// TR1 functional header -*- C++ -*-
// Copyright (C) 2004-2024 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// .
/** @file tr1/functional
 *  This is a TR1 C++ Library header.
 */
#ifndef _GLIBCXX_TR1_FUNCTIONAL
#define _GLIBCXX_TR1_FUNCTIONAL 1
#pragma GCC system_header
#include  // TR1
#include  // for std::_Placeholder, std::_Bind, std::_Bind_result
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include  // for std::__addressof
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#if __cplusplus < 201103L
  // In C++98 mode,  doesn't declare std::placeholders::_1 etc.
  // because they are not reserved names in C++98. However, they are reserved
  // by  so we can declare them here, in order to redeclare
  // them in the std::tr1::placeholders namespace below.
  namespace placeholders
  {
    extern const _Placeholder<1> _1;
    extern const _Placeholder<2> _2;
    extern const _Placeholder<3> _3;
    extern const _Placeholder<4> _4;
    extern const _Placeholder<5> _5;
    extern const _Placeholder<6> _6;
    extern const _Placeholder<7> _7;
    extern const _Placeholder<8> _8;
    extern const _Placeholder<9> _9;
    extern const _Placeholder<10> _10;
    extern const _Placeholder<11> _11;
    extern const _Placeholder<12> _12;
    extern const _Placeholder<13> _13;
    extern const _Placeholder<14> _14;
    extern const _Placeholder<15> _15;
    extern const _Placeholder<16> _16;
    extern const _Placeholder<17> _17;
    extern const _Placeholder<18> _18;
    extern const _Placeholder<19> _19;
    extern const _Placeholder<20> _20;
    extern const _Placeholder<21> _21;
    extern const _Placeholder<22> _22;
    extern const _Placeholder<23> _23;
    extern const _Placeholder<24> _24;
    extern const _Placeholder<25> _25;
    extern const _Placeholder<26> _26;
    extern const _Placeholder<27> _27;
    extern const _Placeholder<28> _28;
    extern const _Placeholder<29> _29;
  }
#endif // C++98
namespace tr1
{
  template
    class _Mem_fn;
  template
    _Mem_fn<_Tp _Class::*>
    mem_fn(_Tp _Class::*);
  /**
   *  Actual implementation of _Has_result_type, which uses SFINAE to
   *  determine if the type _Tp has a publicly-accessible member type
   *  result_type.
  */
  template
    class _Has_result_type_helper : __sfinae_types
    {
      template
        struct _Wrap_type
	{ };
      template
        static __one __test(_Wrap_type*);
      template
        static __two __test(...);
    public:
      static const bool value = sizeof(__test<_Tp>(0)) == 1;
    };
  template
    struct _Has_result_type
    : integral_constant::type>::value>
    { };
  /**
   *  
  */
  /// If we have found a result_type, extract it.
  template
    struct _Maybe_get_result_type
    { };
  template
    struct _Maybe_get_result_type
    {
      typedef typename _Functor::result_type result_type;
    };
  /**
   *  Base class for any function object that has a weak result type, as
   *  defined in 3.3/3 of TR1.
  */
  template
    struct _Weak_result_type_impl
    : _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
    {
    };
  /// Retrieve the result type for a function type.
  template 
    struct _Weak_result_type_impl<_Res(_ArgTypes...)>
    {
      typedef _Res result_type;
    };
  /// Retrieve the result type for a function reference.
  template 
    struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
    {
      typedef _Res result_type;
    };
  /// Retrieve the result type for a function pointer.
  template 
    struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
    {
      typedef _Res result_type;
    };
  /// Retrieve result type for a member function pointer. 
  template 
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
    {
      typedef _Res result_type;
    };
  /// Retrieve result type for a const member function pointer. 
  template 
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
    {
      typedef _Res result_type;
    };
  /// Retrieve result type for a volatile member function pointer. 
  template 
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
    {
      typedef _Res result_type;
    };
  /// Retrieve result type for a const volatile member function pointer. 
  template 
    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)const volatile>
    {
      typedef _Res result_type;
    };
  /**
   *  Strip top-level cv-qualifiers from the function object and let
   *  _Weak_result_type_impl perform the real work.
  */
  template
    struct _Weak_result_type
    : _Weak_result_type_impl::type>
    {
    };
  template
    class result_of;
  /**
   *  Actual implementation of result_of. When _Has_result_type is
   *  true, gets its result from _Weak_result_type. Otherwise, uses
   *  the function object's member template result to extract the
   *  result type.
