/* * Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "apps.h" /* for app_malloc() and copy_argv() */ char **newargv = NULL; static void cleanup_argv(void) { OPENSSL_free(newargv); newargv = NULL; } char **copy_argv(int *argc, char *argv[]) { /*- * The note below is for historical purpose. On VMS now we always * copy argv "safely." * * 2011-03-22 SMS. * If we have 32-bit pointers everywhere, then we're safe, and * we bypass this mess, as on non-VMS systems. * Problem 1: Compaq/HP C before V7.3 always used 32-bit * pointers for argv[]. * Fix 1: For a 32-bit argv[], when we're using 64-bit pointers * everywhere else, we always allocate and use a 64-bit * duplicate of argv[]. * Problem 2: Compaq/HP C V7.3 (Alpha, IA64) before ECO1 failed * to NULL-terminate a 64-bit argv[]. (As this was written, the * compiler ECO was available only on IA64.) * Fix 2: Unless advised not to (VMS_TRUST_ARGV), we test a * 64-bit argv[argc] for NULL, and, if necessary, use a * (properly) NULL-terminated (64-bit) duplicate of argv[]. * The same code is used in either case to duplicate argv[]. * Some of these decisions could be handled in preprocessing, * but the code tends to get even uglier, and the penalty for * deciding at compile- or run-time is tiny. */ int i, count = *argc; char **p = newargv; cleanup_argv(); newargv = app_malloc(sizeof(*newargv) * (count + 1), "argv copy"); if (newargv == NULL) return NULL; /* Register automatic cleanup on first use */ if (p == NULL) OPENSSL_atexit(cleanup_argv); for (i = 0; i < count; i++) newargv[i] = argv[i]; newargv[i] = NULL; *argc = i; return newargv; }