/* * wpa_supplicant - PASN processing * * Copyright (C) 2019 Intel Corporation * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common/ieee802_11_defs.h" #include "common/ieee802_11_common.h" #include "common/dragonfly.h" #include "common/ptksa_cache.h" #include "utils/eloop.h" #include "drivers/driver.h" #include "crypto/crypto.h" #include "crypto/random.h" #include "eap_common/eap_defs.h" #include "rsn_supp/wpa.h" #include "rsn_supp/pmksa_cache.h" #include "wpa_supplicant_i.h" #include "driver_i.h" #include "bss.h" #include "scan.h" #include "config.h" static const int dot11RSNAConfigPMKLifetime = 43200; struct wpa_pasn_auth_work { u8 own_addr[ETH_ALEN]; u8 peer_addr[ETH_ALEN]; int akmp; int cipher; u16 group; int network_id; struct wpabuf *comeback; }; static int wpas_pasn_send_mlme(void *ctx, const u8 *data, size_t data_len, int noack, unsigned int freq, unsigned int wait) { struct wpa_supplicant *wpa_s = ctx; return wpa_drv_send_mlme(wpa_s, data, data_len, noack, freq, wait); } static void wpas_pasn_free_auth_work(struct wpa_pasn_auth_work *awork) { wpabuf_free(awork->comeback); awork->comeback = NULL; os_free(awork); } static void wpas_pasn_auth_work_timeout(void *eloop_ctx, void *timeout_ctx) { struct wpa_supplicant *wpa_s = eloop_ctx; wpa_printf(MSG_DEBUG, "PASN: Auth work timeout - stopping auth"); wpas_pasn_auth_stop(wpa_s); wpas_pasn_auth_work_done(wpa_s, PASN_STATUS_FAILURE); } static void wpas_pasn_cancel_auth_work(struct wpa_supplicant *wpa_s) { wpa_printf(MSG_DEBUG, "PASN: Cancel pasn-start-auth work"); /* Remove pending/started work */ radio_remove_works(wpa_s, "pasn-start-auth", 0); } static void wpas_pasn_auth_status(struct wpa_supplicant *wpa_s, const u8 *peer_addr, int akmp, int cipher, u8 status, struct wpabuf *comeback, u16 comeback_after) { if (comeback) { size_t comeback_len = wpabuf_len(comeback); size_t buflen = comeback_len * 2 + 1; char *comeback_txt = os_malloc(buflen); if (comeback_txt) { wpa_snprintf_hex(comeback_txt, buflen, wpabuf_head(comeback), comeback_len); wpa_msg(wpa_s, MSG_INFO, PASN_AUTH_STATUS MACSTR " akmp=%s, status=%u comeback_after=%u comeback=%s", MAC2STR(peer_addr), wpa_key_mgmt_txt(akmp, WPA_PROTO_RSN), status, comeback_after, comeback_txt); os_free(comeback_txt); return; } } wpa_msg(wpa_s, MSG_INFO, PASN_AUTH_STATUS MACSTR " akmp=%s, status=%u", MAC2STR(peer_addr), wpa_key_mgmt_txt(akmp, WPA_PROTO_RSN), status); } #ifdef CONFIG_SAE static struct sae_pt * wpas_pasn_sae_derive_pt(struct wpa_ssid *ssid, int group) { const char *password = ssid->sae_password; int groups[2] = { group, 0 }; if (!password) password = ssid->passphrase; if (!password) { wpa_printf(MSG_DEBUG, "PASN: SAE without a password"); return NULL; } return sae_derive_pt(groups, ssid->ssid, ssid->ssid_len, (const u8 *) password, os_strlen(password), ssid->sae_password_id); } static int wpas_pasn_sae_setup_pt(struct wpa_ssid *ssid, int group) { if (!ssid->sae_password && !ssid->passphrase) { wpa_printf(MSG_DEBUG, "PASN: SAE without a password"); return -1; } if (ssid->pt) return 0; /* PT already derived */ ssid->pt = wpas_pasn_sae_derive_pt(ssid, group); return ssid->pt ? 