/* $NetBSD: pmap.h,v 1.92 2013/10/19 19:40:23 mrg Exp $ */ /* * Copyright (c) 1996 * The President and Fellows of Harvard College. All rights reserved. * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Aaron Brown and * Harvard University. * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * @InsertRedistribution@ * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Aaron Brown and * Harvard University. * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)pmap.h 8.1 (Berkeley) 6/11/93 */ #ifndef _SPARC_PMAP_H_ #define _SPARC_PMAP_H_ #if defined(_KERNEL_OPT) #include "opt_sparc_arch.h" #endif #include /* * Pmap structure. * * The pmap structure really comes in two variants, one---a single * instance---for kernel virtual memory and the other---up to nproc * instances---for user virtual memory. Unfortunately, we have to mash * both into the same structure. Fortunately, they are almost the same. * * The kernel begins at 0xf8000000 and runs to 0xffffffff (although * some of this is not actually used). Kernel space, including DVMA * space (for now?), is mapped identically into all user contexts. * There is no point in duplicating this mapping in each user process * so they do not appear in the user structures. * * User space begins at 0x00000000 and runs through 0x1fffffff, * then has a `hole', then resumes at 0xe0000000 and runs until it * hits the kernel space at 0xf8000000. This can be mapped * contiguously by ignorning the top two bits and pretending the * space goes from 0 to 37ffffff. Typically the lower range is * used for text+data and the upper for stack, but the code here * makes no such distinction. * * Since each virtual segment covers 256 kbytes, the user space * requires 3584 segments, while the kernel (including DVMA) requires * only 512 segments. * * ** FOR THE SUN4/SUN4C * * The segment map entry for virtual segment vseg is offset in * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by * NUSEG if it is. We keep a pointer called pmap->pm_segmap * pre-offset by this value. pmap->pm_segmap thus contains the * values to be loaded into the user portion of the hardware segment * map so as to reach the proper PMEGs within the MMU. The kernel * mappings are `set early' and are always valid in every context * (every change is always propagated immediately). * * The PMEGs within the MMU are loaded `on demand'; when a PMEG is * taken away from context `c', the pmap for context c has its * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment * map entry is also made invalid at the same time). Thus * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever * the corresponding PTEs are not actually in the MMU. On the other * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment * are in core; otherwise it points to a copy of the 32 or 64 PTEs that * must be loaded in the MMU in order to reach those pages. * pm_npte[vseg] counts the number of valid pages in each vseg. * * XXX performance: faster to count valid bits? * * The kernel pmap cannot malloc() PTEs since malloc() will sometimes * allocate a new virtual segment. Since kernel mappings are never * `stolen' out of the MMU, we just keep all its PTEs there, and have * no software copies. Its mmu entries are nonetheless kept on lists * so that the code that fiddles with mmu lists has something to fiddle. * ** FOR THE SUN4M/SUN4D * * On this architecture, the virtual-to-physical translation (page) tables * are *not* stored within the MMU as they are in the earlier Sun architect- * ures; instead, they are maintained entirely within physical memory (there * is a TLB cache to prevent the high performance hit from keeping all page * tables