/*
 * Copyright ツゥ 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>

#include "anv_private.h"
#include "common/intel_defines.h"
#include "common/intel_gem.h"
#include "drm-uapi/sync_file.h"

/**
 * Wrapper around DRM_IOCTL_I915_GEM_CREATE.
 *
 * Return gem handle, or 0 on failure. Gem handles are never 0.
 */
uint32_t
anv_gem_create(struct anv_device *device, uint64_t size)
{
   struct drm_i915_gem_create gem_create = {
      .size = size,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_CREATE, &gem_create);
   if (ret != 0) {
      /* FIXME: What do we do if this fails? */
      return 0;
   }

   return gem_create.handle;
}

void
anv_gem_close(struct anv_device *device, uint32_t gem_handle)
{
   struct drm_gem_close close = {
      .handle = gem_handle,
   };

   intel_ioctl(device->fd, DRM_IOCTL_GEM_CLOSE, &close);
}

uint32_t
anv_gem_create_regions(struct anv_device *device, uint64_t anv_bo_size,
                       uint32_t num_regions,
                       struct drm_i915_gem_memory_class_instance *regions)
{
   struct drm_i915_gem_create_ext_memory_regions ext_regions = {
      .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
      .num_regions = num_regions,
      .regions = (uintptr_t)regions,
   };

   struct drm_i915_gem_create_ext gem_create = {
      .size = anv_bo_size,
      .extensions = (uintptr_t) &ext_regions,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_CREATE_EXT,
                         &gem_create);
   if (ret != 0) {
      return 0;
   }

   return gem_create.handle;
}

/**
 * Wrapper around DRM_IOCTL_I915_GEM_MMAP. Returns MAP_FAILED on error.
 */
static void*
anv_gem_mmap_offset(struct anv_device *device, uint32_t gem_handle,
                    uint64_t offset, uint64_t size, uint32_t flags)
{
   struct drm_i915_gem_mmap_offset gem_mmap = {
      .handle = gem_handle,
      .flags = device->info.has_local_mem ? I915_MMAP_OFFSET_FIXED :
         (flags & I915_MMAP_WC) ? I915_MMAP_OFFSET_WC : I915_MMAP_OFFSET_WB,
   };
   assert(offset == 0);

   /* Get the fake offset back */
   int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET, &gem_mmap);
   if (ret != 0)
      return MAP_FAILED;

   /* And map it */
   void *map = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED,
                    device->fd, gem_mmap.offset);
   return map;
}

static void*
anv_gem_mmap_legacy(struct anv_device *device, uint32_t gem_handle,
                    uint64_t offset, uint64_t size, uint32_t flags)
{
   assert(!device->info.has_local_mem);

   struct drm_i915_gem_mmap gem_mmap = {
      .handle = gem_handle,
      .offset = offset,
      .size = size,
      .flags = flags,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_MMAP, &gem_mmap);
   if (ret != 0)
      return MAP_FAILED;

   return (void *)(uintptr_t) gem_mmap.addr_ptr;
}

/**
 * Wrapper around DRM_IOCTL_I915_GEM_MMAP. Returns MAP_FAILED on error.
 */
void*
anv_gem_mmap(struct anv_device *device, uint32_t gem_handle,
             uint64_t offset, uint64_t size, uint32_t flags)
{
   void *map;
   if (device->physical->has_mmap_offset)
      map = anv_gem_mmap_offset(device, gem_handle, offset, size, flags);
   else
      map = anv_gem_mmap_legacy(device, gem_handle, offset, size, flags);

   if (map != MAP_FAILED)
      VG(VALGRIND_MALLOCLIKE_BLOCK(map, size, 0, 1));

   return map;
}

/* This is just a wrapper around munmap, but it also notifies valgrind that
 * this map is no longer valid.  Pair this with anv_gem_mmap().
 */
void
anv_gem_munmap(struct anv_device *device, void *p, uint64_t size)
{
   VG(VALGRIND_FREELIKE_BLOCK(p, 0));
   munmap(p, size);
}

uint32_t
anv_gem_userptr(struct anv_device *device, void *mem, size_t size)
{
   struct drm_i915_gem_userptr userptr = {
      .user_ptr = (__u64)((unsigned long) mem),
      .user_size = size,
      .flags = 0,
   };

   if (device->physical->has_userptr_probe)
      userptr.flags |= I915_USERPTR_PROBE;

   int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
   if (ret == -1)
      return 0;

   return userptr.handle;
}

int
anv_gem_set_caching(struct anv_device *device,
                    uint32_t gem_handle, uint32_t caching)
{
   struct drm_i915_gem_caching gem_caching = {
      .handle = gem_handle,
      .caching = caching,
   };

   return intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &gem_caching);
}

int
anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
                   uint32_t read_domains, uint32_t write_domain)
{
   struct drm_i915_gem_set_domain gem_set_domain = {
      .handle = gem_handle,
      .read_domains = read_domains,
      .write_domain = write_domain,
   };

   return intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &gem_set_domain);
}

