClockProperties(global_def_writer,

1 /» 1 tick per second x/,

0 /x epoch =/,
2 /x length %/);

Now we can start writing the referenced definitions, starting with the strings.

OTF2_GlobalDefWriter_WriteString(
OTF2_GlobalDefWriter WriteString(
OTF2_GlobalDefWriter_WriteString(
OTF2_GlobalDefWriter_ WriteString(
OTF2_GlobalDefWriter WriteString(
name (e.g. mangled one)");
OTF2_GlobalDefWriter_WriteString(
)i
OTF2_GlobalDefWriter_WriteString(
OTF2_GlobalDefWriter_WriteString(

global_def_writer,
global_def_writer,
global_def_writer,
global_def_writer,
global_def_writer,

global_def_writer,

global_def_writer,
global_def_writer,

nn),.

~

~ ~

Sw N PO
~

~

"Master Process"
"Main Thread"
"MyFunction"

)i

)i

)i

ar

"Alternative function

5, "Computes something"

6, "MyHost"

7, "node"

Write definition for the code region which was just entered and left to the global

definition writer.

OTF2_GlobalDefWriter_WriteRegion (

global_def_writer,
0 / id «/,
3 /x region name

*/,

4 /% alternative name x/,
5 /% description */,
OTF2_REGION_ROLE_FUNCTION,
OTF2_PARADIGM_USER,
OTF2_REGION_FLAG_NONE,

0 /* source file =/,

0 /* begin lno x/,
0 /* end lno */);

Write the system tree including a definition for the location group to the global

definition writer.

OTF2_GlobalDefWriter WriteSystemTreeNode (global_def_ writer,
0 /% id =/,

6 /* name

*/,

7 /% class =/,

95

)i

)i

APPENDIX C. MODULE DOCUMENTATION

OTF2_UNDEFINED_SYSTEM TREE_NODE /=
parent x/);
OTF2_GlobalDefWriter WriteLocationGroup(global_def_writer,
0 /x id «/,
1 /* name =*/,
OTF2_LOCATION_GROUP_TYPE_PROCESS,
0 /+ system tree x/);

Write a definition for the location to the global definition writer.

OTF2_GlobalDefWriter_ WriteLocation(global_def_writer,
0 /* id =«/,
2 /x name =%/,
OTF2_LOCATION_TYPE_CPU_THREAD,
2 /x # events =/,
0 /+ location group */);

At the end, close the archive and exit.

OTF2_Archive_Close(archive);

return EXIT_SUCCESS;

To compile your program use a command like the following. Note that we need to
activate the C99 standard explicitly for GCC.

gcc -std=c99 ‘otf2-config --cflags‘' \
-c otf2_writer_example.c \
-0 otf2_writer_example.o

Now you can link your program with:

gcc otf2_writer_example.o \
‘otf2-config —--1ldflags‘' \
‘otf2-config —-libs \
-0 otf2_writer_example

C.124 How to use the attribute list for writing additional attributes to
event records

First create an attribute list handle.

OTF2_AttributelList attribute_list = OTF2_Attributelist_New () ;

96

C.125 OTF2 callbacks

To write your additional attribute to an event record add your attributes to an empty
attribute list right before you call the routine to write the event.

OTF2_AttributeValue attr_value;

attr_value.uint32 = attribute_value;

OTF2_AttributelList_AddAttribute(attribute_list, attribute_id,
OTF2_TYPE_UINT32, attr_value);

Then call the routine to write the event and pass the attribute list. The additional
attributes are added to the event record and will be appended when reading the
event later on. Please note: All attributes in the list will be added to event record.
So make sure that there are only those attributes in the attribute list that you actually
like to write. Please note: After writing the event record all attributes are removed
from the attribute list. So the attribute list is empty again. If you want to write
identical attributes to multiple events you have to add them each time new.

OTF2_EvtWriter_WriteEnter(..., attribute_list, ...);

C.125 OTF2 callbacks

Modules

* Controlling OTF2 flush behavior in writing mode
* Memory pooling for OTF2

* Operating OTF2 in an collective context

* Operating OTF2 in a multi-threads context

C.126 Controlling OTF2 flush behavior in writing mode

Data Structures

e struct OTF2_FlushCallbacks
Structure holding the flush callbacks.

Typedefs

* typedef OTF2_TimeStamp(x OTF2_PostFlushCallback)(void xuserData, OTF2_-
FileType fileType, OTF2_LocationRef location)
Definition for the post flush callback.
¢ typedef OTF2_FlushType(x OTF2_PreFlushCallback)(void xuserData, OTF2_-
FileType fileType, OTF2_LocationRef location, void *callerData, bool fi-
nal)

Definition for the pre flush callback.

97

APPENDIX C. MODULE DOCUMENTATION

C.126.1 Detailed Description

The flushing behavior from OTF2 can be controlled via callbacks. Calling OTF2_-
Archive_SetFlushCallbacks is mandatory when writing and erroneous when read-

ing an archive.

The pre-flush callback decides whether an flush should actually happen. When
missing, the default is not to flush any data for event writers, all others will flush
there data by default.

The post-flush callback is used to decide whether an buffer flush record should be
written after the flush finished. This only applies to event writers.

C.126.2 Typedef Documentation

C.126.2.1 typedef OTF2_TimeStamp(+ OTF2_PostFlushCallback)(void
xuserData, OTF2_FileType fileType, OTF2_LocationRef location)

Definition for the post flush callback.

This callback is triggered right after flushing the recorded data into file when run-
ning out of memory. The main function of this callback is to provide a timestamp
for the end of flushing data into a file. So an according record can be written

correctly.

Parameters

userData

Data passed to the call OTF2_Archive_SetFlushCallbacks.

fileType

The file type for which the flush has happened.

location

The location ID of the writer for which the flush has happened (for file
types without an ID this is OTF2_UNDEFINED_LOCATION).

Returns

Returns a timestamp for the end of flushing data into a file.

C.126.2.2 typedef OTF2_FlushType(x OTF2_PreFlushCallback)(void xuserData,
OTF2_FileType fileType, OTF2_LocationRef location, void callerData,
bool final)

Definition for the pre flush callback.

This callback is triggered right before flushing the recorded data into file when
running out of memory.

98

C.127 Memory pooling for OTF2

Parameters

userData

Data passed to the call OTF2_Archive_SetFlushCallbacks.

fileType

The type of file for what this buffer holds data.

location

The location id for what this buffer holds data. This is only valid for
files of type OTF2_FILETYPE _LOCAL_DEFS or OTF2_FILETYPE_-
EVENTS. For other files this is OTF2_UNDEFINED _LOCATION. A
special case exists for files of type OTF2_FILETYPE_EVENTS in
writing mode. The location ID may still be OTF2_UNDEFINED_-
LOCATION. In this case if the application wants to write the data from
the buffer into the file, the application needs to provide a valid loca-
tion ID via a call to OTF2_EvtWriter_SetLocationID() and utilizing the
callerData argument.

callerData

Depending of the fileType, this can be an OTF2_EvtWriter, OTF2_-
GlobalDefWriter, OTF2_DefWriter.

final

Indicates whether this is the final flush when closing the writer objects.

