/* Blackfin Memory Management Unit (MMU) model. Copyright (C) 2010-2019 Free Software Foundation, Inc. Contributed by Analog Devices, Inc. This file is part of simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "config.h" #include "sim-main.h" #include "sim-options.h" #include "devices.h" #include "dv-bfin_mmu.h" #include "dv-bfin_cec.h" /* XXX: Should this really be two blocks of registers ? PRM describes these as two Content Addressable Memory (CAM) blocks. */ struct bfin_mmu { bu32 base; /* Order after here is important -- matches hardware MMR layout. */ bu32 sram_base_address; bu32 dmem_control, dcplb_fault_status, dcplb_fault_addr; char _dpad0[0x100 - 0x0 - (4 * 4)]; bu32 dcplb_addr[16]; char _dpad1[0x200 - 0x100 - (4 * 16)]; bu32 dcplb_data[16]; char _dpad2[0x300 - 0x200 - (4 * 16)]; bu32 dtest_command; char _dpad3[0x400 - 0x300 - (4 * 1)]; bu32 dtest_data[2]; char _dpad4[0x1000 - 0x400 - (4 * 2)]; bu32 idk; /* Filler MMR; hardware simply ignores. */ bu32 imem_control, icplb_fault_status, icplb_fault_addr; char _ipad0[0x100 - 0x0 - (4 * 4)]; bu32 icplb_addr[16]; char _ipad1[0x200 - 0x100 - (4 * 16)]; bu32 icplb_data[16]; char _ipad2[0x300 - 0x200 - (4 * 16)]; bu32 itest_command; char _ipad3[0x400 - 0x300 - (4 * 1)]; bu32 itest_data[2]; }; #define mmr_base() offsetof(struct bfin_mmu, sram_base_address) #define mmr_offset(mmr) (offsetof(struct bfin_mmu, mmr) - mmr_base()) #define mmr_idx(mmr) (mmr_offset (mmr) / 4) static const char * const mmr_names[BFIN_COREMMR_MMU_SIZE / 4] = { "SRAM_BASE_ADDRESS", "DMEM_CONTROL", "DCPLB_FAULT_STATUS", "DCPLB_FAULT_ADDR", [mmr_idx (dcplb_addr[0])] = "DCPLB_ADDR0", "DCPLB_ADDR1", "DCPLB_ADDR2", "DCPLB_ADDR3", "DCPLB_ADDR4", "DCPLB_ADDR5", "DCPLB_ADDR6", "DCPLB_ADDR7", "DCPLB_ADDR8", "DCPLB_ADDR9", "DCPLB_ADDR10", "DCPLB_ADDR11", "DCPLB_ADDR12", "DCPLB_ADDR13", "DCPLB_ADDR14", "DCPLB_ADDR15", [mmr_idx (dcplb_data[0])] = "DCPLB_DATA0", "DCPLB_DATA1", "DCPLB_DATA2", "DCPLB_DATA3", "DCPLB_DATA4", "DCPLB_DATA5", "DCPLB_DATA6", "DCPLB_DATA7", "DCPLB_DATA8", "DCPLB_DATA9", "DCPLB_DATA10", "DCPLB_DATA11", "DCPLB_DATA12", "DCPLB_DATA13", "DCPLB_DATA14", "DCPLB_DATA15", [mmr_idx (dtest_command)] = "DTEST_COMMAND", [mmr_idx (dtest_data[0])] = "DTEST_DATA0", "DTEST_DATA1", [mmr_idx (imem_control)] = "IMEM_CONTROL", "ICPLB_FAULT_STATUS", "ICPLB_FAULT_ADDR", [mmr_idx (icplb_addr[0])] = "ICPLB_ADDR0", "ICPLB_ADDR1", "ICPLB_ADDR2", "ICPLB_ADDR3", "ICPLB_ADDR4", "ICPLB_ADDR5", "ICPLB_ADDR6", "ICPLB_ADDR7", "ICPLB_ADDR8", "ICPLB_ADDR9", "ICPLB_ADDR10", "ICPLB_ADDR11", "ICPLB_ADDR12", "ICPLB_ADDR13", "ICPLB_ADDR14", "ICPLB_ADDR15", [mmr_idx (icplb_data[0])] = "ICPLB_DATA0", "ICPLB_DATA1", "ICPLB_DATA2", "ICPLB_DATA3", "ICPLB_DATA4", "ICPLB_DATA5", "ICPLB_DATA6", "ICPLB_DATA7", "ICPLB_DATA8", "ICPLB_DATA9", "ICPLB_DATA10", "ICPLB_DATA11", "ICPLB_DATA12", "ICPLB_DATA13", "ICPLB_DATA14", "ICPLB_DATA15", [mmr_idx (itest_command)] = "ITEST_COMMAND", [mmr_idx (itest_data[0])] = "ITEST_DATA0", "ITEST_DATA1", }; #define