/* * Copyright (C) 2021 Alyssa Rosenzweig * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __AGX_MINIFLOAT_H_ #define __AGX_MINIFLOAT_H_ #include #include "util/macros.h" /* AGX includes an 8-bit floating-point format for small dyadic immediates, * consisting of 3 bits for the exponent, 4 bits for the mantissa, and 1-bit * for sign, in the usual order. Zero exponent has special handling. */ static inline float agx_minifloat_decode(uint8_t imm) { float sign = (imm & 0x80) ? -1.0 : 1.0; signed exp = (imm & 0x70) >> 4; unsigned mantissa = (imm & 0xF); if (exp) return ldexpf(sign * (float) (mantissa | 0x10), exp - 7); else return ldexpf(sign * ((float) mantissa), -6); } /* Encodes a float. Results are only valid if the float can be represented * exactly, if not the result of this function is UNDEFINED. signbit() is used * to ensure -0.0 is handled correctly. */ static inline uint8_t agx_minifloat_encode(float f) { unsigned sign = signbit(f) ? 0x80 : 0; f = fabsf(f); /* frac is in [0.5, 1) and f = frac * 2^exp */ int exp = 0; float frac = frexpf(f, &exp); if (f >= 0.25) { unsigned mantissa = (frac * 32.0); exp -= 5; /* 2^5 = 32 */ exp = CLAMP(exp + 7, 0, 7); assert(mantissa >= 0x10 && mantissa < 0x20); assert(exp >= 1); return sign | (exp << 4) | (mantissa & 0xF); } else { unsigned mantissa = (f * 64.0f); assert(mantissa < 0x10); return sign | mantissa; } } static inline bool agx_minifloat_exact(float f) { float f_ = agx_minifloat_decode(agx_minifloat_encode(f)); return memcmp(&f, &f_, sizeof(float)) == 0; } #ifndef NDEBUG static inline void agx_minifloat_tests(void) { /* Decode some representative values */ assert(agx_minifloat_decode(0) == 0.0f); assert(agx_minifloat_decode(25) == 0.390625f); assert(agx_minifloat_decode(135) == -0.109375f); assert(agx_minifloat_decode(255) == -31.0); /* Verify exactness */ assert(agx_minifloat_exact(0.0f)); assert(agx_minifloat_exact(0.390625f)); assert(agx_minifloat_exact(-0.109375f)); assert(agx_minifloat_exact(-31.0)); assert(!agx_minifloat_exact(3.141f)); assert(!agx_minifloat_exact(2.718f)); assert(!agx_minifloat_exact(1.618f)); /* Check that all values round trip */ for (unsigned i = 0; i < 0x100; ++i) { float f = agx_minifloat_decode(i); assert(agx_minifloat_encode(f) == i); assert(agx_minifloat_exact(f)); } } #endif #endif