Returns

Returns OTF2_FLUSH or OTF2_NO_FLUSH.

C.127 Memory pooling for OTF2

Data Structures

¢ struct OTF2_MemoryCallbacks

Structure holding the memory callbacks.

Typedefs

* typedef void *(x OTF2_MemoryAllocate)(void *userData, OTF2_FileType
fileType, OTF2_LocationRef location, void xxperBufferData, uint64_t chunk-

Size)

Function pointer for allocating memory for chunks.

¢ typedef void(* OTF2_MemoryFreeAll)(void xuserData, OTF2_FileType file-
Type, OTF2_LocationRef location, void sxperBufferData, bool final)

Function pointer to release all allocated chunks.

C.127.1 Detailed Description

It is possible to provide memory for the record chunks to OTF2 via this callback
interface. It is only used for writing. The default memory pool has a size of 128
MiB per writer.

99

APPENDIX C. MODULE DOCUMENTATION

Note that these callbacks must be thread safe. They are not protected by the locking
callbacks.

C.127.2 Typedef Documentation

C.127.2.1 typedef voidx(* OTF2_MemoryAllocate)(void «userData,
OTF2_FileType fileType, OTF2_LocationRef location, void
+xperBufferData, uint64_t chunkSize)

Function pointer for allocating memory for chunks.

Please note: Do not use this feature if you do not really understand it. The OTF2
library is not able to do any kind of checks to validate if your memory manage-
ment works properly. If you do not use it correctly OTF2’s behavior is undefined
including dead locks and all that nasty stuff.

This function must return a pointer to a valid allocated memory location (just like
malloc). This memory location must be of exact same size as the parameter ’chunk-
Size’ provided with OTF2_Archive_Open().

Parameters

userData | Data passed to the call OTF2_Archive_SetMemoryCallbacks.

fileType | The file type for which the chunk is requested.

types without an ID this is OTF2_UNDEFINED_LOCATION).

location ' The location ID of the writer for which the flush has happened (for file

Data | NULL.

perBuffer- | A writable pointer to store callee data. For the first call this will be

chunkSize | The size of the requested chunk.

Returns

Returns a the allocated memory on success, NULL if an error occurs.

C.127.2.2 typedef void(* OTF2_MemoryFreeAll)(void xuserData, OTF2_FileType
fileType, OTF2_LocationRef location, void :xperBufferData, bool final)

Function pointer to release all allocated chunks.

Please note: Do not use this feature if you do not really understand it. The OTF2
library is not able to do any kind of checks to validate if your memory manage-
ment works properly. If you do not use it correctly OTF2’s behavior is undefined
including dead locks and all that nasty stuff.

This function must free all those memory locations that were allocated for a buffer
handle with the according allocate function. Please note: This is different from

100

C.128 Operating OTF2 in an collective context

a posix free(). You must free _all_ memory locations for that were allocated for
exactly this buffer handle.

Parameters

userData | Data passed to the call OTF2_Archive_SetMemoryCallbacks.
fileType | The file type for which free is requested.
location ' The location ID of the writer for which the flush has happened (for file
types without an ID this is OTF2_UNDEFINED_LOCATION).
perBuffer- | A writable pointer to store callee data. For the first call this will be
Data NULL.
final | Indicates whether this is the final free when closing the writer objects.
perBufferData should be handled than.

C.128 Operating OTF2 in an collective context

Data Structures

e struct OTF2_CollectiveCallbacks
Struct which holds all collective callbacks.

Typedefs

* typedef OTF2_CallbackCode(x OTF2_Collectives_Barrier)(void xuserData,
OTF2_CollectiveContext *commContext)

Performs an barrier collective on the given communication context.
¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Bcast)(void sxuserData,
OTF2_CollectiveContext xcommContext, void *xdata, uint32_t numberEle-
ments, OTF2_Type type, uint32_t root)

Performs an broadcast collective on the given communication context.
¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Createl.ocalComm)(void
suserData, OTF2_CollectiveContext xxlocalCommContext, OTF2_CollectiveContext
xglobalCommContext, uint32_t globalRank, uint32_t globalSize, uint32_-
t localRank, uint32_t localSize, uint32_t fileNumber, uint32_t numberOf-
Files)
Create a new disjoint partitioning of the the globalCommContext communica-
tion context. numberOfFiles denotes the number of the partitions. fileNumber
denotes in which of the partitions this OTF2_Archive should belong. localSize
is the size of this partition and localRank the rank of this OTF2_Archive in the
partition.
* typedef OTF2_CallbackCode(x OTF2_Collectives_FreeLocalComm)(void
sxuserData, OTF2_CollectiveContext xlocalCommContext)

101

APPENDIX C. MODULE DOCUMENTATION

Destroys the communication context previous created by the OTF2_Collectives_-
CreateLocalComm callback.

* typedef OTF2_CallbackCode(x OTF2_Collectives_Gather)(void xuserData,
OTF2_CollectiveContext xcommContext, const void xinData, void xoutData,
uint32_t numberElements, OTF2_Type type, uint32_t root)

Performs an gather collective on the given communication context where each

ranks contribute the same number of elements. outData is only valid at rank
root.

¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Gatherv)(void xuserData,
OTF2_CollectiveContext *commContext, const void xinData, uint32_t in-
Elements, void xoutData, const uint32_t xoutElements, OTF2_Type type,
uint32_t root)
Performs an gather collective on the given communication context where each

ranks contribute different number of elements. outData and outElements are
only valid at rank root.

* typedef OTF2_CallbackCode(x OTF2_Collectives_GetRank)(void *userData,
OTF2_CollectiveContext xcommContext, uint32_t xrank)
Returns the rank of this OTF2_Archive objects in this communication context. A
number between 0 and one less of the size of the communication context.
* typedef OTF2_CallbackCode(x OTF2_Collectives_GetSize)(void xuserData,
OTF2_CollectiveContext xcommContext, uint32_t xsize)
Returns the number of OTF2_Archive objects operating in this communication
context.
* typedef void(x OTF2_Collectives_Release)(void xuserData, OTF2_CollectiveContext
xglobal CommContext, OTF2_CollectiveContext xlocalCommContext)
Optionally called in OTF2_Archive_Close or OTF2_Reader_Close respectively.
¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Scatter)(void xuserData,
OTF2_CollectiveContext xcommContext, const void xinData, void xoutData,
uint32_t numberElements, OTF2_Type type, uint32_t root)
Performs an scatter collective on the given communication context where each
ranks contribute the same number of elements. inData is only valid at rank root.
¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Scatterv)(void xuserData,
OTF2_CollectiveContext xcommContext, const void xinData, const uint32_-
t xinElements, void *outData, uint32_t outElements, OTF2_Type type, uint32_-
t root)
Performs an scatter collective on the given communication context where each

ranks contribute different number of elements. inData and inElements are only
valid at rank root.

