/* $NetBSD: tlp.c,v 1.9 2010/01/19 15:28:52 tsutsui Exp $ */ /*- * Copyright (c) 2007 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Tohru Nishimura. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include "boot.h" /* * - little endian access for CSR register. * - assume KSEG0 on vtophys() translation. * - PIPT writeback cache aware. */ #define CSR_WRITE(l, r, v) \ do { \ *(volatile uint32_t *)((l)->csr + (r)) = (v); \ } while (0) #define CSR_READ(l, r) (*(volatile uint32_t *)((l)->csr + (r))) #define VTOPHYS(va) MIPS_KSEG0_TO_PHYS(va) #define wb(adr, siz) pdcache_wb((uint32_t)(adr), (u_int)(siz)) #define wbinv(adr, siz) pdcache_wbinv((uint32_t)(adr), (u_int)(siz)) #define inv(adr, siz) pdcache_inv((uint32_t)(adr), (u_int)(siz)) #define DELAY(n) delay(n) #define ALLOC(T, A) (T *)((uint32_t)alloc(sizeof(T) + (A)) & ~((A) - 1)) #define T0_OWN (1U<<31) /* desc is ready to tx */ #define T0_ES (1U<<15) /* Tx error summary */ #define T1_LS (1U<<30) /* last segment */ #define T1_FS (1U<<29) /* first segment */ #define T1_SET (1U<<27) /* "setup packet" */ #define T1_TER (1U<<25) /* end of ring mark */ #define T1_TCH (1U<<24) /* Second address chained */ #define T1_TBS_MASK 0x7ff /* segment size 10:0 */ #define R0_OWN (1U<<31) /* desc is empty */ #define R0_FS (1U<<30) /* first desc of frame */ #define R0_LS (1U<<8) /* last desc of frame */ #define R0_ES (1U<<15) /* Rx error summary */ #define R1_RCH (1U<<24) /* Second address chained */ #define R1_RER (1U<<25) /* end of ring mark */ #define R0_FL_MASK 0x3fff0000 /* frame length 29:16 */ #define R1_RBS_MASK 0x7ff /* segment size 10:0 */ #define DESCSIZE 16 struct desc { volatile uint32_t xd0, xd1, xd2, xd3; #if CACHELINESIZE > DESCSIZE uint8_t pad[CACHELINESIZE - DESCSIZE]; #endif }; #define TLP_BMR 0x00 /* 0: bus mode */ #define BMR_RST (1U<< 0) /* software reset */ #define BMR_BAR (1U<< 1) /* bus arbitration */ #define BMR_PBL8 (1U<<11) /* burst length 8 longword */ #define BMR_CAL8 (1U<<13) /* cache alignment 8 longword */ #define TLP_TPD 0x08 /* 1: instruct Tx to start */ #define TPD_POLL (1U<< 0) /* transmit poll demand */ #define TLP_RPD 0x10 /* 2: instruct Rx to start */ #define RPD_POLL (1U<< 0) /* receive poll demand */ #define TLP_RRBA 0x18 /* 3: Rx descriptor base */ #define TLP_TRBA 0x20 /* 4: Tx descriptor base */ #define TLP_STS 0x28 /* 5: status */ #define STS_TS 0x00700000 /* Tx status */ #define STS_RS 0x000e0000 /* Rx status */ #define TLP_OMR 0x30 /* 6: operation mode */ #define OMR_SDP (1U<<25) /* always ON */ #define OMR_PS (1U<<18) /* port select */ #define OMR_PM (1U<< 6) /* promicuous */ #define OMR_TEN (1U<<13) /* instruct start/stop Tx */ #define OMR_REN (1U<< 1) /* instruct start/stop Rx */ #define OMR_FD (1U<< 9) /* FDX */ #define TLP_IEN 0x38 /* 7: interrupt enable mask */ #define TLP_APROM 0x48 /* 9: SEEPROM and MII management */ #define SROM_RD (1U <<14) /* read operation */ #define SROM_WR (1U <<13) /* write openration */ #define SROM_SR (1U <<11) /* SEEPROM select */ #define TLP_CSR12 