/* $NetBSD: tprof_analyze.c,v 1.3.6.1 2023/08/01 17:34:32 martin Exp $ */ /* * Copyright (c) 2010,2011,2012 YAMAMOTO Takashi, * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #ifndef lint __RCSID("$NetBSD: tprof_analyze.c,v 1.3.6.1 2023/08/01 17:34:32 martin Exp $"); #endif /* not lint */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tprof.h" #define _PATH_KSYMS "/dev/ksyms" #include static bool filter_by_pid; static pid_t target_pid; static bool per_symbol; struct addr { struct rb_node node; uint64_t addr; /* address */ uint32_t pid; /* process id */ uint32_t lwpid; /* lwp id */ uint32_t cpuid; /* cpu id */ bool in_kernel; /* if addr is in the kernel address space */ unsigned int nsamples; /* number of samples taken for the address */ }; static rb_tree_t addrtree; struct sym { char *name; uint64_t value; uint64_t size; }; static struct sym **syms = NULL; static size_t nsyms = 0; static int compare_value(const void *p1, const void *p2) { const struct sym *s1 = *(const struct sym * const *)p1; const struct sym *s2 = *(const struct sym * const *)p2; if (s1->value > s2->value) { return -1; } else if (s1->value < s2->value) { return 1; } /* * to produce a stable result, it's better not to return 0 * even for __strong_alias. */ if (s1->size > s2->size) { return -1; } else if (s1->size < s2->size) { return 1; } return strcmp(s1->name, s2->name); } static void ksymload(void) { Elf *e; Elf_Scn *s; GElf_Shdr sh_store; GElf_Shdr *sh; Elf_Data *d; int fd; size_t size, i; fd = open(_PATH_KSYMS, O_RDONLY); if (fd == -1) { err(EXIT_FAILURE, "open " _PATH_KSYMS); } if (elf_version(EV_CURRENT) == EV_NONE) { goto elffail; } e = elf_begin(fd, ELF_C_READ, NULL); if (e == NULL) { goto elffail; } for (s = elf_nextscn(e, NULL); s != NULL; s = elf_nextscn(e, s)) { sh = gelf_getshdr(s, &sh_store); if (sh == NULL) { goto elffail; } if (sh->sh_type == SHT_SYMTAB) { break; } } if (s == NULL) { errx(EXIT_FAILURE, "no symtab"); } d = elf_getdata(s, NULL); if (d == NULL) { goto elffail; } assert(sh->sh_size == d->d_size); size = sh->sh_size / sh->sh_entsize; for (i = 1; i < size; i++) { GElf_Sym st_store; GElf_Sym *st; struct sym *sym; st = gelf_getsym(d, (int)i, &st_store); if (st == NULL) { goto elffail; } if (ELF_ST_TYPE(st->st_info) != STT_FUNC) { continue; } sym = emalloc(sizeof(*sym)); sym->name = estrdup(elf_strptr(e, sh->sh_link, st->st_name)); sym->value = (uint64_t)st->st_value; sym->size = st->st_size; nsyms++; syms = erealloc(syms, sizeof(*syms) * nsyms); syms[nsyms - 1] = sym; } qsort(syms, nsyms, sizeof(*syms), compare_value); return; elffail: errx(EXIT_FAILURE, "libelf: %s", elf_errmsg(elf_errno())); } static const char * ksymlookup(uint64_t value, uint64_t *offset) { size_t hi; size_t lo; size_t i; /* * try to find the smallest i for which syms[i]->value <= value. * syms[] is ordered by syms[]->value in the descending order. */ hi = nsyms - 1; lo = 0; while (lo < hi) { const size_t mid = (lo + hi) / 2; const struct sym *sym = syms[mid]; assert(syms[lo]->value >= sym->value); assert(sym->value >= syms[hi]->value); if (sym->value <= value) { hi = mid; continue; } lo = mid + 1; } assert(lo == nsyms - 1 || syms[lo]->value <= value); assert(lo == 0 || syms[lo - 1]->value > value); for (i = lo; i < nsyms; i++) { const struct sym *sym = syms[i]; if (sym->value <= value && (sym->size == 0 || value - sym->value <= sym->size )) { *offset = value - sym->value; return sym->name; } if (sym->size != 0 && sym->value + sym->size < value) { break; } } return NULL; } static signed int addrtree_compare_key(void *ctx, const void *n1, const void *keyp) { const struct addr *a1 = n1; const struct addr *a2 = (const struct addr *)keyp; if (a1->addr > a2->addr) { return 1; } else if (a1->addr < a2->addr) { return -1; } if (a1->pid > a2->pid) { return -1; } else if (a1->pid < a2->pid) { return 1; } if (a1->lwpid > a2->lwpid) { return -1; } else if (a1->lwpid < a2->lwpid) { return 1; } if (a1->cpuid > a2->cpuid) { return -1; } else if (a1->cpuid < a2->cpuid) { return 1; } if (a1->in_kernel > a2->in_kernel) { return -1; } else if (a1->in_kernel < a2->in_kernel) { return 