C.128.1 Detailed Description

To operate multiple OTF2_Archive objects in an collective context, the following
callbacks need to be implemented. These are mandatory, when writing an trace

102

C.128 Operating OTF2 in an collective context

file with multiple OTF2_Archive objects. For reading a set of serial callbacks are
provided (See OTF2_Archive_SetSerialCollectiveCallbacks and OTF2_Reader_-
SetSerialCollectiveCallbacks). The struct OTF2_CollectiveContext needs to be
declared too.

Only OTF2_Type of the integer and floating point category need to be considered
as values when the callbacks are called.

Except for the OTF2_Collectives_GetSize and OTF2_Collectives_GetRank call-
backs, the return value must always be the same for all participating tasks. In
particular all calls should either return OTF2_CALLBACK_SUCCESS or |OTF2_-
CALLBACK _SUCCESS, but it is undefined, if some of the calls return OTF2_-
CALLBACK_SUCCESS and other |OTF2_CALLBACK_SUCCESS.

The OTF2_Collectives_CreateLocalComm and OTF2_Collectives_FreeLocalComm
are ignored when writing and optional when reading, but than both are mandatory.
These are used to created the same local communication context as was given at
writing time, if possible.

On the contrary the localCommContext to OTF2_Archive_SetCollectiveCallbacks
is ignored when reading and optional (i.e., not NULL) when writing. It determines
the number of files to use when the SION substrate is used. these localCommCon-
text must be an disjoint partitioning of the used globalCommContext than.

The OTF2_Collectives_Release is optional and will be called as one of the last
actions before the OTF2_Archive or the OTF2_Reader will be closed.

If any collective callback returns !OTF2_CALLBACK_SUCCESS, than OTF2 re-
turns to the caller the error OTF2_ERROR_COLLECTIVE_CALLBACK.

C.128.2 Typedef Documentation

C.128.2.1 typedef OTF2_CallbackCode(x OTF2_Collectives_Barrier)(void
xuserData, OTF2_CollectiveContext xcommContext)

Performs an barrier collective on the given communication context.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

103

APPENDIX C. MODULE DOCUMENTATION

C.128.2.2 typedef OTF2_CallbackCode(x* OTF2_Collectives_Bcast)(void
xuserData, OTF2_CollectiveContext xcommContext, void *«data, uint32_t
numberElements, OTF2_Type type, uint32_t root)

Performs an broadcast collective on the given communication context.

Since
Version 1.3
Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.128.2.3 typedef OTF2_CallbackCode(x* OTF2_Collectives_-
CreateLocalComm)(void xuserData, OTF2_CollectiveContext
+xlocalCommContext, OTF2_CollectiveContext :«globalCommContext,
uint32_t globalRank, uint32_t globalSize, uint32_t localRank, uint32_t localSize,
uint32_t fileNumber, uint32_t numberOfFiles)

Create a new disjoint partitioning of the the globalCommContext communication
context. numberOfFiles denotes the number of the partitions. fileNumber denotes
in which of the partitions this OTF2_Archive should belong. localSize is the size
of this partition and localRank the rank of this OTF2_Archive in the partition.

Since
Version 1.3
Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.128.24 typedef OTF2_CallbackCode(x+ OTF2_Collectives_-
FreeLocalComm)(void xuserData, OTF2_CollectiveContext
xlocalCommContext)

Destroys the communication context previous created by the OTF2_Collectives_-
CreateLocalComm callback.

Since
Version 1.3
Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

104

C.128 Operating OTF2 in an collective context

C.128.2.5 typedef OTF2_CallbackCode(« OTF2_Collectives_Gather)(void
xuserData, OTF2_CollectiveContext xcommContext, const void xinData,
void xoutData, uint32_t numberElements, OTF2_Type type, uint32_t root)

Performs an gather collective on the given communication context where each
ranks contribute the same number of elements. outData is only valid at rank root.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.128.2.6 typedef OTF2_CallbackCode(x OTF2_Collectives_Gatherv)(void
xuserData, OTF2_CollectiveContext xcommContext, const void xinData,
uint32_t inElements, void outData, const uint32_t xoutElements, OTF2_Type
type, uint32_t root)

Performs an gather collective on the given communication context where each
ranks contribute different number of elements. outData and outElements are only
valid at rank root.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.128.2.7 typedef OTF2_CallbackCode(x OTF2_Collectives_GetRank)(void
xuserData, OTF2_CollectiveContext xcommContext, uint32_t xrank)

Returns the rank of this OTF2_Archive objects in this communication context. A
number between 0 and one less of the size of the communication context.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

105

APPENDIX C. MODULE DOCUMENTATION

C.128.2.8 typedef OTF2_CallbackCode(x OTF2_Collectives_GetSize)(void
xuserData, OTF2_CollectiveContext xcommContext, uint32_t xsize)

Returns the number of OTF2_Archive objects operating in this communication

context.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.128.2.9 typedef void(x* OTF2_Collectives_Release)(void «userData, OTF2_-
CollectiveContext «globalCommContext, OTF2_CollectiveContext

xlocalCommContext)
Optionally called in OTF2_Archive_Close or OTF2_Reader_Close respectively.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.128.2.10 typedef OTF2_CallbackCode(x OTF2_Collectives_Scatter)(void
xuserData, OTF2_CollectiveContext xcommContext, const void xinData,
void xoutData, uint32_t numberElements, OTF2_Type type, uint32_t root)

Performs an scatter collective on the given communication context where each
ranks contribute the same number of elements. inData is only valid at rank root.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

106

C.129 Operating OTF2 in a multi-threads context

C.128.2.11 typedef OTF2_CallbackCode(* OTF2_Collectives_Scatterv)(void
xuserData, OTF2_CollectiveContext xcommContext, const void xinData,
const uint32_t xinElements, void xoutData, uint32_t outElements, OTF2_Type
type, uint32_t root)

Performs an scatter collective on the given communication context where each
ranks contribute different number of elements. inData and inElements are only

valid at rank root.

Since

Version 1.3

Returns
OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.
C.129 Operating OTF2 in a multi-threads context

Data Structures

¢ struct OTF2_LockingCallbacks

Struct which holds all collective callbacks.

Typedefs

typedef OTF2_CallbackCode(x OTF2_Locking_Create)(void xuserData, OTF2_-
Lock *lock)

Creates a new locking object.
* typedef OTF2_CallbackCode(x OTF2_Locking_Destroy)(void sxuserData,
OTF2_Lock lock)
Destroys a locking object.
* typedef OTF2_CallbackCode(x OTF2_Locking_Lock)(void xuserData, OTF2_-
Lock lock)
Locks a locking object.
¢ typedef void(x OTF2_Locking_Release)(void xuserData)
Optionally called in OTF2_Archive_Close or OTF2_Reader_Close respectively.
* typedef OTF2_CallbackCode(x OTF2_Locking_Unlock)(void suserData,
OTF2_Lock lock)

Unlocks a locking object.

