
Cygwin User’s Guide i

Cygwin User’s Guide

Cygwin User’s Guide ii

Copyright © Cygwin authors

Permission is granted to make and distribute verbatim copies of this documentation provided the copyright notice and this per-
mission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into another language, under the above conditions
for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

Cygwin User’s Guide iii

Contents

1 Cygwin Overview 1

1.1 What is it? . 1

1.2 Quick Start Guide for those more experienced with Windows . 1

1.3 Quick Start Guide for those more experienced with UNIX . 1

1.4 Are the Cygwin tools free software? . 2

1.5 A brief history of the Cygwin project . 2

1.6 Highlights of Cygwin Functionality . 3

1.6.1 Introduction . 3

1.6.2 Permissions and Security . 3

1.6.3 File Access . 3

1.6.4 Text Mode vs. Binary Mode . 4

1.6.5 ANSI C Library . 4

1.6.6 Process Creation . 5

1.6.6.1 Problems with process creation . 5

1.6.7 Signals . 5

1.6.8 Sockets . 6

1.6.9 Select . 6

1.7 What’s new and what changed in Cygwin . 6

1.7.1 What’s new and what changed in 2.11 . 6

1.7.2 What’s new and what changed in 2.10 . 7

1.7.3 What’s new and what changed in 2.9 . 7

1.7.4 What’s new and what changed in 2.8 . 7

1.7.5 What’s new and what changed in 2.7 . 8

1.7.6 What’s new and what changed in 2.6 . 8

1.7.7 What’s new and what changed in 2.5 . 8

1.7.8 What’s new and what changed in 2.4 . 9

1.7.9 What’s new and what changed in 2.3 . 9

1.7.10 What’s new and what changed in 2.2 . 10

1.7.11 What’s new and what changed in 2.1 . 10

1.7.12 What’s new and what changed in 2.0 . 10

Cygwin User’s Guide iv

1.7.13 What’s new and what changed in 1.7.35 . 10

1.7.14 What’s new and what changed in 1.7.34 . 11

1.7.15 What’s new and what changed in 1.7.33 . 11

1.7.16 What’s new and what changed in 1.7.32 . 12

1.7.17 What’s new and what changed in 1.7.31 . 12

1.7.18 What’s new and what changed in 1.7.29 . 12

1.7.19 What’s new and what changed in 1.7.28 . 12

1.7.20 What’s new and what changed in 1.7.27 . 12

1.7.21 What’s new and what changed in 1.7.26 . 13

1.7.22 What’s new and what changed in 1.7.25 . 13

1.7.23 What’s new and what changed in 1.7.24 . 13

1.7.24 What’s new and what changed in 1.7.23 . 13

1.7.25 What’s new and what changed in 1.7.22 . 13

1.7.26 What’s new and what changed in 1.7.21 . 13

1.7.27 What’s new and what changed in 1.7.19 . 14

1.7.28 What’s new and what changed in 1.7.18 . 14

1.7.29 What’s new and what changed in 1.7.17 . 14

1.7.30 What’s new and what changed in 1.7.16 . 14

1.7.31 What’s new and what changed in 1.7.15 . 14

1.7.32 What’s new and what changed in 1.7.14 . 14

1.7.33 What’s new and what changed in 1.7.13 . 14

1.7.34 What’s new and what changed in 1.7.12 . 15

1.7.35 What’s new and what changed in 1.7.11 . 15

1.7.36 What’s new and what changed in 1.7.10 . 15

1.7.37 What’s new and what changed in 1.7.9 . 16

1.7.38 What’s new and what changed in 1.7.8 . 16

1.7.39 What’s new and what changed in 1.7.7 . 17

1.7.40 What’s new and what changed in 1.7.6 . 17

1.7.41 What’s new and what changed in 1.7.5 . 17

1.7.42 What’s new and what changed in 1.7.3 . 17

1.7.43 What’s new and what changed in 1.7.2 . 18

1.7.44 What’s new and what changed from 1.5 to 1.7 . 19

1.7.44.1 OS related changes . 19

1.7.44.2 File Access related changes . 19

1.7.44.3 Network related changes . 20

1.7.44.4 Device related changes . 21

1.7.44.5 Other POSIX related changes . 21

1.7.44.6 Security related changes . 21

1.7.44.7 Miscellaneous . 22

Cygwin User’s Guide v

2 Setting Up Cygwin 23

2.1 Internet Setup . 23

2.1.1 Download Source . 23

2.1.2 Selecting an Install Directory . 24

2.1.3 Local Package Directory . 24

2.1.4 Connection Method . 24

2.1.5 Choosing Mirrors . 24

2.1.6 Choosing Packages . 24

2.1.7 Download and Installation Progress . 25

2.1.8 Shortcuts . 25

2.1.9 Post-Install Scripts . 25

2.1.10 Troubleshooting . 25

2.2 Environment Variables . 25

2.2.1 Overview . 25

2.2.2 Restricted Win32 environment . 26

2.3 Changing Cygwin’s Maximum Memory . 26

2.4 Internationalization . 27

2.4.1 Overview . 27

2.4.2 How to set the locale . 28

2.4.3 The Windows Console character set . 29

2.4.4 Potential Problems when using Locales . 30

2.4.5 List of supported character sets . 30

2.5 Customizing bash . 31

3 Using Cygwin 33

3.1 Mapping path names . 33

3.1.1 Introduction . 33

3.1.2 The Cygwin Mount Table . 33

3.1.3 UNC paths . 36

3.1.4 The cygdrive path prefix . 36

3.1.5 The usertemp file system type . 37

3.1.6 Symbolic links . 37

3.1.7 Using native Win32 paths . 38

3.1.8 Using the Win32 file API in Cygwin applications . 38

3.1.9 Additional Path-related Information . 39

3.2 Text and Binary modes . 39

3.2.1 The Issue . 39

3.2.2 The default Cygwin behavior . 39

3.2.3 Binary or text? . 40

Cygwin User’s Guide vi

3.2.4 Programming . 40

3.3 File permissions . 41

3.4 Special filenames . 41

3.4.1 Special files in /etc . 41

3.4.2 Invalid filenames . 42

3.4.3 Forbidden characters in filenames . 42

3.4.4 Filenames with unusual (foreign) characters . 42

3.4.5 Case sensitive filenames . 43

3.4.6 POSIX devices . 43

3.4.7 The .exe extension . 45

3.4.8 The /proc filesystem . 46

3.4.9 The /proc/registry filesystem . 46

3.4.10 The @pathnames . 47

3.5 The CYGWIN environment variable . 47

3.5.1 Implemented options . 47

3.5.2 Obsolete options . 48

3.6 POSIX accounts, permission, and security . 49

3.6.1 Brief overview of Windows security . 49

3.6.2 Mapping Windows accounts to POSIX accounts . 51

3.6.2.1 Mapping Windows SIDs to POSIX uid/gid values . 52

3.6.2.2 Caching account information . 54

3.6.2.3 Cygwin user names, home dirs, login shells . 55

3.6.2.4 The /etc/nsswitch.conf file . 55

3.6.2.4.1 The /etc/nsswitch.conf syntax . 56

3.6.2.4.2 The passwd: and group: settings . 56

3.6.2.4.3 The db_enum: setting . 57

3.6.2.4.4 Settings defining how to create the passwd entry 58

3.6.2.4.5 The db_home: setting . 59

3.6.2.4.6 The db_shell: setting . 60

3.6.2.4.7 The db_gecos: setting . 60

3.6.2.4.8 The cygwin schema . 61

3.6.2.4.9 The unix schema . 61

3.6.2.4.10 The desc schema . 61

3.6.2.5 NFS account mapping . 62

3.6.2.6 Samba account mapping . 63

3.6.3 File permissions . 63

3.6.4 Switching the user context . 64

3.6.4.1 Switching the user context with password authentication . 65

3.6.4.2 Switching the user context without password, Method 1: Create a token from scratch 66

Cygwin User’s Guide vii

3.6.4.3 Switching the user context without password, Method 2: LSA authentication package 67

3.6.4.4 Switching the user context without password, Method 3: With password 67

3.6.4.5 Switching the user context, how does it all fit together? . 68

3.7 Cygserver . 68

3.7.1 What is Cygserver? . 68

3.7.2 Cygserver command line options . 69

3.7.3 How to install Cygserver . 70

3.7.4 How to start Cygserver . 70

3.7.5 The Cygserver configuration file . 70

3.8 Cygwin Utilities . 71

3.8.1 cygcheck . 71

3.8.2 cygpath . 73

3.8.3 dumper . 75

3.8.4 getconf . 76

3.8.5 getfacl . 77

3.8.6 kill . 77

3.8.7 ldd . 79

3.8.8 locale . 79

3.8.9 minidumper . 82

3.8.10 mkgroup . 82

3.8.11 mkpasswd . 83

3.8.12 mount . 85

3.8.13 passwd . 88

3.8.14 pldd . 89

3.8.15 ps . 90

3.8.16 regtool . 90

3.8.17 setfacl . 93

3.8.18 setmetamode . 94

3.8.19 ssp . 95

3.8.20 strace . 97

3.8.21 tzset . 98

3.8.22 umount . 99

3.9 Using Cygwin effectively with Windows . 99

3.9.1 Pathnames . 99

3.9.2 Cygwin and Windows Networking . 100

3.9.3 Creating shortcuts . 100

3.9.4 Printing . 100

Cygwin User’s Guide viii

4 Programming with Cygwin 101

4.1 Using GCC with Cygwin . 101

4.1.1 Standard Usage . 101

4.1.2 Building applications for 64 bit Cygwin . 101

4.1.3 GUI Mode Applications . 102

4.2 Debugging Cygwin Programs . 103

4.3 Building and Using DLLs . 103

4.3.1 Building DLLs . 104

4.3.2 Linking Against DLLs . 105

4.4 Defining Windows Resources . 105

4.5 Profiling Cygwin Programs . 107

4.5.1 Introduction . 107

4.5.2 Examples . 108

4.5.3 Special situations . 110

4.5.3.1 Profiling multi-threaded programs . 110

4.5.3.2 Profiling programs that fork . 110

4.5.3.3 Getting better profiling resolution . 110

4.5.3.4 Profiling programs with their libraries . 111

4.5.3.5 Profiling Cygwin itself . 111

Abstract

Cygwin User’s Guide

Cygwin User’s Guide 1 / 111

Chapter 1

Cygwin Overview

1.1 What is it?

Cygwin is a Linux-like environment for Windows. It consists of a DLL (cygwin1.dll), which acts as an emulation layer
providing substantial POSIX (Portable Operating System Interface) system call functionality, and a collection of tools, which
provide a Linux look and feel. The Cygwin DLL works with all x86 and AMD64 versions of Windows NT since Windows XP
SP3. The API follows the Single Unix Specification as much as possible, and then Linux practice. The major differences between
Cygwin and Linux is the C library (newlib instead of glibc).

With Cygwin installed, users have access to many standard UNIX utilities. They can be used from one of the provided shells such
as bash or from the Windows Command Prompt. Additionally, programmers may write Win32 console or GUI applications that
make use of the standard Microsoft Win32 API and/or the Cygwin API. As a result, it is possible to easily port many significant
UNIX programs without the need for extensive changes to the source code. This includes configuring and building most of the
available GNU software (including the development tools included with the Cygwin distribution).

1.2 Quick Start Guide for those more experienced with Windows

If you are new to the world of UNIX, you may find it difficult to understand at first. This guide is not meant to be comprehensive,
so we recommend that you use the many available Internet resources to become acquainted with UNIX basics (search for "UNIX
basics" or "UNIX tutorial").

To install a basic Cygwin environment, run the setup.exe program and click Next at each page. The default settings are correct
for most users. If you want to know more about what each option means, see Section 2.1. Use setup.exe any time you want to
update or install a Cygwin package. If you are installing Cygwin for a specific purpose, use it to install the tools that you need.
For example, if you want to compile C++ programs, you need the gcc-g++ package and probably a text editor like nano.
When running setup.exe, clicking on categories and packages in the package installation screen will provide you with the ability
to control what is installed or updated.

After installation, you can find Cygwin-specific documentation in the /usr/share/doc/Cygwin/ directory.

Developers coming from a Windows background will be able to write console or GUI executables that rely on the Microsoft
Win32 API instead of Cygwin using the mingw32 or mingw64 cross-compiler toolchains. The -shared option to GCC allows to
write Windows Dynamically Linked Libraries (DLLs). The resource compiler windres is also provided.

1.3 Quick Start Guide for those more experienced with UNIX

If you are an experienced UNIX user who misses a powerful command-line environment, you will enjoy Cygwin. Developers
coming from a UNIX background will find a set of utilities they are already comfortable using, including a working UNIX shell.
The compiler tools are the standard GNU compilers most people will have previously used under UNIX, only ported to the

http://www.pasc.org/#POSIX
http://www.opengroup.org/onlinepubs/009695399/nfindex.html

Cygwin User’s Guide 2 / 111

Windows host. Programmers wishing to port UNIX software to Windows NT will find that the Cygwin library provides an easy
way to port many UNIX packages, with only minimal source code changes.

Note that there are some workarounds that cause Cygwin to behave differently than most UNIX-like operating systems; these are
described in more detail in Section 3.9.

Use the graphical command setup.exe any time you want to update or install a Cygwin package. This program must be run man-
ually every time you want to check for updated packages since Cygwin does not currently include a mechanism for automatically
detecting package updates.

By default, setup.exe only installs a minimal subset of packages. Add any other packages by clicking on the + next to the
Category name and selecting the package from the displayed list. You may search for specfic tools by using the Setup Package
Search at the Cygwin web site.

After installation, you can find Cygwin-specific documentation in the /usr/share/doc/Cygwin/ directory.

For more information about what each option in setup.exe means, see Section 2.1.

1.4 Are the Cygwin tools free software?

Yes. Parts are GNU software (gcc, gas, ld, etc.), parts are covered by the standard X11 license, some of it is public domain, some
of it was written by Red Hat and placed under the GNU General Public License (GPL) or GNU Lesser General Public License
(LGPL). None of it is shareware. You don’t have to pay anyone to use it but you should be sure to read the copyright section of
the FAQ for more information on how the GNU GPL may affect your use of these tools.

1.5 A brief history of the Cygwin project

Note
A historical look into the first years of Cygwin development is Geoffrey J. Noer’s 1998 paper, "Cygwin32: A Free Win32 Porting
Layer for UNIX® Applications" which can be found at the 2nd USENIX Windows NT Symposium Online Proceedings.

Cygwin began development in 1995 at Cygnus Solutions (now part of Red Hat, Inc.). The first thing done was to enhance the
development tools (gcc, gdb, gas, etc.) so that they could generate and interpret Win32 native object files. The next task was to
port the tools to Win NT/9x. We could have done this by rewriting large portions of the source to work within the context of the
Win32 API. But this would have meant spending a huge amount of time on each and every tool. Instead, we took a substantially
different approach by writing a shared library (the Cygwin DLL) that adds the necessary UNIX-like functionality missing from
the Win32 API (fork, spawn, signals, select, sockets, etc.). We call this new interface the Cygwin API. Once written,
it was possible to build working Win32 tools using UNIX-hosted cross-compilers, linking against this library.

From this point, we pursued the goal of producing Windows-hosted tools capable of rebuilding themselves under Windows 9x
and NT (this is often called self-hosting). Since neither OS ships with standard UNIX user tools (fileutils, textutils, bash, etc...),
we had to get the GNU equivalents working with the Cygwin API. Many of these tools were previously only built natively so we
had to modify their configure scripts to be compatible with cross-compilation. Other than the configuration changes, very few
source-level changes had to be made since Cygwin provided a UNIX-like API. Running bash with the development tools and
user tools in place, Windows 9x and NT looked like a flavor of UNIX from the perspective of the GNU configure mechanism.
Self hosting was achieved as of the beta 17.1 release in October 1996.

The entire Cygwin toolset was available as a monolithic install. In April 2000, the project announced a New Cygwin Net Release
which provided the native non-Cygwin Win32 program setup.exe to install and upgrade each package separately. Since then, the
Cygwin DLL and setup.exe have seen continuous development.

The biggest major improvement in this development was the 1.7 release in 2009, which dropped Windows 95/98/Me support
in favor of using Windows NT features more extensively. It adds a lot of new features like case-sensitive filenames, NFS
interoperability, IPv6 support and much more.

The latest big improvement is the 64 bit Cygwin DLL which allows to run natively on AMD64 Windows machines. The first
release available in a 64 bit version was 1.7.19.

https://cygwin.com/packages/
https://cygwin.com/packages/
http://www.gnu.org/
http://www.x.org/Downloads_terms.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.usenix.org/publications/library/proceedings/usenix-nt98/technical.html
https://www.cygwin.com/ml/cygwin/2000-04/msg00269.html

Cygwin User’s Guide 3 / 111

1.6 Highlights of Cygwin Functionality

1.6.1 Introduction

When a binary linked against the library is executed, the Cygwin DLL is loaded into the application’s text segment. Because we
are trying to emulate a UNIX kernel which needs access to all processes running under it, the first Cygwin DLL to run creates
shared memory areas and global synchronization objects that other processes using separate instances of the DLL can access.
This is used to keep track of open file descriptors and to assist fork and exec, among other purposes. Every process also has
a per_process structure that contains information such as process id, user id, signal masks, and other similar process-specific
information.

The DLL is implemented as a standard DLL in the Win32 subsystem. Under the hood it’s using the Win32 API, as well as the
native NT API, where appropriate.

Note
Some restrictions apply for calls to the Win32 API. For details, see Section 2.2.2, as well as Section 3.1.8.

The native NT API is used mainly for speed, as well as to access NT capabilities which are useful to implement certain POSIX
features, but are hidden to the Win32 API.

Due to some restrictions in Windows, it’s not always possible to strictly adhere to existing UNIX standards like POSIX.1.
Fortunately these are mostly corner cases.

Note that many of the things that Cygwin does to provide POSIX compatibility do not mesh well with the native Windows API.
If you mix POSIX calls with Windows calls in your program it is possible that you will see uneven results. In particular, Cygwin
signals will not work with Windows functions which block and Windows functions which accept filenames may be confused by
Cygwin’s support for long filenames.

1.6.2 Permissions and Security

Windows NT includes a sophisticated security model based on Access Control Lists (ACLs). Cygwin maps Win32 file ownership
and permissions to ACLs by default, on file systems supporting them (usually NTFS). Solaris style ACLs and accompanying
function calls are also supported. The chmod call maps UNIX-style permissions back to the Win32 equivalents. Because many
programs expect to be able to find the /etc/passwd and /etc/group files, we provide utilities that can be used to construct
them from the user and group information provided by the operating system.

Users with Administrator rights are permitted to chown files. With version 1.1.3 Cygwin introduced a mechanism for setting real
and effective UIDs. This is described in Section 3.6. As of version 1.5.13, the Cygwin developers are not aware of any feature
in the Cygwin DLL that would allow users to gain privileges or to access objects to which they have no rights under Windows.
However there is no guarantee that Cygwin is as secure as the Windows it runs on. Cygwin processes share some variables and
are thus easier targets of denial of service type of attacks.

1.6.3 File Access

Cygwin supports both POSIX- and Win32-style paths, using either forward or back slashes as the directory delimiter. Paths
coming into the DLL are translated from POSIX to native NT as needed. From the application perspective, the file system is a
POSIX-compliant one. The implementation details are safely hidden in the Cygwin DLL. UNC pathnames (starting with two
slashes) are supported for network paths.

The layout of this POSIX view of the Windows file system space is stored in the /etc/fstab file. Actually, there is a system-
wide /etc/fstab file as well as a user-specific fstab file /etc/fstab.d/${USER}.

At startup the DLL has to find out where it can find the /etc/fstab file. The mechanism used for this is simple. First
it retrieves it’s own path, for instance C:\Cygwin\bin\cygwin1.dll. From there it deduces that the root path is C:
\Cygwin. So it looks for the fstab file in C:\Cygwin\etc\fstab. The layout of this file is very similar to the layout of

https://cygwin.com/cygwin-ug-net/using-utils.html

Cygwin User’s Guide 4 / 111

the fstab file on Linux. Just instead of block devices, the mount points point to Win32 paths. An installation with setup.exe
installs a fstab file by default, which can easily be changed using the editor of your choice.

The fstab file allows mounting arbitrary Win32 paths into the POSIX file system space. A special case is the so-called
cygdrive prefix. It’s the path under which every available drive in the system is mounted under its drive letter. The default value
is /cygdrive, so you can access the drives as /cygdrive/c, /cygdrive/d, etc... The cygdrive prefix can be set to some
other value (/mnt for instance) in the fstab file(s).

The library exports several Cygwin-specific functions that can be used by external programs to convert a path or path list from
Win32 to POSIX or vice versa. Shell scripts and Makefiles cannot call these functions directly. Instead, they can do the same
path translations by executing the cygpath utility program that we provide with Cygwin.

Win32 applications handle filenames in a case preserving, but case insensitive manner. Cygwin supports case sensitivity on file
systems supporting that. Windows only supports case sensitivity when a specific registry value is changed. Therefore, case
sensitivity is not usually the default.

Cygwin supports creating and reading symbolic links, even on Windows filesystems and OS versions which don’t support them.
See Section 3.1.6 for details.

Hard links are fully supported on NTFS and NFS file systems. On FAT and other file systems which don’t support hardlinks, the
call returns with an error, just like on other POSIX systems.

On file systems which don’t support unique persistent file IDs (FAT, older Samba shares) the inode number for a file is calculated
by hashing its full Win32 path. The inode number generated by the stat call always matches the one returned in d_ino of the
dirent structure. It is worth noting that the number produced by this method is not guaranteed to be unique. However, we have
not found this to be a significant problem because of the low probability of generating a duplicate inode number.

Cygwin supports Extended Attributes (EAs) via the linux-specific function calls getxattr, setxattr, listxattr, and
removexattr. All EAs on Samba or NTFS are treated as user EAs, so, if the name of an EA is "foo" from the Windows
perspective, it’s transformed into "user.foo" within Cygwin. This allows Linux-compatible EA operations and keeps tools like
attr, or setfattr happy.

chroot is supported. Kind of. Chroot is not a concept known by Windows. This implies some serious restrictions. First of all,
the chroot call isn’t a privileged call. Any user may call it. Second, the chroot environment isn’t safe against native windows
processes. Given that, chroot in Cygwin is only a hack which pretends security where there is none. For that reason the usage of
chroot is discouraged. Don’t use it unless you really, really know what you’re doing.

1.6.4 Text Mode vs. Binary Mode

It is often important that files created by native Windows applications be interoperable with Cygwin applications. For example,
a file created by a native Windows text editor should be readable by a Cygwin application, and vice versa.

Unfortunately, UNIX and Win32 have different end-of-line conventions in text files. A UNIX text file will have a single newline
character (LF) whereas a Win32 text file will instead use a two character sequence (CR+LF). Consequently, the two character
sequence must be translated on the fly by Cygwin into a single character newline when reading in text mode.

This solution addresses the newline interoperability concern at the expense of violating the POSIX requirement that text and
binary mode be identical. Consequently, processes that attempt to lseek through text files can no longer rely on the number of
bytes read to be an accurate indicator of position within the file. For this reason, Cygwin allows you to choose the mode in which
a file is read in several ways.

1.6.5 ANSI C Library

We chose to include Red Hat’s own existing ANSI C library "newlib" as part of the library, rather than write all of the lib C
and math calls from scratch. Newlib is a BSD-derived ANSI C library, previously only used by cross-compilers for embedded
systems development. Other functions, which are not supported by newlib have been added to the Cygwin sources using BSD
implementations as much as possible.

The reuse of existing free implementations of such things as the glob, regexp, and getopt libraries saved us considerable effort.
In addition, Cygwin uses Doug Lea’s free malloc implementation that successfully balances speed and compactness. The library
accesses the malloc calls via an exported function pointer. This makes it possible for a Cygwin process to provide its own malloc
if it so desires.

Cygwin User’s Guide 5 / 111

1.6.6 Process Creation

The fork call in Cygwin is particularly interesting because it does not map well on top of the Win32 API. This makes it very
difficult to implement correctly. Currently, the Cygwin fork is a non-copy-on-write implementation similar to what was present
in early flavors of UNIX.

The first thing that happens when a parent process forks a child process is that the parent initializes a space in the Cygwin process
table for the child. It then creates a suspended child process using the Win32 CreateProcess call. Next, the parent process calls
setjmp to save its own context and sets a pointer to this in a Cygwin shared memory area (shared among all Cygwin tasks). It then
fills in the child’s .data and .bss sections by copying from its own address space into the suspended child’s address space. After
the child’s address space is initialized, the child is run while the parent waits on a mutex. The child discovers it has been forked
and longjumps using the saved jump buffer. The child then sets the mutex the parent is waiting on and blocks on another mutex.
This is the signal for the parent to copy its stack and heap into the child, after which it releases the mutex the child is waiting
on and returns from the fork call. Finally, the child wakes from blocking on the last mutex, recreates any memory-mapped areas
passed to it via the shared area, and returns from fork itself.

While we have some ideas as to how to speed up our fork implementation by reducing the number of context switches between
the parent and child process, fork will almost certainly always be inefficient under Win32. Fortunately, in most circumstances
the spawn family of calls provided by Cygwin can be substituted for a fork/exec pair with only a little effort. These calls map
cleanly on top of the Win32 API. As a result, they are much more efficient. Changing the compiler’s driver program to call spawn
instead of fork was a trivial change and increased compilation speeds by twenty to thirty percent in our tests.

However, spawn and exec present their own set of difficulties. Because there is no way to do an actual exec under Win32,
Cygwin has to invent its own Process IDs (PIDs). As a result, when a process performs multiple exec calls, there will be multiple
Windows PIDs associated with a single Cygwin PID. In some cases, stubs of each of these Win32 processes may linger, waiting
for their exec’d Cygwin process to exit.

1.6.6.1 Problems with process creation

The semantics of fork require that a forked child process have exactly the same address space layout as its parent. However,
Windows provides no native support for cloning address space between processes and several features actively undermine a
reliable fork implementation. Three issues are especially prevalent:

• DLL base address collisions. Unlike *nix shared libraries, which use "position-independent code", Windows shared libraries
assume a fixed base address. Whenever the hard-wired address ranges of two DLLs collide (which occurs quite often), the
Windows loader must "rebase" one of them to a different address. However, it may not resolve collisions consistently, and may
rebase a different dll and/or move it to a different address every time. Cygwin can usually compensate for this effect when it
involves libraries opened dynamically, but collisions among statically-linked dlls (dependencies known at compile time) are
resolved before cygwin1.dll initializes and cannot be fixed afterward. This problem can only be solved by removing the
base address conflicts which cause the problem, usually using the rebaseall tool.

• Address space layout randomization (ASLR). Starting with Vista, Windows implements ASLR, which means that thread stacks,
heap, memory-mapped files, and statically-linked dlls are placed at different (random) locations in each process. This behaviour
interferes with a proper fork, and if an unmovable object (process heap or system dll) ends up at the wrong location, Cygwin
can do nothing to compensate (though it will retry a few times automatically).

• DLL injection by BLODA. Badly-behaved applications which inject dlls into other processes often manage to clobber impor-
tant sections of the child’s address space, leading to base address collisions which rebasing cannot fix. The only way to resolve
this problem is to remove (usually uninstall) the offending app.

In summary, current Windows implementations make it impossible to implement a perfectly reliable fork, and occasional fork
failures are inevitable.

1.6.7 Signals

When a Cygwin process starts, the library starts a secondary thread for use in signal handling. This thread waits for Windows
events used to pass signals to the process. When a process notices it has a signal, it scans its signal bitmask and handles the signal
in the appropriate fashion.

https://cygwin.com/faq/faq.html#faq.using.bloda

Cygwin User’s Guide 6 / 111

Several complications in the implementation arise from the fact that the signal handler operates in the same address space as the
executing program. The immediate consequence is that Cygwin system functions are interruptible unless special care is taken to
avoid this. We go to some lengths to prevent the sig_send function that sends signals from being interrupted. In the case of a
process sending a signal to another process, we place a mutex around sig_send such that sig_send will not be interrupted until it
has completely finished sending the signal.

In the case of a process sending itself a signal, we use a separate semaphore/event pair instead of the mutex. sig_send starts
by resetting the event and incrementing the semaphore that flags the signal handler to process the signal. After the signal is
processed, the signal handler signals the event that it is done. This process keeps intraprocess signals synchronous, as required
by POSIX.

Most standard UNIX signals are provided. Job control works as expected in shells that support it.

1.6.8 Sockets

Socket-related calls in Cygwin basically call the functions by the same name in Winsock, Microsoft’s implementation of Berkeley
sockets, but with lots of tweaks. All sockets are non-blocking under the hood to allow to interrupt blocking calls by POSIX
signals. Additional bookkeeping is necessary to implement correct socket sharing POSIX semantics and especially for the select
call. Some socket-related functions are not implemented at all in Winsock, as, for example, socketpair. Starting with Windows
Vista, Microsoft removed the legacy calls rcmd(3), rexec(3) and rresvport(3). Recent versions of Cygwin now
implement all these calls internally.

An especially troublesome feature of Winsock is that it must be initialized before the first socket function is called. As a result,
Cygwin has to perform this initialization on the fly, as soon as the first socket-related function is called by the application. In
order to support sockets across fork calls, child processes initialize Winsock if any inherited file descriptor is a socket.

AF_UNIX (AF_LOCAL) sockets are not available in Winsock. They are implemented in Cygwin by using local AF_INET
sockets instead. This is completely transparent to the application. Cygwin’s implementation also supports the getpeereid BSD
extension. However, Cygwin does not yet support descriptor passing.

1.6.9 Select

The UNIX select function is another call that does not map cleanly on top of the Win32 API. Much to our dismay, we
discovered that the Win32 select in Winsock only worked on socket handles. Our implementation allows select to function
normally when given different types of file descriptors (sockets, pipes, handles, and a custom /dev/windows Windows messages
pseudo-device).

