/* $NetBSD: fd.c,v 1.89 2024/12/21 17:40:11 tsutsui Exp $ */ /*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Don Ahn. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fd.c 7.4 (Berkeley) 5/25/91 */ /*- * Copyright (c) 1993, 1994, 1995 Charles M. Hannum. * * This code is derived from software contributed to Berkeley by * Don Ahn. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fd.c 7.4 (Berkeley) 5/25/91 */ #include __KERNEL_RCSID(0, "$NetBSD: fd.c,v 1.89 2024/12/21 17:40:11 tsutsui Exp $"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ioconf.h" /* * Print a complaint when no fd children were specified * in the config file. Better than a link error... * * XXX: Some folks say this driver should be split in two, * but that seems pointless with ONLY one type of child. * (Thankfully, no 3/80 boxes have floppy tapes!:) */ #include "fdc.h" #if NFD == 0 #error "fdc but no fd?" #endif #define FDUNIT(dev) (minor(dev) / 8) #define FDTYPE(dev) (minor(dev) % 8) /* (mis)use device use flag to identify format operation */ #define B_FORMAT B_DEVPRIVATE #ifdef FD_DEBUG int fdc_debug = 0; #endif enum fdc_state { DEVIDLE = 0, MOTORWAIT, DOSEEK, SEEKWAIT, SEEKTIMEDOUT, SEEKCOMPLETE, DOIO, IOCOMPLETE, IOTIMEDOUT, DORESET, RESETCOMPLETE, RESETTIMEDOUT, DORECAL, RECALWAIT, RECALTIMEDOUT, RECALCOMPLETE, }; /* software state, per controller */ struct fdc_softc { device_t sc_dev; /* boilerplate */ void * sc_reg; struct callout sc_timo_ch; /* timeout callout */ struct callout sc_intr_ch; /* pseudo-intr callout */ struct fd_softc *sc_fd[4]; /* pointers to children */ TAILQ_HEAD(drivehead, fd_softc) sc_drives; enum fdc_state sc_state; int sc_flags; #define FDC_82077 0x01 #define FDC_NEEDHEADSETTLE 0x02 #define FDC_EIS 0x04 int sc_errors; /* number of retries so far */ int sc_overruns; /* number of DMA overruns */ int sc_cfg; /* current configuration */ int sc_fcr; /* current image of floppy ctrlr reg. */ struct fdcio sc_io; #define sc_reg_msr sc_io.fdcio_reg_msr #define sc_reg_fifo sc_io.fdcio_reg_fifo #define sc_reg_fcr sc_io.fdcio_reg_fcr #define sc_reg_fvr sc_io.fdcio_reg_fvr #define sc_reg_drs sc_io.fdcio_reg_msr #define sc_istate sc_io.fdcio_istate #define sc_data sc_io.fdcio_data #define sc_tc sc_io.fdcio_tc #define sc_nstat sc_io.fdcio_nstat #define sc_status sc_io.fdcio_status #define sc_intrcnt sc_io.fdcio_intrcnt void *sc_si; /* softintr cookie */ }; /* controller driver configuration */ static int fdcmatch(device_t, cfdata_t, void *); static void fdcattach(device_t, device_t, void *); CFATTACH_DECL_NEW(fdc, sizeof(struct fdc_softc), fdcmatch, fdcattach, NULL, NULL); static struct fd_type *fd_dev_to_type(struct fd_softc *, dev_t); /* * Floppies come in various flavors, e.g., 1.2MB vs 1.44MB; here is how * we tell them apart. */ struct fd_type { int sectrac; /* sectors per track */ int heads; /* number of heads */ int seccyl; /* sectors per cylinder */ int secsize; /* size code for sectors */ int datalen; /* data len when secsize = 0 */ int steprate; /* step rate and head unload time */ int gap1; /* gap len between sectors */ int gap2; /* formatting gap */ int tracks; /* total num of tracks */ int size; /* size of disk in sectors */ int step; /* steps per cylinder */ int rate; /* transfer speed code */ int fillbyte; /* format fill byte */ int interleave; /* interleave factor (formatting) */ const char *name; }; /* The order of entries in the following table is important -- BEWARE! */ static struct fd_type fd_types[] = { { 18, 2, 36, 2, 0xff, 0xcf, 0x18, 0x50, 80, 2880, 1, FDC_500KBPS, 0xf6, 1, "1.44MB" }, /* 1.44MB diskette */ { 15, 2, 30, 2, 0xff, 0xdf, 0x1b, 0x54, 80, 2400, 1, FDC_500KBPS, 0xf6, 1, "1.2MB" }, /* 1.2 MB AT-diskettes */ { 9, 2, 18, 2, 0xff, 0xdf, 0x23, 0x50, 40, 720, 2, FDC_300KBPS, 0xf6, 1, "360KB/AT" }, /* 360kB in 1.2MB drive */ { 9, 2, 18, 2, 0xff, 0xdf, 0x2a, 0x50, 40, 720, 1, FDC_250KBPS, 0xf6, 1, "360KB/PC" }, /* 360kB PC diskettes */ { 9, 2, 18, 2, 0xff, 0xdf, 0x2a, 0x50, 80, 1440, 1, FDC_250KBPS, 0xf6, 1, "720KB" }, /* 3.5" 720kB diskette */ { 9, 2, 18, 2, 0xff, 0xdf, 0x23, 0x50, 80, 1440, 1, FDC_300KBPS, 0xf6, 1, "720KB/x" }, /* 720kB in 1.2MB drive */ { 9, 2, 18, 2, 0xff, 0xdf, 0x2a, 0x50, 40, 720, 2, FDC_250KBPS,0xf6,1, "360KB/x" }, /* 360kB in 720kB drive */ }; /* software state, per disk (with up to 4 disks per ctlr) */ struct fd_softc { device_t sc_dv; /* generic device info */ struct disk sc_dk; /* generic disk info */ struct fd_type *sc_deftype; /* default type descriptor */ struct fd_type *sc_type; /* current type descriptor */ struct callout sc_motoron_ch; struct callout sc_motoroff_ch; daddr_t sc_blkno; /* starting block number */ int sc_bcount; /* byte count left */ int sc_skip; /* bytes already transferred */ int sc_nblks; /* number of blocks currently transferring */ int sc_nbytes; /* number of bytes currently transferring */ int sc_drive; /* physical unit number */ int sc_flags; #define FD_OPEN 0x01 /* it's open */ #define FD_MOTOR 0x02 /* motor should be on */ #define FD_MOTOR_WAIT 0x04 /* motor coming up */ int sc_cylin; /* where we think the head is */ int sc_opts; /* user-set options */ TAILQ_ENTRY(fd_softc) sc_drivechain; int sc_ops; /* I/O ops since last switch */ struct bufq_state *sc_q;/* pending I/O requests */ int sc_active; /* number of active I/O operations */ }; /* floppy driver configuration */ static int fdmatch(device_t, cfdata_t, void *); static void fdattach(device_t, device_t, void *); CFATTACH_DECL_NEW(fd, sizeof(struct fd_softc), fdmatch, fdattach, NULL, NULL); static