107

APPENDIX C. MODULE DOCUMENTATION

C.129.1 Detailed Description

The OTF2 objects OTF2_Archive and OTF2_Reader including all derived objects
from these are by default not thread safe. That means it is undefined behavior
to operate any of these objects concurrently by multiple threads. Note that two
independent OTF2_Archive or OTF2_Reader objects and there derived objects can
be operatated by multiple threads concurrently though.

It is necessary to register the following locking callbacks to make a OTF2_Archive
and OTF2_Reader and their derived objects thread safe. The created locking ob-
jects should have normal locking semantics, no recursive or nesting capability is
needed.

OTF2 provides two locking callbacks implementations for Pthread and OpenMP.

See the header files 0tf2/OTF2_Pthread_Locks.h and otf2/OTF2_OpenMP_Locks.h.

For a usage of these headers have a look into the installed usage examples ot £2_—

pthread writer example.candotf2_openmp_ writer_example.c.

If any locking callback returns |OTF2_CALLBACK_SUCCESS, than OTF2 returns
to the caller the error OTF2_ERROR_LOCKING CALLBACK.

C.129.2 Typedef Documentation

C.129.2.1 typedef OTF2_CallbackCode(+ OTF2_Locking_Create)(void
xuserData, OTF2_Lock xlock)

Creates a new locking object.

Parameters

userData | Value from paramter wuserData passed to OTF2_Archive_-

SetLockingCallbacks or OTF2_Reader_SetLockingCallbacks
spectively.

Ie-

‘ lock[out] | Reference to pointer to new lock object.

Since

Version 1.5

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

108

file:otf2_pthread_writer_example_8c-example.html
file:otf2_pthread_writer_example_8c-example.html
file:otf2_openmp_writer_example_8c-example.html

C.129 Operating OTF2 in a multi-threads context

C.129.2.2 typedef OTF2_CallbackCode(+ OTF2_Locking_Destroy)(void
xuserData, OTF2_Lock lock)

Destroys a locking object.

Parameters
userData | Value from paramter userData passed to OTF2_Archive_-
SetLockingCallbacks or OTF2_Reader_SetLockingCallbacks re-
spectively.
‘ lock | Lock object to destroy.
Since
Version 1.5
Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.129.2.3 typedef OTF2_CallbackCode(« OTF2_Locking_Lock)(void xuserData,

OTF2_Lock lock)

Locks a locking object.

Parameters
userData | Value from paramter userData passed to OTF2_Archive_-
SetLockingCallbacks or OTF2_Reader_SetLockingCallbacks re-
spectively.
‘ lock | Lock object to lock.
Since
Version 1.5
Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.129.2.4 typedef void(* OTF2_Locking Release)(void xuserData)

Optionally called in OTF2_Archive_Close or OTF2_Reader_Close respectively.

109

APPENDIX C. MODULE DOCUMENTATION

Since

Version 1.5

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.129.25 typedef OTF2_CallbackCode(+ OTF2_Locking_Unlock)(void
xuserData, OTF2_Lock lock)

Unlocks a locking object.

Parameters
userData | Value from paramter wuserData passed to OTF2_Archive_-
SetLockingCallbacks or OTF2_Reader_SetLockingCallbacks re-
spectively.
‘ lock | Lock object to unlock.
Since
Version 1.5
Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.130 Usage in reading mode - MPI example

This is a example of how to use the OTF2 reading interface with MPIL. It shows
how to define and register callbacks and how to use the provided MPI collective
callbacks to read all events of a given OTF2 archive in parallel. This example is

available as source code in the file ot £2_mpi_reader_example.c.

We start with inclusion of some standard headers.

#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>

And than include the MPI and OTF2 header.

#include <mpi.h>

110

file:otf2_mpi_reader_example_8c-example.html

C.130 Usage in reading mode - MPI example

#include <otf2/otf2.h>

Now prepare the inclusion of the <otf2/OTF2_MPI_Collectives.h>> header. As it
is an header-only interface, it needs some information about the used MPI enviri-
onment. In particular the MPI datatypes which match the C99 types uint64_t
and int 64_t. In case you have an MPI 3.0 conforming MPI implementation you
can skip this. If not, provide #define’s for the following macros prior the #include
statement. In this example, we asume an LP64 platform.

#if MPI_VERSION < 3

#define OTF2_MPI_UINT64_T MPI_UNSIGNED_LONG
#define OTF2_MPI_INT64_T MPI_LONG

fendif

After this preparatory step, we can include the <otf2/OTF2_MPI_Collectives.h>
header.

#include <otf2/0OTF2_MPI_Collectives.h>

The following section until desribing main is the same as in the Usage in reading
mode - a simple example.

Define an event callback for entering and leaving a region.

static OTF2_CallbackCode

Enter_print (OTF2_LocationRef location,
OTF2_TimeStamp time,
void#* userData,
OTF2_AttributelList* attributes,
OTF2_RegionRef region)
{
printf("Entering region %u at location %" PRIu64 " at time %" PRIu64
region, location, time);
return OTF2_CALLBACK_SUCCESS;
}
static OTF2_CallbackCode
Leave_print (OTF2_LocationRef location,
OTF2_TimeStamp time,
void# userData,
OTF2_AttributelList* attributes,
OTF2_RegionRef region)
{
printf("Leaving region %u at location %" PRIu64 " at time %" PRIu64

region, location, time);

return OTF2_CALLBACK_SUCCESS;

111

L \n"I

L \n",

APPENDIX C. MODULE DOCUMENTATION

The global definition file provides all location IDs that are included in the OTF2
trace archive. When reading the global defintions these location IDs must be col-
lected and stored by the user. Probably, the easiest way to do that is to use a C++
container.

struct vector

{
size_t capacity;
size_t size;
uint64_t members[];

}i

static OTF2_CallbackCode

GlobDeflLocation_Register (void= userData,
OTF2_LocationRef location,
OTF2_StringRef name,
OTF2_LocationType locationType,
uint6e4d_t numberOfEvents,

OTF2_LocationGroupRef locationGroup)
struct vectorx locations = userData;
if (locations->size == locations->capacity)

{
return OTF2_CALLBACK_INTERRUPT;

locations—->members|[locations—->size++] = location;

return OTF2_CALLBACK_SUCCESS;

Now everything is prepared to begin with the main program.

int
main(int argc,
charxx argv)

First initialize the MPI envirionment and query the size and rank.

MPI_Init (&argc, &argv);

int size;

MPI_Comm_size (MPI_COMM_WORLD, &size);
int rank;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

Create a new reader handle. The path to the OTF2 anchor file must be provided as
argument.

112

C.130 Usage in reading mode - MPI example

OTF2_Reader* reader = OTF2_Reader_Open("ArchivePath/ArchiveName.otf2");

Now we provide the OTF2 reader object the MPI collectives.