/**
 * Returns 0, 1, or negative to indicate error
 */
int
anv_gem_busy(struct anv_device *device, uint32_t gem_handle)
{
   struct drm_i915_gem_busy busy = {
      .handle = gem_handle,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
   if (ret < 0)
      return ret;

   return busy.busy != 0;
}

/**
 * On error, \a timeout_ns holds the remaining time.
 */
int
anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns)
{
   struct drm_i915_gem_wait wait = {
      .bo_handle = gem_handle,
      .timeout_ns = *timeout_ns,
      .flags = 0,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
   *timeout_ns = wait.timeout_ns;

   return ret;
}

int
anv_gem_execbuffer(struct anv_device *device,
                   struct drm_i915_gem_execbuffer2 *execbuf)
{
   if (execbuf->flags & I915_EXEC_FENCE_OUT)
      return intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2_WR, execbuf);
   else
      return intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, execbuf);
}

/** Return -1 on error. */
int
anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle)
{
   struct drm_i915_gem_get_tiling get_tiling = {
      .handle = gem_handle,
   };

   /* FIXME: On discrete platforms we don't have DRM_IOCTL_I915_GEM_GET_TILING
    * anymore, so we will need another way to get the tiling. Apparently this
    * is only used in Android code, so we may need some other way to
    * communicate the tiling mode.
    */
   if (intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling)) {
      assert(!"Failed to get BO tiling");
      return -1;
   }

   return get_tiling.tiling_mode;
}

int
anv_gem_set_tiling(struct anv_device *device,
                   uint32_t gem_handle, uint32_t stride, uint32_t tiling)
{
   int ret;

   /* On discrete platforms we don't have DRM_IOCTL_I915_GEM_SET_TILING. So
    * nothing needs to be done.
    */
   if (!device->info.has_tiling_uapi)
      return 0;

   /* set_tiling overwrites the input on the error path, so we have to open
    * code intel_ioctl.
    */
   do {
      struct drm_i915_gem_set_tiling set_tiling = {
         .handle = gem_handle,
         .tiling_mode = tiling,
         .stride = stride,
      };

      ret = ioctl(device->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
   } while (ret == -1 && (errno == EINTR || errno == EAGAIN));

   return ret;
}

int
anv_gem_get_param(int fd, uint32_t param)
{
   int tmp;

   drm_i915_getparam_t gp = {
      .param = param,
      .value = &tmp,
   };

   int ret = intel_ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
   if (ret == 0)
      return tmp;

   return 0;
}

uint64_t
anv_gem_get_drm_cap(int fd, uint32_t capability)
{
   struct drm_get_cap cap = {
      .capability = capability,
   };

   intel_ioctl(fd, DRM_IOCTL_GET_CAP, &cap);
   return cap.value;
}

bool
anv_gem_get_bit6_swizzle(int fd, uint32_t tiling)
{
   struct drm_gem_close close;
   int ret;

   struct drm_i915_gem_create gem_create = {
      .size = 4096,
   };

   if (intel_ioctl(fd, DRM_IOCTL_I915_GEM_CREATE, &gem_create)) {
      assert(!"Failed to create GEM BO");
      return false;
   }

   bool swizzled = false;

   /* set_tiling overwrites the input on the error path, so we have to open
    * code intel_ioctl.
    */
   do {
      struct drm_i915_gem_set_tiling set_tiling = {
         .handle = gem_create.handle,
         .tiling_mode = tiling,
         .stride = tiling == I915_TILING_X ? 512 : 128,
      };

      ret = ioctl(fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
   } while (ret == -1 && (errno == EINTR || errno == EAGAIN));

   if (ret != 0) {
      assert(!"Failed to set BO tiling");
      goto close_and_return;
   }

   struct drm_i915_gem_get_tiling get_tiling = {
      .handle = gem_create.handle,
   };

   if (intel_ioctl(fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling)) {
      assert(!"Failed to get BO tiling");
      goto close_and_return;
   }

   swizzled = get_tiling.swizzle_mode != I915_BIT_6_SWIZZLE_NONE;

close_and_return:

   memset(&close, 0, sizeof(close));
   close.handle = gem_create.handle;
   intel_ioctl(fd, DRM_IOCTL_GEM_CLOSE, &close);

   return swizzled;
}

bool
anv_gem_has_context_priority(int fd)
{
   return !anv_gem_set_context_param(fd, 0, I915_CONTEXT_PARAM_PRIORITY,
                                     INTEL_CONTEXT_MEDIUM_PRIORITY);
}

