/* m32r simulator support code Copyright (C) 1996-2024 Free Software Foundation, Inc. Contributed by Cygnus Support. This file is part of GDB, the GNU debugger. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* This must come before any other includes. */ #include "defs.h" #define WANT_CPU m32rbf #define WANT_CPU_M32RBF #include "sim-main.h" #include "cgen-mem.h" #include "cgen-ops.h" #include <stdlib.h> #include "m32r-sim.h" /* Return the size of REGNO in bytes. */ static int m32rbf_register_size (int regno) { return 4; } /* Decode gdb ctrl register number. */ int m32r_decode_gdb_ctrl_regnum (int gdb_regnum) { switch (gdb_regnum) { case PSW_REGNUM : return H_CR_PSW; case CBR_REGNUM : return H_CR_CBR; case SPI_REGNUM : return H_CR_SPI; case SPU_REGNUM : return H_CR_SPU; case BPC_REGNUM : return H_CR_BPC; case BBPSW_REGNUM : return H_CR_BBPSW; case BBPC_REGNUM : return H_CR_BBPC; case EVB_REGNUM : return H_CR_CR5; } abort (); } /* The contents of BUF are in target byte order. */ int m32rbf_fetch_register (SIM_CPU *current_cpu, int rn, void *buf, int len) { int size = m32rbf_register_size (rn); if (len != size) return -1; if (rn < 16) SETTWI (buf, m32rbf_h_gr_get (current_cpu, rn)); else switch (rn) { case PSW_REGNUM : case CBR_REGNUM : case SPI_REGNUM : case SPU_REGNUM : case BPC_REGNUM : case BBPSW_REGNUM : case BBPC_REGNUM : SETTWI (buf, m32rbf_h_cr_get (current_cpu, m32r_decode_gdb_ctrl_regnum (rn))); break; case PC_REGNUM : SETTWI (buf, m32rbf_h_pc_get (current_cpu)); break; case ACCL_REGNUM : SETTWI (buf, GETLODI (m32rbf_h_accum_get (current_cpu))); break; case ACCH_REGNUM : SETTWI (buf, GETHIDI (m32rbf_h_accum_get (current_cpu))); break; default : return 0; } return size; } /* The contents of BUF are in target byte order. */ int m32rbf_store_register (SIM_CPU *current_cpu, int rn, const void *buf, int len) { int size = m32rbf_register_size (rn); if (len != size) return -1; if (rn < 16) m32rbf_h_gr_set (current_cpu, rn, GETTWI (buf)); else switch (rn) { case PSW_REGNUM : case CBR_REGNUM : case SPI_REGNUM : case SPU_REGNUM : case BPC_REGNUM : case BBPSW_REGNUM : case BBPC_REGNUM : m32rbf_h_cr_set (current_cpu, m32r_decode_gdb_ctrl_regnum (rn), GETTWI (buf)); break; case PC_REGNUM : m32rbf_h_pc_set (current_cpu, GETTWI (buf)); break; case ACCL_REGNUM : { DI val = m32rbf_h_accum_get (current_cpu); SETLODI (val, GETTWI (buf)); m32rbf_h_accum_set (current_cpu, val); break; } case ACCH_REGNUM : { DI val = m32rbf_h_accum_get (current_cpu); SETHIDI (val, GETTWI (buf)); m32rbf_h_accum_set (current_cpu, val); break; } default : return 0; } return size; } USI m32rbf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr) { switch (cr) { case H_CR_PSW : /* psw */ return (((CPU (h_bpsw) & 0xc1) << 8) | ((CPU (h_psw) & 0xc0) << 0) | GET_H_COND ()); case H_CR_BBPSW : /* backup backup psw */ return CPU (h_bbpsw) & 0xc1; case H_CR_CBR : /* condition bit */ return GET_H_COND (); case H_CR_SPI : /* interrupt stack pointer */ if (! GET_H_SM ()) return CPU (h_gr[H_GR_SP]); else return CPU (h_cr[H_CR_SPI]); case H_CR_SPU : /* user stack pointer */ if (GET_H_SM ()) return CPU (h_gr[H_GR_SP]); else return CPU (h_cr[H_CR_SPU]); case H_CR_BPC : /* backup pc */ return CPU (h_cr[H_CR_BPC]) & 0xfffffffe; case H_CR_BBPC : /* backup backup pc */ return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe; case 4 : /* ??? unspecified, but apparently available */ case 5 : /* ??? unspecified, but apparently available */ return CPU (h_cr[cr]); default : return 0; } } void m32rbf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval) { switch (cr) { case H_CR_PSW : /* psw */ { int old_sm = (CPU (h_psw) & 0x80) != 0; int new_sm = (newval & 0x80) != 0; CPU (h_bpsw) = (newval >> 8) & 0xff; CPU (h_psw) = newval & 0xff; SET_H_COND (newval & 1); /* When switching stack modes, update the registers. */ if (old_sm != new_sm) { if (old_sm) { /* Switching user -> system. */ CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]); CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]); } else { /* Switching system -> user. */ CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]); CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]); } } break; } case H_CR_BBPSW : /* backup backup psw */ CPU (h_bbpsw) = newval & 0xff; break; case H_CR_CBR : /* condition bit */ SET_H_COND (newval & 1); break; case H_CR_SPI : /* interrupt stack pointer */ if (! GET_H_SM ()) CPU (h_gr[H_GR_SP]) = newval; else CPU (h_cr[H_CR_SPI]) = newval; break; case H_CR_SPU : /* user stack pointer */ if (GET_H_SM ()) CPU (h_gr[H_GR_SP]) = newval; else CPU (h_cr[H_CR_SPU]) = newval; break; case H_CR_BPC : /* backup pc */ CPU (h_cr[H_CR_BPC]) = newval; break; case H_CR_BBPC : /* backup backup pc */ CPU (h_cr[H_CR_BBPC]) = newval; break; case 4 : /* ??? unspecified, but apparently available */ case 5 : /* ??? unspecified, but apparently available */ CPU (h_cr[cr]) = newval; break; default : /* ignore */ break; } } /* Cover fns to access h-psw. */ UQI m32rbf_h_psw_get_handler (SIM_CPU *current_cpu) { return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1); } void m32rbf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval) { CPU (h_psw) = newval; CPU (h_cond) = newval & 1; } /* Cover fns to access h-accum. */ DI m32rbf_h_accum_get_handler (SIM_CPU *current_cpu) { /* Sign extend the top 8 bits. */ DI r; #if 1 r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff)); r = XORDI (r, MAKEDI (0x800000, 0)); r = SUBDI (r, MAKEDI (0x800000, 0)); #else SI hi,lo; r = CPU (h_accum); hi = GETHIDI (r); lo = GETLODI (r); hi = ((hi & 0xffffff) ^ 0x800000) - 0x800000; r = MAKEDI (hi, lo); #endif return r; } void m32rbf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval) { CPU (h_accum) = newval; } #if WITH_PROFILE_MODEL_P /* FIXME: Some of these should be inline or macros. Later. */ /* Initialize cycle counting for an insn. FIRST_P is non-zero if this is the first insn in a set of parallel insns. */ void m32rbf_model_insn_before (SIM_CPU *cpu, int first_p) { M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu); mp->cti_stall = 0; mp->load_stall = 0; if (first_p) { mp->load_regs_pending = 0; mp->biggest_cycles = 0; } } /* Record the cycles computed for an insn. LAST_P is non-zero if this is the last insn in a set of parallel insns, and we update the total cycle count. CYCLES is the cycle count of the insn. */ void m32rbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles) { PROFILE_DATA *p = CPU_PROFILE_DATA (cpu); M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu); unsigned long total = cycles + mp->cti_stall + mp->load_stall; if (last_p) { unsigned long biggest = total > mp->biggest_cycles ? total : mp->biggest_cycles; PROFILE_MODEL_TOTAL_CYCLES (p) += biggest; PROFILE_MODEL_CUR_INSN_CYCLES (p) = total; } else { /* Here we take advantage of the fact that !last_p -> first_p. */ mp->biggest_cycles = total; PROFILE_MODEL_CUR_INSN_CYCLES (p) = total; } /* Branch and load stall counts are recorded independently of the total cycle count. */ PROFILE_MODEL_CTI_STALL_CYCLES (p) += mp->cti_stall; PROFILE_MODEL_LOAD_STALL_CYCLES (p) += mp->load_stall; mp->load_regs = mp->load_regs_pending; } static INLINE void check_load_stall (SIM_CPU *cpu, int regno) { UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs; if (regno != -1 && (h_gr & (1 << regno)) != 0) { CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2; if (TRACE_INSN_P (cpu)) cgen_trace_printf (cpu, " ; Load stall of 2 cycles."); } } int m32rbf_model_m32r_d_u_exec (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT sr, INT sr2, INT dr) { check_load_stall (cpu, sr); check_load_stall (cpu, sr2); return idesc->timing->units[unit_num].done; } int m32rbf_model_m32r_d_u_cmp (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT src1, INT src2) { check_load_stall (cpu, src1); check_load_stall (cpu, src2); return idesc->timing->units[unit_num].done; } int m32rbf_model_m32r_d_u_mac (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT src1, INT src2) { check_load_stall (cpu, src1); check_load_stall (cpu, src2); return idesc->timing->units[unit_num].done; } int m32rbf_model_m32r_d_u_cti (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT sr) { PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu); int taken_p = (referenced & (1 << 1)) != 0; check_load_stall (cpu, sr); if (taken_p) { CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2; PROFILE_MODEL_TAKEN_COUNT (profile) += 1; } else PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1; return idesc->timing->units[unit_num].done; } int m32rbf_model_m32r_d_u_load (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT sr, INT dr) { CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr); check_load_stall (cpu, sr); return idesc->timing->units[unit_num].done; } int m32rbf_model_m32r_d_u_store (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT src1, INT src2) { check_load_stall (cpu, src1); check_load_stall (cpu, src2); return idesc->timing->units[unit_num].done; } int m32rbf_model_test_u_exec (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced) { return idesc->timing->units[unit_num].done; } #endif /* WITH_PROFILE_MODEL_P */