/* cpufunc.h,v 1.40.22.4 2007/11/08 10:59:33 matt Exp */ /* * Copyright (c) 1997 Mark Brinicombe. * Copyright (c) 1997 Causality Limited * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Causality Limited. * 4. The name of Causality Limited may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY CAUSALITY LIMITED ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL CAUSALITY LIMITED BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * cpufunc.h * * Prototypes for cpu, mmu and tlb related functions. */ #ifndef _ARM_CPUFUNC_H_ #define _ARM_CPUFUNC_H_ #ifdef __arm__ #ifdef _KERNEL #include #include #include #include struct cpu_functions { /* CPU functions */ u_int (*cf_id) (void); void (*cf_cpwait) (void); /* MMU functions */ u_int (*cf_control) (u_int, u_int); void (*cf_domains) (u_int); #if defined(ARM_MMU_EXTENDED) void (*cf_setttb) (u_int, tlb_asid_t); #else void (*cf_setttb) (u_int, bool); #endif u_int (*cf_faultstatus) (void); u_int (*cf_faultaddress) (void); /* TLB functions */ void (*cf_tlb_flushID) (void); void (*cf_tlb_flushID_SE) (vaddr_t); void (*cf_tlb_flushI) (void); void (*cf_tlb_flushI_SE) (vaddr_t); void (*cf_tlb_flushD) (void); void (*cf_tlb_flushD_SE) (vaddr_t); /* * Cache operations: * * We define the following primitives: * * icache_sync_all Synchronize I-cache * icache_sync_range Synchronize I-cache range * * dcache_wbinv_all Write-back and Invalidate D-cache * dcache_wbinv_range Write-back and Invalidate D-cache range * dcache_inv_range Invalidate D-cache range * dcache_wb_range Write-back D-cache range * * idcache_wbinv_all Write-back and Invalidate D-cache, * Invalidate I-cache * idcache_wbinv_range Write-back and Invalidate D-cache, * Invalidate I-cache range * * Note that the ARM term for "write-back" is "clean". We use * the term "write-back" since it's a more common way to describe * the operation. * * There are some rules that must be followed: * * I-cache Synch (all or range): * The goal is to synchronize the instruction stream, * so you may beed to write-back dirty D-cache blocks * first. If a range is requested, and you can't * synchronize just a range, you have to hit the whole * thing. * * D-cache Write-Back and Invalidate range: * If you can't WB-Inv a range, you must WB-Inv the * entire D-cache. * * D-cache Invalidate: * If you can't Inv the D-cache, you must Write-Back * and Invalidate. Code that uses this operation * MUST NOT assume that the D-cache will not be written * back to memory. * * D-cache Write-Back: * If you can't Write-back without doing an Inv, * that's fine. Then treat this as a WB-Inv. * Skipping the invalidate is merely an optimization. * * All operations: * Valid virtual addresses must be passed to each * cache operation. */ void (*cf_icache_sync_all) (void); void (*cf_icache_sync_range) (vaddr_t, vsize_t); void (*cf_dcache_wbinv_all) (void); void (*cf_dcache_wbinv_range)(vaddr_t, vsize_t); void (*cf_dcache_inv_range) (vaddr_t, vsize_t); void (*cf_dcache_wb_range) (vaddr_t, vsize_t); void (*cf_sdcache_wbinv_range)(vaddr_t, paddr_t, psize_t); void (*cf_sdcache_inv_range) (vaddr_t, paddr_t, psize_t); void (*cf_sdcache_wb_range) (vaddr_t, paddr_t, psize_t); void (*cf_idcache_wbinv_all) (void); void (*cf_idcache_wbinv_range)(vaddr_t, vsize_t); /* Other functions */ void (*cf_flush_prefetchbuf) (void); void (*cf_drain_writebuf) (void); void (*cf_flush_brnchtgt_C) (void); void (*cf_flush_brnchtgt_E) (u_int); void (*cf_sleep) (int mode); /* Soft functions */ int (*cf_dataabt_fixup) (void *); int (*cf_prefetchabt_fixup) (void *); #if defined(ARM_MMU_EXTENDED) void (*cf_context_switch) (u_int, tlb_asid_t); #else void (*cf_context_switch) (u_int); #endif void (*cf_setup) (char *); }; extern struct cpu_functions cpufuncs; extern u_int cputype; #define cpu_idnum() cpufuncs.cf_id() #define cpu_control(c, e) cpufuncs.cf_control(c, e) #define cpu_domains(d) cpufuncs.cf_domains(d) #define cpu_setttb(t, f) cpufuncs.cf_setttb(t, f) #define cpu_faultstatus() cpufuncs.cf_faultstatus() #define cpu_faultaddress() cpufuncs.cf_faultaddress() #define cpu_tlb_flushID() cpufuncs.cf_tlb_flushID() #define cpu_tlb_flushID_SE(e) cpufuncs.cf_tlb_flushID_SE(e) #define cpu_tlb_flushI() cpufuncs.cf_tlb_flushI() #define cpu_tlb_flushI_SE(e) cpufuncs.cf_tlb_flushI_SE(e) #define cpu_tlb_flushD() cpufuncs.cf_tlb_flushD() #define cpu_tlb_flushD_SE(e) cpufuncs.cf_tlb_flushD_SE(e) #define cpu_icache_sync_all() cpufuncs.cf_icache_sync_all() #define cpu_icache_sync_range(a, s) cpufuncs.cf_icache_sync_range((a), (s)) #define cpu_dcache_wbinv_all() cpufuncs.cf_dcache_wbinv_all() #define cpu_dcache_wbinv_range(a, s) cpufuncs.cf_dcache_wbinv_range((a), (s)) #define cpu_dcache_inv_range(a, s) cpufuncs.cf_dcache_inv_range((a), (s)) #define cpu_dcache_wb_range(a, s) cpufuncs.cf_dcache_wb_range((a), (s)) #define cpu_sdcache_wbinv_range(a, b, s) cpufuncs.cf_sdcache_wbinv_range((a), (b), (s)) #define cpu_sdcache_inv_range(a, b, s) cpufuncs.cf_sdcache_inv_range((a), (b), (s)) #define cpu_sdcache_wb_range(a, b, s) cpufuncs.cf_sdcache_wb_range((a), (b), (s)) #define cpu_idcache_wbinv_all() cpufuncs.cf_idcache_wbinv_all() #define cpu_idcache_wbinv_range(a, s) cpufuncs.cf_idcache_wbinv_range((a), (s)) #define cpu_flush_prefetchbuf() cpufuncs.cf_flush_prefetchbuf() #define cpu_drain_writebuf() cpufuncs.cf_drain_writebuf() #define cpu_flush_brnchtgt_C() cpufuncs.cf_flush_brnchtgt_C() #define cpu_flush_brnchtgt_E(e) cpufuncs.cf_flush_brnchtgt_E(e) #define cpu_sleep(m) cpufuncs.cf_sleep(m) #define cpu_dataabt_fixup(a) cpufuncs.cf_dataabt_fixup(a) #define cpu_prefetchabt_fixup(a) cpufuncs.cf_prefetchabt_fixup(a) #define ABORT_FIXUP_OK 0 /* fixup succeeded */ #define ABORT_FIXUP_FAILED 1 /* fixup failed */ #define ABORT_FIXUP_RETURN 2 /* abort handler should return */ #define cpu_context_switch(a) cpufuncs.cf_context_switch(a) #define cpu_setup(a) cpufuncs.cf_setup(a) int set_cpufuncs (void); int set_cpufuncs_id (u_int); #define ARCHITECTURE_NOT_PRESENT 1 /* known but not configured */ #define ARCHITECTURE_NOT_SUPPORTED 2 /* not known */ void cpufunc_nullop (void); int cpufunc_null_fixup (void *); int early_abort_fixup (void *); int late_abort_fixup (void *); u_int cpufunc_id (void); u_int cpufunc_control (u_int, u_int); void cpufunc_domains (u_int); u_int cpufunc_faultstatus (void); u_int cpufunc_faultaddress (void); #define setttb cpu_setttb #define drain_writebuf cpu_drain_writebuf #if defined(CPU_XSCALE) #define cpu_cpwait() cpufuncs.cf_cpwait() #endif #ifndef cpu_cpwait #define cpu_cpwait() #endif /* * Macros for manipulating CPU interrupts */ static __inline uint32_t __set_cpsr_c(uint32_t bic, uint32_t eor) __attribute__((__unused__)); static __inline uint32_t disable_interrupts(uint32_t mask) __attribute__((__unused__)); static __inline uint32_t enable_interrupts(uint32_t mask) __attribute__((__unused__)); static __inline uint32_t __set_cpsr_c(uint32_t bic, uint32_t eor) { uint32_t tmp, ret; __asm volatile( "mrs %0, cpsr\n" /* Get the CPSR */ "bic %1, %0, %2\n" /* Clear bits */ "eor %1, %1, %3\n" /* XOR bits */ "msr cpsr_c, %1\n" /* Set the control field of CPSR */ : "=&r" (ret), "=&r" (tmp) : "r" (bic), "r" (eor) : "memory"); return ret; } static __inline uint32_t disable_interrupts(uint32_t mask) { uint32_t tmp, ret; mask &= (I32_bit | F32_bit); __asm volatile( "mrs %0, cpsr\n" /* Get the CPSR */ "orr %1, %0, %2\n" /* set bits */ "msr cpsr_c, %1\n" /* Set the control field of CPSR */ : "=&r" (ret), "=&r" (tmp) : "r" (mask) : "memory"); return ret; } static __inline uint32_t enable_interrupts(uint32_t mask) { uint32_t ret; mask &= (I32_bit | F32_bit); /* Get the CPSR */ __asm __volatile("mrs\t%0, cpsr\n" : "=r"(ret)); #ifdef _ARM_ARCH_6 if (__builtin_constant_p(mask)) { switch (mask) { case I32_bit | F32_bit: __asm __volatile("cpsie\tif"); break; case I32_bit: __asm __volatile("cpsie\ti"); break; case F32_bit: __asm __volatile("cpsie\tf"); break; default: break; } return ret; } #endif /* _ARM_ARCH_6 */ /* Set the control field of CPSR */ __asm volatile("msr\tcpsr_c, %0" :: "r"(ret & ~mask)); return ret; } #define restore_interrupts(old_cpsr) \ (__set_cpsr_c((I32_bit | F32_bit), (old_cpsr) & (I32_bit | F32_bit))) static inline void cpsie(register_t psw) __attribute__((__unused__)); static inline register_t cpsid(register_t psw) __attribute__((__unused__)); static inline void cpsie(register_t psw) { #ifdef _ARM_ARCH_6 if (!__builtin_constant_p(psw)) { enable_interrupts(psw); return; } switch (psw & (I32_bit|F32_bit)) { case I32_bit: __asm("cpsie\ti"); break; case F32_bit: __asm("cpsie\tf"); break; case I32_bit|F32_bit: __asm("cpsie\tif"); break; } #else enable_interrupts(psw); #endif } static inline register_t cpsid(register_t psw) { #ifdef _ARM_ARCH_6 register_t oldpsw; if (!__builtin_constant_p(psw)) return disable_interrupts(psw); __asm("mrs %0, cpsr" : "=r"(oldpsw)); switch (psw & (I32_bit|F32_bit)) { case I32_bit: __asm("cpsid\ti"); break; case F32_bit: __asm("cpsid\tf"); break; case I32_bit|F32_bit: __asm("cpsid\tif"); break; } return oldpsw; #else return disable_interrupts(psw); #endif } /* Functions to manipulate the CPSR. */ u_int SetCPSR(u_int, u_int); u_int GetCPSR(void); /* * CPU functions from locore.S */ void cpu_reset (void) __dead; /* * Cache info variables. */ #define CACHE_TYPE_VIVT 0 #define CACHE_TYPE_xxPT 1 #define CACHE_TYPE_VIPT 1 #define CACHE_TYPE_PIxx 2 #define CACHE_TYPE_PIPT 3 /* PRIMARY CACHE VARIABLES */ struct arm_cache_info { u_int icache_size; u_int icache_line_size; u_int icache_ways; u_int icache_way_size; u_int icache_sets; u_int dcache_size; u_int dcache_line_size; u_int dcache_ways; u_int dcache_way_size; u_int dcache_sets; uint8_t cache_type; bool cache_unified; uint8_t icache_type; uint8_t dcache_type; }; #if (ARM_MMU_V6 + ARM_MMU_V7) != 0 extern u_int arm_cache_prefer_mask; #endif extern u_int arm_dcache_align; extern u_int arm_dcache_align_mask; extern struct arm_cache_info arm_pcache; extern struct arm_cache_info arm_scache; extern uint32_t cpu_ttb; #endif /* _KERNEL */ #if defined(_KERNEL) || defined(_KMEMUSER) /* * Miscellany */ int get_pc_str_offset (void); bool cpu_gtmr_exists_p(void); u_int cpu_clusterid(void); bool cpu_earlydevice_va_p(void); /* * Functions to manipulate cpu r13 * (in arm/arm32/setstack.S) */ void set_stackptr (u_int, u_int); u_int get_stackptr (u_int); #endif /* _KERNEL || _KMEMUSER */ #elif defined(__aarch64__) #include #endif /* __arm__/__aarch64__ */ #endif /* _ARM_CPUFUNC_H_ */ /* End of cpufunc.h */