Upon entry into the select function, the first operation is to sort the file descriptors into the different types. There are then two
cases to consider. The simple case is when at least one file descriptor is a type that is always known to be ready (such as a disk
file). In that case, select returns immediately as soon as it has polled each of the other types to see if they are ready. The more
complex case involves waiting for socket or pipe file descriptors to be ready. This is accomplished by the main thread suspending
itself, after starting one thread for each type of file descriptor present. Each thread polls the file descriptors of its respective type
with the appropriate Win32 API call. As soon as a thread identifies a ready descriptor, that thread signals the main thread to wake
up. This case is now the same as the first one since we know at least one descriptor is ready. So select returns, after polling all of
the file descriptors one last time.

1.7 What’s new and what changed in Cygwin

1.7.1 What’s new and what changed in 2.11

• SO_RCVTIMEO and SO_SNDTIMEO socket options are now honored.

• /proc/cpuinfo now reports L3 cache size on Intel CPUs.

• New APIs: clearenv, pthread_tryjoin_np, pthread_timedjoin_np, sched_getcpu.

Cygwin User’s Guide 7 / 111

• New APIs for POSIX Asynchronous I/O: aio_cancel, aio_error, aio_fsync, aio_read, aio_return, aio_suspend, aio_write,
lio_listio. New Header: <aio.h>.

• Drop denormal-operand exception from FE_ALL_EXCEPT, as on Linux.

• Rename the --file option of setfacl(1) to --set-file, as on Linux.

• Support Unicode 10.

• Following glibc, `union wait’ has now been removed. Applications using union wait and these macros will have to migrate to
the POSIX-specified int status type.

1.7.2 What’s new and what changed in 2.10

• New open(2) flags O_TMPFILE and O_NOATIME.

• scanf/wscanf now handle the POSIX %m modifier.

• scanf now handles the %l[conversion.

• Improved hostprogs compatibility for cross-compiling the Linux kernel. New headers: <asm/bitsperlong.h>, <asm/posix_types.h>.

• Built-in implementation of Stack Smashing Protection compiler feature. New APIs: __stack_chk_fail, __stack_chk_guard.

• Built-in implementation of _FORTIFY_SOURCE guards for functions in <stdio.h>, <stdlib.h>, <string.h>, <strings.h>, <unistd.h>,
<wchar.h>, <sys/poll.h>, and <sys/socket.h>. New APIs: __chk_fail, __gets_chk, __memcpy_chk, __memmove_chk, __mem-
pcpy_chk, __memset_chk, __snprintf_chk, __sprintf_chk, __stpcpy_chk, __stpncpy_chk, __strcat_chk, __strcpy_chk, __strn-
cat_chk, __strncpy_chk, __vsnprintf_chk, __vsprintf_chk.

• Built-in implementation of POSIX.1-2001 message catalog support. New APIs: catclose, catgets, catopen. New tool: gencat.

• New APIs: sigtimedwait, wmempcpy.

1.7.3 What’s new and what changed in 2.9

• New APIs: explicit_bzero, strnstr.

• New APIs: pthread_mutex_timedwait, pthread_rwlock_timedrdlock, pthread_rwlock_timedwrlock.

• New API: renameat2.

• Improved implementation of <elf.h>.

• strptime(3) supports %s (seconds since Epoch) now, analogue to strftime.

1.7.4 What’s new and what changed in 2.8

• New API: timingsafe_bcmp, timingsafe_memcmp

• New API: dladdr

• New API: getloadavg

• Cygcheck and strace now always generate output with Unix LF line endings, rather than with DOS/Windows CR LF line
endings.

• Fork now preserves the load order of unrelated dlopen’d modules.

• Pthread_cond_wait now acts like Linux and BSD: Resume waiting for the condition variable as if it was not interrupted, rather
than returning 0.

• The internal <sys/_locale.h> header was renamed to <xlocale.h> for source compatibility with other systems.

• Try harder supporting Netapp drives.

Cygwin User’s Guide 8 / 111

1.7.5 What’s new and what changed in 2.7

• Support for /proc/<PID>/environ.

• - New API: getentropy, getrandom.

1.7.6 What’s new and what changed in 2.6

• Support for POSIX-1.2008 locale objects and per-thread locales.

New API per POSIX-1.2008: newlocale, freelocale, duplocale, uselocale, nl_langinfo_l, isalnum_l, isalpha_l, isblank_l, is-
cntrl_l, isdigit_l, isgraph_l, islower_l, isprint_l, ispunct_l, isspace_l, isupper_l, iswalnum_l, iswalpha_l, iswblank_l, iswcn-
trl_l, iswctype_l, iswdigit_l, iswgraph_l, iswlower_l, iswprint_l, iswpunct_l, iswspace_l, iswupper_l, iswxdigit_l, isxdigit_l,
tolower_l, toupper_l, towctrans_l, towlower_l, towupper_l, wctrans_l, wctype_l, strcasecmp_l, strcoll_l, strerror_l, strfmon_l,
strftime_l, strncasecmp_l, strxfrm_l, wcscasecmp_l, wcscoll_l, wcstrncasecmp_l, wcstrxfrm_l.

New API, GNU extensions: isascii_l, toascii_l, strptime_l, strtod_l, strtof_l, strtol_l, strtold_l, strtoll_l, strtoul_l, strtoull_l,
wcsftime_l, wcstod_l, wcstof_l, wcstol_l, wcstold_l, wcstoll_l, wcstoul_l, wcstoull_l.

• locale(1) now supports a -i/--input option to fetch the current input locale (this is basically equivalent to the current keyboard
layout setting).

• Drop support for Windows XP and Windows Server 2003/2003 R2.

• Drop support for very old SUNWNFS filesystem.

• Raise number of supported partitions per disk (for raw access) to 63.

• Further header file improvements in terms of feature test macros.

• Add a workaround for filesystems not supporting the FileAllInformation info class.

• Support AzureAD accounts.

• "nobody" account support for WinFSP.

• New API: pthread_getname_np, pthread_setname_np.

1.7.7 What’s new and what changed in 2.5

• Full set of POSIX.1e ACL API functions now implemented. New APIs: acl_add_perm, acl_calc_mask, acl_clear_perms,
acl_copy_entry, acl_copy_ext, acl_copy_int, acl_create_entry, acl_delete_def_file, acl_delete_entry, acl_delete_perm, acl_dup,
acl_free, acl_from_text, acl_get_entry, acl_get_fd, acl_get_file, acl_get_permset, acl_get_qualifier, acl_get_tag_type, acl_init,
acl_set_fd, acl_set_file, acl_set_permset, acl_set_qualifier, acl_set_tag_type, acl_size, acl_to_text, acl_valid.

• Most libacl extensions now implemented, too: New APIs: acl_check, acl_cmp, acl_entries, acl_equiv_mode, acl_error,
acl_extended_fd, acl_extended_file, acl_extended_file_nofollow, acl_from_mode, acl_get_perm, acl_to_any_text.

• Including <sys/acl.h> now *only* includes the POSIX ACL API. To include the old Solaris API, include <cygwin/acl.h>.

• First implementation of pthread_barrier/pthread_barrierattr functions. New APIs: pthread_barrierattr_init, pthread_barrierattr_setpshared,
pthread_barrierattr_getpshared, pthread_barrierattr_destroy, pthread_barrier_init, pthread_barrier_destroy, pthread_barrier_wait.

• Enabled console reports requested by escape sequences: Requesting primary and secondary device attributes, requesting cursor
position report; see https://cygwin.com/ml/cygwin-patches/2012-q3/msg00019.html

• New APIs: clog10, clog10f, nexttoward, nexttowardf, nexttowardl.

• Add missing long double functions. New APIs: acoshl, acosl, asinhl, asinl, atan2l, atanhl, atanl, cacoshl, cacosl, cargl, casinhl,
casinl, catanhl, catanl, ccoshl, ccosl, ceill, cexpl, clog10l, clogl, conjl, copysignl, coshl, cosl, cpowl, cprojl, csinhl, csinl, csqrtl,
ctanhl, ctanl, dreml, erfcl, erfl, exp10l, exp2l, expl, expm1l, fabsl, fdiml, floorl, fmal, fmaxl, fminl, fmodl, frexpl, ilogbl, isinfl,
isnanl, ldexpl, lgammal, lgammal_r, llroundl, log10l, log1pl, log2l, logbl, logl, lroundl, modfl, nearbyintl, nextafterl, pow10l,
powl, remainderl, remquol, roundl, scalbl, scalblnl, scalbnl, sincosl, sinhl, sinl, tanhl, tanl, tgammal, truncl.

Cygwin User’s Guide 9 / 111

• In calls to chmod treat ACLs with extra ACEs *only* for Admins and SYSTEM like a trivial ACL.

• Bump POSIX option macros to POSIX.1-2008.

• Profiling data, specifically pc sampling, now covers all threads of a program and not just the main thread. Environment variable
GMON_OUT_PREFIX enables multiple gmon.out files to preserve profiling data after fork or from multiple program runs.

• Feature test macros, which control which symbols are exposed in the standard headers, have been completely overhauled for
compatibility with glibc.

• The isinf, isinff, and isinfl functions are signed, returning -1 for negative infinity for compatibility with glibc.

1.7.8 What’s new and what changed in 2.4

• New, unified implementation of POSIX permission and ACL handling. The new ACLs now store the POSIX ACL MASK/-
CLASS_OBJ permission mask, and they allow to inherit the S_ISGID bit. ACL inheritance now really works as desired, in a
limited, but theoretically equivalent fashion even for non-Cygwin processes.

To accommodate standard Windows ACLs, the POSIX permissions of the owner and all other users in the ACL are computed
using the Windows AuthZ API. This may slow down the computation of POSIX permissions noticably in some circumstances,
but is generally more correct. The new code also ignores SYSTEM and Administrators group permissions when computing the
MASK/CLASS_OBJ permission mask on old ACLs, and it doesn’t deny access to SYSTEM and Administrators group based
on the value of MASK/CLASS_OBJ when creating the new ACLs.

The new code now handles the S_ISGID bit on directories as on Linux: Setting S_ISGID on a directory causes new files and
subdirs created within to inherit its group, rather than the primary group of the user who created the file. This only works for
files and directories created by Cygwin processes.

• cygpath has a new -U option, which creates cygdrive paths using the unambiguous /proc/cygdrive prefix.

• New API: rpmatch.

• Align setfacl(1) usage a bit closer to the usage on Linux. Rename -d option to -x, --substitute to --set. Add --no-mask
and --mask options. Allow to use the -b and -k option combined to allow reducing an ACL to only reflect standard POSIX
permissions.

• Fix (numeric and monetary) decimal point and thousands separator in fa_IR and ps_AF locales to be aligned with Linux.

• utmpname/utmpxname are now defined as int functions as on Linux.

1.7.9 What’s new and what changed in 2.3

• strftime(3) supports %s (seconds since Epoch) now.

• posix_madvise(POSIX_MADV_WILLNEED) now utilizes OS functionality available starting with Windows 8/Server 2012.

posix_madvise(POSIX_MADV_DONTNEED) now utilizes OS functionality available starting with Windows 8.1/Server 2012R2.

• sysconf() now supports returning CPU cache information:

_SC_LEVEL1_ICACHE_SIZE, _SC_LEVEL1_ICACHE_ASSOC, _SC_LEVEL1_ICACHE_LINESIZE,
_SC_LEVEL1_DCACHE_SIZE, _SC_LEVEL1_DCACHE_ASSOC, _SC_LEVEL1_DCACHE_LINESIZE,
_SC_LEVEL2_CACHE_SIZE, _SC_LEVEL2_CACHE_ASSOC, _SC_LEVEL2_CACHE_LINESIZE,
_SC_LEVEL3_CACHE_SIZE, _SC_LEVEL3_CACHE_ASSOC, _SC_LEVEL3_CACHE_LINESIZE,
_SC_LEVEL4_CACHE_SIZE, _SC_LEVEL4_CACHE_ASSOC, _SC_LEVEL4_CACHE_LINESIZE

• New API: aligned_alloc, at_quick_exit, quick_exit.

• Add support for Parallels Desktop FS (prlfs).

Cygwin User’s Guide 10 / 111

1.7.10 What’s new and what changed in 2.2

• New APIs: getcontext, setcontext, makecontext, swapcontext.

• New functions: sigsetjmp, siglongjmp.

These were only available as macros up to now, but POSIX requires that siglongjmp has to be available as function.

1.7.11 What’s new and what changed in 2.1

• Handle pthread stacksizes as in GLibc: Default to RLIMIT_STACK resource. Allow to set RLIMIT_STACK via setrlimit.
Default RLIMIT_STACK to value from executable header as described on the MSDN website Thread Stack Size Default
stacksize to 2 Megs in case RLIMIT_STACK is set to RLIM_INFINITY.

• First cut of an implementation to allow signal handlers running on an alternate signal stack.

• New API sigaltstack, plus definitions for SA_ONSTACK, SS_ONSTACK, SS_DISABLE, MINSIGSTKSZ, SIGSTKSZ.

• New API: sethostname.

1.7.12 What’s new and what changed in 2.0

• basename(3) now comes in two flavors, POSIX and GNU. The POSIX version is the default. You get the GNU version after

#define _GNU_SOURCE
#include <string.h>

1.7.13 What’s new and what changed in 1.7.35

• Performance improvements of the new account DB handling.

• Since 1.7.34, chmod does not always affect the POSIX permission mask as returned by stat(2) or printed by ls(1), due to the
improved POSIX ACL handling. However, that’s still far from perfect, so, as a temporary workaround, chmod now checks if
secondary groups and users in the ACL have more permissions than the primary group. If so, the permissions of the secondary
users and groups will be reduced according to the mask given by the new primary group permissions. I.e, chmod 600 will
remove all permissions from the primary group as well as all secondary user and group entries in the ACL.

• Change handling of group permissions if owner SID == group SID. Now the group permissions don’t mirror the user permis-
sions anymore, thus leading to less hassle with security-conscious applications.

• Allow group SID to be the same as owner SID for "Microsoft Accounts". Those have the group in their user token set to the
owner SID by default. Drop the workaround to change their primary group to "Users". It’s not required anymore due to the
aforementioned changes.

• Change getfacl long options from --all to --access and from --dir to --default, along the lines of the Linux getfacl tool.

• Don’t raise a SIGSYS signal in the XSI IPC functions if cygserver is not running. Just return -1 with errno set to ENOSYS.

• New APIs: cabsl, cimagl, creall, finitel, hypotl, sqrtl.

• New API: issetugid.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686774.aspx

Cygwin User’s Guide 11 / 111

1.7.14 What’s new and what changed in 1.7.34

• Cygwin can now generate passwd/group entries directly from Windows user databases (local SAM or Active Directory), thus
allowing to run Cygwin without having to create /etc/passwd and /etc/group files. Introduce /etc/nsswitch.conf file to configure
passwd/group handling.

For bordercase which require to use /etc/passwd and /etc/group files, change mkpasswd/mkgroup to generate passwd/group
entries compatible with the entries read from SAM/AD.

For a description of this exciting new feature see Section 3.6.

• Add -b/--remove-all option to setfacl to reduce the ACL to only the entries representing POSIX permission bits.

• Add -k/--remove-default option to setfacl to remove all default ACL entries from an ACL.

• Add restore action to regtool.

• Make gethostbyname2 handle numeric host addresses as well as the reserved domain names "localhost" and "invalid" per RFC
6761.

• Revamp Solaris ACL implementation to more closely work like POSIX ACLs are supposed to work. Finally implement a
CLASS_OBJ emulation. Update getfacl(1)/setfacl(1) accordingly.

• The xdr functions are no longer exported for newly built executables. Use libtirpc-devel instead.

• 32 bit only: Change default values for socket buffer size to raise performance on 10Gb networks.

• When spawning a process under another user account, merge the user’s default Windows environment into the new process’
environment.

• New APIs: qsort_r, __bsd_qsort_r.

• New API: wcstold.

• New APIs: __fbufsize, __flbf, __fpending, __freadable, __freading, __fsetlocking, __fwritable, __fwriting.

• New APIs: clearerr_unlocked, feof_unlocked, ferror_unlocked, fflush_unlocked, fgetc_unlocked, fgets_unlocked, fgetwc_unlocked,
fgetws_unlocked, fileno_unlocked, fputc_unlocked, fputs_unlocked, fputwc_unlocked, fputws_unlocked, fread_unlocked, fwrite_unlocked,
getwc_unlocked, getwchar_unlocked, putwc_unlocked, putwchar_unlocked.

• New API: sockatmark.

1.7.15 What’s new and what changed in 1.7.33

• /proc/cygdrive is a new symlink pointing to the current cygdrive prefix. This can be utilized in scripts to access paths via
cygdrive prefix, even if the cygdrive prefix has been changed by the user.

• /proc/partitions now prints the windows mount points the device is mounted on. This allows to recognize the underlying
Windows devices of the Cygwin raw device names.

• New API: quotactl, designed after the Linux/BSD function, but severely restricted: Windows only supports user block quotas
on NTFS, no group quotas, no inode quotas, no time constraints.

• New APIs: ffsl, ffsll (glibc extensions).

• New API: stime (SVr4).

• Provide Cygwin documentation (PDFs and HTML) for offline usage in /usr/share/doc/cygwin-${version}.

• New internal exception handling based on SEH on 64 bit Cygwin.

• When exec’ing applications, check if $PATH exists and is non-empty. If not, add PATH variable with Cygwin installation
directory as content to Windows environment to allow loading of Cygwin system DLLs.

• Disable CYGWIN "dosfilewarning" option by default.

Cygwin User’s Guide 12 / 111

• Improve various header files for C++- and standards-compliance.

• Doug Lea malloc implementation update from 2.8.3 to the latest 2.8.6.

• atexit(3) is now exported as statically linked function from libcygwin.a. This allows reliable access to the DSO handle of the
caller for newly built executables. The former atexit entry point into the DLL remains for backward compatibility only.

1.7.16 What’s new and what changed in 1.7.32

• Export __cxa_atexit and __cxa_finalize to allow C++ standards-compliant destructor handling in libstdc++ and g++ compiled
code. Please note that, in order to benefit from this new feature, C++ code must be recompiled with the upcoming gcc 4.8.3-3
release which will enable the -fuse-cxa-atexit flag by default, and that C++ applications using this feature will not run on older
Cygwin releases.

• Support more recent CPU flags in /proc/cpuinfo.

1.7.17 What’s new and what changed in 1.7.31

• Improve performance of send(2), sendto(2), sendmsg(2) when using small input buffers.

• The default pthread_mutex type is now PTHREAD_MUTEX_NORMAL, rather than PTHREAD_MUTEX_ERRORCHECK,
just as on Linux.

• Align pthread_attr stack functions more closely to Linux.

• Mark pthread_attr_getstackaddr and pthread_attr_setstackaddr as deprecated, as on Linux.

1.7.18 What’s new and what changed in 1.7.29

• Allow quoting of arguments to the CYGWIN environment variable, i.e., set CYGWIN=error_start="c:\bin\someprogram -T"

• Console screen clearing works more like xterm or mintty.

1.7.19 What’s new and what changed in 1.7.28

• popen now supports the Glibc ’e’ flag to set the FD_CLOEXEC flag on the pipe in a thread-safe way.

• New netinet/ip6.h header.

• Switch to BSD FILE stream fopen/exit semantics, as in all BSD variants and Linux/GLibc: Don’t fflush/lseek a FILE stream
on fclose and exit, if it only has been read from.

1.7.20 What’s new and what changed in 1.7.27

• Don’t create native symlinks with target paths having long path prefixes "\\?\" if the target path is shorter than MAX_PATH
characters. This works around a Windows 8.1 bug: The ShellExecuteW fails if the lpFile parameter points to a native NTFS
symlink with a target path prefixed with "\\?\".

Cygwin User’s Guide 13 / 111

1.7.21 What’s new and what changed in 1.7.26

• getaddrinfo now supports glibc-specific International Domain Name (IDN) extension flags: AI_IDN, AI_CANONIDN, AI_IDN_ALLOW_UNASSIGNED,
AI_IDN_USE_STD3_ASCII_RULES.

• getnameinfo now supports glibc-specific International Domain Name (IDN) extension flags: NI_IDN, NI_IDN_ALLOW_UNASSIGNED,
NI_IDN_USE_STD3_ASCII_RULES.

• Slightly improve randomness of /dev/random emulation.

• Allow to use advisory locking on any device. POSIX fcntl and lockf locking works with any device, BSD flock locking only
with devices backed by an OS handle. Right now this excludes console windows on pre Windows 8, as well as almost all
virtual files under /proc from BSD flock locking.

• The header /usr/include/exceptions.h, containing implementation details for 32 bit Windows’ exception handling only, has been
removed.

• Preliminary, experimental support of the posix_spawn family of functions. New associated header /usr/include/spawn.h.

1.7.22 What’s new and what changed in 1.7.25

• Change magic number associated with process information block so that 32-bit Cygwin processes don’t try to interpret 64-bit
information and vice-versa.

• Redefine content of mtget tape info struct to allow fetching the number of partitions on a tape.

1.7.23 What’s new and what changed in 1.7.24

• Allow application override of posix_memalign.

1.7.24 What’s new and what changed in 1.7.23

• Added CYGWIN environment variable keyword "wincmdln" which causes Cygwin to send the full windows command line to
any subprocesses.

1.7.25 What’s new and what changed in 1.7.22

• Support for /dev/mem, /dev/kmem and /dev/port removed, since OS support was limited to 32 bit Windows XP only.

• Added cygwin GetCommandLine wrappers which will allow Cygwin programs to (appear to) use the Windows command line
functions.

• regcomp(3) now allows character values >= 0x80 if the current codeset is ASCII (default codeset in the "C"/"POSIX" locale).
This allows patterns containing arbitrary byte values as GLibc’s regcomp.

1.7.26 What’s new and what changed in 1.7.21

• New API: rawmemchr.

Cygwin User’s Guide 14 / 111

1.7.27 What’s new and what changed in 1.7.19

• Drop support for Windows 2000 and Windows XP pre-SP3.

• Add support for building a 64 bit version of Cygwin on x86_64 natively.

• Add support for creating native NTFS symlinks starting with Windows Vista by setting the CYGWIN=winsymlinks:native or
CYGWIN=winsymlinks:nativestrict option.

• Add support for AFS filesystem.

• Preliminary support for mandatory locking via fcntl/flock/lockf, using Windows locking semantics. New F_LCK_MANDATORY
fcntl command.

• New APIs: __b64_ntop, __b64_pton, arc4random, arc4random_addrandom, arc4random_buf, arc4random_stir, arc4random_uniform.

1.7.28 What’s new and what changed in 1.7.18

• Added Windows console cursor appearance support.

– Show/Hide Cursor mode (DECTCEM): "ESC[?25h" / "ESC[?25l"

– Set cursor style (DECSCUSR): "ESC[n q" (note the space before the q); where n is 0, 1, 2 for block cursor, 3, 4 for underline
cursor (all disregarding blinking mode), or > 4 to set the cursor height to a percentage of the cell height.

• For performance reasons, Cygwin does not try to create sparse files automatically anymore, unless you use the new "sparse"
mount option.

• New API: cfsetspeed.

1.7.29 What’s new and what changed in 1.7.17

• Support the "e" flag to fopen(3). This is a Glibc extension which allows to fopen the file with the O_CLOEXEC flag set.

• Support the "x" flag to fopen(3). This is a Glibc/C11 extension which allows to open the file with the O_EXCL flag set.

1.7.30 What’s new and what changed in 1.7.16

• New API: getmntent_r, memrchr.

• Recognize ReFS filesystem.

1.7.31 What’s new and what changed in 1.7.15

• CYGWIN=pipe_byte option now forces the opening of pipes in byte mode rather than message mode.

1.7.32 What’s new and what changed in 1.7.14

• Add mouse reporting modes 1005, 1006 and 1015 to console window.

1.7.33 What’s new and what changed in 1.7.13

• mkpasswd and mkgroup now try to print an entry for the TrustedInstaller account existing since Windows Vista/Server 2008.

• Terminal typeahead when switching from canonical to non-canonical mode is now properly flushed.

Cygwin User’s Guide 15 / 111

1.7.34 What’s new and what changed in 1.7.12

• Cygwin now automatically populates the /dev directory with all existing POSIX devices.

• Add virtual /proc/PID/mountinfo file.

• flock now additionally supports the following scenario, which requires to propagate locks to the parent process:

(
flock -n 9 || exit 1
... commands executed under lock ...

} 9>/var/lock/mylockfile

Only propagation to the direct parent process is supported so far, not to grand parents or sibling processes.

• Add a "detect_bloda" setting for the CYGWIN environment variable to help finding potential BLODAs.

1.7.35 What’s new and what changed in 1.7.11

• New pldd command for listing DLLs loaded by a process.

• New API: scandirat.

• Change the way remote shares mapped to drive letters are recognized when creating the cygdrive directory. If Windows claims
the drive is unavailable, don’t show it in the cygdrive directory listing.

• Raise default stacksize of pthreads from 512K to 1 Meg. It can still be changed using the pthread_attr_setstacksize call.

1.7.36 What’s new and what changed in 1.7.10

• Drop support for Windows NT4.

• The CYGWIN environment variable options "envcache", "strip_title", "title", "tty", and "upcaseenv" have been removed.

• If the executable (and the system) is large address aware, the application heap will be placed in the large memory area. The
peflags tool from the rebase package can be used to set the large address awareness flag in the executable file header.

• The registry setting "heap_chunk_in_mb" has been removed, in favor of a new per-executable setting in the executable file
header which can be set using the peflags tool. See Section 2.3 for more information.

• The CYGWIN=tty mode using pipes to communicate with the console in a pseudo tty-like mode has been removed. Either just
use the normal Windows console as is, or use a terminal application like mintty.

• New getconf command for querying confstr(3), pathconf(3), sysconf(3), and limits.h configuration.

• New tzset utility to generate a POSIX-compatible TZ environment variable from the Windows timezone settings.

• The passwd command now allows an administrator to use the -R command for other user accounts: passwd -R username.

• Pthread spinlocks. New APIs: pthread_spin_destroy, pthread_spin_init, pthread_spin_lock, pthread_spin_trylock, pthread_spin_unlock.

• Pthread stack address management. New APIs: pthread_attr_getstack, pthread_attr_getstackaddr, pthread_attr_getguardsize,
pthread_attr_setstack, pthread_attr_setstackaddr, pthread_attr_setguardsize, pthread_getattr_np.

• POSIX Clock Selection option. New APIs: clock_nanosleep, pthread_condattr_getclock, pthread_condattr_setclock.

• clock_gettime(3) and clock_getres(3) accept per-process and per-thread CPU-time clocks, including CLOCK_PROCESS_CPUTIME_ID
and CLOCK_THREAD_CPUTIME_ID. New APIs: clock_getcpuclockid, pthread_getcpuclockid.

• GNU/glibc error.h error reporting functions. New APIs: error, error_at_line. New exports: error_message_count, error_one_per_line,
error_print_progname. Also, perror and strerror_r no longer clobber strerror storage.

• C99 <tgmath.h> type-generic macros.

Cygwin User’s Guide 16 / 111

• /proc/loadavg now shows the number of currently running processes and the total number of processes.

• Added /proc/devices and /proc/misc, which lists supported device types and their device numbers.

• Added /proc/swaps, which shows the location and size of Windows paging file(s).

• Added /proc/sysvipc/msg, /proc/sysvipc/sem, and /proc/sysvipc/shm which provide information about System V IPC message
queues, semaphores, and shared memory.

• /proc/version now shows the username of whomever compiled the Cygwin DLL as well as the version of GCC used when
compiling.

• dlopen now supports the Glibc-specific RTLD_NODELETE and RTLD_NOOPEN flags.

• The printf(3) and wprintf(3) families of functions now handle the %m conversion flag.

• Other new API: clock_settime, __fpurge, getgrouplist, get_current_dir_name, getpt, ppoll, psiginfo, psignal, ptsname_r,
sys_siglist, pthread_setschedprio, pthread_sigqueue, sysinfo.

1.7.37 What’s new and what changed in 1.7.9

• New API: strchrnul.

1.7.38 What’s new and what changed in 1.7.8

• Drop support for Windows NT4 prior to Service Pack 4.

• Reinstantiate Cygwin’s ability to delete an empty directory which is the current working directory of the same or another
process. Same for any other empty directory which has been opened by the same or another process.

• Cygwin now ships the C standard library fenv.h header file, and implements the related APIs (including GNU/glibc extensions):
feclearexcept, fedisableexcept, feenableexcept, fegetenv, fegetexcept, fegetexceptflag, fegetprec, fegetround, feholdexcept,
feraiseexcept, fesetenv, fesetexceptflag, fesetprec, fesetround, fetestexcept, feupdateenv, and predefines both default and no-
mask FP environments. See the GNU C Library manual for full details of this functionality.

• Support for the C99 complex functions, except for the "long double" implementations. New APIs: cacos, cacosf, cacosh,
cacoshf, carg, cargf, casin, casinf, casinh, casinhf, catan, catanf, catanh, catanhf, ccos, ccosf, ccosh, ccoshf, cexp, cexpf,
cimag, cimagf, clog, clogf, conj, conjf, cpow, cpowf, cproj, cprojf, creal, crealf, csin, csinf, csinh, csinhf, csqrt, csqrtf, ctan,
ctanf, ctanh, ctanhf.

• Fix the width of "CJK Ambiguous Width" characters to 1 for singlebyte charsets and 2 for East Asian multibyte charsets. (For
UTF-8, it remains dependent on the specified language, and the "@cjknarrow" locale modifier can still be used to force width
1.)

• The strerror_r interface now has two flavors; if _GNU_SOURCE is defined, it retains the previous behavior of returning char
* (but the result is now guaranteed to be NUL-terminated); otherwise it now obeys POSIX semantics of returning int.

