/* $NetBSD: udp6_usrreq.c,v 1.147 2019/02/25 07:31:32 maxv Exp $ */ /* $KAME: udp6_usrreq.c,v 1.86 2001/05/27 17:33:00 itojun Exp $ */ /* $KAME: udp6_output.c,v 1.43 2001/10/15 09:19:52 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_var.h 8.1 (Berkeley) 6/10/93 */ #include __KERNEL_RCSID(0, "$NetBSD: udp6_usrreq.c,v 1.147 2019/02/25 07:31:32 maxv Exp $"); #ifdef _KERNEL_OPT #include "opt_inet.h" #include "opt_inet_csum.h" #include "opt_ipsec.h" #include "opt_net_mpsafe.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSEC #include #include #ifdef INET6 #include #endif #endif #include "faith.h" #if defined(NFAITH) && NFAITH > 0 #include #endif /* * UDP protocol implementation. * Per RFC 768, August, 1980. */ extern struct inpcbtable udbtable; percpu_t *udp6stat_percpu; /* UDP on IP6 parameters */ static int udp6_sendspace = 9216; /* really max datagram size */ static int udp6_recvspace = 40 * (1024 + sizeof(struct sockaddr_in6)); /* 40 1K datagrams */ static void udp6_notify(struct in6pcb *, int); static void sysctl_net_inet6_udp6_setup(struct sysctllog **); #ifdef IPSEC static int udp6_espinudp(struct mbuf **, int); #endif #ifdef UDP_CSUM_COUNTERS #include struct evcnt udp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp6", "hwcsum bad"); struct evcnt udp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp6", "hwcsum ok"); struct evcnt udp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp6", "hwcsum data"); struct evcnt udp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp6", "swcsum"); EVCNT_ATTACH_STATIC(udp6_hwcsum_bad); EVCNT_ATTACH_STATIC(udp6_hwcsum_ok); EVCNT_ATTACH_STATIC(udp6_hwcsum_data); EVCNT_ATTACH_STATIC(udp6_swcsum); #define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++ #else #define UDP_CSUM_COUNTER_INCR(ev) /* nothing */ #endif void udp6_init(void) { sysctl_net_inet6_udp6_setup(NULL); udp6stat_percpu = percpu_alloc(sizeof(uint64_t) * UDP6_NSTATS); udp_init_common(); } /* * Notify a udp user of an asynchronous error; * just wake up so that he can collect error status. */ static void udp6_notify(struct in6pcb *in6p, int errno) { in6p->in6p_socket->so_error = errno; sorwakeup(in6p->in6p_socket); sowwakeup(in6p->in6p_socket); } void * udp6_ctlinput(int cmd, const struct sockaddr *sa, void *d) { struct udphdr uh; struct ip6_hdr *ip6; const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa; struct mbuf *m; int off; void *cmdarg; struct ip6ctlparam *ip6cp = NULL; const struct sockaddr_in6 *sa6_src = NULL; void (*notify)(struct in6pcb *, int) = udp6_notify; struct udp_portonly { u_int16_t uh_sport; u_int16_t uh_dport; } *uhp; if (sa->sa_family != AF_INET6 || sa->sa_len != sizeof(struct sockaddr_in6)) return NULL; if ((unsigned)cmd >= PRC_NCMDS) return NULL; if (PRC_IS_REDIRECT(cmd)) notify = in6_rtchange, d = NULL; else if (cmd == PRC_HOSTDEAD) d = NULL; else if (cmd == PRC_MSGSIZE) { /* special code is present, see below */ notify = in6_rtchange; } else if (inet6ctlerrmap[cmd] == 0) return NULL; /* if the parameter is from icmp6, decode it. */ if (d != NULL) { ip6cp = (struct ip6ctlparam *)d; m = ip6cp->ip6c_m; ip6 = ip6cp->ip6c_ip6; off = ip6cp->ip6c_off; cmdarg = ip6cp->ip6c_cmdarg; sa6_src = ip6cp->ip6c_src; } else { m = NULL; ip6 = NULL; cmdarg = NULL; sa6_src = &sa6_any; off = 0; } if (ip6) { /* check if we can safely examine src and dst ports */ if (m->m_pkthdr.len < off + sizeof(*uhp)) { if (cmd == PRC_MSGSIZE) icmp6_mtudisc_update((struct ip6ctlparam *)d, 0); return NULL; } memset(&uh, 0, sizeof(uh)); m_copydata(m, off, sizeof(*uhp), (void *)&uh); if (cmd == PRC_MSGSIZE) { int valid = 0; /* * Check to see if we have a valid UDP socket * corresponding to the address in the ICMPv6 message * payload. */ if (in6_pcblookup_connect(&udbtable, &sa6->sin6_addr, uh.uh_dport, (const struct in6_addr *)&sa6_src->sin6_addr, uh.uh_sport, 0, 0)) valid++; #if 0 /* * As the use of sendto(2) is