/* $NetBSD: booke_pmap.c,v 1.26 2018/09/03 16:29:26 riastradh Exp $ */ /*- * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects * Agency and which was developed by Matt Thomas of 3am Software Foundry. * * This material is based upon work supported by the Defense Advanced Research * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under * Contract No. N66001-09-C-2073. * Approved for Public Release, Distribution Unlimited * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #define __PMAP_PRIVATE #include __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.26 2018/09/03 16:29:26 riastradh Exp $"); #include #include #include #include #include #include #if defined(MULTIPROCESSOR) kmutex_t pmap_tlb_miss_lock; #endif PMAP_COUNTER(zeroed_pages, "pages zeroed"); PMAP_COUNTER(copied_pages, "pages copied"); CTASSERT(sizeof(pmap_segtab_t) == NBPG); void pmap_procwr(struct proc *p, vaddr_t va, size_t len) { struct pmap * const pmap = p->p_vmspace->vm_map.pmap; vsize_t off = va & PAGE_SIZE; kpreempt_disable(); for (const vaddr_t eva = va + len; va < eva; off = 0) { const vaddr_t segeva = uimin(va + len, va - off + PAGE_SIZE); pt_entry_t * const ptep = pmap_pte_lookup(pmap, va); if (ptep == NULL) { va = segeva; continue; } pt_entry_t pt_entry = *ptep; if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) { va = segeva; continue; } kpreempt_enable(); dcache_wb(pte_to_paddr(pt_entry), segeva - va); icache_inv(pte_to_paddr(pt_entry), segeva - va); kpreempt_disable(); va = segeva; } kpreempt_enable(); } void pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc) { /* * If onproc is empty, we could do a * pmap_page_protect(pg, VM_PROT_NONE) and remove all * mappings of the page and clear its execness. Then * the next time page is faulted, it will get icache * synched. But this is easier. :) */ paddr_t pa = VM_PAGE_TO_PHYS(pg); dcache_wb_page(pa); icache_inv_page(pa); } vaddr_t pmap_md_direct_map_paddr(paddr_t pa) { return (vaddr_t) pa; } bool pmap_md_direct_mapped_vaddr_p(vaddr_t va) { return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va; } paddr_t pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va) { return (paddr_t) va; } #ifdef PMAP_MINIMALTLB static pt_entry_t * kvtopte(const pmap_segtab_t *stp, vaddr_t va) { pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT]; if (ptep == NULL) return NULL; return &ptep[(va & SEGOFSET) >> PAGE_SHIFT]; } vaddr_t pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry) { pmap_segtab_t * const stp = &pmap_kern_segtab; KASSERT(sva == trunc_page(sva)); pt_entry_t *ptep = kvtopte(stp, sva); for (; sva < eva; sva += NBPG) { *ptep++ = pt_entry ? (sva | pt_entry) : 0; } return sva; } #endif /* * Bootstrap the system enough to run with virtual memory. * firstaddr is the first unused kseg0 address (not page aligned). */ vaddr_t pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel, phys_ram_seg_t *avail, size_t cnt) { pmap_segtab_t * const stp = &pmap_kern_segtab; KASSERT(endkernel == trunc_page(endkernel)); /* init the lock */ pmap_tlb_info_init(&pmap_tlb0_info); #if defined(MULTIPROCESSOR) mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH); #endif /* * Compute the number of pages kmem_arena will have. */ kmeminit_nkmempages(); /* * Figure out how many PTE's are necessary to map the kernel. * We also reserve space for kmem_alloc_pageable() for vm_fork(). */ /* Get size of buffer cache and set an upper limit */ buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8); vsize_t bufsz = buf_memcalc(); buf_setvalimit(bufsz); vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE + (ubc_nwins << ubc_winshift) + bufsz + 16 * NCARGS + pager_map_size + maxproc * USPACE + NBPG * nkmempages) >> SEGSHIFT; /* * Initialize `FYI' variables. Note we're relying on * the fact that BSEARCH sorts the vm_physmem[] array * for us. Must do this before uvm_pageboot_alloc() * can be called. */ pmap_limits.avail_start = uvm_physseg_get_start(uvm_physseg_get_first()) << PGSHIFT; pmap_limits.avail_end = uvm_physseg_get_end(uvm_physseg_get_last()) << PGSHIFT; const size_t max_nsegtabs = (pmap_round_seg(VM_MAX_KERNEL_ADDRESS) - pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG; if (kv_nsegtabs >= max_nsegtabs) { pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS; kv_nsegtabs = max_nsegtabs; } else { pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS + kv_nsegtabs * NBSEG; } /* * Now actually allocate the kernel PTE array (must be done * after virtual_end is initialized). */ const vaddr_t kv_segtabs = avail[0].start; KASSERT(kv_segtabs == endkernel); KASSERT(avail[0].size >= NBPG * kv_nsegtabs); printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs); printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs); avail[0].start += NBPG * kv_nsegtabs; avail[0].size -= NBPG * kv_nsegtabs; endkernel += NBPG * kv_nsegtabs; /* * Initialize the kernel's two-level page level. This only wastes * an extra page for the segment table and allows the user/kernel * access to be common. */ pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT]; pt_entry_t *ptep = (void *)kv_segtabs; memset(ptep, 0, NBPG * kv_nsegtabs); for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) { *ptp++ = ptep; } #if PMAP_MINIMALTLB const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG; const vaddr_t dm_segtabs = avail[0].start; printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs); printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs); KASSERT(dm_segtabs == endkernel); KASSERT(avail[0].size >= NBPG * dm_nsegtabs); avail[0].start += NBPG * dm_nsegtabs; avail[0].size -= NBPG * dm_nsegtabs; endkernel += NBPG * dm_nsegtabs; ptp = stp->seg_tab; ptep = (void *)dm_segtabs; memset(ptep, 0, NBPG * dm_nsegtabs); for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) { *ptp = ptep; } /* */ extern uint32_t _fdata[], _etext[]; vaddr_t va; /* Now make everything before the kernel inaccessible. */ va = pmap_kvptefill(NBPG, startkernel, 0); /* Kernel text is readonly & executable */ va = pmap_kvptefill(va, round_page((vaddr_t)_etext), PTE_M | PTE_xR | PTE_xX); /* Kernel .rdata is readonly */ va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR); /* Kernel .data/.bss + page tables are read-write */ va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW); /* message buffer page table pages are read-write */ (void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE), PTE_M | PTE_xR | PTE_xW); #endif for (size_t i = 0; i < cnt; i++) { printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)", atop(avail[i].start), atop(avail[i].start + avail[i].size) - 1, atop(avail[i].start), atop(avail[i].start + avail[i].size) - 1, VM_FREELIST_DEFAULT); uvm_page_physload( atop(avail[i].start), atop(avail[i].start + avail[i].size) - 1, atop(avail[i].start), atop(avail[i].start + avail[i].size) - 1, VM_FREELIST_DEFAULT); } pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size); /* * Initialize the pools. */ pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl", &pool_allocator_nointr, IPL_NONE); pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl", &pmap_pv_page_allocator, IPL_NONE); tlb_set_asid(0); return endkernel; } struct vm_page * pmap_md_alloc_poolpage(int flags) { /* * Any managed page works for us. */ return uvm_pagealloc(NULL, 0, NULL, flags); } vaddr_t pmap_md_map_poolpage(paddr_t pa, vsize_t size) { const vaddr_t sva = (vaddr_t) pa; #ifdef PMAP_MINIMALTLB const vaddr_t eva = sva + size; pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW); #endif return sva; } void pmap_md_unmap_poolpage(vaddr_t va, vsize_t size) { #ifdef PMAP_MINIMALTLB struct pmap * const pm = pmap_kernel(); const vaddr_t eva = va + size; pmap_kvptefill(va, eva, 0); for (;va < eva; va += NBPG) { pmap_tlb_invalidate_addr(pm, va); } pmap_update(pm); #endif } void pmap_zero_page(paddr_t pa) { PMAP_COUNT(zeroed_pages); vaddr_t va = pmap_md_map_poolpage(pa, NBPG); dcache_zero_page(va); KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va)))); pmap_md_unmap_poolpage(va, NBPG); } void pmap_copy_page(paddr_t src, paddr_t dst) { const size_t line_size = curcpu()->ci_ci.dcache_line_size; vaddr_t src_va = pmap_md_map_poolpage(src, NBPG); vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG); const vaddr_t end = src_va + PAGE_SIZE; PMAP_COUNT(copied_pages); while (src_va < end) { __asm __volatile( "dcbt %2,%0" "\n\t" /* touch next src cacheline */ "dcba 0,%1" "\n\t" /* don't fetch dst cacheline */ :: "b"(src_va), "b"(dst_va), "b"(line_size)); for (u_int i = 0; i < line_size; src_va += 32, dst_va += 32, i += 32) { register_t tmp; __asm __volatile( "mr %[tmp],31" "\n\t" "lmw 24,0(%[src])" "\n\t" "stmw 24,0(%[dst])" "\n\t" "mr 31,%[tmp]" "\n\t" : [tmp] "=&r"(tmp) : [src] "b"(src_va), [dst] "b"(dst_va) : "r24", "r25", "r26", "r27", "r28", "r29", "r30", "memory"); } } pmap_md_unmap_poolpage(src_va, NBPG); pmap_md_unmap_poolpage(dst_va, NBPG); KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst)))); } void pmap_md_init(void) { /* nothing for now */ } bool pmap_md_io_vaddr_p(vaddr_t va) { return va >= pmap_limits.avail_end && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS); } bool pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte) { pmap_t pm = ctx; struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info); if (asid != pai->pai_asid) return true; const pt_entry_t * const ptep = pmap_pte_lookup(pm, va); KASSERT(ptep != NULL); pt_entry_t xpte = *ptep; xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1); xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED); KASSERTMSG(pte == xpte, "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)", pm, va, asid, pte, xpte, *ptep); return true; } #ifdef MULTIPROCESSOR void pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci) { /* nothing */ } void pmap_md_tlb_miss_lock_enter(void) { mutex_spin_enter(&pmap_tlb_miss_lock); } void pmap_md_tlb_miss_lock_exit(void) { mutex_spin_exit(&pmap_tlb_miss_lock); } #endif /* MULTIPROCESSOR */