• /proc/sys now allows unfiltered access to the native NT namespace. Access restrictions still apply. Direct device access via
/proc/sys is not yet supported. File system access via block devices works. For instance (note the trailing slash!)

bash$ cd /proc/sys/Device/HarddiskVolumeShadowCopy1/

• Other new APIs: llround, llroundf, madvise, pthread_yield. Export program_invocation_name, program_invocation_short_name.
Support TIOCGPGRP, TIOCSPGRP ioctls.

http://www.gnu.org/software/libc/manual/html_node/Arithmetic.html

Cygwin User’s Guide 17 / 111

1.7.39 What’s new and what changed in 1.7.7

• Partially revert the 1.7.6 change to set the Win32 current working directory (CWD) always to an invalid directory, since it
breaks backward compatibility too much. The Cygwin CWD and the Win32 CWD are now kept in sync again, unless the
Cygwin CWD is not usable as Win32 CWD. See the reworked Section 3.1.8 for details.

• Make sure to follow the Microsoft security advisory concerning DLL hijacking. See the Microsoft Security Advisory (2269637)
"Insecure Library Loading Could Allow Remote Code Execution" for details.

• Allow to link against -lbinmode instead of /lib/binmode.o. Same for -ltextmode, -ltextreadmode and -lautomode. See Sec-
tion 3.2.4 for details.

1.7.40 What’s new and what changed in 1.7.6

• Add new mount options "dos" and "ihash" to allow overriding Cygwin default behaviour on broken filesystems not recognized
by Cygwin.

• Add new mount option "bind" to allow remounting parts of the POSIX file hirarchy somewhere else.

• Ttys and ptys are handled as securable objects using file-like permissions and owner/group information. chmod and chown
now work on ttys/ptys. A new mechanism is used to propagate pty handles safely to other processes, which does not require to
use Cygserver.

• Pass on coresize settings made with setrlimit(2). This allows shells to disable creating stackdump files in child processes via

ulimit -c 0

in bash or

limit coredumpsize 0

in tcsh.

• Locale categories contain all localization strings additionally as wide-char strings. locale(1) prints these values just as on
Linux. nl_langinfo(3) allows to fetch them.

• New interfaces mkostemp(3) and mkostemps(3) are added.

• New virtual file /proc/filesystems.

• clock_gettime(3) and clock_getres(3) accept CLOCK_MONOTONIC.

• DEPRECATED with 1.7.7: Cygwin handles the current working directory entirely on its own. The Win32 current working
directory is set to an invalid path to be out of the way. [...]

1.7.41 What’s new and what changed in 1.7.5

• Support for DEC Backarrow Key Mode escape sequences (ESC [? 67 h, ESC [? 67 l) in Windows console.

1.7.42 What’s new and what changed in 1.7.3

• Support for GB2312/EUC-CN. These charsets are implemented as aliases to GBK. GB2312 is now the default charset name
for the locales zh_CN and zh_SG, just as on Linux.

• Modification and access timestamps of devices reflect the current time.

http://www.microsoft.com/technet/security/advisory/2269637.mspx
http://www.microsoft.com/technet/security/advisory/2269637.mspx

Cygwin User’s Guide 18 / 111

1.7.43 What’s new and what changed in 1.7.2

• Localization support has been much improved.

– Cygwin now handles locales using the underlying Windows locale support. The locale must exist in Windows to be recog-
nized. Locale aliases from the file /usr/share/locale/locale.alias are also allowed, as long as their replacement is supported
by the underlying Windows.

– New tool "locale" to fetch locale information and default locales based on the Windows default settings as well as lists of all
supported locales and character sets.

– Default charset for locales without explicit charset is now chosen from a list of Linux-compatible charsets.
For instance: en_US -> ISO-8859-1, ja_JP -> EUC-JP, zh_TW -> Big5.

– Added support for the charsets GEORGIAN-PS, PT154, and TIS-620.

– Support for the various locale modifiers to switch charsets as on Linux.

– Default charset in the "C" or "POSIX" locale has been changed back from UTF-8 to ASCII, to avoid problems with appli-
cations expecting a singlebyte charset in the "C"/"POSIX" locale. Still use UTF-8 internally for filename conversion in this
case.

– LC_COLLATE, LC_MONETARY, LC_NUMERIC, and LC_TIME localization is enabled via Windows locale support.
LC_MESSAGES is enabled via a big table with localized strings.

– fnmatch(3), regcomp(3), regexec(3) calls are now multibyte-aware.

– printf(3), wprintf(3) families of functions now handle the grouping flag, the apostrophe ’, per POSIX-1.2008. The integer
portion of the result of a decimal conversion (%i, %d, %u, %f, %F, %g, %G) will be formatted with thousands’ grouping
characters.

– strftime(3), wcsftime(3), and strptime(3) now handle the E and O format modifiers to print/scan alternative date and time
representations or to use alternative digits in locales which support this. Additionally these functions now also support the
padding modifiers ’0’ and ’+’, as well as a field width per POSIX-1.2008.

– New strfmon(3) call.

• Support open(2) flags O_CLOEXEC and O_TTY_INIT flags. Support fcntl flag F_DUPFD_CLOEXEC. Support socket flags
SOCK_CLOEXEC and SOCK_NONBLOCK. Add new Linux-compatible API calls accept4(2), dup3(2), and pipe2(2). Sup-
port the signal SIGPWR.

• Enhanced Windows console support.

– The console’s backspace keycode can be changed using ’stty erase’.

– Function keys send distinguished escape sequences compatible with rxvt. Keypad keys send distinguished escape sequences,
xterm-style.

– Support of combining Alt and AltGr modifiers in console window (compatible with xterm and mintty), so that e.g. Alt-@
sends ESC @ also on keyboards where @ is mapped to an AltGr combination.

– Report mouse wheel scroll events in mouse reporting mode 1000 (note: this doesn’t seem to work on all systems, assumedly
due to driver interworking issues). Add mouse reporting mode 1002 to report mouse drag movement. Add mouse reporting
mode 1003 to report any mouse movement. Add focus event reporting (mode 1004), compatible with xterm and mintty.

– Add escape sequences for not bold (22), not invisible (28), not blinking (25) (compatible with xterm and mintty).

– Support VT100 line drawing graphics mode in console window (compatible with xterm and mintty).

• Handle native DOS paths always as if mounted with "posix=0,noacl".

• Handle UNC paths starting with slashes identical to /cygdrive paths. In other words, use the /cygdrive mount flags for these
paths as well.

• Recognize NWFS filesystem and workaround broken OS call.

• New support for eXtensible Data Record (XDR) encoding and decoding, as defined by RFCs 1014, 1832, and 4506. The XDR
protocol and functions are useful for cross-platfrom data exchange, and are commonly used as the core data interchange format
for Remote Procedure Call (RPC) and NFS.

Cygwin User’s Guide 19 / 111

1.7.44 What’s new and what changed from 1.5 to 1.7

1.7.44.1 OS related changes

• Windows 95, 98 and Me are not supported anymore. The new Cygwin 1.7 DLL will not run on any of these systems.

• Add support for Windows 7 and Windows Server 2008 R2.

1.7.44.2 File Access related changes

• Mount points are no longer stored in the registry. Use /etc/fstab and /etc/fstab.d/$USER instead. Mount points created with
mount(1) are only local to the current session and disappear when the last Cygwin process in the session exits.

• Cygwin creates the mount points for /, /usr/bin, and /usr/lib automatically from it’s own position on the disk. They don’t have
to be specified in /etc/fstab.

• If a filename cannot be represented in the current character set, the character will be converted to a sequence Ctrl-X + UTF-8
representation of the character. This allows to access all files, even those not having a valid representation of their filename in
the current character set. To always have a valid string, use the UTF-8 charset by setting the environment variable $LANG,
$LC_ALL, or $LC_CTYPE to a valid POSIX value, such as "en_US.UTF-8".

• PATH_MAX is now 4096. Internally, path names can be as long as the underlying OS can handle (32K).

• struct dirent now supports d_type, filled out with DT_REG or DT_DIR. All other file types return as DT_UNKNOWN for
performance reasons.

• The CYGWIN environment variable options "ntsec" and "smbntsec" have been replaced by the per-mount option "acl"/"noacl".

• The CYGWIN environment variable option "ntea" has been removed without substitute.

• The CYGWIN environment variable option "check_case" has been removed in favor of real case-sensitivity on file systems
supporting it.

• Creating filenames with special DOS characters ’"’, ’*’, ’:’, ’<’, ’>’, ’|’ is supported.

• Creating files with special DOS device filename components ("aux", "nul", "prn") is supported.

• File names are case sensitive if the OS and the underlying file system supports it. Works on NTFS and NFS. Does not work on
FAT and Samba shares. Requires to change a registry key (see the User’s Guide). Can be switched off on a per-mount basis.

• Due to the above changes, managed mounts have been removed.

• Incoming DOS paths are always handled case-insensitive and get no POSIX permission, as if they are mounted with noacl,posix=0
mount flags.

• unlink(2) and rmdir(2) try very hard to remove files/directories even if they are currently accessed or locked. This is done by
utilizing the hidden recycle bin directories and marking the files for deletion.

• rename(2) rewritten to be more POSIX conformant.

• access(2) now performs checks using the real user ID, as required by POSIX; the old behavior of querying based on effective
user ID is available through the new faccessat(2) and euidaccess(2) APIs.

• Add st_birthtim member to struct stat.

• File locking is now advisory, not mandatory anymore. The fcntl(2) and the new lockf(2) APIs create and maintain locks with
POSIX semantics, the flock(2) API creates and maintains locks with BSD semantics. POSIX and BSD locks are independent
of each other.

• Implement atomic O_APPEND mode.

• New open(2) flags O_DIRECTORY, O_EXEC and O_SEARCH.

Cygwin User’s Guide 20 / 111

• Make the "plain file with SYSTEM attribute set" style symlink default again when creating symlinks. Only create Windows
shortcut style symlinks if CYGWIN=winsymlinks is set in the environment.

• Symlinks now use UTF-16 encoding for the target filename for better internationalization support. Cygwin 1.7 can read all old
style symlinks, but the new style is not compatible with older Cygwin releases.

• Handle NTFS native symlinks available since Vista/2008 as symlinks (but don’t create Vista/2008 symlinks due to unfortunate
OS restrictions).

• Recognize NFS shares and handle them using native mechanisms. Recognize and create real symlinks on NFS shares. Get
correct stat(2) information and set real mode bits on open(2), mkdir(2) and chmod(2).

• Recognize MVFS and workaround problems manipulating metadata and handling DOS attributes.

• Recognize Netapp DataOnTap drives and fix inode number handling.

• Recognize Samba version beginning with Samba 3.0.28a using the new extended version information negotiated with the
Samba developers.

• Stop faking hardlinks by copying the file on filesystems which don’t support hardlinks natively (FAT, FAT32, etc.). Just return
an error instead, just like Linux.

• List servers of all accessible domains and workgroups in // instead of just the servers in the own domain/workgroup.

• Support Linux-like extended attributes ([fl]getxattr, [fl]listxattr, [fl]setxattr, [fl]removexattr).

• New file conversion API for conversion from Win32 to POSIX path and vice versa (cygwin_conv_path, cygwin_create_path,
cygwin_conv_path_list).

• New openat family of functions: openat, faccessat, fchmodat, fchownat, fstatat, futimesat, linkat, mkdirat, mkfifoat, mknodat,
readlinkat, renameat, symlinkat, unlinkat.

• Other new APIs: posix_fadvise, posix_fallocate, funopen, fopencookie, open_memstream, open_wmemstream, fmemopen,
fdopendir, fpurge, mkstemps, eaccess, euidaccess, canonicalize_file_name, fexecve, execvpe.

1.7.44.3 Network related changes

• New implementation for blocking sockets and select on sockets which is supposed to allow POSIX-compatible sharing of
sockets between threads and processes.

• send/sendto/sendmsg now send data in 64K chunks to circumvent an internal buffer problem in WinSock (KB 201213).

• New send/recv option MSG_DONTWAIT.

• IPv6 support. New APIs getaddrinfo, getnameinfo, freeaddrinfo, gai_strerror, in6addr_any, in6addr_loopback. On IPv6-less
systems, replacement functions are available for IPv4. On systems with IPv6 enabled, the underlying WinSock functions are
used. While I tried hard to get the functionality as POSIXy as possible, keep in mind that a *fully* conformant implementation
of getaddrinfo and other stuff is only available starting with Windows Vista/2008.

• Resolver functions (res_init, res_query, res_search, res_querydomain, res_mkquery, res_send, dn_comp, dn_expand) are now
part of Cygwin. Applications don’t have to link against minires anymore. Actually, this *is* the former libminires.a.

• rcmd is now implemented inside of Cygwin, instead of calling the WinSock function. This allows rsh(1) usage on Vista/2008
and later, which dropped this function from WinSock.

• Define multicast structures in netinet/in.h. Note that fully conformant multicast support is only available beginning with
Vista/2008.

• Improve get_ifconf. Redefine struct ifreq and subsequent datastructures to be able to keep more information. Support
SIOCGIFINDEX, SIOCGIFDSTADDR and the Cygwin specific SIOCGIFFRNDLYNAM. Support real interface flags on
systems supporting them.

• Other new APIs: bindresvport, bindresvport_sa, gethostbyname2, iruserok_sa, rcmd_af, rresvport_af. getifaddrs, freeifaddrs,
if_nametoindex, if_indextoname, if_nameindex, if_freenameindex.

• Add /proc/net/if_inet6.

Cygwin User’s Guide 21 / 111

1.7.44.4 Device related changes

• Reworked pipe implementation which uses overlapped IO to create more reliable interruptible pipes and fifos.

• The CYGWIN environment variable option "binmode" has been removed.

• Improved fifo handling by using native Windows named pipes.

• Detect when a stdin/stdout which looks like a pipe is really a tty. Among other things, this allows a debugged application to
recognize that it is using the same tty as the debugger.

• Support UTF-8 in console window.

• In the console window the backspace key now emits DEL (0x7f) instead of BS (0x08), Alt-Backspace emits ESC-DEL
(0x1b,0x7f) instead of DEL (0x7f), same as the Linux console and xterm. Control-Space now emits an ASCII NUL (0x0)
character.

• Support up to 64 serial interfaces using /dev/ttyS0 - /dev/ttyS63.

• Support up to 128 raw disk drives /dev/sda - /dev/sddx.

• New API: cfmakeraw, get_avphys_pages, get_nprocs, get_nprocs_conf, get_phys_pages, posix_openpt.

1.7.44.5 Other POSIX related changes

• A lot of character sets are supported now via a call to setlocale(). The setting of the environment variables $LANG, $LC_ALL
or $LC_CTYPE will be used. For instance, setting $LANG to "de_DE.ISO-8859-15" before starting a Cygwin session will use
the ISO-8859-15 character set in the entire session. The default locale in the absence of one of the aforementioned environment
variables is "C.UTF-8".

The full list of supported character sets: "ASCII", "ISO-8859-x" with x in 1-16, except 12, "UTF-8", Windows codepages
"CPxxx", with xxx in (437, 720, 737, 775, 850, 852, 855, 857, 858, 862, 866, 874, 1125, 1250, 1251, 1252, 1253, 1254, 1255,
1256, 1257, 1258), "KOI8-R", "KOI8-U", "SJIS", "GBK", "eucJP", "eucKR", and "Big5".

• Allow multiple concurrent read locks per thread for pthread_rwlock_t.

• Implement pthread_kill(thread, 0) as per POSIX.

• New API for POSIX IPC: Named semaphores: sem_open, sem_close, sem_unlink. Message queues: mq_open, mq_getattr,
mq_setattr, mq_notify, mq_send, mq_timedsend, mq_receive, mq_timedreceive, mq_close, mq_unlink. Shared memory:
shm_open, shm_unlink.

• Only declare expected functions in <strings.h>, don’t include <string.h> from here.

• Support for WCONTINUED, WIFCONTINUED() added to waitpid and wait4.

• New APIs: _Exit, confstr, insque, remque, sys_sigabbrev, posix_madvise, posix_memalign, reallocf, exp10, exp10f, pow10,
pow10f, lrint, lrintf, rint, rintf, llrint, llrintf, llrintl, lrintl, rintl, mbsnrtowcs, strcasestr, stpcpy, stpncpy, wcpcpy, wcpncpy,
wcsnlen, wcsnrtombs, wcsftime, wcstod, wcstof, wcstoimax, wcstok, wcstol, wcstoll, wcstoul, wcstoull, wcstoumax, wcsxfrm,
wcscasecmp, wcsncasecmp, fgetwc, fgetws, fputwc, fputws, fwide, getwc, getwchar, putwc, putwchar, ungetwc, asnprintf,
dprintf, vasnprintf, vdprintf, wprintf, fwprintf, swprintf, vwprintf, vfwprintf, vswprintf, wscanf, fwscanf, swscanf, vwscanf,
vfwscanf, vswscanf.

1.7.44.6 Security related changes

• Getting a domain user’s groups is hopefully more bulletproof now.

• Cygwin now comes with a real LSA authentication package. This must be manually installed by a privileged user using
the /bin/cyglsa-config script. The advantages and disadvantages are noted in https://cygwin.com/ml/cygwin-developers/2006-
11/msg00000.html

Cygwin User’s Guide 22 / 111

• Cygwin now allows storage and use of user passwords in a hidden area of the registry. This is tried first when Cygwin is
called by privileged processes to switch the user context. This allows, for instance, ssh public key sessions with full network
credentials to access shares on other machines.

• New options have been added to the mkpasswd and mkgroup tools to ease use in multi-machine and multi-domain environ-
ments. The existing options have a slightly changed behaviour.

1.7.44.7 Miscellaneous

• New ldd utility, similar to Linux.

• New link libraries libdl.a, libresolv.a, librt.a.

• Fallout from the long path names: If the current working directory is longer than 260 bytes, or if the current working directory
is a virtual path (like /proc, /cygdrive, //server), don’t call native Win32 programs since they don’t understand these paths.

• On the first usage of a DOS path (C:\foo, \\foo\bar), the Cygwin DLL emits a scary warning that DOS paths shouldn’t be used.
This warning may be disabled via the new CYGWIN=nodosfilewarning setting.

• The CYGWIN environment variable option "server" has been removed. Cygwin automatically uses cygserver if it’s available.

• Allow environment of arbitrary size instead of a maximum of 32K.

• Don’t force uppercase environment when started from a non-Cygwin process. Except for certain Windows and POSIX variables
which are always uppercased, preserve environment case. Switch back to old behaviour with the new CYGWIN=upcaseenv
setting.

• Detect and report a missing DLL on process startup.

• Add /proc/registry32 and /proc/registry64 paths to access 32 bit and 64 bit registry on 64 bit systems.

• Add the ability to distinguish registry keys and registry values with the same name in the same registry subtree. The key is
called "foo" and the value will be called "foo%val" in this case.

• Align /proc/cpuinfo more closly to Linux content.

• Add /proc/$PID/mounts entries and a symlink /proc/mounts pointing to /proc/self/mounts as on Linux.

• Optimized strstr and memmem implementation.

• Remove backwards compatibility with old signal masks. (Some *very* old programs which use signal masks may no longer
work correctly).

• Cygwin now exports wrapper functions for libstdc++ operators new and delete, to support the toolchain in implementing full
C++ standards conformance when working with shared libraries.

• Different Cygwin installations in different paths can be run in parallel without knowing of each other. The path of the Cygwin
DLL used in a process is a key used when creating IPC objects. So different Cygwin DLLs are running in different namespaces.

• Each Cygwin DLL stores its path and installation key in the registry. This allows troubleshooting of problems which could be
a result of having multiple concurrent Cygwin installations.

Cygwin User’s Guide 23 / 111

Chapter 2

Setting Up Cygwin

2.1 Internet Setup

To install the Cygwin net release, go to https://cygwin.com/ and run either setup-x86.exe to install the 32 bit version of
Cygwin, or setup-x86_64.exe to install the 64 bit version of Cygwin. This will download a GUI installer which can be run to
download a complete cygwin installation via the internet. Follow the instructions on each screen to install Cygwin.

Note For easier reading the installer is called setup.exe throughout the following sections. This refers likewise to both installer
applications, setup-x86.exe for 32 bit, as well as setup-x86_64.exe for 64 bit. Apart from the target architecture they are the
same thing.

The setup.exe installer is designed to be easy for new users to understand while remaining flexible for the experienced. The
volunteer development team is constantly working on setup.exe; before requesting a new feature, check the wishlist in the Git
README . It may already be present in the Git version!

On Windows Vista and later, setup.exe will check by default if it runs with administrative privileges and, if not, will try to elevate
the process. If you want to avoid this behaviour and install under an unprivileged account just for your own usage, run setup.exe
with the --no-admin option.

Since the default value for each option is the logical choice for most installations, you can get a working minimal Cygwin
environment installed by simply clicking the Next button at each page. The only exception to this is choosing a Cygwin mirror,
which you can choose by experimenting with those listed at https://cygwin.com/mirrors.html. For more details
about each of page of the setup.exe installation, read on below. Please note that this guide assumes that you have a basic
understanding of Unix (or a Unix-like OS). If you are new to Unix, you will also want to make use of other resources.

2.1.1 Download Source

Cygwin uses packages to manage installing various software. When the default Install from Internet option is chosen,
setup.exe creates a local directory to store the packages before actually installing the contents. Download from Internet
performs only the first part (storing the packages locally), while Install from Local Directory performs only the
second (installing the contents of the packages).

The Download from Internet option is mainly for creating a base Cygwin package tree on one computer for installation
on several machines with Install from Local Directory; copy the entire local package tree to another machine with
the directory tree intact. For example, you might create a C:\cache\ directory and place setup.exe in it. Run setup.exe
to Install from Internet or Download from Internet, then copy the whole C:\cache\ to each machine and
instead choose Install from Local Directory.

Though this provides some basic mirroring functionality, if you are managing a large Cygwin installation, to keep up to date we
recommend using a mirroring tool such as wget. A helpful user on the Cygwin mailing list created a simple demonstration script
to accomplish this; search the list for mkcygwget for ideas.

https://cygwin.com/
https://cygwin.com/setup-x86.exe
https://cygwin.com/setup-x86_64.exe
https://cygwin.com/setup-x86.exe
https://cygwin.com/setup-x86_64.exe
https://sourceware.org/git/gitweb.cgi?p=cygwin-setup.git;a=blob_plain;f=README;hb=HEAD
https://sourceware.org/git/gitweb.cgi?p=cygwin-setup.git;a=blob_plain;f=README;hb=HEAD
https://cygwin.com/mirrors.html
http://www.google.com/search?q=new+to+unix

Cygwin User’s Guide 24 / 111

2.1.2 Selecting an Install Directory

The Root Directory for Cygwin (default C:\cygwin) will become / within your Cygwin installation. You must have
write access to the parent directory, and any ACLs on the parent directory will determine access to installed files.

The Install For options of All Users or Just Me should always be left on the default All Users, unless you do not
have write access to HKEY_LOCAL_MACHINE in the registry or the All Users Start Menu. This is true even if you are the only
user planning to use Cygwin on the machine. Selecting Just Me will cause problems for programs such as crond and sshd. If
you do not have the necessary permissions, but still want to use these programs, consult the Cygwin mailing list archives about
others’ experiences.

2.1.3 Local Package Directory

The Local Package Directory is the cache where setup.exe stores the packages before they are installed. The cache
must not be the same folder as the Cygwin root. Within the cache, a separate directory is created for each Cygwin mirror, which
allows setup.exe to use multiple mirrors and custom packages. After installing Cygwin, the cache is no longer necessary, but you
may want to retain the packages as backups, for installing Cygwin to another system, or in case you need to reinstall a package.

2.1.4 Connection Method

The Direct Connection method of downloading will directly connect. If your system is configured to use a proxy server or
auto-configuration scripts, the Use System Proxy Settings method uses those settings. Alternatively, you can manually
enter proxy settings into the Use HTTP/FTP Proxy section.

2.1.5 Choosing Mirrors

Since there is no way of knowing from where you will be downloading Cygwin, you need to choose at least one mirror site.
Cygwin mirrors are geographically distributed around the world; check the list at https://cygwin.com/mirrors.html
to find one near you. You can select multiple mirrors by holding down CTRL and clicking on each one. If you have the URL of
an unlisted mirror (for example, if your organization has an internal Cygwin mirror) you can add it.

2.1.6 Choosing Packages

For each selected mirror site, setup.exe downloads a small text file called setup.bz2 that contains a list of packages available
from that site along with some basic information about each package which setup.exe parses and uses to create the chooser
window. For details about the format of this file, see the setup.exe homepage.

The chooser is the most complex part of setup.exe. Packages are grouped into categories, and one package may belong to
multiple categories (assigned by the volunteer package maintainer). Each package can be found under any of those categories in
the hierarchical chooser view. By default, setup.exe will install only the packages in the Base category and their dependencies,
resulting in a minimal Cygwin installation. However, this will not include many commonly used tools such as gcc (which you
will find in the Devel category). Since setup.exe automatically selects dependencies, be careful not to unselect any required
packages. In particular, everything in the Base category is required.

You can change setup.exe’s view style, which is helpful if you know the name of a package you want to install but not which
category it is in. Click on the View button and it will rotate between Category (the default), Full (all packages), and
Pending (only packages to be installed, removed or upgraded). If you are familiar with Unix, you will probably want to at least
glance through the Full listing for your favorite tools.

Once you have an existing Cygwin installation, the setup.exe chooser is also used to manage your Cygwin installation. Infor-
mation on installed packages is kept in the /etc/setup/ directory of your Cygwin installation; if setup.exe cannot find this
directory it will act as if you have no Cygwin installation. If setup.exe finds a newer version of an installed package available, it
will automatically mark it to be upgraded. To Uninstall, Reinstall, or get the Source for an existing package, click on
Keep to toggle it. Also, to avoid the need to reboot after upgrading, make sure to close all Cygwin windows and stop all Cygwin
processes before setup.exe begins to install the upgraded package.

https://cygwin.com/mirrors.html
https://sourceware.org/cygwin-apps/setup.html

Cygwin User’s Guide 25 / 111

To avoid unintentionally upgrading, use the Pending view to see which packages have been marked for upgrading. If you don’t
want to upgrade a package, click on the new version number to toggle it until it says Keep. All packages can be set to stay at the
installed version by pressing the Keep button in the top right part of the chooser window.

A previous version of each package is usually available, in case downgrading is required to avoid a serious bug in the current
version of the package. Packages also occasionally have testing (or "experimental") versions available. Previous and experimental
versions can be chosen by clicking on the package’s New column until the required version appears.

All available experimental packages can be selected by pressing the Exp in the top right part of the chooser window. Be warned,
however, that the next time you run setup.exe it will try to replace all old or experimental versions with the current version,
unless told otherwise.

2.1.7 Download and Installation Progress

First, setup.exe will download all selected packages to the local directory chosen earlier. Before installing, setup.exe performs a
checksum on each package. If the local directory is a slow medium (such as a network drive) this can take a long time. During
the download and installation, setup.exe shows progress bars for the current task and total remaining disk space.

2.1.8 Shortcuts

You may choose to install "Cygwin Terminal" shortcuts on the Desktop and/or Start Menu. These shortcuts run mintty, which
will start your default shell as specified in /etc/passwd.

2.1.9 Post-Install Scripts

Last of all, setup.exe will run any post-install scripts to finish correctly setting up installed packages. When the last post-install
script is completed, setup.exe will display a box announcing the completion. A few packages, such as the OpenSSH server,
require some manual site-specific configuration. Relevant documentation can be found in the /usr/doc/Cygwin/ or /usr/
share/doc/Cygwin/ directory.

2.1.10 Troubleshooting

Unfortunately, the complex setup process means that odd problems can occur. If you’re having trouble downloading packages,
it may be network congestion, so try a different mirror and/or a different protocol (i.e., HTTP instead of FTP). If you notice
something is not working after running setup, you can check the setup.exe log file at /var/log/setup.log.full. Make
a backup of this file before running setup.exe again, and follow the steps for Reporting Problems with Cygwin.

2.2 Environment Variables

2.2.1 Overview

All Windows environment variables are imported when Cygwin starts. Apart from that, you may wish to specify settings of
several important environment variables that affect Cygwin’s operation.

The CYGWIN variable is used to configure a few global settings for the Cygwin runtime system. Typically you can leave CYGWIN
unset, but if you want to set one ore more options, you can set it using a syntax like this, depending on the shell in which you’re
setting it. Here is an example in CMD syntax:

C:\> set CYGWIN=error_start:C:\cygwin\bin\gdb.exe glob

This is, of course, just an example. For the recognized settings of the CYGWIN environment variable, see Section 3.5.

Locale support is controlled by the LANG and LC_xxx environment variables. For a more detailed description see Section 2.4.

https://cygwin.com/problems.html

Cygwin User’s Guide 26 / 111

The PATH environment variable is used by Cygwin applications as a list of directories to search for executable files to run. This
environment variable is converted from Windows format (e.g. C:\Windows\system32;C:\Windows) to UNIX format
(e.g., /cygdrive/c/Windows/system32:/cygdrive/c/Windows) when a Cygwin process first starts. Set it so that
it contains at least the x:\cygwin\bin directory where "x:\cygwin is the "root" of your cygwin installation if you wish to
use cygwin tools outside of bash. This is usually done by the batch file you’re starting your shell with.

The HOME environment variable is used by many programs to determine the location of your home directory. This environment
variable, if it exists, is converted from Windows format when a Cygwin process first starts. However, it’s usually set in the shell
profile scripts in the /etc directory, and it’s not recommended to set the variable in your Windows environment.

The TERM environment variable specifies your terminal type. It is automatically set to cygwin if you have not set it to something
else.

The LD_LIBRARY_PATH environment variable is used by the Cygwin function dlopen () as a list of directories to search
for .dll files to load. This environment variable is converted from Windows format to UNIX format when a Cygwin process first
starts. Most Cygwin applications do not make use of the dlopen () call and do not need this variable.

The GMON_OUT_PREFIX environment variable is helpful in some situations when profiling Cygwin programs. For more infor-
mation, see Section 4.5.3.2. Only software developers with a need to profile their programs have a use for this variable.