  */
  template
    struct _Result_of_impl;
  // Handle member data pointers using _Mem_fn's logic
  template
    struct _Result_of_impl
    {
      typedef typename _Mem_fn<_Res _Class::*>
                ::template _Result_type<_T1>::type type;
    };
  /**
   * Determine whether we can determine a result type from @c Functor 
   * alone.
   */ 
  template
    class result_of<_Functor(_ArgTypes...)>
    : public _Result_of_impl<
               _Has_result_type<_Weak_result_type<_Functor> >::value,
               _Functor(_ArgTypes...)>
    {
    };
  /// We already know the result type for @c Functor; use it.
  template
    struct _Result_of_impl
    {
      typedef typename _Weak_result_type<_Functor>::result_type type;
    };
  /**
   * We need to compute the result type for this invocation the hard 
   * way.
   */
  template
    struct _Result_of_impl
    {
      typedef typename _Functor
                ::template result<_Functor(_ArgTypes...)>::type type;
    };
  /**
   * It is unsafe to access ::result when there are zero arguments, so we 
   * return @c void instead.
   */
  template
    struct _Result_of_impl
    {
      typedef void type;
    };
// Ignore warnings about std::unary_function and std::binary_function.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
  /// Determines if the type _Tp derives from unary_function.
  template
    struct _Derives_from_unary_function : __sfinae_types
    {
    private:
      template
        static __one __test(const volatile unary_function<_T1, _Res>*);
      // It's tempting to change "..." to const volatile void*, but
      // that fails when _Tp is a function type.
      static __two __test(...);
    public:
      static const bool value = sizeof(__test((_Tp*)0)) == 1;
    };
  /// Determines if the type _Tp derives from binary_function.
  template
    struct _Derives_from_binary_function : __sfinae_types
    {
    private:
      template
        static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
      // It's tempting to change "..." to const volatile void*, but
      // that fails when _Tp is a function type.
      static __two __test(...);
    public:
      static const bool value = sizeof(__test((_Tp*)0)) == 1;
    };
  /// Turns a function type into a function pointer type
  template::value>
    struct _Function_to_function_pointer
    {
      typedef _Tp type;
    };
  template
    struct _Function_to_function_pointer<_Tp, true>
    {
      typedef _Tp* type;
    };
  /**
   * Invoke a function object, which may be either a member pointer or a
   * function object. The first parameter will tell which.
   */
  template
    inline
    typename __gnu_cxx::__enable_if<
             (!is_member_pointer<_Functor>::value
              && !is_function<_Functor>::value
              && !is_function::type>::value),
             typename result_of<_Functor(_Args...)>::type
           >::__type
    __invoke(_Functor& __f, _Args&... __args)
    {
      return __f(__args...);
    }
  template
    inline
    typename __gnu_cxx::__enable_if<
             (is_member_pointer<_Functor>::value
              && !is_function<_Functor>::value
              && !is_function::type>::value),
             typename result_of<_Functor(_Args...)>::type
           >::__type
    __invoke(_Functor& __f, _Args&... __args)
    {
      return mem_fn(__f)(__args...);
    }
  // To pick up function references (that will become function pointers)
  template
    inline
    typename __gnu_cxx::__enable_if<
             (is_pointer<_Functor>::value
              && is_function::type>::value),
             typename result_of<_Functor(_Args...)>::type
           >::__type
    __invoke(_Functor __f, _Args&... __args)
    {
      return __f(__args...);
    }
  /**
   *  Knowing which of unary_function and binary_function _Tp derives
   *  from, derives from the same and ensures that reference_wrapper
   *  will have a weak result type. See cases below.
   */
  template
    struct _Reference_wrapper_base_impl;
  // Not a unary_function or binary_function, so try a weak result type.
  template
    struct _Reference_wrapper_base_impl
    : _Weak_result_type<_Tp>
    { };
  // unary_function but not binary_function
  template
    struct _Reference_wrapper_base_impl
    : unary_function
    { };
  // binary_function but not unary_function
  template
    struct _Reference_wrapper_base_impl
    : binary_function
    { };
  // Both unary_function and binary_function. Import result_type to
  // avoid conflicts.
   template
    struct _Reference_wrapper_base_impl
    : unary_function,
      binary_function
    {
      typedef typename _Tp::result_type result_type;
    };
  /**
   *  Derives from unary_function or binary_function when it
   *  can. Specializations handle all of the easy cases. The primary
   *  template determines what to do with a class type, which may
   *  derive from both unary_function and binary_function.
