#ifndef SIM_MAIN_H #define SIM_MAIN_H /* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */ #define WITH_TARGET_WORD_MSB 31 #include "config.h" #include "sim-basics.h" #include "sim-signal.h" #include "sim-fpu.h" #include "sim-base.h" #include "simops.h" #include "bfd.h" typedef signed8 int8; typedef unsigned8 uint8; typedef signed16 int16; typedef unsigned16 uint16; typedef signed32 int32; typedef unsigned32 uint32; typedef unsigned32 reg_t; typedef unsigned64 reg64_t; /* The current state of the processor; registers, memory, etc. */ typedef struct _v850_regs { reg_t regs[32]; /* general-purpose registers */ reg_t sregs[32]; /* system registers, including psw */ reg_t pc; int dummy_mem; /* where invalid accesses go */ reg_t mpu0_sregs[28]; /* mpu0 system registers */ reg_t mpu1_sregs[28]; /* mpu1 system registers */ reg_t fpu_sregs[28]; /* fpu system registers */ reg_t selID_sregs[7][32]; /* system registers, selID 1 thru selID 7 */ reg64_t vregs[32]; /* vector registers. */ } v850_regs; struct _sim_cpu { /* ... simulator specific members ... */ v850_regs reg; reg_t psw_mask; /* only allow non-reserved bits to be set */ sim_event *pending_nmi; /* ... base type ... */ sim_cpu_base base; }; struct sim_state { sim_cpu *cpu[MAX_NR_PROCESSORS]; #if 0 SIM_ADDR rom_size; SIM_ADDR low_end; SIM_ADDR high_start; SIM_ADDR high_base; void *mem; #endif sim_state_base base; }; /* For compatibility, until all functions converted to passing SIM_DESC as an argument */ extern SIM_DESC simulator; #define V850_ROM_SIZE 0x8000 #define V850_LOW_END 0x200000 #define V850_HIGH_START 0xffe000 /* Because we are still using the old semantic table, provide compat macro's that store the instruction where the old simops expects it. */ extern uint32 OP[4]; #if 0 OP[0] = inst & 0x1f; /* RRRRR -> reg1 */ OP[1] = (inst >> 11) & 0x1f; /* rrrrr -> reg2 */ OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */ OP[3] = inst; #endif #define SAVE_1 \ PC = cia; \ OP[0] = instruction_0 & 0x1f; \ OP[1] = (instruction_0 >> 11) & 0x1f; \ OP[2] = 0; \ OP[3] = instruction_0 #define COMPAT_1(CALL) \ SAVE_1; \ PC += (CALL); \ nia = PC #define SAVE_2 \ PC = cia; \ OP[0] = instruction_0 & 0x1f; \ OP[1] = (instruction_0 >> 11) & 0x1f; \ OP[2] = instruction_1; \ OP[3] = (instruction_1 << 16) | instruction_0 #define COMPAT_2(CALL) \ SAVE_2; \ PC += (CALL); \ nia = PC /* new */ #define GR ((CPU)->reg.regs) #define SR ((CPU)->reg.sregs) #define VR ((CPU)->reg.vregs) #define MPU0_SR ((STATE_CPU (sd, 0))->reg.mpu0_sregs) #define MPU1_SR ((STATE_CPU (sd, 0))->reg.mpu1_sregs) #define FPU_SR ((STATE_CPU (sd, 0))->reg.fpu_sregs) /* old */ #define State (STATE_CPU (simulator, 0)->reg) #define PC (State.pc) #define SP_REGNO 3 #define SP (State.regs[SP_REGNO]) #define EP (State.regs[30]) #define EIPC (State.sregs[0]) #define EIPSW (State.sregs[1]) #define FEPC (State.sregs[2]) #define FEPSW (State.sregs[3]) #define ECR (State.sregs[4]) #define PSW (State.sregs[5]) #define PSW_REGNO 5 #define EIIC (State.sregs[13]) #define FEIC (State.sregs[14]) #define DBIC (SR[15]) #define CTPC (SR[16]) #define CTPSW (SR[17]) #define DBPC (State.sregs[18]) #define DBPSW (State.sregs[19]) #define CTBP (State.sregs[20]) #define DIR (SR[21]) #define EIWR (SR[28]) #define FEWR (SR[29]) #define DBWR (SR[30]) #define BSEL (SR[31]) #define PSW_US BIT32 (8) #define PSW_NP 0x80 #define PSW_EP 0x40 #define PSW_ID 0x20 #define PSW_SAT 0x10 #define PSW_CY 0x8 #define PSW_OV 0x4 #define PSW_S 0x2 #define PSW_Z 0x1 #define PSW_NPV (1<<18) #define PSW_DMP (1<<17) #define PSW_IMP (1<<16) #define ECR_EICC 0x0000ffff #define ECR_FECC 0xffff0000 /* FPU */ #define FPSR (FPU_SR[6]) #define FPSR_REGNO 6 #define FPEPC (FPU_SR[7]) #define FPST (FPU_SR[8]) #define FPST_REGNO 8 #define FPCC (FPU_SR[9]) #define FPCFG (FPU_SR[10]) #define FPCFG_REGNO 10 #define FPSR_DEM 0x00200000 #define FPSR_SEM 0x00100000 #define FPSR_RM 0x000c0000 #define FPSR_RN 0x00000000 #define FPSR_FS 0x00020000 #define FPSR_PR 0x00010000 #define FPSR_XC 0x0000fc00 #define FPSR_XCE 0x00008000 #define FPSR_XCV 0x00004000 #define FPSR_XCZ 0x00002000 #define FPSR_XCO 0x00001000 #define FPSR_XCU 0x00000800 #define FPSR_XCI 0x00000400 #define FPSR_XE 0x000003e0 #define FPSR_XEV 0x00000200 #define FPSR_XEZ 0x00000100 #define FPSR_XEO 0x00000080 #define FPSR_XEU 0x00000040 #define FPSR_XEI 0x00000020 #define FPSR_XP 0x0000001f #define FPSR_XPV 0x00000010 #define FPSR_XPZ 0x00000008 #define FPSR_XPO 0x00000004 #define FPSR_XPU 0x00000002 #define FPSR_XPI 0x00000001 #define FPST_PR 0x00008000 #define FPST_XCE 0x00002000 #define FPST_XCV 0x00001000 #define FPST_XCZ 0x00000800 #define FPST_XCO 0x00000400 #define FPST_XCU 0x00000200 #define FPST_XCI 0x00000100 #define FPST_XPV 0x00000010 #define FPST_XPZ 0x00000008 #define FPST_XPO 0x00000004 #define FPST_XPU 0x00000002 #define FPST_XPI 0x00000001 #define FPCFG_RM 0x00000180 #define FPCFG_XEV 0x00000010 #define FPCFG_XEZ 0x00000008 #define FPCFG_XEO 0x00000004 #define FPCFG_XEU 0x00000002 #define FPCFG_XEI 0x00000001 #define GET_FPCC()\ ((FPSR >> 24) &0xf) #define CLEAR_FPCC(bbb)\ (FPSR &= ~(1 << (bbb+24))) #define SET_FPCC(bbb)\ (FPSR |= 1 << (bbb+24)) #define TEST_FPCC(bbb)\ ((FPSR & (1 << (bbb+24))) != 0) #define FPSR_GET_ROUND() \ (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near \ : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up \ : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down \ : sim_fpu_round_zero) enum FPU_COMPARE { FPU_CMP_F = 0, FPU_CMP_UN, FPU_CMP_EQ, FPU_CMP_UEQ, FPU_CMP_OLT, FPU_CMP_ULT, FPU_CMP_OLE, FPU_CMP_ULE, FPU_CMP_SF, FPU_CMP_NGLE, FPU_CMP_SEQ, FPU_CMP_NGL, FPU_CMP_LT, FPU_CMP_NGE, FPU_CMP_LE, FPU_CMP_NGT }; /* MPU */ #define MPM (MPU1_SR[0]) #define MPC (MPU1_SR[1]) #define MPC_REGNO 1 #define TID (MPU1_SR[2]) #define PPA (MPU1_SR[3]) #define PPM (MPU1_SR[4]) #define PPC (MPU1_SR[5]) #define DCC (MPU1_SR[6]) #define DCV0 (MPU1_SR[7]) #define DCV1 (MPU1_SR[8]) #define SPAL (MPU1_SR[10]) #define SPAU (MPU1_SR[11]) #define IPA0L (MPU1_SR[12]) #define IPA0U (MPU1_SR[13]) #define IPA1L (MPU1_SR[14]) #define IPA1U (MPU1_SR[15]) #define IPA2L (MPU1_SR[16]) #define IPA2U (MPU1_SR[17]) #define IPA3L (MPU1_SR[18]) #define IPA3U (MPU1_SR[19]) #define DPA0L (MPU1_SR[20]) #define DPA0U (MPU1_SR[21]) #define DPA1L (MPU1_SR[22]) #define DPA1U (MPU1_SR[23]) #define DPA2L (MPU1_SR[24]) #define DPA2U (MPU1_SR[25]) #define DPA3L (MPU1_SR[26]) #define DPA3U (MPU1_SR[27]) #define PPC_PPE 