In addition to PATH, HOME, LD_LIBRARY_PATH, and GMON_OUT_PREFIX, there are three other environment variables
which, if they exist in the Windows environment, are converted to UNIX format: TMPDIR, TMP, and TEMP. The first is not
set by default in the Windows environment but the other two are, and they point to the default Windows temporary directory.
If set, these variables will be used by some Cygwin applications, possibly with unexpected results. You may therefore want to
unset them by adding the following two lines to your ~/.bashrc file:

unset TMP
unset TEMP

This is done in the default ~/.bashrc file. Alternatively, you could set TMP and TEMP to point to /tmp or to any other
temporary directory of your choice. For example:

export TMP=/tmp
export TEMP=/tmp

2.2.2 Restricted Win32 environment

There is a restriction when calling Win32 API functions which require a fully set up application environment. Cygwin maintains
its own environment in POSIX style. The Win32 environment is usually stripped to a bare minimum and not at all kept in sync
with the Cygwin POSIX environment.

If you need the full Win32 environment set up in a Cygwin process, you have to call

#include <sys/cygwin.h>

cygwin_internal (CW_SYNC_WINENV);

to synchronize the Win32 environment with the Cygwin environment. Note that this only synchronizes the Win32 environ-
ment once with the Cygwin environment. Later changes using the setenv or putenv calls are not reflected in the Win32
environment. In these cases, you have to call the aforementioned cygwin_internal call again.

2.3 Changing Cygwin’s Maximum Memory

Cygwin’s heap is extensible. However, it does start out at a fixed size and attempts to extend it may run into memory which
has been previously allocated by Windows. In some cases, this problem can be solved by changing a field in the file header
which is utilized by Cygwin since to keep the initial size of the application heap. If the field contains 0, which is the default, the
application heap defaults to a size of 384 Megabyte on 32 bit Cygwin, 512 Megabyte on 64 bit Cygwin. If the field is set to any
other value between 4 and 2048, Cygwin tries to reserve as much Megabytes for the application heap. The field used for this is the
"LoaderFlags" field in the NT-specific PE header structure ((IMAGE_NT_HEADER)->OptionalHeader.LoaderFlags).

Cygwin User’s Guide 27 / 111

This value can be changed for any executable by using a more recent version of the peflags tool from the rebase Cygwin
package. Example:

$ peflags --cygwin-heap foo.exe
foo.exe: initial Cygwin heap size: 0 (0x0) MB
$ peflags --cygwin-heap=500 foo.exe
foo.exe: initial Cygwin heap size: 500 (0x1f4) MB

Heap memory can be allocated up to the size of the biggest available free block in the processes virtual memory (VM). By
default, the VM per process is 2 GB for 32 processes. To get more VM for a process, the executable must have the "large address
aware" flag set in the file header. You can use the aforementioned peflags tool to set this flag. On 64 bit systems this results in a
4 GB VM for a process started from that executable. On 32 bit systems you also have to prepare the system to allow up to 3 GB
per process. See the Microsoft article 4-Gigabyte Tuning for more information.

2.4 Internationalization

2.4.1 Overview

Internationalization support is controlled by the LANG and LC_xxx environment variables. You can set all of them but Cygwin
itself only honors the variables LC_ALL, LC_CTYPE, and LANG, in this order, according to the POSIX standard. The content of
these variables should follow the POSIX standard for a locale specifier. The correct form of a locale specifier is

language[[_TERRITORY][.charset][@modifier]]

"language" is a lowercase two character string per ISO 639-1, or, if there is no ISO 639-1 code for the language (for instance,
"Lower Sorbian"), a three character string per ISO 639-3.

"TERRITORY" is an uppercase two character string per ISO 3166, charset is one of a list of supported character sets. The
modifier doesn’t matter here (though some are recognized, see below). If you’re interested in the exact description, you can find
it in the online publication of the POSIX manual pages on the homepage of the Open Group.

Typical locale specifiers are

"de_CH" language = German, territory = Switzerland, default charset
"fr_FR.UTF-8" language = french, territory = France, charset = UTF-8
"ko_KR.eucKR" language = korean, territory = South Korea, charset = eucKR
"syr_SY" language = Syriac, territory = Syria, default charset

If the locale specifier does not follow the above form, Cygwin checks if the locale is one of the locale aliases defined in the file
/usr/share/locale/locale.alias. If so, and if the replacement localename is supported by the underlying Windows,
the locale is accepted, too. So, given the default content of the /usr/share/locale/locale.alias file, the below
examples would be valid locale specifiers as well.

"catalan" defined as "ca_ES.ISO-8859-1" in locale.alias
"japanese" defined as "ja_JP.eucJP" in locale.alias
"turkish" defined as "tr_TR.ISO-8859-9" in locale.alias

The file /usr/share/locale/locale.alias is provided by the gettext package under Cygwin.

At application startup, the application’s locale is set to the default "C" or "POSIX" locale. This locale defaults to the ASCII
character set on the application level. If you want to stick to the "C" locale and only change to another charset, you can define
this by setting one of the locale environment variables to "C.charset". For instance

"C.ISO-8859-1"

Note
The default locale in the absence of the aforementioned locale environment variables is "C.UTF-8".

http://msdn.microsoft.com/en-us/library/bb613473%28VS.85%29.aspx
http://www.opengroup.org/

Cygwin User’s Guide 28 / 111

Windows uses the UTF-16 charset exclusively to store the names of any object used by the Operating System. This is especially
important with filenames. Cygwin uses the setting of the locale environment variables LC_ALL, LC_CTYPE, and LANG, to
determine how to convert Windows filenames from their UTF-16 representation to the singlebyte or multibyte character set used
by Cygwin.

The setting of the locale environment variables at process startup is effective for Cygwin’s internal conversions to and from the
Windows UTF-16 object names for the entire lifetime of the current process. Changing the environment variables to another
value changes the way filenames are converted in subsequently started child processes, but not within the same process.

However, even if one of the locale environment variables is set to some other value than "C", this does only affect how Cygwin
itself converts filenames. As the POSIX standard requires, it’s the application’s responsibility to activate that locale for its own
purposes, typically by using the call

setlocale (LC_ALL, "");

early in the application code. Again, so that this doesn’t get lost: If the application calls setlocale as above, and there is none of
the important locale variables set in the environment, the locale is set to the default locale, which is "C.UTF-8".

But what about applications which are not locale-aware? Per POSIX, they are running in the "C" or "POSIX" locale, which
implies the ASCII charset. The Cygwin DLL itself, however, will nevertheless use the locale set in the environment (or the
"C.UTF-8" default locale) for converting filenames etc.

When the locale in the environment specifies an ASCII charset, for example "C" or "en_US.ASCII", Cygwin will still use UTF-8
under the hood to translate filenames. This allows for easier interoperability with applications running in the default "C.UTF-8"
locale.

The language and territory are used to fetch locale-dependent information from Windows. If the language and territory are not
known to Windows, the setlocale function fails.

The following modifiers are recognized. Any other modifier is simply ignored for now.

• For locales which use the Euro (EUR) as currency, the modifier "@euro" can be added to enforce usage of the ISO-8859-15
character set, which includes a character for the "Euro" currency sign.

• The default script used for all Serbian language locales (sr_BA, sr_ME, sr_RS, and the deprecated sr_CS and sr_SP) is cyrillic.
With the "@latin" modifier it gets switched to the latin script with the respective collation behaviour.

• The default charset of the "be_BY" locale (Belarusian/Belarus) is CP1251. With the "@latin" modifier it’s UTF-8.

• The default charset of the "tt_RU" locale (Tatar/Russia) is ISO-8859-5. With the "@iqtelif" modifier it’s UTF-8.

• The default charset of the "uz_UZ" locale (Uzbek/Uzbekistan) is ISO-8859-1. With the "@cyrillic" modifier it’s UTF-8.

• There’s a class of characters in the Unicode character set, called the "CJK Ambiguous Width" characters. For these characters,
the width returned by the wcwidth/wcswidth functions is usually 1. This can be a problem with East-Asian languages, which
historically use character sets where these characters have a width of 2. Therefore, wcwidth/wcswidth return 2 as the width
of these characters when an East-Asian charset such as GBK or SJIS is selected, or when UTF-8 is selected and the language
is specified as "zh" (Chinese), "ja" (Japanese), or "ko" (Korean). This is not correct in all circumstances, hence the locale
modifier "@cjknarrow" can be used to force wcwidth/wcswidth to return 1 for the ambiguous width characters.

• For the same class of "CJK Ambiguous Width" characters, it may be desirable to handle them as double-width even when a non-
CJK language setting is selected. This supports e.g. certain graphic symbols used by "Powerline" and provided by "Powerline
fonts". Some terminals have options to enforce this width handling (xterm -cjk_width, mintty -o Charwidth=ambig-wide,
putty configuration) but that alone makes character rendering and locale information inconsistent for those characters. The
locale modifier "@cjkwide" supports consistent locale response with this option; it forces wcwidth/wcswidth to return 2 for
the ambiguous width characters.

2.4.2 How to set the locale

• Assume that you’ve set one of the aforementioned environment variables to some valid POSIX locale value, other than "C"
and "POSIX". Assume further that you’re living in Japan. You might want to use the language code "ja" and the territory "JP",
thus setting, say, LANG to "ja_JP". You didn’t set a character set, so what will Cygwin use now? The default character set is
determined by the default Windows ANSI codepage for this language and territory. Cygwin uses a character set which is the
typical Unix-equivalent to the Windows ANSI codepage. For instance:

Cygwin User’s Guide 29 / 111

"en_US" ISO-8859-1
"el_GR" ISO-8859-7
"pl_PL" ISO-8859-2
"pl_PL@euro" ISO-8859-15
"ja_JP" EUCJP
"ko_KR" EUCKR
"te_IN" UTF-8

• You don’t want to use the default character set? In that case you have to specify the charset explicitly. For instance, assume
you’re from Japan and don’t want to use the japanese default charset EUC-JP, but the Windows default charset SJIS. What you
can do, for instance, is to set the LANG variable in the mintty Cygwin Terminal in the "Text" section of its "Options" dialog. If
you’re starting your Cygwin session via a batch file or a shortcut to a batch file, you can also just set LANG there:

@echo off

C:
chdir C:\cygwin\bin
set LANG=ja_JP.SJIS
bash --login -i

Note
For a list of locales supported by your Windows machine, use the new locale -a command, which is part of the Cygwin
package. For a description see locale(1)

Note
For a list of supported character sets, see Section 2.4.5

• Last, but not least, most singlebyte or doublebyte charsets have a big disadvantage. Windows filesystems use the Unicode
character set in the UTF-16 encoding to store filename information. Not all characters from the Unicode character set are
available in a singlebyte or doublebyte charset. While Cygwin has a workaround to access files with unusual characters (see
Section 3.4.4), a better workaround is to use always the UTF-8 character set.

UTF-8 is the only multibyte character set which can represent every Unicode character.

set LANG=es_MX.UTF-8

For a description of the Unicode standard, see the homepage of the Unicode Consortium.

2.4.3 The Windows Console character set

Sometimes the Windows console is used to run Cygwin applications. While terminal emulations like the Cygwin Terminal
mintty or xterm have a distinct way to set the character set used for in- and output, the Windows console hasn’t such a way,
since it’s not an application in its own right.

This problem is solved in Cygwin as follows. When a Cygwin process is started in a Windows console (either explicitly from
cmd.exe, or implicitly by, for instance, running the C:\cygwin\Cygwin.bat batch file), the Console character set is deter-
mined by the setting of the aforementioned internationalization environment variables, the same way as described in Section 2.4.2.

What is that good for? Why not switch the console character set with the applications requirements? After all, the application
knows if it uses localization or not. However, what if a non-localized application calls a remote application which itself is
localized? This can happen with ssh or rlogin. Both commands don’t have and don’t need localization and they never call
setlocale. Setting one of the internationalization environment variable to the same charset as the remote machine before
starting ssh or rlogin fixes that problem.

http://www.unicode.org/

Cygwin User’s Guide 30 / 111

2.4.4 Potential Problems when using Locales

You can set the above internationalization variables not only when starting the first Cygwin process, but also in your Cygwin
shell on the fly, even switch to yet another character set, and yet another. In bash for instance:

bash$ export LC_CTYPE="nl_BE.UTF-8"

However, here’s a problem. At the start of the first Cygwin process in a session, the Windows environment is converted from
UTF-16 to UTF-8. The environment is another of the system objects stored in UTF-16 in Windows.

As long as the environment only contains ASCII characters, this is no problem at all. But if it contains native characters, and
you’re planning to use, say, GBK, the environment will result in invalid characters in the GBK charset. This would be especially
a problem in variables like PATH. To circumvent the worst problems, Cygwin converts the PATH environment variable to the
charset set in the environment, if it’s different from the UTF-8 charset.

Note
Per POSIX, the name of an environment variable should only consist of valid ASCII characters, and only of uppercase letters,
digits, and the underscore for maximum portability.

Very old symbolic links may pose a problem when switching charsets on the fly. A symbolic link contains the filename of the
target file the symlink points to. When a symlink had been created with versions of Cygwin prior to Cygwin 1.7, the current
ANSI or OEM character set had been used to store the target filename, dependent on the old CYGWIN environment variable
setting codepage (see Section 3.5.2. If the target filename contains non-ASCII characters and you use another character set
than your default ANSI/OEM charset, the target filename of the symlink is now potentially an invalid character sequence in the
new character set. This behaviour is not different from the behaviour in other Operating Systems. Recreate the symlink if that
happens to you.

2.4.5 List of supported character sets

Last but not least, here’s the list of currently supported character sets. The left-hand expression is the name of the charset, as you
would use it in the internationalization environment variables as outlined above. Note that charset specifiers are case-insensitive.
EUCJP is equivalent to eucJP or eUcJp. Writing the charset in the exact case as given in the list below is a good convention,
though.

The right-hand side is the number of the equivalent Windows codepage as well as the Windows name of the codepage. They
are only noted here for reference. Don’t try to use the bare codepage number or the Windows name of the codepage as charset
in locale specifiers, unless they happen to be identical with the left-hand side. Especially in case of the "CPxxx" style charsets,
always use them with the trailing "CP".

This works:

set LC_ALL=en_US.CP437

This does not work:

set LC_ALL=en_US.437

You can find a full list of Windows codepages on the Microsoft MSDN page Code Page Identifiers.

Charset Codepage
------------------- ---
ASCII 20127 (US_ASCII)

CP437 437 (OEM United States)
CP720 720 (DOS Arabic)
CP737 737 (OEM Greek)
CP775 775 (OEM Baltic)
CP850 850 (OEM Latin 1, Western European)

http://msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx

Cygwin User’s Guide 31 / 111

CP852 852 (OEM Latin 2, Central European)
CP855 855 (OEM Cyrillic)
CP857 857 (OEM Turkish)
CP858 858 (OEM Latin 1 + Euro Symbol)
CP862 862 (OEM Hebrew)
CP866 866 (OEM Russian)
CP874 874 (ANSI/OEM Thai)
CP932 932 (Shift_JIS, not exactly identical to SJIS)
CP1125 1125 (OEM Ukraine)
CP1250 1250 (ANSI Central European)
CP1251 1251 (ANSI Cyrillic)
CP1252 1252 (ANSI Latin 1, Western European)
CP1253 1253 (ANSI Greek)
CP1254 1254 (ANSI Turkish)
CP1255 1255 (ANSI Hebrew)
CP1256 1256 (ANSI Arabic)
CP1257 1257 (ANSI Baltic)
CP1258 1258 (ANSI/OEM Vietnamese)

ISO-8859-1 28591 (ISO-8859-1)
ISO-8859-2 28592 (ISO-8859-2)
ISO-8859-3 28593 (ISO-8859-3)
ISO-8859-4 28594 (ISO-8859-4)
ISO-8859-5 28595 (ISO-8859-5)
ISO-8859-6 28596 (ISO-8859-6)
ISO-8859-7 28597 (ISO-8859-7)
ISO-8859-8 28598 (ISO-8859-8)
ISO-8859-9 28599 (ISO-8859-9)
ISO-8859-10 - (not available)
ISO-8859-11 - (not available)
ISO-8859-13 28603 (ISO-8859-13)
ISO-8859-14 - (not available)
ISO-8859-15 28605 (ISO-8859-15)
ISO-8859-16 - (not available)

Big5 950 (ANSI/OEM Traditional Chinese)
EUCCN or euc-CN 936 (ANSI/OEM Simplified Chinese)
EUCJP or euc-JP 20932 (EUC Japanese)
EUCKR or euc-KR 949 (EUC Korean)
GB2312 936 (ANSI/OEM Simplified Chinese)
GBK 936 (ANSI/OEM Simplified Chinese)
GEORGIAN-PS - (not available)
KOI8-R 20866 (KOI8-R Russian Cyrillic)
KOI8-U 21866 (KOI8-U Ukrainian Cyrillic)
PT154 - (not available)
SJIS - (not available, almost, but not exactly CP932)
TIS620 or TIS-620 874 (ANSI/OEM Thai)

UTF-8 or utf8 65001 (UTF-8)

2.5 Customizing bash

To set up bash so that cut and paste work properly, click on the "Properties" button of the window, then on the "Misc" tab. Make
sure that "QuickEdit mode" and "Insert mode" are checked. These settings will be remembered next time you run bash from that
shortcut.

Your home directory should contain three initialization files that control the behavior of bash. They are .profile, .bashrc
and .inputrc. The Cygwin base installation creates stub files when you start bash for the first time.

Cygwin User’s Guide 32 / 111

.profile (other names are also valid, see the bash man page) contains bash commands. It is executed when bash is started
as login shell, e.g. from the command bash --login. This is a useful place to define and export environment variables and bash
functions that will be used by bash and the programs invoked by bash. It is a good place to redefine PATH if needed. We
recommend adding a ":." to the end of PATH to also search the current working directory (contrary to DOS, the local directory
is not searched by default). Also to avoid delays you should either unset MAILCHECK or define MAILPATH to point to your
existing mail inbox.

.bashrc is similar to .profile but is executed each time an interactive bash shell is launched. It serves to define elements
that are not inherited through the environment, such as aliases. If you do not use login shells, you may want to put the contents
of .profile as discussed above in this file instead.

shopt -s nocaseglob

will allow bash to glob filenames in a case-insensitive manner. Note that .bashrc is not called automatically for login shells.
You can source it from .profile.

.inputrc controls how programs using the readline library (including bash) behave. It is loaded automatically. For full details
see the Function and Variable Index section of the GNU readline manual. Consider the following settings:

Ignore case while completing
set completion-ignore-case on
Make Bash 8bit clean
set meta-flag on
set convert-meta off
set output-meta on

The first command makes filename completion case insensitive, which can be convenient in a Windows environment. The next
three commands allow bash to display 8-bit characters, useful for languages with accented characters. Note that tools that do not
use readline for display, such as less and ls, require additional settings, which could be put in your .bashrc:

alias less=’/bin/less -r’
alias ls=’/bin/ls -F --color=tty --show-control-chars’

Cygwin User’s Guide 33 / 111

Chapter 3

Using Cygwin

This chapter explains some key differences between the Cygwin environment and traditional UNIX systems. It assumes a
working knowledge of standard UNIX commands.

3.1 Mapping path names

3.1.1 Introduction

The Cygwin DLL supports both POSIX- and Win32-style paths. Directory delimiters may be either forward slashes or back-
slashes. Paths using backslashes or starting with a drive letter are always handled as Win32 paths. POSIX paths must only use
forward slashes as delimiter, otherwise they are treated as Win32 paths and file access might fail in surprising ways.

Note
Although the Cygwin DLL supports Win32 paths, not all Cygwin applications support them. Moreover, the usage of Win32 paths
circumvents important internal path handling mechanisms. This usage is therefore strongly deprecated and may be removed
in a future release of Cygwin. See Section 3.1.7 and Section 3.1.8 for more information.

POSIX operating systems (such as Linux) do not have the concept of drive letters. Instead, all absolute paths begin with a slash
(instead of a drive letter such as "c:") and all file systems appear as subdirectories (for example, you might buy a new disk and
make it be the /disk2 directory).

Because many programs written to run on UNIX systems assume the existence of a single unified POSIX file system structure,
Cygwin maintains a special internal POSIX view of the Win32 file system that allows these programs to successfully run under
Windows. Cygwin uses this mapping to translate from POSIX to Win32 paths as necessary.

3.1.2 The Cygwin Mount Table

The /etc/fstab file is used to map Win32 drives and network shares into Cygwin’s internal POSIX directory tree. This is a
similar concept to the typical UNIX fstab file. The mount points stored in /etc/fstab are globally set for all users. Sometimes
there’s a requirement to have user specific mount points. The Cygwin DLL supports user specific fstab files. These are stored
in the directory /etc/fstab.d and the name of the file is the Cygwin username of the user, as it’s created from the Windows
account database or stored in the /etc/passwd file (see Section 3.6.2). The structure of the user specific file is identical to the
system-wide fstab file.

The file fstab contains descriptive information about the various file systems. fstab is only read by programs, and not written; it
is the duty of the system administrator to properly create and maintain this file. Each filesystem is described on a separate line;
fields on each line are separated by tabs or spaces. Lines starting with ’#’ are comments.

Cygwin User’s Guide 34 / 111

The first field describes the block special device or remote filesystem to be mounted. On Cygwin, this is the native Windows path
which the mount point links in. As path separator you MUST use a slash. Usage of a backslash might lead to unexpected results.
UNC paths (using slashes, not backslashes) are allowed. If the path contains spaces these can be escaped as ’\040’.

The second field describes the mount point for the filesystem. If the name of the mount point contains spaces these can be escaped
as ’\040’.

The third field describes the type of the filesystem. Cygwin supports any string here, since the file system type is usually not
evaluated. So it doesn’t matter if you write FAT into this field even if the filesystem is NTFS. Cygwin figures out the filesystem
type and its capabilities by itself.

The only two exceptions are the file system types cygdrive and usertemp. The cygdrive type is used to set the cygdrive prefix.
For a description of the cygdrive prefix see Section 3.1.4, for a description of the usertemp file system type see Section 3.1.5

The fourth field describes the mount options associated with the filesystem. It is formatted as a comma separated list of options.
It contains at least the type of mount (binary or text) plus any additional options appropriate to the filesystem type. The list of
the options, including their meaning, follows.

acl - Cygwin uses the filesystem’s access control lists (ACLs) to
implement real POSIX permissions (default). This flag only

affects filesystems supporting ACLs (NTFS, for instance) and
is ignored otherwise.

auto - Ignored.
binary - Files default to binary mode (default).
bind - Allows to remount part of the file hierarchy somewhere else.

In contrast to other entries, the first field in the fstab
line specifies an absolute POSIX path. This path is remounted
to the POSIX path specified as the second path. The conversion
to a Win32 path is done on the fly. Only the root path and
paths preceding the bind entry in the fstab file are used to
convert the POSIX path in the first field to an absolute Win32
path. Note that symlinks are ignored while performing this path
conversion.

cygexec - Treat all files below mount point as cygwin executables.
dos - Always convert leading spaces and trailing dots and spaces to

characters in the UNICODE private use area. This allows to use
broken filesystems which only allow DOS filenames, even if they
are not recognized as such by Cygwin.

exec - Treat all files below mount point as executable.
ihash - Always fake inode numbers rather than using the ones returned

by the filesystem. This allows to use broken filesystems which
don’t return unambiguous inode numbers, even if they are not
recognized as such by Cygwin.

noacl - Cygwin ignores filesystem ACLs and only fakes a subset of
permission bits based on the DOS readonly attribute. This
behaviour is the default on FAT and FAT32. The flag is
ignored on NFS filesystems.

nosuid - No suid files are allowed (currently unimplemented).
notexec - Treat all files below mount point as not executable.
nouser - Mount is a system-wide mount.
override - Force the override of an immutable mount point (currently "/").
posix=0 - Switch off case sensitivity for paths under this mount point

(default for the cygdrive prefix).
posix=1 - Switch on case sensitivity for paths under this mount point

(default for all other mount points).
sparse - Switch on support for sparse files. This option only makes

sense on NTFS and then only if you really need sparse files.
Cygwin does not try to create sparse files by default for
performance reasons.

text - Files default to CRLF text mode line endings.
user - Mount is a user mount.

Cygwin User’s Guide 35 / 111

While normally the execute permission bits are used to evaluate executability, this is not possible on filesystems which don’t
support permissions at all (like FAT/FAT32), or if ACLs are ignored on filesystems supporting them (see the aforementioned
acl mount option). In these cases, the following heuristic is used to evaluate if a file is executable: Files ending in certain
extensions (.exe, .com, .lnk) are assumed to be executable. Files whose first two characters are "#!", "MZ", or ":\n" are also
considered to be executable. The exec option is used to instruct Cygwin that the mounted file is "executable". If the exec
option is used with a directory then all files in the directory are executable. This option allows other files to be marked as
executable and avoids the overhead of opening each file to check for "magic" bytes. The cygexec option is very similar to
exec, but also prevents Cygwin from setting up commands and environment variables for a normal Windows program, adding
another small performance gain. The opposite of these options is the notexec option, which means that no files should be
marked as executable under that mount point.

A correct root directory is quite essential to the operation of Cygwin. A default root directory is evaluated at startup so a fstab
entry for the root directory is not necessary. If it’s wrong, nothing will work as expected. Therefore, the root directory evaluated
by Cygwin itself is treated as an immutable mount point and can’t be overridden in /etc/fstab... unless you think you really know
what you’re doing. In this case, use the override flag in the options field in the /etc/fstab file. Since this is a dangerous
thing to do, do so at your own risk.

/usr/bin and /usr/lib are by default also automatic mount points generated by the Cygwin DLL similar to the way the
root directory is evaluated. /usr/bin points to the directory the Cygwin DLL is installed in, /usr/lib is supposed to point
to the /lib directory. This choice is safe and usually shouldn’t be changed. An fstab entry for them is not required.

nouser mount points are not overridable by a later call to mount. Mount points given in /etc/fstab are by default nou
ser mount points, unless you specify the option user. This allows the administrator to set certain paths so that they are not
overridable by users. In contrast, all mount points in the user specific fstab file are user mount points.

The fifth and sixth field are ignored. They are so far only specified to keep a Linux-like fstab file layout.

Note that you don’t have to specify an fstab entry for the root dir, unless you want to have the root dir pointing to somewhere
entirely different (hopefully you know what you’re doing), or if you want to mount the root dir with special options (for instance,
as text mount).

Example entries:

• Just a normal mount point:

c:/foo /bar fat32 binary 0 0

• A mount point for a textmode mount with case sensitivity switched off:

C:/foo /bar/baz ntfs text,posix=0 0 0

• A mount point for a Windows directory with spaces in it:

C:/Documents\040and\040Settings /docs ext3 binary 0 0

• A mount point for a remote directory, don’t store POSIX permissions in ACLs:

//server/share/subdir /srv/subdir smbfs binary,noacl 0 0

• This is just a comment:

This is just a comment

• Set the cygdrive prefix to /mnt:

none /mnt cygdrive binary 0 0

• Remount /var to /usr/var:

/var /usr/var none bind

Assuming /var points to C:/cygwin/var, /usr/var now also points to C:/cygwin/var. This is equivalent to the
Linux bind option available since Linux 2.4.0.

Cygwin User’s Guide 36 / 111

Whenever Cygwin generates a Win32 path from a POSIX one, it uses the longest matching prefix in the mount table. Thus, if C:
is mounted as /c and also as /, then Cygwin would translate C:/foo/bar to /c/foo/bar. This translation is normally only
used when trying to derive the POSIX equivalent current directory. Otherwise, the handling of MS-DOS filenames bypasses the
mount table.

If you want to see the current set of mount points valid in your session, you can invoke the Cygwin tool mount without arguments:

Example 3.1 Displaying the current set of mount points

bash$ mount
f:/cygwin/bin on /usr/bin type ntfs (binary,auto)
f:/cygwin/lib on /usr/lib type ntfs (binary,auto)
f:/cygwin on / type ntfs (binary,auto)
e:/src on /usr/src type vfat (binary)
c: on /cygdrive/c type ntfs (binary,posix=0,user,noumount,auto)
e: on /cygdrive/e type vfat (binary,posix=0,user,noumount,auto)

You can also use the mount command to add new mount points, and the umount to delete them. However, since they are only
stored in memory, these mount points will disappear as soon as your last Cygwin process ends. See mount(1) and umount(1) for
more information.

3.1.3 UNC paths

Apart from the unified POSIX tree starting at the / directory, UNC pathnames starting with two slashes and a server name
(//machine/share/...) are supported as well. They are handled as POSIX paths if only containing forward slashes.
There’s also a virtual directory // which allows to enumerate the fileservers known to the local machine with ls. Same goes for
the UNC paths of the type //machine, which allow to enumerate the shares provided by the server machine. For often used
UNC paths it makes sense to add them to the mount table (see Section 3.1.2 so they are included in the unified POSIX path tree.

3.1.4 The cygdrive path prefix

As already outlined in Section 1.6.3, you can access arbitary drives on your system by using the cygdrive path prefix. The default
value for this prefix is /cygdrive, and a path to any drive can be constructed by using the cygdrive prefix and appending the
drive letter as subdirectory, like this:

bash$ ls -l /cygdrive/f/somedir

This lists the content of the directory F:\somedir.

The cygdrive prefix is a virtual directory under which all drives on a system are subsumed. The mount options of the cygdrive
prefix is used for all file access through the cygdrive prefixed drives. For instance, assuming the cygdrive mount options are
binary,posix=0, then any file /cygdrive/x/file will be opened in binary mode by default (mount option binary),
and the case of the filename doesn’t matter (mount option posix=0).

The cygdrive prefix flags are also used for all UNC paths starting with two slashes, unless they are accessed through a mount
point. For instance, consider these /etc/fstab entries:

//server/share /mysrv ntfs posix=1,acl 0 0
none /cygdrive cygdrive posix=0,noacl 0 0

Assume there’s a file \\server\share\foo on the share. When accessing it as /mysrv/foo, then the flags posix=
1,acl of the /mysrv mount point are used. When accessing it as //server/share/foo, then the flags for the cygdrive
prefix, posix=0,noacl are used.

Note
This only applies to UNC paths using forward slashes. When using backslashes the flags for native paths are used. See
Section 3.1.7.