OTF2_MPI_Reader_SetCollectiveCallbacks (reader, MPI_COMM_WORLD);

OTF2 provides an API to query the number of locations prior reading the global
definitions. We use this to pre-allocate the storage for all locations.

uint64_t number_of_locations;
OTF2_Reader_GetNumberOfLocations (reader,
&number_of_locations);

struct vector* locations = malloc(sizeof(xlocations)

+ number_of_ locations

* sizeof (xlocations—->members));
locations—->capacity = number_of_locations;
locations—->size = 0;

All ranks need to read the global definitions to know the list of locations in the
trace. Get a global definition reader with the above reader handle as argument.

OTF2_GlobalDefReader* global_def_reader = OTF2_Reader_GetGlobalDefReader (rea
der);

Register the above defined global definition callbacks. All other definition call-
backs will be deactivated. And instruct the reader to pass the locations object to
each call of the callbacks.

OTF2_GlobalDefReaderCallbacks* global_def_callbacks =
OTF2_GlobalDefReaderCallbacks_New () ;
OTF2_GlobalDefReaderCallbacks_SetLocationCallback(global_def_callbacks,
&GlobDeflLocation_Register
)
OTF2_Reader_RegisterGlobalDefCallbacks (reader,
global_def_reader,
global_def_callbacks,
locations);
OTF2_GlobalDefReaderCallbacks_Delete(global_def_callbacks);

Read all global definitions. Everytime a location definition is read, the previosly
registered callback is triggered. In definitions_read the number of read
definitions is returned.

uint64_t definitions_read = 0;

OTF2_Reader_ReadAllGlobalDefinitions (reader,
global_def_reader,
&definitions_read);

113

APPENDIX C. MODULE DOCUMENTATION

After reading all global definitions all location IDs are stored in the generic con-
tainer ListOfLocations. After that, the locations that are suppossed to be
read are selected. We distribute the locations round-robin to all ranks in MPT -
COMM_WORLD. We need also to remember, whether this rank actually reads any
locations.

uint64_t number_of_locations_to_read = 0;

for (size_t i1 = 0; i < locations->size; i++)
{
if (locations—->members|[1] % size != rank)
{
continue;

}
number_of_locations_to_read++;
OTF2_Reader_SelectLocation(reader, locations->members|[1]);

When the locations are selected the according event and definition files can be
opened. Note that the local definition files are optional, thus we need to remember
the success of this call.

bool successful_open_def_ _files =
OTF2_Reader_OpenDefFiles(reader) == OTF2_SUCCESS;
OTF2_Reader_OpenEvtFiles (reader);

When the files are opened the event and defintion reader handle can be requested.
We distribute the locations round-robin to all ranks in MPI_COMM_WORLD. To
apply mapping tables stored in the local definitions, the local defintions must be
read. Though the existence of these files are optional. The call to OTF2_Reader_-
GetEvtReader is mandatory, but the result is unused.

for (size_t i1 = 0; i < locations->size; i++)
{
if (locations—>members|[1] % size != rank)
{
continue;
}
if (successful_open_def_files)

{
OTF2_DefReaderx def_reader =
OTF2_Reader_GetDefReader (reader, locations->members[1]);
if (def_reader)
{
uinto64_t def_reads = 0;
OTF2_Reader_ReadAllLocalDefinitions(reader,
def_reader,
&def_reads);
OTF2_Reader_CloseDefReader (reader, def_reader);

114

C.130 Usage in reading mode - MPI example

OTF2_EvtReaderx evt_reader =
OTF2_Reader_GetEvtReader (reader, locations->members|[i]);

The definition files can now be closed, if it was successfully opened in the first
place.

if (successful_open_def_ files)

{
OTF2_Reader_CloseDefFiles (reader);

Only these ranks which actually read events for locations, can now open a new
global event reader. This global reader automatically contains all previously opened
local event readers.

if (number_of_ locations_to_read > 0)

{
OTF2_GlobalEvtReaderx global_evt_reader = OTF2_Reader_GetGlobalEvtReader (
reader);

Register the above defined global event callbacks. All other global event callbacks
will be deactivated.

OTF2_GlobalEvtReaderCallbacks* event_callbacks =
OTF2_GlobalEvtReaderCallbacks_New () ;
OTF2_GlobalEvtReaderCallbacks_SetEnterCallback (event_callbacks,
&Enter_print);
OTF2_GlobalEvtReaderCallbacks_SetLeaveCallback (event_callbacks,
&Leave_print);
OTF2_Reader_RegisterGlobalEvtCallbacks (reader,
global_evt_reader,
event_callbacks,
NULL) ;
OTF2_GlobalEvtReaderCallbacks_Delete(event_callbacks);

Read all events in the OTF2 archive. The events are automatically ordered by
the time they occured in the trace. Everytime an enter or leave event is read, the
previously registered callbacks are triggered. In events_read the number of
read events is returned.

uinto64_t events_read = 0;

OTF2_Reader_ReadAllGlobalEvents(reader,
global_evt_reader,
&events_read);

The global event reader can now be closed and the event files too.

115

APPENDIX C. MODULE DOCUMENTATION

OTF2_Reader_CloseGlobalEvtReader (reader, global_evt_reader);

As the call to OTF2_Reader_CloseEvtFiles is an collective operation all ranks need
to call this, not only those which read events.

}
OTF2_Reader_CloseEvtFiles (reader);

At the end, close the reader and exit. All opened event and definition readers are
closed automatically. Free resources and finalize the MPI envirionment.

OTF2_Reader_Close (reader);
free(locations);
MPI_Finalize();

return EXIT_SUCCESS;

To compile your program use a command like the following. Note that we need to
activate the C99 standard explicitly for GCC.

mpicc -std=c99 ‘otf2-config —--cflags‘' \
-c otf2_mpi_reader_example.c \
-0 otf2_mpi_reader_example.o

Now you can link your program with:

mpicc otf2_mpi_reader_example.o \
‘otf2-config —-1ldflags® \
‘otf2-config —-1libs' \
-0 otf2_mpi_reader_example

C.131 Usage in writing mode - MPI example

This is a short example of how to use the OTF2 writing interface with MPI. This ex-
ample is available as source code in the file ot £2_mpi_writer_example.c.

We start with inclusion of some standard headers.

#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>

116

file:otf2_mpi_writer_example_8c-example.html

C.131 Usage in writing mode - MPI example

And than include the MPI and OTF2 header.

#include <mpi.h>

#include <otf2/otf2.h>

Now prepare the inclusion of the <otf2/OTF2_MPI_Collectives.h>> header. As it
is an header-only interface, it needs some information about the used MPI enviri-
onment. In particular the MPI datatypes which match the C99 types uint 64_t
and int 64_t. In case you have an MPI 3.0 conforming MPI implementation you
can skip this. If not, provide #define’s for the following macros prior the #include
statement. In this example, we asume an LP64 platform.

#if MPI_VERSION < 3

#define OTF2_MPI_UINT64_T MPI_UNSIGNED_LONG
#define OTF2_MPI_INT64_T MPI_LONG

fendif

After this preparatory step, we can include the <otf2/OTF2_MPI_Collectives.h>
header.