mmr_name(off) (mmr_names[(off) / 4] ? : "") static bool bfin_mmu_skip_cplbs = false; static unsigned bfin_mmu_io_write_buffer (struct hw *me, const void *source, int space, address_word addr, unsigned nr_bytes) { struct bfin_mmu *mmu = hw_data (me); bu32 mmr_off; bu32 value; bu32 *valuep; /* Invalid access mode is higher priority than missing register. */ if (!dv_bfin_mmr_require_32 (me, addr, nr_bytes, true)) return 0; value = dv_load_4 (source); mmr_off = addr - mmu->base; valuep = (void *)((unsigned long)mmu + mmr_base() + mmr_off); HW_TRACE_WRITE (); switch (mmr_off) { case mmr_offset(dmem_control): case mmr_offset(imem_control): /* XXX: IMC/DMC bit should add/remove L1 cache regions ... */ case mmr_offset(dtest_data[0]) ... mmr_offset(dtest_data[1]): case mmr_offset(itest_data[0]) ... mmr_offset(itest_data[1]): case mmr_offset(dcplb_addr[0]) ... mmr_offset(dcplb_addr[15]): case mmr_offset(dcplb_data[0]) ... mmr_offset(dcplb_data[15]): case mmr_offset(icplb_addr[0]) ... mmr_offset(icplb_addr[15]): case mmr_offset(icplb_data[0]) ... mmr_offset(icplb_data[15]): *valuep = value; break; case mmr_offset(sram_base_address): case mmr_offset(dcplb_fault_status): case mmr_offset(dcplb_fault_addr): case mmr_offset(idk): case mmr_offset(icplb_fault_status): case mmr_offset(icplb_fault_addr): /* Discard writes to these. */ break; case mmr_offset(itest_command): /* XXX: Not supported atm. */ if (value) hw_abort (me, "ITEST_COMMAND unimplemented"); break; case mmr_offset(dtest_command): /* Access L1 memory indirectly. */ *valuep = value; if (value) { bu32 addr = mmu->sram_base_address | ((value >> (26 - 11)) & (1 << 11)) | /* addr bit 11 (Way0/Way1) */ ((value >> (24 - 21)) & (1 << 21)) | /* addr bit 21 (Data/Inst) */ ((value >> (23 - 15)) & (1 << 15)) | /* addr bit 15 (Data Bank) */ ((value >> (16 - 12)) & (3 << 12)) | /* addr bits 13:12 (Subbank) */ (value & 0x47F8); /* addr bits 14 & 10:3 */ if (!(value & TEST_DATA_ARRAY)) hw_abort (me, "DTEST_COMMAND tag array unimplemented"); if (value & 0xfa7cb801) hw_abort (me, "DTEST_COMMAND bits undefined"); if (value & TEST_WRITE) sim_write (hw_system (me), addr, (void *)mmu->dtest_data, 8); else sim_read (hw_system (me), addr, (void *)mmu->dtest_data, 8); } break; default: dv_bfin_mmr_invalid (me, addr, nr_bytes, true); return 0; } return nr_bytes; } static unsigned bfin_mmu_io_read_buffer (struct hw *me, void *dest, int space, address_word addr, unsigned nr_bytes) { struct bfin_mmu *mmu = hw_data (me); bu32 mmr_off; bu32 *valuep; /* Invalid access mode is higher priority than missing register. */ if (!dv_bfin_mmr_require_32 (me, addr, nr_bytes, false)) return 0; mmr_off = addr - mmu->base; valuep = (void *)((unsigned long)mmu + mmr_base() + mmr_off); HW_TRACE_READ (); switch (mmr_off) { case mmr_offset(dmem_control): case mmr_offset(imem_control): case mmr_offset(dtest_command): case mmr_offset(dtest_data[0]) ... mmr_offset(dtest_data[2]): case