Cygwin User’s Guide 37 / 111

The cygdrive prefix may be changed in the fstab file as outlined above. Please note that you must not use the cygdrive prefix for
any other mount point. For instance this:

none /cygdrive cygdrive binary 0 0
D: /cygdrive/d somefs text 0 0

will not make file access using the /mnt/d path prefix suddenly using textmode. If you want to mount any drive explicitly in
another mode than the cygdrive prefix, use a distinct path prefix:

none /cygdrive cygdrive binary 0 0
D: /mnt/d somefs text 0 0

To simplify scripting, Cygwin also provides a /proc/cygdrive symlink, which allows to use a fixed path in scripts, even
if the actual cygdrive prefix has been changed, or is different between different users. So, in scripts, conveniently use the
/proc/cygdrive symlink to successfully access files independently from the current cygdrive prefix:

$ mount -p
Prefix Type Flags
/mnt user binmode
$ cat > x.sh <<EOF
cd /proc/cygdrive/c/Windows/System32/Drivers/etc
ls -l hosts
EOF
$ sh -c ./x.sh
-rwxrwx---+ 1 SYSTEM SYSTEM 826 Sep 4 22:43 hosts

3.1.5 The usertemp file system type

On Windows, the environment variable TEMP specifies the location of the temp folder. It serves the same purpose as the /tmp/
directory in Unix systems. In contrast to /tmp/, it is by default a different folder for every Windows user. By using the special pur-
pose usertemp file system, that temp folder can be mapped to /tmp/. This is particularly useful in setups where the administrator
wants to write-protect the entire Cygwin directory. The usertemp file system can be configured in /etc/fstab like this:

none /tmp usertemp binary,posix=0 0 0

3.1.6 Symbolic links

Symbolic links are not present and supported on Windows until Windows Vista/Server 2008, and then only on some filesystems.
Since POSIX applications are rightfully expecting to use symlinks and the symlink(2) system call, Cygwin had to find a
workaround for this Windows flaw.

Cygwin creates symbolic links potentially in multiple different ways:

• The default symlinks are plain files containing a magic cookie followed by the path to which the link points. They are marked
with the DOS SYSTEM attribute so that only files with that attribute have to be read to determine whether or not the file is a
symbolic link.

Note
Cygwin symbolic links are using UTF-16 to encode the filename of the target file, to better support internationalization.
Symlinks created by old Cygwin releases can be read just fine. However, you could run into problems with them if you’re now
using another character set than the one you used when creating these symlinks (see Section 2.4.4).

• The shortcut style symlinks are Windows .lnk shortcut files with a special header and the DOS READONLY attribute set.
This symlink type is created if the environment variable CYGWIN (see Section 3.5) is set to contain the string winsymlinks
or winsymlinks:lnk. On the MVFS filesystem, which does not support the DOS SYSTEM attribute, this is the one and
only supported symlink type, independently from the winsymlinks setting.

Cygwin User’s Guide 38 / 111

• Native Windows symlinks are only created on Windows Vista/2008 and later, and only on filesystems supporting reparse
points. Due to to their weird restrictions and behaviour, they are only created if the user explicitely requests creating them.
This is done by setting the environment variable CYGWIN to contain the string winsymlinks:native or winsymlinks:
nativestrict. For the difference between these two settings, see Section 3.5. On AFS, native symlinks are the only
supported type of symlink due to AFS lacking support for DOS attributes. This is independent from the winsymlinks
setting.

Creation of native symlinks follows special rules to ensure the links are usable outside of Cygwin. This includes dereferencing
any Cygwin-only symlinks that lie in the target path.

• On the NFS filesystem, Cygwin always creates real NFS symlinks.

All of the above four symlink types are recognized and used as symlinks under all circumstances. However, if the default plain
file symlink type is lacking its DOS SYSTEM bit, or if the shortcut file is lacking the DOS READONLY attribute, they are not
recognized as symlink.

Apart from these four types, there’s also a fifth type, which is recognized as symlink but never generated by Cygwin, directory
junctions. This is an older reparse point type, supported by Windows since Windows 2000. Filesystem junctions on the other
hand are not handled as symlinks, since otherwise they would not be recognized as filesystem borders by commands like find
-xdev.

3.1.7 Using native Win32 paths

Using native Win32 paths in Cygwin, while often possible, is generally inadvisable. Those paths circumvent all internal integrity
checking and bypass the information given in the Cygwin mount table.

The following paths are treated as native Win32 paths by the Cygwin DLL (but not necessarily by Cygwin applications):

• All paths starting with a drive specifier

C:\foo
C:/foo

• All paths containing at least one backslash as path component

C:/foo/bar\baz/...

• UNC paths using backslashes

\\server\share\...

When accessing files using native Win32 paths as above, Cygwin uses a default setting for the mount flags. All paths using DOS
notation will be treated as case insensitive, and permissions are just faked as if the underlying drive is a FAT drive. This also
applies to NTFS and other filesystems which usually are capable of case sensitivity and storing permissions.

3.1.8 Using the Win32 file API in Cygwin applications

Special care must be taken if your application uses Win32 file API functions like CreateFile to access files using relative
pathnames, or if your application uses functions like CreateProcess or ShellExecute to start other applications.

When a Cygwin application is started, the Windows idea of the current working directory (CWD) is not necessarily the same as
the Cygwin CWD. There are a couple of restrictions in the Win32 API, which disallow certain directories as Win32 CWD:

• The Windows subsystem only supports CWD paths of up to 258 chars. This restriction doesn’t apply for Cygwin processes, at
least not as long as they use the POSIX API (chdir, getcwd). This means, if a Cygwin process has a CWD using an absolute
path longer than 258 characters, the Cygwin CWD and the Windows CWD differ.

• The Win32 API call to set the current directory, SetCurrentDirectory, fails for directories for which the user has no
permissions, even if the user is an administrator. This restriction doesn’t apply for Cygwin processes, if they are running under
an administrator account.

Cygwin User’s Guide 39 / 111

• SetCurrentDirectory does not support case-sensitive filenames.

• Last, but not least, SetCurrentDirectory can’t work on virtual Cygwin paths like /proc or /cygdrive. These paths only
exists in the Cygwin realm so they have no meaning to a native Win32 process.

As long as the Cygwin CWD is usable as Windows CWD, the Cygwin and Windows CWDs are in sync within a process.
However, if the Cygwin process changes its working directory into one of the directories which are unusable as Windows CWD,
we’re in trouble. If the process uses the Win32 API to access a file using a relative pathname, the resulting absolute path would
not match the expectations of the process. In the worst case, the wrong files are deleted.

To workaround this problem, Cygwin sets the Windows CWD to a special directory in this case. This special directory points
to a virtual filesystem within the native NT namespace (\??\PIPE\). Since it’s not a real filesystem, the deliberate effect is
that a call to, for instance, CreateFile ("foo", ...); will fail, as long as the processes CWD doesn’t work as Windows
CWD.

So, in general, don’t use the Win32 file API in Cygwin applications. If you really need to access files using the Win32 API, or if
you really have to use CreateProcess to start applications, rather than the POSIX exec(3) family of functions, you have
to make sure that the Cygwin CWD is set to some directory which is valid as Win32 CWD.

3.1.9 Additional Path-related Information

The cygpath program provides the ability to translate between Win32 and POSIX pathnames in shell scripts. See cygpath(1) for
the details.

The HOME, PATH, and LD_LIBRARY_PATH environment variables are automatically converted from Win32 format to POSIX
format (e.g. from c:/cygwin\bin to /bin, if there was a mount from that Win32 path to that POSIX path) when a Cygwin
process first starts.

Symbolic links can also be used to map Win32 pathnames to POSIX. For example, the command ln -s //pollux/home/joe/data
/data would have about the same effect as creating a mount point from //pollux/home/joe/data to /data using mount,
except that symbolic links cannot set the default file access mode. Other differences are that the mapping is distributed throughout
the file system and proceeds by iteratively walking the directory tree instead of matching the longest prefix in a kernel table. Note
that symbolic links will only work on network drives that are properly configured to support the "system" file attribute. Many do
not do so by default (the Unix Samba server does not by default, for example).

3.2 Text and Binary modes

3.2.1 The Issue

On a UNIX system, when an application reads from a file it gets exactly what’s in the file on disk and the converse is true for
writing. The situation is different in the DOS/Windows world where a file can be opened in one of two modes, binary or text. In
the binary mode the system behaves exactly as in UNIX. However on writing in text mode, a NL (\n, ˆJ) is transformed into the
sequence CR (\r, ˆM) NL.

This can wreak havoc with the seek/fseek calls since the number of bytes actually in the file may differ from that seen by the
application.

The mode can be specified explicitly as explained in the Programming section below. In an ideal DOS/Windows world, all
programs using lines as records (such as bash, make, sed ...) would open files (and change the mode of their standard input and
output) as text. All other programs (such as cat, cmp, tr ...) would use binary mode. In practice with Cygwin, programs that deal
explicitly with object files specify binary mode (this is the case of od, which is helpful to diagnose CR problems). Most other
programs (such as sed, cmp, tr) use the default mode.

3.2.2 The default Cygwin behavior

The Cygwin system gives us some flexibility in deciding how files are to be opened when the mode is not specified explicitly.
The rules are evolving, this section gives the design goals.

Cygwin User’s Guide 40 / 111

a. If the filename is specified as a POSIX path and it appears to reside on a file system that is mounted (i.e. if its pathname
starts with a directory displayed by mount), then the default is specified by the mount flag. If the file is a symbolic link,
the mode of the target file system applies.

b. If the file is specified via a MS-DOS pathname (i.e., it contains a backslash or a colon), the default is binary.

c. Pipes, sockets and non-file devices are opened in binary mode. For pipes opened through the pipe() system call you can
use the setmode() function (see Section 3.2.4 to switch to textmode. For pipes opened through popen(), you can simply
specify text or binary mode just like in calls to fopen().

d. Sockets and other non-file devices are always opened in binary mode.

e. When redirecting, the Cygwin shells uses rules (a-d). Non-Cygwin shells always pipe and redirect with binary mode.
With non-Cygwin shells the commands cat filename | program and program < filename are not equivalent when
filename is on a text-mounted partition.

The programs u2d and d2u can be used to add or remove CR’s from a file. u2d add’s CR’s before a NL. d2u removes
CR’s. Use the --help option to these commands for more information.

3.2.3 Binary or text?

UNIX programs that have been written for maximum portability will know the difference between text and binary files and act
appropriately under Cygwin. Most programs included in the official Cygwin distributions should work well in the default mode.

Binmode is the best choice usually since it’s faster and easier to handle, unless you want to exchange files with native Win32
applications. It makes most sense to keep the Cygwin distribution and your Cygwin home directory in binmode and generate
text files in binmode (with UNIX LF lineendings). Most Windows applications can handle binmode files just fine. A notable
exception is the mini-editor Notepad, which handles UNIX lineendings incorrectly and only produces output files with DOS
CRLF lineendings.

You can convert files between CRLF and LF lineendings by using certain tools in the Cygwin distribution like dos2unix and
unix2dos from the dos2unix package. You can also specify a directory in the mount table to be mounted in textmode so you can
use that directory for exchange purposes.

As application programmer you can decide on a file by file base, or you can specify default open modes depending on the purpose
for which the application open files. See the next section for a description of your choices.

3.2.4 Programming

In the open() function call, binary mode can be specified with the flag O_BINARY and text mode with O_TEXT. These symbols
are defined in fcntl.h.

The mkstemp() and mkstemps() calls force binary mode. Use mkostemp() or mkostemps() with the same flags as
open() for more control on temporary files.

In the fopen() and popen() function calls, binary mode can be specified by adding a b to the mode string. Text mode is
specified by adding a t to the mode string.

The mode of a file can be changed by the call setmode(fd,mode) where fd is a file descriptor (an integer) and mode is
O_BINARY or O_TEXT. The function returns O_BINARY or O_TEXT depending on the mode before the call, and EOF on error.

There’s also a convenient way to set the default open modes used in an application by just linking against various object files
provided by Cygwin. For instance, if you want to make sure that all files are always opened in binary mode by an application,
regardless of the mode of the underlying mount point, just add the file /lib/binmode.o to the link stage of the application in
your project, like this:

$ gcc my_tiny_app.c /lib/binmode.o -o my_tiny_app

Even simpler:

$ gcc my_tiny_app.c -lbinmode -o my_tiny_app

Cygwin User’s Guide 41 / 111

This adds code which sets the default open mode for all files opened by my_tiny_app to binary for reading and writing.

Cygwin provides the following libraries and object files to set the default open mode just by linking an application against them:
•
/lib/libautomode.a - Open files for reading in textmode,
/lib/automode.o open files for writing in binary mode

•
/lib/libbinmode.a - Open files for reading and writing in binary mode
/lib/binmode.o

•
/lib/libtextmode.a - Open files for reading and writing in textmode
/lib/textmode.o

•
/lib/libtextreadmode.a - Open files for reading in textmode,
/lib/textreadmode.o keep default behaviour for writing.

3.3 File permissions

On FAT or FAT32 filesystems, files are always readable, and Cygwin uses the DOS read-only attribute to determine if they
are writable. Files are considered to be executable if the filename ends with .bat, .com or .exe, or if its content starts with #!.
Consequently chmod can only affect the "w" mode, it silently ignores actions involving the other modes. This means that ls -l
needs to open and read files. It can thus be relatively slow.

On NTFS, file permissions are evaluated using the Access Control Lists (ACLs) attached to a file. This can be switched off
by using the "noacl" option to the respective mount point in the /etc/fstab or /etc/fstab.d/$USER file. For more
information on file permissions, see Section 3.6.

On NFS shares, file permissions are exactly the POSIX permissions transmitted from the server using the NFSv3 protocol, if the
NFS client is the one from Microsoft’s "Services For Unix", or the one built into Windows Vista or later.

Only the user and group ownership is not necessarily correct.

3.4 Special filenames

3.4.1 Special files in /etc

Certain files in Cygwin’s /etc directory are read by Cygwin before the mount table has been established. The list of files is

/etc/fstab
/etc/fstab.d/$USER
/etc/passwd
/etc/group

These file are read using native Windows NT functions which have no notion of Cygwin symlinks or POSIX paths. For that
reason there are a few requirements as far as /etc is concerned.

To access these files, the Cygwin DLL evaluates it’s own full Windows path, strips off the innermost directory component
and adds "\etc". Let’s assume the Cygwin DLL is installed as C:\cygwin\bin\cygwin1.dll. First the DLL name as
well as the innermost directory (bin) is stripped off: C:\cygwin\. Then "etc" and the filename to look for is attached:
C:\cygwin\etc\fstab. So the /etc directory must be parallel to the directory in which the cygwin1.dll exists and /etc
must not be a Cygwin symlink pointing to another directory. Consequentially none of the files from the above list, including the
directory /etc/fstab.d is allowed to be a Cygwin symlink either.

However, native NTFS symlinks and reparse points are transparent when accessing the above files so all these files as well as
/etc itself may be NTFS symlinks or reparse points.

Last but not least, make sure that these files are world-readable. Every process of any user account has to read these files
potentially, so world-readability is essential. The only exception are the user specific files /etc/fstab.d/$USER, which
only have to be readable by the $USER user account itself.

Cygwin User’s Guide 42 / 111

3.4.2 Invalid filenames

Filenames invalid under Win32 are not necessarily invalid under Cygwin. There are a few rules which apply to Windows
filenames. Most notably, DOS device names like AUX, COM1, LPT1 or PRN (to name a few) cannot be used as filename or
extension in a native Win32 application. So filenames like prn.txt or foo.aux are invalid filenames for native Win32
applications.

This restriction doesn’t apply to Cygwin applications. Cygwin can create and access files with such names just fine. Just don’t
try to use these files with native Win32 applications.

3.4.3 Forbidden characters in filenames

Some characters are disallowed in filenames on Windows filesystems. These forbidden characters are the ASCII control charac-
ters from ASCII value 1 to 31, plus the following characters which have a special meaning in the Win32 API:

" * : < > ? | \

Cygwin can’t fix this, but it has a method to workaround this restriction. All of the above characters, except for the backslash,
are converted to special UNICODE characters in the range 0xf000 to 0xf0ff (the "Private use area") when creating or accessing
files by adding 0xf000 to the forbidden characters’ code points.

The backslash has to be exempt from this conversion, because Cygwin accepts Win32 filenames including backslashes as path
separators on input. Converting backslashes using the above method would make this impossible.

Additionally Win32 filenames can’t contain trailing dots and spaces for DOS backward compatibility. When trying to create
files with trailing dots or spaces, all of them are removed before the file is created. This restriction only affects native Win32
applications. Cygwin applications can create and access files with trailing dots and spaces without problems.

An exception from this rule are some network filesystems (NetApp, NWFS) which choke on these filenames. They return with
an error like "No such file or directory" when trying to create such files. Cygwin recognizes these filesystems and works around
this problem by applying the same rule as for the other forbidden characters. Leading spaces and trailing dots and spaces will
be converted to UNICODE characters in the private use area. This behaviour can be switched on explicitely for a filesystem or a
directory tree by using the mount option dos.

3.4.4 Filenames with unusual (foreign) characters

Windows filesystems use Unicode encoded as UTF-16 to store filename information. If you don’t use the UTF-8 character
set (see Section 2.4) then there’s a chance that a filename is using one or more characters which have no representation in the
character set you’re using.

Note
In the default "C" locale, Cygwin creates filenames using the UTF-8 charset. This will always result in some valid filename by
default, but again might impose problems when switching to a non-"C" or non-"UTF-8" charset.

Note
To avoid this scenario altogether, always use UTF-8 as the character set.

If you don’t want or can’t use UTF-8 as character set for whatever reason, you will nevertheless be able to access the file. How
does that work? When Cygwin converts the filename from UTF-16 to your character set, it recognizes characters which can’t be
converted. If that occurs, Cygwin replaces the non-convertible character with a special character sequence. The sequence starts
with an ASCII CAN character (hex code 0x18, equivalent Control-X), followed by the UTF-8 representation of the character.
The result is a filename containing some ugly looking characters. While it doesn’t look nice, it is nice, because Cygwin knows
how to convert this filename back to UTF-16. The filename will be converted using your usual character set. However, when
Cygwin recognizes an ASCII CAN character, it skips over the ASCII CAN and handles the following bytes as a UTF-8 character.
Thus, the filename is symmetrically converted back to UTF-16 and you can access the file.

Cygwin User’s Guide 43 / 111

Note
Please be aware that this method is not entirely foolproof. In some character set combinations it might not work for certain
native characters.
Only by using the UTF-8 charset you can avoid this problem safely.

3.4.5 Case sensitive filenames

In the Win32 subsystem filenames are only case-preserved, but not case-sensitive. You can’t access two files in the same directory
which only differ by case, like Abc and aBc. While NTFS (and some remote filesystems) support case-sensitivity, the NT kernel
does not support it by default. Rather, you have to tweak a registry setting and reboot. For that reason, case-sensitivity can not
be supported by Cygwin, unless you change that registry value.

If you really want case-sensitivity in Cygwin, you can switch it on by setting the registry value

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\kernel\obcaseinsensitive

to 0 and reboot the machine.

Note
When installing Microsoft’s Services For Unix (SFU), you’re asked if you want to use case-sensitive filenames. If you answer
"yes" at this point, the installer will change the aforementioned registry value to 0, too. So, if you have SFU installed, there’s
some chance that the registry value is already set to case sensitivity.

After you set this registry value to 0, Cygwin will be case-sensitive by default on NTFS and NFS filesystems. However, there are
limitations: while two programs Abc.exe and aBc.exe can be created and accessed like other files, starting applications is
still case-insensitive due to Windows limitations and so the program you try to launch may not be the one actually started. Also,
be aware that using two filenames which only differ by case might result in some weird interoperability issues with native Win32
applications. You’re using case-sensitivity at your own risk. You have been warned!

Even if you use case-sensitivity, it might be feasible to switch to case-insensitivity for certain paths for better interoperability
with native Win32 applications (even if it’s just Windows Explorer). You can do this on a per-mount point base, by using the
"posix=0" mount option in /etc/fstab, or your /etc/fstab.d/$USER file.

/cygdrive paths are case-insensitive by default. The reason is that the native Windows %PATH% environment variable is not
always using the correct case for all paths in it. As a result, if you use case-sensitivity on the /cygdrive prefix, your shell
might claim that it can’t find Windows commands like attrib or net. To ease the pain, the /cygdrive path is case-insensitive
by default and you have to use the "posix=1" setting explicitly in /etc/fstab or /etc/fstab.d/$USER to switch it to
case-sensitivity, or you have to make sure that the native Win32 %PATH% environment variable is using the correct case for all
paths throughout.

Note that mount points as well as device names and virtual paths like /proc are always case-sensitive! The only exception
are the subdirectories and filenames under /proc/registry, /proc/registry32 and /proc/registry64. Registry access is always case-
insensitive. Read on for more information.

3.4.6 POSIX devices

While there is no need to create a POSIX /dev directory, the directory is automatically created as part of a Cygwin installation.
It’s existence is often a prerequisit to run certain applications which create symbolic links, fifos, or UNIX sockets in /dev. Also,
the directories /dev/shm and /dev/mqueue are required to exist to use named POSIX semaphores, shared memory, and
message queues, so a system without a real /dev directory is functionally crippled.

Apart from that, Cygwin automatically simulates POSIX devices internally. The /dev directory is automagically populated with
existing POSIX devices by Cygwin in a way comparable with a udev based virtual /dev directory under Linux.

Cygwin supports the following character devices commonly found on POSIX systems:

http://en.wikipedia.org/wiki/Udev

Cygwin User’s Guide 44 / 111

/dev/null
/dev/zero
/dev/full

/dev/console Pseudo device name for the current console window of a session.
Cygwin’s /dev/console is not quite comparable with the console
device on UNIX machines.

/dev/cons0 Console sessions are numbered from /dev/cons0 upwards.
/dev/cons1 Console device names are pseudo device names, only accessible
... from processes within this very console session. This is due

to a restriction in Windows.

/dev/tty The current controlling tty of a session.

/dev/ptmx Pseudo tty master device.

/dev/pty0 Pseudo ttys are numbered from /dev/pty0 upwards as they are
/dev/pty1 requested.
...

/dev/ttyS0 Serial communication devices. ttyS0 == Win32 COM1,
/dev/ttyS1 ttyS1 == COM2, etc.
...

/dev/pipe
/dev/fifo

/dev/kmsg Kernel message pipe, for usage with sys logger services.

/dev/random Random number generator.
/dev/urandom

/dev/dsp Default sound device of the system.

Cygwin also has several Windows-specific devices:

/dev/com1 The serial ports, starting with COM1 which is the same as ttyS0.
/dev/com2 Please use /dev/ttySx instead.
...

/dev/conin Same as Windows CONIN$.
/dev/conout Same as Windows CONOUT$.
/dev/clipboard The Windows clipboard, text only
/dev/windows The Windows message queue.

Block devices are accessible by Cygwin processes using fixed POSIX device names. These POSIX device names are generated
using a direct conversion from the POSIX namespace to the internal NT namespace. E.g. the first harddisk is the NT internal
device \device\harddisk0\partition0 or the first partition on the third harddisk is \device\harddisk2\partition1. The first floppy in
the system is \device\floppy0, the first CD-ROM is \device\cdrom0 and the first tape drive is \device\tape0.

The mapping from physical device to the name of the device in the internal NT namespace can be found in various places. For
hard disks and CD/DVD drives, the Windows "Disk Management" utility (part of the "Computer Management" console) shows
that the mapping of "Disk 0" is \device\harddisk0. "CD-ROM 2" is \device\cdrom2. Another place to find this mapping is the
"Device Management" console. Disks have a "Location" number, tapes have a "Tape Symbolic Name", etc. Unfortunately, the
places where this information is found is not very well-defined.

For external disks (USB-drives, CF-cards in a cardreader, etc) you can use Cygwin to show the mapping. /proc/partitions
contains a list of raw drives known to Cygwin. The df command shows a list of drives and their respective sizes. If you match the
information between /proc/partitions and the df output, you should be able to figure out which external drive corresponds
to which raw disk device name.

Cygwin User’s Guide 45 / 111

Note
Apart from tape devices which are not block devices and are by default accessed directly, accessing mass storage devices raw
is something you should only do if you know what you’re doing and know how to handle the information. Writing to a raw mass
storage device you should only do if you really know what you’re doing and are aware of the fact that any mistake can destroy
important information, for the device, and for you. So, please, handle this ability with care. You have been warned.

Last but not least, the mapping from POSIX /dev namespace to internal NT namespace is as follows:

POSIX device name Internal NT device name

/dev/st0 \device\tape0, rewind
/dev/nst0 \device\tape0, no-rewind
/dev/st1 \device\tape1
/dev/nst1 \device\tape1
...
/dev/st15
/dev/nst15

/dev/fd0 \device\floppy0
/dev/fd1 \device\floppy1
...
/dev/fd15

/dev/sr0 \device\cdrom0
/dev/sr1 \device\cdrom1
...
/dev/sr15

/dev/scd0 \device\cdrom0
/dev/scd1 \device\cdrom1
...
/dev/scd15

/dev/sda \device\harddisk0\partition0 (whole disk)
/dev/sda1 \device\harddisk0\partition1 (first partition)
...
/dev/sda15 \device\harddisk0\partition15 (fifteenth partition)

/dev/sdb \device\harddisk1\partition0
/dev/sdb1 \device\harddisk1\partition1

[up to]

/dev/sddx \device\harddisk127\partition0
/dev/sddx1 \device\harddisk127\partition1
...
/dev/sddx15 \device\harddisk127\partition15

if you don’t like these device names, feel free to create symbolic links as they are created on Linux systems for convenience:

ln -s /dev/sr0 /dev/cdrom
ln -s /dev/nst0 /dev/tape
...

3.4.7 The .exe extension

Win32 executable filenames end with .exe but the .exe need not be included in the command, so that traditional UNIX names
can be used. However, for programs that end in .bat and .com, you cannot omit the extension.

Cygwin User’s Guide 46 / 111

As a side effect, the ls filename gives information about filename.exe if filename.exe exists and filename does not.
In the same situation the function call stat("filename",..) gives information about filename.exe. The two files can
be distinguished by examining their inodes, as demonstrated below.

bash$ ls *
a a.exe b.exe
bash$ ls -i a a.exe
445885548 a 435996602 a.exe
bash$ ls -i b b.exe
432961010 b 432961010 b.exe

If a shell script myprog and a program myprog.exe coexist in a directory, the shell script has precedence and is selected for
execution of myprog. Note that this was quite the reverse up to Cygwin 1.5.19. It has been changed for consistency with the rest
of Cygwin.

The gcc compiler produces an executable named filename.exe when asked to produce filename. This allows many
makefiles written for UNIX systems to work well under Cygwin.

3.4.8 The /proc filesystem

Cygwin, like Linux and other similar operating systems, supports the /proc virtual filesystem. The files in this directory are
representations of various aspects of your system, for example the command cat /proc/cpuinfo displays information such
as what model and speed processor you have.

One unique aspect of the Cygwin /proc filesystem is /proc/registry, see next section.

The Cygwin /proc is not as complete as the one in Linux, but it provides significant capabilities. The procps package contains
several utilities that use it.

3.4.9 The /proc/registry filesystem

The /proc/registry filesystem provides read-only access to the Windows registry. It displays each KEY as a directory and
each VALUE as a file. As anytime you deal with the Windows registry, use caution since changes may result in an unstable
or broken system. There are additionally subdirectories called /proc/registry32 and /proc/registry64. They are
identical to /proc/registry on 32 bit host OSes. On 64 bit host OSes, /proc/registry32 opens the 32 bit processes
view on the registry, while /proc/registry64 opens the 64 bit processes view.

Reserved characters (’/’, ’\’, ’:’, and ’%’) or reserved names (. and ..) are converted by percent-encoding:

bash$ regtool list -v ’\HKEY_LOCAL_MACHINE\SYSTEM\MountedDevices’
...
\DosDevices\C: (REG_BINARY) = cf a8 97 e8 00 08 fe f7
...
bash$ cd /proc/registry/HKEY_LOCAL_MACHINE/SYSTEM
bash$ ls -l MountedDevices
...
-r--r----- 1 Admin SYSTEM 12 Dec 10 11:20 %5CDosDevices%5CC%3A
...
bash$ od -t x1 MountedDevices/%5CDosDevices%5CC%3A
0000000 cf a8 97 e8 00 08 fe f7 01 00 00 00

The unnamed (default) value of a key can be accessed using the filename @.

If a registry key contains a subkey and a value with the same name foo, Cygwin displays the subkey as foo and the value as
foo%val.

Cygwin User’s Guide 47 / 111

3.4.10 The @pathnames

To circumvent the limitations on shell line length in the native Windows command shells, Cygwin programs, when invoked by
non-Cygwin processes, expand their arguments starting with "@" in a special way. If a file pathname exists, the argument
@pathname expands recursively to the content of pathname. Double quotes can be used inside the file to delimit strings
containing blank space. In the following example compare the behaviors /bin/echo when run from bash and from the Windows
command prompt.

Example 3.2 Using @pathname

bash$ /bin/echo ’This is "a long" line’ > mylist
bash$ /bin/echo @mylist
@mylist
bash$ cmd
c:\> c:\cygwin\bin\echo @mylist
This is a long line

3.5 The CYGWIN environment variable

3.5.1 Implemented options

The CYGWIN environment variable is used to configure many global settings for the Cygwin runtime system. It contains the
options listed below, separated by blank characters. Many options can be turned off by prefixing with no.

• (no)dosfilewarning - If set, Cygwin will warn the first time a user uses an "MS-DOS" style path name rather than a
POSIX-style path name. Defaults to off.

• (no)export - If set, the final values of these settings are re-exported to the environment as CYGWIN again. Defaults to off.

• error_start:Win32filepath - if set, runs Win32filepath when cygwin encounters a fatal error, which is useful
for debugging. Win32filepath is usually set to the path to gdb or dumper, for example C:\cygwin\bin\gdb.exe.
There is no default set.