1; } return 0; } static signed int addrtree_compare_nodes(void *ctx, const void *n1, const void *n2) { const struct addr *a2 = n2; return addrtree_compare_key(ctx, n1, a2); } static const rb_tree_ops_t addrtree_ops = { .rbto_compare_nodes = addrtree_compare_nodes, .rbto_compare_key = addrtree_compare_key, }; static int compare_nsamples(const void *p1, const void *p2) { const struct addr *a1 = *(const struct addr * const *)p1; const struct addr *a2 = *(const struct addr * const *)p2; if (a1->nsamples > a2->nsamples) { return -1; } else if (a1->nsamples < a2->nsamples) { return 1; } return 0; } void tprof_analyze(int argc, char **argv) { struct addr *a; struct addr **l; struct addr **p; size_t naddrs, nsamples, i; float perc; int ch; bool distinguish_processes = true; bool distinguish_cpus = true; bool distinguish_lwps = true; bool kernel_only = false; extern char *optarg; extern int optind; FILE *f; while ((ch = getopt(argc, argv, "CkLPp:s")) != -1) { uintmax_t val; char *ep; switch (ch) { case 'C': /* don't distinguish cpus */ distinguish_cpus = false; break; case 'k': /* kernel only */ kernel_only = true; break; case 'L': /* don't distinguish lwps */ distinguish_lwps = false; break; case 'p': /* only for the process for the given pid */ errno = 0; val = strtoumax(optarg, &ep, 10); if (optarg[0] == 0 || *ep != 0 || val > INT32_MAX) { errx(EXIT_FAILURE, "invalid p option"); } target_pid = val; filter_by_pid = true; break; case 'P': /* don't distinguish processes */ distinguish_processes = false; break; case 's': /* per symbol */ per_symbol = true; break; default: exit(EXIT_FAILURE); } } argc -= optind; argv += optind; if (argc == 0) { errx(EXIT_FAILURE, "missing file name"); } f = fopen(argv[0], "rb"); if (f == NULL) { errx(EXIT_FAILURE, "fopen"); } ksymload(); rb_tree_init(&addrtree, &addrtree_ops); /* * read and count samples. */ naddrs = 0; nsamples = 0; while (/*CONSTCOND*/true) { struct addr *o; tprof_sample_t sample; size_t n = fread(&sample, sizeof(sample), 1, f); bool in_kernel; if (n == 0) { if (feof(f)) { break; } if (ferror(f)) { err(EXIT_FAILURE, "fread"); } } if (filter_by_pid && (pid_t)sample.s_pid != target_pid) { continue; } in_kernel = (sample.s_flags & TPROF_SAMPLE_INKERNEL) != 0; if (kernel_only && !in_kernel) { continue; } a = emalloc(sizeof(*a)); a->addr = (uint64_t)sample.s_pc; if (distinguish_processes) { a->pid = sample.s_pid; } else { a->pid = 0; } if (distinguish_lwps) { a->lwpid = sample.s_lwpid; } else { a->lwpid = 0; } if (distinguish_cpus) { a->cpuid = sample.s_cpuid; } else { a->cpuid = 0; } a->in_kernel = in_kernel; if (per_symbol) { const char *name; uint64_t offset; name = ksymlookup(a->addr, &offset); if (name != NULL) { a->addr -= offset; } } a->nsamples = 1; o = rb_tree_insert_node(&addrtree, a); if (o != a) { assert(a->addr == o->addr); assert(a->pid == o->pid); assert(a->lwpid == o->lwpid); assert(a->cpuid == o->cpuid); assert(a->in_kernel == o->in_kernel); free(a); o->nsamples++; } else { naddrs++; } nsamples++; } /* * sort samples by addresses. */ l = emalloc(naddrs * sizeof(*l)); p = l; RB_TREE_FOREACH(a, &addrtree) { *p++ = a; } assert(l + naddrs == p); qsort(l, naddrs, sizeof(*l), compare_nsamples); /* * print addresses and number of samples, preferably with * resolved symbol names. */ printf("File: %s\n", argv[0]); printf("Number of samples: %zu\n\n", nsamples); printf("percentage nsamples pid lwp cpu k address symbol\n"); printf("------------ -------- ------ ---- ---- - ---------------- ------\n"); for (i = 0; i < naddrs; i++) { const char *name; char buf[100]; uint64_t offset; a = l[i]; if (a->in_kernel) { name = ksymlookup(a->addr, &offset); } else { name = NULL; } if (name == NULL) { (void)snprintf(buf, sizeof(buf), "<%016" PRIx64 ">", a->addr); name = buf; } else if (offset != 0) { (void)snprintf(buf, sizeof(buf), "%s+0x%" PRIx64, name, offset); name = buf; } perc = ((float)a->nsamples / (float)nsamples) * 100.0; printf("%11f%% %8u %6" PRIu32 " %4" PRIu32 " %4" PRIu32 " %u %016" PRIx64 " %s\n", perc, a->nsamples, a->pid, a->lwpid, a->cpuid, a->in_kernel, a->addr, name); } fclose(f); }