in core). Thus there is no need to dynamically allocate PMEGs or * SMEGs; only contexts must be shared. * * We maintain two parallel sets of tables: one is the actual MMU-edible * hierarchy of page tables in allocated kernel memory; these tables refer * to each other by physical address pointers in SRMMU format (thus they * are not very useful to the kernel's management routines). The other set * of tables is similar to those used for the Sun4/100's 3-level MMU; it * is a hierarchy of regmap and segmap structures which contain kernel virtual * pointers to each other. These must (unfortunately) be kept in sync. * */ #define NKREG ((int)((-(unsigned)KERNBASE) / NBPRG)) /* i.e., 8 */ #define NUREG (256 - NKREG) /* i.e., 248 */ TAILQ_HEAD(mmuhd,mmuentry); /* * data appearing in both user and kernel pmaps * * note: if we want the same binaries to work on the 4/4c and 4m, we have to * include the fields for both to make sure that the struct kproc * is the same size. */ struct pmap { union ctxinfo *pm_ctx; /* current context, if any */ int pm_ctxnum; /* current context's number */ u_int pm_cpuset; /* CPU's this pmap has context on */ int pm_refcount; /* just what it says */ struct mmuhd pm_reglist; /* MMU regions on this pmap (4/4c) */ struct mmuhd pm_seglist; /* MMU segments on this pmap (4/4c) */ struct regmap *pm_regmap; int **pm_reg_ptps; /* SRMMU-edible region tables for 4m */ int *pm_reg_ptps_pa;/* _Physical_ address of pm_reg_ptps */ int pm_gap_start; /* Starting with this vreg there's */ int pm_gap_end; /* no valid mapping until here */ struct pmap_statistics pm_stats; /* pmap statistics */ u_int pm_flags; #define PMAP_USERCACHECLEAN 1 }; struct regmap { struct segmap *rg_segmap; /* point to NSGPRG PMEGs */ int *rg_seg_ptps; /* SRMMU-edible segment tables (NULL * indicates invalid region (4m) */ smeg_t rg_smeg; /* the MMU region number (4c) */ u_char rg_nsegmap; /* number of valid PMEGS */ }; struct segmap { uint64_t sg_wiremap; /* per-page wire bits (4m) */ int *sg_pte; /* points to NPTESG PTEs */ pmeg_t sg_pmeg; /* the MMU segment number (4c) */ u_char sg_npte; /* number of valid PTEs in sg_pte * (not used for 4m/4d kernel_map) */ int8_t sg_nwired; /* number of wired pages */ }; #if 0 struct kvm_cpustate { int kvm_npmemarr; struct memarr kvm_pmemarr[MA_SIZE]; int kvm_seginval; /* [4,4c] */ struct segmap kvm_segmap_store[NKREG*NSEGRG]; /* [4,4c] */ }/*not yet used*/; #endif #ifdef _KERNEL #define PMAP_NULL ((pmap_t)0) /* * Bounds on managed physical addresses. Used by (MD) users * of uvm_pglistalloc() to provide search hints. */ extern paddr_t vm_first_phys, vm_last_phys; extern psize_t vm_num_phys; /* * Since PTEs also contain type bits, we have to have some way * to tell pmap_enter `this is an IO page' or `this is not to * be cached'. Since physical addresses are always aligned, we * can do this with the low order bits. * * The ordering below is important: PMAP_PGTYPE << PG_TNC must give * exactly the PG_NC and PG_TYPE bits. */ #define PMAP_OBIO 1 /* tells pmap_enter to use PG_OBIO */ #define PMAP_VME16 2 /* etc */ #define PMAP_VME32 3 /* etc */ #define PMAP_NC 4 /* tells pmap_enter to set PG_NC */ #define PMAP_TNC_4 7 /* mask to get PG_TYPE & PG_NC */ #define PMAP_T2PTE_4(x) (((x) & PMAP_TNC_4) << PG_TNC_SHIFT) #define PMAP_IOENC_4(io) (io) /* * On a SRMMU machine, the iospace is encoded in bits [3-6] of the * physical address passed to pmap_enter(). */ #define PMAP_TYPE_SRMMU 0x78 /* mask to get 4m page type */ #define PMAP_PTESHFT_SRMMU 25 /* right shift to put type in pte */ #define PMAP_SHFT_SRMMU 3 /* left shift to extract iospace */ #define PMAP_TNC_SRMMU 127 /* mask to get PG_TYPE & PG_NC */ /*#define PMAP_IOC 0x00800000 -* IO cacheable, NOT shifted */ #define PMAP_T2PTE_SRMMU(x) (((x) & PMAP_TYPE_SRMMU) << PMAP_PTESHFT_SRMMU) #define PMAP_IOENC_SRMMU(io) ((io) << PMAP_SHFT_SRMMU) /* Encode IO space for pmap_enter() */ #define PMAP_IOENC(io) (CPU_HAS_SRMMU ? PMAP_IOENC_SRMMU(io) \ : PMAP_IOENC_4(io)) int pmap_dumpsize(void); int pmap_dumpmmu(int (*)(dev_t, daddr_t, void *, size_t), daddr_t); #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) #define pmap_wired_count(pm) ((pm)->pm_stats.wired_count) #define PMAP_PREFER(fo, ap, sz, td) pmap_prefer((fo), (ap), (sz), (td)) #define PMAP_EXCLUDE_DECLS /* tells MI pmap.h *not* to include decls */ /* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */ void pmap_activate(struct lwp *); void pmap_deactivate(struct lwp *); void pmap_bootstrap(int nmmu, int nctx, int nregion); void pmap_prefer(vaddr_t, vaddr_t *, size_t, int); int pmap_pa_exists(paddr_t); void pmap_unwire(pmap_t, vaddr_t); void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t); pmap_t pmap_create(void); void pmap_destroy(pmap_t); void pmap_init(void); vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, int); #define pmap_phys_address(x) (x) void pmap_reference(pmap_t); void pmap_remove(pmap_t, vaddr_t, vaddr_t); #define pmap_update(pmap) __USE(pmap) void pmap_virtual_space(vaddr_t *, vaddr_t *); #ifdef PMAP_GROWKERNEL vaddr_t pmap_growkernel(vaddr_t); #endif void pmap_redzone(void); void kvm_uncache(char *, int); int mmu_pagein(struct pmap *pm, vaddr_t, int); void pmap_writetext(unsigned char *, int); void pmap_globalize_boot_cpuinfo(struct cpu_info *); void pmap_remove_all(struct pmap *pm); #define pmap_mmap_flags(x) 0 /* dummy so far */ /* SUN4/SUN4C SPECIFIC DECLARATIONS */ #if defined(SUN4) || defined(SUN4C) bool pmap_clear_modify4_4c(struct vm_page *); bool pmap_clear_reference4_4c(struct vm_page *); void pmap_copy_page4_4c(paddr_t, paddr_t); int pmap_enter4_4c(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int); bool pmap_extract4_4c(pmap_t, vaddr_t, paddr_t *); bool pmap_is_modified4_4c(struct vm_page *); bool pmap_is_referenced4_4c(struct vm_page *); void pmap_kenter_pa4_4c(vaddr_t, paddr_t, vm_prot_t, u_int); void pmap_kremove4_4c(vaddr_t, vsize_t); void pmap_kprotect4_4c(vaddr_t, vsize_t, vm_prot_t); void pmap_page_protect4_4c(struct vm_page *, vm_prot_t); void pmap_protect4_4c(pmap_t, vaddr_t, vaddr_t, vm_prot_t); void pmap_zero_page4_4c(paddr_t); #endif /* defined SUN4 || defined SUN4C */ /* SIMILAR DECLARATIONS FOR SUN4M/SUN4D MODULE */ #if defined(SUN4M) || defined(SUN4D) bool pmap_clear_modify4m(struct vm_page *); bool pmap_clear_reference4m(struct vm_page *); void pmap_copy_page4m(paddr_t, paddr_t); void pmap_copy_page_viking_mxcc(paddr_t, paddr_t); void pmap_copy_page_hypersparc(paddr_t, paddr_t); int pmap_enter4m(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int); bool pmap_extract4m(pmap_t, vaddr_t, paddr_t *); bool pmap_is_modified4m(struct vm_page *); bool pmap_is_referenced4m(struct vm_page *); void pmap_kenter_pa4m(vaddr_t, paddr_t, vm_prot_t, u_int); void pmap_kremove4m(vaddr_t, vsize_t); void pmap_kprotect4m(vaddr_t, vsize_t, vm_prot_t); void pmap_page_protect4m(struct vm_page *, vm_prot_t); void pmap_protect4m(pmap_t, vaddr_t, vaddr_t, vm_prot_t); void pmap_zero_page4m(paddr_t); void pmap_zero_page_viking_mxcc(paddr_t); void pmap_zero_page_hypersparc(paddr_t); #endif /* defined SUN4M || defined SUN4D */ #if !