/* * Copyright (c) 2011 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Coyote Point Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Reduces the resources demanded by TCP sessions in TIME_WAIT-state using * methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime * Truncation (MSLT). * * MSLT and VTW were contributed by Coyote Point Systems, Inc. * * Even after a TCP session enters the TIME_WAIT state, its corresponding * socket and protocol control blocks (PCBs) stick around until the TCP * Maximum Segment Lifetime (MSL) expires. On a host whose workload * necessarily creates and closes down many TCP sockets, the sockets & PCBs * for TCP sessions in TIME_WAIT state amount to many megabytes of dead * weight in RAM. * * Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to * a class based on the nearness of the peer. Corresponding to each class * is an MSL, and a session uses the MSL of its class. The classes are * loopback (local host equals remote host), local (local host and remote * host are on the same link/subnet), and remote (local host and remote * host communicate via one or more gateways). Classes corresponding to * nearer peers have lower MSLs by default: 2 seconds for loopback, 10 * seconds for local, 60 seconds for remote. Loopback and local sessions * expire more quickly when MSLT is used. * * Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket * dead weight with a compact representation of the session, called a * "vestigial PCB". VTW data structures are designed to be very fast and * memory-efficient: for fast insertion and lookup of vestigial PCBs, * the PCBs are stored in a hash table that is designed to minimize the * number of cacheline visits per lookup/insertion. The memory both * for vestigial PCBs and for elements of the PCB hashtable come from * fixed-size pools, and linked data structures exploit this to conserve * memory by representing references with a narrow index/offset from the * start of a pool instead of a pointer. When space for new vestigial PCBs * runs out, VTW makes room by discarding old vestigial PCBs, oldest first. * VTW cooperates with MSLT. * * It may help to think of VTW as a "FIN cache" by analogy to the SYN * cache. * * A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT * sessions as fast as it can is approximately 17% idle when VTW is active * versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM * when VTW is active (approximately 64k vestigial PCBs are created) than * when it is inactive. */ #include #ifdef _KERNEL_OPT #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet_csum.h" #include "opt_tcp_debug.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include __KERNEL_RCSID(0, "$NetBSD: tcp_vtw.c,v 1.19 2018/05/03 07:13:48 maxv Exp $"); #define db_trace(__a, __b) do { } while (/*CONSTCOND*/0) static void vtw_debug_init(void); fatp_ctl_t fat_tcpv4; fatp_ctl_t fat_tcpv6; vtw_ctl_t vtw_tcpv4[VTW_NCLASS]; vtw_ctl_t vtw_tcpv6[VTW_NCLASS]; vtw_stats_t vtw_stats; /* We provide state for the lookup_ports iterator. * As currently we are netlock-protected, there is one. * If we were finer-grain, we would have one per CPU. * I do not want to be in the business of alloc/free. * The best alternate would be allocate on the caller's * stack, but that would require them to know the struct, * or at least the size. * See how she goes. */ struct tcp_ports_iterator { union { struct in_addr v4; struct in6_addr v6; } addr; u_int port; uint32_t wild : 1; vtw_ctl_t *ctl; fatp_t *fp; uint16_t slot_idx; uint16_t ctl_idx; }; static struct tcp_ports_iterator tcp_ports_iterator_v4; static struct tcp_ports_iterator tcp_ports_iterator_v6; static int vtw_age(vtw_ctl_t *, struct timeval *); /*!\brief allocate a fat pointer from a collection. */ static fatp_t * fatp_alloc(fatp_ctl_t *fat) { fatp_t *fp = 0; if (fat->nfree) { fp = fat->free; if (fp) { fat->free = fatp_next(fat, fp); --fat->nfree; ++fat->nalloc; fp->nxt = 0; KASSERT(!fp->inuse); } } return fp; } /*!\brief free a fat pointer. */ static void fatp_free(fatp_ctl_t *fat, fatp_t *fp) { if (fp) { KASSERT(!fp->inuse); KASSERT(!fp->nxt); fp->nxt = fatp_index(fat, fat->free); fat->free = fp; ++fat->nfree; --fat->nalloc; } } /*!\brief initialise a collection of fat pointers. * *\param n # hash buckets *\param m total # fat pointers to allocate * * We allocate 2x as much, as we have two hashes: full and lport only. */ static void fatp_init(fatp_ctl_t *fat, uint32_t n, uint32_t m, fatp_t *fat_base, fatp_t **fat_hash) { fatp_t *fp; KASSERT(n <= FATP_MAX / 2); fat->hash = fat_hash; fat->base = fat_base; fat->port = &fat->hash[m]; fat->mask = m - 1; // ASSERT is power of 2 (m) fat->lim = fat->base + 2*n - 1; fat->nfree = 0; fat->nalloc = 2*n; /* Initialise the free list. */ for (fp = fat->lim; fp >= fat->base; --fp) { fatp_free(fat, fp); } } /* * The `xtra' is XORed into the tag stored. */ static uint32_t fatp_xtra[] = { 0x11111111,0x22222222,0x33333333,0x44444444, 0x55555555,0x66666666,0x77777777,0x88888888, 0x12121212,0x21212121,0x34343434,0x43434343, 0x56565656,0x65656565,0x78787878,0x87878787, 0x11221122,0x22112211,0x33443344,0x44334433, 0x55665566,0x66556655,0x77887788,0x88778877, 0x11112222,0x22221111,0x33334444,0x44443333, 0x55556666,0x66665555,0x77778888,0x88887777, }; /*!