  */
  template
    struct _Reference_wrapper_base
    : _Reference_wrapper_base_impl<
      _Derives_from_unary_function<_Tp>::value,
      _Derives_from_binary_function<_Tp>::value,
      _Tp>
    { };
  // - a function type (unary)
  template
    struct _Reference_wrapper_base<_Res(_T1)>
    : unary_function<_T1, _Res>
    { };
  // - a function type (binary)
  template
    struct _Reference_wrapper_base<_Res(_T1, _T2)>
    : binary_function<_T1, _T2, _Res>
    { };
  // - a function pointer type (unary)
  template
    struct _Reference_wrapper_base<_Res(*)(_T1)>
    : unary_function<_T1, _Res>
    { };
  // - a function pointer type (binary)
  template
    struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
    : binary_function<_T1, _T2, _Res>
    { };
  // - a pointer to member function type (unary, no qualifiers)
  template
    struct _Reference_wrapper_base<_Res (_T1::*)()>
    : unary_function<_T1*, _Res>
    { };
  // - a pointer to member function type (binary, no qualifiers)
  template
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
    : binary_function<_T1*, _T2, _Res>
    { };
  // - a pointer to member function type (unary, const)
  template
    struct _Reference_wrapper_base<_Res (_T1::*)() const>
    : unary_function
    { };
  // - a pointer to member function type (binary, const)
  template
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
    : binary_function
    { };
  // - a pointer to member function type (unary, volatile)
  template
    struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
    : unary_function
    { };
  // - a pointer to member function type (binary, volatile)
  template
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
    : binary_function
    { };
  // - a pointer to member function type (unary, const volatile)
  template
    struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
    : unary_function
    { };
  // - a pointer to member function type (binary, const volatile)
  template
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
    : binary_function
    { };
  /// reference_wrapper
  template
    class reference_wrapper
    : public _Reference_wrapper_base::type>
    {
      // If _Tp is a function type, we can't form result_of<_Tp(...)>,
      // so turn it into a function pointer type.
      typedef typename _Function_to_function_pointer<_Tp>::type
        _M_func_type;
      _Tp* _M_data;
    public:
      typedef _Tp type;
      explicit
      reference_wrapper(_Tp& __indata)
      : _M_data(std::__addressof(__indata))
      { }
      reference_wrapper(const reference_wrapper<_Tp>& __inref):
      _M_data(__inref._M_data)
      { }
      reference_wrapper&
      operator=(const reference_wrapper<_Tp>& __inref)
      {
        _M_data = __inref._M_data;
        return *this;
      }
      operator _Tp&() const
      { return this->get(); }
      _Tp&
      get() const
      { return *_M_data; }
      template
        typename result_of<_M_func_type(_Args...)>::type
        operator()(_Args&... __args) const
        {
	  return __invoke(get(), __args...);
	}
    };
  // Denotes a reference should be taken to a variable.
  template
    inline reference_wrapper<_Tp>
    ref(_Tp& __t)
    { return reference_wrapper<_Tp>(__t); }
  // Denotes a const reference should be taken to a variable.
  template
    inline reference_wrapper
    cref(const _Tp& __t)
    { return reference_wrapper(__t); }
  template
    inline reference_wrapper<_Tp>
    ref(reference_wrapper<_Tp> __t)
    { return ref(__t.get()); }
  template
    inline reference_wrapper
    cref(reference_wrapper<_Tp> __t)
    { return cref(__t.get()); }
  template
    struct _Mem_fn_const_or_non
    {
      typedef const _Tp& type;
    };
  template
    struct _Mem_fn_const_or_non<_Tp, false>
    {
      typedef _Tp& type;
    };
  /**
   * Derives from @c unary_function or @c binary_function, or perhaps
   * nothing, depending on the number of arguments provided. The
   * primary template is the basis case, which derives nothing.
   */
  template 
    struct _Maybe_unary_or_binary_function { };
  /// Derives from @c unary_function, as appropriate. 
  template 
    struct _Maybe_unary_or_binary_function<_Res, _T1>
    : std::unary_function<_T1, _Res> { };
  /// Derives from @c binary_function, as appropriate. 
  template 
    struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
    : std::binary_function<_T1, _T2, _Res> { };
  /// Implementation of @c mem_fn for member function pointers.
  template
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
    : public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...);
      template
        _Res
        _M_call(_Tp& __object, const volatile _Class *, 
                _ArgTypes... __args) const
        { return (__object.*__pmf)(__args...); }
      template
        _Res
        _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
        { return ((*__ptr).*__pmf)(__args...); }
    public:
      typedef _Res result_type;
      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
      // Handle objects
      _Res
      operator()(_Class& __object, _ArgTypes... __args) const
      { return (__object.*__pmf)(__args...); }
      // Handle pointers
      _Res
      operator()(_Class* __object, _ArgTypes... __args) const
      { return (__object->*__pmf)(__args...); }
      // Handle smart pointers, references and pointers to derived
      template
        _Res
	operator()(_Tp& __object, _ArgTypes... __args) const
        { return _M_call(__object, &__object, __args...); }
    private:
      _Functor __pmf;
    };
  /// Implementation of @c mem_fn for const member function pointers.