0x60 /* SIA status */ #define TLP_CSR13 0x68 /* SIA connectivity register */ #define SIACONN_10BT 0x0000ef01 /* 10BASE-T for 21041 */ #define TLP_CSR14 0x70 /* SIA TX RX register */ #define SIATXRX_10BT 0x0000ffff /* 10BASE-T for 21041 pass 2 */ #define TLP_CSR15 0x78 /* SIA general register */ #define SIAGEN_MD0 (1U<<16) #define SIAGEN_CWE (1U<<28) #define SIAGEN_10BT 0x00000000 /* 10BASE-T for 21041 */ #define TLP_SETUP_NADDR 16 #define TLP_SETUPLEN 192 /* 16 * 3 * sizeof(uint32_t) */ #define FRAMESIZE 1536 #define BUFSIZE 2048 #define NTXBUF 2 #define NEXT_TXBUF(x) (((x) + 1) & (NTXBUF - 1)) #define NRXBUF 2 #define NEXT_RXBUF(x) (((x) + 1) & (NRXBUF - 1)) struct local { struct desc txd[NTXBUF]; struct desc rxd[NRXBUF]; uint8_t txstore[TLP_SETUPLEN]; uint8_t rxstore[NRXBUF][BUFSIZE]; uint32_t csr, omr; u_int tx; u_int rx; u_int sromsft; u_int phy; uint32_t bmsr, anlpar; }; #define COBALT_TLP0_BASE 0x10100000 #define SROM_MAC_OFFSET 0 static void size_srom(struct local *); static u_int read_srom(struct local *, int); #if 0 static u_int tlp_mii_read(struct local *, int, int); static void tlp_mii_write(struct local *, int, int, int); static void mii_initphy(struct local *); #endif void * tlp_init(void *cookie) { uint32_t val, tag; struct local *l; struct desc *txd, *rxd; uint8_t *en, *p; int i; int is21041; if (cobalt_id == COBALT_ID_QUBE2700) is21041 = 1; else is21041 = 0; l = ALLOC(struct local, CACHELINESIZE); memset(l, 0, sizeof(struct local)); DPRINTF(("tlp: l = %p, txd[0] = %p, txd[1] = %p\n", l, &l->txd[0], &l->txd[1])); DPRINTF(("tlp: rxd[0] = %p, rxd[1] = %p\n", &l->rxd[0], &l->rxd[1])); DPRINTF(("tlp: txstore = %p, rxstore[0] = %p, rxstore[1] = %p\n", l->txstore, l->rxstore[0], l->rxstore[1])); #if 1 /* XXX assume tlp0 at pci0 dev 7 function 0 */ tag = (0 << 16) | ( 7 << 11) | (0 << 8); /* memory map is not initialized by the firmware on cobalt */ l->csr = MIPS_PHYS_TO_KSEG1(pcicfgread(tag, 0x10) & ~3U); DPRINTF(("%s: CSR = 0x%x\n", __func__, l->csr)); #else l->csr = MIPS_PHYS_TO_KSEG1(COBALT_TLP0_BASE); #endif val = CSR_READ(l, TLP_BMR); CSR_WRITE(l, TLP_BMR, val | BMR_RST); DELAY(1000); CSR_WRITE(l, TLP_BMR, val); DELAY(1000); (void)CSR_READ(l, TLP_BMR); if (is21041) { /* reset SIA for 10BASE-T */ CSR_WRITE(l, TLP_CSR13, 0); DELAY(1000); CSR_WRITE(l, TLP_CSR15, SIAGEN_10BT); CSR_WRITE(l, TLP_CSR14, SIATXRX_10BT); CSR_WRITE(l, TLP_CSR13, SIACONN_10BT); } else { /* reset PHY (cobalt quirk from if_tlp_pci.c) */ CSR_WRITE(l, TLP_CSR15, SIAGEN_CWE | SIAGEN_MD0); DELAY(10); CSR_WRITE(l, TLP_CSR15, SIAGEN_CWE); DELAY(10); } l->omr = OMR_PS | OMR_SDP; CSR_WRITE(l, TLP_OMR, l->omr); CSR_WRITE(l, TLP_IEN, 0); CSR_WRITE(l, TLP_STS, ~0); #if 0 mii_initphy(l); #endif size_srom(l); en = cookie; /* MAC address is stored at offset 0 in SROM on cobalt */ val = read_srom(l, SROM_MAC_OFFSET / 2 + 0); en[0] = val; en[1] = val >> 8; val = read_srom(l, SROM_MAC_OFFSET / 2 + 1); en[2] = val; en[3] = val >> 8; val = read_srom(l, SROM_MAC_OFFSET / 2 + 2); en[4] = val; en[5] = val >> 8; DPRINTF(("tlp: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n", en[0], en[1], en[2], en[3], en[4], en[5])); rxd = &l->rxd[0]; for (i = 0; i < NRXBUF; i++) { rxd[i].xd3 = htole32(VTOPHYS(&rxd[NEXT_RXBUF(i)])); rxd[i].xd2 = htole32(VTOPHYS(l->rxstore[i])); rxd[i].xd1 = htole32(R1_RCH|FRAMESIZE); rxd[i].xd0 = htole32(R0_OWN); } txd = &l->txd[0]; for (i = 0; i < NTXBUF; i++) { txd[i].xd3 = htole32(VTOPHYS(&txd[NEXT_TXBUF(i)])); txd[i].xd0 = htole32(0); } /* prepare setup packet */ p = l->txstore; memset(p, 0, TLP_SETUPLEN); /* put broadcast first */ p[0] = p[1] = p[4] = p[5] = p[8] = p[9] = 0xff; for (i = 1; i < TLP_SETUP_NADDR; i++) { /* put own station address to the rest */ p[i * 12 + 0] = en[0]; p[i * 12 + 1] = en[1]; p[i * 12 + 4] = en[2]; p[i * 12 + 5] = en[3]; p[i * 12 + 8] = en[4]; p[i * 12 + 9] = en[5]; } txd = &l->txd[0]; txd->xd2 = htole32(VTOPHYS(l->txstore)); txd->xd1 = htole32(T1_SET | T1_TCH | TLP_SETUPLEN); txd->xd0 = htole32(T0_OWN); /* make sure the entire descriptors transfered to memory */ wbinv(l, sizeof(struct local)); CSR_WRITE(l, TLP_RRBA, VTOPHYS(rxd)); CSR_WRITE(l, TLP_TRBA, VTOPHYS(txd)); l->tx = NEXT_TXBUF(0); l->rx = 0; l->omr |= OMR_TEN | OMR_REN; if (!is21041) l->omr |= OMR_FD; /* enable Tx/Rx */ CSR_WRITE(l, TLP_OMR, l->omr); /* start TX and send setup packet */ CSR_WRITE(l, TLP_TPD, TPD_POLL); DELAY(50000); /* start RX */ CSR_WRITE(l, TLP_RPD, RPD_POLL); return l; } int tlp_send(void *dev, char *buf, u_int len) { struct local *l = dev; struct desc *txd; u_int loop; wb(buf, len); txd = &l->txd[l->tx]; txd->xd2 = htole32(VTOPHYS(buf)); txd->xd1 = htole32(T1_FS | T1_LS | T1_TCH | (len & T1_TBS_MASK)); txd->xd0 = htole32(T0_OWN); wbinv(txd, sizeof(struct desc)); CSR_WRITE(l, TLP_TPD, TPD_POLL); l->tx = NEXT_TXBUF(l->tx); loop = 100; do { if ((le32toh(txd->xd0) & T0_OWN) == 0) goto done; inv(txd, sizeof(struct desc)); DELAY(10); } while (--loop > 0); printf("xmit failed\n"); return -1; done: return len; } int tlp_recv(void *dev, char *buf, u_int maxlen, u_int timo) { struct local *l = dev; struct desc *rxd; u_int bound, len; uint32_t rxstat; uint8_t *ptr; bound = timo * 1000000; again: rxd = &l->rxd[l->rx]; do { rxstat = le32toh(rxd->xd0); inv(rxd, sizeof(struct desc)); if ((rxstat & R0_OWN) == 0) goto gotone; DELAY(1); } while (--bound > 0); errno = 0; CSR_WRITE(l, TLP_RPD, RPD_POLL); return -1; gotone: if (rxstat & R0_ES) { rxd->xd0 = htole32(R0_OWN); wbinv(rxd, sizeof(struct desc)); l->rx = NEXT_RXBUF(l->rx); CSR_WRITE(l, TLP_RPD, RPD_POLL); goto again; } /* good frame */ len = ((rxstat & R0_FL_MASK) >> 16) - 4; /* HASFCS */ if (len > maxlen) len = maxlen; ptr = l->rxstore[l->rx]; memcpy(buf, ptr, len); inv(ptr, FRAMESIZE); rxd->xd0 = htole32(R0_OWN); wbinv(rxd, sizeof(struct desc)); l->rx = NEXT_RXBUF(l->rx); CSR_WRITE(l, TLP_OMR, l->omr); /* necessary? */ return len; } static void size_srom(struct local *l) { /* determine 8/6 bit addressing SEEPROM */ l->sromsft = 8; l->sromsft = (read_srom(l, 255) & 0x40000) ? 