fairly popular, * we may want to allow non-connected pcb too. * But it could be too weak against attacks... * We should at least check if the local address (= s) * is really ours. */ else if (in6_pcblookup_bind(&udbtable, &sa6->sin6_addr, uh.uh_dport, 0)) valid++; #endif /* * Depending on the value of "valid" and routing table * size (mtudisc_{hi,lo}wat), we will: * - recalculate the new MTU and create the * corresponding routing entry, or * - ignore the MTU change notification. */ icmp6_mtudisc_update((struct ip6ctlparam *)d, valid); /* * regardless of if we called * icmp6_mtudisc_update(), we need to call * in6_pcbnotify(), to notify path MTU change * to the userland (RFC3542), because some * unconnected sockets may share the same * destination and want to know the path MTU. */ } (void)in6_pcbnotify(&udbtable, sa, uh.uh_dport, sin6tocsa(sa6_src), uh.uh_sport, cmd, cmdarg, notify); } else { (void)in6_pcbnotify(&udbtable, sa, 0, sin6tocsa(sa6_src), 0, cmd, cmdarg, notify); } return NULL; } int udp6_ctloutput(int op, struct socket *so, struct sockopt *sopt) { int s; int error = 0; struct in6pcb *in6p; int family; int optval; family = so->so_proto->pr_domain->dom_family; s = splsoftnet(); switch (family) { #ifdef INET case PF_INET: if (sopt->sopt_level != IPPROTO_UDP) { error = ip_ctloutput(op, so, sopt); goto end; } break; #endif #ifdef INET6 case PF_INET6: if (sopt->sopt_level != IPPROTO_UDP) { error = ip6_ctloutput(op, so, sopt); goto end; } break; #endif default: error = EAFNOSUPPORT; goto end; } switch (op) { case PRCO_SETOPT: in6p = sotoin6pcb(so); switch (sopt->sopt_name) { case UDP_ENCAP: error = sockopt_getint(sopt, &optval); if (error) break; switch(optval) { case 0: in6p->in6p_flags &= ~IN6P_ESPINUDP; break; case UDP_ENCAP_ESPINUDP: in6p->in6p_flags |= IN6P_ESPINUDP; break; default: error = EINVAL; break; } break; default: error = ENOPROTOOPT; break; } break; default: error = EINVAL; break; } end: splx(s); return error; } static void udp6_sendup(struct mbuf *m, int off /* offset of data portion */, struct sockaddr *src, struct socket *so) { struct mbuf *opts = NULL; struct mbuf *n; struct in6pcb *in6p; KASSERT(so != NULL); KASSERT(so->so_proto->pr_domain->dom_family == AF_INET6); in6p = sotoin6pcb(so); KASSERT(in6p != NULL); #if defined(IPSEC) if (ipsec_used && ipsec_in_reject(m, in6p)) { if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) icmp6_error(n, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADMIN, 0); return; } #endif if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) { if (in6p->in6p_flags & IN6P_CONTROLOPTS || SOOPT_TIMESTAMP(in6p->in6p_socket->so_options)) { struct ip6_hdr *ip6 = mtod(n, struct ip6_hdr *); ip6_savecontrol(in6p, &opts, ip6, n); } m_adj(n, off); if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) { m_freem(n); if (opts) m_freem(opts); UDP6_STATINC(UDP6_STAT_FULLSOCK); soroverflow(so); } else sorwakeup(so); } } int udp6_realinput(int af, struct sockaddr_in6 *src, struct sockaddr_in6 *dst, struct mbuf **mp, int off) { u_int16_t sport, dport; int rcvcnt; struct in6_addr src6, *dst6; const struct in_addr *dst4; struct inpcb_hdr *inph; struct in6pcb *in6p; struct mbuf *m = *mp; rcvcnt = 0; off += sizeof(struct udphdr); /* now, offset of payload */ if (af != AF_INET && af != AF_INET6) goto bad; if (src->sin6_family != AF_INET6 || dst->sin6_family != AF_INET6) goto bad; src6 = src->sin6_addr; if (sa6_recoverscope(src) != 0) { /* XXX: should be impossible. */ goto bad; } sport = src->sin6_port; dport = dst->sin6_port; dst4 = (struct in_addr *)&dst->sin6_addr.s6_addr[12]; dst6 = &dst->sin6_addr; if (IN6_IS_ADDR_MULTICAST(dst6) || (af == AF_INET && IN_MULTICAST(dst4->s_addr))) { /* * Deliver a multicast or broadcast datagram to *all* sockets * for which the local and remote addresses and ports match * those of the incoming datagram. This allows more than * one process to receive