dev_type_open(fdopen); static dev_type_close(fdclose); static dev_type_read(fdread); static dev_type_write(fdwrite); static dev_type_ioctl(fdioctl); static dev_type_strategy(fdstrategy); const struct bdevsw fd_bdevsw = { .d_open = fdopen, .d_close = fdclose, .d_strategy = fdstrategy, .d_ioctl = fdioctl, .d_dump = nodump, .d_psize = nosize, .d_discard = nodiscard, .d_flag = D_DISK }; const struct cdevsw fd_cdevsw = { .d_open = fdopen, .d_close = fdclose, .d_read = fdread, .d_write = fdwrite, .d_ioctl = fdioctl, .d_stop = nostop, .d_tty = notty, .d_poll = nopoll, .d_mmap = nommap, .d_kqfilter = nokqfilter, .d_discard = nodiscard, .d_flag = D_DISK }; static bool fd_shutdown(device_t, int); static void fdgetdisklabel(dev_t); static void fdstart(struct fd_softc *); static int fdprint(void *, const char *); struct dkdriver fddkdriver = { .d_strategy = fdstrategy }; static void fd_set_motor(struct fdc_softc *); static void fd_motor_off(void *); static void fd_motor_on(void *); static int fdcresult(struct fdc_softc *); static int out_fdc(struct fdc_softc *, u_char); static void fdcstart(struct fdc_softc *); static void fdcstatus(device_t, int, const char *); static void fdc_reset(struct fdc_softc *); static void fdctimeout(void *); static void fdcpseudointr(void *); static int fdchwintr(void *); static void fdcswintr(void *); static int fdcstate(struct fdc_softc *); static void fdcretry(struct fdc_softc *); static void fdfinish(struct fd_softc *, struct buf *); static int fdformat(dev_t, struct ne7_fd_formb *, struct proc *); static void fd_do_eject(struct fdc_softc *, int); static void fd_mountroot_hook(device_t); static void fdconf(struct fdc_softc *); #define IPL_SOFTFD IPL_BIO #define FDC_SOFTPRI 2 #define FD_SET_SWINTR() softint_schedule(fdc->sc_si); /* * The Floppy Control Register on the sun3x, not to be confused with the * Floppy ControllER Registers that this driver mostly insterfaces with, * controls some of the auxiliary functions of the floppy drive. These * include asserting the floppy eject and terminal data count (or TC) pins * of the floppy drive and controller chip respectively. * * Often it is necessary to toggle individual bits within this register * while keeping the others untouched. However, the register does not * present its latched data to the processor when read. This prevents the * use of a read-modify-write cycle that would normally be used to modify * individual bits. To get around this we must keep a copy of register's * current value and always insure that when we wish to modify the register, * we actually modify the copy and synchronize the register to it. */ #define FCR_REG_SYNC() (*fdc->sc_reg_fcr = fdc->sc_fcr) int fdcmatch(device_t parent, cfdata_t cf, void *aux) { struct confargs *ca = aux; if (bus_peek(ca->ca_bustype, ca->ca_paddr, sizeof(uint8_t)) == -1) return 0; return 1; } /* * Arguments passed between fdcattach and fdprobe. */ struct fdc_attach_args { int fa_drive; struct bootpath *fa_bootpath; struct fd_type *fa_deftype; }; /* * Print the location of a disk drive (called just before attaching the * the drive). If `fdc' is not NULL, the drive was found but was not * in the system config file; print the drive name as well. * Return QUIET (config_find ignores this if the device was configured) to * avoid printing `fdN not configured' messages. */ int fdprint(void *aux, const char *fdc) { struct fdc_attach_args *fa = aux; if (fdc == NULL) aprint_normal(" drive %d", fa->fa_drive); return QUIET; } static void fdconf(struct fdc_softc *fdc) { int vroom; if (out_fdc(fdc, NE7CMD_DUMPREG) || fdcresult(fdc) != 10) return; /* * dumpreg[7] seems to be a motor-off timeout; set it to whatever * the PROM thinks is appropriate. */ if ((vroom = fdc->sc_status[7]) == 0) vroom = 0x64; /* Configure controller to use FIFO and Implied Seek */ out_fdc(fdc, NE7CMD_CFG); out_fdc(fdc, vroom); out_fdc(fdc, fdc->sc_cfg); out_fdc(fdc, 0); /* PRETRK */ /* No result phase */ } void fdcattach(device_t parent, device_t self, void *aux) { struct confargs *ca = aux; struct fdc_softc *fdc = device_private(self); struct fdc_attach_args fa; int pri, vec; char code; fdc->sc_dev = self; fdc->sc_reg = (void *)bus_mapin(ca->ca_bustype, ca->ca_paddr, sizeof(union fdreg)); callout_init(&fdc->sc_timo_ch, 0); callout_init(&fdc->sc_intr_ch, 0); fdc->sc_state = DEVIDLE; fdc->sc_istate = ISTATE_IDLE; fdc->sc_flags |= FDC_EIS; TAILQ_INIT(&fdc->sc_drives); /* Assume a 82072 */ code = '2'; if (code == '7') { panic("no 82077 fdc in this kernel"); /* NOTREACHED */ } else { fdc->sc_reg_msr = &((struct fdreg_72 *)fdc->sc_reg)->fd_msr; fdc->sc_reg_fifo = &((struct fdreg_72 *)fdc->sc_reg)->fd_fifo; fdc->sc_reg_fcr = ((volatile uint8_t *)fdc->sc_reg) + FDC_FCR_OFFSET; fdc->sc_reg_fvr = ((volatile uint8_t *)fdc->sc_reg) + FDC_FVR_OFFSET; } pri = ca->ca_intpri; vec = ca->ca_intvec; if (vec == -1) { /* Tell the FDC to fake an autovector. */ vec = 0x18 + pri; /* XXX */ isr_add_autovect(fdchwintr, fdc, pri); } else { /* An OBIO bus with vectors? Weird exception. */ isr_add_vectored(fdchwintr, fdc, pri, vec); } *fdc->sc_reg_fvr = vec; /* Program controller w/ interrupt vector */ fdc->sc_si = softint_establish(SOFTINT_BIO, fdcswintr, fdc); #if 0 aprint_normal(": (softpri %d) chip 8207%c\n", FDC_SOFTPRI, code); #else aprint_normal(": chip 8207%c\n", code); #endif #ifdef FD_DEBUG if (out_fdc(fdc, NE7CMD_VERSION) == 0 && fdcresult(fdc) == 1 && fdc->sc_status[0] == 0x90) { if (fdc_debug) aprint_debug("[version cmd]"); } #endif