• (no)glob[:ignorecase] - if set, command line arguments containing UNIX-style file wildcard characters (brackets,
braces, question mark, asterisk, escaped with \) are expanded into lists of files that match those wildcards. This is applicable
only to programs run from non-Cygwin programs such as a CMD prompt. That means that this setting does not affect globbing
operations for shells such as bash, sh, tcsh, zsh, etc. Default is set.

This option also accepts an optional [no]ignorecase modifer. If supplied, wildcard matching is case insensitive. The
default is noignorecase

• (no)pipe_byte - causes Cygwin to open pipes in byte mode rather than message mode.

• proc_retry:n - causes fork() and exec*() to retry n times when a child process fails due to certain windows-specific
errors. These errors usually occur when processes are being started while a user is logging off.

• (no)reset_com - if set, serial ports are reset to 9600-8-N-1 with no flow control when used. This is done at open time and
when handles are inherited. Defaults to set.

• (no)wincmdln - if set, the windows complete command line (truncated to ~32K) will be passed on any processes that it
creates in addition to the normal UNIX argv list. Defaults to not set.

• winsymlinks:{lnk,native,nativestrict} - if set to just winsymlinks or winsymlinks:lnk, Cygwin cre-
ates symlinks as Windows shortcuts with a special header and the R/O attribute set.

If set to winsymlinks:native or winsymlinks:nativestrict, Cygwin creates symlinks as native Windows sym-
links on filesystems and OS versions supporting them.

The difference between winsymlinks:native and winsymlinks:nativestrict is this: If the filesystem supports
native symlinks and Cygwin fails to create a native symlink for some reason, it will fall back to creating Cygwin default

Cygwin User’s Guide 48 / 111

symlinks with winsymlinks:native, while with winsymlinks:nativestrict the symlink(2) system call will
immediately fail.

For more information on symbolic links, see Section 3.1.6.

3.5.2 Obsolete options

Certain CYGWIN options available in past releases have been removed over time for one reason or another. These obsolete
options are listed below.

• (no)binmode - This option has been removed because all file opens default to binary mode, unless the open mode has been
specified explicitly in the open(2) call.

• (no)detect_bloda - No case of a BLODA found by this option has been reported in years.

• check_case - This option has been removed in favor of real case sensitivity and the per-mount option "posix=[0|1]". For
more information, read the documentation in Section 3.1.2 and Section 3.4.5.

• codepage:[ansi|oem] - This option controlled which character set is used for file and console operations. Since Cygwin
is now doing all character conversion by itself, depending on the application call to the setlocale() function, and in turn
by the setting of the environment variables $LANG, $LC_ALL, or $LC_CTYPE, this setting became superfluous.

• (no)envcache - Originally, envcache controlled caching of environment variable conversion between Win32 and POSIX.
The default setting works fine, the option was just useless.

• forkchunk:[intval] - This option allowed to influence the fork() function in the way the memory of the parent
process gets copied to the child process. This functionality was only useful for Windows 95/98/Me.

• (no)ntea - This option has been removed since it only fakes security which is considered dangerous and useless. It also
created an uncontrollably large file on FAT and was entirely useless on FAT32.

• (no)ntsec - This option has been removed in favor of the per-mount option "acl"/"noacl". For more information, read the
documentation in Section 3.1.2.

• (no)server - Originally this option had to be enabled on the client side to use features only available when running
cygserver. This option has been removed because Cygwin now always tries to contact cygserver if a function is called which
requires cygserver being available. For more information, read the documentation in Section 3.7.

• (no)smbntsec - This option has been removed in favor of the per-mount option "acl"/"noacl". For more information, read
the documentation in Section 3.1.2.

• (no)strip_title - Removed because setting the Window title can be controlled by the application via Escape sequences.

• (no)title - Removed because setting the Window title can be controlled by the application via Escape sequences.

• (no)transparent_exe - This option has been removed because the behaviour it switched on is now the standard be-
haviour in Cygwin.

• (no)traverse - This option has been removed because traverse checking is not quite correctly implemented by Microsoft
and it’s behaviour has been getting worse with each new OS version. This complicates its usage so the option has been removed
for now.

• (no)tty - If set, Cygwin enabled extra support (i.e., termios) for UNIX-like ttys in the Windows console. This option has
been removed because it can be easily replaced by using a terminal like mintty, and it does not work well with some Windows
programs.

• (no)upcaseenv - This option could be used to convert all environment variables to uppercase. This was the default behavior
in older releases of Cygwin. Since keeping the case of environment variables intact is POSIXly correct, Cygwin now does not
change the case of environment variables, except for a restricted set to maintain minimal backward compatibility. The current
list of always uppercased variables is:

Cygwin User’s Guide 49 / 111

COMMONPROGRAMFILES
COMSPEC
PATH
SYSTEMDRIVE
SYSTEMROOT
TEMP
TMP
WINDIR

3.6 POSIX accounts, permission, and security

This section discusses how the Windows security model is utilized in Cygwin to implement POSIX account information, POSIX-
like permissions, and how the Windows authentication model is used to allow cygwin applications to switch users in a POSIX-like
fashion.

The setting of POSIX-like file and directory permissions is controlled by the mount option (no)acl which is set to acl by
default.

We start with a short overview. Note that this overview must be necessarily short. If you want to learn more about the Windows
security model, see the Access Control article in MSDN documentation.

POSIX concepts and in particular the POSIX security model are not discussed here, but assumed to be understood by the reader.
If you don’t know the POSIX security model, search the web for beginner documentation.

3.6.1 Brief overview of Windows security

In the Windows security model, almost any "object" is securable. "Objects" are files, processes, threads, semaphores, etc.

Every object has a data structure attached, called a "security descriptor" (SD). The SD contains all information necessary to
control who can access an object, and to determine what they are allowed to do to or with it. The SD of an object consists of five
parts:

• Flags which control several aspects of this SD. This is not discussed here.

• The SID of the object owner.

• The SID of the object owner group.

• A list of "Access Control Entries" (ACE), called the "Discretionary Access Control List" (DACL).

• Another list of ACEs, called the "Security Access Control List" (SACL), which doesn’t matter for our purpose. We ignore it
here.

Every ACE contains a so-called "Security IDentifier" (SID) and other stuff which is explained a bit later. Let’s talk about the SID
first.

A SID is a unique identifier for users, groups, computers and Active Directory (AD) domains. SIDs are basically comparable
to POSIX user ids (UIDs) and group ids (GIDs), but are more complicated because they are unique across multiple machines
or domains. A SID is a structure of multiple numerical values. There’s a convenient convention to type SIDs, as a string of
numerical fields separated by hyphen characters. Here’s an example:

SID of a machine "foo":

S-1-5-21-165875785-1005667432-441284377

SID of a user "johndoe" of the system "foo":

S-1-5-21-165875785-1005667432-441284377-1023

http://msdn.microsoft.com/en-us/library/aa374860(VS.85).aspx

Cygwin User’s Guide 50 / 111

The first field is always "S", which is just a notational convention to show that this is a SID. The second field is the version
number of the SID structure, So far there exists only one version of SIDs, so this field is always 1. The third and fourth fields
represent the "authority" which can be thought of as a type or category of SIDs. There are a couple of builtin accounts and
accounts with very special meaning which have certain well known values in these third and fourth fields. However, computer
and domain SIDs always start with "S-1-5-21". The next three fields, all 32 bit values, represent the unique 96 bit identifier of
the computer system. This is a hopefully unique value all over the world, but in practice it’s sufficient if the computer SIDs are
unique within a single Windows network.

As you can see in the above example, SIDs of users (and groups) are identical to the computer SID, except for an additional part,
the so-called "relative identifier" (RID). So the SID of a user is always uniquely attached to the system on which the account has
been generated.

It’s a bit different in domains. The domain has its own SID, and that SID is identical to the SID of the first domain controller,
on which the domain is created. Domain user SIDs look exactly like the computer user SIDs, the leading part is just the domain
SID and the RID is created when the user is created.

Ok, consider you created a new domain "bar" on some new domain controller and you would like to create a domain account
"johndoe":

SID of a domain "bar.local":

S-1-5-21-186985262-1144665072-740312968

SID of a user "johndoe" in the domain "bar.local":

S-1-5-21-186985262-1144665072-740312968-1207

So you now have two accounts called johndoe, one account created on the machine "foo", one created in the domain "bar.local".
Both have different SIDs and not even the RID is the same. How do the systems know it’s the same account? After all, the
name is the same, right? The answer is, these accounts are not identical. All machines on the network will treat these SIDs as
identifying two separate accounts. One is "FOO\johndoe", the other one is "BAR\johndoe" or "johndoe@bar.local". Different
SID, different account. Full stop.

Starting with Cygwin 1.7.34, Cygwin uses an automatic, internal translation from Windows SID to POSIX UID/GID. This
mechanism, which is the preferred method for the SID<=>UID/GID mapping, is described in detail in Section 3.6.2.

Prior to Cygwin 1.7.34, the last part of the SID, the so called "Relative IDentifier" (RID), was by default used as UID and/or GID
when you created the /etc/passwd and /etc/group files using the mkpasswd and mkgroup tools. These tools as well
as reading accounts from /etc/passwd and /etc/group files is still present in recent versions of Cygwin, but you should
switch to the aforementioned automatic translation, unless you have very specific needs. Again, see Section 3.6.2 for the details.

Do you still remember the SIDs with special meaning? In offical notation they are called "well-known SIDs". For example,
POSIX has no GID for the group of "all users" or "world" or "others". The last three rwx bits in a unix-style permission value
just represent the permissions for "everyone who is not the owner or is member of the owning group". Windows has a SID for
these poor souls, the "Everyone" SID. Other well-known SIDs represent circumstances under which a process is running, rather
than actual users or groups. Here are a few examples for well-known SIDs:

Everyone S-1-1-0 Simply everyone...
Batch S-1-5-3 Processes started via the task

scheduler are member of this group.
Interactive S-1-5-4 Only processes of users which are

logged in via an interactive
session are members here.

Authenticated Users S-1-5-11 Users which have gone through
the authentication process and

survived. Anonymously accessing
users are not incuded here.

SYSTEM S-1-5-18 A special account which has all
kinds of dangerous rights, sort of
an uber-root account.

For a full list please refer to the MSDN document Well-known SIDs. The Cygwin package called "csih" provides a tool,
/usr/lib/csih/getAccountName.exe, which can be used to print the (possibly localized) name for the various well-known SIDS.

http://msdn.microsoft.com/en-us/library/aa379649.aspx

Cygwin User’s Guide 51 / 111

Naturally, well-known SIDs are the same on each machine, so they are not unique to a machine or domain. They have the same
meaning across the Windows network.

Additionally, there are a couple of well-known builtin groups, which have the same SID on every machine and which have certain
user rights by default:

administrators S-1-5-32-544
users S-1-5-32-545
guests S-1-5-32-546
...

For instance, every account is usually member in the "Users" group. All administrator accounts are member of the "Administra-
tors" group. That’s all about it as far as single machines are involved. In a domain environment it’s a bit more tricky. Since these
SIDs are not unique to a machine, every domain user and every domain group can be a member of these well known groups.
Consider the domain group "Domain Admins". This group is by default in the "Administrators" group. Let’s assume the above
computer called "foo" is a member machine of the domain "bar.local". If you stick the user "BAR\johndoe" into the group "Do-
main Admins", this guy will automatically be a member of the administrators group on "foo" when logging on to "foo". Neat,
isn’t it?

Back to ACE and ACL. POSIX is able to create three different permissions, the permissions for the owner, for the group and
for the world. In contrast the Windows ACL has a potentially infinite number of members... as long as they fit into 64K. Every
member is an ACE. ACE consist of three parts:

• The type of the ACE (allow ACE or deny ACE).
• Permission bits, 32 of them.
• The SID for which the permissions are allowed or denied.

The two (for us) important types of ACEs are the "access allowed ACE" and the "access denied ACE". As the names imply, the
allow ACE tells the system to allow the given permissions to the SID, the deny ACE results in denying the specific permission
bits.

The possible permissions on objects are more detailed than in POSIX. For example, the permission to delete an object is different
from the permission to change object data, and even changing object data can be separated into different permission bits for
different kind of data. But there’s a problem with the definition of a "correct" ACL which disallows mapping of certain POSIX
permissions cleanly. See Section 3.6.3.

POSIX is able to create only three different permissions? Not quite. Newer operating systems and file systems on POSIX systems
also provide access control lists. Two different APIs exist for accessing these ACLs, the Solaris API and the POSIX API. Cygwin
implements the original Solaris API to access Windows ACLs in a Unixy way. Online man pages for the Solaris ACL API can
be found on http://docs.oracle.com. For an overview see acl(5).

3.6.2 Mapping Windows accounts to POSIX accounts

For as long as Cygwin has existed, it has stored user and group information in /etc/passwd and /etc/group files. Under
the assumption that these files would never be too large, the first process in a process tree, as well as every execing process within
the tree would parse them into structures in memory. Thus every Cygwin process would contain an expanded copy of the full
information from /etc/passwd and /etc/group.

This approach has a few downsides. One of them is that the idea that these files will always be small, is flawed. Another one
is that reading the entire file is most of the time entirely useless, since most processes only need information on their own user
and the primary group. Last but not least, the passwd and group files have to be maintained separately from the already existing
Windows user databases, the local SAM and Active Directory.

On the other hand, we have to have this mapping between Windows SIDs and POSIX uid/gid values, so we need a mechanism
to convert SIDs to uid/gid values and vice versa.

Microsoft "Services for UNIX" (SFU) (deprecated since Windows 8/Server 2012) never used passwd/group files. Rather, SFU
used a fixed, computational mapping between SIDs and POSIX uid/gid which even has Active Directory support. It allows us
to generate uid/gid values from SIDs and vice versa. The mechanism is documented, albeit in a confusing way and spread over
multiple MSDN articles.

Starting with Cygwin 1.7.34, Cygwin utilizes an approach inspired by the mapping method as implemented by SFU, with a few
differences for backward compatibility and to handle some border cases differently.

http://docs.oracle.com
http://docs.oracle.com/cd/E23824_01/html/821-1474/acl-5.html#scrolltoc

Cygwin User’s Guide 52 / 111

3.6.2.1 Mapping Windows SIDs to POSIX uid/gid values

The following description assumes you’re comfortable with the concept of Windows SIDs and RIDs. For a brief introduction,
see Section 3.6.1.

Cygwin’s mapping between SIDs and uid/gid values works in two ways.

• Read /etc/passwd and/etc/group files if they exist, just as in the olden days, mainly for backward compatibility.

• If no files are present, or if an entry is missing in the files, ask Windows.

At least, that’s the default behaviour now. It will be configurable using a file /etc/nsswitch.conf, which is discussed in
Section 3.6.2.4. Let’s explore the default for now.

If the passwd or group files are present, they will be scanned on demand as soon as a mapping from SIDs to uid/gid or account
names is required. The new mechanism will never read the entire file into memory, but only scan for the requested entry and
cache this one in memory.

If no entry is found, or no passwd or group file was present, Cygwin will ask the OS.

Note
If the first process in a Cygwin process tree determines that no /etc/passwd or /etc/group file is present, no other
process in the entire process tree will try to read the files later on. This is done for self-preservation. It’s rather bad if the uid or
gid of a user changes during the lifetime of a process tree.
For the same reason, if you delete the /etc/passwd or /etc/group file, this will be ignored. The passwd and group
records read from the files will persist in memory until either a new /etc/passwd or /etc/group is created, or you exit all
processes in the current process tree.
See the note in Section 3.6.2.4 for some comprehensive examples.

So if we’ve drawn a blank reading the files, we’re going to ask the OS. First thing, we ask the local machine for the SID or the
username. The OS functions LookupAccountSid and LookupAccountName are pretty intelligent. They have all the stuff built in
to ask for any account of the local machine, the Active Directory domain of the machine, the Global Catalog of the forest of the
domain, as well as any trusted domain of our forest for the information. One OS call and we’re practically done...

Except, the calls only return the mapping between SID, account name and the account’s domain. We don’t have a mapping to
POSIX uid/gid and we’re missing information on the user’s home dir and login shell.

Let’s discuss the SID<=>uid/gid mapping first. Here’s how it works.

• Well-known SIDs in the NT_AUTHORITY domain of the S-1-5-RID type, or aliases of the S-1-5-32-RID type are mapped to
the uid/gid value RID. Examples:

"SYSTEM" S-1-5-18 <=> uid/gid: 18
"Users" S-1-5-32-545 <=> uid/gid: 545

• Other well-known SIDs in the NT_AUTHORITY domain (S-1-5-X-RID):

S-1-5-X-RID <=> uid/gid: 0x1000 * X + RID

Example:

"NTLM Authentication" S-1-5-64-10 <=> uid/gid: 0x4000A == 262154

• Other well-known SIDs:

S-1-X-Y <=> uid/gid: 0x10000 + 0x100 * X + Y

Example:

http://msdn.microsoft.com/en-us/library/windows/desktop/aa379166%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379159%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa379649.aspx

Cygwin User’s Guide 53 / 111

"LOCAL" S-1-2-0 <=> uid/gid: 0x10200 == 66048
"Creator Group" S-1-3-1 <=> uid/gid: 0x10301 == 66305

• Logon SIDs: The LogonSid of the current user’s session is converted to the fixed uid 0xfff == 4095 and named "CurrentSes-
sion". Any other LogonSid is converted to the fixed uid 0xffe == 4094 and named "OtherSession".

• Mandatory Labels:

S-1-16-RID <=> uid/gid: 0x60000 + RID

Example:

"Medium Mandatory Level" S-1-16-8192 <=> uid/gid: 0x62000 == 401408

• Accounts from the local machine’s user DB (SAM):

S-1-5-21-X-Y-Z-RID <=> uid/gid: 0x30000 + RID

Example:

"Administrator" S-1-5-21-X-Y-Z-500 <=> uid/gid: 0x301f4 == 197108

• Accounts from the machine’s primary domain:

S-1-5-21-X-Y-Z-RID <=> uid/gid: 0x100000 + RID

Example:

"Domain Users" S-1-5-21-X-Y-Z-513 <=> uid/gid: 0x100201 == 1049089

• Accounts from a trusted domain of the machine’s primary domain:

S-1-5-21-X-Y-Z-RID <=> uid/gid: trustPosixOffset(domain) + RID

trustPosixOffset? This needs a bit of explanation. This value exists in Windows domains already since before Active
Directory days. What happens is this. If you create a domain trust between two domains, a trustedDomain entry will be
added to both databases. It describes how this domain trusts the other domain. One attribute of a trust is a 32 bit value called
trustPosixOffset For each new trust, trustPosixOffset will get some automatic value. In recent AD domain
implementations, the first trusted domain will get trustPosixOffset set to 0x80000000. Following domains will get
lower values. Unfortunately the domain admins are allowed to set the trustPosixOffset value for each trusted domain
to some arbitrary 32 bit value, no matter what the other trustPosixOffset are set to, thus allowing any kind of collisions
between the trustPosixOffset values of domains. That’s not exactly helpful, but as the user of this value, we have to
trust the domain admins to set trustPosixOffset to sensible values, or to keep it at the system chosen defaults.

So, for the first (or only) trusted domain of your domain, the automatic offset is 0x80000000. An example for a user of that
trusted domain is

S-1-5-21-X-Y-Z-1234 <=> uid/gid 0x800004d2 == 2147484882

There’s one problem with this approach. Assuming you’re running in the context of a local SAM user on a domain member
machine. Local users don’t have the right to fetch this kind of domain information from the DC, they’ll get permission denied.
In this case Cygwin will fake a sensible trustPosixOffset value.

Another problem is if the AD administrators chose an unreasonably small trustPosixOffset value. Anything below the
hexadecimal value 0x100000 (the POSIX offset of the primary domain) is bound to produce collisions with system accounts
as well as local accounts. The right thing to do in this case is to notify your administrator of the problem and to ask for moving
the offset to a more reasonable value. However, to reduce the probability for collisions, Cygwin overrides this offset with a
sensible fixed replacement offset.

• Local accounts from another machine in the network:

There’s no SID<=>uid/gid mapping implemented for this case. The problem is, there’s no way to generate a bijective mapping.
There’s no central place which keeps an analogue of the trustPosixOffset, and there’s the additional problem that the
LookupAccountSid and LookupAccountName functions cannnot resolve the SIDs, unless they know the name of the machine
this SID comes from. And even then it will probably suffer a Permission denied error when trying to ask the machine
for its local account.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa379166%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379159%28v=vs.85%29.aspx

Cygwin User’s Guide 54 / 111

Now we have a semi-bijective mapping between SIDs and POSIX uid/gid values, but given that we have potentially users and
groups in different domains having the same name, how do we uniquely distinguish between them by name? Well, we can do
that by making their names unique in a per-machine way. Dependent on the domain membership of the account, and dependent
of the machine being a domain member or not, the user and group names will be generated using a domain prefix and a separator
character between domain and account name. The separator character is the plus sign, +.

• Well-known and builtin accounts will be named as in Windows:

"SYSTEM", "LOCAL", "Medium Mandatory Level", ...

• If the machine is not a domain member machine, only local accounts can be resolved into names, so for ease of use, just the
account names are used as Cygwin user/group names:

"corinna", "bigfoot", "None", ...

• If the machine is a domain member machine, all accounts from the primary domain of the machine are mapped to Cygwin
names without domain prefix:

"corinna", "bigfoot", "Domain Users", ...

while accounts from other domains are prepended by their domain:

"DOMAIN1+corinna", "DOMAIN2+bigfoot", "DOMAIN3+Domain Users", ...

• Local machine accounts of a domain member machine get a Cygwin user name the same way as accounts from another domain:
The local machine name gets prepended:

"MYMACHINE+corinna", "MYMACHINE+bigfoot", "MYMACHINE+None", ...

• If LookupAccountSid fails, Cygwin checks the accounts against the known trusted domains. If the account is from one of the
trusted domains, an artificial account name is created. It consists of the domain name, and a special name created from the
account RID:

"MY_DOM+User(1234)", "MY_DOM+Group(5678)"

Otherwise we know nothing about this SID, so it will be mapped to the fake accounts Unknown+User/Unknown+Group
with uid/gid -1.

3.6.2.2 Caching account information

The information fetched from the Windows account database or the /etc/passwd and /etc/group files is cached by the
process. The cached information is inherited by Cygwin child processes. A Cygwin process invoked from a Windows command,
such as CMD.exe, will start a new Cygwin process tree and the caching starts from scratch (unless cygserver is running, but read
on).

While usually working fine, this has some drawbacks. Consider a shell calling id. id fetches all group information from the
current token and caches them. Unfortunately id doesn’t start any child processes, so the information is lost as soon as id exits.

But there’s another caching mechanism available. If cygserver is running it will provide passwd and group entry caching for all
processes in every Cygwin process tree started after cygserver. So, if you start a Cygwin Terminal and cygserver is running at
the time, mintty, the shell, and all child processes will use cygserver caching. If you start a Cygwin Terminal and cygserver is
not running at the time, none of the processes started inside this terminal window will use cygserver caching.

The advantage of cygserver caching is that it’s system-wide and, as long as cygserver is running, unforgetful. Every Cygwin
process on the system will have the cygserver cache at its service. Additionally, all information requested from cygserver once,
will be cached inside the process itself and, again, propagated to child processes.

If you automatically start Cygwin processes as Windows services at system startup, you may wish to consider starting cygserver
first in order to take advantage of this system-wide caching. To assure that cygserver has started prior to starting sshd or other
Cygwin processes, you may wish to create service startup dependencies. Cygserver should probably wait for Windows TCPIP
and AFD services before it starts, and then other Cygwin process should start after cygserver. Example Windows commands to
accomplish this (after the services already exist) are shown below. You will need an administrative prompt to run the sc config
commands.

Cygwin User’s Guide 55 / 111

Delay Cygserver until TCPIP and AFD have started
Note the (odd) required space character after "depend="

sc config cygserver depend= tcpip/afd

Delay sshd until after Cygserver has started
Again note the (odd) required space character after "depend="

sc config sshd depend= cygserver

View the Cygserver service details

sc qc cygserver

Note that this sc config command replaces any existing dependencies. The above changes will not impact the running instance,
only future instances.

To remove all dependencies from the cygserver service

sc config cygserver depend= /

3.6.2.3 Cygwin user names, home dirs, login shells

Obviously, if you don’t maintain passwd and group files, you need to have a way to maintain the other fields of a passwd entry
as well. A couple of things come to mind:

• You want to use a Cygwin username different from your Windows username.

Note
This is only supported via /etc/passwd. A Cygwin username maintained in the Windows user databases would require
very costly (read: slow) search operations.

• You want to change the primary group of a user. For AD accounts this is not supported. The primary group of a user is always
the Windows primary group set in Active Directory and can’t be changed. For SAM accounts, you can add the primary group
to the SAM description field of the user. See Section 3.6.2.4.10 for more info.

• You want a home dir different from the default /home/$USERNAME.

• You want to specify a different login shell than /bin/bash.

• You want to add specific content to the pw_gecos field.

For simple needs you can create /etc/passwd and/or /etc/group files with entries for your account and tweak that.

For bigger installations, maintaining per-client files is rather troublesome. Also, no two environments are the same, so the needs
are pretty different. Therefore Cygwin supports configuring how to fetch home directory, login shell, and gecos information in
/etc/nsswitch.conf. See the next section for detailed information how to configure Cygwin’s account handling.

3.6.2.4 The /etc/nsswitch.conf file

On Linux and some other UNIXy OSes, we have a file called /etc/nsswitch.conf. Among other things, it determines how passwd
and group entries are generated. That’s what Cygwin now provides as well.

The /etc/nsswitch.conf file is optional. If you don’t have one, Cygwin uses sensible defaults.

http://linux.die.net/man/5/nsswitch.conf

Cygwin User’s Guide 56 / 111

Note
The /etc/nsswitch.conf file is read exactly once by the first process of a Cygwin process tree. If there was no /etc/
nsswitch.conf file when this first process started, then no other process in the running Cygwin process tree will try to read
the file.
If you create or change /etc/nsswitch.conf, you have to restart all Cygwin processes that need to see the change. If
the process you want to see the change is a child of another process, you need to restart all of that process’s parents, too.
For example, if you run vim inside the default Cygwin Terminal, vim is a child of your shell, which is a child of mintty. If you edit
/etc/nsswitch.conf in that vim instance, your shell won’t immediately see the change, nor will vim if you restart it from
that same shell instance. This is because both are getting their nsswitch information from their ancestor, mintty. You have to
start a fresh terminal window for the change to take effect.
By contrast, if you leave that Cygwin Terminal window open after making the change to /etc/nsswitch.conf, then
restart a Cygwin service like cron, cron will see the change, because it is not a child of mintty or any other Cygwin process.
(Technically, it is a child of cygrunsrv, but that instance also restarts when you restart the service.)
The reason we point all this out is that the requirements for restarting things are not quite as stringent as when you replace
cygwin1.dll. If you have three process trees, you have three independent copies of the nsswitch information. If you start
a fresh process tree, it will see the changes. As long as any process in an existing process tree remains running, all processes
in that tree will continue to use the old information.

So, what settings can we perform with /etc/nsswitch.conf? Let’s start with an example /etc/nsswitch.conf file
set up to all default values:

/etc/nsswitch.conf
passwd: files db
group: files db

db_enum: cache builtin
db_home: /home/%U
db_shell: /bin/bash
db_gecos: <empty>

3.6.2.4.1 The /etc/nsswitch.conf syntax

The first line, starting with a hash # is a comment. The hash character starts a comment, just as in shell scripts. Everything up to
the end of the line is ignored. So this:

foo: bar # baz

means, set "foo" to value "bar", ignore everything after the hash.

The other lines define the available settings. The first word up to a colon is a keyword. Note that the colon must follow
immediately after the keyword. This is a valid line:

foo: bar

This is not valid:

foo : bar

Apart from this restriction, the remainder of the line can have as many spaces and TABs as you like.

3.6.2.4.2 The passwd: and group: settings

The two lines starting with the keywords passwd: and group: define where Cygwin gets its passwd and group information
from. files means, fetch the information from the corresponding file in the /etc directory. db means, fetch the information
from the Windows account databases, the SAM for local accounts, Active Directory for domain account. Examples:

passwd: files

Cygwin User’s Guide 57 / 111

Read passwd entries only from /etc/passwd.

group: db

Read group entries only from SAM/AD.

group: files # db

Read group entries only from /etc/group (db is only a comment).

passwd: files db

Read passwd entries from /etc/passwd. If a user account isn’t found, try to find it in SAM or AD. This is the default for
both, passwd and group information.

group: db files

This is a valid entry, but the order will be ignored by Cygwin. If both settings, files and db are specified, Cygwin will always
try the files first, then the db.

passwd: and group: are the two basic settings defining where to get the account information from. The following settings
starting with db_ define certain aspects of the Windows account database search and how to generate passwd and group
information from the database.

3.6.2.4.3 The db_enum: setting

db_enum: defines the depth of a database search, if an application calls one of the enumeration functions getpwent or getgrent.
The problem with these functions is, they neither allow to define how many entries will be enumerated when calling them in
a loop, nor do they allow to add some filter criteria. They were designed back in the days, when only /etc/passwd and
/etc/group files existed and the number of user accounts on a typical UNIX system was seldomly a three-digit number.

These days, with user and group databases sometimes going in the six-digit range, they are a potential burden. For that reason,
Cygwin does not enumerate all user or group accounts by default, but rather just a very small list, consisting only of the accounts
cached in memory by the current process, as well as a handful of predefined builtin accounts.

db_enum: allows to specify the accounts to enumerate in a fine-grained manner. It takes a list of sources as argument:

db_enum: source1 source2 ...

