/* $NetBSD: libkern.h,v 1.130 2018/09/03 16:29:35 riastradh Exp $ */ /*- * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)libkern.h 8.2 (Berkeley) 8/5/94 */ #ifndef _LIB_LIBKERN_LIBKERN_H_ #define _LIB_LIBKERN_LIBKERN_H_ #ifdef _KERNEL_OPT #include "opt_diagnostic.h" #include "opt_kasan.h" #endif #include #include #include #ifndef LIBKERN_INLINE #define LIBKERN_INLINE static __inline #define LIBKERN_BODY #endif LIBKERN_INLINE int imax(int, int) __unused; LIBKERN_INLINE int imin(int, int) __unused; LIBKERN_INLINE u_int uimax(u_int, u_int) __unused; LIBKERN_INLINE u_int uimin(u_int, u_int) __unused; LIBKERN_INLINE long lmax(long, long) __unused; LIBKERN_INLINE long lmin(long, long) __unused; LIBKERN_INLINE u_long ulmax(u_long, u_long) __unused; LIBKERN_INLINE u_long ulmin(u_long, u_long) __unused; LIBKERN_INLINE int abs(int) __unused; LIBKERN_INLINE long labs(long) __unused; LIBKERN_INLINE long long llabs(long long) __unused; LIBKERN_INLINE intmax_t imaxabs(intmax_t) __unused; LIBKERN_INLINE int isspace(int) __unused; LIBKERN_INLINE int isascii(int) __unused; LIBKERN_INLINE int isupper(int) __unused; LIBKERN_INLINE int islower(int) __unused; LIBKERN_INLINE int isalpha(int) __unused; LIBKERN_INLINE int isalnum(int) __unused; LIBKERN_INLINE int isdigit(int) __unused; LIBKERN_INLINE int isxdigit(int) __unused; LIBKERN_INLINE int iscntrl(int) __unused; LIBKERN_INLINE int isgraph(int) __unused; LIBKERN_INLINE int isprint(int) __unused; LIBKERN_INLINE int ispunct(int) __unused; LIBKERN_INLINE int toupper(int) __unused; LIBKERN_INLINE int tolower(int) __unused; #ifdef LIBKERN_BODY LIBKERN_INLINE int imax(int a, int b) { return (a > b ? a : b); } LIBKERN_INLINE int imin(int a, int b) { return (a < b ? a : b); } LIBKERN_INLINE long lmax(long a, long b) { return (a > b ? a : b); } LIBKERN_INLINE long lmin(long a, long b) { return (a < b ? a : b); } LIBKERN_INLINE u_int uimax(u_int a, u_int b) { return (a > b ? a : b); } LIBKERN_INLINE u_int uimin(u_int a, u_int b) { return (a < b ? a : b); } LIBKERN_INLINE u_long ulmax(u_long a, u_long b) { return (a > b ? a : b); } LIBKERN_INLINE u_long ulmin(u_long a, u_long b) { return (a < b ? a : b); } LIBKERN_INLINE int abs(int j) { return(j < 0 ? -j : j); } LIBKERN_INLINE long labs(long j) { return(j < 0 ? -j : j); } LIBKERN_INLINE long long llabs(long long j) { return(j < 0 ? -j : j); } LIBKERN_INLINE intmax_t imaxabs(intmax_t j) { return(j < 0 ? -j : j); } LIBKERN_INLINE int isspace(int ch) { return (ch == ' ' || (ch >= '\t' && ch <= '\r')); } LIBKERN_INLINE int isascii(int ch) { return ((ch & ~0x7f) == 0); } LIBKERN_INLINE int isupper(int ch) { return (ch >= 'A' && ch <= 'Z'); } LIBKERN_INLINE int islower(int ch) { return (ch >= 'a' && ch <= 'z'); } LIBKERN_INLINE int isalpha(int ch) { return (isupper(ch) || islower(ch)); } LIBKERN_INLINE int isalnum(int ch) { return (isalpha(ch) || isdigit(ch)); } LIBKERN_INLINE int isdigit(int ch) { return (ch >= '0' && ch <= '9'); } LIBKERN_INLINE int isxdigit(int ch) { return (isdigit(ch) || (ch >= 'A' && ch <= 'F') || (ch >= 'a' && ch <= 'f')); } LIBKERN_INLINE int iscntrl(int ch) { return ((ch >= 0x00 && ch <= 0x1F) || ch == 0x7F); } LIBKERN_INLINE int isgraph(int ch) { return (ch != ' ' && isprint(ch)); } LIBKERN_INLINE int isprint(int ch) { return (ch >= 0x20 && ch <= 0x7E); } LIBKERN_INLINE int ispunct(int ch) { return (isprint(ch) && ch != ' ' && !isalnum(ch)); } LIBKERN_INLINE int toupper(int ch) { if (islower(ch)) return (ch - 0x20); return (ch); } LIBKERN_INLINE int tolower(int ch) { if (isupper(ch)) return (ch + 0x20); return (ch); } #endif #define __NULL_STMT do { } while (/* CONSTCOND */ 0) #define __KASSERTSTR "kernel %sassertion \"%s\" failed: file \"%s\", line %d " #ifdef NDEBUG /* tradition! */ #define assert(e) ((void)0) #else #define assert(e) (__predict_true((e)) ? (void)0 : \ kern_assert(__KASSERTSTR, "", #e, __FILE__, __LINE__)) #endif #ifdef __COVERITY__ #ifndef DIAGNOSTIC #define DIAGNOSTIC #endif #endif #ifndef CTASSERT #define CTASSERT(x) __CTASSERT(x) #endif #ifndef CTASSERT_SIGNED #define CTASSERT_SIGNED(x) __CTASSERT(((typeof(x))-1) < 0) #endif #ifndef CTASSERT_UNSIGNED #define CTASSERT_UNSIGNED(x) __CTASSERT(((typeof(x))-1) >= 0) #endif #ifndef DIAGNOSTIC #define _DIAGASSERT(a) (void)0 #ifdef lint #define KASSERTMSG(e, msg, ...) /* NOTHING */ #define KASSERT(e) /* NOTHING */ #else /* !lint */ #define KASSERTMSG(e, msg, ...) ((void)0) #define KASSERT(e) ((void)0) #endif /* !lint */ #else /* DIAGNOSTIC */ #define _DIAGASSERT(a) assert(a) #define KASSERTMSG(e, msg, ...) \ (__predict_true((e)) ? (void)0 : \ kern_assert(__KASSERTSTR msg, "diagnostic ", #e, \ __FILE__, __LINE__, ## __VA_ARGS__)) #define KASSERT(e) (__predict_true((e)) ? (void)0 : \ kern_assert(__KASSERTSTR, "diagnostic ", #e, \ __FILE__, __LINE__)) #endif #ifndef DEBUG #ifdef lint #define KDASSERTMSG(e,msg, ...) /* NOTHING */ #define KDASSERT(e) /* NOTHING */ #else /* lint */ #define KDASSERTMSG(e,msg, ...) ((void)0) #define KDASSERT(e) ((void)0) #endif /* lint */ #else #define KDASSERTMSG(e, msg, ...) \ (__predict_true((e)) ? (void)0 : \ kern_assert(__KASSERTSTR msg, "debugging ", #e, \ __FILE__, __LINE__, ## __VA_ARGS__)) #define KDASSERT(e) (__predict_true((e)) ? (void)0 : \ kern_assert(__KASSERTSTR, "debugging ", #e, \ __FILE__, __LINE__)) #endif /* * XXX: For compatibility we use SMALL_RANDOM by default. */ #define SMALL_RANDOM #ifndef offsetof #if __GNUC_PREREQ__(4, 0) #define offsetof(type, member) __builtin_offsetof(type, member) #else #define offsetof(type, member) \ ((size_t)(unsigned long)(&(((type *)0)->member))) #endif #endif /* * Return the container of an embedded struct. Given x = &c->f, * container_of(x, T, f) yields c, where T is the type of c. Example: * * struct foo { ... }; * struct bar { * int b_x; * struct foo b_foo; * ... * }; * * struct bar b; * struct foo *fp = b.b_foo; * * Now we can get at b from fp by: * * struct bar *bp = container_of(fp, struct bar, b_foo); * * The 0*sizeof((PTR) - ...) causes the compiler to warn if the type of * *fp does not match the type of struct bar::b_foo. * We skip the validation for coverity runs to avoid warnings. */ #ifdef __COVERITY__ #define __validate_container_of(PTR, TYPE, FIELD) 0 #define __validate_const_container_of(PTR, TYPE, FIELD) 