#include <otf2/0OTF2_MPI_Collectives.h>

We use MPI_Wtime to get timestamps for our events but need to convert the
seconds to an integral value. We use a nano second resolution.

static OTF2_TimeStamp

get_time (void)

{
double t = MPI_Wtime () * 1le9;
return (uint64d_t)t;

Define a pre and post flush callback. If no memory is left in OTF2’s internal mem-
ory buffer or the writer handle is closed a memory buffer flushing routine is trig-
gered. The pre flush callback is triggered right before a buffer flush. It needs
to return either OTF2_FLUSH to flush the recorded data to a file or OTF2_NO_-
FLUSH to supress flushing data to a file. The post flush callback is triggered right
after a memory buffer flush. It has to return a current timestamp which is recorded
to mark the time spend in a buffer flush. The callbacks are passed via a struct to
OTF2.

static OTF2_FlushType

pre_flush(voidx userData,
OTF2_FileType fileType,
OTF2_LocationRef location,
void#* callerData,

117

APPENDIX C. MODULE DOCUMENTATION

bool final)

return OTF2_FLUSH;

static OTF2_TimeStamp

post_flush(voidx userData,
OTF2_FileType fileType,
OTF2_LocationRef location)

return get_time();

static OTF2_FlushCallbacks flush_callbacks =
{
.otf2_pre_flush = pre_flush,
.otf2_post_flush = post_flush
}i

Now everything is prepared to begin with the main program.

int
main(int argc,
charxx argv)

First initialize the MPI envirionment and query the size and rank.

MPI_Init(&argc, &argv);

int size;

MPI_Comm_size(MPI_COMM_WORLD, &size);
int rank;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

Create new archive handle.

OTF2_Archivex archive = OTF2_Archive_Open("ArchivePath",
"ArchiveName",
OTF2_FILEMODE_WRITE,
1024 x 1024 /x event chunk size */

4 x 1024 % 1024 /% def chunk size

*/,
OTF2_SUBSTRATE_POSIX,
OTF2_COMPRESSION_NONE) ;

Set the previously defined flush callbacks.

118

C.131 Usage in writing mode - MPI example

OTF2_Archive_SetFlushCallbacks (archive, &flush_callbacks, NULL);

Now we provide the OTF2 archive object the MPI collectives. As all ranks in
MPI_COMM_WORLD write into the archive, we use this communicator as the global
one. We set the local communicator to MPI__COMM_NULL, as we don’t care about
file optimization here.

OTF2_MPI_Archive_SetCollectiveCallbacks (archive,
MPI_COMM_WORLD,
MPI_COMM_NULL) ;

Now we can create the event files. Though physical files aren’t created yet.

OTF2_Archive_OpenEvtFiles (archive);

Each rank now requests an event writer with its rank number as the location id.

OTF2_EvtWriter* evt_writer = OTF2_Archive_GetEvtWriter (archive,
rank);

We note the start time in each rank, this is later used to determine the global epoch.

uint64_t epoch_start = get_time();

Write an enter and a leave record for region O to the local event writer.

OTF2_EvtWriter_Enter (evt_writer,
NULL,
get_time (),
0 /* region x/);

We also record an MPI_Barrier in the trace. For this we generate an event
before we do the MPI call.

OTF2_EvtWriter_MpiCollectiveBegin(evt_writer,
NULL,
get_time ());

Now we can do the MPI_Barrier call.

MPI_Barrier (MPI_COMM_WORLD) ;

119

APPENDIX C. MODULE DOCUMENTATION

After we passed the MPI_Barrier. we can note the end of the collective opera-
tion inside the event stream.

OTF2_EvtWriter_MpiCollectiveEnd(evt_writer,
NULL,
get_time (),
OTF2_COLLECTIVE_OP_BARRIER,
0 /+ communicator =/,
OTF2_UNDEFINED UINT32 /% root x/,
0 /* bytes provided x/,
0 /+ bytes obtained x/);

Finally we leave the region again with the leave region.

OTF2_EvtWriter_Leave (evt_writer,
NULL,
get_time (),
0 /x region x/);

The event recording is now done, note the end time in each rank.

uint64_t epoch_end = get_time();

Now close the event writer, before closing the event files collectivly.

OTF2_Archive_CloseEvtWriter (archive, evt_writer);

After we wrote all of the events we close the event files again.

OTF2_Archive_CloseEvtFiles (archive);

We now collect all of the epoch_start and epoch_end timestamps by calcu-
lating the minimum and maximize and provide these to the root rank.

uint64_t global_epoch_start;

MPI_Reduce (&epoch_start,
&global_epoch_start,
1, OTF2_MPI_UINT64_T, MPI_MIN,
0, MPI_COMM_WORLD);

uint64_t global_epoch_end;

MPI_Reduce (&epoch_end,
&global_epoch_end,
1, OTF2_MPI_UINT64_T, MPI_MAX,
0, MPI_COMM_WORLD);

120

C.131 Usage in writing mode - MPI example

Only the root rank will write the global definitions, thus only he requests an writer
object from the archive.

if (0 == rank)
{
OTF2_GlobalDefWriterx global_def_writer =
OTF2_Archive_GetGlobalDefWriter (archive);

We need to define the clock used for this trace and the overall timestamp range.

OTF2_GlobalDefWriter WriteClockProperties(global_def_writer,
1000000000,
global_epoch_start,
global_epoch_end - global_epoc
h_start + 1);

Now we can start writing the referenced definitions, starting with the strings.

OTF2_GlobalDefWriter WriteString(global_def_ writer, 0, "");
OTF2_GlobalDefWriter WriteString(global_def_writer, 1, "Master Thread")

OTF2_GlobalDefWriter WriteString(global_def_ writer, 2, "MPI_Barrier");
OTF2_GlobalDefWriter_WriteString(global_def_writer, 3, "PMPI_Barrier");

OTF2_GlobalDefWriter WriteString(global_def_writer, 4, "barrier");
OTF2_GlobalDefWriter_ WriteString(global_def_writer, 5, "MyHost");
OTF2_GlobalDefWriter_ WriteString(global_def_writer, 6, "node");
OTF2_GlobalDefWriter WriteString(global_def writer, 7, "MPI");

(8

OTF2_GlobalDefWriter_WriteString(global_def_writer, "MPI_COMM_WORLD"

~

Write definition for the code region which was just entered and left to the global
definition writer.

OTF2_GlobalDefWriter_WriteRegion(global_def_writer,
0 /% id =/,
2 /% region name =/,
3 /+ alternative name x/,
4 /% description x/,
OTF2_REGION_ROLE_BARRIER,
OTF2_PARADIGM_MPT,
OTF2_REGION_FLAG_NONE,
7 /* source file x/,
0 /* begin lno «/,
0 /* end lno */);

Write the system tree to the global definition writer.