multi/broadcasts on the same port. * (This really ought to be done for unicast datagrams as * well, but that would cause problems with existing * applications that open both address-specific sockets and * a wildcard socket listening to the same port -- they would * end up receiving duplicates of every unicast datagram. * Those applications open the multiple sockets to overcome an * inadequacy of the UDP socket interface, but for backwards * compatibility we avoid the problem here rather than * fixing the interface. Maybe 4.5BSD will remedy this?) */ /* * KAME note: traditionally we dropped udpiphdr from mbuf here. * we need udpiphdr for IPsec processing so we do that later. */ /* * Locate pcb(s) for datagram. */ TAILQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) { in6p = (struct in6pcb *)inph; if (in6p->in6p_af != AF_INET6) continue; if (in6p->in6p_lport != dport) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr, dst6)) continue; } else { if (IN6_IS_ADDR_V4MAPPED(dst6) && (in6p->in6p_flags & IN6P_IPV6_V6ONLY)) continue; } if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) { if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr, &src6) || in6p->in6p_fport != sport) continue; } else { if (IN6_IS_ADDR_V4MAPPED(&src6) && (in6p->in6p_flags & IN6P_IPV6_V6ONLY)) continue; } udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket); rcvcnt++; /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids searching * through all pcbs in the common case of a non-shared * port. It assumes that an application will never * clear these options after setting them. */ if ((in6p->in6p_socket->so_options & (SO_REUSEPORT|SO_REUSEADDR)) == 0) break; } } else { /* * Locate pcb for datagram. */ in6p = in6_pcblookup_connect(&udbtable, &src6, sport, dst6, dport, 0, 0); if (in6p == 0) { UDP_STATINC(UDP_STAT_PCBHASHMISS); in6p = in6_pcblookup_bind(&udbtable, dst6, dport, 0); if (in6p == 0) return rcvcnt; } #ifdef IPSEC /* Handle ESP over UDP */ if (in6p->in6p_flags & IN6P_ESPINUDP) { switch (udp6_espinudp(mp, off)) { case -1: /* Error, m was freed */ rcvcnt = -1; goto bad; case 1: /* ESP over UDP */ rcvcnt++; goto bad; case 0: /* plain UDP */ default: /* Unexpected */ /* * Normal UDP processing will take place, * m may have changed. */ m = *mp; break; } } #endif udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket); rcvcnt++; } bad: return rcvcnt; } int udp6_input_checksum(struct mbuf *m, const struct udphdr *uh, int off, int len) { /* * XXX it's better to record and check if this mbuf is * already checked. */ if (__predict_false((m->m_flags & M_LOOP) && !udp_do_loopback_cksum)) { goto good; } if (uh->uh_sum == 0) { UDP6_STATINC(UDP6_STAT_NOSUM); goto bad; } switch (m->m_pkthdr.csum_flags & ((m_get_rcvif_NOMPSAFE(m)->if_csum_flags_rx & M_CSUM_UDPv6) | M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) { case M_CSUM_UDPv6|M_CSUM_TCP_UDP_BAD: UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_bad); UDP6_STATINC(UDP6_STAT_BADSUM); goto bad; #if 0 /* notyet */ case M_CSUM_UDPv6|M_CSUM_DATA: #endif case M_CSUM_UDPv6: /* Checksum was okay. */ UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_ok); break; default: /* * Need to compute it ourselves. Maybe skip checksum * on loopback interfaces. */ UDP_CSUM_COUNTER_INCR(&udp6_swcsum); if (in6_cksum(m, IPPROTO_UDP, off, len) != 0) { UDP6_STATINC(UDP6_STAT_BADSUM); goto bad; } } good: return 0; bad: return -1; } int udp6_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; int off = *offp; struct sockaddr_in6 src, dst; struct ip6_hdr *ip6; struct udphdr *uh; u_int32_t plen, ulen; ip6 = mtod(m, struct ip6_hdr *); #if defined(NFAITH) && 0 < NFAITH if (faithprefix(&ip6->ip6_dst)) { /* send icmp6 host unreach? */ m_freem(m); return IPPROTO_DONE; } #endif UDP6_STATINC(UDP6_STAT_IPACKETS); /* Check for jumbogram is done in ip6_input. We can trust pkthdr.len. */ plen = m->m_pkthdr.len - off; IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(struct udphdr)); if (uh == NULL) { IP6_STATINC(IP6_STAT_TOOSHORT); return IPPROTO_DONE; } /* * Enforce alignment requirements that are violated in * some cases, see kern/50766 for details. */ if (UDP_HDR_ALIGNED_P(uh) == 0) { m = m_copyup(m, off + sizeof(struct udphdr), 0); if (m == NULL) { IP6_STATINC(IP6_STAT_TOOSHORT); return IPPROTO_DONE; } ip6 = mtod(m, struct ip6_hdr *); uh = (struct udphdr *)(mtod(m, char *) + off); } KASSERT(UDP_HDR_ALIGNED_P(uh)); ulen = ntohs((u_short)uh->uh_ulen); /* * RFC2675 section 4: jumbograms will have 0 in the UDP header field, * iff payload length > 0xffff. */ if (ulen == 0 && plen > 0xffff) ulen = plen; if (plen != ulen) { UDP6_STATINC(UDP6_STAT_BADLEN); goto bad; } /* destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto bad; /* * Checksum extended UDP header and data. Maybe skip checksum * on loopback interfaces. */ if (udp6_input_checksum(m, uh, off, ulen)) goto bad; /* * Construct source and dst sockaddrs. */ memset(&src, 0, sizeof(src)); src.sin6_family = AF_INET6; src.sin6_len = sizeof(struct sockaddr_in6); src.sin6_addr = ip6->ip6_src; src.sin6_port = uh->uh_sport; memset(&dst, 0, sizeof(dst)); dst.sin6_family = AF_INET6; dst.sin6_len = sizeof(struct sockaddr_in6); dst.sin6_addr = ip6->ip6_dst; dst.sin6_port = uh->uh_dport; if (udp6_realinput(AF_INET6, &src, &dst, &m, off) == 0) { if (m->m_flags & M_MCAST) { UDP6_STATINC(UDP6_STAT_NOPORTMCAST); goto bad; } UDP6_STATINC(UDP6_STAT_NOPORT); icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0); m = NULL; } bad: if (m) m_freem(m); return IPPROTO_DONE; } int udp6_output(struct in6pcb * const in6p, struct mbuf *m, struct sockaddr_in6 * const addr6, struct mbuf * const control, struct lwp * const l) { u_int32_t ulen = m->m_pkthdr.len; u_int32_t plen = sizeof(struct udphdr) + ulen; struct ip6_hdr *ip6; struct udphdr *udp6; struct in6_addr _laddr, *laddr, *faddr; struct in6_addr laddr_mapped; /* XXX ugly */ struct sockaddr_in6 *sin6 = NULL; struct ifnet *oifp = NULL; int scope_ambiguous = 0; u_int16_t fport; int error = 0; struct ip6_pktopts *optp = NULL; struct ip6_pktopts opt; int af = AF_INET6, hlen = sizeof(struct ip6_hdr); #ifdef INET struct ip *ip; struct udpiphdr *ui; int flags = 0; #endif struct sockaddr_in6 tmp; if (addr6) { sin6 = addr6; if (sin6->sin6_len != sizeof(*sin6)) { error = EINVAL; goto release; } if (sin6->sin6_family != AF_INET6) { error = EAFNOSUPPORT; goto release; } /* protect *sin6 from overwrites */ tmp = *sin6; sin6 = &tmp; /* * Application should provide a proper zone ID or the use of * default zone IDs should be enabled. Unfortunately, some * applications do not behave as it should, so we need a * workaround. Even if an appropriate ID is not determined, * we'll see if we can determine the outgoing interface. If we * can, determine the zone ID based on the interface below. */ if (sin6->sin6_scope_id == 0 && !ip6_use_defzone) scope_ambiguous = 1; if ((error = sa6_embedscope(sin6, ip6_use_defzone)) != 0) goto release; } if (control) { if (__predict_false(l == NULL)) { panic("%s: control but no lwp", __func__); } if ((error = ip6_setpktopts(control, &opt, in6p->in6p_outputopts, l->l_cred, IPPROTO_UDP)) != 0) goto release; optp = &opt; } else optp = in6p->in6p_outputopts; if (sin6) { /* * Slightly different than v4 version in that we call * in6_selectsrc and in6_pcbsetport to fill in the local * address and port rather than in_pcbconnect. in_pcbconnect * sets in6p_faddr which causes EISCONN below to be hit on * subsequent sendto. */ if (sin6->sin6_port == 0) { error = EADDRNOTAVAIL; goto release; } if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) { /* how about ::ffff:0.0.0.0 case? */ error = EISCONN; goto release; } faddr = &sin6->sin6_addr; fport = sin6->sin6_port; /* allow 0 port */ if (IN6_IS_ADDR_V4MAPPED(faddr)) { if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) { /* * I believe we should explicitly discard the * packet when mapped addresses are disabled, * rather than send the packet as an IPv6 one. * If we chose the latter approach, the packet * might be sent out on the wire based on the * default route, the situation which we'd * probably want to avoid. * (20010421 jinmei@kame.net) */ error = EINVAL; goto release; } if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) && !IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)) { /* * when remote addr is an IPv4-mapped address, * local addr should not be an IPv6 address, * since you cannot determine how to map IPv6 * source address to IPv4. */ error = EINVAL; goto release; } af = AF_INET; } if (!IN6_IS_ADDR_V4MAPPED(faddr)) { struct psref psref; int bound = curlwp_bind(); error = in6_selectsrc(sin6, optp, in6p->in6p_moptions, &in6p->in6p_route, &in6p->in6p_laddr, &oifp, &psref, &_laddr); if (error) laddr = NULL; else laddr = &_laddr; if (oifp && scope_ambiguous && (error = in6_setscope(&sin6->sin6_addr, oifp, NULL))) { if_put(oifp, &psref); curlwp_bindx(bound); goto release; } if_put(oifp, &psref); curlwp_bindx(bound); } else { /* * XXX: freebsd[34] does not have in_selectsrc, but * we can omit the whole part because freebsd4 calls * udp_output() directly in this case, and thus we'll * never see this path. */ if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { struct sockaddr_in sin_dst; struct in_addr ina; struct in_ifaddr *ia4; struct psref _psref; int bound; memcpy(&ina, &faddr->s6_addr[12], sizeof(ina)); sockaddr_in_init(&sin_dst, &ina, 0); bound = curlwp_bind(); ia4 = in_selectsrc(&sin_dst, &in6p->in6p_route, in6p->in6p_socket->so_options, NULL, &error, &_psref); if (ia4 == NULL) { curlwp_bindx(bound); if (error == 0) error = EADDRNOTAVAIL; goto release; } memset(&laddr_mapped, 0, sizeof(laddr_mapped)); laddr_mapped.s6_addr16[5] = 0xffff; /* ugly */ memcpy(&laddr_mapped.s6_addr[12], &IA_SIN(ia4)->sin_addr, sizeof(IA_SIN(ia4)->sin_addr)); ia4_release(ia4, &_psref); curlwp_bindx(bound); laddr = &laddr_mapped; } else { laddr = &in6p->in6p_laddr; /* XXX */ } } if (laddr == NULL) { if (error == 0) error = EADDRNOTAVAIL; goto release; } if (in6p->in6p_lport == 0) { /* * Craft a sockaddr_in6 for the local endpoint. Use the * "any" as a base, set the address, and recover the * scope. */ struct sockaddr_in6 lsin6 = *((const struct sockaddr_in6 *)in6p->in6p_socket->so_proto->pr_domain->dom_sa_any); lsin6.sin6_addr = *laddr; error = sa6_recoverscope(&lsin6); if (error) goto release; error = in6_pcbsetport(&lsin6, in6p, l); if (error) { in6p->in6p_laddr = in6addr_any; goto release; } } } else { if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) { error = ENOTCONN; goto release; } if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) { if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) { /* * XXX: this case would happen when the * application sets the V6ONLY flag after * connecting the foreign address. * Such applications should be fixed, * so we bark here. */ log(LOG_INFO, "udp6_output: IPV6_V6ONLY " "option was set for a connected socket\n"); error = EINVAL; goto release; } else af = AF_INET; } laddr = &in6p->in6p_laddr; faddr = &in6p->in6p_faddr; fport = in6p->in6p_fport; } if (af == AF_INET) hlen = sizeof(struct ip); /* * Calculate data length and get a mbuf * for UDP and IP6 headers. */ M_PREPEND(m, hlen + sizeof(struct udphdr), M_DONTWAIT); if (m == NULL) { error = ENOBUFS; goto release; } /* * Stuff checksum and output datagram. */ udp6 = (struct udphdr *)(mtod(m, char *) + hlen); udp6->uh_sport = in6p->in6p_lport; /* lport is always set in the PCB */ udp6->uh_dport = fport; if (plen <= 0xffff) udp6->uh_ulen = htons((u_int16_t)plen); else udp6->uh_ulen = 0; udp6->uh_sum = 0; switch (af) { case AF_INET6: ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK; ip6->ip6_vfc &= ~IPV6_VERSION_MASK; ip6->ip6_vfc |= IPV6_VERSION; #if 0 /* ip6_plen will be filled in ip6_output. */ ip6->ip6_plen = htons((u_int16_t)plen); #endif ip6->ip6_nxt = IPPROTO_UDP; ip6->ip6_hlim = in6_selecthlim_rt(in6p); ip6->ip6_src = *laddr; ip6->ip6_dst = *faddr; udp6->uh_sum = in6_cksum_phdr(laddr, faddr, htonl(plen), htonl(IPPROTO_UDP)); m->m_pkthdr.csum_flags = M_CSUM_UDPv6; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); UDP6_STATINC(UDP6_STAT_OPACKETS); error = ip6_output(m, optp, &in6p->in6p_route, 0, in6p->in6p_moptions, in6p, NULL); break; case AF_INET: #ifdef INET /* can't transmit jumbogram over IPv4 */ if (plen > 0xffff) { error = EMSGSIZE; goto release; } ip = mtod(m, struct ip *); ui = (struct udpiphdr *)ip; memset(ui->ui_x1, 0, sizeof(ui->ui_x1)); ui->ui_pr = IPPROTO_UDP; ui->ui_len = htons(plen); memcpy(&ui->ui_src, &laddr->s6_addr[12], sizeof(ui->ui_src)); ui->ui_ulen = ui->ui_len; flags = (in6p->in6p_socket->so_options & (SO_DONTROUTE | SO_BROADCAST)); memcpy(&ui->ui_dst, &faddr->s6_addr[12], sizeof(ui->ui_dst)); udp6->uh_sum = in_cksum(m, hlen + plen); if (udp6->uh_sum == 0) udp6->uh_sum = 0xffff; ip->ip_len = htons(hlen + plen); ip->ip_ttl = in6_selecthlim(in6p, NULL); /* XXX */ ip->ip_tos = 0; /* XXX */ UDP_STATINC(UDP_STAT_OPACKETS); error = ip_output(m, NULL, &in6p->in6p_route, flags /* XXX */, in6p->in6p_v4moptions, NULL); break; #else error = EAFNOSUPPORT; goto release; #endif } goto releaseopt; release: m_freem(m); releaseopt: if (control) { if (optp == &opt) ip6_clearpktopts(&opt, -1); m_freem(control); } return (error); } static int udp6_attach(struct socket *so, int proto) { struct in6pcb *in6p; int s, error; KASSERT(sotoin6pcb(so) == NULL); sosetlock(so); error = soreserve(so, udp6_sendspace, udp6_recvspace); if (error) { return error; } /* * MAPPED_ADDR implementation spec: * Always attach for IPv6, and only when necessary for IPv4. */ s = splsoftnet(); error = in6_pcballoc(so, &udbtable); splx(s); if (error) { return error; } in6p = sotoin6pcb(so); in6p->in6p_cksum = -1; /* just to be sure */ KASSERT(solocked(so)); return 0; } static void udp6_detach(struct socket *so) { struct in6pcb *in6p = sotoin6pcb(so); int s; KASSERT(solocked(so)); KASSERT(in6p != NULL); s = splsoftnet(); in6_pcbdetach(in6p); splx(s); } static int udp6_accept(struct socket *so, struct sockaddr *nam) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int udp6_bind(struct socket *so, struct sockaddr *nam, struct lwp *l) { struct in6pcb *in6p = sotoin6pcb(so); struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam; int error = 0; int s; KASSERT(solocked(so)); KASSERT(in6p != NULL); s = splsoftnet(); error = in6_pcbbind(in6p, sin6, l); splx(s); return error; } static int udp6_listen(struct socket *so, struct lwp *l) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int udp6_connect(struct socket *so, struct sockaddr *nam, struct lwp *l) { struct in6pcb *in6p = sotoin6pcb(so); int error = 0; int s; KASSERT(solocked(so)); KASSERT(in6p != NULL); if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) return EISCONN; s = splsoftnet(); error = in6_pcbconnect(in6p, (struct sockaddr_in6 *)nam, l); splx(s); if (error == 0) soisconnected(so); return error; } static int udp6_connect2(struct socket *so, struct socket *so2) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int udp6_disconnect(struct socket *so) { struct in6pcb *in6p = sotoin6pcb(so); int s; KASSERT(solocked(so)); KASSERT(in6p != NULL); if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) return ENOTCONN; s = splsoftnet(); in6_pcbdisconnect(in6p); memset((void *)&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr)); splx(s); so->so_state &= ~SS_ISCONNECTED; /* XXX */ in6_pcbstate(in6p, IN6P_BOUND); /* XXX */ return 0; } static int udp6_shutdown(struct socket *so) { int s; s = splsoftnet(); socantsendmore(so); splx(s); return 0; } static int