0 : -1; } #endif /* CONFIG_SAE */ static int wpas_pasn_get_params_from_bss(struct wpa_supplicant *wpa_s, struct pasn_peer *peer) { int ret; const u8 *rsne, *rsnxe; struct wpa_bss *bss; struct wpa_ie_data rsne_data; int sel, key_mgmt, pairwise_cipher; int network_id = 0, group = 19; struct wpa_ssid *ssid = NULL; size_t ssid_str_len = 0; const u8 *ssid_str = NULL; const u8 *peer_addr = peer->peer_addr; bss = wpa_bss_get_bssid(wpa_s, peer_addr); if (!bss) { wpa_supplicant_update_scan_results(wpa_s, peer_addr); bss = wpa_bss_get_bssid(wpa_s, peer_addr); if (!bss) { wpa_printf(MSG_DEBUG, "PASN: BSS not found"); return -1; } } rsne = wpa_bss_get_ie(bss, WLAN_EID_RSN); if (!rsne) { wpa_printf(MSG_DEBUG, "PASN: BSS without RSNE"); return -1; } ret = wpa_parse_wpa_ie(rsne, *(rsne + 1) + 2, &rsne_data); if (ret) { wpa_printf(MSG_DEBUG, "PASN: Failed parsing RSNE data"); return -1; } rsnxe = wpa_bss_get_ie(bss, WLAN_EID_RSNX); ssid_str_len = bss->ssid_len; ssid_str = bss->ssid; /* Get the network configuration based on the obtained SSID */ for (ssid = wpa_s->conf->ssid; ssid; ssid = ssid->next) { if (!wpas_network_disabled(wpa_s, ssid) && ssid_str_len == ssid->ssid_len && os_memcmp(ssid_str, ssid->ssid, ssid_str_len) == 0) break; } if (ssid) network_id = ssid->id; sel = rsne_data.pairwise_cipher; if (ssid && ssid->pairwise_cipher) sel &= ssid->pairwise_cipher; wpa_printf(MSG_DEBUG, "PASN: peer pairwise 0x%x, select 0x%x", rsne_data.pairwise_cipher, sel); pairwise_cipher = wpa_pick_pairwise_cipher(sel, 1); if (pairwise_cipher < 0) { wpa_msg(wpa_s, MSG_WARNING, "PASN: Failed to select pairwise cipher"); return -1; } sel = rsne_data.key_mgmt; if (ssid && ssid->key_mgmt) sel &= ssid->key_mgmt; wpa_printf(MSG_DEBUG, "PASN: peer AKMP 0x%x, select 0x%x", rsne_data.key_mgmt, sel); #ifdef CONFIG_SAE if (!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_SAE) || !ssid) sel &= ~(WPA_KEY_MGMT_SAE | WPA_KEY_MGMT_SAE_EXT_KEY | WPA_KEY_MGMT_FT_SAE | WPA_KEY_MGMT_FT_SAE_EXT_KEY); #endif /* CONFIG_SAE */ #ifdef CONFIG_IEEE80211R if (!(wpa_s->drv_flags & (WPA_DRIVER_FLAGS_SME | WPA_DRIVER_FLAGS_UPDATE_FT_IES))) sel &= ~WPA_KEY_MGMT_FT; #endif /* CONFIG_IEEE80211R */ if (0) { #ifdef CONFIG_IEEE80211R #ifdef CONFIG_SHA384 } else if ((sel & WPA_KEY_MGMT_FT_IEEE8021X_SHA384) && os_strcmp(wpa_supplicant_get_eap_mode(wpa_s), "LEAP") != 0) { key_mgmt = WPA_KEY_MGMT_FT_IEEE8021X_SHA384; wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT FT/802.1X-SHA384"); if (ssid && !ssid->ft_eap_pmksa_caching && pmksa_cache_get_current(wpa_s->wpa)) { /* PMKSA caching with FT may have interoperability * issues, so disable that case by default for now. */ wpa_printf(MSG_DEBUG, "PASN: Disable PMKSA caching for FT/802.1X connection"); pmksa_cache_clear_current(wpa_s->wpa); } #endif /* CONFIG_SHA384 */ #endif /* CONFIG_IEEE80211R */ #ifdef CONFIG_SAE } else if ((sel & WPA_KEY_MGMT_SAE_EXT_KEY) && (ieee802_11_rsnx_capab(rsnxe, WLAN_RSNX_CAPAB_SAE_H2E)) && (wpas_pasn_sae_setup_pt(ssid, group) == 0)) { key_mgmt = WPA_KEY_MGMT_SAE_EXT_KEY; wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT SAE (ext key)"); } else if ((sel & WPA_KEY_MGMT_SAE) && (ieee802_11_rsnx_capab(rsnxe, WLAN_RSNX_CAPAB_SAE_H2E)) && (wpas_pasn_sae_setup_pt(ssid, group) == 0)) { key_mgmt = WPA_KEY_MGMT_SAE; wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT SAE"); #endif /* CONFIG_SAE */ #ifdef CONFIG_FILS } else if (sel & WPA_KEY_MGMT_FILS_SHA384) { key_mgmt = WPA_KEY_MGMT_FILS_SHA384; wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT FILS-SHA384"); } else if (sel & WPA_KEY_MGMT_FILS_SHA256) { key_mgmt = WPA_KEY_MGMT_FILS_SHA256; wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT FILS-SHA256"); #endif /* CONFIG_FILS */ #ifdef CONFIG_IEEE80211R } else if ((sel & WPA_KEY_MGMT_FT_IEEE8021X) && os_strcmp(wpa_supplicant_get_eap_mode(wpa_s), "LEAP") != 0) { key_mgmt = WPA_KEY_MGMT_FT_IEEE8021X; wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT FT/802.1X"); if (ssid && !ssid->ft_eap_pmksa_caching && pmksa_cache_get_current(wpa_s->wpa)) { /* PMKSA caching with FT may have interoperability * issues, so disable that case by default for now. */ wpa_printf(MSG_DEBUG, "PASN: Disable PMKSA caching for FT/802.1X connection"); pmksa_cache_clear_current(wpa_s->wpa); } } else if (sel & WPA_KEY_MGMT_FT_PSK) { key_mgmt = WPA_KEY_MGMT_FT_PSK; wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT FT/PSK"); #endif /* CONFIG_IEEE80211R */ } else if (sel & WPA_KEY_MGMT_PASN) { key_mgmt = WPA_KEY_MGMT_PASN; wpa_printf(MSG_DEBUG, "PASN: using KEY_MGMT PASN"); } else { wpa_printf(MSG_DEBUG, "PASN: invalid AKMP"); return -1; } peer->akmp = key_mgmt; peer->cipher = pairwise_cipher; peer->network_id = network_id; peer->group = group; return 0; } static int wpas_pasn_set_keys_from_cache(struct wpa_supplicant *wpa_s, const u8 *own_addr, const u8 *peer_addr, int cipher, int akmp) { struct ptksa_cache_entry *entry; entry = ptksa_cache_get(wpa_s->ptksa, peer_addr, cipher); if (!entry) { wpa_printf(MSG_DEBUG, "PASN: peer " MACSTR " not present in PTKSA cache", MAC2STR(peer_addr)); return -1; } if (!ether_addr_equal(entry->own_addr, own_addr)) { wpa_printf(MSG_DEBUG, "PASN: own addr " MACSTR " and PTKSA entry own addr " MACSTR " differ", MAC2STR(own_addr), MAC2STR(entry->own_addr)); return -1; } wpa_printf(MSG_DEBUG, "PASN: " MACSTR " present in PTKSA cache", MAC2STR(peer_addr)); wpa_drv_set_secure_ranging_ctx(wpa_s, own_addr, peer_addr, cipher, entry->ptk.tk_len, entry->ptk.tk, entry->ptk.ltf_keyseed_len, entry->ptk.ltf_keyseed, 0); return 0; } static void wpas_pasn_configure_next_peer(struct wpa_supplicant *wpa_s, struct pasn_auth *pasn_params) { struct pasn_peer *peer; u8 comeback_len = 0; const u8 *comeback = NULL; if (!pasn_params) return; while (wpa_s->pasn_count < pasn_params->num_peers) { peer = &pasn_params->peer[wpa_s->pasn_count]; if (ether_addr_equal(wpa_s->bssid, peer->peer_addr)) { wpa_printf(MSG_DEBUG, "PASN: Associated peer is not expected"); peer->status = PASN_STATUS_FAILURE; wpa_s->pasn_count++; continue; } if (wpas_pasn_set_keys_from_cache(wpa_s, peer->own_addr, peer->peer_addr, peer->cipher, peer->akmp) == 0) { peer->status = PASN_STATUS_SUCCESS; wpa_s->pasn_count++; continue; } if (wpas_pasn_get_params_from_bss(wpa_s, peer)) { peer->status = PASN_STATUS_FAILURE; wpa_s->pasn_count++; continue; } if (wpas_pasn_auth_start(wpa_s, peer->own_addr, peer->peer_addr, peer->akmp, peer->cipher, peer->group, peer->network_id, comeback, comeback_len)) { peer->status = PASN_STATUS_FAILURE; wpa_s->pasn_count++; continue; } wpa_printf(MSG_DEBUG, "PASN: Sent PASN auth start for " MACSTR, MAC2STR(peer->peer_addr)); return; } if (wpa_s->pasn_count == pasn_params->num_peers) { wpa_drv_send_pasn_resp(wpa_s, pasn_params); wpa_printf(MSG_DEBUG, "PASN: Response sent"); os_free(wpa_s->pasn_params); wpa_s->pasn_params = NULL; } } void wpas_pasn_auth_work_done(struct wpa_supplicant *wpa_s, int status) { if (!wpa_s->pasn_params) return; wpa_s->pasn_params->peer[wpa_s->pasn_count].status = status; wpa_s->pasn_count++; wpas_pasn_configure_next_peer(wpa_s, wpa_s->pasn_params); } static void wpas_pasn_delete_peers(struct wpa_supplicant *wpa_s, struct pasn_auth *pasn_params) { struct pasn_peer *peer; unsigned int i; if (!pasn_params) return; for (i = 0; i < pasn_params->num_peers; i++) { peer = &pasn_params->peer[i]; ptksa_cache_flush(wpa_s->ptksa, peer->peer_addr, WPA_CIPHER_NONE); } } #ifdef CONFIG_FILS static void wpas_pasn_initiate_eapol(struct pasn_data *pasn, struct wpa_ssid *ssid) { struct eapol_config eapol_conf; wpa_printf(MSG_DEBUG, "PASN: FILS: Initiating EAPOL"); eapol_sm_notify_eap_success(pasn->eapol, false); eapol_sm_notify_eap_fail(pasn->eapol, false); eapol_sm_notify_portControl(pasn->eapol, Auto); os_memset(&eapol_conf, 0, sizeof(eapol_conf)); eapol_conf.fast_reauth = pasn->fast_reauth; eapol_conf.workaround = ssid->eap_workaround; eapol_sm_notify_config(pasn->eapol, &ssid->eap, &eapol_conf); } #endif /* CONFIG_FILS */ static void wpas_pasn_reset(struct wpa_supplicant *wpa_s) { struct pasn_data *pasn = &wpa_s->pasn; wpas_pasn_cancel_auth_work(wpa_s); wpa_s->pasn_auth_work = NULL; eloop_cancel_timeout(wpas_pasn_auth_work_timeout, wpa_s, NULL); wpa_pasn_reset(pasn); } static struct wpa_bss * wpas_pasn_allowed(struct wpa_supplicant *wpa_s, const u8 *peer_addr, int akmp, int cipher) { struct wpa_bss *bss; const u8 *rsne; struct wpa_ie_data rsne_data; int ret; if (ether_addr_equal(wpa_s->bssid, peer_addr)) { wpa_printf(MSG_DEBUG, "PASN: Not doing authentication with current BSS"); return NULL; } bss = wpa_bss_get_bssid_latest(wpa_s, peer_addr); if (!bss) { wpa_printf(MSG_DEBUG, "PASN: BSS not found"); return NULL; } rsne = wpa_bss_get_ie(bss, WLAN_EID_RSN); if (!rsne) { wpa_printf(MSG_DEBUG, "PASN: BSS without RSNE"); return NULL; } ret = wpa_parse_wpa_ie(rsne, *(rsne + 1) + 2, &rsne_data); if (ret) { wpa_printf(MSG_DEBUG, "PASN: Failed parsing RSNE data"); return NULL; } if (!