\brief turn a {fatp_t*,slot} into an integral key. * * The key can be used to obtain the fatp_t, and the slot, * as it directly encodes them. */ static inline uint32_t fatp_key(fatp_ctl_t *fat, fatp_t *fp, uint32_t slot) { CTASSERT(CACHE_LINE_SIZE == 32 || CACHE_LINE_SIZE == 64 || CACHE_LINE_SIZE == 128); switch (fatp_ntags()) { case 7: return (fatp_index(fat, fp) << 3) | slot; case 15: return (fatp_index(fat, fp) << 4) | slot; case 31: return (fatp_index(fat, fp) << 5) | slot; default: KASSERT(0 && "no support, for no good reason"); return ~0; } } static inline uint32_t fatp_slot_from_key(fatp_ctl_t *fat, uint32_t key) { CTASSERT(CACHE_LINE_SIZE == 32 || CACHE_LINE_SIZE == 64 || CACHE_LINE_SIZE == 128); switch (fatp_ntags()) { case 7: return key & 7; case 15: return key & 15; case 31: return key & 31; default: KASSERT(0 && "no support, for no good reason"); return ~0; } } static inline fatp_t * fatp_from_key(fatp_ctl_t *fat, uint32_t key) { CTASSERT(CACHE_LINE_SIZE == 32 || CACHE_LINE_SIZE == 64 || CACHE_LINE_SIZE == 128); switch (fatp_ntags()) { case 7: key >>= 3; break; case 15: key >>= 4; break; case 31: key >>= 5; break; default: KASSERT(0 && "no support, for no good reason"); return 0; } return key ? fat->base + key - 1 : 0; } static inline uint32_t idx_encode(vtw_ctl_t *ctl, uint32_t idx) { return (idx << ctl->idx_bits) | idx; } static inline uint32_t idx_decode(vtw_ctl_t *ctl, uint32_t bits) { uint32_t idx = bits & ctl->idx_mask; if (idx_encode(ctl, idx) == bits) return idx; else return ~0; } /*!\brief insert index into fatp hash * *\param idx - index of element being placed in hash chain *\param tag - 32-bit tag identifier * *\returns * value which can be used to locate entry. * *\note * we rely on the fact that there are unused high bits in the index * for verification purposes on lookup. */ static inline uint32_t fatp_vtw_inshash(fatp_ctl_t *fat, uint32_t idx, uint32_t tag, int which, void *dbg) { fatp_t *fp; fatp_t **hash = (which ? fat->port : fat->hash); int i; fp = hash[tag & fat->mask]; while (!fp || fatp_full(fp)) { fatp_t *fq; /* All entries are inuse at the top level. * We allocate a spare, and push the top level * down one. All entries in the fp we push down * (think of a tape worm here) will be expelled sooner than * any entries added subsequently to this hash bucket. * This is a property of the time waits we are exploiting. */ fq = fatp_alloc(fat); if (!fq) { vtw_age(fat->vtw, 0); fp = hash[tag & fat->mask]; continue; } fq->inuse = 0; fq->nxt = fatp_index(fat, fp); hash[tag & fat->mask] = fq; fp = fq; } KASSERT(!fatp_full(fp)); /* Fill highest index first. Lookup is lowest first. */ for (i = fatp_ntags(); --i >= 0; ) { if (!((1 << i) & fp->inuse)) { break; } } fp->inuse |= 1 << i; fp->tag[i] = tag ^ idx_encode(fat->vtw, idx) ^ fatp_xtra[i]; db_trace(KTR_VTW , (fp, "fat: inuse %5.5x tag[%x] %8.8x" , fp->inuse , i, fp->tag[i])); return fatp_key(fat, fp, i); } static inline int vtw_alive(const vtw_t *vtw) { return vtw->hashed && vtw->expire.tv_sec; } static inline uint32_t vtw_index_v4(vtw_ctl_t *ctl, vtw_v4_t *v4) { if (ctl->base.v4 <= v4 && v4 <= ctl->lim.v4) return v4 - ctl->base.v4; KASSERT(0 && "vtw out of bounds"); return ~0; } static inline uint32_t vtw_index_v6(vtw_ctl_t *ctl, vtw_v6_t *v6) { if (ctl->base.v6 <= v6 && v6 <= ctl->lim.v6) return v6 - ctl->base.v6; KASSERT(0 && "vtw out of bounds"); return ~0; } static inline uint32_t vtw_index(vtw_ctl_t *ctl, vtw_t *vtw) { if (ctl->clidx) ctl = ctl->ctl; if (ctl->is_v4) return vtw_index_v4(ctl, (vtw_v4_t *)vtw); if (ctl->is_v6) return vtw_index_v6(ctl, (vtw_v6_t *)vtw); KASSERT(0 && "neither 4 nor 6. most curious."); return ~0; } static inline vtw_t * vtw_from_index(vtw_ctl_t *ctl, uint32_t idx) { if (ctl->clidx) ctl = ctl->ctl; /* See if the index looks like it might be an index. * Bits on outside of the valid index bits is a give away. */ idx = idx_decode(ctl, idx); if (idx == ~0) { return 0; } else if (ctl->is_v4) { vtw_v4_t *vtw = ctl->base.v4 + idx; return (ctl->base.v4 <= vtw && vtw <= ctl->lim.v4) ? &vtw->common : 0; } else if (ctl->is_v6) { vtw_v6_t *vtw = ctl->base.v6 + idx; return (ctl->base.v6 <= vtw && vtw <= ctl->lim.v6) ? &vtw->common : 0; } else { KASSERT(0 && "badness"); return 0; } } /*!\brief return the next vtw after this one. * * Due to the differing sizes of the entries in differing * arenas, we have to ensure we ++ the correct pointer type. * * Also handles wrap. */ static inline vtw_t * vtw_next(vtw_ctl_t *ctl, vtw_t *vtw) { if (ctl->is_v4) { vtw_v4_t *v4 = (void*)vtw; vtw = &(++v4)->common; } else { vtw_v6_t *v6 = (void*)vtw; vtw = &(++v6)->common; } if (vtw > ctl->lim.v) vtw = ctl->base.v; return vtw; } /*!\brief remove entry from FATP hash chains */ static inline void vtw_unhash(vtw_ctl_t *ctl, vtw_t *vtw) { fatp_ctl_t *fat = ctl->fat; fatp_t *fp; uint32_t key = vtw->key; uint32_t tag, slot, idx; vtw_v4_t *v4 = (void*)vtw; vtw_v6_t *v6 = (void*)vtw; if (!vtw->hashed) { KASSERT(0 && "unhashed"); return; } if (fat->vtw->is_v4) { tag = v4_tag(v4->faddr, v4->fport, v4->laddr, v4->lport); } else if (fat->vtw->is_v6) { tag = v6_tag(&v6->faddr, v6->fport, &v6->laddr, v6->lport); } else { tag = 0; KASSERT(0 && "not reached"); } /* Remove from fat->hash[] */ slot = fatp_slot_from_key(fat, key); fp = fatp_from_key(fat, key); idx = vtw_index(ctl, vtw); db_trace(KTR_VTW , (fp, "fat: del inuse %5.5x slot %x idx %x key %x tag %x" , fp->inuse, slot, idx, key, tag)); KASSERT(fp->inuse & (1 << slot)); KASSERT(fp->tag[slot] == (tag ^ idx_encode(ctl, idx) ^ fatp_xtra[slot])); if ((fp->inuse & (1 << slot)) && fp->tag[slot] == (tag ^ idx_encode(ctl, idx) ^ fatp_xtra[slot])) { fp->inuse ^= 1 << slot; fp->tag[slot] = 0; /* When we delete entries, we do not compact. This is * due to temporality. We add entries, and they * (eventually) expire. Older entries will be further * down the chain. */ if (!fp->inuse) { uint32_t hi = tag & fat->mask; fatp_t *fq = 0; fatp_t *fr = fat->hash[hi]; while (fr && fr != fp) { fr = fatp_next(fat, fq = fr); } if (fr == fp) { if (fq) { fq->nxt = fp->nxt; fp->nxt = 0; fatp_free(fat, fp); } else { KASSERT(fat->hash[hi] == fp); if (fp->nxt) { fat->hash[hi] = fatp_next(fat, fp); fp->nxt = 0; fatp_free(fat, fp); } else { /* retain for next use. */ ; } } } else { fr = fat->hash[hi]; do { db_trace(KTR_VTW , (fr , "fat:*del inuse %5.5x" " nxt %x" , fr->inuse, fr->nxt)); fr = fatp_next(fat, fq = fr); } while (fr && fr != fp); KASSERT(0 && "oops"); } } vtw->key ^= ~0; } if (fat->vtw->is_v4) { tag = v4_port_tag(v4->lport); } else if (fat->vtw->is_v6) { tag = v6_port_tag(v6->lport); } /* Remove from fat->port[] */ key = vtw->port_key; slot = fatp_slot_from_key(fat, key); fp = fatp_from_key(fat, key); idx = vtw_index(ctl, vtw); db_trace(KTR_VTW , (fp, "fatport: del inuse %5.5x" " slot %x idx %x key %x tag %x" , fp->inuse, slot, idx, key, tag)); KASSERT(fp->inuse & (1 << slot)); KASSERT(fp->tag[slot] == (tag ^ idx_encode(ctl, idx) ^ fatp_xtra[slot])); if ((fp->inuse & (1 << slot)) && fp->tag[slot] == (tag ^ idx_encode(ctl, idx) ^ fatp_xtra[slot])) { fp->inuse ^= 1 << slot; fp->tag[slot] = 0; if (!fp->inuse) { uint32_t hi = tag & fat->mask; fatp_t *fq = 0; fatp_t *fr = fat->port[hi]; while (fr && fr != fp) { fr = fatp_next(fat, fq = fr); } if (fr == fp) { if (fq) { fq->nxt = fp->nxt; fp->nxt = 0; fatp_free(fat, fp); } else { KASSERT(fat->port[hi] == fp); if (fp->nxt) { fat->port[hi] = fatp_next(fat, fp); fp->nxt = 0; fatp_free(fat, fp); } else { /* retain for next use. */ ; } } } } vtw->port_key ^= ~0; } vtw->hashed = 0; } /*!\brief remove entry from hash, possibly free. */ void vtw_del(vtw_ctl_t *ctl, vtw_t *vtw) { KASSERT(mutex_owned(softnet_lock)); if (vtw->hashed) { ++vtw_stats.del; vtw_unhash(ctl, vtw); } /* We only delete the oldest entry. */ if (vtw != ctl->oldest.v) return; --ctl->nalloc; ++ctl->nfree; vtw->expire.tv_sec = 0; vtw->expire.tv_usec = ~0; if (!ctl->nalloc) ctl->oldest.v = 0; ctl->oldest.v = vtw_next(ctl, vtw); } /*!\brief insert vestigial timewait in hash chain */ static void vtw_inshash_v4(vtw_ctl_t *ctl, vtw_t *vtw) { uint32_t idx = vtw_index(ctl, vtw); uint32_t tag; vtw_v4_t *v4 = (void*)vtw; KASSERT(mutex_owned(softnet_lock)); KASSERT(!vtw->hashed); KASSERT(ctl->clidx == vtw->msl_class); ++vtw_stats.ins; tag = v4_tag(v4->faddr, v4->fport, v4->laddr, v4->lport); vtw->key = fatp_vtw_inshash(ctl->fat, idx, tag, 0, vtw); db_trace(KTR_VTW, (ctl , "vtw: ins %8.8x:%4.4x %8.8x:%4.4x" " tag %8.8x key %8.8x" , v4->faddr, v4->fport , v4->laddr, v4->lport , tag , vtw->key)); tag = v4_port_tag(v4->lport); vtw->port_key = fatp_vtw_inshash(ctl->fat, idx, tag, 1, vtw); db_trace(KTR_VTW, (ctl, "vtw: ins %P - %4.4x tag %8.8x key %8.8x" , v4->lport, v4->lport , tag , vtw->key)); vtw->hashed = 1; } /*!\brief insert vestigial timewait in hash chain */ static void vtw_inshash_v6(vtw_ctl_t *ctl, vtw_t *vtw) { uint32_t idx = vtw_index(ctl, vtw); uint32_t tag; vtw_v6_t *v6 = (void*)vtw; KASSERT(mutex_owned(softnet_lock)); KASSERT(!vtw->hashed); KASSERT(ctl->clidx == vtw->msl_class); ++vtw_stats.ins; tag = v6_tag(&v6->faddr, v6->fport, &v6->laddr, v6->lport); vtw->key = fatp_vtw_inshash(ctl->fat, idx, tag, 0, vtw); tag = v6_port_tag(v6->lport); vtw->port_key = fatp_vtw_inshash(ctl->fat, idx, tag, 1, vtw); db_trace(KTR_VTW, (ctl, "vtw: ins %P - %4.4x tag %8.8x key %8.8x" , v6->lport, v6->lport , tag , vtw->key)); vtw->hashed = 1; } static vtw_t * vtw_lookup_hash_v4(vtw_ctl_t *ctl, uint32_t faddr, uint16_t fport , uint32_t laddr, uint16_t lport , int which) { vtw_v4_t *v4; vtw_t *vtw; uint32_t tag; fatp_t *fp; int i; uint32_t fatps = 0, probes = 0, losings = 0; if (!ctl || !ctl->fat) return 0; ++vtw_stats.look[which]; if (which) { tag = v4_port_tag(lport); fp = ctl->fat->port[tag & ctl->fat->mask]; } else { tag = v4_tag(faddr, fport, laddr, lport); fp = ctl->fat->hash[tag & ctl->fat->mask]; } while (fp && fp->inuse) { uint32_t inuse = fp->inuse; ++fatps; for (i = 0; inuse && i < fatp_ntags(); ++i) { uint32_t idx; if (!(inuse & (1 << i))) continue; inuse ^= 1 << i; ++probes; ++vtw_stats.probe[which]; idx = fp->tag[i] ^ tag ^ fatp_xtra[i]; vtw = vtw_from_index(ctl, idx); if (!vtw) { /* Hopefully fast path. */ db_trace(KTR_VTW , (fp, "vtw: fast %A:%P %A:%P" " idx %x tag %x" , faddr, fport , laddr, lport , idx, tag)); continue; } v4 = (void*)vtw; /* The de-referencing of vtw is what we want to avoid. * Losing. */ if (vtw_alive(vtw) && ((which ? vtw->port_key : vtw->key) == fatp_key(ctl->fat, fp, i)) && (which || (v4->faddr == faddr && v4->laddr == laddr && v4->fport == fport)) && v4->lport == lport) { ++vtw_stats.hit[which]; db_trace(KTR_VTW , (fp, "vtw: hit %8.8x:%4.4x" " %8.8x:%4.4x idx %x key %x" , faddr, fport , laddr, lport , idx_decode(ctl, idx), vtw->key)); KASSERT(vtw->hashed); goto out; } ++vtw_stats.losing[which]; ++losings; if (vtw_alive(vtw)) { db_trace(KTR_VTW , (fp, "vtw:!mis %8.8x:%4.4x" " %8.8x:%4.4x key %x tag %x" , faddr, fport , laddr, lport , fatp_key(ctl->fat, fp, i) , v4_tag(faddr, fport , laddr, lport))); db_trace(KTR_VTW , (vtw, "vtw:!mis %8.8x:%4.4x" " %8.8x:%4.4x key %x tag %x" , v4->faddr, v4->fport , v4->laddr, v4->lport , vtw->key , v4_tag(v4->faddr, v4->fport , v4->laddr, v4->lport))); if (vtw->key == fatp_key(ctl->fat, fp, i)) { db_trace(KTR_VTW , (vtw, "vtw:!mis %8.8x:%4.4x" " %8.8x:%4.4x key %x" " which %x" , v4->faddr, v4->fport , v4->laddr, v4->lport , vtw->key , which)); } else { db_trace(KTR_VTW , (vtw , "vtw:!mis" " key %8.8x != %8.8x" " idx %x i %x which %x" , vtw->key , fatp_key(ctl->fat, fp, i) , idx_decode(ctl, idx) , i , which)); } } else { db_trace(KTR_VTW , (fp , "vtw:!mis free entry" " idx %x vtw %p which %x" , idx_decode(ctl, idx) , vtw, which)); } } if (fp->nxt) { fp = fatp_next(ctl->fat, fp); } else { break; } } ++vtw_stats.miss[which]; vtw = 0; out: if (fatps > vtw_stats.max_chain[which]) vtw_stats.max_chain[which] = fatps; if (probes > vtw_stats.max_probe[which]) vtw_stats.max_probe[which] = probes; if (losings > vtw_stats.max_loss[which]) vtw_stats.max_loss[which] = losings; return vtw; } static vtw_t * vtw_lookup_hash_v6(vtw_ctl_t *ctl, const struct in6_addr *faddr, uint16_t fport , const struct in6_addr *laddr, uint16_t lport , int which) { vtw_v6_t *v6; vtw_t *vtw; uint32_t tag; fatp_t *fp; int i; uint32_t fatps = 0, probes = 0, losings = 0; ++vtw_stats.look[which]; if (!ctl || !ctl->fat) return 0; if (which) { tag = v6_port_tag(lport); fp = ctl->fat->port[tag & ctl->fat->mask]; } else { tag = v6_tag(faddr, fport, laddr, lport); fp = ctl->fat->hash[tag & ctl->fat->mask]; } while (fp && fp->inuse) { uint32_t inuse = fp->inuse; ++fatps; for (i = 0; inuse && i < fatp_ntags(); ++i) { uint32_t idx; if (!