/* Test file for mpfr_rec_sqrt. Copyright 2008-2023 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <time.h> #include "mpfr-test.h" #define TEST_FUNCTION mpfr_rec_sqrt #define TEST_RANDOM_POS 8 /* 8/512 = 1/64 of the tested numbers are negative */ #include "tgeneric.c" static void special (void) { mpfr_t x, y; int inex; mpfr_init (x); mpfr_init (y); /* rec_sqrt(NaN) = NaN */ mpfr_set_nan (x); inex = mpfr_rec_sqrt (x, x, MPFR_RNDN); MPFR_ASSERTN(mpfr_nan_p (x) && inex == 0); /* rec_sqrt(+Inf) = +0 */ mpfr_set_inf (x, 1); inex = mpfr_rec_sqrt (x, x, MPFR_RNDN); MPFR_ASSERTN(mpfr_zero_p (x) && MPFR_IS_POS(x) && inex == 0); /* rec_sqrt(-Inf) = NaN */ mpfr_set_inf (x, -1); inex = mpfr_rec_sqrt (x, x, MPFR_RNDN); MPFR_ASSERTN(mpfr_nan_p (x) && inex == 0); /* rec_sqrt(+0) = +Inf */ mpfr_set_ui (x, 0, MPFR_RNDN); inex = mpfr_rec_sqrt (x, x, MPFR_RNDN); MPFR_ASSERTN(mpfr_inf_p (x) && MPFR_IS_POS(x) && inex == 0); /* rec_sqrt(-0) = +Inf */ mpfr_set_ui (x, 0, MPFR_RNDN); mpfr_neg (x, x, MPFR_RNDN); inex = mpfr_rec_sqrt (x, x, MPFR_RNDN); MPFR_ASSERTN(mpfr_inf_p (x) && MPFR_IS_POS(x) && inex == 0); /* rec_sqrt(-1) = NaN */ mpfr_set_si (x, -1, MPFR_RNDN); inex = mpfr_rec_sqrt (x, x, MPFR_RNDN); MPFR_ASSERTN(mpfr_nan_p (x) && inex == 0); /* rec_sqrt(1) = 1 */ mpfr_set_ui (x, 1, MPFR_RNDN); inex = mpfr_rec_sqrt (x, x, MPFR_RNDN); MPFR_ASSERTN((mpfr_cmp_ui (x, 1) == 0) && (inex == 0)); mpfr_set_prec (x, 23); mpfr_set_prec (y, 33); mpfr_set_str_binary (x, "1.0001110110101001010100e-1"); inex = mpfr_rec_sqrt (y, x, MPFR_RNDU); mpfr_set_prec (x, 33); mpfr_set_str_binary (x, "1.01010110101110100100100101011"); MPFR_ASSERTN (inex > 0 && mpfr_cmp (x, y) == 0); mpfr_clear (x); mpfr_clear (y); } /* Worst case incorrectly rounded in r5573, found with the bad_cases test */ static void bad_case1 (void) { mpfr_t x, y, z; mpfr_init2 (x, 72); mpfr_inits2 (6, y, z, (mpfr_ptr) 0); mpfr_set_str (x, "1.08310518720928b30e@-120", 16, MPFR_RNDN); mpfr_set_str (z, "f.8@59", 16, MPFR_RNDN); /* z = rec_sqrt(x) rounded on 6 bits toward 0, the exact value being ~= f.bffffffffffffffffa11@59. */ mpfr_rec_sqrt (y, x, MPFR_RNDZ); if (mpfr_cmp0 (y, z) != 0) { printf ("Error in bad_case1\nexpected "); mpfr_out_str (stdout, 16, 0, z, MPFR_RNDN); printf ("\ngot "); mpfr_out_str (stdout, 16, 0, y, MPFR_RNDN); printf ("\n"); exit (1); } mpfr_clears (x, y, z, (mpfr_ptr) 0); } static int pm2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { return mpfr_pow_si (y, x, -2, rnd_mode); } /* exercises corner cases with inputs around 1 or 2 */ static void bad_case2 (void) { mpfr_t r, u; mpfr_prec_t pr, pu; int rnd; for (pr = MPFR_PREC_MIN; pr <= 192; pr++) for (pu = MPFR_PREC_MIN; pu <= 192; pu++) { mpfr_init2 (r, pr); mpfr_init2 (u, pu); mpfr_set_ui (u, 1, MPFR_RNDN); RND_LOOP (rnd) mpfr_rec_sqrt (r, u, (mpfr_rnd_t) rnd); mpfr_nextbelow (u); RND_LOOP (rnd) mpfr_rec_sqrt (r, u, (mpfr_rnd_t) rnd); mpfr_nextbelow (u); RND_LOOP (rnd) mpfr_rec_sqrt (r, u, (mpfr_rnd_t) rnd); mpfr_set_ui (u, 1, MPFR_RNDN); mpfr_nextabove (u); RND_LOOP (rnd) mpfr_rec_sqrt (r, u, (mpfr_rnd_t) rnd); mpfr_nextabove (u); RND_LOOP (rnd) mpfr_rec_sqrt (r, u, (mpfr_rnd_t) rnd); mpfr_set_ui (u, 2, MPFR_RNDN); RND_LOOP (rnd) mpfr_rec_sqrt (r, u, (mpfr_rnd_t) rnd); mpfr_nextbelow (u); RND_LOOP (rnd) mpfr_rec_sqrt (r, u, (mpfr_rnd_t) rnd); mpfr_nextbelow (u); RND_LOOP (rnd) mpfr_rec_sqrt (r, u, (mpfr_rnd_t) rnd); mpfr_set_ui (u, 2, MPFR_RNDN); mpfr_nextabove (u); RND_LOOP (rnd) mpfr_rec_sqrt (r, u, (mpfr_rnd_t) rnd); mpfr_nextabove (u); RND_LOOP (rnd) mpfr_rec_sqrt (r, u, (mpfr_rnd_t) rnd); mpfr_clear (r); mpfr_clear (u); } } /* Before commits 270f4df6b3a49caae1cf564dcdc1c55b1c5989eb (master) and 934dd8842b4bdeb919a73123203bc8ce56db38d1 (4.2 branch) on 2023-04-17, this was giving a stack overflow in mpfr_rec_sqrt due to a Ziv loop where the working precision was increased additively instead of the standard Ziv loop using the MPFR_ZIV_* macros. */ static void bad_case3 (void) { mpfr_t x, y; int inex; mpfr_init2 (x, 123456); mpfr_init2 (y, 4); mpfr_set_ui (y, 9, MPFR_RNDN); mpfr_ui_div (x, 1, y, MPFR_RNDN); inex = mpfr_rec_sqrt (y, x, MPFR_RNDN); /* Let's also check the result, though this is not the real purpose of this test (a stack overflow just makes the program crash). 1/9 = 0.111000111000111000111000111000111000...E-3 and since the precision 123456 is divisible by 6, x > 1/9. Thus 1/sqrt(x) < 3. */ if (mpfr_cmp_ui0 (y, 3) != 0 || inex <= 0) { printf ("Error in bad_case3: expected 3 with inex > 0, got "); mpfr_out_str (stdout, 10, 0, y, MPFR_RNDN); printf (" with inex=%d\n", inex); exit (1); } mpfr_clear (x); mpfr_clear (y); } /* timing test for n limbs (so that we can compare with GMP speed -s n) */ static void test (unsigned long n) { mpfr_prec_t p = n * GMP_NUMB_BITS; mpfr_t x, y, z; gmp_randstate_t state; double t; gmp_randinit_default (state); mpfr_init2 (x, p); mpfr_init2 (y, p); mpfr_init2 (z, p); mpfr_urandom (x, state, MPFR_RNDN); mpfr_urandom (y, state, MPFR_RNDN); /* multiplication */ t = clock (); mpfr_mul (z, x, y, MPFR_RNDN); t = clock () - t; printf ("mpfr_mul: %.3gs\n", t / (double) CLOCKS_PER_SEC); /* squaring */ t = clock (); mpfr_sqr (z, x, MPFR_RNDN); t = clock () - t; printf ("mpfr_sqr: %.3gs\n", t / (double) CLOCKS_PER_SEC); /* square root */ t = clock (); mpfr_sqrt (z, x, MPFR_RNDN); t = clock () - t; printf ("mpfr_sqrt: %.3gs\n", t / (double) CLOCKS_PER_SEC); /* inverse square root */ t = clock (); mpfr_rec_sqrt (z, x, MPFR_RNDN); t = clock () - t; printf ("mpfr_rec_sqrt: %.3gs\n", t / (double) CLOCKS_PER_SEC); mpfr_clear (x); mpfr_clear (y); mpfr_clear (z); gmp_randclear (state); } int main (int argc, char *argv[]) { tests_start_mpfr (); if (argc == 2) /* trec_sqrt n */ { unsigned long n = strtoul (argv[1], NULL, 10); test (n); goto end; } special (); bad_case1 (); bad_case2 (); bad_case3 (); test_generic (MPFR_PREC_MIN, 300, 15); data_check ("data/rec_sqrt", mpfr_rec_sqrt, "mpfr_rec_sqrt"); bad_cases (mpfr_rec_sqrt, pm2, "mpfr_rec_sqrt", 0, -256, 255, 4, 128, 800, 50); bad_cases (mpfr_rec_sqrt, pm2, "mpfr_rec_sqrt", 0, -256, 255, 9999, 9999, 120000, 1); end: tests_end_mpfr (); return 0; }