/* $NetBSD: instr.h,v 1.8 2005/12/11 12:19:05 christos Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)instr.h 8.1 (Berkeley) 6/11/93 */ /* see also Appendix F of the SPARC version 8 document */ enum IOP { IOP_OP2, IOP_CALL, IOP_reg, IOP_mem }; enum IOP2 { IOP2_UNIMP, IOP2_BPcc, IOP2_Bicc, IOP2_BPr, IOP2_SETHI, IOP2_FBPfcc, IOP2_FBfcc, IOP2_CBccc }; enum IOP3_reg { IOP3_ADD, IOP3_AND, IOP3_OR, IOP3_XOR, IOP3_SUB, IOP3_ANDN, IOP3_ORN, IOP3_XNOR, IOP3_ADDX, IOP3_rerr09, IOP3_UMUL, IOP3_SMUL, IOP3_SUBX, IOP3_rerr0d, IOP3_UDIV, IOP3_SDIV, IOP3_ADDcc, IOP3_ANDcc, IOP3_ORcc, IOP3_XORcc, IOP3_SUBcc, IOP3_ANDNcc, IOP3_ORNcc, IOP3_XNORcc, IOP3_ADDXcc, IOP3_rerr19, IOP3_UMULcc, IOP3_SMULcc, IOP3_SUBXcc, IOP3_rerr1d, IOP3_UDIVcc, IOP3_SDIVcc, IOP3_TADDcc, IOP3_TSUBcc, IOP3_TADDccTV, IOP3_TSUBccTV, IOP3_MULScc, IOP3_SLL, IOP3_SRL, IOP3_SRA, IOP3_RDASR_RDY_STBAR, IOP3_RDPSR, IOP3_RDWIM, IOP3_RDTGBR, IOP3_rerr2c, IOP3_rerr2d, IOP3_rerr2e, IOP3_rerr2f, IOP3_WRASR_WRY, IOP3_WRPSR, IOP3_WRWIM, IOP3_WRTBR, IOP3_FPop1, IOP3_FPop2, IOP3_CPop1, IOP3_CPop2, IOP3_JMPL, IOP3_RETT, IOP3_Ticc, IOP3_FLUSH, IOP3_SAVE, IOP3_RESTORE, IOP3_rerr3e, IOP3_rerr3f }; enum IOP3_mem { IOP3_LD, IOP3_LDUB, IOP3_LDUH, IOP3_LDD, IOP3_ST, IOP3_STB, IOP3_STH, IOP3_STD, IOP3_merr08, IOP3_LDSB, IOP3_LDSH, IOP3_merr0b, IOP3_merr0c, IOP3_LDSTUB, IOP3_merr0f, IOP3_SWAP, IOP3_LDA, IOP3_LDUBA, IOP3_LDUHA, IOP3_LDDA, IOP3_STA, IOP3_STBA, IOP3_STHA, IOP3_STDA, IOP3_merr18, IOP3_LDSBA, IOP3_LDSHA, IOP3_merr1b, IOP3_merr1c, IOP3_LDSTUBA, IOP3_merr1f, IOP3_SWAPA, IOP3_LDF, IOP3_LDFSR, IOP3_merr22, IOP3_LDDF, IOP3_STF, IOP3_STFSR, IOP3_STDFQ, IOP3_STDF, IOP3_merr28, IOP3_merr29, IOP3_merr2a, IOP3_merr2b, IOP3_merr2c, IOP3_merr2d, IOP3_merr2e, IOP3_merr2f, IOP3_LFC, IOP3_LDCSR, IOP3_merr32, IOP3_LDDC, IOP3_STC, IOP3_STCSR, IOP3_STDCQ, IOP3_STDC, IOP3_merr38, IOP3_merr39, IOP3_merr3a, IOP3_merr3b, IOP3_merr3c, IOP3_merr3d, IOP3_merr3e, IOP3_merr3f }; /* * Integer condition codes. */ #define Icc_N 0x0 /* never */ #define Icc_E 0x1 /* equal (equiv. zero) */ #define Icc_LE 0x2 /* less or equal */ #define Icc_L 0x3 /* less */ #define Icc_LEU 0x4 /* less or equal unsigned */ #define Icc_CS 0x5 /* carry set (equiv. less unsigned) */ #define Icc_NEG 0x6 /* negative */ #define Icc_VS 0x7 /* overflow set */ #define Icc_A 0x8 /* always */ #define Icc_NE 0x9 /* not equal (equiv. not zero) */ #define Icc_G 0xa /* greater */ #define Icc_GE 0xb /* greater or equal */ #define Icc_GU 0xc /* greater unsigned */ #define Icc_CC 0xd /* carry clear (equiv. gtr or eq unsigned) */ #define Icc_POS 0xe /* positive */ #define Icc_VC 0xf /* overflow clear */ /* * Integer registers. */ #define I_G0 0 #define I_G1 1 #define I_G2 2 #define I_G3 3 #define I_G4 4 #define I_G5 5 #define I_G6 6 #define I_G7 7 #define I_O0 8 #define I_O1 9 #define I_O2 10 #define I_O3 11 #define I_O4 12 #define I_O5 13 #define I_O6 14 #define I_O7 15 #define I_L0 16 #define I_L1 17 #define I_L2 18 #define I_L3 19 #define I_L4 20 #define I_L5 21 #define I_L6 22 #define I_L7 23 #define I_I0 24 #define I_I1 25 #define I_I2 26 #define I_I3 27 #define