/* workitems.c -- The main runtime entry that performs work-item execution in various ways and the builtin functions closely related to the implementation. Copyright (C) 2015-2017 Free Software Foundation, Inc. Contributed by Pekka Jaaskelainen for General Processor Tech. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* The fiber based multiple work-item work-group execution uses ucontext based user mode threading. However, if gccbrig is able to optimize the kernel to a much faster work-group function that implements the multiple WI execution using loops instead of fibers requiring slow context switches, the fiber-based implementation won't be called. */ #include #include #include #include "workitems.h" #include "phsa-rt.h" #ifdef HAVE_FIBERS #include "fibers.h" #endif #ifdef BENCHMARK_PHSA_RT #include #include static uint64_t wi_count = 0; static uint64_t wis_skipped = 0; static uint64_t wi_total = 0; static clock_t start_time; #endif #ifdef DEBUG_PHSA_RT #include #endif #define PRIVATE_SEGMENT_ALIGN 256 #define FIBER_STACK_SIZE (64*1024) #define GROUP_SEGMENT_ALIGN 256 /* HSA requires WGs to be executed in flat work-group id order. Enabling the following macro can reveal test cases that rely on the ordering, but is not useful for much else. */ uint32_t __hsail_workitemabsid (uint32_t dim, PHSAWorkItem *context); uint32_t __hsail_workitemid (uint32_t dim, PHSAWorkItem *context); uint32_t __hsail_gridgroups (uint32_t dim, PHSAWorkItem *context); uint32_t __hsail_currentworkgroupsize (uint32_t dim, PHSAWorkItem *wi); uint32_t __hsail_workgroupsize (uint32_t dim, PHSAWorkItem *wi); void phsa_fatal_error (int code) { exit (code); } #ifdef HAVE_FIBERS /* ucontext-based work-item thread implementation. Runs all work-items in separate fibers. */ static void phsa_work_item_thread (int arg0, int arg1) { void *arg = fiber_int_args_to_ptr (arg0, arg1); PHSAWorkItem *wi = (PHSAWorkItem *) arg; volatile PHSAWorkGroup *wg = wi->wg; PHSAKernelLaunchData *l_data = wi->launch_data; do { int retcode = fiber_barrier_reach ((fiber_barrier_t *) l_data->wg_start_barrier); /* At this point the threads can assume that either more_wgs is 0 or the current_work_group_* is set to point to the WG executed next. */ if (!wi->wg->more_wgs) break; #ifdef DEBUG_PHSA_RT printf ( "Running work-item %lu/%lu/%lu for wg %lu/%lu/%lu / %lu/%lu/%lu...\n", wi->x, wi->y, wi->z, wg->x, wg->y, wg->z, l_data->wg_max_x, l_data->wg_max_y, l_data->wg_max_z); #endif if (wi->x < __hsail_currentworkgroupsize (0, wi) && wi->y < __hsail_currentworkgroupsize (1, wi) && wi->z < __hsail_currentworkgroupsize (2, wi)) { l_data->kernel (l_data->kernarg_addr, wi, wg->group_base_ptr, wg->private_base_ptr); #ifdef DEBUG_PHSA_RT printf ("done.\n"); #endif #ifdef BENCHMARK_PHSA_RT wi_count++; #endif } else { #ifdef DEBUG_PHSA_RT printf ("skipped (partial WG).\n"); #endif #ifdef BENCHMARK_PHSA_RT wis_skipped++; #endif } retcode = fiber_barrier_reach ((fiber_barrier_t *) l_data->wg_completion_barrier); /* The first thread updates the WG to execute next etc. */ if (retcode == 0) { #ifdef EXECUTE_WGS_BACKWARDS if (wg->x == l_data->wg_min_x) { wg->x = l_data->wg_max_x - 1; if (wg->y == l_data->wg_min_y) { wg->y = l_data->wg_max_y - 1; if (wg->z == l_data->wg_min_z) wg->more_wgs = 0; else wg->z--; } else wg->y--; } else wg->x--; #else if (wg->x + 1 >= l_data->wg_max_x) { wg->x = l_data->wg_min_x; if (wg->y + 1 >= l_data->wg_max_y) { wg->y = l_data->wg_min_y; if (wg->z + 1 >= l_data->wg_max_z) wg->more_wgs = 0; else wg->z++; } else wg->y++; } else wg->x++; #endif /* Reinitialize the work-group barrier according to the new WG's size, which might not be the same as the previous ones, due to "partial WGs". */ size_t wg_size = __hsail_currentworkgroupsize (0, wi) * __hsail_currentworkgroupsize (1, wi) * __hsail_currentworkgroupsize (2, wi); #ifdef DEBUG_PHSA_RT printf ("Reinitializing the WG barrier to %lu.\n", wg_size); #endif fiber_barrier_init ((fiber_barrier_t *) wi->launch_data->wg_sync_barrier, wg_size); #ifdef BENCHMARK_PHSA_RT if (wi_count % 1000 == 0) { clock_t spent_time = clock () - start_time; double spent_time_sec = (double) spent_time / CLOCKS_PER_SEC; double wis_per_sec = wi_count / spent_time_sec; uint64_t eta_sec = (wi_total - wi_count - wis_skipped) / wis_per_sec; printf ("%lu WIs executed %lu skipped in %lus (%lu WIs/s, ETA in " "%lu s)\n", wi_count, wis_skipped, (uint64_t) spent_time_sec, (uint64_t) wis_per_sec, (uint64_t) eta_sec); } #endif } } while (1); fiber_exit (); } #endif #define MIN(a, b) ((a < b) ? a : b) #define MAX(a, b) ((a > b) ? a : b) #ifdef HAVE_FIBERS /* Spawns a given number of work-items to execute a set of work-groups, blocks until their completion. */ static void phsa_execute_wi_gang (PHSAKernelLaunchData *context, void *group_base_ptr, size_t wg_size_x, size_t wg_size_y, size_t wg_size_z) { PHSAWorkItem *wi_threads = NULL; PHSAWorkGroup wg; size_t flat_wi_id = 0, x, y, z, max_x, max_y, max_z; fiber_barrier_t wg_start_barrier; fiber_barrier_t wg_completion_barrier; fiber_barrier_t wg_sync_barrier; max_x = wg_size_x == 0 ? 1 : wg_size_x; max_y = wg_size_y == 0 ? 1 : wg_size_y; max_z = wg_size_z == 0 ? 1 : wg_size_z; size_t wg_size = max_x * max_y * max_z; if (wg_size > PHSA_MAX_WG_SIZE) phsa_fatal_error (2); wg.private_segment_total_size = context->dp->private_segment_size * wg_size; if (wg.private_segment_total_size > 0 && posix_memalign (&wg.private_base_ptr, PRIVATE_SEGMENT_ALIGN, wg.private_segment_total_size) != 0) phsa_fatal_error (3); wg.alloca_stack_p = wg.private_segment_total_size; wg.alloca_frame_p = wg.alloca_stack_p; #ifdef EXECUTE_WGS_BACKWARDS wg.x = context->wg_max_x - 1; wg.y = context->wg_max_y - 1; wg.z = context->wg_max_z - 1; #else wg.x = context->wg_min_x; wg.y = context->wg_min_y; wg.z = context->wg_min_z; #endif fiber_barrier_init (&wg_sync_barrier, wg_size); fiber_barrier_init (&wg_start_barrier, wg_size); fiber_barrier_init (&wg_completion_barrier, wg_size); context->wg_start_barrier = &wg_start_barrier; context->wg_sync_barrier = &wg_sync_barrier; context->wg_completion_barrier = &wg_completion_barrier; wg.more_wgs = 1; wg.group_base_ptr = group_base_ptr; #ifdef BENCHMARK_PHSA_RT wi_count = 0; wis_skipped = 0; start_time = clock (); #endif wi_threads = malloc (sizeof (PHSAWorkItem) * max_x * max_y * max_z); for (x = 0; x < max_x; ++x) for (y = 0; y < max_y; ++y) for (z = 0; z < max_z; ++z) { PHSAWorkItem *wi = &wi_threads[flat_wi_id]; wi->launch_data = context; wi->wg = &wg; wi->x = x; wi->y = y; wi->z = z; /* TODO: set the stack size according to the private segment size. Too big stack consumes huge amount of memory in case of huge number of WIs and a too small stack will fail in mysterious and potentially dangerous ways. */ fiber_init (&wi->fiber, phsa_work_item_thread, wi, FIBER_STACK_SIZE, PRIVATE_SEGMENT_ALIGN); ++flat_wi_id; } do { --flat_wi_id; fiber_join (&wi_threads[flat_wi_id].fiber); } while (flat_wi_id > 0); if (wg.private_segment_total_size > 0) free (wg.private_base_ptr); free (wi_threads); } /* Spawn the work-item threads to execute work-groups and let them execute all the WGs, including a potential partial WG. */ static void phsa_spawn_work_items (PHSAKernelLaunchData *context, void *group_base_ptr) { hsa_kernel_dispatch_packet_t *dp = context->dp; size_t x, y, z; /* TO DO: host-side memory management of group and private segment memory. Agents in general are less likely to support efficient dynamic mem allocation. */ if (dp->group_segment_size > 0 && posix_memalign (&group_base_ptr, PRIVATE_SEGMENT_ALIGN, dp->group_segment_size) != 0) phsa_fatal_error (3); context->group_segment_start_addr = (size_t) group_base_ptr; /* HSA seems to allow the WG size to be larger than the grid size. We need to saturate the effective WG size to the grid size to prevent the extra WIs from executing. */ size_t sat_wg_size_x, sat_wg_size_y, sat_wg_size_z, sat_wg_size; sat_wg_size_x = MIN (dp->workgroup_size_x, dp->grid_size_x); sat_wg_size_y = MIN (dp->workgroup_size_y, dp->grid_size_y); sat_wg_size_z = MIN (dp->workgroup_size_z, dp->grid_size_z); sat_wg_size = sat_wg_size_x * sat_wg_size_y * sat_wg_size_z; #ifdef BENCHMARK_PHSA_RT wi_total = (uint64_t) dp->grid_size_x * (dp->grid_size_y > 0 ? dp->grid_size_y : 1) * (dp->grid_size_z > 0 ? dp->grid_size_z : 1); #endif /* For now execute all work groups in a single coarse thread (does not utilize multicore/multithread). */ context->wg_min_x = context->wg_min_y = context->wg_min_z = 0; int dims = dp->setup & 0x3; context->wg_max_x = ((uint64_t) dp->grid_size_x + dp->workgroup_size_x - 1) / dp->workgroup_size_x; context->wg_max_y = dims < 2 ? 1 : ((uint64_t) dp->grid_size_y + dp->workgroup_size_y - 1) / dp->workgroup_size_y; context->wg_max_z = dims < 3 ? 1 : ((uint64_t) dp->grid_size_z + dp->workgroup_size_z - 1) / dp->workgroup_size_z; #ifdef DEBUG_PHSA_RT printf ("### launching work-groups %lu/%lu/%lu to %lu/%lu/%lu with " "wg size %lu/%lu/%lu grid size %u/%u/%u\n", context->wg_min_x, context->wg_min_y, context->wg_min_z, context->wg_max_x, context->wg_max_y, context->wg_max_z, sat_wg_size_x, sat_wg_size_y, sat_wg_size_z, dp->grid_size_x, dp->grid_size_y, dp->grid_size_z); #endif phsa_execute_wi_gang (context, group_base_ptr, sat_wg_size_x, sat_wg_size_y, sat_wg_size_z); if (dp->group_segment_size > 0) free (group_base_ptr); } #endif /* Executes the given work-group function for all work groups in the grid. A work-group function is a version of the original kernel which executes the kernel for all work-items in a work-group. It is produced by gccbrig if it can handle the kernel's barrier usage and is much faster way to execute massive numbers of work-items in a non-SPMD machine than fibers (easily 100x faster). */ static void phsa_execute_work_groups (PHSAKernelLaunchData *context, void *group_base_ptr) { hsa_kernel_dispatch_packet_t *dp = context->dp; size_t x, y, z, wg_x, wg_y, wg_z; /* TODO: host-side memory management of group and private segment memory. Agents in general are less likely to support efficient dynamic mem allocation. */ if (dp->group_segment_size > 0 && posix_memalign (&group_base_ptr, GROUP_SEGMENT_ALIGN, dp->group_segment_size) != 