0 #else #define __validate_container_of(PTR, TYPE, FIELD) \ (0 * sizeof((PTR) - &((TYPE *)(((char *)(PTR)) - \ offsetof(TYPE, FIELD)))->FIELD)) #define __validate_const_container_of(PTR, TYPE, FIELD) \ (0 * sizeof((PTR) - &((const TYPE *)(((const char *)(PTR)) - \ offsetof(TYPE, FIELD)))->FIELD)) #endif #define container_of(PTR, TYPE, FIELD) \ ((TYPE *)(((char *)(PTR)) - offsetof(TYPE, FIELD)) \ + __validate_container_of(PTR, TYPE, FIELD)) #define const_container_of(PTR, TYPE, FIELD) \ ((const TYPE *)(((const char *)(PTR)) - offsetof(TYPE, FIELD)) \ + __validate_const_container_of(PTR, TYPE, FIELD)) #define MTPRNG_RLEN 624 struct mtprng_state { unsigned int mt_idx; uint32_t mt_elem[MTPRNG_RLEN]; uint32_t mt_count; uint32_t mt_sparse[3]; }; /* Prototypes for which GCC built-ins exist. */ void *memcpy(void *, const void *, size_t); int memcmp(const void *, const void *, size_t); void *memset(void *, int, size_t); void *memmem(const void *, size_t, const void *, size_t); #if __GNUC_PREREQ__(2, 95) && !defined(_STANDALONE) #if defined(_KERNEL) && defined(KASAN) void *kasan_memset(void *, int, size_t); int kasan_memcmp(const void *, const void *, size_t); void *kasan_memcpy(void *, const void *, size_t); #define memcpy(d, s, l) kasan_memcpy(d, s, l) #define memcmp(a, b, l) kasan_memcmp(a, b, l) #define memset(d, v, l) kasan_memset(d, v, l) #else #define memcpy(d, s, l) __builtin_memcpy(d, s, l) #define memcmp(a, b, l) __builtin_memcmp(a, b, l) #define memset(d, v, l) __builtin_memset(d, v, l) #endif /* _KERNEL && KASAN */ #endif char *strcpy(char *, const char *); int strcmp(const char *, const char *); size_t strlen(const char *); size_t strnlen(const char *, size_t); char *strsep(char **, const char *); #if __GNUC_PREREQ__(2, 95) && !defined(_STANDALONE) #if defined(_KERNEL) && defined(KASAN) char *kasan_strcpy(char *, const char *); int kasan_strcmp(const char *, const char *); size_t kasan_strlen(const char *); #define strcpy(d, s) kasan_strcpy(d, s) #define strcmp(a, b) kasan_strcmp(a, b) #define strlen(a) kasan_strlen(a) #else #define strcpy(d, s) __builtin_strcpy(d, s) #define strcmp(a, b) __builtin_strcmp(a, b) #define strlen(a) __builtin_strlen(a) #endif /* _KERNEL && KASAN */ #endif /* Functions for which we always use built-ins. */ #ifdef __GNUC__ #define alloca(s) __builtin_alloca(s) #endif /* These exist in GCC 3.x, but we don't bother. */ char *strcat(char *, const char *); size_t strcspn(const char *, const char *); char *strncpy(char *, const char *, size_t); char *strncat(char *, const char *, size_t); int strncmp(const char *, const char *, size_t); char *strchr(const char *, int); char *strrchr(const char *, int); char *strstr(const char *, const char *); char *strpbrk(const char *, const char *); size_t strspn(const char *, const char *); /* * ffs is an instruction on vax. */ int ffs(int); #if __GNUC_PREREQ__(2, 95) && (!defined(__vax__) || __GNUC_PREREQ__(4,1)) #define ffs(x) __builtin_ffs(x) #endif void kern_assert(const char *, ...) __attribute__((__format__(__printf__, 1, 2))); u_int32_t inet_addr(const char *); struct in_addr; int inet_aton(const