I_I4 28 #define I_I5 29 #define I_I6 30 #define I_I7 31 /* * An instruction. */ union instr { int i_int; /* as a whole */ /* * The first level of decoding is to use the top 2 bits. * This gives us one of three `formats', which usually give * a second level of decoding. */ struct { u_int i_op:2; /* first-level decode */ u_int :30; } i_any; /* * Format 1 instructions: CALL (undifferentiated). */ struct { u_int :2; /* 01 */ int i_disp:30; /* displacement */ } i_call; /* * Format 2 instructions (SETHI, UNIMP, and branches, plus illegal * unused codes). */ struct { u_int :2; /* 00 */ u_int :5; u_int i_op2:3; /* second-level decode */ u_int :22; } i_op2; /* UNIMP, SETHI */ struct { u_int :2; /* 00 */ u_int i_rd:5; /* destination register */ u_int i_op2:3; /* opcode: UNIMP or SETHI */ u_int i_imm:22; /* immediate value */ } i_imm22; /* branches: Bicc, FBfcc, CBccc */ struct { u_int :2; /* 00 */ u_int i_annul:1; /* annul bit */ u_int i_cond:4; /* condition codes */ u_int i_op2:3; /* opcode: {Bi,FBf,CBc}cc */ int i_disp:22; /* branch displacement */ } i_branch; /* more branches: BPcc, FBPfcc */ struct { u_int :2; /* 00 */ u_int i_annul:1; /* annul bit */ u_int i_cond:4; /* condition codes */ u_int i_op2:3; /* opcode: {BP,FBPf}cc */ u_int i_cc:2; /* condition code selector */ u_int i_pred:1; /* branch prediction bit */ int i_disp:19; /* branch displacement */ } i_branch_p; /* one last branch: BPr */ struct { u_int :2; /* 00 */ u_int i_annul:1; /* annul bit */ u_int :1; /* 0 */ u_int i_rcond:4; /* register condition */ u_int :3; /* 011 */ int i_disphi:2; /* branch displacement, hi bits */ u_int i_pred:1; /* branch prediction bit */ u_int i_rs1:1; /* source register 1 */ u_int i_displo:16; /* branch displacement, lo bits */ } i_branch_pr; /* * Format 3 instructions (memory reference; arithmetic, logical, * shift, and other miscellaneous operations). The second-level * decode almost always makes use of an `rd' and `rs1', however * (see also IOP3_reg and IOP3_mem). * * Beyond that, the low 14 bits may be broken up in one of three * different ways, if at all: * 1 bit of imm=0 + 8 bits of asi + 5 bits of rs2 [reg & mem] * 1 bit of imm=1 + 13 bits of signed immediate [reg & mem] * 9 bits of copressor `opf' opcode + 5 bits of rs2 [reg only] */ struct { u_int :2; /* 10 or 11 */ u_int i_rd:5; /* destination register */ u_int i_op3:6; /* second-level decode */ u_int i_rs1:5; /* source register 1 */ u_int i_low14:14; /* varies */ } i_op3; /* * Memory forms. These set i_op=3 and use simm13 or asi layout. * Memory references without an ASI should use 0, but the actual * ASI field is simply ignored. */ struct { u_int :2; /* 11 only */ u_int i_rd:5; /* destination register */ u_int i_op3:6; /* second-level decode (see IOP3_mem) */ u_int i_rs1:5; /* source register 1 */ u_int i_i:1; /* immediate vs asi */ u_int i_low13:13; /* depend on i bit */ } i_loadstore; /* * Memory and register forms. * These come in quite a variety and we do not * attempt to break them down much. */ struct { u_int :2; /* 10 or 11 */ u_int i_rd:5; /* destination register */ u_int i_op3:6; /* second-level