0x1 #define SPAL_SPE 0x1 #define SPAL_SPS 0x10 #define VIP (MPU0_SR[0]) #define VMECR (MPU0_SR[4]) #define VMTID (MPU0_SR[5]) #define VMADR (MPU0_SR[6]) #define VPECR (MPU0_SR[8]) #define VPTID (MPU0_SR[9]) #define VPADR (MPU0_SR[10]) #define VDECR (MPU0_SR[12]) #define VDTID (MPU0_SR[13]) #define MPM_AUE 0x2 #define MPM_MPE 0x1 #define VMECR_VMX 0x2 #define VMECR_VMR 0x4 #define VMECR_VMW 0x8 #define VMECR_VMS 0x10 #define VMECR_VMRMW 0x20 #define VMECR_VMMS 0x40 #define IPA2ADDR(IPA) ((IPA) & 0x1fffff80) #define IPA_IPE 0x1 #define IPA_IPX 0x2 #define IPA_IPR 0x4 #define IPE0 (IPA0L & IPA_IPE) #define IPE1 (IPA1L & IPA_IPE) #define IPE2 (IPA2L & IPA_IPE) #define IPE3 (IPA3L & IPA_IPE) #define IPX0 (IPA0L & IPA_IPX) #define IPX1 (IPA1L & IPA_IPX) #define IPX2 (IPA2L & IPA_IPX) #define IPX3 (IPA3L & IPA_IPX) #define IPR0 (IPA0L & IPA_IPR) #define IPR1 (IPA1L & IPA_IPR) #define IPR2 (IPA2L & IPA_IPR) #define IPR3 (IPA3L & IPA_IPR) #define DPA2ADDR(DPA) ((DPA) & 0x1fffff80) #define DPA_DPE 0x1 #define DPA_DPR 0x4 #define DPA_DPW 0x8 #define DPE0 (DPA0L & DPA_DPE) #define DPE1 (DPA1L & DPA_DPE) #define DPE2 (DPA2L & DPA_DPE) #define DPE3 (DPA3L & DPA_DPE) #define DPR0 (DPA0L & DPA_DPR) #define DPR1 (DPA1L & DPA_DPR) #define DPR2 (DPA2L & DPA_DPR) #define DPR3 (DPA3L & DPA_DPR) #define DPW0 (DPA0L & DPA_DPW) #define DPW1 (DPA1L & DPA_DPW) #define DPW2 (DPA2L & DPA_DPW) #define DPW3 (DPA3L & DPA_DPW) #define DCC_DCE0 0x1 #define DCC_DCE1 0x10000 #define PPA2ADDR(PPA) ((PPA) & 0x1fffff80) #define PPC_PPC 0xfffffffe #define PPC_PPE 0x1 #define PPC_PPM 0x0000fff8 #define SEXT3(x) ((((x)&0x7)^(~0x3))+0x4) /* sign-extend a 4-bit number */ #define SEXT4(x) ((((x)&0xf)^(~0x7))+0x8) /* sign-extend a 5-bit number */ #define SEXT5(x) ((((x)&0x1f)^(~0xf))+0x10) /* sign-extend a 9-bit number */ #define SEXT9(x) ((((x)&0x1ff)^(~0xff))+0x100) /* sign-extend a 22-bit number */ #define SEXT22(x) ((((x)&0x3fffff)^(~0x1fffff))+0x200000) /* sign extend a 40 bit number */ #define SEXT40(x) ((((x) & UNSIGNED64 (0xffffffffff)) \ ^ (~UNSIGNED64 (0x7fffffffff))) \ + UNSIGNED64 (0x8000000000)) /* sign extend a 44 bit number */ #define SEXT44(x) ((((x) & UNSIGNED64 (0xfffffffffff)) \ ^ (~ UNSIGNED64 (0x7ffffffffff))) \ + UNSIGNED64 (0x80000000000)) /* sign extend a 60 bit number */ #define SEXT60(x) ((((x) & UNSIGNED64 (0xfffffffffffffff)) \ ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \ + UNSIGNED64 (0x800000000000000)) /* No sign extension */ #define NOP(x) (x) #define INC_ADDR(x,i) x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i)) #define RLW(x) load_mem (x, 4) /* Function declarations. */ #define IMEM16(EA) \ sim_core_read_aligned_2 (CPU, PC, exec_map, (EA)) #define IMEM16_IMMED(EA,N) \ sim_core_read_aligned_2 (STATE_CPU (sd, 0), \ PC, exec_map, (EA) + (N) * 2) #define load_mem(ADDR,LEN) \ sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \ PC, read_map, (ADDR)) #define store_mem(ADDR,LEN,DATA) \ sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \ PC, write_map, (ADDR), (DATA)) /* compare cccc field against PSW */ int condition_met (unsigned code); /* Debug/tracing calls */ enum op_types { OP_UNKNOWN, OP_NONE, OP_TRAP, OP_REG, OP_REG_REG, OP_REG_REG_CMP, OP_REG_REG_MOVE, OP_IMM_REG, OP_IMM_REG_CMP, OP_IMM_REG_MOVE, OP_COND_BR, OP_LOAD16, OP_STORE16, OP_LOAD32, OP_STORE32, OP_JUMP, OP_IMM_REG_REG, OP_UIMM_REG_REG, OP_IMM16_REG_REG, OP_UIMM16_REG_REG, OP_BIT, OP_EX1, OP_EX2, OP_LDSR, OP_STSR, OP_BIT_CHANGE, OP_REG_REG_REG, OP_REG_REG3, OP_IMM_REG_REG_REG, OP_PUSHPOP1, OP_PUSHPOP2, OP_PUSHPOP3, }; #ifdef DEBUG void trace_input (char *name, enum op_types type, int size); void trace_output (enum op_types result); void trace_result (int has_result, unsigned32 result); extern int trace_num_values; extern unsigned32 trace_values[]; extern unsigned32 trace_pc; extern const char *trace_name; extern int trace_module; #define TRACE_BRANCH0() \ do { \ if (TRACE_BRANCH_P (CPU)) { \ trace_module = TRACE_BRANCH_IDX; \ trace_pc = cia; \ trace_name = itable[MY_INDEX].name; \ trace_num_values = 0; \ trace_result (1, (nia)); \ } \ } while (0) #define TRACE_BRANCH1(IN1) \ do { \ if (TRACE_BRANCH_P (CPU)) { \ trace_module = TRACE_BRANCH_IDX; \ trace_pc = cia; \ trace_name = itable[MY_INDEX].name; \ trace_values[0] = (IN1); \ trace_num_values = 1; \ trace_result (1, (nia)); \ } \ } while (0) #define TRACE_BRANCH2(IN1, IN2) \ do { \ if (TRACE_BRANCH_P (CPU)) { \ trace_module = TRACE_BRANCH_IDX; \ trace_pc = cia; \ trace_name = itable[MY_INDEX].name; \ trace_values[0] = (IN1); \ trace_values[1] = (IN2); \ trace_num_values = 2; \ trace_result (1, (nia)); \ } \ } while (0) #define TRACE_BRANCH3(IN1, IN2, IN3) \ do { \ if (TRACE_BRANCH_P (CPU)) { \ trace_module = TRACE_BRANCH_IDX; \ trace_pc = cia; \ trace_name = itable[MY_INDEX].name; \ trace_values[0] = (IN1); \ trace_values[1] = (IN2); \ trace_values[2] = (IN3); \ trace_num_values = 3; \ trace_result (1, (nia)); \ } \ } while (0) #define TRACE_LD(ADDR,RESULT) \ do { \ if (TRACE_MEMORY_P (CPU)) { \ trace_module = TRACE_MEMORY_IDX; \ trace_pc = cia; \ trace_name = itable[MY_INDEX].name; \ trace_values[0] = (ADDR); \ trace_num_values = 1; \ trace_result (1, (RESULT)); \ } \ } while (0) #define TRACE_LD_NAME(NAME, ADDR,RESULT) \ do { \ if (TRACE_MEMORY_P (CPU)) { \ trace_module = TRACE_MEMORY_IDX; \ trace_pc = cia; \ trace_name = (NAME); \ trace_values[0] = (ADDR); \ trace_num_values = 1; \ trace_result (1, (RESULT)); \ } \ } while (0) #define TRACE_ST(ADDR,RESULT) \ do { \ if (TRACE_MEMORY_P (CPU)) { \ trace_module = TRACE_MEMORY_IDX; \ trace_pc = cia; \ trace_name = itable[MY_INDEX].name; \ trace_values[0] = (ADDR); \ trace_num_values = 1; \ trace_result (1, (RESULT)); \ } \ } while (0) #define TRACE_FP_INPUT_FPU1(V0) \ do { \ if (TRACE_FPU_P (CPU)) \ { \ unsigned64 f0; \ sim_fpu_to64 (&f0, (V0)); \ trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \ } \ } while (0) #define TRACE_FP_INPUT_FPU2(V0, V1) \ do { \ if (TRACE_FPU_P (CPU)) \ { \ unsigned64 f0, f1; \ sim_fpu_to64 (&f0, (V0)); \ sim_fpu_to64 (&f1, (V1)); \ trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1); \ } \ } while (0) #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \ do { \ if (TRACE_FPU_P (CPU)) \ { \ unsigned64 f0, f1, f2; \ sim_fpu_to64 (&f0, (V0)); \ sim_fpu_to64 (&f1, (V1)); \ sim_fpu_to64 (&f2, (V2)); \ trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \ } \ } while (0) #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \ do { \ if (TRACE_FPU_P (CPU)) \ { \ int d0 = (V0); \ unsigned64 f1, f2; \ TRACE_DATA *data = CPU_TRACE_DATA (CPU); \ TRACE_IDX (data) = TRACE_FPU_IDX; \ sim_fpu_to64 (&f1, (V1)); \ sim_fpu_to64 (&f2, (V2)); \ save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \ save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \ save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \ } \ } while (0) #define TRACE_FP_INPUT_WORD2(V0, V1) \ do { \ if (TRACE_FPU_P (CPU)) \ trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \ } while (0) #define TRACE_FP_RESULT_FPU1(R0) \ do { \ if (TRACE_FPU_P (CPU)) \ { \ unsigned64 f0; \ sim_fpu_to64 (&f0, (R0)); \ trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \ } \ } while (0) #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0) #define TRACE_FP_RESULT_WORD2(R0, R1) \ do { \ if (TRACE_FPU_P (CPU)) \ trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \ } while (0) #else #define trace_input(NAME, IN1, IN2) #define trace_output(RESULT) #define trace_result(HAS_RESULT, RESULT) #define TRACE_ALU_INPUT0() #define TRACE_ALU_INPUT1(IN0) #define TRACE_ALU_INPUT2(IN0, IN1) #define TRACE_ALU_INPUT2(IN0, IN1) #define TRACE_ALU_INPUT2(IN0, IN1 INS2) #define TRACE_ALU_RESULT(RESULT) #define TRACE_BRANCH0() #define TRACE_BRANCH1(IN1) #define TRACE_BRANCH2(IN1, IN2) #define TRACE_BRANCH2(IN1, IN2, IN3) #define TRACE_LD(ADDR,RESULT) #define TRACE_ST(ADDR,RESULT) #endif #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL)) #define GPR_CLEAR(N) (State.regs[(N)] = 0) extern void divun ( unsigned int N, unsigned long int als, unsigned long int sfi, unsigned32 /*unsigned long int*/ * quotient_ptr, unsigned32 /*unsigned long int*/ * remainder_ptr, int *overflow_ptr ); extern void divn ( unsigned int N, unsigned long int als, unsigned long int sfi, signed32 /*signed long int*/ * quotient_ptr, signed32 /*signed long int*/ * remainder_ptr, int *overflow_ptr ); extern int type1_regs[]; extern int type2_regs[]; extern int type3_regs[]; #define SESR_OV (1 << 0) #define SESR_SOV (1 << 1) #define SESR (State.sregs[12]) #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff) #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff) #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff) #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff) #define SAT16(X) \ do \ { \ signed64 z = (X); \ if (z > 0x7fff) \ { \ SESR |= SESR_OV | SESR_SOV; \ z = 0x7fff; \ } \ else if (z < -0x8000) \ { \ SESR |= SESR_OV | SESR_SOV; \ z = - 0x8000; \ } \ (X) = z; \ } \ while (0) #define SAT32(X) \ do \ { \ signed64 z = (X); \ if (z > 0x7fffffff) \ { \ SESR |= SESR_OV | SESR_SOV; \ z = 0x7fffffff; \ } \ else if (z < -0x80000000) \ { \ SESR |= SESR_OV | SESR_SOV; \ z = - 0x80000000; \ } \ (X) = z; \ } \ while (0) #define ABS16(X) \ do \ { \ signed64 z = (X) & 0xffff; \ if (z == 0x8000) \ { \ SESR |= SESR_OV | SESR_SOV; \ z = 0x7fff; \ } \ else if (z & 0x8000) \ { \ z = (- z) & 0xffff; \ } \ (X) = z; \ } \ while (0) #define ABS32(X) \ do \ { \ signed64 z = (X) & 0xffffffff; \ if (z == 0x80000000) \ { \ SESR |= SESR_OV | SESR_SOV; \ z = 0x7fffffff; \ } \ else if (z & 0x80000000) \ { \ z = (- z) & 0xffffffff; \ } \ (X) = z; \ } \ while (0) #endif