/* $NetBSD: vge.c,v 1.3 2011/10/30 21:08:33 phx Exp $ */ /*- * Copyright (c) 2007 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Tohru Nishimura. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include "globals.h" /* * - reverse endian access every CSR. * - no vtophys() translation, vaddr_t == paddr_t. * - PIPT writeback cache aware. */ #define CSR_WRITE_1(l, r, v) out8((l)->csr+(r), (v)) #define CSR_READ_1(l, r) in8((l)->csr+(r)) #define CSR_WRITE_2(l, r, v) out16rb((l)->csr+(r), (v)) #define CSR_READ_2(l, r) in16rb((l)->csr+(r)) #define CSR_WRITE_4(l, r, v) out32rb((l)->csr+(r), (v)) #define CSR_READ_4(l, r) in32rb((l)->csr+(r)) #define VTOPHYS(va) (uint32_t)(va) #define DEVTOV(pa) (uint32_t)(pa) #define wbinv(adr, siz) _wbinv(VTOPHYS(adr), (uint32_t)(siz)) #define inv(adr, siz) _inv(VTOPHYS(adr), (uint32_t)(siz)) #define DELAY(n) delay(n) #define ALLOC(T,A) (T *)allocaligned(sizeof(T),(A)) struct tdesc { uint32_t t0, t1; struct { uint32_t lo; uint32_t hi; } tf[7]; }; struct rdesc { uint32_t r0, r1, r2, r3; }; #define T0_OWN (1U << 31) /* 1: loaded for HW to send */ #define T0_TERR (1U << 15) /* Tx error summary */ #define T0_UDF (1U << 12) /* found link down when Tx */ #define T0_SHDN (1U << 10) /* transfer was shutdowned */ #define T0_CRS (1U << 9) /* found carrier sense lost */ #define T0_CDH (1U << 8) /* heartbeat check failure */ #define T0_ABT (1U << 7) /* excessive collision Tx abort */ #define T0_OWT (1U << 6) /* jumbo Tx frame was aborted */ #define T0_OWC (1U << 5) /* found out of window collision */ #define T0_COLS (1U << 4) /* collision detected */ #define T0_NCRMASK 0xf /* number of collision retries */ #define T1_EOF (1U << 25) /* TCP large last segment */ #define T1_SOF (1U << 24) /* TCP large first segment */ #define T1_TIC (1U << 13) /* post Tx done interrupt */ #define T1_PIC (1U << 22) /* post priority interrupt */ #define T1_VTAG (1U << 21) /* insert VLAG tag */ #define T1_IPCK (1U << 20) /* generate IPv4 csum */ #define T1_UDPCK (1U << 19) /* generate UDPv4 csum */ #define T1_TCPCK (1U << 18) /* generate TCPv4 csum */ #define T1_JUMBO (1U << 17) /* jumbo frame */ #define T1_CRC (1U << 16) /* _disable_ CRC generation */ #define T1_PRIO 0x0000e000 /* VLAN priority value */ #define T1_CFI (1U << 12) /* VLAN CFI */ #define T1_VID 0x00000fff /* VLAN ID 11:0 */ #define T_FLMASK 0x00003fff /* Tx frame/segment length */ #define TF0_Q (1U << 31) /* "Q" bit of tf[0].hi */ #define R0_OWN (1U << 31) /* 1: empty for HW to load anew */ #define R0_FLMASK 0x3fff0000 /* frame length */ #define R0_RXOK (1U << 15) #define R0_MAR (1U << 13) /* multicast frame */ #define R0_BAR (1U << 12) /* broadcast frame */ #define R0_PHY (1U << 11) /* unicast frame */ #define R0_VTAG (1U << 10) /* VTAG indicator */ #define R0_STP (1U << 9) /* first frame segment */ #define R0_EDP (1U << 8) /* last frame segment */ #define R0_DETAG (1U << 7) /* VTAG has removed */ #define R0_SNTAG (1U << 6) /* tagged SNAP frame */ #define R0_SYME (1U << 5) /* symbol error */ #define R0_LENE (1U << 4) /* frame length error */ #define R0_CSUME (1U << 3) /* TCP/IP bad csum */ #define R0_FAE (1U << 2) /* frame alignment error */ #define R0_CRCE (1U << 1) /* CRC error */ #define R0_VIDM (1U << 0) /* VTAG filter miss */ #define R1_IPOK (1U << 22) /* IP csum was fine */ #define R1_TUPOK (1U << 21) /* TCP/UDP csum was fine */ #define R1_FRAG (1U << 20) /* fragmented IP */ #define R1_CKSMZO (1U << 19) /* UDP csum field was zero */ #define R1_IPKT (1U << 18) /* frame was IPv4 */ #define R1_TPKT (1U << 17) /* frame was TCPv4 */ #define R1_UPKT (1U << 16) /* frame was UDPv4 */ #define R3_IC (1U << 31) /* post Rx interrupt */ #define R_FLMASK 0x00003ffd /* Rx segment buffer length */ #define VR_PAR0 0x00 /* SA [0] */ #define VR_PAR1 0x01 /* SA [1] */ #define VR_PAR2 0x02 /* SA [2] */ #define VR_PAR3 0x03 /* SA [3] */ #define VR_PAR4 0x04 /* SA [4] */ #define VR_PAR5 0x05 /* SA [5] */ #define VR_CAM0 0x10 /* 0..7 */ #define VR_RCR 0x06 /* Rx control */ #define RCR_AP (1U << 6) /* accept unicast frame */ #define RCR_AL (1U << 5) /* accept long VTAG frame */ #define RCR_PROM (1U << 4) /* accept any frame */ #define RCR_AB (1U << 3) /* accept broadcast frame */ #define RCR_AM (1U << 2) /* use multicast filter */ #define VR_TCR 0x07 /* Tx control */ #define VR_CTL0 0x08 /* control #0 */ #define CTL0_TXON (1U << 3) /* enable Tx DMA */ #define CTL0_RXON (1U << 2) /* enable Rx DMA */ #define CTL0_STOP (1U << 1) /* activate stop processing */ #define CTL0_START (1U << 0) /* start and activate */ #define VR_CTL1 0x09 /* control #1 */ #define CTL1_RESET (1U << 7) #define CTL1_DPOLL (1U << 3) /* _disable_ TDES/RDES polling */ #define VR_CTL2 0x0a /* control #2 */ #define CTL2_3XFLC (1U << 7) /* 802.3x PAUSE flow control */ #define CTL2_TPAUSE (1U << 6) /* handle PAUSE on transmit side */ #define CTL2_RPAUSE (1U << 5) /* handle PAUSE on receive side */ #define CTL2_HDXFLC (1U << 4) /* HDX jabber flow control */ #define VR_CTL3 0x0b /* control #3 */ #define CTL3_GIEN (1U << 1) /* global interrupt enable */ #define VR_DESCHI 0x18 /* RDES/TDES base high 63:32 */ #define VR_DATAHI 0x1c /* frame data base high 63:48 */ #define VR_ISR 0x24 /* ISR0123 */ #define VR_IEN 0x28 /* IEN0123 */ #define VR_TDCSR 0x30 #define VR_RDCSR 0x32 #define VR_RDB 0x38 /* RDES base lo 31:0 */ #define VR_TDB0 0x40 /* #0 TDES base lo 31:0 */ #define VR_RDCSIZE 0x50 /* 0..255 */ #define VR_TDCSIZE 0x52 /* 0..4095 */ #define VR_RBRDU 0x5e /* 0..255 */ #define VR_CAMADR 0x68 #define CAM_EN (1U << 7) /* enable to manipulate */ #define SADR_CAM (0U << 6) /* station address table */ #define VTAG_CAM (1U << 6) /* VLAN tag table */ #define VR_CAMCTL 0x69 #define CAMCTL_MULT (00U << 6) /* multicast address hash */ #define CAMCTL_VBIT (01U << 6) /* valid bitmask */ #define CAMCTL_ADDR (02U << 6) /* address data */ #define CAMCTL_RD (1U << 3) /* CAM read op, auto cleared */ #define CAMCTL_WR (1U << 2) /* CAM write op, auto cleared */ #define VR_MIICFG 0x6c /* PHY number 4:0 */ #define VR_MIISR 0x6d /* MII status */ #define MIISR_MIDLE (1U << 7) /* not in auto polling */ #define VR_PHYSR0 0x6e /* PHY status 0 */ #define VR_MIICR 0x70 /* MII control */ #define MIICR_MAUTO (1U << 7) /* activate autopoll mode */ #define MIICR_RCMD (1U << 6) /* MII read operation */ #define MIICR_WCMD (1U << 5) /* MII write operation */ #define VR_MIIADR 0x71 /* MII indirect */ #define VR_MIIDATA 0x72 /* MII read/write */ #define FRAMESIZE 1536 #define NRXDESC 4 /* HW demands multiple of 4 */ struct local { struct tdesc txd; struct rdesc rxd[NRXDESC]; uint8_t rxstore[NRXDESC][FRAMESIZE]; unsigned csr, rx; unsigned phy, bmsr, anlpar; }; static void mii_autopoll(struct local *); static void mii_stoppoll(struct local *); static int mii_read(struct local *, int, int); static void mii_write(struct local *, int, int, int); static void mii_dealan(struct local *, unsigned); int vge_match(unsigned tag, void *data) { unsigned v; v = pcicfgread(tag, PCI_ID_REG); switch (v) { case PCI_DEVICE(0x1106, 0x3119): return 1; } return 0; } void * vge_init(unsigned tag, void *data) { unsigned val, i, fdx, loop; struct local *l; struct tdesc *txd; struct rdesc *rxd; uint8_t *en; l = ALLOC(struct local, 64); /* desc alignment */ memset(l, 0, sizeof(struct local)); l->csr = DEVTOV(pcicfgread(tag, 0x14)); /* use mem space */ val = CTL1_RESET; CSR_WRITE_1(l, VR_CTL1, val); do { val = CSR_READ_1(l, VR_CTL1); } while (val & CTL1_RESET); l->phy = CSR_READ_1(l, VR_MIICFG) & 0x1f; en = data; en[0] = CSR_READ_1(l, VR_PAR0); en[1] = CSR_READ_1(l, VR_PAR1); en[2] = CSR_READ_1(l, VR_PAR2); en[3] = CSR_READ_1(l, VR_PAR3); en[4] = CSR_READ_1(l, VR_PAR4); en[5] = CSR_READ_1(l, VR_PAR5); printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n", en[0], en[1], en[2], en[3], en[4], en[5]); DPRINTF(("PHY %d (%04x.%04x)\n", l->phy, mii_read(l, l->phy, 2), mii_read(l, l->phy, 3))); mii_dealan(l, 5); /* speed and duplexity can be seen in MII 28 */ val = mii_read(l, l->phy, 28); fdx = (val >> 5) & 01; switch ((val >> 3) & 03) { case 0: printf("10baseT"); break; case 1: printf("100baseTX"); break; case 2: printf("1000baseT"); break; } if (fdx) printf("-FDX"); printf("\n"); txd = &l->txd; rxd = &l->rxd[0]; for (i = 0; i < NRXDESC; i++) { rxd[i].r0 = htole32(R0_OWN); rxd[i].r1 = 0; rxd[i].r2 = htole32(VTOPHYS(l->rxstore[i])); rxd[i].r3 = htole32(FRAMESIZE << 16); } wbinv(l, sizeof(struct local)); l->rx = 0; /* set own station address into entry #0 */ CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_ADDR); CSR_WRITE_1(l, VR_CAMADR, CAM_EN | SADR_CAM | 0); for (i = 0; i < 6; i++) CSR_WRITE_1(l, VR_CAM0 + i, en[i]); CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_ADDR | CAMCTL_WR); loop = 20; while (--loop > 0 && (i = CSR_READ_1(l, VR_CAMCTL)) & CAMCTL_WR) DELAY(1); /* mark entry #0 valid, position 0 of 63:0 */ CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_VBIT); CSR_WRITE_1(l, VR_CAM0, 01); for (i = 1; i < 8; i++) CSR_WRITE_1(l, VR_CAM0 + i, 00); CSR_WRITE_1(l, VR_CAMADR, 0); CSR_WRITE_1(l, VR_CAMCTL, 0); /* prepare descriptor lists */ CSR_WRITE_4(l, VR_RDB, VTOPHYS(rxd)); CSR_WRITE_2(l, VR_RDCSIZE, NRXDESC - 1); CSR_WRITE_2(l, VR_RBRDU, NRXDESC - 1); CSR_WRITE_4(l, VR_TDB0, VTOPHYS(txd)); CSR_WRITE_2(l, VR_TDCSIZE, 0); /* enable transmitter and receiver */ CSR_WRITE_1(l, VR_RDCSR, 01); CSR_WRITE_1(l, VR_RDCSR, 04); CSR_WRITE_2(l, VR_TDCSR, 01); CSR_WRITE_1(l, VR_RCR, RCR_AP); CSR_WRITE_1(l, VR_TCR, 0); CSR_WRITE_1(l, VR_CTL0 + 0x4, CTL0_STOP); CSR_WRITE_1(l, VR_CTL0, CTL0_TXON | CTL0_RXON | CTL0_START); CSR_WRITE_4(l, VR_ISR, ~0); CSR_WRITE_4(l, VR_IEN, 0); return l; } int vge_send(void *dev, char *buf, unsigned len) { struct local *l = dev; volatile struct tdesc *txd; unsigned loop; len = (len & T_FLMASK); if (len < 60) len = 60; /* needs to stretch to ETHER_MIN_LEN - 4 */ wbinv(buf, len); txd = &l->txd; txd->tf[0].lo = htole32(VTOPHYS(buf)); txd->tf[0].hi = htole32(len << 16); txd->t1 = htole32(T1_SOF | T1_EOF | (2 << 28)); txd->t0 = htole32(T0_OWN | len << 16); wbinv(txd, sizeof(struct tdesc)); CSR_WRITE_2(l, VR_TDCSR, 04); loop = 100; do { if ((le32toh(txd->t0) & T0_OWN) == 0) goto done; DELAY(10); inv(txd, sizeof(struct tdesc)); } while (--loop > 0); printf("xmit failed\n"); return -1; done: return len; } int vge_recv(void *dev, char *buf, unsigned maxlen, unsigned timo) { struct local *l = dev; volatile struct rdesc *rxd; unsigned bound, rxstat, len; uint8_t *ptr; bound = 1000 * timo; printf("recving with %u sec. timeout\n", timo); again: rxd = &l->rxd[l->rx]; do { inv(rxd, sizeof(struct rdesc)); rxstat = le32toh(rxd->r0); if ((rxstat & R0_OWN) == 0) goto gotone; DELAY(1000); /* 1 milli second */ } while (--bound > 0); errno = 0; return -1; gotone: if ((rxstat & R0_RXOK) == 0) { rxd->r0 = htole32(R0_OWN); rxd->r1 = 0; wbinv(rxd, sizeof(struct rdesc)); l->rx ^= 1; goto again; } len = ((rxstat & R0_FLMASK) >> 16) - 4 /* HASFCS */; if (len > maxlen) len = maxlen; ptr = l->rxstore[l->rx]; inv(ptr, len); memcpy(buf, ptr, len); if ((l->rx & 03) == 3) { /* needs to set R0_OWN to 4 descriptors at a time */ rxd[00].r0 = htole32(R0_OWN); rxd[00].r1 = 0; rxd[-1].r0 = htole32(R0_OWN); rxd[-1].r1 = 0; rxd[-2].r0 = htole32(R0_OWN); rxd[-2].r1 = 0; rxd[-3].r0 = htole32(R0_OWN); rxd[-3].r1 = 0; wbinv(rxd, NRXDESC * sizeof(struct rdesc)); } l->rx = (l->rx + 1) & (NRXDESC - 1); return len; } static void mii_autopoll(struct local *l) { int v; CSR_WRITE_1(l, VR_MIICR, 0); CSR_WRITE_1(l, VR_MIIADR, 1U << 7); do { DELAY(1); v = CSR_READ_1(l, VR_MIISR); } while ((v & MIISR_MIDLE) == 0); CSR_WRITE_1(l, VR_MIICR, MIICR_MAUTO); do { DELAY(1); v = CSR_READ_1(l, VR_MIISR); } while ((v & MIISR_MIDLE) != 0); } static void mii_stoppoll(struct local *l) { int v; CSR_WRITE_1(l, VR_MIICR, 0); do { DELAY(1); v = CSR_READ_1(l, VR_MIISR); } while ((v & MIISR_MIDLE) == 0); } static int mii_read(struct local *l, int phy, int reg) { int v; mii_stoppoll(l); CSR_WRITE_1(l, VR_MIICFG, phy); CSR_WRITE_1(l, VR_MIIADR, reg); CSR_WRITE_1(l, VR_MIICR, MIICR_RCMD); do { v = CSR_READ_1(l, VR_MIICR); } while (v & MIICR_RCMD); v = CSR_READ_2(l, VR_MIIDATA); mii_autopoll(l); return v; } static void mii_write(struct local *l, int phy, int reg, int data) { int v; mii_stoppoll(l); CSR_WRITE_2(l, VR_MIIDATA, data); CSR_WRITE_1(l, VR_MIICFG, phy); CSR_WRITE_1(l, VR_MIIADR, reg); CSR_WRITE_1(l, VR_MIICR, MIICR_WCMD); do { v = CSR_READ_1(l, VR_MIICR); } while (v & MIICR_WCMD); mii_autopoll(l); } #define MII_BMCR 0x00 /* Basic mode control register (rw) */ #define BMCR_RESET 0x8000 /* reset */ #define BMCR_AUTOEN 0x1000 /* autonegotiation enable */ #define BMCR_ISO 0x0400 /* isolate */ #define BMCR_STARTNEG 0x0200 /* restart autonegotiation */ #define MII_BMSR 0x01 /* Basic mode status register (ro) */ #define BMSR_ACOMP 0x0020 /* Autonegotiation complete */ #define BMSR_LINK 0x0004 /* Link status */ #define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */ #define ANAR_FC 0x0400 /* local device supports PAUSE */ #define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */ #define ANAR_TX 0x0080 /* local device supports 100bTx */ #define ANAR_10_FD 0x0040 /* local device supports 10bT FD */ #define ANAR_10 0x0020 /* local device supports 10bT */ #define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */ #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */ #define MII_GTCR 0x09 /* 1000baseT control */ #define GANA_1000TFDX 0x0200 /* advertise 1000baseT FDX */ #define GANA_1000THDX 0x0100 /* advertise 1000baseT HDX */ #define MII_GTSR 0x0a /* 1000baseT status */ #define GLPA_1000TFDX 0x0800 /* link partner 1000baseT FDX capable */ #define GLPA_1000THDX 0x0400 /* link partner 1000baseT HDX capable */ #define GLPA_ASM_DIR 0x0200 /* link partner asym. pause dir. capable */ void mii_dealan(struct local *l, unsigned timo) { unsigned anar, gtcr, bound; anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA; anar |= ANAR_FC; gtcr = GANA_1000TFDX | GANA_1000THDX; mii_write(l, l->phy, MII_ANAR, anar); mii_write(l, l->phy, MII_GTCR, gtcr); mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); l->anlpar = 0; bound = getsecs() + timo; do { l->bmsr = mii_read(l, l->phy, MII_BMSR) | mii_read(l, l->phy, MII_BMSR); /* read twice */ if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) { l->anlpar = mii_read(l, l->phy, MII_ANLPAR); break; } DELAY(10 * 1000); } while (getsecs() < bound); return; }