(defined(SUN4M) || defined(SUN4D)) && (defined(SUN4) || defined(SUN4C)) #define pmap_clear_modify pmap_clear_modify4_4c #define pmap_clear_reference pmap_clear_reference4_4c #define pmap_enter pmap_enter4_4c #define pmap_extract pmap_extract4_4c #define pmap_is_modified pmap_is_modified4_4c #define pmap_is_referenced pmap_is_referenced4_4c #define pmap_kenter_pa pmap_kenter_pa4_4c #define pmap_kremove pmap_kremove4_4c #define pmap_kprotect pmap_kprotect4_4c #define pmap_page_protect pmap_page_protect4_4c #define pmap_protect pmap_protect4_4c #elif (defined(SUN4M) || defined(SUN4D)) && !(defined(SUN4) || defined(SUN4C)) #define pmap_clear_modify pmap_clear_modify4m #define pmap_clear_reference pmap_clear_reference4m #define pmap_enter pmap_enter4m #define pmap_extract pmap_extract4m #define pmap_is_modified pmap_is_modified4m #define pmap_is_referenced pmap_is_referenced4m #define pmap_kenter_pa pmap_kenter_pa4m #define pmap_kremove pmap_kremove4m #define pmap_kprotect pmap_kprotect4m #define pmap_page_protect pmap_page_protect4m #define pmap_protect pmap_protect4m #else /* must use function pointers */ extern bool (*pmap_clear_modify_p)(struct vm_page *); extern bool (*pmap_clear_reference_p)(struct vm_page *); extern int (*pmap_enter_p)(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int); extern bool (*pmap_extract_p)(pmap_t, vaddr_t, paddr_t *); extern bool (*pmap_is_modified_p)(struct vm_page *); extern bool (*pmap_is_referenced_p)(struct vm_page *); extern void (*pmap_kenter_pa_p)(vaddr_t, paddr_t, vm_prot_t, u_int); extern void (*pmap_kremove_p)(vaddr_t, vsize_t); extern void (*pmap_kprotect_p)(vaddr_t, vsize_t, vm_prot_t); extern void (*pmap_page_protect_p)(struct vm_page *, vm_prot_t); extern void (*pmap_protect_p)(pmap_t, vaddr_t, vaddr_t, vm_prot_t); #define pmap_clear_modify (*pmap_clear_modify_p) #define pmap_clear_reference (*pmap_clear_reference_p) #define pmap_enter (*pmap_enter_p) #define pmap_extract (*pmap_extract_p) #define pmap_is_modified (*pmap_is_modified_p) #define pmap_is_referenced (*pmap_is_referenced_p) #define pmap_kenter_pa (*pmap_kenter_pa_p) #define pmap_kremove (*pmap_kremove_p) #define pmap_kprotect (*pmap_kprotect_p) #define pmap_page_protect (*pmap_page_protect_p) #define pmap_protect (*pmap_protect_p) #endif /* pmap_{zero,copy}_page() may be assisted by specialized hardware */ #define pmap_zero_page (*cpuinfo.zero_page) #define pmap_copy_page (*cpuinfo.copy_page) #if defined(SUN4M) || defined(SUN4D) /* * Macros which implement SRMMU TLB flushing/invalidation */ #define tlb_flush_page_real(va) \ sta(((vaddr_t)(va) & 0xfffff000) | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0) #define tlb_flush_segment_real(va) \ sta(((vaddr_t)(va) & 0xfffc0000) | ASI_SRMMUFP_L2, ASI_SRMMUFP, 0) #define tlb_flush_region_real(va) \ sta(((vaddr_t)(va) & 0xff000000) | ASI_SRMMUFP_L1, ASI_SRMMUFP, 0) #define tlb_flush_context_real() sta(ASI_SRMMUFP_L0, ASI_SRMMUFP, 0) #define tlb_flush_all_real() sta(ASI_SRMMUFP_LN, ASI_SRMMUFP, 0) #endif /* SUN4M || SUN4D */ #define __HAVE_VM_PAGE_MD /* * For each managed physical page, there is a list of all currently * valid virtual mappings of that page. Since there is usually one * (or zero) mapping per page, the table begins with an initial entry, * rather than a pointer; this head entry is empty iff its pv_pmap * field is NULL. */ struct vm_page_md { struct pvlist { struct pvlist *pv_next; /* next pvlist, if any */ struct pmap *pv_pmap; /* pmap of this va */ vaddr_t pv_va; /* virtual address */ int pv_flags; /* flags (below) */ } pvlisthead; }; #define VM_MDPAGE_PVHEAD(pg) (&(pg)->mdpage.pvlisthead) #define VM_MDPAGE_INIT(pg) do { \ (pg)->mdpage.pvlisthead.pv_next = NULL; \ (pg)->mdpage.pvlisthead.pv_pmap = NULL; \ (pg)->mdpage.pvlisthead.pv_va = 0; \ (pg)->mdpage.pvlisthead.pv_flags = 0; \ } while(/*CONSTCOND*/0) #endif /* _KERNEL */ #endif /* _SPARC_PMAP_H_ */