(inuse & (1 << i))) continue; inuse ^= 1 << i; ++probes; ++vtw_stats.probe[which]; idx = fp->tag[i] ^ tag ^ fatp_xtra[i]; vtw = vtw_from_index(ctl, idx); db_trace(KTR_VTW , (fp, "probe: %2d %6A:%4.4x %6A:%4.4x idx %x" , i , db_store(faddr, sizeof (*faddr)), fport , db_store(laddr, sizeof (*laddr)), lport , idx_decode(ctl, idx))); if (!vtw) { /* Hopefully fast path. */ continue; } v6 = (void*)vtw; if (vtw_alive(vtw) && ((which ? vtw->port_key : vtw->key) == fatp_key(ctl->fat, fp, i)) && v6->lport == lport && (which || (v6->fport == fport && !bcmp(&v6->faddr, faddr, sizeof (*faddr)) && !bcmp(&v6->laddr, laddr , sizeof (*laddr))))) { ++vtw_stats.hit[which]; KASSERT(vtw->hashed); goto out; } else { ++vtw_stats.losing[which]; ++losings; } } if (fp->nxt) { fp = fatp_next(ctl->fat, fp); } else { break; } } ++vtw_stats.miss[which]; vtw = 0; out: if (fatps > vtw_stats.max_chain[which]) vtw_stats.max_chain[which] = fatps; if (probes > vtw_stats.max_probe[which]) vtw_stats.max_probe[which] = probes; if (losings > vtw_stats.max_loss[which]) vtw_stats.max_loss[which] = losings; return vtw; } /*!\brief port iterator */ static vtw_t * vtw_next_port_v4(struct tcp_ports_iterator *it) { vtw_ctl_t *ctl = it->ctl; vtw_v4_t *v4; vtw_t *vtw; uint32_t tag; uint16_t lport = it->port; fatp_t *fp; int i; uint32_t fatps = 0, probes = 0, losings = 0; tag = v4_port_tag(lport); if (!it->fp) { it->fp = ctl->fat->port[tag & ctl->fat->mask]; it->slot_idx = 0; } fp = it->fp; while (fp) { uint32_t inuse = fp->inuse; ++fatps; for (i = it->slot_idx; inuse && i < fatp_ntags(); ++i) { uint32_t idx; if (!(inuse & (1 << i))) continue; inuse &= ~0U << i; if (i < it->slot_idx) continue; ++vtw_stats.probe[1]; ++probes; idx = fp->tag[i] ^ tag ^ fatp_xtra[i]; vtw = vtw_from_index(ctl, idx); if (!vtw) { /* Hopefully fast path. */ continue; } v4 = (void*)vtw; if (vtw_alive(vtw) && vtw->port_key == fatp_key(ctl->fat, fp, i) && v4->lport == lport) { ++vtw_stats.hit[1]; it->slot_idx = i + 1; goto out; } else if (vtw_alive(vtw)) { ++vtw_stats.losing[1]; ++losings; db_trace(KTR_VTW , (vtw, "vtw:!mis" " port %8.8x:%4.4x %8.8x:%4.4x" " key %x port %x" , v4->faddr, v4->fport , v4->laddr, v4->lport , vtw->key , lport)); } else { /* Really losing here. We are coming * up with references to free entries. * Might find it better to use * traditional, or need another * add-hockery. The other add-hockery * would be to pul more into into the * cache line to reject the false * hits. */ ++vtw_stats.losing[1]; ++losings; db_trace(KTR_VTW , (fp, "vtw:!mis port %x" " - free entry idx %x vtw %p" , lport , idx_decode(ctl, idx) , vtw)); } } if (fp->nxt) { it->fp = fp = fatp_next(ctl->fat, fp); it->slot_idx = 0; } else { it->fp = 0; break; } } ++vtw_stats.miss[1]; vtw = 0; out: if (fatps > vtw_stats.max_chain[1]) vtw_stats.max_chain[1] = fatps; if (probes > vtw_stats.max_probe[1]) vtw_stats.max_probe[1] = probes; if (losings > vtw_stats.max_loss[1]) vtw_stats.max_loss[1] = losings; return vtw; } /*!\brief port iterator */ static vtw_t * vtw_next_port_v6(struct tcp_ports_iterator *it) { vtw_ctl_t *ctl = it->ctl; vtw_v6_t *v6; vtw_t *vtw; uint32_t tag; uint16_t lport = it->port; fatp_t *fp; int i; uint32_t fatps = 0, probes = 0, losings = 0; tag = v6_port_tag(lport); if (!it->fp) { it->fp = ctl->fat->port[tag & ctl->fat->mask]; it->slot_idx = 0; } fp = it->fp; while (fp) { uint32_t inuse = fp->inuse; ++fatps; for (i = it->slot_idx; inuse && i < fatp_ntags(); ++i) { uint32_t idx; if (!(inuse & (1 << i))) continue; inuse &= ~0U << i; if (i < it->slot_idx) continue; ++vtw_stats.probe[1]; ++probes; idx = fp->tag[i] ^ tag ^ fatp_xtra[i]; vtw = vtw_from_index(ctl, idx); if (!vtw) { /* Hopefully fast path. */ continue; } v6 = (void*)vtw; db_trace(KTR_VTW , (vtw, "vtw: i %x idx %x fp->tag %x" " tag %x xtra %x" , i, idx_decode(ctl, idx) , fp->tag[i], tag, fatp_xtra[i])); if (vtw_alive(vtw) && vtw->port_key == fatp_key(ctl->fat, fp, i) && v6->lport == lport) { ++vtw_stats.hit[1]; db_trace(KTR_VTW , (fp, "vtw: nxt port %P - %4.4x" " idx %x key %x" , lport, lport , idx_decode(ctl, idx), vtw->key)); it->slot_idx = i + 1; goto out; } else if (vtw_alive(vtw)) { ++vtw_stats.losing[1]; db_trace(KTR_VTW , (vtw, "vtw:!mis port %6A:%4.4x" " %6A:%4.4x key %x port %x" , db_store(&v6->faddr , sizeof (v6->faddr)) , v6->fport , db_store(&v6->laddr , sizeof (v6->faddr)) , v6->lport , vtw->key , lport)); } else { /* Really losing here. We are coming * up with references to free entries. * Might find it better to use * traditional, or need another * add-hockery. The other add-hockery * would be to pul more into into the * cache line to reject the false * hits. */ ++vtw_stats.losing[1]; ++losings; db_trace(KTR_VTW , (fp , "vtw:!mis port %x" " - free entry idx %x vtw %p" , lport, idx_decode(ctl, idx) , vtw)); } } if (fp->nxt) { it->fp = fp = fatp_next(ctl->fat, fp); it->slot_idx = 0; } else { it->fp = 0; break; } } ++vtw_stats.miss[1]; vtw = 0; out: if (fatps > vtw_stats.max_chain[1]) vtw_stats.max_chain[1] = fatps; if (probes > vtw_stats.max_probe[1]) vtw_stats.max_probe[1] = probes; if (losings > vtw_stats.max_loss[1]) vtw_stats.max_loss[1] = losings; return vtw; } /*!