  template
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
    : public _Maybe_unary_or_binary_function<_Res, const _Class*, 
					     _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...) const;
      template
        _Res
        _M_call(_Tp& __object, const volatile _Class *, 
                _ArgTypes... __args) const
        { return (__object.*__pmf)(__args...); }
      template
        _Res
        _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
        { return ((*__ptr).*__pmf)(__args...); }
    public:
      typedef _Res result_type;
      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
      // Handle objects
      _Res
      operator()(const _Class& __object, _ArgTypes... __args) const
      { return (__object.*__pmf)(__args...); }
      // Handle pointers
      _Res
      operator()(const _Class* __object, _ArgTypes... __args) const
      { return (__object->*__pmf)(__args...); }
      // Handle smart pointers, references and pointers to derived
      template
        _Res operator()(_Tp& __object, _ArgTypes... __args) const
        { return _M_call(__object, &__object, __args...); }
    private:
      _Functor __pmf;
    };
  /// Implementation of @c mem_fn for volatile member function pointers.
  template
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
    : public _Maybe_unary_or_binary_function<_Res, volatile _Class*, 
					     _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;
      template
        _Res
        _M_call(_Tp& __object, const volatile _Class *, 
                _ArgTypes... __args) const
        { return (__object.*__pmf)(__args...); }
      template
        _Res
        _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
        { return ((*__ptr).*__pmf)(__args...); }
    public:
      typedef _Res result_type;
      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
      // Handle objects
      _Res
      operator()(volatile _Class& __object, _ArgTypes... __args) const
      { return (__object.*__pmf)(__args...); }
      // Handle pointers
      _Res
      operator()(volatile _Class* __object, _ArgTypes... __args) const
      { return (__object->*__pmf)(__args...); }
      // Handle smart pointers, references and pointers to derived
      template
        _Res
	operator()(_Tp& __object, _ArgTypes... __args) const
        { return _M_call(__object, &__object, __args...); }
    private:
      _Functor __pmf;
    };
  /// Implementation of @c mem_fn for const volatile member function pointers.
  template
    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
    : public _Maybe_unary_or_binary_function<_Res, const volatile _Class*, 
					     _ArgTypes...>
    {
      typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;
      template
        _Res
        _M_call(_Tp& __object, const volatile _Class *, 
                _ArgTypes... __args) const
        { return (__object.*__pmf)(__args...); }
      template
        _Res
        _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
        { return ((*__ptr).*__pmf)(__args...); }
    public:
      typedef _Res result_type;
      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
      // Handle objects
      _Res 
      operator()(const volatile _Class& __object, _ArgTypes... __args) const
      { return (__object.*__pmf)(__args...); }
      // Handle pointers
      _Res 
      operator()(const volatile _Class* __object, _ArgTypes... __args) const
      { return (__object->*__pmf)(__args...); }
      // Handle smart pointers, references and pointers to derived
      template
        _Res operator()(_Tp& __object, _ArgTypes... __args) const
        { return _M_call(__object, &__object, __args...); }
    private:
      _Functor __pmf;
    };
  template
    class _Mem_fn<_Res _Class::*>
    {
      // This bit of genius is due to Peter Dimov, improved slightly by
      // Douglas Gregor.