fdc_reset(fdc); /* * Configure controller; enable FIFO, Implied seek, no POLL mode?. * Note: CFG_EFIFO is active-low, initial threshold value: 8 */ fdc->sc_cfg = CFG_EIS|/*CFG_EFIFO|*/CFG_POLL|(8 & CFG_THRHLD_MASK); fdconf(fdc); evcnt_attach_dynamic(&fdc->sc_intrcnt, EVCNT_TYPE_INTR, NULL, device_xname(self), "intr"); /* physical limit: four drives per controller. */ for (fa.fa_drive = 0; fa.fa_drive < 4; fa.fa_drive++) { fa.fa_deftype = NULL; /* unknown */ fa.fa_deftype = &fd_types[0]; /* XXX */ (void)config_found(self, (void *)&fa, fdprint, CFARGS_NONE); } } int fdmatch(device_t parent, cfdata_t cf, void *aux) { struct fdc_softc *fdc = device_private(parent); struct fdc_attach_args *fa = aux; int drive = fa->fa_drive; int n, ok; if (drive > 0) /* XXX - for now, punt > 1 drives */ return 0; /* select drive and turn on motor */ fdc->sc_fcr |= FCR_DSEL(drive) | FCR_MTRON; FCR_REG_SYNC(); /* wait for motor to spin up */ delay(250000); fdc->sc_nstat = 0; out_fdc(fdc, NE7CMD_RECAL); out_fdc(fdc, drive); /* wait for recalibrate */ for (n = 0; n < 10000; n++) { delay(1000); if ((*fdc->sc_reg_msr & (NE7_RQM|NE7_DIO|NE7_CB)) == NE7_RQM) { /* wait a bit longer till device *really* is ready */ delay(100000); if (out_fdc(fdc, NE7CMD_SENSEI)) break; if (fdcresult(fdc) == 1 && fdc->sc_status[0] == 0x80) /* * Got `invalid command'; we interpret it * to mean that the re-calibrate hasn't in * fact finished yet */ continue; break; } } n = fdc->sc_nstat; #ifdef FD_DEBUG if (fdc_debug) { int i; aprint_debug("%s: %d stati:", __func__, n); for (i = 0; i < n; i++) aprint_debug(" %x", fdc->sc_status[i]); aprint_debug("\n"); } #endif ok = (n == 2 && (fdc->sc_status[0] & 0xf8) == 0x20) ? 1 : 0; /* turn off motor */ fdc->sc_fcr &= ~(FCR_DSEL(drive)|FCR_MTRON); FCR_REG_SYNC(); return ok; } /* * Controller is working, and drive responded. Attach it. */ void fdattach(device_t parent, device_t self, void *aux) { struct fdc_softc *fdc = device_private(parent); struct fd_softc *fd = device_private(self); struct fdc_attach_args *fa = aux; struct fd_type *type = fa->fa_deftype; int drive = fa->fa_drive; fd->sc_dv = self; callout_init(&fd->sc_motoron_ch, 0); callout_init(&fd->sc_motoroff_ch, 0); /* XXX Allow `flags' to override device type? */ if (type) aprint_normal(": %s %d cyl, %d head, %d sec\n", type->name, type->tracks, type->heads, type->sectrac); else aprint_normal(": density unknown\n"); bufq_alloc(&fd->sc_q, "disksort", BUFQ_SORT_CYLINDER); fd->sc_cylin = -1; fd->sc_drive = drive; fd->sc_deftype = type; fdc->sc_fd[drive] = fd; /* * Initialize and attach the disk structure. */ disk_init(&fd->sc_dk, device_xname(self), &fddkdriver); disk_attach(&fd->sc_dk); #ifdef sparc /* * We're told if we're the boot device in fdcattach(). */ if (fa->fa_bootpath) fa->fa_bootpath->dev = self; #endif #define OUT_FDC(sc, c) do { \ if (out_fdc((sc), (c)) != 0) \ printf("fdc: specify command failed.\n"); \ } while (/* CONSTCOND */ 0) /* specify command */ OUT_FDC(fdc, NE7CMD_SPECIFY); OUT_FDC(fdc, type->steprate); /* * The '|1' in the following statement turns on the 'Non-DMA' bit * specifier in the last byte of the SPECIFY command as described in the * datasheet I have. This is necessary for the driver to work on the * sun3x, because the system will not respond to the chip's requests * for DMA; there is no hardware on the motherboard to support it. * By enabling this bit, we will force the chip to interrupt when its * FIFO is full, at which point the interrupt handler will empty it and * continue. This is ``pseudo-DMA''. * -J */ OUT_FDC(fdc, 6|1); /* XXX head load time == 6ms */ #undef OUT_FDC /* * Establish a mountroot_hook anyway in case we booted * with RB_ASKNAME and get selected as the boot device. */ mountroothook_establish(fd_mountroot_hook, self); /* Make sure the drive motor gets turned off at shutdown time. */ if (!pmf_device_register1(self, NULL, NULL, fd_shutdown)) aprint_error_dev(self, "couldn't establish power handler\n"); } bool fd_shutdown(device_t self, int howto) { struct fd_softc *fd; fd = device_private(self); fd_motor_off(fd); return true; } static struct fd_type * fd_dev_to_type(struct fd_softc *fd, dev_t dev) { int type = FDTYPE(dev); if (type > (sizeof(fd_types) / sizeof(fd_types[0]))) return NULL; return type ? &fd_types[type - 1] : fd->sc_deftype; } static void fdstrategy(struct buf *bp) { struct fd_softc *fd; int unit = FDUNIT(bp->b_dev); int sz; int s; /* Valid unit, controller, and request? */ if ((fd = device_lookup_private(&fd_cd, unit)) == 0 || bp->b_blkno < 0 || ((bp->b_bcount % FDC_BSIZE) != 0 && (bp->b_flags & B_FORMAT) == 0)) { bp->b_error = EINVAL; goto done; } /* If it's a null transfer, return immediately. */ if (bp->b_bcount == 0) goto done; sz = howmany(bp->b_bcount, FDC_BSIZE); if (bp->b_blkno + sz > fd->sc_type->size) { sz = fd->sc_type->size - bp->b_blkno; if (sz == 0) { /* If exactly at end of disk, return EOF. */ bp->b_resid = bp->b_bcount; goto done; } if (sz < 0) { /* If past end of disk, return EINVAL. */ bp->b_error = EINVAL; goto done; } /* Otherwise, truncate request. */ bp->b_bcount = sz << DEV_BSHIFT; } bp->b_rawblkno = bp->b_blkno; bp->b_cylinder = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE) / fd->sc_type->seccyl; #ifdef FD_DEBUG if (fdc_debug > 1) printf("%s: b_blkno %d b_bcount %d blkno %d cylin %d\n", __func__, (int)bp->b_blkno, bp->b_bcount, (int)fd->sc_blkno, bp->b_cylinder); #endif /* Queue transfer on drive, activate drive and controller if idle. */ s = splbio(); bufq_put(fd->sc_q, bp); callout_stop(&fd->sc_motoroff_ch); /* a good idea */ if (fd->sc_active == 0) fdstart(fd); #ifdef DIAGNOSTIC else { struct fdc_softc *fdc; fdc = device_private(device_parent(fd->sc_dv)); if (fdc->sc_state == DEVIDLE) { printf("%s: controller inactive\n", __func__); fdcstart(fdc); } } #endif splx(s); return; done: /* Toss transfer; we're done early. */ biodone(bp); } void fdstart(struct fd_softc *fd) { struct fdc_softc *fdc = device_private(device_parent(fd->sc_dv)); bool active = fdc->sc_drives.tqh_first != 0; /* Link into controller queue. */ fd->sc_active = 1; TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain); /* If controller not already active, start it. */ if (!active) fdcstart(fdc); } void fdfinish(struct fd_softc *fd, struct buf *bp) { struct fdc_softc *fdc = device_private(device_parent(fd->sc_dv)); /* * Move this drive to the end of the queue to give others a `fair' * chance. We only force a switch if N operations are completed while * another drive is waiting to be serviced, since there is a long motor * startup delay whenever we switch. */ (void)bufq_get(fd->sc_q); if (TAILQ_NEXT(fd, sc_drivechain) && ++fd->sc_ops >= 8) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain); if (bufq_peek(fd->sc_q) != NULL) { TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain); } else fd->sc_active = 0; } bp->b_resid = fd->sc_bcount; fd->sc_skip = 0; biodone(bp); /* turn off motor 5s from now */ callout_reset(&fd->sc_motoroff_ch, 5 * hz, fd_motor_off, fd); fdc->sc_state = DEVIDLE; } void fdc_reset(struct fdc_softc *fdc) { fdc->sc_fcr = 0; FCR_REG_SYNC(); *fdc->sc_reg_drs = DRS_RESET; delay(10); *fdc->sc_reg_drs = 0; #ifdef FD_DEBUG if (fdc_debug) printf("fdc reset\n"); #endif } void fd_set_motor(struct fdc_softc *fdc) { struct fd_softc *fd; int n; int on = 0; for (n = 0; n < 4; n++) if ((fd = fdc->sc_fd[n]) && (fd->sc_flags & FD_MOTOR)) on = 1; if (on) { fdc->sc_fcr |= FCR_DSEL(0)|FCR_MTRON; /* XXX */ } else { fdc->sc_fcr &= ~(FCR_DSEL(0)|FCR_MTRON); /* XXX */ } FCR_REG_SYNC(); } void fd_motor_off(void *arg) { struct fd_softc *fd = arg; int s; s = splbio(); fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); fd_set_motor(device_private(device_parent(fd->sc_dv))); splx(s); } void fd_motor_on(void *arg) { struct fd_softc *fd = arg; struct fdc_softc *fdc = device_private(device_parent(fd->sc_dv)); int s; s = splbio(); fd->sc_flags &= ~FD_MOTOR_WAIT; if ((TAILQ_FIRST(&fdc->sc_drives) == fd) && (fdc->sc_state == MOTORWAIT)) (void)fdcstate(fdc); splx(s); } int fdcresult(struct fdc_softc *fdc) { uint8_t i; int j, n = 0; for (j = 100000; j; j--) { i = *fdc->sc_reg_msr & (NE7_DIO | NE7_RQM | NE7_CB); if (i == NE7_RQM) { fdc->sc_nstat = n; return n; } if (i == (NE7_DIO | NE7_RQM | NE7_CB)) { if (n >= sizeof(fdc->sc_status)) { log(LOG_ERR, "fdcresult: overrun\n"); return -1; } fdc->sc_status[n++] = *fdc->sc_reg_fifo; } else delay(10); } log(LOG_ERR, "fdcresult: timeout\n"); fdc->sc_nstat = -1; return -1; } int out_fdc(struct fdc_softc *fdc, u_char x) { int i = 100000; while (((*fdc->sc_reg_msr & (NE7_DIO|NE7_RQM)) != NE7_RQM) && i-- > 0) delay(1); if (i <= 0) return -1; *fdc->sc_reg_fifo = x; return 0; } static int fdopen(dev_t dev, int flags, int fmt, struct lwp *l) { int unit, pmask; struct fd_softc *fd; struct fd_type *type; unit = FDUNIT(dev); fd = device_lookup_private(&fd_cd, unit); if (fd == NULL) return ENXIO; type = fd_dev_to_type(fd, dev); if (type == NULL) return ENXIO; if ((fd->sc_flags & FD_OPEN) != 0 && fd->sc_type != type) return EBUSY; fd->sc_type = type; fd->sc_cylin = -1; fd->sc_flags |= FD_OPEN; /* * Only update the disklabel if we're not open anywhere else. */ if (fd->sc_dk.dk_openmask == 0) fdgetdisklabel(dev); pmask = (1 << DISKPART(dev)); switch (fmt) { case S_IFCHR: fd->sc_dk.dk_copenmask |= pmask; break; case S_IFBLK: fd->sc_dk.dk_bopenmask |= pmask; break; } fd->sc_dk.dk_openmask = fd->sc_dk.dk_copenmask | fd->sc_dk.dk_bopenmask; return 0; } static int fdclose(dev_t dev, int flags, int fmt, struct lwp *l) { struct fd_softc *fd = device_lookup_private(&fd_cd, FDUNIT(dev)); int pmask = (1 << DISKPART(dev)); fd->sc_flags &= ~FD_OPEN; fd->sc_opts &= ~(FDOPT_NORETRY|FDOPT_SILENT); switch (fmt) { case S_IFCHR: fd->sc_dk.dk_copenmask &= ~pmask; break; case S_IFBLK: fd->sc_dk.dk_bopenmask &= ~pmask; break; } fd->sc_dk.dk_openmask = fd->sc_dk.dk_copenmask | fd->sc_dk.dk_bopenmask; return 0; } static int fdread(dev_t dev, struct uio *uio, int flag) { return physio(fdstrategy, NULL, dev, B_READ, minphys, uio); } static int fdwrite(dev_t dev, struct uio *uio, int flag) { return physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio); } void fdcstart(struct fdc_softc *fdc) { #ifdef DIAGNOSTIC /* only got here if controller's drive queue was inactive; should be in idle state */ if (fdc->sc_state != DEVIDLE) { printf("%s: not idle\n", __func__); return; } #endif (void)fdcstate(fdc); } static void fdcpstatus(int n, struct fdc_softc *fdc) { char bits[64]; switch (n) { case 0: printf("\n"); break; case 2: snprintb(bits, sizeof(bits), NE7_ST0BITS, fdc->sc_status[0]); printf(" (st0 %s cyl %d)\n", bits, fdc->sc_status[1]); break; case 7: snprintb(bits, sizeof(bits), NE7_ST0BITS, fdc->sc_status[0]); printf(" (st0 %s", bits); snprintb(bits, sizeof(bits), NE7_ST1BITS, fdc->sc_status[1]); printf(" st1 %s", bits); snprintb(bits, sizeof(bits), NE7_ST2BITS, fdc->sc_status[2]); printf(" st2 %s", bits); printf(" cyl %d head %d sec %d)\n", fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]); break; #ifdef