(rsne_data.key_mgmt & akmp) || !(rsne_data.pairwise_cipher & cipher)) { wpa_printf(MSG_DEBUG, "PASN: AP does not support requested AKMP or cipher"); return NULL; } return bss; } static void wpas_pasn_auth_start_cb(struct wpa_radio_work *work, int deinit) { struct wpa_supplicant *wpa_s = work->wpa_s; struct wpa_pasn_auth_work *awork = work->ctx; struct pasn_data *pasn = &wpa_s->pasn; struct wpa_ssid *ssid; struct wpa_bss *bss; const u8 *rsne, *rsnxe; #ifdef CONFIG_FILS const u8 *indic; u16 fils_info; #endif /* CONFIG_FILS */ u16 capab = 0; bool derive_kdk; int ret; wpa_printf(MSG_DEBUG, "PASN: auth_start_cb: deinit=%d", deinit); if (deinit) { if (work->started) { eloop_cancel_timeout(wpas_pasn_auth_work_timeout, wpa_s, NULL); wpa_s->pasn_auth_work = NULL; } wpas_pasn_free_auth_work(awork); return; } /* * It is possible that by the time the callback is called, the PASN * authentication is not allowed, e.g., a connection with the AP was * established. */ bss = wpas_pasn_allowed(wpa_s, awork->peer_addr, awork->akmp, awork->cipher); if (!bss) { wpa_printf(MSG_DEBUG, "PASN: auth_start_cb: Not allowed"); goto fail; } rsne = wpa_bss_get_ie(bss, WLAN_EID_RSN); if (!rsne) { wpa_printf(MSG_DEBUG, "PASN: BSS without RSNE"); goto fail; } rsnxe = wpa_bss_get_ie(bss, WLAN_EID_RSNX); derive_kdk = (wpa_s->drv_flags2 & WPA_DRIVER_FLAGS2_SEC_LTF_STA) && ieee802_11_rsnx_capab(rsnxe, WLAN_RSNX_CAPAB_SECURE_LTF); #ifdef CONFIG_TESTING_OPTIONS if (!derive_kdk) derive_kdk = wpa_s->conf->force_kdk_derivation; #endif /* CONFIG_TESTING_OPTIONS */ if (derive_kdk) pasn_enable_kdk_derivation(pasn); else pasn_disable_kdk_derivation(pasn); wpa_printf(MSG_DEBUG, "PASN: kdk_len=%zu", pasn->kdk_len); if ((wpa_s->drv_flags2 & WPA_DRIVER_FLAGS2_SEC_LTF_STA) && ieee802_11_rsnx_capab(rsnxe, WLAN_RSNX_CAPAB_SECURE_LTF)) pasn->secure_ltf = true; else pasn->secure_ltf = false; #ifdef CONFIG_TESTING_OPTIONS pasn->corrupt_mic = wpa_s->conf->pasn_corrupt_mic; #endif /* CONFIG_TESTING_OPTIONS */ capab |= BIT(WLAN_RSNX_CAPAB_SAE_H2E); if (wpa_s->drv_flags2 & WPA_DRIVER_FLAGS2_SEC_LTF_STA) capab |= BIT(WLAN_RSNX_CAPAB_SECURE_LTF); if (wpa_s->drv_flags2 & WPA_DRIVER_FLAGS2_SEC_RTT_STA) capab |= BIT(WLAN_RSNX_CAPAB_SECURE_RTT); if (wpa_s->drv_flags2 & WPA_DRIVER_FLAGS2_PROT_RANGE_NEG_STA) capab |= BIT(WLAN_RSNX_CAPAB_URNM_MFPR); pasn_set_rsnxe_caps(pasn, capab); pasn_register_callbacks(pasn, wpa_s, wpas_pasn_send_mlme, NULL); ssid = wpa_config_get_network(wpa_s->conf, awork->network_id); #ifdef CONFIG_SAE if (awork->akmp == WPA_KEY_MGMT_SAE) { if (!ssid) { wpa_printf(MSG_DEBUG, "PASN: No network profile found for SAE"); goto fail; } pasn_set_pt(pasn, wpas_pasn_sae_derive_pt(ssid, awork->group)); if (!pasn->pt) { wpa_printf(MSG_DEBUG, "PASN: Failed to derive PT"); goto fail; } pasn->network_id = ssid->id; } #endif /* CONFIG_SAE */ #ifdef CONFIG_FILS /* Prepare needed information for wpas_pasn_wd_fils_auth(). */ if (awork->akmp == WPA_KEY_MGMT_FILS_SHA256 || awork->akmp == WPA_KEY_MGMT_FILS_SHA384) { indic = wpa_bss_get_ie(bss, WLAN_EID_FILS_INDICATION); if (!ssid) { wpa_printf(MSG_DEBUG, "PASN: FILS: No network block"); } else if (!indic || indic[1] < 2) { wpa_printf(MSG_DEBUG, "PASN: Missing FILS Indication IE"); } else { fils_info = WPA_GET_LE16(indic + 2); if ((fils_info & BIT(9)) && ssid) { pasn->eapol = wpa_s->eapol; pasn->network_id = ssid->id; wpas_pasn_initiate_eapol(pasn, ssid); pasn->fils_eapol = true; } else { wpa_printf(MSG_DEBUG, "PASN: FILS auth without PFS not supported"); } } pasn->fast_reauth = wpa_s->conf->fast_reauth; } #endif /* CONFIG_FILS */ pasn_set_initiator_pmksa(pasn, wpa_sm_get_pmksa_cache(wpa_s->wpa)); if (wpa_key_mgmt_ft(awork->akmp)) { #ifdef CONFIG_IEEE80211R ret = wpa_pasn_ft_derive_pmk_r1(wpa_s->wpa, awork->akmp, awork->peer_addr, pasn->pmk_r1, &pasn->pmk_r1_len, pasn->pmk_r1_name); if (ret) { wpa_printf(MSG_DEBUG, "PASN: FT: Failed to derive keys"); goto fail; } #else /* CONFIG_IEEE80211R */ goto fail; #endif /* CONFIG_IEEE80211R */ } ret = wpas_pasn_start(pasn, awork->own_addr, awork->peer_addr, awork->peer_addr, awork->akmp, awork->cipher, awork->group, bss->freq, rsne, *(rsne + 1) + 2, rsnxe, rsnxe ? *(rsnxe + 1) + 2 : 0, awork->comeback); if (ret) { wpa_printf(MSG_DEBUG, "PASN: Failed to start PASN authentication"); goto fail; } eloop_register_timeout(2, 0, wpas_pasn_auth_work_timeout, wpa_s, NULL); /* comeback token is no longer needed at this stage */ wpabuf_free(awork->comeback); awork->comeback = NULL; wpa_s->pasn_auth_work = work; return; fail: wpas_pasn_free_auth_work(awork); work->ctx = NULL; radio_work_done(work); } int wpas_pasn_auth_start(struct wpa_supplicant *wpa_s, const u8 *own_addr, const u8 *peer_addr, int akmp, int cipher, u16 group, int network_id, const u8 *comeback, size_t comeback_len) { struct wpa_pasn_auth_work *awork; struct wpa_bss *bss; wpa_printf(MSG_DEBUG, "PASN: Start: " MACSTR " akmp=0x%x, cipher=0x%x", MAC2STR(peer_addr), akmp, cipher); /* * TODO: Consider modifying the offchannel logic to handle additional * Management frames other then Action frames. For now allow PASN only * with drivers that support off-channel TX. */ if (!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_OFFCHANNEL_TX)) { wpa_printf(MSG_DEBUG, "PASN: Driver does not support offchannel TX"); return -1; } if (radio_work_pending(wpa_s, "pasn-start-auth")) { wpa_printf(MSG_DEBUG, "PASN: send_auth: Work is already pending"); return -1; } if (wpa_s->pasn_auth_work) { wpa_printf(MSG_DEBUG, "PASN: send_auth: Already in progress"); return -1; } bss = wpas_pasn_allowed(wpa_s, peer_addr, akmp, cipher); if (!bss) return -1; wpas_pasn_reset(wpa_s); awork = os_zalloc(sizeof(*awork)); if (!awork) return -1; os_memcpy(awork->own_addr, own_addr, ETH_ALEN); os_memcpy(awork->peer_addr, peer_addr, ETH_ALEN); awork->akmp = akmp; awork->cipher = cipher; awork->group = group; awork->network_id = network_id; if (comeback && comeback_len) { awork->comeback = wpabuf_alloc_copy(comeback, comeback_len); if (!awork->comeback) { wpas_pasn_free_auth_work(awork); return -1; } } if (radio_add_work(wpa_s, bss->freq, "pasn-start-auth", 1, wpas_pasn_auth_start_cb, awork) < 0) { wpas_pasn_free_auth_work(awork); return -1; } wpa_printf(MSG_DEBUG, "PASN: Auth work successfully added"); return 0; } void wpas_pasn_auth_stop(struct wpa_supplicant *wpa_s) { struct pasn_data *pasn = &wpa_s->pasn; if (!wpa_s->pasn.ecdh) return; wpa_printf(MSG_DEBUG, "PASN: Stopping authentication"); wpas_pasn_auth_status(wpa_s, pasn->peer_addr, pasn_get_akmp(pasn), pasn_get_cipher(pasn), pasn->status, pasn->comeback, pasn->comeback_after); wpas_pasn_reset(wpa_s); } static int wpas_pasn_immediate_retry(struct wpa_supplicant *wpa_s, struct pasn_data *pasn, struct wpa_pasn_params_data *params) { int akmp = pasn_get_akmp(pasn); int cipher = pasn_get_cipher(pasn); u16 group = pasn->group; u8 own_addr[ETH_ALEN]; u8 peer_addr[ETH_ALEN]; wpa_printf(MSG_DEBUG, "PASN: Immediate retry"); os_memcpy(own_addr, pasn->own_addr, ETH_ALEN); os_memcpy(peer_addr, pasn->peer_addr, ETH_ALEN); wpas_pasn_reset(wpa_s); return wpas_pasn_auth_start(wpa_s, own_addr, peer_addr, akmp, cipher, group, pasn->network_id, params->comeback, params->comeback_len); } static void wpas_pasn_deauth_cb(struct ptksa_cache_entry *entry) { struct wpa_supplicant *wpa_s = entry->ctx; u8 own_addr[ETH_ALEN]; u8 peer_addr[ETH_ALEN]; /* Use a copy of the addresses from the entry to avoid issues with the * entry getting freed during deauthentication processing. */ os_memcpy(own_addr, entry->own_addr, ETH_ALEN); os_memcpy(peer_addr, entry->addr, ETH_ALEN); wpas_pasn_deauthenticate(wpa_s, own_addr, peer_addr); } int wpas_pasn_auth_rx(struct wpa_supplicant *wpa_s, const struct ieee80211_mgmt *mgmt, size_t len) { struct pasn_data *pasn = &wpa_s->pasn; struct wpa_pasn_params_data pasn_data; int ret; if (!wpa_s->pasn_auth_work) return -2; pasn_register_callbacks(pasn, wpa_s, wpas_pasn_send_mlme, NULL); ret = wpa_pasn_auth_rx(pasn, (const u8 *) mgmt, len, &pasn_data); if (ret == 0) { ptksa_cache_add(wpa_s->ptksa, pasn->own_addr, pasn->peer_addr, pasn_get_cipher(pasn), dot11RSNAConfigPMKLifetime, pasn_get_ptk(pasn), wpa_s->pasn_params ? wpas_pasn_deauth_cb : NULL, wpa_s->pasn_params ? wpa_s : NULL, pasn_get_akmp(pasn)); if (pasn->pmksa_entry) wpa_sm_set_cur_pmksa(wpa_s->wpa, pasn->pmksa_entry); } forced_memzero(pasn_get_ptk(pasn), sizeof(pasn->ptk)); if (ret == -1) { wpas_pasn_auth_stop(wpa_s); wpas_pasn_auth_work_done(wpa_s, PASN_STATUS_FAILURE); } if (ret == 1) ret = wpas_pasn_immediate_retry(wpa_s, pasn, &pasn_data); return ret; } void wpas_pasn_auth_trigger(struct wpa_supplicant *wpa_s, struct pasn_auth *pasn_auth) { struct pasn_peer *src, *dst; unsigned int i, num_peers = pasn_auth->num_peers; if (wpa_s->pasn_params) { wpa_printf(MSG_DEBUG, "PASN: auth_trigger: Already in progress"); return; } if (!num_peers || num_peers > WPAS_MAX_PASN_PEERS) { wpa_printf(MSG_DEBUG, "PASN: auth trigger: Invalid number of peers"); return; } wpa_s->pasn_params = os_zalloc(sizeof(struct pasn_auth)); if (!wpa_s->pasn_params) { wpa_printf(MSG_DEBUG, "PASN: auth