\brief initialise the VTW allocation arena * * There are 1+3 allocation classes: * 0 classless * {1,2,3} MSL-class based allocation * * The allocation arenas are all initialised. Classless gets all the * space. MSL-class based divides the arena, so that allocation * within a class can proceed without having to consider entries * (aka: cache lines) from different classes. * * Usually, we are completely classless or class-based, but there can be * transition periods, corresponding to dynamic adjustments in the config * by the operator. */ static void vtw_init(fatp_ctl_t *fat, vtw_ctl_t *ctl, const uint32_t n, vtw_t *ctl_base_v) { int class_n, i; vtw_t *base; ctl->base.v = ctl_base_v; if (ctl->is_v4) { ctl->lim.v4 = ctl->base.v4 + n - 1; ctl->alloc.v4 = ctl->base.v4; } else { ctl->lim.v6 = ctl->base.v6 + n - 1; ctl->alloc.v6 = ctl->base.v6; } ctl->nfree = n; ctl->ctl = ctl; ctl->idx_bits = 32; for (ctl->idx_mask = ~0; (ctl->idx_mask & (n-1)) == n-1; ) { ctl->idx_mask >>= 1; ctl->idx_bits -= 1; } ctl->idx_mask <<= 1; ctl->idx_mask |= 1; ctl->idx_bits += 1; ctl->fat = fat; fat->vtw = ctl; /* Divide the resources equally amongst the classes. * This is not optimal, as the different classes * arrive and leave at different rates, but it is * the best I can do for now. */ class_n = n / (VTW_NCLASS-1); base = ctl->base.v; for (i = 1; i < VTW_NCLASS; ++i) { int j; ctl[i] = ctl[0]; ctl[i].clidx = i; ctl[i].base.v = base; ctl[i].alloc = ctl[i].base; for (j = 0; j < class_n - 1; ++j) { if (tcp_msl_enable) base->msl_class = i; base = vtw_next(ctl, base); } ctl[i].lim.v = base; base = vtw_next(ctl, base); ctl[i].nfree = class_n; } vtw_debug_init(); } /*!\brief map class to TCP MSL */ static inline uint32_t class_to_msl(int msl_class) { switch (msl_class) { case 0: case 1: return tcp_msl_remote ? tcp_msl_remote : (TCPTV_MSL >> 0); case 2: return tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1); default: return tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2); } } /*!\brief map TCP MSL to class */ static inline uint32_t msl_to_class(int msl) { if (tcp_msl_enable) { if (msl <= (tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2))) return 1+2; if (msl <= (tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1))) return 1+1; return 1; } return 0; } /*!\brief allocate a vtw entry */ static inline vtw_t * vtw_alloc(vtw_ctl_t *ctl) { vtw_t *vtw = 0; int stuck = 0; int avail = ctl ? (ctl->nalloc + ctl->nfree) : 0; int msl; KASSERT(mutex_owned(softnet_lock)); /* If no resources, we will not get far. */ if (!ctl || !ctl->base.v4 || avail <= 0) return 0; /* Obtain a free one. */ while (!ctl->nfree) { vtw_age(ctl, 0); if (++stuck > avail) { /* When in transition between * schemes (classless, classed) we * can be stuck having to await the * expiration of cross-allocated entries. * * Returning zero means we will fall back to the * traditional TIME_WAIT handling, except in the * case of a re-shed, in which case we cannot * perform the reshecd, but will retain the extant * entry. */ db_trace(KTR_VTW , (ctl, "vtw:!none free in class %x %x/%x" , ctl->clidx , ctl->nalloc, ctl->nfree)); return 0; } } vtw = ctl->alloc.v; if (vtw->msl_class != ctl->clidx) { /* Usurping rules: * 0 -> {1,2,3} or {1,2,3} -> 0 */ KASSERT(!vtw->msl_class || !ctl->clidx); if (vtw->hashed || vtw->expire.tv_sec) { /* As this is owned by some other class, * we must wait for it to expire it. * This will only happen on class/classless * transitions, which are guaranteed to progress * to completion in small finite time, barring bugs. */ db_trace(KTR_VTW , (ctl, "vtw:!%p class %x!=%x %x:%x%s" , vtw, vtw->msl_class, ctl->clidx , vtw->expire.tv_sec , vtw->expire.tv_usec , vtw->hashed ? " hashed" : "")); return 0; } db_trace(KTR_VTW , (ctl, "vtw:!%p usurped from %x to %x" , vtw, vtw->msl_class, ctl->clidx)); vtw->msl_class = ctl->clidx; } if (vtw_alive(vtw)) { KASSERT(0 && "next free not free"); return 0; } /* Advance allocation poiter. */ ctl->alloc.v = vtw_next(ctl, vtw); --ctl->nfree; ++ctl->nalloc; msl = (2 * class_to_msl(ctl->clidx) * 1000) / PR_SLOWHZ; // msec /* mark expiration */ getmicrouptime(&vtw->expire); /* Move expiration into the future. */ vtw->expire.tv_sec += msl / 1000; vtw->expire.tv_usec += 1000 * (msl % 1000); while (vtw->expire.tv_usec >= 1000*1000) { vtw->expire.tv_usec -= 1000*1000; vtw->expire.tv_sec += 1; } if (!ctl->oldest.v) ctl->oldest.v = vtw; return vtw; } /*!\brief expiration */ static int vtw_age(vtw_ctl_t *ctl, struct timeval *_when) { vtw_t *vtw; struct timeval then, *when = _when; int maxtries = 0; if (!ctl->oldest.v) { KASSERT(!ctl->nalloc); return 0; } for (vtw = ctl->oldest.v; vtw && ctl->nalloc; ) { if (++maxtries > ctl->nalloc) break; if (vtw->msl_class != ctl->clidx) { db_trace(KTR_VTW , (vtw, "vtw:!age class mismatch %x != %x" , vtw->msl_class, ctl->clidx)); /* XXXX * See if the appropriate action is to skip to the next. * XXXX */ ctl->oldest.v = vtw = vtw_next(ctl, vtw); continue; } if (!when) { /* Latch oldest timeval if none specified. */ then = vtw->expire; when = &then; } if (!timercmp(&vtw->expire, when, <=)) break; db_trace(KTR_VTW , (vtw, "vtw: expire %x %8.8x:%8.8x %x/%x" , ctl->clidx , vtw->expire.tv_sec , vtw->expire.tv_usec , ctl->nalloc , ctl->nfree)); if (!_when) ++vtw_stats.kill; vtw_del(ctl, vtw); vtw = ctl->oldest.v; } return ctl->nalloc; // # remaining allocated } static callout_t vtw_cs; /*!