DIAGNOSTIC default: printf("\nfdcstatus: weird size"); break; #endif } } void fdcstatus(device_t dv, int n, const char *s) { struct fdc_softc *fdc = device_private(device_parent(dv)); #if 0 /* * A 82072 seems to return on * gratuitous Sense Interrupt commands. */ if (n == 0 && (fdc->sc_flags & FDC_82077)) { out_fdc(fdc, NE7CMD_SENSEI); (void)fdcresult(fdc); n = 2; } #endif /* Just print last status */ n = fdc->sc_nstat; printf("%s: %s: state %d", device_xname(dv), s, fdc->sc_state); fdcpstatus(n, fdc); } void fdctimeout(void *arg) { struct fdc_softc *fdc = arg; struct fd_softc *fd = TAILQ_FIRST(&fdc->sc_drives); int s; s = splbio(); fdcstatus(fd->sc_dv, 0, "timeout"); if (bufq_peek(fd->sc_q) != NULL) fdc->sc_state++; else fdc->sc_state = DEVIDLE; (void)fdcstate(fdc); splx(s); } void fdcpseudointr(void *arg) { struct fdc_softc *fdc = arg; int s; /* Just ensure it has the right spl. */ s = splbio(); (void)fdcstate(fdc); splx(s); } /* * hardware interrupt entry point: must be converted to `fast' * (in-window) handler. */ int fdchwintr(void *arg) { struct fdc_softc *fdc = arg; /* * This code was reverse engineered from the SPARC bsd_fdintr.s. */ switch (fdc->sc_istate) { case ISTATE_IDLE: return 0; case ISTATE_SENSEI: out_fdc(fdc, NE7CMD_SENSEI); fdcresult(fdc); fdc->sc_istate = ISTATE_DONE; FD_SET_SWINTR(); return 1; case ISTATE_DMA: break; default: log(LOG_ERR, "fdc: stray hard interrupt.\n"); fdc->sc_fcr &= ~(FCR_DSEL(0)); /* Does this help? */ fdc->sc_istate = ISTATE_SPURIOUS; FD_SET_SWINTR(); return 1; } for (;;) { int msr; msr = *fdc->sc_reg_msr; if ((msr & NE7_RQM) == 0) break; if ((msr & NE7_NDM) == 0) { /* Execution phase finished, get result. */ fdcresult(fdc); fdc->sc_istate = ISTATE_DONE; FD_SET_SWINTR(); #ifdef FD_DEBUG if (fdc_debug) log(LOG_ERR, "fdc: overrun: tc = %d\n", fdc->sc_tc); #endif break; } if (msr & NE7_DIO) { *fdc->sc_data++ = *fdc->sc_reg_fifo; } else { *fdc->sc_reg_fifo = *fdc->sc_data++; } if (--fdc->sc_tc == 0) { fdc->sc_fcr |= FCR_TC; FCR_REG_SYNC(); delay(10); fdc->sc_fcr &= ~FCR_TC; FCR_REG_SYNC(); break; } } return 1; } void fdcswintr(void *arg) { struct fdc_softc *fdc = arg; int s; if (fdc->sc_istate != ISTATE_DONE) return; fdc->sc_istate = ISTATE_IDLE; s = splbio(); fdcstate(fdc); splx(s); } int fdcstate(struct fdc_softc *fdc) { #define st0 fdc->sc_status[0] #define st1 fdc->sc_status[1] #define cyl fdc->sc_status[1] #define OUT_FDC(fdc, c, s) \ do { \ if (out_fdc(fdc, (c))) { \ (fdc)->sc_state = (s); \ goto loop; \ } \ } while (/* CONSTCOND */ 0) struct fd_softc *fd; struct buf *bp; int read, head, sec, nblks; struct fd_type *type; struct ne7_fd_formb *finfo = NULL; if (fdc->sc_istate != ISTATE_IDLE) { /* Trouble... */ printf("fdc: spurious interrupt: state %d, istate=%d\n", fdc->sc_state, fdc->sc_istate); fdc->sc_istate = ISTATE_IDLE; if (fdc->sc_state == RESETCOMPLETE || fdc->sc_state == RESETTIMEDOUT) { panic("%s: spurious interrupt can't be cleared", __func__); } goto doreset; } loop: /* Is there a drive for the controller to do a transfer with? */ fd = TAILQ_FIRST(&fdc->sc_drives); if (fd == NULL) { fdc->sc_state = DEVIDLE; return 0; } /* Is there a transfer to this drive? If not, deactivate drive. */ bp = bufq_peek(fd->sc_q); if (bp == NULL) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain); fd->sc_active = 0; goto loop; } if (bp->b_flags & B_FORMAT) finfo = (struct ne7_fd_formb *)bp->b_data; switch (fdc->sc_state) { case DEVIDLE: fdc->sc_errors = 0; fd->sc_skip = 0; fd->sc_bcount = bp->b_bcount; fd->sc_blkno = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE); callout_stop(&fd->sc_motoroff_ch); if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) { fdc->sc_state = MOTORWAIT; return 1; } if ((fd->sc_flags & FD_MOTOR) == 0) { /* Turn on the motor, being careful about pairing. */ struct fd_softc *ofd = fdc->sc_fd[fd->sc_drive ^ 1]; if (ofd && ofd->sc_flags & FD_MOTOR) { callout_stop(&ofd->sc_motoroff_ch); ofd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); } fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT; fd_set_motor(fdc); fdc->sc_state = MOTORWAIT; if (fdc->sc_flags & FDC_82077) { /* XXX */ /* Allow .25s for motor to stabilize. */ callout_reset(&fd->sc_motoron_ch, hz / 4, fd_motor_on, fd); } else { fd->sc_flags &= ~FD_MOTOR_WAIT; goto loop; } return 1; } /* Make sure the right drive is selected. */ fd_set_motor(fdc); /*FALLTHROUGH*/ case DOSEEK: doseek: if ((fdc->sc_flags & FDC_EIS) && (bp->b_flags & B_FORMAT) == 0) { fd->sc_cylin = bp->b_cylinder; /* We use implied seek */ goto doio; } if (fd->sc_cylin == bp->b_cylinder) goto doio; /* specify command */ OUT_FDC(fdc, NE7CMD_SPECIFY, SEEKTIMEDOUT); OUT_FDC(fdc, fd->sc_type->steprate, SEEKTIMEDOUT); OUT_FDC(fdc, 6|1, SEEKTIMEDOUT); /* XXX head load time == 6ms */ fdc->sc_istate = ISTATE_SENSEI; /* seek function */ OUT_FDC(fdc, NE7CMD_SEEK, SEEKTIMEDOUT); OUT_FDC(fdc, fd->sc_drive, SEEKTIMEDOUT); /* drive number */ OUT_FDC(fdc, bp->b_cylinder * fd->sc_type->step, SEEKTIMEDOUT); fd->sc_cylin = -1; fdc->sc_state = SEEKWAIT; fdc->sc_nstat = 0; iostat_seek(fd->sc_dk.dk_stats); disk_busy(&fd->sc_dk); callout_reset(&fdc->sc_timo_ch, 4 * hz, fdctimeout, fdc); return 1; case DOIO: doio: #ifdef NOTYET /* Check to see if the disk has changed */ if (fdc->sc_reg_dir & FDI_DCHG) { /* * The disk in the drive has changed since * the last transfer. We need to see if its geometry * has changed. */ } #endif /* NOTYET */ if (finfo) fd->sc_skip = (char *)&(finfo->fd_formb_cylno(0)) - (char *)finfo; type = fd->sc_type; sec = fd->sc_blkno % type->seccyl; nblks = type->seccyl - sec; nblks = uimin(nblks, fd->sc_bcount / FDC_BSIZE); nblks = uimin(nblks, FDC_MAXIOSIZE / FDC_BSIZE); fd->sc_nblks = nblks; fd->sc_nbytes = finfo ? bp->b_bcount : nblks * FDC_BSIZE; head = sec / type->sectrac; sec -= head * type->sectrac; #ifdef DIAGNOSTIC { int block; block = (fd->sc_cylin * type->heads + head) * type->sectrac + sec; if (block != fd->sc_blkno) { printf("%s: block %d != blkno %" PRIu64 "\n", device_xname(fdc->sc_dev), block, fd->sc_blkno); #ifdef DDB Debugger(); #endif } } #endif read = bp->b_flags & B_READ; /* Setup for pseudo DMA */ fdc->sc_data = (char *)bp->b_data + fd->sc_skip; fdc->sc_tc = fd->sc_nbytes; *fdc->sc_reg_drs = type->rate; #ifdef FD_DEBUG if (fdc_debug > 1) printf("%s: %s drive %d track %d head %d sec %d " "nblks %d\n", __func__, read ? "read" : "write", fd->sc_drive, fd->sc_cylin, head, sec, nblks); #endif fdc->sc_state = IOCOMPLETE; fdc->sc_istate = ISTATE_DMA; fdc->sc_nstat = 0; if (finfo) { /* formatting */ OUT_FDC(fdc, NE7CMD_FORMAT, IOTIMEDOUT); OUT_FDC(fdc, (head << 2) | fd->sc_drive, IOTIMEDOUT); OUT_FDC(fdc, finfo->fd_formb_secshift, IOTIMEDOUT); OUT_FDC(fdc, finfo->fd_formb_nsecs, IOTIMEDOUT); OUT_FDC(fdc, finfo->fd_formb_gaplen, IOTIMEDOUT); OUT_FDC(fdc, finfo->fd_formb_fillbyte, IOTIMEDOUT); } else { if (read) OUT_FDC(fdc, NE7CMD_READ, IOTIMEDOUT); else OUT_FDC(fdc, NE7CMD_WRITE, IOTIMEDOUT); OUT_FDC(fdc, (head << 2) | fd->sc_drive, IOTIMEDOUT); OUT_FDC(fdc, fd->sc_cylin, IOTIMEDOUT); /*track*/ OUT_FDC(fdc, head, IOTIMEDOUT); OUT_FDC(fdc, sec + 1, IOTIMEDOUT); /*sector+1*/ OUT_FDC(fdc, type->secsize, IOTIMEDOUT);/*sector size*/ OUT_FDC(fdc, type->sectrac, IOTIMEDOUT);/*secs/track*/ OUT_FDC(fdc, type->gap1, IOTIMEDOUT); /*gap1 size*/ OUT_FDC(fdc, type->datalen, IOTIMEDOUT);/*data length*/ } disk_busy(&fd->sc_dk); /* allow 2 seconds for operation */ callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc); return 1; /* will return later */ case SEEKWAIT: callout_stop(&fdc->sc_timo_ch); fdc->sc_state = SEEKCOMPLETE; if (fdc->sc_flags & FDC_NEEDHEADSETTLE) { /* allow 1/50 second for heads to settle */ callout_reset(&fdc->sc_intr_ch, hz / 50, fdcpseudointr, fdc); return 1; /* will return later */ } /*FALLTHROUGH*/ case SEEKCOMPLETE: /* no data on seek */ disk_unbusy(&fd->sc_dk, 0, 0); /* Make sure seek really happened. */ if (fdc->sc_nstat != 2 || (st0 & 0xf8) != 0x20 || cyl != bp->b_cylinder * fd->sc_type->step) { #ifdef FD_DEBUG if (fdc_debug) fdcstatus(fd->sc_dv, 2, "seek failed"); #endif fdcretry(fdc); goto loop; } fd->sc_cylin = bp->b_cylinder; goto doio; case IOTIMEDOUT: fdc->sc_fcr |= FCR_TC; FCR_REG_SYNC(); delay(10); fdc->sc_fcr &= ~FCR_TC; FCR_REG_SYNC(); (void)fdcresult(fdc); /* FALLTHROUGH */ case SEEKTIMEDOUT: case RECALTIMEDOUT: case RESETTIMEDOUT: fdcretry(fdc); goto loop; case IOCOMPLETE: /* IO DONE, post-analyze */ callout_stop(&fdc->sc_timo_ch); disk_unbusy(&fd->sc_dk, (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ)); if (fdc->sc_nstat != 7 || (st0 & 0xf8) != 0 || st1 != 0) { #ifdef FD_DEBUG if (fdc_debug) { fdcstatus(fd->sc_dv, 7, bp->b_flags & B_READ ? "read failed" : "write failed"); printf("blkno %d nblks %d tc %d\n", (int)fd->sc_blkno, fd->sc_nblks, fdc->sc_tc); } #endif if (fdc->sc_nstat == 7 && (st1 & ST1_OVERRUN) == ST1_OVERRUN) { /* * Silently retry overruns if no other * error bit is set. Adjust threshold. */ int thr = fdc->sc_cfg & CFG_THRHLD_MASK; if (thr < 15) { thr++; fdc->sc_cfg &= ~CFG_THRHLD_MASK; fdc->sc_cfg |= (thr & CFG_THRHLD_MASK); #ifdef FD_DEBUG if (fdc_debug) printf("fdc: %d -> threshold\n", thr); #endif fdconf(fdc); fdc->sc_overruns = 0; } if (++fdc->sc_overruns < 3) { fdc->sc_state = DOIO; goto loop; } } fdcretry(fdc); goto loop; } if (fdc->sc_errors) { diskerr(bp, "fd", "soft error", LOG_PRINTF, fd->sc_skip / FDC_BSIZE, NULL); printf("\n"); fdc->sc_errors = 0; } else { if (--fdc->sc_overruns < -20) { int thr = fdc->sc_cfg & CFG_THRHLD_MASK; if (thr > 0) { thr--; fdc->sc_cfg &= ~CFG_THRHLD_MASK; fdc->sc_cfg |= (thr & CFG_THRHLD_MASK); #ifdef FD_DEBUG if (fdc_debug) printf("fdc: %d -> threshold\n", thr); #endif fdconf(fdc); } fdc->sc_overruns = 0; } } fd->sc_blkno += fd->sc_nblks; fd->sc_skip += fd->sc_nbytes; fd->sc_bcount -= fd->sc_nbytes; if (!finfo && fd->sc_bcount > 0) { bp->b_cylinder = fd->sc_blkno / fd->sc_type->seccyl; goto doseek; } fdfinish(fd, bp); goto loop; case DORESET: doreset: /* try a reset, keep motor on */ fd_set_motor(fdc); delay(100); fdc_reset(fdc); fdc->sc_nstat = 0; fdc->sc_istate = ISTATE_SENSEI; fdc->sc_state = RESETCOMPLETE; callout_reset(&fdc->sc_timo_ch, hz / 2, fdctimeout, fdc); return 1; /* will return later */ case RESETCOMPLETE: callout_stop(&fdc->sc_timo_ch); fdconf(fdc); /* FALLTHROUGH */ case DORECAL: fdc->sc_state = RECALWAIT; fdc->sc_istate = ISTATE_SENSEI; fdc->sc_nstat = 0; /* recalibrate function */ OUT_FDC(fdc, NE7CMD_RECAL, RECALTIMEDOUT); OUT_FDC(fdc, fd->sc_drive, RECALTIMEDOUT); callout_reset(&fdc->sc_timo_ch, 5 * hz, fdctimeout, fdc); return 1; /* will return later */ case RECALWAIT: callout_stop(&fdc->sc_timo_ch); fdc->sc_state = RECALCOMPLETE; if (fdc->sc_flags & FDC_NEEDHEADSETTLE) { /* allow 1/30 second for heads to settle */ callout_reset(&fdc->sc_intr_ch, hz / 30, fdcpseudointr, fdc); return 1; /* will return later */ } case RECALCOMPLETE: if (fdc->sc_nstat != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) { #ifdef FD_DEBUG if (fdc_debug) fdcstatus(fd->sc_dv, 2, "recalibrate failed"); #endif fdcretry(fdc); goto loop; } fd->sc_cylin = 0; goto doseek; case MOTORWAIT: if (fd->sc_flags & FD_MOTOR_WAIT) return 1; /* time's not up yet */ goto doseek; default: fdcstatus(fd->sc_dv, 0, "stray interrupt"); return 1; } #ifdef DIAGNOSTIC panic("%s: impossible", __func__); #endif #undef st0 #undef st1 #undef cyl } void fdcretry(struct fdc_softc *fdc) { struct fd_softc *fd; struct buf *bp; fd = fdc->sc_drives.tqh_first; bp = bufq_peek(fd->sc_q); fdc->sc_overruns = 0; if (fd->sc_opts & FDOPT_NORETRY) goto fail; switch (fdc->sc_errors) { case 0: /* try again */ fdc->sc_state = (fdc->sc_flags & FDC_EIS) ? DOIO : DOSEEK; break; case 1: case 2: case 3: /* didn't work; try recalibrating */ fdc->sc_state = DORECAL; break; case 4: /* still no go; reset the bastard */ fdc->sc_state = DORESET; break; default: fail: if ((fd->sc_opts & FDOPT_SILENT) == 0) { diskerr(bp, "fd", "hard error", LOG_PRINTF, fd->sc_skip / FDC_BSIZE, NULL); fdcpstatus(7, fdc); } bp->b_error = EIO; fdfinish(fd, bp); } fdc->sc_errors++; } static int fdioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l) { struct fd_softc *fd = device_lookup_private(&fd_cd, FDUNIT(dev)); struct fdformat_parms *form_parms; struct fdformat_cmd *form_cmd; struct ne7_fd_formb *fd_formb; int il[FD_MAX_NSEC + 1]; int i, j; int error; switch (cmd) { case DIOCGDINFO: *(struct disklabel *)addr = *(fd->sc_dk.dk_label); return 0; case DIOCWLABEL: if ((flag & FWRITE) == 0) return EBADF; /* XXX do something */ return 0; case DIOCWDINFO: if ((flag & FWRITE) == 0) return EBADF; error = setdisklabel(fd->sc_dk.dk_label, (struct disklabel *)addr, 0, fd->sc_dk.dk_cpulabel); if (error) return error; error = writedisklabel(dev, fdstrategy, fd->sc_dk.dk_label, fd->sc_dk.dk_cpulabel); return error; case DIOCLOCK: /* * Nothing to do here, really. */ return 0; case DIOCEJECT: if (*(int *)addr == 0) { int part = DISKPART(dev); /* * Don't force eject: check that we are the only * partition open. If so, unlock it. */ if ((fd->sc_dk.dk_openmask & ~(1 << part)) != 0 || fd->sc_dk.dk_bopenmask + fd->sc_dk.dk_copenmask != fd->sc_dk.dk_openmask) { return EBUSY; } } /* FALLTHROUGH */ case ODIOCEJECT: fd_do_eject(device_private(device_parent(fd->sc_dv)), fd->sc_drive); return 0; case FDIOCGETFORMAT: form_parms = (struct fdformat_parms *)addr; form_parms->fdformat_version = FDFORMAT_VERSION; form_parms->nbps = 128 * (1 << fd->sc_type->secsize); form_parms->ncyl = fd->sc_type->tracks; form_parms->nspt = fd->sc_type->sectrac; form_parms->ntrk = fd->sc_type->heads; form_parms->stepspercyl = fd->sc_type->step; form_parms->gaplen = fd->sc_type->gap2; form_parms->fillbyte = fd->sc_type->fillbyte; form_parms->interleave = fd->sc_type->interleave; switch (fd->sc_type->rate) { case FDC_500KBPS: form_parms->xfer_rate = 500 * 1024; break; case FDC_300KBPS: form_parms->xfer_rate = 300 * 1024; break; case FDC_250KBPS: form_parms->xfer_rate = 250 * 1024; break; default: return EINVAL; } return 0; case FDIOCSETFORMAT: if ((flag & FWRITE) == 0) return EBADF; /* must be opened for writing */ form_parms = (struct fdformat_parms *)addr; if (form_parms->fdformat_version != FDFORMAT_VERSION) return EINVAL; /* wrong version of formatting prog */ i = form_parms->nbps >> 7; if ((form_parms->nbps & 0x7f) || ffs(i) == 0 || i & ~(1 << (ffs(i) - 1))) /* not a power-of-two multiple of 128 */ return EINVAL; switch (form_parms->xfer_rate) { case 500 * 1024: fd->sc_type->rate = FDC_500KBPS; break; case 300 * 1024: fd->sc_type->rate = FDC_300KBPS; break; case 250 * 1024: fd->sc_type->rate = FDC_250KBPS; break; default: return EINVAL; } if (form_parms->nspt > FD_MAX_NSEC || form_parms->fillbyte > 0xff || form_parms->interleave > 0xff) return EINVAL; fd->sc_type->sectrac = form_parms->nspt; if (form_parms->ntrk != 2 && form_parms->ntrk != 1) return EINVAL; fd->sc_type->heads = form_parms->ntrk; fd->sc_type->seccyl = form_parms->nspt * form_parms->ntrk; fd->sc_type->secsize = ffs(i) - 1; fd->sc_type->gap2 = form_parms->gaplen; fd->sc_type->tracks = form_parms->ncyl; fd->sc_type->size = fd->sc_type->seccyl * form_parms->ncyl * form_parms->nbps / DEV_BSIZE; fd->sc_type->step = form_parms->stepspercyl; fd->sc_type->fillbyte = form_parms->fillbyte; fd->sc_type->interleave = form_parms->interleave; return 0; case FDIOCFORMAT_TRACK: if((flag & FWRITE) == 0) /* must be opened for writing */ return EBADF; form_cmd = (struct fdformat_cmd *)addr; if (form_cmd->formatcmd_version != FDFORMAT_VERSION) /* wrong version of formatting prog */ return EINVAL; if (form_cmd->head >= fd->sc_type->heads || form_cmd->cylinder >= fd->sc_type->tracks) { return EINVAL; } fd_formb = kmem_alloc(sizeof(*fd_formb), KM_SLEEP); fd_formb->head = form_cmd->head; fd_formb->cyl = form_cmd->cylinder; fd_formb->transfer_rate = fd->sc_type->rate; fd_formb->fd_formb_secshift = fd->sc_type->secsize; fd_formb->fd_formb_nsecs = fd->sc_type->sectrac; fd_formb->fd_formb_gaplen = fd->sc_type->gap2; fd_formb->fd_formb_fillbyte = fd->sc_type->fillbyte; memset(il, 0, sizeof(il)); for (j = 0, i = 1; i <= fd_formb->fd_formb_nsecs; i++) { while (il[(j%fd_formb->fd_formb_nsecs) + 1]) j++; il[(j % fd_formb->fd_formb_nsecs) + 1] = i; j += fd->sc_type->interleave; } for (i = 0; i < fd_formb->fd_formb_nsecs; i++) { fd_formb->fd_formb_cylno(i) = form_cmd->cylinder; fd_formb->fd_formb_headno(i) = form_cmd->head; fd_formb->fd_formb_secno(i) = il[i+1]; fd_formb->fd_formb_secsize(i) = fd->sc_type->secsize; } error = fdformat(dev, fd_formb, l->l_proc); kmem_free(fd_formb, sizeof(*fd_formb)); return