0) phsa_fatal_error (3); context->group_segment_start_addr = (size_t) group_base_ptr; /* HSA seems to allow the WG size to be larger than the grid size. We need to saturate the effective WG size to the grid size to prevent the extra WIs from executing. */ size_t sat_wg_size_x, sat_wg_size_y, sat_wg_size_z, sat_wg_size; sat_wg_size_x = MIN (dp->workgroup_size_x, dp->grid_size_x); sat_wg_size_y = MIN (dp->workgroup_size_y, dp->grid_size_y); sat_wg_size_z = MIN (dp->workgroup_size_z, dp->grid_size_z); sat_wg_size = sat_wg_size_x * sat_wg_size_y * sat_wg_size_z; #ifdef BENCHMARK_PHSA_RT wi_total = (uint64_t) dp->grid_size_x * (dp->grid_size_y > 0 ? dp->grid_size_y : 1) * (dp->grid_size_z > 0 ? dp->grid_size_z : 1); #endif context->wg_min_x = context->wg_min_y = context->wg_min_z = 0; int dims = dp->setup & 0x3; context->wg_max_x = ((uint64_t) dp->grid_size_x + dp->workgroup_size_x - 1) / dp->workgroup_size_x; context->wg_max_y = dims < 2 ? 1 : ((uint64_t) dp->grid_size_y + dp->workgroup_size_y - 1) / dp->workgroup_size_y; context->wg_max_z = dims < 3 ? 1 : ((uint64_t) dp->grid_size_z + dp->workgroup_size_z - 1) / dp->workgroup_size_z; #ifdef DEBUG_PHSA_RT printf ("### launching work-groups %lu/%lu/%lu to %lu/%lu/%lu with " "wg size %lu/%lu/%lu grid size %u/%u/%u\n", context->wg_min_x, context->wg_min_y, context->wg_min_z, context->wg_max_x, context->wg_max_y, context->wg_max_z, sat_wg_size_x, sat_wg_size_y, sat_wg_size_z, dp->grid_size_x, dp->grid_size_y, dp->grid_size_z); #endif PHSAWorkItem wi; PHSAWorkGroup wg; wi.wg = &wg; wi.x = wi.y = wi.z = 0; wi.launch_data = context; #ifdef BENCHMARK_PHSA_RT start_time = clock (); uint64_t wg_count = 0; #endif size_t wg_size = __hsail_workgroupsize (0, &wi) * __hsail_workgroupsize (1, &wi) * __hsail_workgroupsize (2, &wi); void *private_base_ptr = NULL; if (dp->private_segment_size > 0 && posix_memalign (&private_base_ptr, PRIVATE_SEGMENT_ALIGN, dp->private_segment_size * wg_size) != 0) phsa_fatal_error (3); wg.alloca_stack_p = dp->private_segment_size * wg_size; wg.alloca_frame_p = wg.alloca_stack_p; wg.private_base_ptr = private_base_ptr; wg.group_base_ptr = group_base_ptr; #ifdef DEBUG_PHSA_RT printf ("priv seg size %u wg_size %lu @ %p\n", dp->private_segment_size, wg_size, private_base_ptr); #endif for (wg_z = context->wg_min_z; wg_z < context->wg_max_z; ++wg_z) for (wg_y = context->wg_min_y; wg_y < context->wg_max_y; ++wg_y) for (wg_x = context->wg_min_x; wg_x < context->wg_max_x; ++wg_x) { wi.wg->x = wg_x; wi.wg->y = wg_y; wi.wg->z = wg_z; context->kernel (context->kernarg_addr, &wi, group_base_ptr, private_base_ptr); #if defined (BENCHMARK_PHSA_RT) wg_count++; if (wg_count % 1000000 == 0) { clock_t spent_time = clock () - start_time; uint64_t wi_count = wg_x * sat_wg_size_x + wg_y * sat_wg_size_y + wg_z * sat_wg_size_z; double spent_time_sec = (double) spent_time / CLOCKS_PER_SEC; double wis_per_sec = wi_count / spent_time_sec; uint64_t eta_sec = (wi_total - wi_count) / wis_per_sec; printf ("%lu WIs executed in %lus (%lu WIs/s, ETA in %lu s)\n", wi_count, (uint64_t) spent_time_sec, (uint64_t) wis_per_sec, (uint64_t) eta_sec); } #endif } #ifdef BENCHMARK_PHSA_RT clock_t spent_time = clock () - start_time; double spent_time_sec = (double) spent_time / CLOCKS_PER_SEC; double wis_per_sec = wi_total / spent_time_sec; printf ("### %lu WIs executed in %lu s (%lu WIs / s)\n", wi_total, (uint64_t) spent_time_sec, (uint64_t) wis_per_sec); #endif if (dp->group_segment_size > 0) free (group_base_ptr); free (private_base_ptr); private_base_ptr = NULL; } /* gccbrig generates the following from each HSAIL kernel: 1) The actual kernel function (a single work-item kernel or a work-group function) generated from HSAIL (BRIG). static void _Kernel (void* args, void* context, void* group_base_ptr) { ... } 2) A public facing kernel function that is called from the PHSA runtime: a) A single work-item function (that requires fibers for multi-WI): void Kernel (void* context) { __launch_launch_kernel (_Kernel, context); } or b) a when gccbrig could generate a work-group function: void Kernel (void* context) { __hsail_launch_wg_function (_Kernel, context); } */ #ifdef HAVE_FIBERS void __hsail_launch_kernel (gccbrigKernelFunc kernel, PHSAKernelLaunchData *context, void *group_base_ptr) { context->kernel = kernel; phsa_spawn_work_items (context, group_base_ptr); } #endif void __hsail_launch_wg_function (gccbrigKernelFunc kernel, PHSAKernelLaunchData *context, void *group_base_ptr) { context->kernel = kernel; phsa_execute_work_groups (context, group_base_ptr); } uint32_t __hsail_workitemabsid (uint32_t dim, PHSAWorkItem *context) { hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp; uint32_t id; switch (dim) { default: case 0: /* Overflow semantics in the case of WG dim > grid dim. */ id = ((uint64_t) context->wg->x * dp->workgroup_size_x + context->x) % dp->grid_size_x; break; case 1: id = ((uint64_t) context->wg->y * dp->workgroup_size_y + context->y) % dp->grid_size_y; break; case 2: id = ((uint64_t) context->wg->z * dp->workgroup_size_z + context->z) % dp->grid_size_z; break; } return id; } uint64_t __hsail_workitemabsid_u64 (uint32_t dim, PHSAWorkItem *context) { hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp; uint64_t id; switch (dim) { default: case 0: /* Overflow semantics in the case of WG dim > grid dim. */ id = ((uint64_t) context->wg->x * dp->workgroup_size_x + context->x) % dp->grid_size_x; break; case 1: id = ((uint64_t) context->wg->y * dp->workgroup_size_y + context->y) % dp->grid_size_y; break; case 2: id = ((uint64_t) context->wg->z * dp->workgroup_size_z + context->z) % dp->grid_size_z; break; } return id; } uint32_t __hsail_workitemid (uint32_t dim, PHSAWorkItem *context) { PHSAWorkItem *c = (PHSAWorkItem *) context; hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp; /* The number of dimensions is in the two least significant bits. */ int dims = dp->setup & 0x3; uint32_t id; switch (dim) { default: case 0: id = c->x; break; case 1: id = dims < 2 ? 0 : c->y; break; case 2: id = dims < 3 ? 0 : c->z; break; } return id; } uint32_t __hsail_gridgroups (uint32_t dim, PHSAWorkItem *context) { hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp; int dims = dp->setup & 0x3; uint32_t id; switch (dim) { default: case 0: id = (dp->grid_size_x + dp->workgroup_size_x - 1) / dp->workgroup_size_x; break; case 1: id = dims < 2 ? 1 : (dp->grid_size_y + dp->workgroup_size_y - 1) / dp->workgroup_size_y; break; case 2: id = dims < 3 ? 