121

APPENDIX C. MODULE DOCUMENTATION

OTF2_GlobalDefWriter_WriteSystemTreeNode (global_def_ writer,
0 /+ id =/,
5 /% name x/,
6 /x class x/,

OTF2_UNDEFINED_SYSTEM TREE_NODE /+ parent =/);

For each rank we define a new loation group and one location. We provide also a
unique string for each location group.

for (int r = 0; r < size; r++)
{
char process_name[32];
sprintf (process_name, "MPI Rank %d", r);
OTF2_GlobalDefWriter_WriteString(global_def_writer,
9 + r,
process_name);

OTF2_GlobalDefWriter WriteLocationGroup(global_def_writer,
r /+« id */,
9 + r /* name */,

OTF2_LOCATION_GROUP_TYPE_PROCESS,
0 /* system tree x/);

OTF2_GlobalDefWriter_WriteLocation(global_def_writer,
r /= id =/,
1 /% name x/,
OTF2_LOCATION_TYPE_CPU_THREAD,
4 /x # events x/,
r /* location group */);

The last step is to define the MPI communicator. This is a three-step process. First
we define that this trace actually recorded in the MPI paradigm and enumerate all
locations which participate in this paradigm. As we used the MPI ranks directly as
the location id, the array with the locations is the identity.

uint64_t comm_locations[size];

for (int r = 0; r < size; r++)

{

comm_locations[r] = r;

}

OTF2_GlobalDefWriter WriteGroup(global_def_writer,
0 /+ id =/,
7 /* name %/,
OTF2_GROUP_TYPE_COMM_LOCATIONS,
OTF2_PARADIGM_MPI,
OTF2_GROUP_FLAG_NONE,
size,
comm_locations);

122

C.131 Usage in writing mode - MPI example

Now we can define sub-groups of the previously defined list of communication.
locations. For MPI_COMM_WORLD this is the whole group here. Note the these
sub-groups are created by using indices into the list of communication locations,
and not by enumrateing location ids again. But in this example the sub-group is
the identity again.

OTF2_GlobalDefWriter_ WriteGroup(global_def_writer,
1 /% id =/,
0 /x name x/,
OTF2_GROUP_TYPE_COMM_GROUP,
OTF2_PARADIGM MPI,
OTF2_GROUP_FLAG_NONE,
size,
comm_locations);

Finally we can write the definition of the MPT_COMM_WORLD communcator. This
finalizes the writing of the global definitions and we can also close the writer object.

OTF2_GlobalDefWriter WriteComm(global_def_writer,
0 /* id «/,
8 /* name x/,
1 /% group */,
OTF2_UNDEFINED_COMM /»* parent =/

OTF2_Archive_CloseGlobalDefWriter (archive,
global_def_writer);

All the other ranks wait inside this barrier so that root can write the global defini-
tions.

MPI_Barrier (MPI_COMM_WORLD) ;

At the end, close the archive, finalize the MPI envirionment, and exit.
OTF2_Archive_Close (archive);
MPI_Finalize();

return EXIT_SUCCESS;

To compile your program use a command like the following. Note that we need to
activate the C99 standard explicitly for GCC.

mpicc -std=c99 ‘otf2-config --cflags' \
—-c otf2_mpi_writer_example.c \
-0 otf2_mpi_writer_ example.o

123

APPENDIX C. MODULE DOCUMENTATION

Now you can link your program with:

mpicc otf2_mpi_writer_example.o \
‘otf2-config —--ldflags® \
‘otf2-config ——libs' \
-0 otf2_mpi_writer_example

C.132 Usage in reading mode - a simple example

This is a short example of how to use the OTF2 reading interface. It shows how
to define and register callbacks and how to use the reader interface to read all
events of a given OTF2 archive. This example is available as source code in the file

otf2_reader_ example.c.
First include the OTF2 header.

#include <otf2/otf2.h>

For this example some additional include statements are necessary.

#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>

Define an event callback for entering and leaving a region.

static OTF2_CallbackCode

Enter_print (OTF2_LocationRef location,
OTF2_TimeStamp time,
void=* userData,
OTF2_AttributelList* attributes,
OTF2_RegionRef region)

printf("Entering region %u at location %" PRIu64d "
region, location, time);

return OTF2_CALLBACK_SUCCESS;

static OTF2_CallbackCode

Leave_print (OTF2_LocationRef location,
OTF2_TimeStamp time,
void=* userData,
OTF2_AttributelList* attributes,
OTF2_RegionRef region)
{
printf("Leaving region %u at location %" PRIu64 "

at time

at time

%" PRIu64

%" PRIu64

124

L \nn,

L \nn,

file:otf2_reader_example_8c-example.html

C.132 Usage in reading mode - a simple example

region, location, time);

return OTF2_CALLBACK_SUCCESS;

The global definition file provides all location IDs that are included in the OTF2
trace archive. When reading the global defintions these location IDs must be col-
lected and stored by the user. Probably, the easiest way to do that is to use a C++
container.

struct vector

{
size_t capacity;
size_t size;
uint64_t members|[];

bi

static OTF2_CallbackCode

GlobDefLocation_Register (voidx userData,
OTF2_LocationRef location,
OTF2_StringRef name,
OTF2_LocationType locationType,
uint64_t numberOfEvents,

OTF2_LocationGroupRef locationGroup)
struct vectorx locations = userData;
if (locations->size == locations->capacity)
{
return OTF2_CALLBACK_INTERRUPT;

locations—->members|[locations->size++] = location;

return OTF2_CALLBACK_SUCCESS;

Now everything is prepared to begin with the main program.

int
main(int argc,
charxx argv)

Create a new reader handle. The path to the OTF2 anchor file must be provided as
argument.

OTF2_Reader* reader = OTF2_Reader_Open("ArchivePath/ArchiveName

125

.otf2"

)

APPENDIX C. MODULE DOCUMENTATION

We will operate in an serial context.

OTF2_Reader_SetSerialCollectiveCallbacks(reader);

OTF2 provides an API to query the number of locations prior reading the global
definitions. We use this to pre-allocate the storage for all locations.

uint64_t number_of_locations;
OTF2_Reader_GetNumberOfLocations (reader,

&number_of_locations);
struct vector* locations = malloc(sizeof(xlocations)

+ number_of_ locations

* sizeof (xlocations—->members));
locations—->capacity = number_of_locations;
locations->size 0;

Get the global definition reader from the reader handle.

OTF2_GlobalDefReader* global_def_reader = OTF2_Reader_GetGlobalDefReader (rea
der);

Register the above defined global definition callbacks. All other definition call-
backs will be deactivated. And instruct the reader to pass the locations object to
each call of the callbacks.