int
anv_gem_create_context(struct anv_device *device)
{
   struct drm_i915_gem_context_create create = { 0 };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
   if (ret == -1)
      return -1;

   return create.ctx_id;
}

int
anv_gem_create_context_engines(struct anv_device *device,
                               const struct drm_i915_query_engine_info *info,
                               int num_engines, uint16_t *engine_classes)
{
   const size_t engine_inst_sz = 2 * sizeof(__u16); /* 1 class, 1 instance */
   const size_t engines_param_size =
      sizeof(__u64) /* extensions */ + num_engines * engine_inst_sz;

   void *engines_param = malloc(engines_param_size);
   assert(engines_param);
   *(__u64*)engines_param = 0;
   __u16 *class_inst_ptr = (__u16*)(((__u64*)engines_param) + 1);

   /* For each type of drm_i915_gem_engine_class of interest, we keep track of
    * the previous engine instance used.
    */
   int last_engine_idx[] = {
      [I915_ENGINE_CLASS_RENDER] = -1,
   };

   int i915_engine_counts[] = {
      [I915_ENGINE_CLASS_RENDER] =
         anv_gem_count_engines(info, I915_ENGINE_CLASS_RENDER),
   };

   /* For each queue, we look for the next instance that matches the class we
    * need.
    */
   for (int i = 0; i < num_engines; i++) {
      uint16_t engine_class = engine_classes[i];
      if (i915_engine_counts[engine_class] <= 0) {
         free(engines_param);
         return -1;
      }

      /* Run through the engines reported by the kernel looking for the next
       * matching instance. We loop in case we want to create multiple
       * contexts on an engine instance.
       */
      int engine_instance = -1;
      for (int i = 0; i < info->num_engines; i++) {
         int *idx = &last_engine_idx[engine_class];
         if (++(*idx) >= info->num_engines)
            *idx = 0;
         if (info->engines[*idx].engine.engine_class == engine_class) {
            engine_instance = info->engines[*idx].engine.engine_instance;
            break;
         }
      }
      if (engine_instance < 0) {
         free(engines_param);
         return -1;
      }

      *class_inst_ptr++ = engine_class;
      *class_inst_ptr++ = engine_instance;
   }

   assert((uintptr_t)engines_param + engines_param_size ==
          (uintptr_t)class_inst_ptr);

   struct drm_i915_gem_context_create_ext_setparam set_engines = {
      .base = {
         .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
      },
      .param = {
	 .param = I915_CONTEXT_PARAM_ENGINES,
         .value = (uintptr_t)engines_param,
         .size = engines_param_size,
      }
   };
   struct drm_i915_gem_context_create_ext create = {
      .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
      .extensions = (uintptr_t)&set_engines,
   };
   int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT, &create);
   free(engines_param);
   if (ret == -1)
      return -1;

   return create.ctx_id;
}

int
anv_gem_destroy_context(struct anv_device *device, int context)
{
   struct drm_i915_gem_context_destroy destroy = {
      .ctx_id = context,
   };

   return intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &destroy);
}

int
anv_gem_set_context_param(int fd, int context, uint32_t param, uint64_t value)
{
   struct drm_i915_gem_context_param p = {
      .ctx_id = context,
      .param = param,
      .value = value,
   };
   int err = 0;

   if (intel_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
      err = -errno;
   return err;
}

int
anv_gem_get_context_param(int fd, int context, uint32_t param, uint64_t *value)
{
   struct drm_i915_gem_context_param gp = {
      .ctx_id = context,
      .param = param,
   };

   int ret = intel_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &gp);
   if (ret == -1)
      return -1;

   *value = gp.value;
   return 0;
}

int
anv_gem_context_get_reset_stats(int fd, int context,
                                uint32_t *active, uint32_t *pending)
{
   struct drm_i915_reset_stats stats = {
      .ctx_id = context,
   };

   int ret = intel_ioctl(fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
   if (ret == 0) {
      *active = stats.batch_active;
      *pending = stats.batch_pending;
   }

   return ret;
}

int
anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle)
{
   struct drm_prime_handle args = {
      .handle = gem_handle,
      .flags = DRM_CLOEXEC | DRM_RDWR,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args);
   if (ret == -1)
      return -1;

   return args.fd;
}

uint32_t
anv_gem_fd_to_handle(struct anv_device *device, int fd)
{
   struct drm_prime_handle args = {
      .fd = fd,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &args);
   if (ret == -1)
      return 0;

   return args.handle;
}

int
anv_gem_reg_read(int fd, uint32_t offset, uint64_t *result)
{
   struct drm_i915_reg_read args = {
      .offset = offset
   };

   int ret = intel_ioctl(fd, DRM_IOCTL_I915_REG_READ, &args);