1 : (dp->grid_size_z + dp->workgroup_size_z - 1) / dp->workgroup_size_z; break; } return id; } uint32_t __hsail_workitemflatid (PHSAWorkItem *c) { hsa_kernel_dispatch_packet_t *dp = c->launch_data->dp; return c->x + c->y * dp->workgroup_size_x + c->z * dp->workgroup_size_x * dp->workgroup_size_y; } uint32_t __hsail_currentworkitemflatid (PHSAWorkItem *c) { hsa_kernel_dispatch_packet_t *dp = c->launch_data->dp; return c->x + c->y * __hsail_currentworkgroupsize (0, c) + c->z * __hsail_currentworkgroupsize (0, c) * __hsail_currentworkgroupsize (1, c); } void __hsail_setworkitemid (uint32_t dim, uint32_t id, PHSAWorkItem *context) { switch (dim) { default: case 0: context->x = id; break; case 1: context->y = id; break; case 2: context->z = id; break; } } uint64_t __hsail_workitemflatabsid_u64 (PHSAWorkItem *context) { PHSAWorkItem *c = (PHSAWorkItem *) context; hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp; /* Work-item flattened absolute ID = ID0 + ID1 * max0 + ID2 * max0 * max1. */ uint64_t id0 = __hsail_workitemabsid (0, context); uint64_t id1 = __hsail_workitemabsid (1, context); uint64_t id2 = __hsail_workitemabsid (2, context); uint64_t max0 = dp->grid_size_x; uint64_t max1 = dp->grid_size_y; uint64_t id = id0 + id1 * max0 + id2 * max0 * max1; return id; } uint32_t __hsail_workitemflatabsid_u32 (PHSAWorkItem *context) { PHSAWorkItem *c = (PHSAWorkItem *) context; hsa_kernel_dispatch_packet_t *dp = context->launch_data->dp; /* work-item flattened absolute ID = ID0 + ID1 * max0 + ID2 * max0 * max1. */ uint64_t id0 = __hsail_workitemabsid (0, context); uint64_t id1 = __hsail_workitemabsid (1, context); uint64_t id2 = __hsail_workitemabsid (2, context); uint64_t max0 = dp->grid_size_x; uint64_t max1 = dp->grid_size_y; uint64_t id = id0 + id1 * max0 + id2 * max0 * max1; return (uint32_t) id; } uint32_t __hsail_currentworkgroupsize (uint32_t dim, PHSAWorkItem *wi) { hsa_kernel_dispatch_packet_t *dp = wi->launch_data->dp; uint32_t wg_size = 0; switch (dim) { default: case 0: if ((uint64_t) wi->wg->x < dp->grid_size_x / dp->workgroup_size_x) wg_size = dp->workgroup_size_x; /* Full WG. */ else wg_size = dp->grid_size_x % dp->workgroup_size_x; /* Partial WG. */ break; case 1: if ((uint64_t) wi->wg->y < dp->grid_size_y / dp->workgroup_size_y) wg_size = dp->workgroup_size_y; /* Full WG. */ else wg_size = dp->grid_size_y % dp->workgroup_size_y; /* Partial WG. */ break; case 2: if ((uint64_t) wi->wg->z < dp->grid_size_z / dp->workgroup_size_z) wg_size = dp->workgroup_size_z; /* Full WG. */ else wg_size = dp->grid_size_z % dp->workgroup_size_z; /* Partial WG. */ break; } return wg_size; } uint32_t __hsail_workgroupsize (uint32_t dim, PHSAWorkItem *wi) { hsa_kernel_dispatch_packet_t *dp = wi->launch_data->dp; switch (dim) { default: case 0: return dp->workgroup_size_x; case 1: return dp->workgroup_size_y; case 2: return dp->workgroup_size_z; } } uint32_t __hsail_gridsize (uint32_t dim, PHSAWorkItem *wi) { hsa_kernel_dispatch_packet_t *dp = wi->launch_data->dp; switch (dim) { default: case 0: return dp->grid_size_x; case 1: return dp->grid_size_y; case 2: return dp->grid_size_z; } } uint32_t __hsail_workgroupid (uint32_t dim, PHSAWorkItem *wi) { switch (dim) { default: case 0: return wi->wg->x; case 1: return wi->wg->y; case 2: return wi->wg->z; } } uint32_t __hsail_dim (PHSAWorkItem *wi) { hsa_kernel_dispatch_packet_t *dp = wi->launch_data->dp; return dp->setup & 0x3; } uint64_t __hsail_packetid (PHSAWorkItem *wi) { return wi->launch_data->packet_id; } uint32_t __hsail_packetcompletionsig_sig32 (PHSAWorkItem *wi) { return (uint32_t) wi->launch_data->dp->completion_signal.handle; } uint64_t __hsail_packetcompletionsig_sig64 (PHSAWorkItem *wi) { return (uint64_t) (wi->launch_data->dp->completion_signal.handle); } #ifdef HAVE_FIBERS void __hsail_barrier (PHSAWorkItem *wi) { fiber_barrier_reach ((fiber_barrier_t *) wi->launch_data->wg_sync_barrier); } #endif /* Return a 32b private segment address that points to a dynamically allocated chunk of 'size' with 'align'. Allocates the space from the end of the private segment allocated for the whole work group. In implementations with separate private memories per WI, we will need to have a stack pointer per WI. But in the current implementation, the segment is shared, so we possibly save some space in case all WIs do not call the alloca. The "alloca frames" are organized as follows: wg->alloca_stack_p points to the last allocated data (initially outside the private segment) wg->alloca_frame_p points to the first address _outside_ the current function's allocations (initially to the same as alloca_stack_p) The data is allocated downwards from the end of the private segment. In the beginning of a new function which has allocas, a new alloca frame is pushed which adds the current alloca_frame_p (the current function's frame starting point) to the top of the alloca stack and alloca_frame_p is set to the current stack position. At the exit points of a function with allocas, the alloca frame is popped before returning. This involves popping the alloca_frame_p to the one of the previous function in the call stack, and alloca_stack_p similarly, to the position of the last word alloca'd by the previous function. */ uint32_t __hsail_alloca (uint32_t size, uint32_t align, PHSAWorkItem *wi) { volatile PHSAWorkGroup *wg = wi->wg; uint32_t new_pos = wg->alloca_stack_p - size; while (new_pos % align != 0) new_pos--; wg->alloca_stack_p = new_pos; #ifdef DEBUG_ALLOCA printf ("--- alloca (%u, %u) sp @%u fp @%u\n", size, align, wg->alloca_stack_p, wg->alloca_frame_p); #endif return new_pos; } /* Initializes a new "alloca frame" in the private segment. This should be called at all the function entry points in case the function contains at least one call to alloca. */ void __hsail_alloca_push_frame (PHSAWorkItem *wi) { volatile PHSAWorkGroup *wg = wi->wg; /* Store the alloca_frame_p without any alignment padding so we know exactly where the previous frame ended after popping it. */ #ifdef DEBUG_ALLOCA printf ("--- push frame "); #endif uint32_t last_word_offs = __hsail_alloca (4, 1, wi); memcpy (wg->private_base_ptr + last_word_offs, (const void *) &wg->alloca_frame_p, 4); wg->alloca_frame_p = last_word_offs; #ifdef DEBUG_ALLOCA printf ("--- sp @%u fp @%u\n", wg->alloca_stack_p, wg->alloca_frame_p); #endif } /* Frees the current "alloca frame" and restores the frame pointer. This should be called at all the function return points in case the function contains at least one call to alloca. Restores the alloca stack to the condition it was before pushing the frame the last time. */ void __hsail_alloca_pop_frame (PHSAWorkItem *wi) { volatile PHSAWorkGroup *wg = wi->wg; wg->alloca_stack_p = wg->alloca_frame_p; memcpy ((void *) &wg->alloca_frame_p, (const void *) (wg->private_base_ptr + wg->alloca_frame_p), 4); /* Now frame_p points to the beginning of the previous function's frame and stack_p to its end. */ wg->alloca_stack_p += 4; #ifdef DEBUG_ALLOCA printf ("--- pop frame sp @%u fp @%u\n", wg->alloca_stack_p, wg->alloca_frame_p); #endif }