      template
        _Res&
        _M_call(_Tp& __object, _Class *) const
        { return __object.*__pm; }
      template
        _Res&
        _M_call(_Tp& __object, _Up * const *) const
        { return (*__object).*__pm; }
      template
        const _Res&
        _M_call(_Tp& __object, const _Up * const *) const
        { return (*__object).*__pm; }
      template
        const _Res&
        _M_call(_Tp& __object, const _Class *) const
        { return __object.*__pm; }
      template
        const _Res&
        _M_call(_Tp& __ptr, const volatile void*) const
        { return (*__ptr).*__pm; }
      template static _Tp& __get_ref();
      template
        static __sfinae_types::__one __check_const(_Tp&, _Class*);
      template
        static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
      template
        static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
      template
        static __sfinae_types::__two __check_const(_Tp&, const _Class*);
      template
        static __sfinae_types::__two __check_const(_Tp&, const volatile void*);
    public:
      template
        struct _Result_type
	: _Mem_fn_const_or_non<_Res,
	  (sizeof(__sfinae_types::__two)
	   == sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
        { };
      template
        struct result;
      template
        struct result<_CVMem(_Tp)>
	: public _Result_type<_Tp> { };
      template
        struct result<_CVMem(_Tp&)>
	: public _Result_type<_Tp> { };
      explicit
      _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }
      // Handle objects
      _Res&
      operator()(_Class& __object) const
      { return __object.*__pm; }
      const _Res&
      operator()(const _Class& __object) const
      { return __object.*__pm; }
      // Handle pointers
      _Res&
      operator()(_Class* __object) const
      { return __object->*__pm; }
      const _Res&
      operator()(const _Class* __object) const
      { return __object->*__pm; }
      // Handle smart pointers and derived
      template
        typename _Result_type<_Tp>::type
        operator()(_Tp& __unknown) const
        { return _M_call(__unknown, &__unknown); }
    private:
      _Res _Class::*__pm;
    };
  /**
   *  @brief Returns a function object that forwards to the member
   *  pointer @a pm.
   */
  template
    inline _Mem_fn<_Tp _Class::*>
    mem_fn(_Tp _Class::* __pm)
    {
      return _Mem_fn<_Tp _Class::*>(__pm);
    }
  /**
   *  @brief Determines if the given type _Tp is a function object
   *  should be treated as a subexpression when evaluating calls to
   *  function objects returned by bind(). [TR1 3.6.1]
   */
  template
    struct is_bind_expression
    { static const bool value = false; };
  template
    const bool is_bind_expression<_Tp>::value;
  /**
   *  @brief Determines if the given type _Tp is a placeholder in a
   *  bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
   */
  template
    struct is_placeholder
    { static const int value = 0; };
  template
    const int is_placeholder<_Tp>::value;
  /// The type of placeholder objects defined by libstdc++.
  using ::std::_Placeholder;
  /** @namespace std::tr1::placeholders
   *  @brief Sub-namespace for tr1/functional.
   */
  namespace placeholders
  {
    // The C++11 std::placeholders are already exported from the library.
    // Reusing them here avoids needing to export additional symbols for
    // the TR1 placeholders, and avoids ODR violations due to defining
    // them with internal linkage (as we used to do).
    using namespace ::std::placeholders;
  }
  /**
   *  Partial specialization of is_placeholder that provides the placeholder
   *  number for the placeholder objects defined by libstdc++.
   */
  template
    struct is_placeholder<_Placeholder<_Num> >
    : integral_constant
    { };
  template
    struct is_placeholder >
    : integral_constant
    { };
  /**
   * Stores a tuple of indices. Used by bind() to extract the elements
   * in a tuple. 
   */
  template
    struct _Index_tuple { };
  /// Builds an _Index_tuple<0, 1, 2, ..., _Num-1>.
  template >
    struct _Build_index_tuple;
 
  template 
    struct _Build_index_tuple<_Num, _Index_tuple<_Indexes...> >
    : _Build_index_tuple<_Num - 1, 
                         _Index_tuple<_Indexes..., sizeof...(_Indexes)> >
    {
    };
  template
    struct _Build_index_tuple<0, _Index_tuple<_Indexes...> >
    {
      typedef _Index_tuple<_Indexes...> __type;
    };
  /** 
   * Used by _Safe_tuple_element to indicate that there is no tuple
   * element at this position.
   */
  struct _No_tuple_element;
  /**
   * Implementation helper for _Safe_tuple_element. This primary
   * template handles the case where it is safe to use @c
   * tuple_element.
   */
  template
    struct _Safe_tuple_element_impl
    : tuple_element<__i, _Tuple> { };
  /**
   * Implementation helper for _Safe_tuple_element. This partial
   * specialization handles the case where it is not safe to use @c
   * tuple_element. We just return @c _No_tuple_element.
   */
  template
    struct _Safe_tuple_element_impl<__i, _Tuple, false>
    {
      typedef _No_tuple_element type;
    };
  /**
   * Like tuple_element, but returns @c _No_tuple_element when
   * tuple_element would return an error.
   */
 template
   struct _Safe_tuple_element
   : _Safe_tuple_element_impl<__i, _Tuple, 
                              (__i >= 0 && __i < tuple_size<_Tuple>::value)>
   {
   };
  /**
   *  Maps an argument to bind() into an actual argument to the bound
   *  function object [TR1 3.6.3/5]. Only the first parameter should
   *  be specified: the rest are used to determine among the various
   *  implementations. Note that, although this class is a function
   *  object, it isn't entirely normal because it takes only two
   *  parameters regardless of the number of parameters passed to the
   *  bind expression. The first parameter is the bound argument and
   *  the second parameter is a tuple containing references to the
   *  rest of the arguments.