error; case FDIOCGETOPTS: /* get drive options */ *(int *)addr = fd->sc_opts; return 0; case FDIOCSETOPTS: /* set drive options */ fd->sc_opts = *(int *)addr; return 0; #ifdef DEBUG case _IO('f', 100): { int k; struct fdc_softc *fdc = device_private(device_parent(fd->sc_dv)); out_fdc(fdc, NE7CMD_DUMPREG); fdcresult(fdc); printf("dumpreg(%d regs): <", fdc->sc_nstat); for (k = 0; k < fdc->sc_nstat; k++) printf(" %x", fdc->sc_status[k]); printf(">\n"); return 0; } case _IOW('f', 101, int): { struct fdc_softc *fdc = device_private(device_parent(fd->sc_dv)); fdc->sc_cfg &= ~CFG_THRHLD_MASK; fdc->sc_cfg |= (*(int *)addr & CFG_THRHLD_MASK); fdconf(fdc); return 0; } case _IO('f', 102): { int k; struct fdc_softc *fdc = device_private(device_parent(fd->sc_dv)); out_fdc(fdc, NE7CMD_SENSEI); fdcresult(fdc); printf("sensei(%d regs): <", fdc->sc_nstat); for (k=0; k < fdc->sc_nstat; k++) printf(" 0x%x", fdc->sc_status[k]); printf(">\n"); return 0; } #endif default: return ENOTTY; } #ifdef DIAGNOSTIC panic("%s: impossible", __func__); #endif } int fdformat(dev_t dev, struct ne7_fd_formb *finfo, struct proc *p) { int rv = 0; struct fd_softc *fd = device_lookup_private(&fd_cd, FDUNIT(dev)); struct fd_type *type = fd->sc_type; struct buf *bp; /* set up a buffer header for fdstrategy() */ bp = getiobuf(NULL, false); if (bp == NULL) return ENOBUFS; bp->b_vp = NULL; bp->b_cflags = BC_BUSY; bp->b_flags = B_PHYS | B_FORMAT; bp->b_proc = p; bp->b_dev = dev; /* * Calculate a fake blkno, so fdstrategy() would initiate a * seek to the requested cylinder. */ bp->b_blkno = (finfo->cyl * (type->sectrac * type->heads) + finfo->head * type->sectrac) * FDC_BSIZE / DEV_BSIZE; bp->b_bcount = sizeof(struct fd_idfield_data) * finfo->fd_formb_nsecs; bp->b_data = (void *)finfo; #ifdef FD_DEBUG if (fdc_debug) printf("%s: blkno %x count %d\n", __func__, (int)bp->b_blkno, bp->b_bcount); #endif /* now do the format */ fdstrategy(bp); /* ...and wait for it to complete */ rv = biowait(bp); putiobuf(bp); return rv; } void fdgetdisklabel(dev_t dev) { int unit = FDUNIT(dev), i; struct fd_softc *fd = device_lookup_private(&fd_cd, unit); struct disklabel *lp = fd->sc_dk.dk_label; struct cpu_disklabel *clp = fd->sc_dk.dk_cpulabel; memset(lp, 0, sizeof(struct disklabel)); memset(clp, 0, sizeof(struct cpu_disklabel)); lp->d_type = DKTYPE_FLOPPY; lp->d_secsize = FDC_BSIZE; lp->d_secpercyl = fd->sc_type->seccyl; lp->d_nsectors = fd->sc_type->sectrac; lp->d_ncylinders = fd->sc_type->tracks; lp->d_ntracks = fd->sc_type->heads; /* Go figure... */ lp->d_rpm = 3600; /* XXX like it matters... */ strncpy(lp->d_typename, "floppy", sizeof(lp->d_typename)); strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname)); lp->d_interleave = 1; lp->d_partitions[RAW_PART].p_offset = 0; lp->d_partitions[RAW_PART].p_size = lp->d_secpercyl * lp->d_ncylinders; lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; lp->d_npartitions = RAW_PART + 1; lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); /* * Call the generic disklabel extraction routine. If there's * not a label there, fake it. */ if (readdisklabel(dev, fdstrategy, lp, clp) != NULL) { strncpy(lp->d_packname, "default label", sizeof(lp->d_packname)); /* * Reset the partition info; it might have gotten * trashed in readdisklabel(). * * XXX Why do we have to do this? readdisklabel() * should be safe... */ for (i = 0; i < MAXPARTITIONS; ++i) { lp->d_partitions[i].p_offset = 0; if (i == RAW_PART) { lp->d_partitions[i].p_size = lp->d_secpercyl * lp->d_ncylinders; lp->d_partitions[i].p_fstype = FS_BSDFFS; } else { lp->d_partitions[i].p_size = 0; lp->d_partitions[i].p_fstype = FS_UNUSED; } } lp->d_npartitions = RAW_PART + 1; } } void fd_do_eject(struct fdc_softc *fdc, int unit) { fdc->sc_fcr |= FCR_DSEL(unit)|FCR_EJECT; FCR_REG_SYNC(); delay(10); fdc->sc_fcr &= ~(FCR_DSEL(unit)|FCR_EJECT); FCR_REG_SYNC(); } #ifdef MEMORY_DISK_HOOKS_sun3x_not_yet int fd_read_md_image(size_t *, void **); #endif /* ARGSUSED */ void fd_mountroot_hook(device_t dev) { struct fd_softc *fd; struct fdc_softc *fdc; int c; fd = device_private(dev); fdc = device_private(device_parent(dev)); fd_do_eject(fdc, fd->sc_drive); printf("Insert filesystem floppy and press return."); for (;;) { c = cngetc(); if ((c == '\r') || (c == '\n')) { printf("\n"); break; } } #ifdef MEMORY_DISK_HOOKS_sun3x_not_yet { extern int (*md_read_image)(size_t *, void **); md_read_image = fd_read_md_image; } #endif } #ifdef MEMORY_DISK_HOOKS_sun3x_not_yet #define FDMICROROOTSIZE ((2*18*80) << DEV_BSHIFT) int fd_read_md_image(size_t *sizep, void **addrp) { struct fdc_softc *fdc; struct fd_softc *fd; struct buf buf, *bp = &buf; dev_t dev; off_t offset; void *addr; dev = makedev(cdevsw_lookup_major(&fd_cdevsw), 0); /* XXX */ addr = kmem_alloc(FDMICROROOTSIZE, KM_SLEEP); *addrp = addr; if (fdopen(dev, 0, S_IFCHR, NULL)) panic("fd: mountroot: fdopen"); offset = 0; for (;;) { bp->b_dev = dev; bp->b_error = 0; bp->b_resid = 0; bp->b_proc = NULL; bp->b_flags = B_PHYS | B_RAW | B_READ; bp->b_cflags = BC_BUSY; bp->b_blkno = btodb(offset); bp->b_bcount = DEV_BSIZE; bp->b_data = addr; fdstrategy(bp); biowait(bp); if (bp->b_error) panic("fd: mountroot: fdread error %d", bp->b_error); if (bp->b_resid != 0) break; addr += DEV_BSIZE; offset += DEV_BSIZE; if (offset + DEV_BSIZE > FDMICROROOTSIZE) break; } (void)fdclose(dev, 0, S_IFCHR, NULL); *sizep = offset; fd = device_lookup_private(&fd_cd, 0); fdc = device_private(device_parent(fd->sc_dv)); fd_do_eject(fdc, 0); /* XXX */ return 0; } #endif