/* $NetBSD: algor.cc,v 1.5 2012/02/29 23:39:53 joerg Exp $ */ /*- * Copyright (c) 2003 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Christos Zoulas. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * algor.C: Computer algorithm */ #include "defs.h" RCSID("$NetBSD: algor.cc,v 1.5 2012/02/29 23:39:53 joerg Exp $") #include "algor.h" #include "board.h" #include "box.h" #include "random.h" ALGOR::ALGOR(const char c) : PLAYER(c) { #ifdef notyet // Single Edges = (x + y) * 2 _edge1 = (_b.nx() * _b.ny()) * 2; // Shared Edges = (x * (y - 1)) + ((x - 1) * y) _edge2 = (_b.nx() * (_b.ny() - 1)) + ((_b.nx() - 1) * _b.ny()); // Maximum Edges filled before closure = x * y * 2 _maxedge = _b.nx() * _b.ny() * 2; #endif } // Find the first closure, i.e. a box that has 3 edges int ALGOR::find_closure(size_t& y, size_t& x, int& dir, BOARD& b) { RANDOM rdy(b.ny()), rdx(b.nx()); for (y = rdy(); y < b.ny(); y = rdy()) { rdx.clear(); for (x = rdx(); x < b.nx(); x = rdx()) { BOX box(y, x, b); if (box.count() == 3) { for (dir = BOX::first; dir < BOX::last; dir++) if (!box.isset(dir)) return 1; b.abort("find_closure: 3 sided box[%zu,%zu] has no free sides", y, x); } } } return 0; } #if 0 size_t ALGOR::find_single() { size_t ne; // Find the number of single edges in use for (size_t x = 0; x < b.nx(); x++) { BOX tbox(0, x, b); ne += tbox.isset(BOX::top); BOX bbox(b.ny() - 1, x, b); ne += bbox.isset(BOX::bottom); } for (size_t y = 0; y < _b.ny(); y++) { BOX lbox(y, 0, b); ne += lbox.isset(BOX::left); BOX rbox(y,_b.nx() - 1, b); ne += rbox.isset(BOX::right); } return ne; } #endif // Count a closure, by counting all boxes that we can close in the current // move size_t ALGOR::count_closure(size_t& y, size_t& x, int& dir, BOARD& b) { size_t i = 0; size_t tx, ty; int tdir, mv; while (find_closure(ty, tx, tdir, b)) { if (i == 0) { // Mark the beginning of the closure x = tx; y = ty; dir = tdir; } if ((mv = b.domove(ty, tx, tdir, getWho())) == -1) b.abort("count_closure: Invalid move (%zu, %zu, %d)", y, x, dir); else i += mv; } return i; } /* * Find the largest closure, by closing all possible closures. * return the number of boxes closed in the maximum closure, * and the first box of the maximum closure in (x, y, dir) */ size_t ALGOR::find_max_closure(size_t& y, size_t& x, int& dir, const BOARD& b) { BOARD nb(b); int maxdir = -1; size_t nbox, maxbox = 0; size_t maxx = ~0, maxy = ~0; size_t tx = 0, ty = 0; /* XXX: GCC */ int tdir = 0; /* XXX: GCC */ while ((nbox = count_closure(ty, tx, tdir, nb)) != 0) if (nbox > maxbox) { // This closure is better, update max maxbox = nbox; maxx = tx; maxy = ty; maxdir = tdir; } // Return the max found y = maxy; x = maxx; dir = maxdir; return maxbox; } // Find if a turn does not result in a capture on the given box // and return the direction if found. int ALGOR::try_good_turn(BOX& box, size_t y, size_t x, int& dir, BOARD& b) { // Sanity check; we must have a good box if (box.count() >= 2) b.abort("try_good_turn: box[%zu,%zu] has more than 2 sides occupied", y, x); // Make sure we don't make a closure in an adjacent box. // We use a random direction to randomize the game RANDOM rd(BOX::last); for (dir = rd(); dir < BOX::last; dir = rd()) if (!box.isset(dir)) { size_t by = y + BOX::edges[dir].y; size_t bx = x + BOX::edges[dir].x; if (!b.bounds(by, bx)) return 1; BOX nbox(by, bx, b); if (nbox.count() < 2) return 1; } return 0; } // Try to find a turn that does not result in an opponent closure, and // return it in (x, y, dir); if not found return 0. int ALGOR::find_good_turn(size_t& y, size_t& x, int& dir, const BOARD& b) { BOARD nb(b); RANDOM rdy(b.ny()), rdx(b.nx()); for (y = rdy(); y < b.ny(); y = rdy()) { rdx.clear(); for (x = rdx(); x < b.nx(); x = rdx()) { BOX box(y, x, nb); if (box.count() < 2 && try_good_turn(box, y, x, dir, nb)) return 1; } } return 0; } // On a box with 2 edges, return the first or the last free edge, depending // on the order specified int ALGOR::try_bad_turn(BOX& box, size_t& y, size_t& x, int& dir, BOARD& b, int last) { if (4 - box.count() <= last) b.abort("try_bad_turn: Called at [%zu,%zu] for %d with %d", y, x, last, box.count()); for (dir = BOX::first; dir < BOX::last; dir++) if (!box.isset(dir)) { if (!last) return 1; else last--; } return 0; } // Find a box that has 2 edges and return the first free edge of that // box or the last free edge of that box int ALGOR::find_bad_turn(size_t& y, size_t& x, int& dir, BOARD& b, int last) { RANDOM rdy(b.ny()), rdx(b.nx()); for (y = rdy(); y < b.ny(); y = rdy()) { rdx.clear(); for (x = rdx(); x < b.nx(); x = rdx()) { BOX box(y, x, b); if ((4 - box.count()) > last && try_bad_turn(box, y, x, dir, b, last)) return 1; } } return 0; } size_t ALGOR::find_min_closure1(size_t& y, size_t& x, int& dir, const BOARD& b, int last) { BOARD nb(b); int tdir, mindir = -1, mv; // number of boxes per closure size_t nbox, minbox = nb.nx() * nb.ny() + 1; size_t tx, ty, minx = ~0, miny = ~0; int xdir = 0; /* XXX: GCC */ while (find_bad_turn(ty, tx, tdir, nb, last)) { // Play a bad move that would cause the opponent's closure if ((mv = nb.domove(ty, tx, tdir, getWho())) != 0) b.abort("find_min_closure1: Invalid move %d (%zu, %zu, %d)", mv, ty, tx, tdir); // Count the opponent's closure if ((nbox = count_closure(y, x, xdir, nb)) == 0) b.abort("find_min_closure1: no closure found"); if (nbox <= minbox) { // This closure has fewer boxes minbox = nbox; minx = tx; miny = ty; mindir = tdir; } } y = miny; x = minx; dir = mindir; return minbox; } // Search for the move that makes the opponent close the least number of // boxes; returns 1 if a move found, 0 otherwise size_t ALGOR::find_min_closure(size_t& y, size_t& x, int& dir, const BOARD& b) { size_t x1, y1; int dir1; size_t count = b.ny() * b.nx() + 1, count1; for (size_t i = 0; i < 3; i++) if (count > (count1 = find_min_closure1(y1, x1, dir1, b, i))) { count = count1; y = y1; x = x1; dir = dir1; } return count != b.ny() * b.nx() + 1; } // Return a move in (y, x, dir) void ALGOR::play(const BOARD& b, size_t& y, size_t& x, int& dir) { // See if we can close the largest closure available if (find_max_closure(y, x, dir, b)) return; #ifdef notyet size_t sgl = find_single(); size_t dbl = find_double(); #endif // See if we can play an edge without giving the opponent a box if (find_good_turn(y, x, dir, b)) return; // Too bad, find the move that gives the opponent the fewer boxes if (find_min_closure(y, x, dir, b)) return; }