   */
  template::value,
           bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
    class _Mu;
  /**
   *  If the argument is reference_wrapper<_Tp>, returns the
   *  underlying reference. [TR1 3.6.3/5 bullet 1]
   */
  template
    class _Mu, false, false>
    {
    public:
      typedef _Tp& result_type;
      /* Note: This won't actually work for const volatile
       * reference_wrappers, because reference_wrapper::get() is const
       * but not volatile-qualified. This might be a defect in the TR.
       */
      template
        result_type
        operator()(_CVRef& __arg, const _Tuple&) const volatile
        { return __arg.get(); }
    };
  /**
   *  If the argument is a bind expression, we invoke the underlying
   *  function object with the same cv-qualifiers as we are given and
   *  pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
   */
  template
    class _Mu<_Arg, true, false>
    {
    public:
      template class result;
      // Determine the result type when we pass the arguments along. This
      // involves passing along the cv-qualifiers placed on _Mu and
      // unwrapping the argument bundle.
      template
        class result<_CVMu(_CVArg, tuple<_Args...>)>
	: public result_of<_CVArg(_Args...)> { };
      template
        typename result_of<_CVArg(_Args...)>::type
        operator()(_CVArg& __arg,
		   const tuple<_Args...>& __tuple) const volatile
        {
	  // Construct an index tuple and forward to __call
	  typedef typename _Build_index_tuple::__type
	    _Indexes;
	  return this->__call(__arg, __tuple, _Indexes());
	}
    private:
      // Invokes the underlying function object __arg by unpacking all
      // of the arguments in the tuple. 
      template
        typename result_of<_CVArg(_Args...)>::type
        __call(_CVArg& __arg, const tuple<_Args...>& __tuple,
	       const _Index_tuple<_Indexes...>&) const volatile
        {
	  return __arg(tr1::get<_Indexes>(__tuple)...);
	}
    };
  /**
   *  If the argument is a placeholder for the Nth argument, returns
   *  a reference to the Nth argument to the bind function object.
   *  [TR1 3.6.3/5 bullet 3]
   */
  template
    class _Mu<_Arg, false, true>
    {
    public:
      template class result;
      template
        class result<_CVMu(_CVArg, _Tuple)>
        {
	  // Add a reference, if it hasn't already been done for us.
	  // This allows us to be a little bit sloppy in constructing
	  // the tuple that we pass to result_of<...>.
	  typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
						- 1), _Tuple>::type
	    __base_type;
	public:
	  typedef typename add_reference<__base_type>::type type;
	};
      template
        typename result<_Mu(_Arg, _Tuple)>::type
        operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile
        {
	  return ::std::tr1::get<(is_placeholder<_Arg>::value - 1)>(__tuple);
	}
    };
  /**
   *  If the argument is just a value, returns a reference to that
   *  value. The cv-qualifiers on the reference are the same as the
   *  cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
   */
  template
    class _Mu<_Arg, false, false>
    {
    public:
      template struct result;
      template
        struct result<_CVMu(_CVArg, _Tuple)>
        {
	  typedef typename add_reference<_CVArg>::type type;
	};
      // Pick up the cv-qualifiers of the argument
      template
        _CVArg&
        operator()(_CVArg& __arg, const _Tuple&) const volatile
        { return __arg; }
    };
  /**
   *  Maps member pointers into instances of _Mem_fn but leaves all
   *  other function objects untouched. Used by tr1::bind(). The
   *  primary template handles the non--member-pointer case.
   */
  template
    struct _Maybe_wrap_member_pointer
    {
      typedef _Tp type;
      
      static const _Tp&
      __do_wrap(const _Tp& __x)
      { return __x; }
    };
  /**
   *  Maps member pointers into instances of _Mem_fn but leaves all
   *  other function objects untouched. Used by tr1::bind(). This
   *  partial specialization handles the member pointer case.
   */
  template
    struct _Maybe_wrap_member_pointer<_Tp _Class::*>
    {
      typedef _Mem_fn<_Tp _Class::*> type;
      
      static type
      __do_wrap(_Tp _Class::* __pm)
      { return type(__pm); }
    };
  /// Type of the function object returned from bind().
  template
    struct _Bind;
   template
    class _Bind<_Functor(_Bound_args...)>
    : public _Weak_result_type<_Functor>
    {
      typedef _Bind __self_type;
      typedef typename _Build_index_tuple::__type 
        _Bound_indexes;
      _Functor _M_f;
      tuple<_Bound_args...> _M_bound_args;
      // Call unqualified
      template
        typename result_of<
                   _Functor(typename result_of<_Mu<_Bound_args> 
                            (_Bound_args, tuple<_Args...>)>::type...)