char *, struct in_addr *); char *intoa(u_int32_t); #define inet_ntoa(a) intoa((a).s_addr) void *memchr(const void *, int, size_t); void *memmove(void *, const void *, size_t); int pmatch(const char *, const char *, const char **); #ifndef SMALL_RANDOM void srandom(unsigned long); char *initstate(unsigned long, char *, size_t); char *setstate(char *); #endif /* SMALL_RANDOM */ long random(void); void mi_vector_hash(const void * __restrict, size_t, uint32_t, uint32_t[3]); void mtprng_init32(struct mtprng_state *, uint32_t); void mtprng_initarray(struct mtprng_state *, const uint32_t *, size_t); uint32_t mtprng_rawrandom(struct mtprng_state *); uint32_t mtprng_random(struct mtprng_state *); int scanc(u_int, const u_char *, const u_char *, int); int skpc(int, size_t, u_char *); int strcasecmp(const char *, const char *); size_t strlcpy(char *, const char *, size_t); size_t strlcat(char *, const char *, size_t); int strncasecmp(const char *, const char *, size_t); u_long strtoul(const char *, char **, int); long long strtoll(const char *, char **, int); unsigned long long strtoull(const char *, char **, int); intmax_t strtoimax(const char *, char **, int); uintmax_t strtoumax(const char *, char **, int); intmax_t strtoi(const char * __restrict, char ** __restrict, int, intmax_t, intmax_t, int *); uintmax_t strtou(const char * __restrict, char ** __restrict, int, uintmax_t, uintmax_t, int *); void hexdump(void (*)(const char *, ...) __printflike(1, 2), const char *, const void *, size_t); int snprintb(char *, size_t, const char *, uint64_t); int snprintb_m(char *, size_t, const char *, uint64_t, size_t); int kheapsort(void *, size_t, size_t, int (*)(const void *, const void *), void *); uint32_t crc32(uint32_t, const uint8_t *, size_t); #if __GNUC_PREREQ__(4, 5) \ && (defined(__alpha_cix__) || defined(__mips_popcount)) #define popcount __builtin_popcount #define popcountl __builtin_popcountl #define popcountll __builtin_popcountll #define popcount32 __builtin_popcount #define popcount64 __builtin_popcountll #else unsigned int popcount(unsigned int) __constfunc; unsigned int popcountl(unsigned long) __constfunc; unsigned int popcountll(unsigned long long) __constfunc; unsigned int popcount32(uint32_t) __constfunc; unsigned int popcount64(uint64_t) __constfunc; #endif void *explicit_memset(void *, int, size_t); int consttime_memequal(const void *, const void *, size_t); int strnvisx(char *, size_t, const char *, size_t, int); #define VIS_OCTAL 0x01 #define VIS_SAFE 0x20 #define VIS_TRIM 0x40 #ifdef notyet /* * LZF hashtable/state size: on uncompressible data and on a system with * a sufficiently large d-cache, a larger table produces a considerable * speed benefit. On systems with small memory and caches, however... */ #if defined(__vax__) || defined(__m68k__) #define LZF_HLOG 14 #else #define LZF_HLOG 15 #endif typedef const uint8_t *LZF_STATE[1 << LZF_HLOG]; unsigned int lzf_compress_r (const void *const, unsigned int, void *, unsigned int, LZF_STATE); unsigned int lzf_decompress (const void *const, unsigned int, void *, unsigned int); #endif #endif /* !_LIB_LIBKERN_LIBKERN_H_ */