8 : 6; } /* * bare SEEPROM access with bitbang'ing */ #define R110 6 /* SEEPROM read op */ #define CS (1U << 0) /* hold chip select */ #define CLK (1U << 1) /* clk bit */ #define D1 (1U << 2) /* bit existence */ #define D0 0 /* bit absence */ #define VV (1U << 3) /* taken 0/1 from SEEPROM */ static u_int read_srom(struct local *l, int off) { u_int idx, cnt, ret; uint32_t val, x1, x0, bit; idx = off & 0xff; /* A7-A0 */ idx |= R110 << l->sromsft; /* 110 for READ */ val = SROM_RD | SROM_SR; CSR_WRITE(l, TLP_APROM, val); val |= CS; /* hold CS */ CSR_WRITE(l, TLP_APROM, val); x1 = val | D1; /* 1 */ x0 = val | D0; /* 0 */ /* instruct R110 op. at off in MSB first order */ for (cnt = (1 << (l->sromsft + 2)); cnt > 0; cnt >>= 1) { bit = (idx & cnt) ? x1 : x0; CSR_WRITE(l, TLP_APROM, bit); DELAY(10); CSR_WRITE(l, TLP_APROM, bit | CLK); DELAY(10); } /* read 16bit quantity in MSB first order */ ret = 0; for (cnt = 16; cnt > 0; cnt--) { CSR_WRITE(l, TLP_APROM, val); DELAY(10); CSR_WRITE(l, TLP_APROM, val | CLK); DELAY(10); ret = (ret << 1) | !!(CSR_READ(l, TLP_APROM) & VV); } val &= ~CS; /* turn off chip select */ CSR_WRITE(l, TLP_APROM, val); return ret; } #if 0 static u_int tlp_mii_read(struct local *l, int phy, int reg) { /* later ... */ return 0; } static void tlp_mii_write(struct local *l, int phy, int reg, int val) { /* later ... */ } #define MII_BMCR 0x00 /* Basic mode control register (rw) */ #define BMCR_RESET 0x8000 /* reset */ #define BMCR_AUTOEN 0x1000 /* autonegotiation enable */ #define BMCR_ISO 0x0400 /* isolate */ #define BMCR_STARTNEG 0x0200 /* restart autonegotiation */ #define MII_BMSR 0x01 /* Basic mode status register (ro) */ static void mii_initphy(struct local *l) { int phy, bound; uint32_t ctl, sts; for (phy = 0; phy < 32; phy++) { ctl = tlp_mii_read(l, phy, MII_BMCR); sts = tlp_mii_read(l, phy, MII_BMSR); if (ctl != 0xffff && sts != 0xffff) goto found; } printf("MII: no PHY found\n"); return; found: ctl = tlp_mii_read(l, phy, MII_BMCR); tlp_mii_write(l, phy, MII_BMCR, ctl | BMCR_RESET); bound = 100; do { DELAY(10); ctl = tlp_mii_read(l, phy, MII_BMCR); if (ctl == 0xffff) { printf("MII: PHY %d has died after reset\n", phy); return; } } while (bound-- > 0 && (ctl & BMCR_RESET)); if (bound == 0) { printf("PHY %d reset failed\n", phy); } ctl &= ~BMCR_ISO; tlp_mii_write(l, phy, MII_BMCR, ctl); sts = tlp_mii_read(l, phy, MII_BMSR) | tlp_mii_read(l, phy, MII_BMSR); /* read twice */ l->phy = phy; l->bmsr = sts; } static void mii_dealan(struct local *, u_int timo) { uint32_t anar; u_int bound; anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA; tlp_mii_write(l, l->phy, MII_ANAR, anar); tlp_mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); l->anlpar = 0; bound = getsecs() + timo; do { l->bmsr = tlp_mii_read(l, l->phy, MII_BMSR) | tlp_mii_read(l, l->phy, MII_BMSR); /* read twice */ if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) { l->anlpar = tlp_mii_read(l, l->phy, MII_ANLPAR); break; } DELAY(10 * 1000); } while (getsecs() < bound); return; } #endif