mmr_offset(itest_command): case mmr_offset(itest_data[0]) ... mmr_offset(itest_data[2]): /* XXX: should do something here. */ case mmr_offset(dcplb_addr[0]) ... mmr_offset(dcplb_addr[15]): case mmr_offset(dcplb_data[0]) ... mmr_offset(dcplb_data[15]): case mmr_offset(icplb_addr[0]) ... mmr_offset(icplb_addr[15]): case mmr_offset(icplb_data[0]) ... mmr_offset(icplb_data[15]): case mmr_offset(sram_base_address): case mmr_offset(dcplb_fault_status): case mmr_offset(dcplb_fault_addr): case mmr_offset(idk): case mmr_offset(icplb_fault_status): case mmr_offset(icplb_fault_addr): dv_store_4 (dest, *valuep); break; default: dv_bfin_mmr_invalid (me, addr, nr_bytes, false); return 0; } return nr_bytes; } static void attach_bfin_mmu_regs (struct hw *me, struct bfin_mmu *mmu) { address_word attach_address; int attach_space; unsigned attach_size; reg_property_spec reg; if (hw_find_property (me, "reg") == NULL) hw_abort (me, "Missing \"reg\" property"); if (!hw_find_reg_array_property (me, "reg", 0, ®)) hw_abort (me, "\"reg\" property must contain three addr/size entries"); hw_unit_address_to_attach_address (hw_parent (me), ®.address, &attach_space, &attach_address, me); hw_unit_size_to_attach_size (hw_parent (me), ®.size, &attach_size, me); if (attach_size != BFIN_COREMMR_MMU_SIZE) hw_abort (me, "\"reg\" size must be %#x", BFIN_COREMMR_MMU_SIZE); hw_attach_address (hw_parent (me), 0, attach_space, attach_address, attach_size, me); mmu->base = attach_address; } static void bfin_mmu_finish (struct hw *me) { struct bfin_mmu *mmu; mmu = HW_ZALLOC (me, struct bfin_mmu); set_hw_data (me, mmu); set_hw_io_read_buffer (me, bfin_mmu_io_read_buffer); set_hw_io_write_buffer (me, bfin_mmu_io_write_buffer); attach_bfin_mmu_regs (me, mmu); /* Initialize the MMU. */ mmu->sram_base_address = 0xff800000 - 0; /*(4 * 1024 * 1024 * CPU_INDEX (hw_system_cpu (me)));*/ mmu->dmem_control = 0x00000001; mmu->imem_control = 0x00000001; } const struct hw_descriptor dv_bfin_mmu_descriptor[] = { {"bfin_mmu", bfin_mmu_finish,}, {NULL, NULL}, }; /* Device option parsing. */ static DECLARE_OPTION_HANDLER (bfin_mmu_option_handler); enum { OPTION_MMU_SKIP_TABLES = OPTION_START, }; const OPTION bfin_mmu_options[] = { { {"mmu-skip-cplbs", no_argument, NULL, OPTION_MMU_SKIP_TABLES }, '\0', NULL, "Skip parsing of CPLB tables (big speed increase)", bfin_mmu_option_handler, NULL }, { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL } }; static SIM_RC bfin_mmu_option_handler (SIM_DESC sd, sim_cpu *current_cpu, int opt, char *arg, int is_command) { switch (opt) { case OPTION_MMU_SKIP_TABLES: bfin_mmu_skip_cplbs = true; return SIM_RC_OK; default: sim_io_eprintf (sd, "Unknown Blackfin MMU option %d\n", opt); return SIM_RC_FAIL; } } #define MMU_STATE(cpu) DV_STATE_CACHED (cpu, mmu) static void _mmu_log_ifault (SIM_CPU *cpu, struct bfin_mmu *mmu, bu32 pc, bool supv) { mmu->icplb_fault_addr = pc; mmu->icplb_fault_status = supv << 17; } void mmu_log_ifault (SIM_CPU *cpu) { _mmu_log_ifault (cpu, MMU_STATE (cpu), PCREG, cec_get_ivg (cpu) >= 0); } static void _mmu_log_fault (SIM_CPU *cpu, struct bfin_mmu *mmu, bu32 addr, bool write, bool inst, bool miss, bool supv, bool dag1, bu32 faults) { bu32 *fault_status, *fault_addr; /* No logging in non-OS mode. */ if (!mmu) return; fault_status = inst ? &mmu->icplb_fault_status : &mmu->dcplb_fault_status; fault_addr = inst ? &mmu->icplb_fault_addr : &mmu->dcplb_fault_addr; /* ICPLB regs always get updated. */ if (!inst) _mmu_log_ifault (cpu, mmu, PCREG, supv); *fault_addr = addr; *fault_status = (miss << 19) | (dag1 << 18) | (supv << 17) | (write << 16) | faults; } static void _mmu_process_fault (SIM_CPU *cpu, struct bfin_mmu *mmu, bu32 addr, bool write, bool inst, bool unaligned, bool miss, bool supv, bool dag1) { int excp; /* See order in mmu_check_addr() */ if (unaligned) excp = inst ? VEC_MISALI_I : VEC_MISALI_D; else if (addr >= BFIN_SYSTEM_MMR_BASE) excp = VEC_ILL_RES; else if (!mmu) excp = inst ? VEC_CPLB_I_M : VEC_CPLB_M; else { /* Misses are hardware errors. */ cec_hwerr (cpu, HWERR_EXTERN_ADDR); return; } _mmu_log_fault (cpu, mmu, addr, write, inst, miss, supv, dag1, 0); cec_exception (cpu, excp); } void mmu_process_fault (SIM_CPU *cpu, bu32 addr, bool write, bool inst, bool unaligned, bool miss) { SIM_DESC sd = CPU_STATE (cpu); struct bfin_mmu *mmu; if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT) mmu = NULL; else mmu = MMU_STATE (cpu); _mmu_process_fault (cpu, mmu, addr, write, inst, unaligned, miss, cec_is_supervisor_mode (cpu), BFIN_CPU_STATE.multi_pc == PCREG + 6); } /* Return values: -2: no known problems -1: valid 0: miss 1: protection violation 2: multiple hits 3: unaligned 4: miss; hwerr */ static int mmu_check_implicit_addr (SIM_CPU *cpu, bu32 addr, bool inst, int size, bool supv, bool dag1) { bool l1 = ((addr & 0xFF000000) == 0xFF000000); bu32 amask = (addr & 0xFFF00000); if (addr & (size - 1)) return 3; /* MMRs may never be executable or accessed from usermode. */ if (addr >= BFIN_SYSTEM_MMR_BASE) { if (inst) return 0; else if (!supv || dag1) return 1; else return -1; } else if (inst) { /* Some regions are not executable. */ /* XXX: Should this be in the model data ? Core B 561 ? */ if (l1) return (amask == 0xFFA00000) ? -1 : 1; } else { /* Some regions are not readable. */ /* XXX: Should this be in the model data ? Core B 561 ? */ if (l1) return (amask != 0xFFA00000) ? -1 : 4; } return -2; } /* Exception order per the PRM (first has highest): Inst Multiple CPLB Hits Inst Misaligned Access Inst Protection Violation Inst CPLB Miss Only the alignment matters in non-OS mode though. */ static int _mmu_check_addr (SIM_CPU *cpu, bu32 addr, bool write, bool inst, int size) { SIM_DESC sd = CPU_STATE (cpu); struct bfin_mmu *mmu; bu32 *fault_status, *fault_addr, *mem_control, *cplb_addr, *cplb_data; bu32 faults; bool supv, do_excp, dag1; int i, hits; supv = cec_is_supervisor_mode (cpu); dag1 = (BFIN_CPU_STATE.multi_pc == PCREG + 6); if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT || bfin_mmu_skip_cplbs) { int ret = mmu_check_implicit_addr (cpu, addr, inst, size, supv, dag1); /* Valid hits and misses are OK in non-OS envs. */ if (ret < 0) return 0; _mmu_process_fault (cpu, NULL, addr, write, inst, (ret == 3), false, supv, dag1); } mmu = MMU_STATE (cpu); fault_status = inst ? &mmu->icplb_fault_status : &mmu->dcplb_fault_status; fault_addr = inst ? &mmu->icplb_fault_addr : &mmu->dcplb_fault_addr; mem_control = inst ? &mmu->imem_control : &mmu->dmem_control; cplb_addr = inst ? &mmu->icplb_addr[0] : &mmu->dcplb_addr[0]; cplb_data = inst ? &mmu->icplb_data[0] : &mmu->dcplb_data[0]; faults = 0; hits = 0; do_excp = false; /* CPLBs disabled -> little to do. */ if (!(*mem_control & ENCPLB)) { hits = 1; goto implicit_check; } /* Check all the CPLBs first. */ for (i = 0; i < 16; ++i) { const bu32 pages[4] = { 0x400, 0x1000, 0x100000, 0x400000 }; bu32 addr_lo, addr_hi; /* Skip invalid entries. */ if (!(cplb_data[i] & CPLB_VALID)) continue; /* See if this entry covers this address. */ addr_lo = cplb_addr[i]; addr_hi = cplb_addr[i] + pages[(cplb_data[i] & PAGE_SIZE) >> 16]; if (addr < addr_lo || addr >= addr_hi) continue; ++hits; faults |= (1 << i); if (write) { if (!supv && !(cplb_data[i] & CPLB_USER_WR)) do_excp = true; if (supv && !(cplb_data[i] & CPLB_SUPV_WR)) do_excp = true; if ((cplb_data[i] & (CPLB_WT | CPLB_L1_CHBL | CPLB_DIRTY)) == CPLB_L1_CHBL) do_excp = true; } else { if (!supv && !(cplb_data[i] & CPLB_USER_RD)) do_excp = true; } } /* Handle default/implicit CPLBs. */ if (!do_excp && hits < 2) { int ihits; implicit_check: ihits = mmu_check_implicit_addr (cpu, addr, inst, size, supv, dag1); switch (ihits) { /* No faults and one match -> good to go. */ case -1: return 0; case -2: if (hits == 1) return 0; break; case 4: cec_hwerr (cpu, HWERR_EXTERN_ADDR); return 0; default: hits = ihits; } } else /* Normalize hit count so hits==2 is always multiple hit exception. */ hits = min (2, hits); _mmu_log_fault (cpu, mmu, addr, write, inst, hits == 0, supv, dag1, faults); if (inst) { int iexcps[] = { VEC_CPLB_I_M, VEC_CPLB_I_VL, VEC_CPLB_I_MHIT, VEC_MISALI_I }; return iexcps[hits]; } else { int dexcps[] = { VEC_CPLB_M, VEC_CPLB_VL, VEC_CPLB_MHIT, VEC_MISALI_D }; return dexcps[hits]; } } void mmu_check_addr (SIM_CPU *cpu, bu32 addr, bool write, bool inst, int size) { int excp = _mmu_check_addr (cpu, addr, write, inst, size); if (excp) cec_exception (cpu, excp); } void mmu_check_cache_addr (SIM_CPU *cpu, bu32 addr, bool write, bool inst) { bu32 cacheaddr; int excp; cacheaddr = addr & ~(BFIN_L1_CACHE_BYTES - 1); excp = _mmu_check_addr (cpu, cacheaddr, write, inst, BFIN_L1_CACHE_BYTES); if (excp == 0) return; /* Most exceptions are ignored with cache funcs. */ /* XXX: Not sure if we should be ignoring CPLB misses. */ if (inst) { if (excp == VEC_CPLB_I_VL) return; } else { if (excp == VEC_CPLB_VL) return; } cec_exception (cpu, excp); }