                 >::type
        __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }
      // Call as const
      template
        typename result_of<
                   const _Functor(typename result_of<_Mu<_Bound_args> 
                                    (const _Bound_args, tuple<_Args...>)
                                  >::type...)>::type
        __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }
      // Call as volatile
      template
        typename result_of<
                   volatile _Functor(typename result_of<_Mu<_Bound_args> 
                                    (volatile _Bound_args, tuple<_Args...>)
                                  >::type...)>::type
        __call(const tuple<_Args...>& __args, 
               _Index_tuple<_Indexes...>) volatile
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }
      // Call as const volatile
      template
        typename result_of<
                   const volatile _Functor(typename result_of<_Mu<_Bound_args> 
                                    (const volatile _Bound_args, 
                                     tuple<_Args...>)
                                  >::type...)>::type
        __call(const tuple<_Args...>& __args, 
               _Index_tuple<_Indexes...>) const volatile
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }
     public:
      explicit _Bind(_Functor __f, _Bound_args... __bound_args)
        : _M_f(__f), _M_bound_args(__bound_args...) { }
      // Call unqualified
      template
        typename result_of<
                   _Functor(typename result_of<_Mu<_Bound_args> 
                            (_Bound_args, tuple<_Args...>)>::type...)
                 >::type
        operator()(_Args&... __args)
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }
      // Call as const
      template
        typename result_of<
                   const _Functor(typename result_of<_Mu<_Bound_args> 
                            (const _Bound_args, tuple<_Args...>)>::type...)
                 >::type
        operator()(_Args&... __args) const
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }
      // Call as volatile
      template
        typename result_of<
                   volatile _Functor(typename result_of<_Mu<_Bound_args> 
                            (volatile _Bound_args, tuple<_Args...>)>::type...)
                 >::type
        operator()(_Args&... __args) volatile
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }
      // Call as const volatile
      template
        typename result_of<
                   const volatile _Functor(typename result_of<_Mu<_Bound_args> 
                            (const volatile _Bound_args, 
                             tuple<_Args...>)>::type...)
                 >::type
        operator()(_Args&... __args) const volatile
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }
    };
  /// Type of the function object returned from bind().
  template
    struct _Bind_result;
  template
    class _Bind_result<_Result, _Functor(_Bound_args...)>
    {
      typedef _Bind_result __self_type;
      typedef typename _Build_index_tuple::__type 
        _Bound_indexes;
      _Functor _M_f;
      tuple<_Bound_args...> _M_bound_args;
      // Call unqualified
      template
        _Result
        __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }
      // Call as const
      template
        _Result
        __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }
      // Call as volatile
      template
        _Result
        __call(const tuple<_Args...>& __args, 
               _Index_tuple<_Indexes...>) volatile
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }
      // Call as const volatile
      template
        _Result
        __call(const tuple<_Args...>& __args, 
               _Index_tuple<_Indexes...>) const volatile
        {
          return _M_f(_Mu<_Bound_args>()
                      (tr1::get<_Indexes>(_M_bound_args), __args)...);
        }
    public:
      typedef _Result result_type;
      explicit
      _Bind_result(_Functor __f, _Bound_args... __bound_args)
      : _M_f(__f), _M_bound_args(__bound_args...) { }
      // Call unqualified
      template
        result_type
        operator()(_Args&... __args)
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }
      // Call as const
      template
        result_type
        operator()(_Args&... __args) const
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }
      // Call as volatile
      template
        result_type
        operator()(_Args&... __args) volatile
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }
      // Call as const volatile
      template
        result_type
        operator()(_Args&... __args) const volatile
        {
          return this->__call(tr1::tie(__args...), _Bound_indexes());
        }
    };
  /// Class template _Bind is always a bind expression.
  template
    struct is_bind_expression<_Bind<_Signature> >
    { static const bool value = true; };
  template
    const bool is_bind_expression<_Bind<_Signature> >::value;
  /// Class template _Bind is always a bind expression.
  template
    struct is_bind_expression >
    { static const bool value = true; };
  template
    const bool is_bind_expression >::value;
  /// Class template _Bind is always a bind expression.
  template
    struct is_bind_expression >
    { static const bool value = true; };
  template
    const bool is_bind_expression >::value;
  /// Class template _Bind is always a bind expression.