The recognized sources are the following:

none No output from getpwent/getgrent at all.

all The opposite. Enumerates accounts from all known sources, including all trusted domains.

cache Enumerate all accounts currently cached in memory.

builtin Enumerate the predefined builtin accounts for backward compatibility. These are five passwd accounts (SYSTEM,
LocalService, NetworkService, Administrators, TrustedInstaller) and two group accounts (SYSTEM and TrustedInstaller).

files Enumerate the accounts from /etc/passwd or /etc/group.

local Enumerate all accounts from the local SAM.

primary Enumerate all accounts from the primary domain.

alltrusted Enumerate all accounts from all trusted domains.

some.domain Enumerate all accounts from the trusted domain some.domain. The trusted domain can be given as Netbios
flat name (MY_DOMAIN) or as dns domain name (my_domain.corp). In contrast to the aforementioned fixed source
keywords, distinct domain names are caseinsensitive. Only domains which are actually trusted domains are enumerated.
Unknown domains are simply ignored.

http://linux.die.net/man/3/getpwent
http://linux.die.net/man/3/getgrent

Cygwin User’s Guide 58 / 111

Please note that getpwent/getgrent do not test if an account was already listed from another source, so an account can
easily show up twice or three times. Such a test would be rather tricky, nor does the Linux implementation perform such test.
Here are a few examples for /etc/nsswitch.conf:

db_enum: none

No output from getpwent/getgrent at all. The first call to the function immediately returns a NULL pointer.

db_enum: cache files

Enumerate all accounts cached by the current process, plus all entries from either the /etc/passwd or /etc/group file.

db_enum: cache local primary

Enumerate all accounts cached by the current process, all accounts from the SAM of the local machine, and all accounts from
the primary domain of the machine.

db_enum: local primary alltrusted

Enumerate the accounts from the machine’s SAM, from the primary domain of the machine, and from all trusted domains.

db_enum: primary domain1.corp sub.domain.corp domain2.net

Enumerate the accounts from the primary domain and from the domains domain1.corp, sub.domain.corp and domain2.net.

db_enum: all

Enumerate everything and the kitchen sink.

3.6.2.4.4 Settings defining how to create the passwd entry

/etc/nsswitch.conf supports three settings to configure where to get the pw_dir, pw_shell, and pw_gecos content of a
passwd entry from:

db_home: schema... # Define how to fetch the pw_dir entry.
db_shell: schema... # Define how to fetch the pw_shell entry.
db_gecos: schema... # Define how to fetch the pw_gecos entry.

"schema..." is a list of up to four space-separated schemata:

db_FOO: schema1 schema2 ...

When generating a passwd entry, Cygwin tries the schemata in order. If the first schema returns an empty string, it skips to the
second, and so on. Schemata only supported on AD are silently skipped for SAM accounts and on non-AD machines.

Four schemata are predefined, two schemata are variable. The predefined schemata are the following:

windows Utilizes typical Windows settings. Supported for AD and SAM accounts.

cygwin Utilizes the cygwinUser AD schema extension. This schema extension is available via a schema extension file /usr/
share/cygwin/cygwin.ldif. See Section 3.6.2.4.8 for more information.

unix Utilizes the posixAccount schema attributes per RFC 2307. The posixAccount schema is available by default in Windows
Server, but typically only utilized when installing the Active Directory "Server for NIS" feature (which is deprecated since
Server 2012 R2). See also Section 3.6.2.4.9.

desc Utilizes XML-style attributes in the description attribute. Supported for AD and SAM accounts. See Section 3.6.2.4.10
for a more detailed description.

The variable schemata are as follows. Note that the leading characters (@ and /) are an integral part of the definition.

https://tools.ietf.org/html/rfc2307

Cygwin User’s Guide 59 / 111

@ad_attribute ad_attribute is any arbitrary AD attribute name which should (ideally) be available in the User class
or in any attached auxiliary class. It’s always treated as a single string argument. Only the first string of a multi-string
attributes will be read.

/path An arbitrary string, typically a path. The leading slash is required. Given that a single, fixed path for all users only
makes marginal sense, the /path schema supports wildcards. A wildcard is a per-cent (%) character, followed by another
character giving the meaning. The supported wildcard characters are:

%u The Cygwin username (that’s lowercase u).

%U The Windows username (that’s uppercase U).

%D Windows domain in NetBIOS style.

%H Windows home directory in POSIX style. Note that, for the db_home: setting, this only makes sense right after the
preceeding slash, as in

db_home: /%H/cygwin

%_ Since space and TAB characters are used to separate the schemata, a space in the filename has to be given as %_ (that’s
an underscore).

%% A per-cent character.

Any other %X expression is treated as if the character X has been given alone.

The exact meaning of a schema depends on the setting it’s used for. The following sections explain the settings in detail.

3.6.2.4.5 The db_home: setting

The db_home: setting defines how Cygwin fetches the user’s home directory, or, more precise, the content of the pw_dir
member of the user’s passwd entry. The following list describes the meaning of each schema when used with db_home:

windows The user’s home directory is set to the same directory which is used as Windows home directory. This is the home
Directory AD attribute. For SAM accounts, this is equivalent to the "Home folder" setting in SAM. If both attributes
are unset, Cygwin falls back to the user’s local profile directory, typically something along the lines of C:\Users\
$USERNAME. Of course, the Windows directory is converted to POSIX-style by Cygwin.

cygwin AD only: The user’s home directory is set to the POSIX path given in the cygwinHome attribute from the cygwinU
ser auxiliary class. See also Section 3.6.2.4.8.

unix AD only: The user’s home directory is set to the POSIX path given in the unixHomeDirectory attribute from the
posixAccount auxiliary class. See also Section 3.6.2.4.9.

desc The user’s home directory is set to the POSIX path given in the home="..." XML-alike setting in the user’s descript
ion attribute in SAM or AD. See Section 3.6.2.4.10 for a detailed description.

@ad_attribute AD only: The user’s home directory is set to the path given in the ad_attribute attribute. The path can
be given as Windows or POSIX path.

/path The user’s home directory is set to the given POSIX path. Remember the wildcards described in Section 3.6.2.4.4.

Fallback If none of the schemes given for db_home: define a non-empty directory, the user’s home directory is set to /home/
$USERNAME.

As has been briefly mentioned before, the default setting for db_home: is

db_home: /home/%U

So by default, Cygwin just sets the home dir to /home/$USERNAME.

Cygwin User’s Guide 60 / 111

3.6.2.4.6 The db_shell: setting

The db_shell: setting defines how Cygwin fetches the user’s login shell, the content of the pw_shell member of the user’s
passwd entry. The following list describes the meaning of each schema when used with db_shell:

windows The windows schema is ignored for now. The logical choice would be CMD, but that introduces some problems,
for instance the fact that CMD has no concept of running as login shell. This may change in future.

cygwin AD only: The user’s home directory is set to the POSIX path given in the cygwinShell attribute from the cygwin
User auxiliary class. See also Section 3.6.2.4.8.

unix AD only: The user’s login shell is set to the POSIX path given in the loginShell attribute from the posixAccount
auxiliary class. See also Section 3.6.2.4.9.

desc The user’s login shell is set to the POSIX path given in the shell="..." XML-alike setting in the user’s description
attribute in SAM or AD. See Section 3.6.2.4.10 for a detailed description.

@ad_attribute AD only: The user’s login shell is set to the path given in the ad_attribute attribute. The path can be
given as Windows or POSIX path.

/path The user’s login shell is set to the given POSIX path. Albeit not being as important here, the wildcards described in
Section 3.6.2.4.4 are also available for specifying a login shell path.

Fallback If none of the schemes given for db_shell: define a non-empty pathname, the user’s login shell is set to /bin/
bash.

As for db_home:, the default setting for db_shell: is pretty much a constant

db_shell: /bin/bash

3.6.2.4.7 The db_gecos: setting

The db_gecos: setting defines how to fetch additional content for the pw_gecos member of the user’s passwd entry. There’s
always a fixed, Cygwin-specific part in the pw_gecos field for identifying the account. However, an administrator might want
to add informative content like, for instance, the user’s full name. That’s what the db_gecos: setting is for. The following list
describes the meaning of each schema when used with db_gecos:

windows Add the AD displayName attribute or, for SAM accounts, the "Full name" entry to the pw_gecos field.

cygwin AD only: The content of the cygwinGecos attribute from the cygwinUser auxiliary class is added to pw_gecos.
See also Section 3.6.2.4.8.

unix AD only: The content of the gecos attribute from the posixAccount auxiliary class is added to pw_gecos. See also
Section 3.6.2.4.9.

desc The content of the gecos="..." XML-alike setting in the user’s description attribute in SAM or AD is added to
pw_gecos. See Section 3.6.2.4.10 for a detailed description.

@ad_attribute AD only: The content of the ad_attribute attribute is added to pw_gecos.

/path The string following the slash is added to pw_gecos. Here, the wildcards described in Section 3.6.2.4.4 may come in
handy.

Fallback If none of the schemes given for db_gecos: define a non-empty pathname, nothing is added to pw_gecos.

The default setting for db_gecos: is the empty string.

Cygwin User’s Guide 61 / 111

3.6.2.4.8 The cygwin schema

The cygwin schema is based on a Cygwin-specific Active Directory schema extension. Using this schema extension allows to
maintain Cygwin-specific settings entirely within AD, without colliding with any other schema.

The cygwin schema extension is available in a default Cygwin installation in the file /usr/share/cygwin/cygwin.ldif.
To install the schema extension, you have to be schema admin, and you have to run the ldifde command on the schema master.
The installation itself is rather simple. Assuming you’re schema admin and running a shell with administrative privileges:

$ cd /usr/share/cygwin
$ ldifde -i -f cygwin.ldif -k -c "CN=schema,CN=Configuration,DC=X" #schemaNamingContext

Afterwards, the auxiliary class cygwinUser is attached to the class User, and the auxiliary class cygwinGroup is attached
to the class Group. The new attributes can be immediately edited using ADSI Edit.

At the time of writing the following attributes are utilized by Cygwin:

: cygwinHome, : Used as Cygwin home directory with db_home:cygwin. See Section 3.6.2.4.5.
: cygwinShell, : Used as Cygwin login shell with db_shell:cygwin. See Section 3.6.2.4.6.
: cygwinGecos, : Content will be added to the pw_gecos field with db_gecos:cygwin. See Section 3.6.2.4.7.

3.6.2.4.9 The unix schema

The unix schema utilizes the posixAccount attribute extension. This is one of two schema extensions which are connected
to AD accounts, available by default. They are usually not set, unless used by the Active Directory Server for NIS feature
(deprecated since Server 2012 R2). Two schemata are interesting for Cygwin, posixAccount, connected to user accounts,
and posixGroup, connected to group accounts. Both follow the description of RFC 2307, an Approach for Using LDAP as a
Network Information Service. The user attributes utilized by Cygwin are:

: unixHomeDirectory, : Used as Cygwin home directory with db_home:unix. See Section 3.6.2.4.5.
: loginShell, : Used as Cygwin login shell with db_shell:unix. See Section 3.6.2.4.6.
: gecos, : Content will be added to the pw_gecos field with db_gecos:unix. See Section 3.6.2.4.7.
: uidNumber, : See Section 3.6.2.5 and Section 3.6.2.6.

The group attributes utilized by Cygwin are:

: gidNumber, : See Section 3.6.2.5 and Section 3.6.2.6.

Apart from power shell scripting or inventing new CLI tools, these attributes can be changed using the Attribute Editor
tab in the user properties dialog of the Active Directory Users and Computers MMC snap-in. Alternatively, if
the Server for NIS administration feature has been installed, there will be a UNIX Attributes tab which contains the
required fields, except for the gecos field. Last resort is ADSI Edit.

3.6.2.4.10 The desc schema

When using user accounts from the local account database, the SAM, there are only a very limited number of settings available.
In contrast to Active Directory there’s no way to add fields to a user’s entry. You have to make do with the fields available. The
method to utilize the description field has been mainly introduced for those accounts, usually the only ones a home user
has. However, for symmetry, and because there may be a reason to use this in an AD environment, this schema is also supported
for AD users.

Note
The presentation of local user account settings on Windows is confusing, to say the least. The description field is not
visible at all in the user settings available via the User Accounts control settings. And while it’s called Description
in the Local Users and Groups MMC snap-in (available, for instance, via the Computer Management GUI), in the
command line tool net user the same field is called comment. The latter is especially confusing for AD admins, because the
comment attribute in AD is called usercomment on the command line. Confused? Never mind, you’re not the only one...

https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307

Cygwin User’s Guide 62 / 111

Fortunately you can utilize the description field even if you’re running a "home edition" of Windows, by using the command
line. The net user command allows to set all values in the SAM, even if the GUI is crippled.

A Cygwin SAM comment entry looks like this:

<cygwin key="value" key="value" [...] />

The supported keys are:

: home="value", : Sets the Cygwin home dir to value.
: shell="value", : Sets the Cygwin login shell to value.
: gecos="value", : Adds the string value to the user’s gecos field.

The next two settings are only supported for SAM accounts.

: group="value", : Sets the Cygwin primary group of the account to value, provided that the user is already a member
of that group. This allows to override the default None primary group for local accounts. One nice idea here is, for instance,
group="Users".
: unix="value", : Sets the NFS/Samba uid of the user to the decimal value. See Section 3.6.2.5 and Section 3.6.2.6.

The <cygwin .../> string can start at any point in the comment, but you have to follow the rules:

• It starts with "<cygwin " and ends with "/>".

• The "cygwin" string and the key names have to be lowercase.

• No spaces between key and "value", just the equal sign.

• The value must be placed within double quotes and it must not contain a double quote itself. The double quotes are required
for the decimal values as well!

Note
There’s also a length restriction imposed by Windows. The description entry has a maximum length of 1023 characters.

CMD example:

net user corinna /comment:"<cygwin home=\"/home/foo\"/>"

Bash example (use single quotes):

net user corinna /comment:’<cygwin home="/home/foo"/>’

For changing group comments, use the `net localgroup’ command. The supported key/value pair for SAM groups are:

: unix="value", : Sets the NFS/Samba gid of the group to the decimal value. See Section 3.6.2.5 and Section 3.6.2.6.

3.6.2.5 NFS account mapping

Microsoft’s NFS client does not map the uid/gid values on the NFS shares to SIDs. There’s no such thing as a (fake) security
descriptor returned to the application. Rather, via an undocumented API an application can fetch RFC 1813 compatible NFSv3
stat information from the share. This is what Cygwin is using to show stat information for files on NFS shares.

The problem is, while all other information in this stat record, like timestamps, file size etc., can be used by Cygwin, Cygwin
had no way to map the values of the st_uid and st_gid members to a Windows SID for a long time. So it just faked the file owner
info and claimed that it’s you.

However, SFU has, over time, developed multiple methods to map UNIX uid/gid values on NFS shares to Windows SIDs. You’ll
find the full documentation of the mapping methods in NFS Identity Mapping in Windows Server 2012

Cygwin now utilizes the RFC 2307 mapping for this purpose. This is most of the time provided by an AD domain, but it could
also be a standalone LDAP mapping server. Per RFC 2307, the uid is in the attribute uidNumber. For groups, the gid is in the
gidNumber attribute. See Section 3.6.2.4.9.

When Cygwin stat()s files on an NFS share, it asks the mapping server via LDAP in two different ways, depending on the role of
the mapping server.

https://tools.ietf.org/html/rfc1813
http://blogs.technet.com/b/filecab/archive/2012/10/09/nfs-identity-mapping-in-windows-server-2012.aspx
https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307

Cygwin User’s Guide 63 / 111

• If the server is an AD domain controller, it asks for an account with uidNumber attribute == st_uid field of the stat record
returned by NFS. If an account matches, AD returns the Windows SID, so we have an immediate mapping from UNIX uid to
a Windows SID, if the user account has a valid uidNumber attribute. For groups, the method is the same, just that Cygwin
asks for a group with gidNumber attribute == st_gid field of the stat record.

• If the server is a standalone LDAP mapping server Cygwin asks for the same uidNumber/gidNumber attributes, but it can’t
expect that the LDAP server knows anything about Windows SIDs. Rather, the mapping server returns the account name.
Cygwin then asks the DC for an account with this name, and if that succeeds, we have a mapping between UNIX uid/gid and
Windows SIDs.

The mapping will be cached for the lifetime of the process, and inherited by child processes.

3.6.2.6 Samba account mapping

A fully set up Samba file server with domain integration is running winbindd to map Windows SIDs to artificially created UNIX
uids and gids, and this mapping is transparent within the domain, so Cygwin doesn’t have to do anything special.

However, setting up winbindd isn’t for everybody, and it fails to map Windows accounts to already existing UNIX users or
groups. In contrast to NFS, Samba returns security descriptors, but unmapped UNIX accounts get special SIDs:

• A UNIX user account with uid X is mapped to the Windows SID S-1-22-1-X.

• A UNIX group account with gid X is mapped to SID S-1-22-2-X.

As you can see, even though we have SIDs, they just reflect the actual uid/gid values on the UNIX box in the RID value. It’s only
marginally different from the NFS method, so why not just use the same method as for NFS?

That’s what Cygwin will do. If it encounters a S-1-22-x-y SID, it will perform the same RFC 2307 mapping as for NFS shares.

For home users without any Windows domain or LDAP server per RFC 2307, but with a Linux machine running Samba, just add
this information to your SAM account. Assuming the uid of your Linux user account is 505 and the gid of your primary group
is, say, 100, just add the values to your SAM user and group accounts. The following example assumes you didn’t already add
something else to the comment field.

To your user’s SAM comment (remember: called Description in the GUI), add:

<cygwin group="Users" unix="505"/>

To the Users group SAM comment add:

<cygwin unix="100"/>

This should be sufficient to work on your Samba share and to see all files owned by your Linux user account as your files.

3.6.3 File permissions

On NTFS and if the noacl mount option is not specified for a mount point, Cygwin sets file permissions as on POSIX systems.
Basically this is done by defining a Security Descriptor with the matching owner and group SIDs, and a DACL which contains
ACEs for the owner, the group and for "Everyone", which represents what POSIX calls "others".

There’s just one problem when trying to map the POSIX permission model onto the Windows permission model.

There’s a leak in the definition of a "correct" ACL which disallows a certain POSIX permission setting. The official documenta-
tion explains in short the following:

• The requested permissions are checked against all ACEs of the user as well as all groups the user is member of. The permissions
given in these user and groups access allowed ACEs are accumulated and the resulting set is the set of permissions of that user
given for that object.

• The order of ACEs is important. The system reads them in sequence until either any single requested permission is denied or
all requested permissions are granted. Reading stops when this condition is met. Later ACEs are not taken into account.

https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307

Cygwin User’s Guide 64 / 111

• All access denied ACEs should precede any access allowed ACE. ACLs following this rule are called "canonical".

Note that the last rule is a preference or a definition of correctness. It’s not an absolute requirement. All Windows kernels will
correctly deal with the ACL regardless of the order of allow and deny ACEs. The second rule is not modified to get the ACEs in
the preferred order.

Unfortunately the security tab in the file properties dialog of the Windows Explorer insists to rearrange the order of the ACEs to
canonical order before you can read them. Thank God, the sort order remains unchanged if one presses the Cancel button. But
don’t even think of pressing OK...

Canonical ACLs are unable to reflect each possible combination of POSIX permissions. Example:

rw-r-xrw-

Ok, so here’s the first try to create a matching ACL, assuming the Windows permissions only have three bits, as their POSIX
counterpart:

UserAllow: 110
GroupAllow: 101
OthersAllow: 110

Hmm, because of the accumulation of allow rights the user may execute because the group may execute.

Second try:

UserDeny: 001
GroupAllow: 101
OthersAllow: 110

Now the user may read and write but not execute. Better? No! Unfortunately the group may write now because others may write.

Third try:

UserDeny: 001
GroupDeny: 010
GroupAllow: 001
OthersAllow: 110

Now the group may not write as intended but unfortunately the user may not write anymore, either. How should this problem be
solved? According to the canonical order a UserAllow has to follow the GroupDeny but it’s easy to see that this can never be
solved that way.

The only chance:

UserDeny: 001
UserAllow: 010
GroupDeny: 010
GroupAllow: 001
OthersAllow: 110

Again: This works on all supported versions of Windows. Only the GUIs aren’t able (or willing) to deal with that order.

3.6.4 Switching the user context

Windows users have been accustomed to the "Switch User" feature, which switches the entire desktop to another user while
leaving the original user’s desktop "suspended". Another Windows feature is the "Run as..." context menu entry, which allows
you to start an application using another user account when right-clicking on applications and shortcuts.

On POSIX systems, this operation can be performed by processes running under the privileged user accounts (usually the "root"
user account) on a per-process basis. This is called "switching the user context" for that process, and is performed using the
POSIX setuid and seteuid system calls.

Cygwin User’s Guide 65 / 111

While this sort of feature is available on Windows as well, Windows does not support the concept of these calls in a simple
fashion. Switching the user context in Windows is generally a tricky process with lots of "behind the scenes" magic involved.

Windows uses so-called `access tokens’ to identify a user and its permissions. Usually the access token is created at logon time
and then it’s attached to the starting process. Every new process within a session inherits the access token from its parent process.
Every thread can get its own access token, which allows, for instance, to define threads with restricted permissions.

3.6.4.1 Switching the user context with password authentication

To switch the user context, the process has to request such an access token for the new user. This is typically done by calling the
Win32 API function LogonUser with the user name and the user’s cleartext password as arguments. If the user exists and the
password was specified correctly, the access token is returned and either used in ImpersonateLoggedOnUser to change the user
context of the current thread, or in CreateProcessAsUser to change the user context of a spawned child process.

Later versions of Windows define new functions in this context and there are also functions to manipulate existing access tokens
(usually only to restrict them). Windows Vista also adds subtokens which are attached to other access tokens which plays an
important role in the UAC (User Access Control) facility of Vista and later. However, none of these extensions to the original
concept are important for this documentation.

Back to this logon with password, how can this be used to implement set(e)uid? Well, it requires modification of the calling
application. Two Cygwin functions have been introduced to support porting setuid applications which only require login with
passwords. You only give Cygwin the right access token and then you can call seteuid or setuid as usual in POSIX applications.
Porting such a setuid application is illustrated by a short example:

/* First include all needed cygwin stuff. */
#ifdef __CYGWIN__
#include <windows.h>
#include <sys/cygwin.h>
#endif

[...]

struct passwd *user_pwd_entry = getpwnam (username);
char *cleartext_password = getpass ("Password:");

[...]

#ifdef __CYGWIN__
/* Patch the typical password test. */
{
HANDLE token;

/* Try to get the access token from Windows. */
token = cygwin_logon_user (user_pwd_entry, cleartext_password);
if (token == INVALID_HANDLE_VALUE)

error_exit;
/* Inform Cygwin about the new impersonation token. */
cygwin_set_impersonation_token (token);
/* Cygwin is now able, to switch to that user context by setuid or seteuid calls. */

}
#else

/* Use standard method on non-Cygwin systems. */
hashed_password = crypt (cleartext_password, salt);
if (!user_pwd_entry ||

strcmp (hashed_password, user_pwd_entry->pw_passwd))
error_exit;

#endif /* CYGWIN */

[...]

Cygwin User’s Guide 66 / 111

/* Everything else remains the same! */

setegid (user_pwd_entry->pw_gid);
seteuid (user_pwd_entry->pw_uid);
execl ("/bin/sh", ...);

3.6.4.2 Switching the user context without password, Method 1: Create a token from scratch

An unfortunate aspect of the implementation of set(e)uid is the fact that the calling process requires the password of the user to
which to switch. Applications such as sshd wishing to switch the user context after a successful public key authentication, or the
cron application which, again, wants to switch the user without any authentication are stuck here. But there are other ways to get
new user tokens.

One way is just to create a user token from scratch. This is accomplished by using an (officially undocumented) function on
the NT function level. The NT function level is used to implement the Win32 level, and, as such is closer to the kernel than the
Win32 level. The function of interest, NtCreateToken, allows you to specify user, groups, permissions and almost everything
you need to create a user token, without the need to specify the user password. The only restriction for using this function is that
the calling process needs the "Create a token object" user right, which only the SYSTEM user account has by default, and which
is considered the most dangerous right a user can have on Windows systems.

That sounds good. We just start the servers which have to switch the user context (sshd, inetd, cron, ...) as Windows services
under the SYSTEM (or LocalSystem in the GUI) account and everything just works. Unfortunately that’s too simple. Using
NtCreateToken has a few drawbacks.

First of all, the permission "Create a token object" gets explicitly removed from the SYSTEM user’s access token, when starting
services under that account. That requires us to create a new account with this specific permission just to run this kind of services.
But that’s a minor problem.

A more important problem is that using NtCreateToken is not sufficient to create a new logon session for the new user. What
does that mean? Every logon usually creates a new logon session. A logon session has a couple of attributes which are unique to
the session. One of these attributes is the fact, that Windows functions identify the user domain and user name not by the SID of
the access token owner, but only by the logon session the process is running under.

This has the following unfortunate consequence. Consider a service started under the SYSTEM account switches the user context
to DOMAIN\my_user using a token created directly by calling the NtCreateToken function. A process running under this new
access token might want to know under which user account it’s running. The corresponding SID is returned correctly, for instance
S-1-5-21-1234-5678-9012-77777. However, if the same process asks the OS for the user name of this SID something wierd
happens. For instance, the LookupAccountSid function will not return "DOMAIN\my_user", but "NT AUTHORITY\SYSTEM"
as the user name.

You might ask "So what?" After all, this only looks bad, but functionality and permission-wise everything should be ok. And
Cygwin knows about this shortcoming so it will return the correct Cygwin username when asked. Unfortunately this is more
complicated. Some native, non-Cygwin Windows applications will misbehave badly in this situation. A well-known example are
certain versions of Visual-C++.

Last but not least, you don’t have the usual comfortable access to network shares. The reason is that the token has been created
without knowing the password. The password are your credentials necessary for network access. Thus, if you logon with a
password, the password is stored hidden as "token credentials" within the access token and used as default logon to access
network resources. Since these credentials are missing from the token created with NtCreateToken, you only can access network
shares from the new user’s process tree by using explicit authentication, on the command line for instance:

bash$ net use ’\\server\share’ /user:DOMAIN\my_user my_users_password

Note that, on some systems, you can’t even define a drive letter to access the share, and under some circumstances the drive letter
you choose collides with a drive letter already used in another session. Therefore it’s better to get used to accessing these shares
using the UNC path as in

bash$ grep foo //server/share/foofile

Cygwin User’s Guide 67 / 111

3.6.4.3 Switching the user context without password, Method 2: LSA authentication package

We’re looking for another way to switch the user context without having to provide the password. Another technique is to create
an LSA authentication package. LSA is an acronym for "Local Security Authority" which is a protected part of the operating
system which only allows changes to become active when rebooting the system after the change. Also, as soon as the LSA
encounters serious problems (for instance, one of the protected LSA processes died), it triggers a system reboot. LSA is the part
of the OS which cares for the user logons and which also creates logon sessions.

An LSA authentication package is a DLL which has to be installed as part of the LSA. This is done by tweaking a special registry
key. Cygwin provides such an authentication package. It has to be installed and the machine has to be rebooted to activate it.
This is the job of the shell script /usr/bin/cyglsa-config which is part of the Cygwin package.

After running /usr/bin/cyglsa-config and rebooting the system, the LSA authentication package is used by Cygwin
when set(e)uid is called by an application. The created access token using this method has its own logon session.

This method has two advantages over the NtCreateToken method.

The very special and very dangerous "Create a token object" user right is not required by a user using this method. Other
privileged user rights are still necessary, especially the "Act as part of the operating system" right, but that’s just business as
usual.

The user is correctly identified, even by delicate native applications which choke on that using the NtCreateToken method.

Disadvantages? Yes, sure, this is Windows. The access token created using LSA authentication still lacks the credentials for
network access. After all, there still hasn’t been any password authentication involved. The requirement to reboot after every
installation or deinstallation of the cygwin LSA authentication DLL is just a minor inconvenience compared to that...

Nevertheless, this is already a lot better than what we get by using NtCreateToken, isn’t it?

3.6.4.4 Switching the user context without password, Method 3: With password

Ok, so we have solved almost any problem, except for the network access problem. Not being able to access network shares
without having to specify a cleartext password on the command line or in a script is a harsh problem for automated logons for
testing purposes and similar stuff.

Fortunately there is a solution, but it has its own drawbacks. But, first things first, how does it work? The title of this section says
it all. Instead of trying to logon without password, we just logon with password. The password gets stored two-way encrypted
in a hidden, obfuscated area of the registry, the LSA private registry area. This part of the registry contains, for instance, the
passwords of the Windows services which run under some non-default user account.

So what we do is to utilize this registry area for the purpose of set(e)uid. The Cygwin command passwd -R allows a user to
specify his/her password for storage in this registry area. When this user tries to login using ssh with public key authentication,
Cygwin’s set(e)uid examines the LSA private registry area and searches for a Cygwin specific key which contains the password.
If it finds it, it calls LogonUser under the hood, using this password. If that works, LogonUser returns an access token with all
credentials necessary for network access.

For good measure, and since this way to implement set(e)uid is not only used by Cygwin but also by Microsoft’s SFU (Services
for Unix), we also look for a key stored by SFU (using the SFU command regpwd) and use that if it’s available.

We got it. A full access token with its own logon session, with all network credentials. Hmm, that’s heaven...

Back on earth, what about the drawbacks?

First, adding a password to the LSA private registry area requires administrative access. So calling passwd -R as a normal user
will fail! Cygwin provides a workaround for this. If cygserver is started as a service running under the SYSTEM account (which
is the default way to run cygserver) you can use passwd -R as normal, non-privileged user as well.

Second, as aforementioned, the password is two-way encrypted in a hidden, obfuscated registry area. Only SYSTEM has access
to this area for listing purposes, so, even as an administrator, you can’t examine this area with regedit. Right? No. Every
administrator can start regedit as SYSTEM user:

bash$ date
Tue Dec 2 16:28:03 CET 2008
bash$ at 16:29 /interactive regedit.exe

Cygwin User’s Guide 68 / 111

Additionally, if an administrator knows under which name the private key is stored (which is well-known since the algorithms
used to create the Cygwin and SFU keys are no secret), every administrator can access the password of all keys stored this way
in the registry.