\brief notice the passage of time. * It seems to be getting faster. What happened to the year? */ static void vtw_tick(void *arg) { struct timeval now; int i, cnt = 0; getmicrouptime(&now); db_trace(KTR_VTW, (arg, "vtk: tick - now %8.8x:%8.8x" , now.tv_sec, now.tv_usec)); mutex_enter(softnet_lock); for (i = 0; i < VTW_NCLASS; ++i) { cnt += vtw_age(&vtw_tcpv4[i], &now); cnt += vtw_age(&vtw_tcpv6[i], &now); } /* Keep ticks coming while we need them. */ if (cnt) callout_schedule(&vtw_cs, hz / 5); else { tcp_vtw_was_enabled = 0; tcbtable.vestige = 0; } mutex_exit(softnet_lock); } /* in_pcblookup_ports assist for handling vestigial entries. */ static void * tcp_init_ports_v4(struct in_addr addr, u_int port, int wild) { struct tcp_ports_iterator *it = &tcp_ports_iterator_v4; bzero(it, sizeof (*it)); /* Note: the reference to vtw_tcpv4[0] is fine. * We do not need per-class iteration. We just * need to get to the fat, and there is one * shared fat. */ if (vtw_tcpv4[0].fat) { it->addr.v4 = addr; it->port = port; it->wild = !!wild; it->ctl = &vtw_tcpv4[0]; ++vtw_stats.look[1]; } return it; } /*!\brief export an IPv4 vtw. */ static int vtw_export_v4(vtw_ctl_t *ctl, vtw_t *vtw, vestigial_inpcb_t *res) { vtw_v4_t *v4 = (void*)vtw; bzero(res, sizeof (*res)); if (ctl && vtw) { if (!ctl->clidx && vtw->msl_class) ctl += vtw->msl_class; else KASSERT(ctl->clidx == vtw->msl_class); res->valid = 1; res->v4 = 1; res->faddr.v4.s_addr = v4->faddr; res->laddr.v4.s_addr = v4->laddr; res->fport = v4->fport; res->lport = v4->lport; res->vtw = vtw; // netlock held over call(s) res->ctl = ctl; res->reuse_addr = vtw->reuse_addr; res->reuse_port = vtw->reuse_port; res->snd_nxt = vtw->snd_nxt; res->rcv_nxt = vtw->rcv_nxt; res->rcv_wnd = vtw->rcv_wnd; res->uid = vtw->uid; } return res->valid; } /*!\brief return next port in the port iterator. yowza. */ static int tcp_next_port_v4(void *arg, struct vestigial_inpcb *res) { struct tcp_ports_iterator *it = arg; vtw_t *vtw = 0; if (it->ctl) vtw = vtw_next_port_v4(it); if (!vtw) it->ctl = 0; return vtw_export_v4(it->ctl, vtw, res); } static int tcp_lookup_v4(struct in_addr faddr, uint16_t fport, struct in_addr laddr, uint16_t lport, struct vestigial_inpcb *res) { vtw_t *vtw; vtw_ctl_t *ctl; db_trace(KTR_VTW , (res, "vtw: lookup %A:%P %A:%P" , faddr, fport , laddr, lport)); vtw = vtw_lookup_hash_v4((ctl = &vtw_tcpv4[0]) , faddr.s_addr, fport , laddr.s_addr, lport, 0); return vtw_export_v4(ctl, vtw, res); } /* in_pcblookup_ports assist for handling vestigial entries. */ static void * tcp_init_ports_v6(const struct in6_addr *addr, u_int port, int wild) { struct tcp_ports_iterator *it = &tcp_ports_iterator_v6; bzero(it, sizeof (*it)); /* Note: the reference to vtw_tcpv6[0] is fine. * We do not need per-class iteration. We just * need to get to the fat, and there is one * shared fat. */ if (vtw_tcpv6[0].fat) { it->addr.v6 = *addr; it->port = port; it->wild = !!wild; it->ctl = &vtw_tcpv6[0]; ++vtw_stats.look[1]; } return it; } /*!\brief export an IPv6 vtw. */ static int vtw_export_v6(vtw_ctl_t *ctl, vtw_t *vtw, vestigial_inpcb_t *res) { vtw_v6_t *v6 = (void*)vtw; bzero(res, sizeof (*res)); if (ctl && vtw) { if (!ctl->clidx && vtw->msl_class) ctl += vtw->msl_class; else KASSERT(ctl->clidx == vtw->msl_class); res->valid = 1; res->v4 = 0; res->faddr.v6 = v6->faddr; res->laddr.v6 = v6->laddr; res->fport = v6->fport; res->lport = v6->lport; res->vtw = vtw; // netlock held over call(s) res->ctl = ctl; res->v6only = vtw->v6only; res->reuse_addr = vtw->reuse_addr; res->reuse_port = vtw->reuse_port; res->snd_nxt = vtw->snd_nxt; res->rcv_nxt = vtw->rcv_nxt; res->rcv_wnd = vtw->rcv_wnd; res->uid = vtw->uid; } return res->valid; } static int tcp_next_port_v6(void *arg, struct vestigial_inpcb *res) { struct tcp_ports_iterator *it = arg; vtw_t *vtw = 0; if (it->ctl) vtw = vtw_next_port_v6(it); if (!vtw) it->ctl = 0; return vtw_export_v6(it->ctl, vtw, res); } static int tcp_lookup_v6(const struct in6_addr *faddr, uint16_t fport, const struct in6_addr *laddr, uint16_t lport, struct vestigial_inpcb *res) { vtw_ctl_t *ctl; vtw_t *vtw; db_trace(KTR_VTW , (res, "vtw: lookup %6A:%P %6A:%P" , db_store(faddr, sizeof (*faddr)), fport , db_store(laddr, sizeof (*laddr)), lport)); vtw = vtw_lookup_hash_v6((ctl = &vtw_tcpv6[0]) , faddr, fport , laddr, lport, 0); return vtw_export_v6(ctl, vtw, res); } static vestigial_hooks_t tcp_hooks = { .init_ports4 = tcp_init_ports_v4, .next_port4 = tcp_next_port_v4, .lookup4 = tcp_lookup_v4, .init_ports6 = tcp_init_ports_v6, .next_port6 = tcp_next_port_v6, .lookup6 = tcp_lookup_v6, }; static bool vtw_select(int af, fatp_ctl_t **fatp, vtw_ctl_t **ctlp) { fatp_ctl_t *fat; vtw_ctl_t *ctl; switch (af) { case AF_INET: fat = &fat_tcpv4; ctl = &vtw_tcpv4[0]; break; case AF_INET6: fat = &fat_tcpv6; ctl = &vtw_tcpv6[0]; break; default: return false; } if (fatp != NULL) *fatp = fat; if (ctlp != NULL) *ctlp = ctl; return true; } /*!\brief initialize controlling instance */ static int vtw_control_init(int af) { fatp_ctl_t *fat; vtw_ctl_t *ctl; fatp_t *fat_base; fatp_t **fat_hash; vtw_t *ctl_base_v; uint32_t n, m; size_t sz; KASSERT(powerof2(tcp_vtw_entries)); if (!vtw_select(af, &fat, &ctl)) return EAFNOSUPPORT; if (fat->hash != NULL) { KASSERT(fat->base != NULL && ctl->base.v != NULL); return 0; } /* Allocate 10% more capacity in the fat pointers. * We should only need ~#hash additional based on * how they age, but TIME_WAIT assassination could cause * sparse fat pointer utilisation. */ m = 512; n = 2*m + (11 * (tcp_vtw_entries / fatp_ntags())) / 10; sz = (ctl->is_v4 ? sizeof(vtw_v4_t) : sizeof(vtw_v6_t)); fat_hash = kmem_zalloc(2*m * sizeof(fatp_t *), KM_NOSLEEP); if (fat_hash == NULL) { printf("%s: could not allocate %zu bytes for " "hash anchors", __func__, 2*m * sizeof(fatp_t *)); return ENOMEM; } fat_base = kmem_zalloc(2*n * sizeof(fatp_t), KM_NOSLEEP); if (fat_base == NULL) { kmem_free(fat_hash, 2*m * sizeof (fatp_t *)); printf("%s: could not allocate %zu bytes for " "fatp_t array", __func__, 2*n * sizeof(fatp_t)); return ENOMEM; } ctl_base_v = kmem_zalloc(tcp_vtw_entries * sz, KM_NOSLEEP); if (ctl_base_v == NULL) { kmem_free(fat_hash, 2*m * sizeof (fatp_t *)); kmem_free(fat_base, 2*n * sizeof(fatp_t)); printf("%s: could not allocate %zu bytes for " "vtw_t array", __func__, tcp_vtw_entries * sz); return ENOMEM; } fatp_init(fat, n, m, fat_base, fat_hash); vtw_init(fat, ctl, tcp_vtw_entries, ctl_base_v); return 0; } /*!