  template
    struct is_bind_expression >
    { static const bool value = true; };
  template
    const bool is_bind_expression >::value;
  /// Class template _Bind_result is always a bind expression.
  template
    struct is_bind_expression<_Bind_result<_Result, _Signature> >
    { static const bool value = true; };
  template
    const bool is_bind_expression<_Bind_result<_Result, _Signature> >::value;
  /// Class template _Bind_result is always a bind expression.
  template
    struct is_bind_expression >
    { static const bool value = true; };
  template
    const bool
    is_bind_expression >::value;
  /// Class template _Bind_result is always a bind expression.
  template
    struct is_bind_expression >
    { static const bool value = true; };
  template
    const bool
    is_bind_expression >::value;
  /// Class template _Bind_result is always a bind expression.
  template
    struct
    is_bind_expression >
    { static const bool value = true; };
  template
    const bool
    is_bind_expression >::value;
#if __cplusplus >= 201103L
  // Specialize tr1::is_bind_expression for std::bind closure types,
  // so that they can also work with tr1::bind.
  template
    struct is_bind_expression>
    : true_type { };
  template
    struct is_bind_expression>
    : true_type { };
  template
    struct is_bind_expression>
    : true_type { };
  template
    struct is_bind_expression>
    : true_type { };
  template
    struct is_bind_expression>
    : true_type { };
  template
    struct is_bind_expression>
    : true_type { };
  template
    struct is_bind_expression>
    : true_type { };
  template
    struct is_bind_expression>
    : true_type { };
#endif
  /// bind
  template
    inline
    _Bind::type(_ArgTypes...)>
    bind(_Functor __f, _ArgTypes... __args)
    {
      typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
      typedef typename __maybe_type::type __functor_type;
      typedef _Bind<__functor_type(_ArgTypes...)> __result_type;
      return __result_type(__maybe_type::__do_wrap(__f), __args...);
    } 
  template
    inline
    _Bind_result<_Result,
		 typename _Maybe_wrap_member_pointer<_Functor>::type
                            (_ArgTypes...)>
    bind(_Functor __f, _ArgTypes... __args)
    {
      typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
      typedef typename __maybe_type::type __functor_type;
      typedef _Bind_result<_Result, __functor_type(_ArgTypes...)>
	__result_type;
      return __result_type(__maybe_type::__do_wrap(__f), __args...);
    }
  /**
   *  @brief Exception class thrown when class template function's
   *  operator() is called with an empty target.
   *  @ingroup exceptions
   */
  class bad_function_call : public std::exception { };
  /**
   *  The integral constant expression 0 can be converted into a
   *  pointer to this type. It is used by the function template to
   *  accept NULL pointers.
   */
  struct _M_clear_type;
  /**
   *  Trait identifying @a location-invariant types, meaning that the
   *  address of the object (or any of its members) will not escape.
   *  Also implies a trivial copy constructor and assignment operator.
   */
  template
    struct __is_location_invariant
    : integral_constant::value
                         || is_member_pointer<_Tp>::value)>
    {
    };
  class _Undefined_class;
  union _Nocopy_types
  {
    void*       _M_object;
    const void* _M_const_object;
    void (*_M_function_pointer)();
    void (_Undefined_class::*_M_member_pointer)();
  };
  union _Any_data
  {
    void*       _M_access()       { return &_M_pod_data[0]; }
    const void* _M_access() const { return &_M_pod_data[0]; }
    template
      _Tp&
      _M_access()
      { return *static_cast<_Tp*>(_M_access()); }
    template
      const _Tp&
      _M_access() const
      { return *static_cast(_M_access()); }
    _Nocopy_types _M_unused;
    char _M_pod_data[sizeof(_Nocopy_types)];
  };
  enum _Manager_operation
  {
    __get_type_info,
    __get_functor_ptr,
    __clone_functor,
    __destroy_functor
  };
  // Simple type wrapper that helps avoid annoying const problems
  // when casting between void pointers and pointers-to-pointers.
  template
    struct _Simple_type_wrapper
    {
      _Simple_type_wrapper(_Tp __value) : __value(__value) { }
      _Tp __value;
    };
  template
    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
    : __is_location_invariant<_Tp>
    {
    };
  // Converts a reference to a function object into a callable
  // function object.
  template
    inline _Functor&
    __callable_functor(_Functor& __f)
    { return __f; }
  template
    inline _Mem_fn<_Member _Class::*>
    __callable_functor(_Member _Class::* &__p)
    { return mem_fn(__p); }
  template
    inline _Mem_fn<_Member _Class::*>
    __callable_functor(_Member _Class::* const &__p)
    { return mem_fn(__p); }
  template