/* * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include "prov/implementations.h" #include "prov/mlx_kem.h" #include "prov/provider_ctx.h" #include "prov/providercommon.h" static OSSL_FUNC_kem_newctx_fn mlx_kem_newctx; static OSSL_FUNC_kem_freectx_fn mlx_kem_freectx; static OSSL_FUNC_kem_encapsulate_init_fn mlx_kem_encapsulate_init; static OSSL_FUNC_kem_encapsulate_fn mlx_kem_encapsulate; static OSSL_FUNC_kem_decapsulate_init_fn mlx_kem_decapsulate_init; static OSSL_FUNC_kem_decapsulate_fn mlx_kem_decapsulate; static OSSL_FUNC_kem_set_ctx_params_fn mlx_kem_set_ctx_params; static OSSL_FUNC_kem_settable_ctx_params_fn mlx_kem_settable_ctx_params; typedef struct { OSSL_LIB_CTX *libctx; MLX_KEY *key; int op; } PROV_MLX_KEM_CTX; static void *mlx_kem_newctx(void *provctx) { PROV_MLX_KEM_CTX *ctx; if ((ctx = OPENSSL_malloc(sizeof(*ctx))) == NULL) return NULL; ctx->libctx = PROV_LIBCTX_OF(provctx); ctx->key = NULL; ctx->op = 0; return ctx; } static void mlx_kem_freectx(void *vctx) { OPENSSL_free(vctx); } static int mlx_kem_init(void *vctx, int op, void *key, ossl_unused const OSSL_PARAM params[]) { PROV_MLX_KEM_CTX *ctx = vctx; if (!ossl_prov_is_running()) return 0; ctx->key = key; ctx->op = op; return 1; } static int mlx_kem_encapsulate_init(void *vctx, void *vkey, const OSSL_PARAM params[]) { MLX_KEY *key = vkey; if (!mlx_kem_have_pubkey(key)) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); return 0; } return mlx_kem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, key, params); } static int mlx_kem_decapsulate_init(void *vctx, void *vkey, const OSSL_PARAM params[]) { MLX_KEY *key = vkey; if (!mlx_kem_have_prvkey(key)) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); return 0; } return mlx_kem_init(vctx, EVP_PKEY_OP_DECAPSULATE, key, params); } static const OSSL_PARAM *mlx_kem_settable_ctx_params(ossl_unused void *vctx, ossl_unused void *provctx) { static const OSSL_PARAM params[] = { OSSL_PARAM_END }; return params; } static int mlx_kem_set_ctx_params(void *vctx, const OSSL_PARAM params[]) { return 1; } static int mlx_kem_encapsulate(void *vctx, unsigned char *ctext, size_t *clen, unsigned char *shsec, size_t *slen) { MLX_KEY *key = ((PROV_MLX_KEM_CTX *) vctx)->key; EVP_PKEY_CTX *ctx = NULL; EVP_PKEY *xkey = NULL; size_t encap_clen; size_t encap_slen; uint8_t *cbuf; uint8_t *sbuf; int ml_kem_slot = key->xinfo->ml_kem_slot; int ret = 0; if (!mlx_kem_have_pubkey(key)) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); goto end; } encap_clen = key->minfo->ctext_bytes + key->xinfo->pubkey_bytes; encap_slen = ML_KEM_SHARED_SECRET_BYTES + key->xinfo->shsec_bytes; if (ctext == NULL) { if (clen == NULL && slen == NULL) return 0; if (clen != NULL) *clen = encap_clen; if (slen != NULL) *slen = encap_slen; return 1; } if (shsec == NULL) { ERR_raise_data(ERR_LIB_PROV, PROV_R_NULL_OUTPUT_BUFFER, "null shared-secret output buffer"); return 0; } if (clen == NULL) { ERR_raise_data(ERR_LIB_PROV, PROV_R_NULL_LENGTH_POINTER, "null ciphertext input/output length pointer"); return 0; } else if (*clen < encap_clen) { ERR_raise_data(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL, "ciphertext buffer too small"); return 0; } else { *clen = encap_clen; } if (slen == NULL) { ERR_raise_data(ERR_LIB_PROV, PROV_R_NULL_LENGTH_POINTER, "null shared secret input/output length pointer"); return 0; } else if (*slen < encap_slen) { ERR_raise_data(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL, "shared-secret buffer too small"); return 0; } else { *slen = encap_slen; } /* ML-KEM encapsulation */ encap_clen = key->minfo->ctext_bytes; encap_slen = ML_KEM_SHARED_SECRET_BYTES; cbuf = ctext + ml_kem_slot * key->xinfo->pubkey_bytes; sbuf = shsec + ml_kem_slot * key->xinfo->shsec_bytes; ctx = EVP_PKEY_CTX_new_from_pkey(key->libctx, key->mkey, key->propq); if (ctx == NULL || EVP_PKEY_encapsulate_init(ctx, NULL) <= 0 || EVP_PKEY_encapsulate(ctx, cbuf, &encap_clen, sbuf, &encap_slen) <= 0) goto end; if (encap_clen != key->minfo->ctext_bytes) { ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR, "unexpected %s ciphertext output size: %lu", key->minfo->algorithm_name, (unsigned long) encap_clen); goto end; } if (encap_slen != ML_KEM_SHARED_SECRET_BYTES) { ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR, "unexpected %s shared secret output size: %lu", key->minfo->algorithm_name, (unsigned long) encap_slen); goto end; } EVP_PKEY_CTX_free(ctx); /*- * ECDHE encapsulation * * Generate own ephemeral private key and add its public key to ctext. * * Note, we could support a settable parameter that sets an extant ECDH * keypair as the keys to use in encap, making it possible to reuse the * same (TLS client) ECDHE keypair for both the classical EC keyshare and a * corresponding ECDHE + ML-KEM keypair. But the TLS layer would then need * know that this is a hybrid, and that it can partly reuse the same keys * as another group for which a keyshare will be sent. Deferred until we * support generating multiple keyshares, there's a workable keyshare * prediction specification, and the optimisation is justified. */ cbuf = ctext + (1 - ml_kem_slot) * key->minfo->ctext_bytes; encap_clen = key->xinfo->pubkey_bytes; ctx = EVP_PKEY_CTX_new_from_pkey(key->libctx, key->xkey, key->propq); if (ctx == NULL || EVP_PKEY_keygen_init(ctx) <= 0 || EVP_PKEY_keygen(ctx, &xkey) <= 0 || EVP_PKEY_get_octet_string_param(xkey, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, cbuf, encap_clen, &encap_clen) <= 0) goto end; if (encap_clen != key->xinfo->pubkey_bytes) { ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR, "unexpected %s public key output size: %lu", key->xinfo->algorithm_name, (unsigned long) encap_clen); goto end; } EVP_PKEY_CTX_free(ctx); /* Derive the ECDH shared secret */ encap_slen = key->xinfo->shsec_bytes; sbuf = shsec + (1 - ml_kem_slot) * ML_KEM_SHARED_SECRET_BYTES; ctx = EVP_PKEY_CTX_new_from_pkey(key->libctx, xkey, key->propq); if (ctx == NULL || EVP_PKEY_derive_init(ctx) <= 0 || EVP_PKEY_derive_set_peer(ctx, key->xkey) <= 0 || EVP_PKEY_derive(ctx, sbuf, &encap_slen) <= 0) goto end; if (encap_slen != key->xinfo->shsec_bytes) { ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR, "unexpected %s shared secret output size: %lu", key->xinfo->algorithm_name, (unsigned long) encap_slen); goto end; } ret = 1; end: EVP_PKEY_free(xkey); EVP_PKEY_CTX_free(ctx); return ret; } static int mlx_kem_decapsulate(void *vctx, uint8_t *shsec, size_t *slen, const uint8_t *ctext, size_t clen) { MLX_KEY *key = ((PROV_MLX_KEM_CTX *) vctx)->key; EVP_PKEY_CTX *ctx = NULL; EVP_PKEY *xkey = NULL; const uint8_t *cbuf; uint8_t *sbuf; size_t decap_slen = ML_KEM_SHARED_SECRET_BYTES + key->xinfo->shsec_bytes; size_t decap_clen = key->minfo->ctext_bytes + key->xinfo->pubkey_bytes; int ml_kem_slot = key->xinfo->ml_kem_slot; int ret = 0; if (!mlx_kem_have_prvkey(key)) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY); return 0; } if (shsec == NULL) { if (slen == NULL) return 0; *slen = decap_slen; return 1; } /* For now tolerate newly-deprecated NULL length pointers. */ if (slen == NULL) { slen = &decap_slen; } else if (*slen < decap_slen) { ERR_raise_data(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL, "shared-secret buffer too small"); return 0; } else { *slen = decap_slen; } if (clen != decap_clen) { ERR_raise_data(ERR_LIB_PROV, PROV_R_WRONG_CIPHERTEXT_SIZE, "wrong decapsulation input ciphertext size: %lu", (unsigned long) clen); return 0; } /* ML-KEM decapsulation */ decap_clen = key->minfo->ctext_bytes; decap_slen = ML_KEM_SHARED_SECRET_BYTES; cbuf = ctext + ml_kem_slot * key->xinfo->pubkey_bytes; sbuf = shsec + ml_kem_slot * key->xinfo->shsec_bytes; ctx = EVP_PKEY_CTX_new_from_pkey(key->libctx, key->mkey, key->propq); if (ctx == NULL || EVP_PKEY_decapsulate_init(ctx, NULL) <= 0 || EVP_PKEY_decapsulate(ctx, sbuf, &decap_slen, cbuf, decap_clen) <= 0) goto end; if (decap_slen != ML_KEM_SHARED_SECRET_BYTES) { ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR, "unexpected %s shared secret output size: %lu", key->minfo->algorithm_name, (unsigned long) decap_slen); goto end; } EVP_PKEY_CTX_free(ctx); /* ECDH decapsulation */ decap_clen = key->xinfo->pubkey_bytes; decap_slen = key->xinfo->shsec_bytes; cbuf = ctext + (1 - ml_kem_slot) * key->minfo->ctext_bytes; sbuf = shsec + (1 - ml_kem_slot) * ML_KEM_SHARED_SECRET_BYTES; ctx = EVP_PKEY_CTX_new_from_pkey(key->libctx, key->xkey, key->propq); if (ctx == NULL || (xkey = EVP_PKEY_new()) == NULL || EVP_PKEY_copy_parameters(xkey, key->xkey) <= 0 || EVP_PKEY_set1_encoded_public_key(xkey, cbuf, decap_clen) <= 0 || EVP_PKEY_derive_init(ctx) <= 0 || EVP_PKEY_derive_set_peer(ctx, xkey) <= 0 || EVP_PKEY_derive(ctx, sbuf, &decap_slen) <= 0) goto end; if (decap_slen != key->xinfo->shsec_bytes) { ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR, "unexpected %s shared secret output size: %lu", key->xinfo->algorithm_name, (unsigned long) decap_slen); goto end; } ret = 1; end: EVP_PKEY_CTX_free(ctx); EVP_PKEY_free(xkey); return ret; } const OSSL_DISPATCH ossl_mlx_kem_asym_kem_functions[] = { { OSSL_FUNC_KEM_NEWCTX, (OSSL_FUNC) mlx_kem_newctx }, { OSSL_FUNC_KEM_ENCAPSULATE_INIT, (OSSL_FUNC) mlx_kem_encapsulate_init }, { OSSL_FUNC_KEM_ENCAPSULATE, (OSSL_FUNC) mlx_kem_encapsulate }, { OSSL_FUNC_KEM_DECAPSULATE_INIT, (OSSL_FUNC) mlx_kem_decapsulate_init }, { OSSL_FUNC_KEM_DECAPSULATE, (OSSL_FUNC) mlx_kem_decapsulate }, { OSSL_FUNC_KEM_FREECTX, (OSSL_FUNC) mlx_kem_freectx }, { OSSL_FUNC_KEM_SET_CTX_PARAMS, (OSSL_FUNC) mlx_kem_set_ctx_params }, { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS, (OSSL_FUNC) mlx_kem_settable_ctx_params }, OSSL_DISPATCH_END };