udp6_abort(struct socket *so) { int s; KASSERT(solocked(so)); KASSERT(sotoin6pcb(so) != NULL); s = splsoftnet(); soisdisconnected(so); in6_pcbdetach(sotoin6pcb(so)); splx(s); return 0; } static int udp6_ioctl(struct socket *so, u_long cmd, void *addr6, struct ifnet *ifp) { /* * MAPPED_ADDR implementation info: * Mapped addr support for PRU_CONTROL is not necessary. * Because typical user of PRU_CONTROL is such as ifconfig, * and they don't associate any addr to their socket. Then * socket family is only hint about the PRU_CONTROL'ed address * family, especially when getting addrs from kernel. * So AF_INET socket need to be used to control AF_INET addrs, * and AF_INET6 socket for AF_INET6 addrs. */ return in6_control(so, cmd, addr6, ifp); } static int udp6_stat(struct socket *so, struct stat *ub) { KASSERT(solocked(so)); /* stat: don't bother with a blocksize */ return 0; } static int udp6_peeraddr(struct socket *so, struct sockaddr *nam) { KASSERT(solocked(so)); KASSERT(sotoin6pcb(so) != NULL); KASSERT(nam != NULL); in6_setpeeraddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam); return 0; } static int udp6_sockaddr(struct socket *so, struct sockaddr *nam) { KASSERT(solocked(so)); KASSERT(sotoin6pcb(so) != NULL); KASSERT(nam != NULL); in6_setsockaddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam); return 0; } static int udp6_rcvd(struct socket *so, int flags, struct lwp *l) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int udp6_recvoob(struct socket *so, struct mbuf *m, int flags) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int udp6_send(struct socket *so, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct lwp *l) { struct in6pcb *in6p = sotoin6pcb(so); int error = 0; int s; KASSERT(solocked(so)); KASSERT(in6p != NULL); KASSERT(m != NULL); s = splsoftnet(); error = udp6_output(in6p, m, (struct sockaddr_in6 *)nam, control, l); splx(s); return error; } static int udp6_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control) { KASSERT(solocked(so)); m_freem(m); m_freem(control); return EOPNOTSUPP; } static int udp6_purgeif(struct socket *so, struct ifnet *ifp) { mutex_enter(softnet_lock); in6_pcbpurgeif0(&udbtable, ifp); #ifdef NET_MPSAFE mutex_exit(softnet_lock); #endif in6_purgeif(ifp); #ifdef NET_MPSAFE mutex_enter(softnet_lock); #endif in6_pcbpurgeif(&udbtable, ifp); mutex_exit(softnet_lock); return 0; } static int sysctl_net_inet6_udp6_stats(SYSCTLFN_ARGS) { return (NETSTAT_SYSCTL(udp6stat_percpu, UDP6_NSTATS)); } static void sysctl_net_inet6_udp6_setup(struct sysctllog **clog) { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "inet6", NULL, NULL, 0, NULL, 0, CTL_NET, PF_INET6, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "udp6", SYSCTL_DESCR("UDPv6 related settings"), NULL, 0, NULL, 0, CTL_NET, PF_INET6, IPPROTO_UDP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "sendspace", SYSCTL_DESCR("Default UDP send buffer size"), NULL, 0, &udp6_sendspace, 0, CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_SENDSPACE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "recvspace", SYSCTL_DESCR("Default UDP receive buffer size"), NULL, 0, &udp6_recvspace, 0, CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_RECVSPACE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "do_loopback_cksum", SYSCTL_DESCR("Perform UDP checksum on loopback"), NULL, 0, &udp_do_loopback_cksum, 0, CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_LOOPBACKCKSUM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "pcblist", SYSCTL_DESCR("UDP protocol control block list"), sysctl_inpcblist, 0, &udbtable, 0, CTL_NET, PF_INET6, IPPROTO_UDP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "stats", SYSCTL_DESCR("UDPv6 statistics"), sysctl_net_inet6_udp6_stats, 0, NULL, 0, CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_STATS, CTL_EOL); } void udp6_statinc(u_int stat) { KASSERT(stat < UDP6_NSTATS); UDP6_STATINC(stat); } #ifdef IPSEC /* * Returns: * 1 if the packet was processed * 0 if normal UDP processing should take place * -1 if an error occurred and m was freed */ static int udp6_espinudp(struct mbuf **mp, int off) { const size_t skip = sizeof(struct udphdr); size_t len; void *data; size_t minlen; int ip6hdrlen; struct ip6_hdr *ip6; struct m_tag *tag; struct udphdr *udphdr; u_int16_t sport, dport; struct mbuf *m = *mp; uint32_t *marker; /* * Collapse the mbuf chain if the first mbuf is too short * The longest case is: UDP + non ESP marker + ESP */ minlen = off + sizeof(u_int64_t) + sizeof(struct esp); if (minlen > m->m_pkthdr.len) minlen = m->m_pkthdr.len; if (m->m_len < minlen) { if ((*mp = m_pullup(m, minlen)) == NULL) { return -1; } m = *mp; } len = m->m_len - off; data = mtod(m, char *) + off; /* Ignore keepalive packets */ if ((len == 1) && (*(unsigned char *)data == 0xff)) { m_freem(m); *mp = NULL; /* avoid any further processing by caller ... */ return 1; } /* Handle Non-ESP marker (32bit). If zero, then IKE. */ marker = (uint32_t *)data; if (len <= sizeof(uint32_t)) return 0; if (marker[0] == 0) return 0; /* * Get the UDP ports. They are handled in network * order everywhere in IPSEC_NAT_T code. */ udphdr = (struct udphdr *)((char *)data - skip); sport = udphdr->uh_sport; dport = udphdr->uh_dport; /* * Remove the UDP header (and possibly the non ESP marker) * IPv6 header length is ip6hdrlen * Before: * <---- off ---> * +-----+------+-----+ * | IP6 | UDP | ESP | * +-----+------+-----+ * <-skip-> * After: * +-----+-----+ * | IP6 | ESP | * +-----+-----+ * <-skip-> */ ip6hdrlen = off - sizeof(struct udphdr); memmove(mtod(m, char *) + skip, mtod(m, void *), ip6hdrlen); m_adj(m, skip); ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - skip); ip6->ip6_nxt = IPPROTO_ESP; /* * We have modified the packet - it is now ESP, so we should not * return to UDP processing ... * * Add a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember * the source UDP port. This is required if we want * to select the right SPD for multiple hosts behind * same NAT */ if ((tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS, sizeof(sport) + sizeof(dport), M_DONTWAIT)) == NULL) { m_freem(m); return -1; } ((u_int16_t *)(tag + 1))[0] = sport; ((u_int16_t *)(tag + 1))[1] = dport; m_tag_prepend(m, tag); if (ipsec_used) ipsec6_common_input(&m, &ip6hdrlen, IPPROTO_ESP); else m_freem(m); /* We handled it, it shouldn't be handled by UDP */ *mp = NULL; /* avoid free by caller ... */ return 1; } #endif /* IPSEC */ PR_WRAP_USRREQS(udp6) #define udp6_attach udp6_attach_wrapper #define udp6_detach udp6_detach_wrapper #define udp6_accept udp6_accept_wrapper #define udp6_bind udp6_bind_wrapper #define udp6_listen udp6_listen_wrapper #define udp6_connect udp6_connect_wrapper #define udp6_connect2 udp6_connect2_wrapper #define udp6_disconnect udp6_disconnect_wrapper #define udp6_shutdown udp6_shutdown_wrapper #define udp6_abort udp6_abort_wrapper #define udp6_ioctl udp6_ioctl_wrapper #define udp6_stat udp6_stat_wrapper #define udp6_peeraddr udp6_peeraddr_wrapper #define udp6_sockaddr udp6_sockaddr_wrapper #define udp6_rcvd udp6_rcvd_wrapper #define udp6_recvoob udp6_recvoob_wrapper #define udp6_send udp6_send_wrapper #define udp6_sendoob udp6_sendoob_wrapper #define udp6_purgeif udp6_purgeif_wrapper const struct pr_usrreqs udp6_usrreqs = { .pr_attach = udp6_attach, .pr_detach = udp6_detach, .pr_accept = udp6_accept, .pr_bind = udp6_bind, .pr_listen = udp6_listen, .pr_connect = udp6_connect, .pr_connect2 = udp6_connect2, .pr_disconnect = udp6_disconnect, .pr_shutdown = udp6_shutdown, .pr_abort = udp6_abort, .pr_ioctl = udp6_ioctl, .pr_stat = udp6_stat, .pr_peeraddr = udp6_peeraddr, .pr_sockaddr = udp6_sockaddr, .pr_rcvd = udp6_rcvd, .pr_recvoob = udp6_recvoob, .pr_send = udp6_send, .pr_sendoob = udp6_sendoob, .pr_purgeif = udp6_purgeif, };