/* * Copyright © 2015 RISC OS Open Ltd * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation, and that the name of the copyright holders not be used in * advertising or publicity pertaining to distribution of the software without * specific, written prior permission. The copyright holders make no * representations about the suitability of this software for any purpose. It * is provided "as is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS * SOFTWARE. * * Author: Ben Avison (bavison@riscosopen.org) * */ /* * This test aims to verify both numerical correctness and the honouring of * array bounds for scaled plots (both nearest-neighbour and bilinear) at or * close to the boundary conditions for applicability of "cover" type fast paths * and iter fetch routines. * * It has a secondary purpose: by setting the env var EXACT (to any value) it * will only test plots that are exactly on the boundary condition. This makes * it possible to ensure that "cover" routines are being used to the maximum, * although this requires the use of a debugger or code instrumentation to * verify. */ #include "utils.h" #include #include /* Approximate limits for random scale factor generation - these ensure we can * get at least 8x reduction and 8x enlargement. */ #define LOG2_MAX_FACTOR (3) /* 1/sqrt(2) (or sqrt(0.5), or 2^-0.5) as a 0.32 fixed-point number */ #define INV_SQRT_2_0POINT32_FIXED (0xB504F334u) /* The largest increment that can be generated by random_scale_factor(). * This occurs when the "mantissa" part is 0xFFFFFFFF and the "exponent" * part is -LOG2_MAX_FACTOR. */ #define MAX_INC ((pixman_fixed_t) \ (INV_SQRT_2_0POINT32_FIXED >> (31 - 16 - LOG2_MAX_FACTOR))) /* Minimum source width (in pixels) based on a typical page size of 4K and * maximum colour depth of 32bpp. */ #define MIN_SRC_WIDTH (4096 / 4) /* Derive the destination width so that at max increment we fit within source */ #define DST_WIDTH (MIN_SRC_WIDTH * pixman_fixed_1 / MAX_INC) /* Calculate heights the other way round. * No limits due to page alignment here. */ #define DST_HEIGHT 3 #define SRC_HEIGHT ((DST_HEIGHT * MAX_INC + pixman_fixed_1 - 1) / pixman_fixed_1) /* At the time of writing, all the scaled fast paths use SRC, OVER or ADD * Porter-Duff operators. XOR is included in the list to ensure good * representation of iter scanline fetch routines. */ static const pixman_op_t op_list[] = { PIXMAN_OP_SRC, PIXMAN_OP_OVER, PIXMAN_OP_ADD, PIXMAN_OP_XOR, }; /* At the time of writing, all the scaled fast paths use a8r8g8b8, x8r8g8b8 * or r5g6b5, or red-blue swapped versions of the same. When a mask channel is * used, it is always a8 (and so implicitly not component alpha). a1r5g5b5 is * included because it is the only other format to feature in any iters. */ static const pixman_format_code_t img_fmt_list[] = { PIXMAN_a8r8g8b8, PIXMAN_x8r8g8b8, PIXMAN_r5g6b5, PIXMAN_a1r5g5b5 }; /* This is a flag reflecting the environment variable EXACT. It can be used * to ensure that source coordinates corresponding exactly to the "cover" limits * are used, rather than any "near misses". This can, for example, be used in * conjunction with a debugger to ensure that only COVER fast paths are used. */ static int exact; static pixman_image_t * create_src_image (pixman_format_code_t fmt) { pixman_image_t *tmp_img, *img; /* We need the left-most and right-most MIN_SRC_WIDTH pixels to have * predictable values, even though fence_image_create_bits() may allocate * an image somewhat larger than that, by an amount that varies depending * upon the page size on the current platform. The solution is to create a * temporary non-fenced image that is exactly MIN_SRC_WIDTH wide and blit it * into the fenced image. */ tmp_img = pixman_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT, NULL, 0); if (tmp_img == NULL) return NULL; img = fence_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT, TRUE); if (img == NULL) { pixman_image_unref (tmp_img); return NULL; } prng_randmemset (tmp_img->bits.bits, tmp_img->bits.rowstride * SRC_HEIGHT * sizeof (uint32_t), 0); image_endian_swap (tmp_img); pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img, 0, 0, 0, 0, 0, 0, MIN_SRC_WIDTH, SRC_HEIGHT); pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img, 0, 0, 0, 0, img->bits.width - MIN_SRC_WIDTH, 0, MIN_SRC_WIDTH, SRC_HEIGHT); pixman_image_unref (tmp_img); return img; } static pixman_fixed_t random_scale_factor(void) { /* Get a random number with top bit set. */ uint32_t f = prng_rand () | 0x80000000u; /* In log(2) space, this is still approximately evenly spread between 31 * and 32. Divide by sqrt(2) to centre the distribution on 2^31. */ f = ((uint64_t) f * INV_SQRT_2_0POINT32_FIXED) >> 32; /* Now shift right (ie divide by an integer power of 2) to spread the * distribution between centres at 2^(16 +/- LOG2_MAX_FACTOR). */ f >>= 31 - 16 + prng_rand_n (2 * LOG2_MAX_FACTOR + 1) - LOG2_MAX_FACTOR; return f; } static pixman_fixed_t calc_translate (int dst_size, int src_size, pixman_fixed_t scale, pixman_bool_t low_align, pixman_bool_t bilinear) { pixman_fixed_t ref_src, ref_dst, scaled_dst; if (low_align) { ref_src = bilinear ? pixman_fixed_1 / 2 : pixman_fixed_e; ref_dst = pixman_fixed_1 / 2; } else { ref_src = pixman_int_to_fixed (src_size) - bilinear * pixman_fixed_1 / 2; ref_dst = pixman_int_to_fixed (dst_size) - pixman_fixed_1 / 2; } scaled_dst = ((uint64_t) ref_dst * scale + pixman_fixed_1 / 2) / pixman_fixed_1; /* We need the translation to be set such that when ref_dst is fed through * the transformation matrix, we get ref_src as the result. */ return ref_src - scaled_dst; } static pixman_fixed_t random_offset (void) { pixman_fixed_t offset = 0; /* Ensure we test the exact case quite a lot */ if (prng_rand_n (2)) return offset; /* What happens when we are close to the edge of the first * interpolation step? */ if (prng_rand_n (2)) offset += (pixman_fixed_1 >> BILINEAR_INTERPOLATION_BITS) - 16; /* Try fine-grained variations */ offset += prng_rand_n (32); /* Test in both directions */ if (prng_rand_n (2)) offset = -offset; return offset; } static void check_transform (pixman_image_t *dst_img, pixman_image_t *src_img, pixman_transform_t *transform, pixman_bool_t bilinear) { pixman_vector_t v1, v2; v1.vector[0] = pixman_fixed_1 / 2; v1.vector[1] = pixman_fixed_1 / 2; v1.vector[2] = pixman_fixed_1; assert (pixman_transform_point (transform, &v1)); v2.vector[0] = pixman_int_to_fixed (dst_img->bits.width) - pixman_fixed_1 / 2; v2.vector[1] = pixman_int_to_fixed (dst_img->bits.height) - pixman_fixed_1 / 2; v2.vector[2] = pixman_fixed_1; assert (pixman_transform_point (transform, &v2)); if (bilinear) { assert (v1.vector[0] >= pixman_fixed_1 / 2); assert (v1.vector[1] >= pixman_fixed_1 / 2); assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width) - pixman_fixed_1 / 2); assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height) - pixman_fixed_1 / 2); } else { assert (v1.vector[0] >= pixman_fixed_e); assert (v1.vector[1] >= pixman_fixed_e); assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width)); assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height)); } } static uint32_t test_cover (int testnum, int verbose) { pixman_fixed_t x_scale, y_scale; pixman_bool_t left_align, top_align; pixman_bool_t bilinear; pixman_filter_t filter; pixman_op_t op; size_t src_fmt_index; pixman_format_code_t src_fmt, dst_fmt, mask_fmt; pixman_image_t *src_img, *dst_img, *mask_img; pixman_transform_t src_transform, mask_transform; pixman_fixed_t fuzz[4]; uint32_t crc32; /* We allocate one fenced image for each pixel format up-front. This is to * avoid spending a lot of time on memory management rather than on testing * Pixman optimisations. We need one per thread because the transformation * matrices and filtering are properties of the source and mask images. */ static pixman_image_t *src_imgs[ARRAY_LENGTH (img_fmt_list)]; static pixman_image_t *mask_bits_img; static pixman_bool_t fence_images_created; #ifdef USE_OPENMP #pragma omp threadprivate (src_imgs) #pragma omp threadprivate (mask_bits_img) #pragma