trigger: Failed to allocate a buffer"); return; } wpa_s->pasn_count = 0; wpa_s->pasn_params->num_peers = num_peers; for (i = 0; i < num_peers; i++) { dst = &wpa_s->pasn_params->peer[i]; src = &pasn_auth->peer[i]; os_memcpy(dst->own_addr, wpa_s->own_addr, ETH_ALEN); os_memcpy(dst->peer_addr, src->peer_addr, ETH_ALEN); dst->ltf_keyseed_required = src->ltf_keyseed_required; dst->status = PASN_STATUS_SUCCESS; if (!is_zero_ether_addr(src->own_addr)) { os_memcpy(dst->own_addr, src->own_addr, ETH_ALEN); wpa_printf(MSG_DEBUG, "PASN: Own (source) MAC addr: " MACSTR, MAC2STR(dst->own_addr)); } } if (pasn_auth->action == PASN_ACTION_DELETE_SECURE_RANGING_CONTEXT) { wpas_pasn_delete_peers(wpa_s, wpa_s->pasn_params); os_free(wpa_s->pasn_params); wpa_s->pasn_params = NULL; } else if (pasn_auth->action == PASN_ACTION_AUTH) { wpas_pasn_configure_next_peer(wpa_s, wpa_s->pasn_params); } } int wpas_pasn_auth_tx_status(struct wpa_supplicant *wpa_s, const u8 *data, size_t data_len, u8 acked) { struct pasn_data *pasn = &wpa_s->pasn; int ret; if (!wpa_s->pasn_auth_work) { wpa_printf(MSG_DEBUG, "PASN: auth_tx_status: no work in progress"); return -1; } ret = wpa_pasn_auth_tx_status(pasn, data, data_len, acked); if (ret != 1) return ret; if (!wpa_s->pasn_params) { wpas_pasn_auth_stop(wpa_s); return 0; } wpas_pasn_set_keys_from_cache(wpa_s, pasn->own_addr, pasn->peer_addr, pasn_get_cipher(pasn), pasn_get_akmp(pasn)); wpas_pasn_auth_stop(wpa_s); wpas_pasn_auth_work_done(wpa_s, PASN_STATUS_SUCCESS); return 0; } int wpas_pasn_deauthenticate(struct wpa_supplicant *wpa_s, const u8 *own_addr, const u8 *peer_addr) { struct wpa_bss *bss; struct wpabuf *buf; struct ieee80211_mgmt *deauth; int ret; if (ether_addr_equal(wpa_s->bssid, peer_addr)) { wpa_printf(MSG_DEBUG, "PASN: Cannot deauthenticate from current BSS"); return -1; } wpa_drv_set_secure_ranging_ctx(wpa_s, own_addr, peer_addr, 0, 0, NULL, 0, NULL, 1); wpa_printf(MSG_DEBUG, "PASN: deauth: Flushing all PTKSA entries for " MACSTR, MAC2STR(peer_addr)); ptksa_cache_flush(wpa_s->ptksa, peer_addr, WPA_CIPHER_NONE); bss = wpa_bss_get_bssid(wpa_s, peer_addr); if (!bss) { wpa_printf(MSG_DEBUG, "PASN: deauth: BSS not found"); return -1; } buf = wpabuf_alloc(64); if (!buf) { wpa_printf(MSG_DEBUG, "PASN: deauth: Failed wpabuf allocate"); return -1; } deauth = wpabuf_put(buf, offsetof(struct ieee80211_mgmt, u.deauth.variable)); deauth->frame_control = host_to_le16((WLAN_FC_TYPE_MGMT << 2) | (WLAN_FC_STYPE_DEAUTH << 4)); os_memcpy(deauth->da, peer_addr, ETH_ALEN); os_memcpy(deauth->sa, own_addr, ETH_ALEN); os_memcpy(deauth->bssid, peer_addr, ETH_ALEN); deauth->u.deauth.reason_code = host_to_le16(WLAN_REASON_PREV_AUTH_NOT_VALID); /* * Since we do not expect any response from the AP, implement the * Deauthentication frame transmission using direct call to the driver * without a radio work. */ ret = wpa_drv_send_mlme(wpa_s, wpabuf_head(buf), wpabuf_len(buf), 1, bss->freq, 0); wpabuf_free(buf); wpa_printf(MSG_DEBUG, "PASN: deauth: send_mlme ret=%d", ret); return ret; }