   *result = args.val;
   return ret;
}

int
anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2)
{
   struct sync_merge_data args = {
      .name = "anv merge fence",
      .fd2 = fd2,
      .fence = -1,
   };

   int ret = intel_ioctl(fd1, SYNC_IOC_MERGE, &args);
   if (ret == -1)
      return -1;

   return args.fence;
}

uint32_t
anv_gem_syncobj_create(struct anv_device *device, uint32_t flags)
{
   struct drm_syncobj_create args = {
      .flags = flags,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_CREATE, &args);
   if (ret)
      return 0;

   return args.handle;
}

void
anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle)
{
   struct drm_syncobj_destroy args = {
      .handle = handle,
   };

   intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_DESTROY, &args);
}

int
anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle)
{
   struct drm_syncobj_handle args = {
      .handle = handle,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_HANDLE_TO_FD, &args);
   if (ret)
      return -1;

   return args.fd;
}

uint32_t
anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd)
{
   struct drm_syncobj_handle args = {
      .fd = fd,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_FD_TO_HANDLE, &args);
   if (ret)
      return 0;

   return args.handle;
}

int
anv_gem_syncobj_export_sync_file(struct anv_device *device, uint32_t handle)
{
   struct drm_syncobj_handle args = {
      .handle = handle,
      .flags = DRM_SYNCOBJ_HANDLE_TO_FD_FLAGS_EXPORT_SYNC_FILE,
   };

   int ret = intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_HANDLE_TO_FD, &args);
   if (ret)
      return -1;

   return args.fd;
}

int
anv_gem_syncobj_import_sync_file(struct anv_device *device,
                                 uint32_t handle, int fd)
{
   struct drm_syncobj_handle args = {
      .handle = handle,
      .fd = fd,
      .flags = DRM_SYNCOBJ_FD_TO_HANDLE_FLAGS_IMPORT_SYNC_FILE,
   };

   return intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_FD_TO_HANDLE, &args);
}

void
anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle)
{
   struct drm_syncobj_array args = {
      .handles = (uint64_t)(uintptr_t)&handle,
      .count_handles = 1,
   };

   intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_RESET, &args);
}

bool
anv_gem_supports_syncobj_wait(int fd)
{
   return intel_gem_supports_syncobj_wait(fd);
}

int
anv_gem_syncobj_wait(struct anv_device *device,
                     const uint32_t *handles, uint32_t num_handles,
                     int64_t abs_timeout_ns, bool wait_all)
{
   struct drm_syncobj_wait args = {
      .handles = (uint64_t)(uintptr_t)handles,
      .count_handles = num_handles,
      .timeout_nsec = abs_timeout_ns,
      .flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT,
   };

   if (wait_all)
      args.flags |= DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL;

   return intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_WAIT, &args);
}

int
anv_gem_syncobj_timeline_wait(struct anv_device *device,
                              const uint32_t *handles, const uint64_t *points,
                              uint32_t num_items, int64_t abs_timeout_ns,
                              bool wait_all, bool wait_materialize)
{
   assert(device->physical->has_syncobj_wait_available);

   struct drm_syncobj_timeline_wait args = {
      .handles = (uint64_t)(uintptr_t)handles,
      .points = (uint64_t)(uintptr_t)points,
      .count_handles = num_items,
      .timeout_nsec = abs_timeout_ns,
      .flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT,
   };

   if (wait_all)
      args.flags |= DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL;
   if (wait_materialize)
      args.flags |= DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE;

   return intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_TIMELINE_WAIT, &args);
}

int
anv_gem_syncobj_timeline_signal(struct anv_device *device,
                                const uint32_t *handles, const uint64_t *points,
                                uint32_t num_items)
{
   assert(device->physical->has_syncobj_wait_available);

   struct drm_syncobj_timeline_array args = {
      .handles = (uint64_t)(uintptr_t)handles,
      .points = (uint64_t)(uintptr_t)points,
      .count_handles = num_items,
   };

   return intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_TIMELINE_SIGNAL, &args);
}

int
anv_gem_syncobj_timeline_query(struct anv_device *device,
                               const uint32_t *handles, uint64_t *points,
                               uint32_t num_items)
{
   assert(device->physical->has_syncobj_wait_available);

   struct drm_syncobj_timeline_array args = {
      .handles = (uint64_t)(uintptr_t)handles,
      .points = (uint64_t)(uintptr_t)points,
      .count_handles = num_items,
   };

   return intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_QUERY, &args);
}

struct drm_i915_query_engine_info *
anv_gem_get_engine_info(int fd)
{
   return intel_i915_query_alloc(fd, DRM_I915_QUERY_ENGINE_INFO);
}

int
anv_gem_count_engines(const struct drm_i915_query_engine_info *info,
                      uint16_t engine_class)
{
   int count = 0;
   for (int i = 0; i < info->num_engines; i++) {
      if (info->engines[i].engine.engine_class == engine_class)
         count++;
   }
   return count;
}