\brief select controlling instance */ static vtw_ctl_t * vtw_control(int af, uint32_t msl) { fatp_ctl_t *fat; vtw_ctl_t *ctl; int msl_class = msl_to_class(msl); if (!vtw_select(af, &fat, &ctl)) return NULL; if (!fat->base || !ctl->base.v) return NULL; if (!tcp_vtw_was_enabled) { /* This guarantees is timer ticks until we no longer need them. */ tcp_vtw_was_enabled = 1; callout_schedule(&vtw_cs, hz / 5); tcbtable.vestige = &tcp_hooks; } return ctl + msl_class; } /*!\brief add TCP pcb to vestigial timewait */ int vtw_add(int af, struct tcpcb *tp) { #ifdef VTW_DEBUG int enable; #endif vtw_ctl_t *ctl; vtw_t *vtw; KASSERT(mutex_owned(softnet_lock)); ctl = vtw_control(af, tp->t_msl); if (!ctl) return 0; #ifdef VTW_DEBUG enable = (af == AF_INET) ? tcp4_vtw_enable : tcp6_vtw_enable; #endif vtw = vtw_alloc(ctl); if (vtw) { vtw->snd_nxt = tp->snd_nxt; vtw->rcv_nxt = tp->rcv_nxt; switch (af) { case AF_INET: { struct inpcb *inp = tp->t_inpcb; vtw_v4_t *v4 = (void*)vtw; v4->faddr = inp->inp_faddr.s_addr; v4->laddr = inp->inp_laddr.s_addr; v4->fport = inp->inp_fport; v4->lport = inp->inp_lport; vtw->reuse_port = !!(inp->inp_socket->so_options & SO_REUSEPORT); vtw->reuse_addr = !!(inp->inp_socket->so_options & SO_REUSEADDR); vtw->v6only = 0; vtw->uid = inp->inp_socket->so_uidinfo->ui_uid; vtw_inshash_v4(ctl, vtw); #ifdef VTW_DEBUG /* Immediate lookup (connected and port) to * ensure at least that works! */ if (enable & 4) { KASSERT(vtw_lookup_hash_v4 (ctl , inp->inp_faddr.s_addr, inp->inp_fport , inp->inp_laddr.s_addr, inp->inp_lport , 0) == vtw); KASSERT(vtw_lookup_hash_v4 (ctl , inp->inp_faddr.s_addr, inp->inp_fport , inp->inp_laddr.s_addr, inp->inp_lport , 1)); } /* Immediate port iterator functionality check: not wild */ if (enable & 8) { struct tcp_ports_iterator *it; struct vestigial_inpcb res; int cnt = 0; it = tcp_init_ports_v4(inp->inp_laddr , inp->inp_lport, 0); while (tcp_next_port_v4(it, &res)) { ++cnt; } KASSERT(cnt); } /* Immediate port iterator functionality check: wild */ if (enable & 16) { struct tcp_ports_iterator *it; struct vestigial_inpcb res; struct in_addr any; int cnt = 0; any.s_addr = htonl(INADDR_ANY); it = tcp_init_ports_v4(any, inp->inp_lport, 1); while (tcp_next_port_v4(it, &res)) { ++cnt; } KASSERT(cnt); } #endif /* VTW_DEBUG */ break; } case AF_INET6: { struct in6pcb *inp = tp->t_in6pcb; vtw_v6_t *v6 = (void*)vtw; v6->faddr = inp->in6p_faddr; v6->laddr = inp->in6p_laddr; v6->fport = inp->in6p_fport; v6->lport = inp->in6p_lport; vtw->reuse_port = !!(inp->in6p_socket->so_options & SO_REUSEPORT); vtw->reuse_addr = !!(inp->in6p_socket->so_options & SO_REUSEADDR); vtw->v6only = !!(inp->in6p_flags & IN6P_IPV6_V6ONLY); vtw->uid = inp->in6p_socket->so_uidinfo->ui_uid; vtw_inshash_v6(ctl, vtw); #ifdef VTW_DEBUG /* Immediate lookup (connected and port) to * ensure at least that works! */ if (enable & 4) { KASSERT(vtw_lookup_hash_v6(ctl , &inp->in6p_faddr, inp->in6p_fport , &inp->in6p_laddr, inp->in6p_lport , 0) == vtw); KASSERT(vtw_lookup_hash_v6 (ctl , &inp->in6p_faddr, inp->in6p_fport , &inp->in6p_laddr, inp->in6p_lport , 1)); } /* Immediate port iterator functionality check: not wild */ if (enable & 8) { struct tcp_ports_iterator *it; struct vestigial_inpcb res; int cnt = 0; it = tcp_init_ports_v6(&inp->in6p_laddr , inp->in6p_lport, 0); while (tcp_next_port_v6(it, &res)) { ++cnt; } KASSERT(cnt); } /* Immediate port iterator functionality check: wild */ if (enable & 16) { struct tcp_ports_iterator *it; struct vestigial_inpcb res; static struct in6_addr any = IN6ADDR_ANY_INIT; int cnt = 0; it = tcp_init_ports_v6(&any , inp->in6p_lport, 1); while (tcp_next_port_v6(it, &res)) { ++cnt; } KASSERT(cnt); } #endif /* VTW_DEBUG */ break; } } tcp_canceltimers(tp); tp = tcp_close(tp); KASSERT(!tp); return 1; } return 0; } /*!\brief restart timer for vestigial time-wait entry */ static void vtw_restart_v4(vestigial_inpcb_t *vp) { vtw_v4_t copy = *(vtw_v4_t*)vp->vtw; vtw_t *vtw; vtw_t *cp = ©.common; vtw_ctl_t *ctl; KASSERT(mutex_owned(softnet_lock)); db_trace(KTR_VTW , (vp->vtw, "vtw: restart %A:%P %A:%P" , vp->faddr.v4.s_addr, vp->fport , vp->laddr.v4.s_addr, vp->lport)); /* Class might have changed, so have a squiz. */ ctl = vtw_control(AF_INET, class_to_msl(cp->msl_class)); vtw = vtw_alloc(ctl); if (vtw) { vtw_v4_t *v4 = (void*)vtw; /* Safe now to unhash the old entry */ vtw_del(vp->ctl, vp->vtw); vtw->snd_nxt = cp->snd_nxt; vtw->rcv_nxt = cp->rcv_nxt; v4->faddr = copy.faddr; v4->laddr = copy.laddr; v4->fport = copy.fport; v4->lport = copy.lport; vtw->reuse_port = cp->reuse_port; vtw->reuse_addr = cp->reuse_addr; vtw->v6only = 0; vtw->uid = cp->uid; vtw_inshash_v4(ctl, vtw); } vp->valid = 0; } /*!\brief restart timer for vestigial time-wait entry */ static void vtw_restart_v6(vestigial_inpcb_t *vp) { vtw_v6_t copy = *(vtw_v6_t*)vp->vtw; vtw_t *vtw; vtw_t *cp = ©.common; vtw_ctl_t *ctl; KASSERT(mutex_owned(softnet_lock)); db_trace(KTR_VTW , (vp->vtw, "vtw: restart %6A:%P %6A:%P" , db_store(&vp->faddr.v6, sizeof (vp->faddr.v6)) , vp->fport , db_store(&vp->laddr.v6, sizeof (vp->laddr.v6)) , vp->lport)); /* Class might have changed, so have a squiz. */ ctl = vtw_control(AF_INET6, class_to_msl(cp->msl_class)); vtw = vtw_alloc(ctl); if (vtw) { vtw_v6_t *v6 = (void*)vtw; /* Safe now to unhash the old entry */ vtw_del(vp->ctl, vp->vtw); vtw->snd_nxt = cp->snd_nxt; vtw->rcv_nxt = cp->rcv_nxt; v6->faddr = copy.faddr; v6->laddr = copy.laddr; v6->fport = copy.fport; v6->lport = copy.lport; vtw->reuse_port = cp->reuse_port; vtw->reuse_addr = cp->reuse_addr; vtw->v6only = cp->v6only; vtw->uid = cp->uid; vtw_inshash_v6(ctl, vtw); } vp->valid = 0; } /*!