omp threadprivate (fence_images_created) #endif if (!fence_images_created) { int i; prng_srand (0); for (i = 0; i < ARRAY_LENGTH (img_fmt_list); i++) src_imgs[i] = create_src_image (img_fmt_list[i]); mask_bits_img = create_src_image (PIXMAN_a8); fence_images_created = TRUE; } prng_srand (testnum); x_scale = random_scale_factor (); y_scale = random_scale_factor (); left_align = prng_rand_n (2); top_align = prng_rand_n (2); bilinear = prng_rand_n (2); filter = bilinear ? PIXMAN_FILTER_BILINEAR : PIXMAN_FILTER_NEAREST; op = op_list[prng_rand_n (ARRAY_LENGTH (op_list))]; dst_fmt = img_fmt_list[prng_rand_n (ARRAY_LENGTH (img_fmt_list))]; dst_img = pixman_image_create_bits (dst_fmt, DST_WIDTH, DST_HEIGHT, NULL, 0); prng_randmemset (dst_img->bits.bits, dst_img->bits.rowstride * DST_HEIGHT * sizeof (uint32_t), 0); image_endian_swap (dst_img); src_fmt_index = prng_rand_n (ARRAY_LENGTH (img_fmt_list)); src_fmt = img_fmt_list[src_fmt_index]; src_img = src_imgs[src_fmt_index]; pixman_image_set_filter (src_img, filter, NULL, 0); pixman_transform_init_scale (&src_transform, x_scale, y_scale); src_transform.matrix[0][2] = calc_translate (dst_img->bits.width, src_img->bits.width, x_scale, left_align, bilinear); src_transform.matrix[1][2] = calc_translate (dst_img->bits.height, src_img->bits.height, y_scale, top_align, bilinear); if (prng_rand_n (2)) { /* No mask */ mask_fmt = PIXMAN_null; mask_img = NULL; } else if (prng_rand_n (2)) { /* a8 bitmap mask */ mask_fmt = PIXMAN_a8; mask_img = mask_bits_img; pixman_image_set_filter (mask_img, filter, NULL, 0); pixman_transform_init_scale (&mask_transform, x_scale, y_scale); mask_transform.matrix[0][2] = calc_translate (dst_img->bits.width, mask_img->bits.width, x_scale, left_align, bilinear); mask_transform.matrix[1][2] = calc_translate (dst_img->bits.height, mask_img->bits.height, y_scale, top_align, bilinear); } else { /* Solid mask */ pixman_color_t color; memset (&color, 0xAA, sizeof color); mask_fmt = PIXMAN_solid; mask_img = pixman_image_create_solid_fill (&color); } if (!exact) { int i = 0; while (i < 4) fuzz[i++] = random_offset (); src_transform.matrix[0][2] += fuzz[0]; src_transform.matrix[1][2] += fuzz[1]; mask_transform.matrix[0][2] += fuzz[2]; mask_transform.matrix[1][2] += fuzz[3]; } pixman_image_set_transform (src_img, &src_transform); if (mask_fmt == PIXMAN_a8) pixman_image_set_transform (mask_img, &mask_transform); if (verbose) { printf ("op=%s\n", operator_name (op)); printf ("src_fmt=%s, dst_fmt=%s, mask_fmt=%s\n", format_name (src_fmt), format_name (dst_fmt), format_name (mask_fmt)); printf ("x_scale=0x%08X, y_scale=0x%08X, align %s/%s, %s\n", x_scale, y_scale, left_align ? "left" : "right", top_align ? "top" : "bottom", bilinear ? "bilinear" : "nearest"); if (!exact) { int i = 0; printf ("fuzz factors"); while (i < 4) printf (" %d", fuzz[i++]); printf ("\n"); } } if (exact) { check_transform (dst_img, src_img, &src_transform, bilinear); if (mask_fmt == PIXMAN_a8) check_transform (dst_img, mask_img, &mask_transform, bilinear); } pixman_image_composite (op, src_img, mask_img, dst_img, 0, 0, 0, 0, 0, 0, dst_img->bits.width, dst_img->bits.height); if (verbose) print_image (dst_img); crc32 = compute_crc32_for_image (0, dst_img); pixman_image_unref (dst_img); if (mask_fmt == PIXMAN_solid) pixman_image_unref (mask_img); return crc32; } #if BILINEAR_INTERPOLATION_BITS == 7 #define CHECKSUM_FUZZ 0x6B56F607 #define CHECKSUM_EXACT 0xA669F4A3 #elif BILINEAR_INTERPOLATION_BITS == 4 #define CHECKSUM_FUZZ 0x83119ED0 #define CHECKSUM_EXACT 0x0D3382CD #else #define CHECKSUM_FUZZ 0x00000000 #define CHECKSUM_EXACT 0x00000000 #endif int main (int argc, const char *argv[]) { unsigned long page_size; page_size = fence_get_page_size (); if (page_size == 0 || page_size > 16 * 1024) return 77; /* automake SKIP */ exact = getenv ("EXACT") != NULL; if (exact) printf ("Doing plots that are exactly aligned to boundaries\n"); return fuzzer_test_main ("cover", 2000000, exact ? CHECKSUM_EXACT : CHECKSUM_FUZZ, test_cover, argc, argv); }