//===-- sanitizer_posix.cc ------------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries and implements POSIX-specific functions from // sanitizer_posix.h. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_POSIX #include "sanitizer_common.h" #include "sanitizer_libc.h" #include "sanitizer_posix.h" #include "sanitizer_procmaps.h" #include "sanitizer_stacktrace.h" #include #include #include #if SANITIZER_LINUX #include #endif #if SANITIZER_LINUX && !SANITIZER_ANDROID #include #endif #if SANITIZER_FREEBSD // The MAP_NORESERVE define has been removed in FreeBSD 11.x, and even before // that, it was never implemented. So just define it to zero. #undef MAP_NORESERVE #define MAP_NORESERVE 0 #endif namespace __sanitizer { // ------------- sanitizer_common.h uptr GetMmapGranularity() { return GetPageSize(); } #if SANITIZER_WORDSIZE == 32 // Take care of unusable kernel area in top gigabyte. static uptr GetKernelAreaSize() { #if SANITIZER_LINUX && !SANITIZER_X32 const uptr gbyte = 1UL << 30; // Firstly check if there are writable segments // mapped to top gigabyte (e.g. stack). MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr end, prot; while (proc_maps.Next(/*start*/nullptr, &end, /*offset*/nullptr, /*filename*/nullptr, /*filename_size*/0, &prot)) { if ((end >= 3 * gbyte) && (prot & MemoryMappingLayout::kProtectionWrite) != 0) return 0; } #if !SANITIZER_ANDROID // Even if nothing is mapped, top Gb may still be accessible // if we are running on 64-bit kernel. // Uname may report misleading results if personality type // is modified (e.g. under schroot) so check this as well. struct utsname uname_info; int pers = personality(0xffffffffUL); if (!(pers & PER_MASK) && uname(&uname_info) == 0 && internal_strstr(uname_info.machine, "64")) return 0; #endif // SANITIZER_ANDROID // Top gigabyte is reserved for kernel. return gbyte; #else return 0; #endif // SANITIZER_LINUX && !SANITIZER_X32 } #endif // SANITIZER_WORDSIZE == 32 uptr GetMaxVirtualAddress() { #if SANITIZER_WORDSIZE == 64 # if defined(__aarch64__) && SANITIZER_IOS && !SANITIZER_IOSSIM // Ideally, we would derive the upper bound from MACH_VM_MAX_ADDRESS. The // upper bound can change depending on the device. return 0x200000000 - 1; # elif defined(__powerpc64__) || defined(__aarch64__) // On PowerPC64 we have two different address space layouts: 44- and 46-bit. // We somehow need to figure out which one we are using now and choose // one of 0x00000fffffffffffUL and 0x00003fffffffffffUL. // Note that with 'ulimit -s unlimited' the stack is moved away from the top // of the address space, so simply checking the stack address is not enough. // This should (does) work for both PowerPC64 Endian modes. // Similarly, aarch64 has multiple address space layouts: 39, 42 and 47-bit. return (1ULL << (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1)) - 1; # elif defined(__mips64) return (1ULL << 40) - 1; // 0x000000ffffffffffUL; # elif defined(__s390x__) return (1ULL << 53) - 1; // 0x001fffffffffffffUL; # else return (1ULL << 47) - 1; // 0x00007fffffffffffUL; # endif #else // SANITIZER_WORDSIZE == 32 # if defined(__s390__) return (1ULL << 31) - 1; // 0x7fffffff; # else uptr res = (1ULL << 32) - 1; // 0xffffffff; if (!common_flags()->full_address_space) res -= GetKernelAreaSize(); CHECK_LT(reinterpret_cast(&res), res); return res; # endif #endif // SANITIZER_WORDSIZE } void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { size = RoundUpTo(size, GetPageSizeCached()); uptr res = internal_mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); int reserrno; if (internal_iserror(res, &reserrno)) ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno, raw_report); IncreaseTotalMmap(size); return (void *)res; } void UnmapOrDie(void *addr, uptr size) { if (!addr || !size) return; uptr res = internal_munmap(addr, size); if (internal_iserror(res)) { Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n", SanitizerToolName, size, size, addr); CHECK("unable to unmap" && 0); } DecreaseTotalMmap(size); } // We want to map a chunk of address space aligned to 'alignment'. // We do it by maping a bit more and then unmaping redundant pieces. // We probably can do it with fewer syscalls in some OS-dependent way. void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type) { CHECK(IsPowerOfTwo(size)); CHECK(IsPowerOfTwo(alignment)); uptr map_size = size + alignment; uptr map_res = (uptr)MmapOrDie(map_size, mem_type); uptr map_end = map_res + map_size; uptr res = map_res; if (res & (alignment - 1)) // Not aligned. res = (map_res + alignment) & ~(alignment - 1); uptr end = res + size; if (res != map_res) UnmapOrDie((void*)map_res, res - map_res); if (end != map_end) UnmapOrDie((void*)end, map_end - end); return (void*)res; } void *MmapNoReserveOrDie(uptr size, const char *mem_type) { uptr PageSize = GetPageSizeCached(); uptr p = internal_mmap(nullptr, RoundUpTo(size, PageSize), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, -1, 0); int reserrno; if (internal_iserror(p, &reserrno)) ReportMmapFailureAndDie(size, mem_type, "allocate noreserve", reserrno); IncreaseTotalMmap(size); return (void *)p; } void *MmapFixedOrDie(uptr