\brief restart timer for vestigial time-wait entry */ void vtw_restart(vestigial_inpcb_t *vp) { if (!vp || !vp->valid) return; if (vp->v4) vtw_restart_v4(vp); else vtw_restart_v6(vp); } int sysctl_tcp_vtw_enable(SYSCTLFN_ARGS) { int en, rc; struct sysctlnode node; node = *rnode; en = *(int *)rnode->sysctl_data; node.sysctl_data = &en; rc = sysctl_lookup(SYSCTLFN_CALL(&node)); if (rc != 0 || newp == NULL) return rc; if (rnode->sysctl_data != &tcp4_vtw_enable && rnode->sysctl_data != &tcp6_vtw_enable) rc = ENOENT; else if ((en & 1) == 0) rc = 0; else if (rnode->sysctl_data == &tcp4_vtw_enable) rc = vtw_control_init(AF_INET); else /* rnode->sysctl_data == &tcp6_vtw_enable */ rc = vtw_control_init(AF_INET6); if (rc == 0) *(int *)rnode->sysctl_data = en; return rc; } int vtw_earlyinit(void) { int i, rc; callout_init(&vtw_cs, 0); callout_setfunc(&vtw_cs, vtw_tick, 0); for (i = 0; i < VTW_NCLASS; ++i) { vtw_tcpv4[i].is_v4 = 1; vtw_tcpv6[i].is_v6 = 1; } if ((tcp4_vtw_enable & 1) != 0 && (rc = vtw_control_init(AF_INET)) != 0) return rc; if ((tcp6_vtw_enable & 1) != 0 && (rc = vtw_control_init(AF_INET6)) != 0) return rc; return 0; } #ifdef VTW_DEBUG #include #include /*!\brief add lalp, fafp entries for debug */ int vtw_debug_add(int af, sin_either_t *la, sin_either_t *fa, int msl, int msl_class) { vtw_ctl_t *ctl; vtw_t *vtw; ctl = vtw_control(af, msl ? msl : class_to_msl(msl_class)); if (!ctl) return 0; vtw = vtw_alloc(ctl); if (vtw) { vtw->snd_nxt = 0; vtw->rcv_nxt = 0; switch (af) { case AF_INET: { vtw_v4_t *v4 = (void*)vtw; v4->faddr = fa->sin_addr.v4.s_addr; v4->laddr = la->sin_addr.v4.s_addr; v4->fport = fa->sin_port; v4->lport = la->sin_port; vtw->reuse_port = 1; vtw->reuse_addr = 1; vtw->v6only = 0; vtw->uid = 0; vtw_inshash_v4(ctl, vtw); break; } case AF_INET6: { vtw_v6_t *v6 = (void*)vtw; v6->faddr = fa->sin_addr.v6; v6->laddr = la->sin_addr.v6; v6->fport = fa->sin_port; v6->lport = la->sin_port; vtw->reuse_port = 1; vtw->reuse_addr = 1; vtw->v6only = 0; vtw->uid = 0; vtw_inshash_v6(ctl, vtw); break; } default: break; } return 1; } return 0; } static int vtw_syscall = 0; static int vtw_debug_process(vtw_sysargs_t *ap) { struct vestigial_inpcb vestige; int rc = 0; mutex_enter(softnet_lock); switch (ap->op) { case 0: // insert vtw_debug_add(ap->la.sin_family , &ap->la , &ap->fa , TCPTV_MSL , 0); break; case 1: // lookup case 2: // restart switch (ap->la.sin_family) { case AF_INET: if (tcp_lookup_v4(ap->fa.sin_addr.v4, ap->fa.sin_port, ap->la.sin_addr.v4, ap->la.sin_port, &vestige)) { if (ap->op == 2) { vtw_restart(&vestige); } rc = 0; } else rc = ESRCH; break; case AF_INET6: if (tcp_lookup_v6(&ap->fa.sin_addr.v6, ap->fa.sin_port, &ap->la.sin_addr.v6, ap->la.sin_port, &vestige)) { if (ap->op == 2) { vtw_restart(&vestige); } rc = 0; } else rc = ESRCH; break; default: rc = EINVAL; } break; default: rc = EINVAL; } mutex_exit(softnet_lock); return rc; } struct sys_vtw_args { syscallarg(const vtw_sysargs_t *) req; syscallarg(size_t) len; }; static int vtw_sys(struct lwp *l, const void *_, register_t *retval) { const struct sys_vtw_args *uap = _; void *buf; int rc; size_t len = SCARG(uap, len); if (len != sizeof (vtw_sysargs_t)) return EINVAL; buf = kmem_alloc(len, KM_SLEEP); rc = copyin(SCARG(uap, req), buf, len); if (!rc) { rc = vtw_debug_process(buf); } kmem_free(buf, len); return rc; } static void vtw_sanity_check(void) { vtw_ctl_t *ctl; vtw_t *vtw; int i; int n; for (i = 0; i < VTW_NCLASS; ++i) { ctl = &vtw_tcpv4[i]; if (!ctl->base.v || ctl->nalloc) continue; for (n = 0, vtw = ctl->base.v; ; ) { ++n; vtw = vtw_next(ctl, vtw); if (vtw == ctl->base.v) break; } db_trace(KTR_VTW , (ctl, "sanity: class %x n %x nfree %x" , i, n, ctl->nfree)); KASSERT(n == ctl->nfree); } for (i = 0; i < VTW_NCLASS; ++i) { ctl = &vtw_tcpv6[i]; if (!ctl->base.v || ctl->nalloc) continue; for (n = 0, vtw = ctl->base.v; ; ) { ++n; vtw = vtw_next(ctl, vtw); if (vtw == ctl->base.v) break; } db_trace(KTR_VTW , (ctl, "sanity: class %x n %x nfree %x" , i, n, ctl->nfree)); KASSERT(n == ctl->nfree); } } /*!\brief Initialise debug support. */ static void vtw_debug_init(void) { int i; vtw_sanity_check(); if (vtw_syscall) return; for (i = 511; i; --i) { if (sysent[i].sy_call == sys_nosys) { sysent[i].sy_call = vtw_sys; sysent[i].sy_narg = 2; sysent[i].sy_argsize = sizeof (struct sys_vtw_args); sysent[i].sy_flags = 0; vtw_syscall = i; break; } } if (i) { const struct sysctlnode *node; uint32_t flags; flags = sysctl_root.sysctl_flags; sysctl_root.sysctl_flags |= CTLFLAG_READWRITE; sysctl_root.sysctl_flags &= ~CTLFLAG_PERMANENT; sysctl_createv(0, 0, 0, &node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "koff", SYSCTL_DESCR("Kernel Obscure Feature Finder"), 0, 0, 0, 0, CTL_CREATE, CTL_EOL); if (!node) { sysctl_createv(0, 0, 0, &node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "koffka", SYSCTL_DESCR("The Real(tm) Kernel" " Obscure Feature Finder"), 0, 0, 0, 0, CTL_CREATE, CTL_EOL); } if (node) { sysctl_createv(0, 0, 0, 0, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "vtw_debug_syscall", SYSCTL_DESCR("vtw debug" " system call number"), 0, 0, &vtw_syscall, 0, node->sysctl_num, CTL_CREATE, CTL_EOL); } sysctl_root.sysctl_flags = flags; } } #else /* !VTW_DEBUG */ static void vtw_debug_init(void) { return; } #endif /* !VTW_DEBUG */