decode */ u_int i_rs1:5; /* source register 1 */ u_int i_i:1; /* immediate bit (1) */ int i_simm13:13; /* signed immediate */ } i_simm13; struct { u_int :2; /* 10 or 11 */ u_int i_rd:5; /* destination register */ u_int i_op3:6; /* second-level decode */ u_int i_rs1:5; /* source register 1 */ u_int i_i:1; /* immediate vs asi */ u_int i_asi:8; /* asi */ u_int i_rs2:5; /* source register 2 */ } i_asi; struct { u_int :2; /* 10 only (register, no memory) */ u_int i_rd:5; /* destination register */ u_int i_op3:6; /* second-level decode (see IOP3_reg) */ u_int i_rs1:5; /* source register 1 */ u_int i_opf:9; /* coprocessor 3rd-level decode */ u_int i_rs2:5; /* source register 2 */ } i_opf; /* * Format 4 instructions (movcc, fmovr, fmovcc, and tcc). The * second-level decode almost always makes use of an `rd' and either * `rs1' or `cond'. * * Beyond that, the low 14 bits may be broken up in one of three * different ways, if at all: * 1 bit of imm=0 + 8 bits of asi + 5 bits of rs2 [reg & mem] * 1 bit of imm=1 + 13 bits of signed immediate [reg & mem] * 9 bits of copressor `opf' opcode + 5 bits of rs2 [reg only] */ struct { u_int :2; /* 10 */ u_int i_rd:5; /* destination register */ u_int i_op3:6; /* second-level decode */ u_int i_rs1:5; /* source register 1 */ u_int i_low14:14; /* varies */ } i_op4; /* * Move fp register on condition codes. */ struct { u_int :2; /* 10 */ u_int i_rd:5; /* destination register */ u_int i_op3:6; /* second-level decode */ u_int :1; u_int i_cond:4; /* condition */ u_int i_opf_cc:3; /* condition code register */ u_int i_opf_low:6; /* third level decode */ u_int i_rs2:5; /* source register */ } i_fmovcc; /* * Move fp register on integer register. */ struct { u_int :2; /* 10 */ u_int i_rd:5; /* destination register */ u_int i_op3:6; /* second-level decode */ u_int i_rs1:5; /* source register 1 */ u_int :1; u_int i_rcond:3; /* register condition */ u_int i_opf_low:6; u_int i_rs2:5; /* source register 2 */ } i_fmovr; }; /* * Internal macros for building instructions. These correspond 1-to-1 to * the names above. Note that x << y | z == (x << y) | z. */ #define _I_ANY(op, b) ((op) << 30 | (b)) #define _I_OP2(high, op2, low) \ _I_ANY(IOP_OP2, (high) << 25 | (op2) << 22 | (low)) #define _I_IMM22(rd, op2, imm) \ _I_ANY(IOP_OP2, (rd) << 25 | (op2) << 22 | (imm)) #define _I_BRANCH(a, c, op2, disp) \ _I_ANY(IOP_OP2, (a) << 29 | (c) << 25 | (op2) << 22 | (disp)) #define _I_FBFCC(a, cond, disp) \ _I_BRANCH(a, cond, IOP2_FBfcc, disp) #define _I_CBCCC(a, cond, disp) \ _I_BRANCH(a, cond, IOP2_CBccc, disp) #define _I_SIMM(simm) (1 << 13 | ((simm) & 0x1fff)) #define _I_OP3_GEN(form, rd, op3, rs1, low14) \ _I_ANY(form, (rd) << 25 | (op3) << 19 | (rs1) << 14 | (low14)) #define _I_OP3_LS_RAR(rd, op3, rs1, asi, rs2) \ _I_OP3_GEN(IOP_mem, rd, op3, rs1, (asi) << 5 | (rs2)) #define _I_OP3_LS_RI(rd, op3, rs1, simm13) \ _I_OP3_GEN(IOP_mem, rd, op3, rs1, _I_SIMM(simm13)) #define _I_OP3_LS_RR(rd, op3, rs1, rs2) \ _I_OP3_GEN(IOP_mem, rd, op3, rs1, rs2) #define _I_OP3_R_RAR(rd, op3, rs1, asi, rs2) \ _I_OP3_GEN(IOP_reg, rd, op3, rs1, (asi) << 5 | (rs2)) #define _I_OP3_R_RI(rd, op3, rs1, simm13) \ _I_OP3_GEN(IOP_reg, rd, op3, rs1, _I_SIMM(simm13)) #define _I_OP3_R_RR(rd, op3, rs1, rs2) \ _I_OP3_GEN(IOP_reg, rd, op3, rs1, rs2) #define I_CALL(d) _I_ANY(IOP_CALL, d) #define I_UNIMP(v) _I_IMM22(0, IOP2_UNIMP, v) #define I_BN(a, d) _I_BRANCH(a, Icc_N, IOP2_Bicc, d) #define I_BE(a, d) _I_BRANCH(a, Icc_E, IOP2_Bicc, d) #define I_BZ(a, d) _I_BRANCH(a, Icc_E, IOP2_Bicc, d) #define I_BLE(a, d) _I_BRANCH(a, Icc_LE, IOP2_Bicc, d) #define I_BL(a, d) _I_BRANCH(a, Icc_L, IOP2_Bicc, d) #define I_BLEU(a, d) _I_BRANCH(a, Icc_LEU, IOP2_Bicc, d) #define I_BCS(a, d) _I_BRANCH(a, Icc_CS, IOP2_Bicc, d) #define I_BLU(a, d) _I_BRANCH(a, Icc_CS, IOP2_Bicc, d) #define I_BNEG(a, d) _I_BRANCH(a, Icc_NEG, IOP2_Bicc, d) #define I_BVS(a, d) _I_BRANCH(a, Icc_VS, IOP2_Bicc, d) #define I_BA(a, d) _I_BRANCH(a, Icc_A, IOP2_Bicc, d) #define I_B(a, d) _I_BRANCH(a, Icc_A, IOP2_Bicc, d) #define I_BNE(a, d) _I_BRANCH(a, Icc_NE, IOP2_Bicc, d) #define I_BNZ(a, d) _I_BRANCH(a, Icc_NE, IOP2_Bicc, d) #define I_BG(a, d) _I_BRANCH(a, Icc_G, IOP2_Bicc, d) #define I_BGE(a, d) _I_BRANCH(a, Icc_GE, IOP2_Bicc, d) #define I_BGU(a, d) _I_BRANCH(a, Icc_GU, IOP2_Bicc, d) #define I_BCC(a, d) _I_BRANCH(a, Icc_CC, IOP2_Bicc, d) #define I_BGEU(a, d) _I_BRANCH(a, Icc_CC, IOP2_Bicc, d) #define I_BPOS(a, d) _I_BRANCH(a, Icc_POS, IOP2_Bicc, d) #define I_BVC(a, d) _I_BRANCH(a, Icc_VC, IOP2_Bicc, d) #define I_SETHI(r, v) _I_IMM22(r, 4, v) #define I_ORri(rd, rs1, imm) _I_OP3_R_RI(rd, IOP3_OR, rs1, imm) #define I_ORrr(rd, rs1, rs2) _I_OP3_R_RR(rd, IOP3_OR, rs1, rs2) #define I_MOVi(rd, imm) _I_OP3_R_RI(rd, IOP3_OR, I_G0, imm) #define I_MOVr(rd, rs) _I_OP3_R_RR(rd, IOP3_OR, I_G0, rs) #define I_RDPSR(rd) _I_OP3_R_RR(rd, IOP3_RDPSR, 0, 0) #define I_JMPLri(rd, rs1, imm) _I_OP3_R_RI(rd, IOP3_JMPL, rs1, imm) #define I_JMPLrr(rd, rs1, rs2) _I_OP3_R_RR(rd, IOP3_JMPL, rs1, rs2) /* * (Since these are sparse, we skip the enumerations for now.) * FPop values. All appear in both FPop1 and FPop2 spaces, but arithmetic * ops should happen only with FPop1 and comparison only with FPop2. * The type sits in the low two bits; those bits are given as zero here. */ #define FMOV 0x00 #define FNEG 0x04 #define FABS 0x08 #define FSQRT 0x28 #define FADD 0x40 #define FSUB 0x44 #define FMUL 0x48 #define FDIV 0x4c #define FCMP 0x50 #define FCMPE 0x54 #define FSMULD 0x68 #define FDMULX 0x6c #define FTOX 0x80 #define FXTOS 0x84 #define FXTOD 0x88 #define FXTOQ 0x8c #define FTOS 0xc4 #define FTOD 0xc8 #define FTOQ 0xcc #define FTOI 0xd0 /* These are in FPop2 space */ #define FMVFC0 0x00 #define FMVRZ 0x24 #define FMVFC1 0x40 #define FMVRLEZ 0x44 #define FMVRLZ 0x64 #define FMVFC2 0x80 #define FMVRNZ 0xa4 #define FMVFC3 0xc0 #define FMVRGZ 0xc4 #define FMVRGEZ 0xe4 #define FMVIC 0x100 #define FMVXC 0x180 /* * FPU data types. */ #define FTYPE_LNG -1 /* data = 64-bit signed long integer */ #define FTYPE_INT 0 /* data = 32-bit signed integer */ #define FTYPE_SNG 1 /* data = 32-bit float */ #define FTYPE_DBL 2 /* data = 64-bit double */ #define FTYPE_EXT 3 /* data = 128-bit extended (quad-prec) */