fixed_addr, uptr size) { uptr PageSize = GetPageSizeCached(); uptr p = internal_mmap((void*)(fixed_addr & ~(PageSize - 1)), RoundUpTo(size, PageSize), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON | MAP_FIXED, -1, 0); int reserrno; if (internal_iserror(p, &reserrno)) { char mem_type[30]; internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", fixed_addr); ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno); } IncreaseTotalMmap(size); return (void *)p; } bool MprotectNoAccess(uptr addr, uptr size) { return 0 == internal_mprotect((void*)addr, size, PROT_NONE); } bool MprotectReadOnly(uptr addr, uptr size) { return 0 == internal_mprotect((void *)addr, size, PROT_READ); } fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *errno_p) { int flags = 0; switch (mode) { case RdOnly: flags = O_RDONLY; break; case WrOnly: flags = O_WRONLY | O_CREAT; break; case RdWr: flags = O_RDWR | O_CREAT; break; } fd_t res = internal_open(filename, flags, 0660); if (internal_iserror(res, errno_p)) return kInvalidFd; return res; } void CloseFile(fd_t fd) { internal_close(fd); } bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read, error_t *error_p) { uptr res = internal_read(fd, buff, buff_size); if (internal_iserror(res, error_p)) return false; if (bytes_read) *bytes_read = res; return true; } bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written, error_t *error_p) { uptr res = internal_write(fd, buff, buff_size); if (internal_iserror(res, error_p)) return false; if (bytes_written) *bytes_written = res; return true; } bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) { uptr res = internal_rename(oldpath, newpath); return !internal_iserror(res, error_p); } void *MapFileToMemory(const char *file_name, uptr *buff_size) { fd_t fd = OpenFile(file_name, RdOnly); CHECK(fd != kInvalidFd); uptr fsize = internal_filesize(fd); CHECK_NE(fsize, (uptr)-1); CHECK_GT(fsize, 0); *buff_size = RoundUpTo(fsize, GetPageSizeCached()); uptr map = internal_mmap(nullptr, *buff_size, PROT_READ, MAP_PRIVATE, fd, 0); return internal_iserror(map) ? nullptr : (void *)map; } void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) { uptr flags = MAP_SHARED; if (addr) flags |= MAP_FIXED; uptr p = internal_mmap(addr, size, PROT_READ | PROT_WRITE, flags, fd, offset); int mmap_errno = 0; if (internal_iserror(p, &mmap_errno)) { Printf("could not map writable file (%d, %lld, %zu): %zd, errno: %d\n", fd, (long long)offset, size, p, mmap_errno); return nullptr; } return (void *)p; } static inline bool IntervalsAreSeparate(uptr start1, uptr end1, uptr start2, uptr end2) { CHECK(start1 <= end1); CHECK(start2 <= end2); return (end1 < start2) || (end2 < start1); } // FIXME: this is thread-unsafe, but should not cause problems most of the time. // When the shadow is mapped only a single thread usually exists (plus maybe // several worker threads on Mac, which aren't expected to map big chunks of // memory). bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) { MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr start, end; while (proc_maps.Next(&start, &end, /*offset*/nullptr, /*filename*/nullptr, /*filename_size*/0, /*protection*/nullptr)) { if (start == end) continue; // Empty range. CHECK_NE(0, end); if (!IntervalsAreSeparate(start, end - 1, range_start, range_end)) return false; } return true; } void DumpProcessMap() { MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr start, end; const sptr kBufSize = 4095; char *filename = (char*)MmapOrDie(kBufSize, __func__); Report("Process memory map follows:\n"); while (proc_maps.Next(&start, &end, /* file_offset */nullptr, filename, kBufSize, /* protection */nullptr)) { Printf("\t%p-%p\t%s\n", (void*)start, (void*)end, filename); } Report("End of process memory map.\n"); UnmapOrDie(filename, kBufSize); } const char *GetPwd() { return GetEnv("PWD"); } bool IsPathSeparator(const char c) { return c == '/'; } bool IsAbsolutePath(const char *path) { return path != nullptr && IsPathSeparator(path[0]); } void ReportFile::Write(const char *buffer, uptr length) { SpinMutexLock l(mu); static const char *kWriteError = "ReportFile::Write() can't output requested buffer!\n"; ReopenIfNecessary(); if (length != internal_write(fd, buffer, length)) { internal_write(fd, kWriteError, internal_strlen(kWriteError)); Die(); } } bool GetCodeRangeForFile(const char *module, uptr *start, uptr *end) { uptr s, e, off, prot; InternalScopedString buff(kMaxPathLength); MemoryMappingLayout proc_maps(/*cache_enabled*/false); while (proc_maps.Next(&s, &e, &off, buff.data(), buff.size(), &prot)) { if ((prot & MemoryMappingLayout::kProtectionExecute) != 0 && internal_strcmp(module, buff.data()) == 0) { *start = s; *end = e; return true; } } return false; } SignalContext SignalContext::Create(void *siginfo, void *context) { auto si = (siginfo_t *)siginfo; uptr addr = (uptr)si->si_addr; uptr pc, sp, bp; GetPcSpBp(context, &pc, &sp, &bp); WriteFlag write_flag = GetWriteFlag(context); bool is_memory_access = si->si_signo == SIGSEGV; return SignalContext(context, addr, pc, sp, bp, is_memory_access, write_flag); } } // namespace __sanitizer #endif // SANITIZER_POSIX