OTF2_GlobalDefReaderCallbacks* global_def_callbacks =
OTF2_GlobalDefReaderCallbacks_New () ;
OTF2_GlobalDefReaderCallbacks_SetLocationCallback(global_def_callbacks,
&GlobDeflLocation_Register
)
OTF2_Reader_RegisterGlobalDefCallbacks (reader,
global_def_reader,
global_def_callbacks,
locations);
OTF2_GlobalDefReaderCallbacks_Delete(global_def_callbacks);

Read all global definitions. Everytime a location definition is read, the previosly
registered callback is triggered. In definitions_read the number of read
definitions is returned.

uint64_t definitions_read = 0;

OTF2_Reader_ReadAllGlobalDefinitions (reader,
global_def_reader,
&definitions_read);

After reading all global definitions all location IDs are stored in the vector locations.
After that, the locations that are suppossed to be read are selected. In this example
all.

126

C.132 Usage in reading mode - a simple example

for (size_t i = 0; i < locations->size; i++)
{

OTF2_Reader_SelectLocation(reader, locations->members|[1]);

When the locations are selected the according event and definition files can be
opened. Note that the local definition files are optional, thus we need to remember
the success of this call.

bool successful_open_def_ files =
OTF2_Reader_OpenDefFiles(reader) == OTF2_SUCCESS;
OTF2_Reader_OpenEvtFiles(reader);

When the files are opened the event and defintion reader handle can be requested.
In this example for all. To apply mapping tables stored in the local definitions, the
local defintions must be read. Though the existence of these files are optional. The
call to OTF2_Reader_GetEvtReader is mandatory, but the result is unused.

for (size_t i = 0; i < locations->size; i++)
{
if (successful_open_def_files)
{
OTF2_DefReaderx def_ reader =
OTF2_Reader_GetDefReader (reader, locations->members|[i]);
if (def_reader)
{
uint64_t def_reads = 0;
OTF2_Reader_ReadAllLocalDefinitions(reader,
def_reader,
&def_reads);
OTF2_Reader_CloseDefReader (reader, def_reader);

}
OTF2_EvtReader* evt_reader =
OTF2_Reader_GetEvtReader (reader, locations->members[i]);

The definition files can now be closed, if it was successfully opened in the first
place.

if (successful_open_def_ files)

{
OTF2_Reader_CloseDefFiles(reader);

Open a new global event reader. This global reader automatically contains all
previously opened local event readers.

127

APPENDIX C. MODULE DOCUMENTATION

OTF2_GlobalEvtReader* global_evt_reader = OTF2_Reader_GetGlobalEvtReader (rea
der);

Register the above defined global event callbacks. All other global event callbacks
will be deactivated.

OTF2_GlobalEvtReaderCallbacks+ event_callbacks =
OTF2_GlobalEvtReaderCallbacks_New () ;
OTF2_GlobalEvtReaderCallbacks_SetEnterCallback (event_callbacks,
&Enter_print);
OTF2_GlobalEvtReaderCallbacks_SetlLeaveCallback (event_callbacks,
&Leave_print);
OTF2_Reader_RegisterGlobalEvtCallbacks (reader,
global_evt_reader,
event_callbacks,
NULL) ;
OTF2_GlobalEvtReaderCallbacks_Delete (event_callbacks);

Read all events in the OTF2 archive. The events are automatically ordered by
the time they occured in the trace. Everytime an enter or leave event is read, the
previously registered callbacks are triggered. In events_read the number of
read events is returned.

uint64_t events_read = 0;

OTF2_Reader_ReadAllGlobalEvents (reader,
global_evt_reader,
&events_read);

The global event reader can now be closed and the event files too.

OTF2_Reader_CloseGlobalEvtReader (reader, global_evt_reader);
OTF2_Reader_CloseEvtFiles (reader);

At the end, close the reader and exit. All opened event and definition readers are
closed automatically.

OTF2_Reader_Close (reader);
free(locations);

return EXIT_SUCCESS;

To compile your program use a command like the following. Note that we need to
activate the C99 standard explicitly for GCC.

128

C.132 Usage in reading mode - a simple example

gcc —-std=c99 ‘otf2-config —--cflags‘' \
-c otf2_reader_example.c \
-0 otf2_reader_example.o

Now you can link your program with:

gcc otf2_reader_example.o \
‘otf2-config —-1ldflags® \
‘otf2-config —--libs' \
-0 otf2_reader_example

129

APPENDIX C. MODULE DOCUMENTATION

130

Appendix D

Data Structure Documentation

D.1 OTF2_AttributeValue Union Reference

Value container for an attributes.

#include <otf2/0TF2_AttributeValue.h>

Data Fields

OTF2_AttributeRef attributeRef

References a Attribute definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_ATTRIBUTE is available.

OTF2_CallingContextRef callingContextRef

References a CallingContext definition and will be mapped to the global def-
inition if a mapping table of type OTF2_MAPPING _CALLING_CONTEXT is
available.

OTF2_CommRef commRef

References a Comm definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_COMM is available.

float float32
Arbitrary value of type float.
double float64

Arbitrary value of type double.
OTF2_GroupRef groupRef

References a Group definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_GROUP is available.

int16_t intl16

Arbitrary value of type int16_t.

APPENDIX D. DATA STRUCTURE DOCUMENTATION

e int32_tint32
Arbitrary value of type int32_t.
¢ int64_t int64
Arbitrary value of type int64_t.
e Int8_t int8
Arbitrary value of type int8_t.
* OTF2_InterruptGeneratorRef interruptGeneratorRef

References a InterruptGenerator definition and will be mapped to the global def-
inition if a mapping table of type OTF2_MAPPING_INTERRUPT_GENERATOR
is available.

¢ OTF2_LocationRef locationRef

References a Location definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_LOCATION is available.

¢ OTF2_MetricRef metricRef

References a MetricClass, or a MetricInstance definition and will be mapped to
the global definition if a mapping table of type OTF2_MAPPING_METRIC is
available.

¢ OTF2_ParameterRef parameterRef

References a Parameter definition and will be mapped to the global definition if
a mapping table of type OTF2_MAPPING _PARAMETER is available.

* OTF2_RegionRef regionRef

References a Region definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_REGION is available.

¢ OTF2_RmaWinRef rmaWinRef
References a RmaWin definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_RMA_WIN is available.

* OTF2_SourceCodeLocationRef sourceCodeLocationRef

References a SourceCodelLocation definition and will be mapped to the global
definition if a mapping table of type OTF2_MAPPING_SOURCE_CODE_LOCATION
is available.

* OTF2_StringRef stringRef

References a String definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_STRING is available.

e uintl6_t uintl6

Arbitrary value of type uintl6_t.
* uint32_t uint32

Arbitrary value of type uint32_t.
* uint64_t uint64

Arbitrary value of type uint64_t.
e uint8_t uint8

Arbitrary value of type uint8_t.

132

D.2 OTF2_CollectiveCallbacks Struct Reference

D.1.1 Detailed Description

Value container for an attributes.

For definition references (OTF2_MappingType) use the same data type as the defi-
nition.

The documentation for this union was generated from the following file:

e otf2/OTF2_Attribute Value.h

D.2 OTF2 _CollectiveCallbacks Struct Reference

Struct which holds all collective callbacks.
#include <otf2/0TF2_Callbacks.h>
D.2.1 Detailed Description

S