Conclusion: If your system is used exclusively by you, and if you’re also the only administrator of your system, and if your
system is adequately locked down to prevent malicious access, you can safely use this method. If your machine is part of a
network which has dedicated administrators, and you’re not one of these administrators, but you (think you) can trust your
administrators, you can probably safely use this method.

In all other cases, don’t use this method. You have been warned.

3.6.4.5 Switching the user context, how does it all fit together?

Now we learned about four different ways to switch the user context using the set(e)uid system call, but how does set(e)uid
really work? Which method does it use now?

The answer is, all four of them. So here’s a brief overview what set(e)uid does under the hood:

• When set(e)uid is called, it tests if the user context had been switched by an earlier call already, and if the new user account
is the privileged user account under which the process had been started originally. If so, it just switches to the original access
token of the process it had been started with.

• Next, it tests if an access token has been stored by an earlier call to cygwin_set_impersonation_token. If so, it tests if that
token matches the requested user account. If so, the stored token is used for the user context switch.

If not, there’s no predefined token which can just be used for the user context switch, so we have to create a new token. The
order is as follows.

• Check if the user has stored the logon password in the LSA private registry area, either under a Cygwin key, or under a SFU
key. If so, use this to call LogonUser. If this succeeds, we use the resulting token for the user context switch.

• Otherwise, check if the Cygwin-specifc LSA authentication package has been installed and is functional. If so, use the appro-
priate LSA calls to communicate with the Cygwin LSA authentication package and use the returned token.

• Last chance, try to use the NtCreateToken call to create a token. If that works, use this token.

• If all of the above fails, our process has insufficient privileges to switch the user context at all, so set(e)uid fails and returns -1,
setting errno to EPERM.

3.7 Cygserver

3.7.1 What is Cygserver?

Cygserver is a program which is designed to run as a background service. It provides Cygwin applications with services which
require security arbitration or which need to persist while no other cygwin application is running.

The implemented services so far are:

• XSI IPC Message Queues.

• XSI IPC Semaphores.

• XSI IPC Shared Memory.

• Allows non-privileged users to store obfuscated passwords in the registry to be used by setuid and seteuid calls to create user
tokens with network credentials. This service is used by passwd -R. Using the stored passwords in set(e)uid does not require
running Cygserver. For details, see Section 3.6.4.

Cygwin User’s Guide 69 / 111

3.7.2 Cygserver command line options

Options to Cygserver take the normal UNIX-style `-X’ or `--longoption’ form. Nearly all options have a counterpart in the
configuration file (see below) so setting them on the command line isn’t really necessary. Command line options override
settings from the Cygserver configuration file.

The one-character options are prepended by a single dash, the long variants are prepended with two dashes. Arguments to options
are marked in angle brackets below. These are not part of the actual syntax but are used only to denote the arguments. Note that
all arguments are required. Cygserver has no options with optional arguments.

The recognized options are:

•
-f, --config-file <file>

Use <file> as configuration file instead of the default configuration line. The default configuration file is /etc/cygserver.conf.
The --help and --version options will print the default configuration pathname.

This option has no counterpart in the configuration file, for obvious reasons.
•
-c, --cleanup-threads <num>

Number of threads started to perform cleanup tasks. Default is 2. Configuration file option: kern.srv.cleanup_threads
•
-r, --request-threads <num>

Number of threads started to serve application requests. Default is 10. The -c and -r options can be used to play with
Cygserver’s performance under heavy load conditions or on slow machines. Configuration file option: kern.srv.request_threads

•
-d, --debug

Log debug messages to stderr. These will clutter your stderr output with a lot of information, typically only useful to developers.
•
-e, --stderr

Force logging to stderr. This is the default if stderr is connected to a tty. Otherwise, the default is logging to the system log. By
using the -e, -E, -y, -Y options (or the appropriate settings in the configuration file), you can explicitly set the logging output
as you like, even to both, stderr and syslog. Configuration file option: kern.log.stderr

•
-E, --no-stderr

Don’t log to stderr. Configuration file option: kern.log.stderr
•
-y, --syslog

Force logging to the system log. This is the default, if stderr is not connected to a tty, e. g. redirected to a file. Configuration
file option: kern.log.syslog

•
-Y, --no-syslog

Don’t log to syslog. Configuration file option: kern.log.syslog
•
-l, --log-level <level>

Set the verbosity level of the logging output. Valid values are between 1 and 7. The default level is 6, which is relatively chatty.
If you set it to 1, you will get only messages which are printed under severe conditions, which will result in stopping Cygserver
itself. Configuration file option: kern.log.level

•
-m, --no-sharedmem

Don’t start XSI IPC Shared Memory support. If you don’t need XSI IPC Shared Memory support, you can switch it off here.
Configuration file option: kern.srv.sharedmem

Cygwin User’s Guide 70 / 111

•
-q, --no-msgqueues

Don’t start XSI IPC Message Queues. Configuration file option: kern.srv.msgqueues
•
-s, --no-semaphores

Don’t start XSI IPC Semaphores. Configuration file option: kern.srv.semaphores
•
-S, --shutdown

Shutdown a running daemon and exit. Other methods are sending a SIGHUP to the Cygserver PID or, if running as service,
calling `net stop cygserver’ or `cygrunsrv -E cygserver’.

•
-h, --help

Output usage information and exit.
•
-V, --version

Output version information and exit.

3.7.3 How to install Cygserver

Cygserver is part of the base cygwin package. Therefore, whenever Cygwin is installed, so is Cygserver.

You may want to install Cygserver as a service. See Section 3.7.4.

3.7.4 How to start Cygserver

Before you run Cygserver for the first time, you should run the /usr/bin/cygserver-config script once. It creates the default
configuration file and, upon request, installs Cygserver as service. The script only performs a default install, with no further
options given to Cygserver when running as service. Due to the wide configurability by changing the configuration file, that’s
typically not necessary.

You should always run Cygserver as a service under LocalSystem account. This is the way it is installed for you by the
/usr/bin/cygserver-config script.

3.7.5 The Cygserver configuration file

Cygserver has many options, which allow you to customize the server to your needs. Customization is accomplished by editing
the configuration file, which is by default /etc/cygserver.conf. This file is only read once, at startup of Cygserver. There’s no
option to re-read the file at runtime by, say, sending a signal to Cygserver.

The configuration file determines how Cygserver operates. There are options which set the number of threads running in parallel,
options for setting how and what to log and options to set various maximum values for the IPC services.

The default configuration file delivered with Cygserver is installed to /etc/defaults/etc. The /usr/bin/cygserver-config script copies
it to /etc, giving you the option to overwrite an already existing file or to leave it alone. Therefore, the /etc file is safe to be changed
by you, since it will not be overwritten by a later update installation.

The default configuration file contains many comments which describe everything needed to understand the settings. A comment
at the start of the file describes the syntax rules for the file. The default options are shown in the file but are commented out.

It is generally a good idea to uncomment only options which you intend to change from the default values. Since reading the
options file on Cygserver startup doesn’t take much time, it’s also considered good practice to keep all other comments in the
file. This keeps you from searching for clues in other sources.

Cygwin User’s Guide 71 / 111

3.8 Cygwin Utilities

Cygwin comes with a number of command-line utilities that are used to manage the UNIX emulation portion of the Cygwin
environment. While many of these reflect their UNIX counterparts, each was written specifically for Cygwin. You may use the
long or short option names interchangeably; for example, --help and -h function identically. All of the Cygwin command-line
utilities support the --help and --version options.

3.8.1 cygcheck

cygcheck — List system information, check installed packages, or query package database

Synopsis

cygcheck [-v] [-h] PROGRAM
cygcheck -c [-d] [PACKAGE]
cygcheck -s [-r] [-v] [-h]
cygcheck -k
cygcheck -f FILE [FILE]...
cygcheck -l [PACKAGE]...
cygcheck -p REGEXP
cygcheck --delete-orphaned-installation-keys
cygcheck -h

Options

At least one command option or a PROGRAM is required, as shown above.

PROGRAM list library (DLL) dependencies of PROGRAM
-c, --check-setup show installed version of PACKAGE and verify integrity

(or for all installed packages if none specified)
-d, --dump-only just list packages, do not verify (with -c)
-s, --sysinfo produce diagnostic system information (implies -c -d)
-r, --registry also scan registry for Cygwin settings (with -s)
-k, --keycheck perform a keyboard check session (must be run from a

plain console only, not from a pty/rxvt/xterm)
-f, --find-package find the package to which FILE belongs
-l, --list-package list contents of PACKAGE (or all packages if none given)
-p, --package-query search for REGEXP in the entire cygwin.com package

repository (requires internet connectivity)
--delete-orphaned-installation-keys

Delete installation keys of old, now unused
installations from the registry. Requires the right
to change the registry.

-v, --verbose produce more verbose output
-h, --help annotate output with explanatory comments when given

with another command, otherwise print this help
-V, --version print the version of cygcheck and exit

Note: -c, -f, and -l only report on packages that are currently installed. To
search all official Cygwin packages use -p instead. The -p REGEXP matches
package names, descriptions, and names of files/paths within all packages.

Cygwin User’s Guide 72 / 111

Description

The cygcheck program is a diagnostic utility for dealing with Cygwin programs. If you are familiar with dpkg or rpm, cygcheck
is similar in many ways. (The major difference is that setup.exe handles installing and uninstalling packages; see Section 2.1 for
more information.)

The -c option checks the version and status of installed Cygwin packages. If you specify one or more package names, cygcheck
will limit its output to those packages, or with no arguments it lists all packages. A package will be marked Incomplete if
files originally installed are no longer present. The best thing to do in that situation is reinstall the package with setup.exe. To
see which files are missing, use the -v option. If you do not need to know the status of each package and want cygcheck to run
faster, add the -d option and cygcheck will only output the name and version for each package.

If you list one or more programs on the command line, cygcheck will diagnose the runtime environment of that program or
programs, providing the names of DLL files on which the program depends. If you specify the -s option, cygcheck will give
general system information. If you list one or more programs on the command line and specify -s, cygcheck will report on both.

The -f option helps you to track down which package a file came from, and -l lists all files in a package. For example, to find
out about /usr/bin/less and its package:

Example 3.3 Example cygcheck usage

$ cygcheck -f /usr/bin/less
less-381-1

$ cygcheck -l less
/usr/bin/less.exe
/usr/bin/lessecho.exe
/usr/bin/lesskey.exe
/usr/man/man1/less.1
/usr/man/man1/lesskey.1

The -h option prints additional helpful messages in the report, at the beginning of each section. It also adds table column
headings. While this is useful information, it also adds some to the size of the report, so if you want a compact report or if you
know what everything is already, just leave this out.

The -v option causes the output to be more verbose. What this means is that additional information will be reported which is
usually not interesting, such as the internal version numbers of DLLs, additional information about recursive DLL usage, and if
a file in one directory in the PATH also occurs in other directories on the PATH.

The -r option causes cygcheck to search your registry for information that is relevant to Cygwin programs. These registry
entries are the ones that have "Cygwin" in the name. If you are paranoid about privacy, you may remove information from this
report, but please keep in mind that doing so makes it harder to diagnose your problems.

In contrast to the other options that search the packages that are installed on your local system, the -p option can be used to
search the entire official Cygwin package repository. It takes as argument a Perl-compatible regular expression which is used
to match package names, package descriptions, and path/filenames of the contents of packages. This feature requires an active
internet connection, since it must query the cygwin.com web site. In fact, it is equivalent to the search that is available on the
Cygwin package listing page.

For example, perhaps you are getting an error because you are missing a certain DLL and you want to know which package
includes that file:

Example 3.4 Searching all packages for a file

$ cygcheck -p ’cygintl-2\.dll’
Found 1 matches for ’cygintl-2\.dll’.

libintl2-0.12.1-3 GNU Internationalization runtime library

$ cygcheck -p ’libexpat.*\.a’
Found 2 matches for ’libexpat.*\.a’.

expat-1.95.7-1 XML parser library written in C

https://cygwin.com/packages/

Cygwin User’s Guide 73 / 111

expat-1.95.8-1 XML parser library written in C

$ cygcheck -p ’/ls\.exe’
Found 2 matches for ’/ls\.exe’.

coreutils-5.2.1-5 GNU core utilities (includes fileutils, sh-utils and textutils)
coreutils-5.3.0-6 GNU core utilities (includes fileutils, sh-utils and textutils)

Note that this option takes a regular expression, not a glob or wildcard. This means that you need to use .* if you want something
similar to the wildcard * commonly used in filename globbing. Similarly, to match the period character you should use \. since
the . character in a regexp is a metacharacter that will match any character. Also be aware that the characters such as \ and *
are shell metacharacters, so they must be either escaped or quoted, as in the example above.

The third example above illustrates that if you want to match a whole filename, you should include the / path seperator. In the
given example this ensures that filenames that happen to end in ls.exe such as ncftpls.exe are not shown. Note that this
use does not mean "look for packages with ls in the root directory," since the / can match anywhere in the path. It’s just there
to anchor the match so that it matches a full filename.

By default the matching is case-sensitive. To get a case insensitive match, begin your regexp with (?i)which is a PCRE-specific
feature. For complete documentation on Perl-compatible regular expression syntax and options, read the perlre manpage, or one
of many websites such as perldoc.com that document the Perl language.

The cygcheck program should be used to send information about your system for troubleshooting when requested. When asked
to run this command save the output so that you can email it, for example:

$ cygcheck -s -v -r -h > cygcheck_output.txt

Each Cygwin DLL stores its path and installation key in the registry. This allows troubleshooting of problems which could
be a result of having multiple concurrent Cygwin installations. However, if you’re experimenting a lot with different Cygwin
installation paths, your registry could accumulate a lot of old Cygwin installation entries for which the installation doesn’t exist
anymore. To get rid of these orphaned registry entries, use the cygcheck --delete-orphaned-installation-keys command.

3.8.2 cygpath

cygpath — Convert Unix and Windows format paths, or output system path information

Synopsis

cygpath (-d|-m|-u|-w|-t TYPE) [-f FILE] [OPTION]... NAME...
cygpath [-c HANDLE]
cygpath [-ADHOPSW]
cygpath [-F ID]

Options

Output type options:

-d, --dos print DOS (short) form of NAMEs (C:\PROGRA~1\)
-m, --mixed like --windows, but with regular slashes (C:/WINNT)
-M, --mode report on mode of file (currently binmode or textmode)
-u, --unix (default) print Unix form of NAMEs (/cygdrive/c/winnt)
-w, --windows print Windows form of NAMEs (C:\WINNT)
-t, --type TYPE print TYPE form: ’dos’, ’mixed’, ’unix’, or ’windows’

Path conversion options:

-a, --absolute output absolute path

Cygwin User’s Guide 74 / 111

-l, --long-name print Windows long form of NAMEs (with -w, -m only)
-p, --path NAME is a PATH list (i.e., ’/bin:/usr/bin’)
-U, --proc-cygdrive Emit /proc/cygdrive path instead of cygdrive prefix

when converting Windows path to UNIX path.
-s, --short-name print DOS (short) form of NAMEs (with -w, -m only)
-C, --codepage CP print DOS, Windows, or mixed pathname in Windows

codepage CP. CP can be a numeric codepage identifier,
or one of the reserved words ANSI, OEM, or UTF8.
If this option is missing, cygpath defaults to the
character set defined by the current locale.

System information:

-A, --allusers use ‘All Users’ instead of current user for -D, -P
-D, --desktop output ‘Desktop’ directory and exit
-H, --homeroot output ‘Profiles’ directory (home root) and exit
-O, --mydocs output ‘My Documents’ directory and exit
-P, --smprograms output Start Menu ‘Programs’ directory and exit
-S, --sysdir output system directory and exit
-W, --windir output ‘Windows’ directory and exit
-F, --folder ID output special folder with numeric ID and exit

Other options:

-f, --file FILE read FILE for input; use - to read from STDIN
-o, --option read options from FILE as well (for use with --file)
-c, --close HANDLE close HANDLE (for use in captured process)
-i, --ignore ignore missing argument
-h, --help output usage information and exit
-V, --version output version information and exit

Description

The cygpath program is a utility that converts Windows native filenames to Cygwin POSIX-style pathnames and vice versa. It
can be used when a Cygwin program needs to pass a file name to a native Windows program, or expects to get a file name from
a native Windows program. Alternatively, cygpath can output information about the location of important system directories in
either format.

The -u and -w options indicate whether you want a conversion to UNIX (POSIX) format (-u) or to Windows format (-w). Use
the -d to get DOS-style (8.3) file and path names. The -m option will output Windows-style format but with forward slashes
instead of backslashes. This option is especially useful in shell scripts, which use backslashes as an escape character.

In combination with the -w option, you can use the -l and -s options to use normal (long) or DOS-style (short) form. The -d
option is identical to -w and -s together.

The -C option allows to specify a Windows codepage to print DOS and Windows paths created with one of the -d, -m, or -
w options. The default is to use the character set of the current locale defined by one of the internationalization environment
variables LC_ALL, LC_CTYPE, or LANG, see Section 2.4. This is sometimes not sufficient for interaction with native Windows
tools, which might expect native, non-ASCII characters in a specific Windows codepage. Console tools, for instance, might
expect pathnames in the current OEM codepage, while graphical tools like Windows Explorer might expect pathnames in the
current ANSI codepage.

The -U option allows to use cygpath to create unambiguous Unix paths pointing outside the Cygwin tree andf thus having no
explicit POSIX path. Those paths usually use the cygdrive prefix. However, the cygdrive prefix can be changed by the user, so
symbolic links created using the cygdrive prefix are not foolproof. With -U cygpath will generate such paths prepended by the
virtual /proc/cygdrive symbolic link, which will never change, so the created path is safe against changing the cygdrive
prefix.

The -C option takes a single parameter:

• ANSI, to specify the current ANSI codepage

Cygwin User’s Guide 75 / 111

• OEM, to specify the current OEM (console) codepage

• UTF8, to specify UTF-8.

• A numerical, decimal codepage number, for instance 936 for GBK, 28593 for ISO-8859-3, etc. A full list of supported
codepages is listed on the Microsoft MSDN page Code Page Identifiers. A codepage of 0 is the same as if the -C hasn’t been
specified at all.

The -p option means that you want to convert a path-style string rather than a single filename. For example, the PATH environ-
ment variable is semicolon-delimited in Windows, but colon-delimited in UNIX. By giving -p you are instructing cygpath to
convert between these formats.

The -i option supresses the print out of the usage message if no filename argument was given. It can be used in make file rules
converting variables that may be omitted to a proper format. Note that cygpath output may contain spaces (C:\Program Files) so
should be enclosed in quotes.

Example 3.5 Example cygpath usage

#!/bin/sh
if ["${1}" = ""];

then
XPATH=".";

else
XPATH="$(cygpath -C ANSI -w "${1}")";

fi
explorer $XPATH &

The capital options -D, -H, -P, -S, and -W output directories used by Windows that are not the same on all systems, for example
-S might output C:\WINNT\system32 or C:\Windows\System32. The -H shows the Windows profiles directory that can be used
as root of home. The -A option forces use of the "All Users" directories instead of the current user for the -D, -O and -P options.
The -F outputs other special folders specified by their internal numeric code (decimal or 0x-prefixed hex). For valid codes and
symbolic names, see the CSIDL_* definitions in the include file /usr/include/w32api/shlobj.h from package w32api. The current
valid range of codes for folders is 0 (Desktop) to 59 (CDBurn area). By default the output is in UNIX (POSIX) format; use the
-w or -d options to get other formats.

3.8.3 dumper

dumper — Dump core from WIN32PID to FILENAME.core

Synopsis

dumper [OPTION] FILENAME WIN32PID

Options

-d, --verbose be verbose while dumping
-h, --help output help information and exit
-q, --quiet be quiet while dumping (default)
-V, --version output version information and exit

http://msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx

Cygwin User’s Guide 76 / 111

Description

The dumper utility can be used to create a core dump of running Windows process. This core dump can be later loaded to gdb
and analyzed. One common way to use dumper is to plug it into cygwin’s Just-In-Time debugging facility by adding

error_start=x:\path\to\dumper.exe

to the CYGWIN environment variable. Please note that x:\path\to\dumper.exe is Windows-style and not cygwin path.
If error_start is set this way, then dumper will be started whenever some program encounters a fatal error.

dumper can be also be started from the command line to create a core dump of any running process. Unfortunately, because of
a Windows API limitation, when a core dump is created and dumper exits, the target process is terminated too.

To save space in the core dump, dumper doesn’t write those portions of target process’ memory space that are loaded from
executable and dll files and are unchangeable, such as program code and debug info. Instead, dumper saves paths to files which
contain that data. When a core dump is loaded into gdb, it uses these paths to load appropriate files. That means that if you create
a core dump on one machine and try to debug it on another, you’ll need to place identical copies of the executable and dlls in the
same directories as on the machine where the core dump was created.

3.8.4 getconf

getconf — Get configuration values

Synopsis

getconf [-v specification] variable_name [pathname]
getconf -a [pathname]

Options

-v specification Indicate specific version for which configuration
values shall be fetched.

-a, --all Print all known configuration values

Other options:

-h, --help This text
-V, --version Print program version and exit

Description

The getconf utility prints the value of the configuration variable specified by variable_name. If no pathname is given,
getconf serves as a wrapper for the confstr and sysconf functions, supporting the symbolic constants defined in the lim
its.h and unistd.h headers, without their respective _CS_ or _SC_ prefixes.

If pathname is given, getconf prints the value of the configuration variable for the specified pathname. In this form, getconf
serves as a wrapper for the pathconf function, supporting the symbolic constants defined in the unistd.h header, without
the _PC_ prefix.

If you specify the -v option, the parameter denotes a specification for which the value of the configuration variable should be
printed. Note that the only specifications supported by Cygwin are POSIX_V7_ILP32_OFFBIG and the legacy POSIX_V6_
ILP32_OFFBIG and XBS5_ILP32_OFFBIG equivalents.

Use the -a option to print a list of all available configuration variables for the system, or given pathname, and their values.

Cygwin User’s Guide 77 / 111

3.8.5 getfacl

getfacl — Display file and directory access control lists (ACLs)

Synopsis

getfacl [-adceEn] FILE [FILE2...]

Options

-a, --access display the file access control list only
-d, --default display the default access control list only
-c, --omit-header do not display the comment header
-e, --all-effective print all effective rights
-E, --no-effective print no effective rights
-n, --numeric print numeric user/group identifiers
-V, --version print version and exit
-h, --help this help text

When multiple files are specified on the command line, a blank
line separates the ACLs for each file.

Description

For each argument that is a regular file, special file or directory, getfacl displays the owner, the group, and the ACL. For directories
getfacl displays additionally the default ACL. With no options specified, getfacl displays the filename, the owner, the group, the
setuid (s), setgid (s), and sticky (t) bits if available, and both the ACL and the default ACL, if it exists. For more information on
Cygwin and Windows ACLs, see Section 3.6 in the Cygwin User’s Guide. The format for ACL output is as follows:

file: filename
owner: name or uid
group: name or uid
flags: sst
user::perm
user:name or uid:perm
group::perm
group:name or gid:perm
mask:perm
other:perm
default:user::perm
default:user:name or uid:perm
default:group::perm
default:group:name or gid:perm
default:mask:perm
default:other:perm

3.8.6 kill

kill — Send signals to processes

Synopsis

kill [-f] [-signal] [-s signal] pid1 [pid2 ...]
kill -l [signal]

Cygwin User’s Guide 78 / 111

Options

-f, --force force, using win32 interface if necessary
-l, --list print a list of signal names
-s, --signal send signal (use kill --list for a list)
-h, --help output usage information and exit
-V, --version output version information and exit

Description

The kill program allows you to send arbitrary signals to other Cygwin programs. The usual purpose is to end a running program
from some other window when ˆC won’t work, but you can also send program-specified signals such as SIGUSR1 to trigger
actions within the program, like enabling debugging or re-opening log files. Each program defines the signals they understand.

You may need to specify the full path to use kill from within some shells, including bash, the default Cygwin shell. This is
because bash defines a kill builtin function; see the bash man page under BUILTIN COMMANDS for more information. To
make sure you are using the Cygwin version, try

$ /bin/kill --version

which should give the Cygwin kill version number and copyright information.

Unless you specific the -f option, the "pid" values used by kill are the Cygwin pids, not the Windows pids. To get a list of
running programs and their Cygwin pids, use the Cygwin ps program. ps -W will display all windows pids.

The kill -l option prints the name of the given signal, or a list of all signal names if no signal is given.

To send a specific signal, use the -signN option, either with a signal number or a signal name (minus the "SIG" part), as shown
in these examples:

Example 3.6 Using the kill command

$ kill 123
$ kill -1 123
$ kill -HUP 123
$ kill -f 123

Here is a list of available signals, their numbers, and some commentary on them, from the file <sys/signal.h>, which should
be considered the official source of this information.

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3 quit
SIGILL 4 illegal instruction (not reset when caught)
SIGTRAP 5 trace trap (not reset when caught)
SIGABRT 6 used by abort
SIGIOT 6 another name for SIGABRT
SIGEMT 7 EMT instruction
SIGFPE 8 floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10 bus error
SIGSEGV 11 segmentation violation
SIGSYS 12 bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal from kill
SIGURG 16 urgent condition on IO channel
SIGSTOP 17 sendable stop signal not from tty
SIGTSTP 18 stop signal from tty
SIGCONT 19 continue a stopped process

Cygwin User’s Guide 79 / 111

SIGCHLD 20 to parent on child stop or exit
SIGCLD 20 System V name for SIGCHLD
SIGTTIN 21 to readers pgrp upon background tty read
SIGTTOU 22 like TTIN for output if (tp->t_local<OSTOP)
SIGIO 23 input/output possible
SIGPOLL 23 System V name for SIGIO
SIGXCPU 24 exceeded CPU time limit
SIGXFSZ 25 exceeded file size limit
SIGVTALRM 26 virtual time alarm
SIGPROF 27 profiling time alarm
SIGWINCH 28 window changed
SIGLOST 29 resource lost (eg, record-lock lost)
SIGPWR 29 power failure
SIGUSR1 30 user defined signal 1
SIGUSR2 31 user defined signal 2

3.8.7 ldd

ldd — Print shared library dependencies

Synopsis

ldd [OPTION]... FILE...

Options

-h, --help print this help and exit
-V, --version print version information and exit
-r, --function-relocs process data and function relocations

(currently unimplemented)
-u, --unused print unused direct dependencies

(currently unimplemented)
-v, --verbose print all information

(currently unimplemented)

Description

ldd prints the shared libraries (DLLs) loaded when running an executable or DLL.

Security

ldd invokes the Windows loader on the file specified, then uses the Windows debugging interface to report DLLs loaded, and (for
executables) to attempt to stop execution before the entrypoint. Thus, you should never use ldd on an untrusted file.

3.8.8 locale

locale — Get locale-specific information

Synopsis

locale [-amvhV]
locale [-ck] NAME
locale [-iusfnU]

Cygwin User’s Guide 80 / 111

Options

System information:

-a, --all-locales List all available supported locales
-m, --charmaps List all available character maps
-v, --verbose More verbose output

Modify output format:

-c, --category-name List information about given category NAME
-k, --keyword-name Print information about given keyword NAME

Default locale information:

-i, --input Print current input locale
-u, --user Print locale of user’s default UI language
-s, --system Print locale of system default UI language
-f, --format Print locale of user’s regional format settings

(time, numeric & monetary)
-n, --no-unicode Print system default locale for non-Unicode programs
-U, --utf Attach \".UTF-8\" to the result

Other options:

-h, --help This text
-V, --version Print program version and exit

Description

locale without parameters prints information about the current locale environment settings.

The -i, -u, -s, -f, and -n options can be used to request the various Windows locale settings. The purpose is to use this
command in scripts to set the POSIX locale variables.

The -i option prints the current input language. This is called the "Input language" and basically equivalent to the current
keyboard layout setting.

The -u option prints the current user’s Windows UI locale to stdout. In Windows this setting is called the "Display Language".

The -s option prints the systems default instead.

The -f option prints the user’s setting for time, date, number and currency. That’s equivalent to the setting in the "Formats" or
"Regional Options" tab in the "Region and Language" or "Regional and Language Options" dialog.

The -n option prints the system’s default language used for applications which don’t support Unicode.

With the -U option locale appends the string ".UTF-8" to enforce using UTF-8. Using UTF-8 as codeset is recommended.

Usage example:

bash$ export LANG=$(locale -uU)
bash$ echo $LANG
en_US.UTF-8
bash$ export LC_TIME=$(locale -fU)
bash$ echo $LC_TIME
de_DE.UTF-8

The -a option is helpful to learn which locales are supported by your Windows machine. It prints all available locales and the
allowed modifiers. Example:

Cygwin User’s Guide 81 / 111

bash$ locale -a
C
C.utf8
POSIX
af_ZA
af_ZA.utf8
am_ET
am_ET.utf8
...
be_BY
be_BY.utf8
be_BY@latin
...
ca_ES
ca_ES.utf8
ca_ES@euro
catalan
...

The -v option prints more detailed information about each available locale. Example:

bash$ locale -av
locale: af_ZA archive: /cygdrive/c/Windows/system32/kernel32.dll

language | Afrikaans

territory | South Africa
codeset | ISO-8859-1

locale: af_ZA.utf8 archive: /cygdrive/c/Windows/system32/kernel32.dll

language | Afrikaans

territory | South Africa
codeset | UTF-8

...

locale: ca_ES@euro archive: /cygdrive/c/Windows/system32/kernel32.dll

language | Catalan

territory | Spain
codeset | ISO-8859-15

locale: catalan archive: /usr/share/locale/locale.alias

language | Catalan

territory | Spain
codeset | ISO-8859-1

...

The -m option prints the names of the available charmaps supported by Cygwin to stdout.

Otherwise, if arguments are given, locale prints the values assigned to these arguments. Arguments can be names of locale
categories (for instance: LC_CTYPE, LC_MONETARY), or names of keywords supported in the locale categories (for instance:
thousands_sep, charmap). The -c option prints additionally the name of the category. The -k option prints additionally the
name of the keyword. Example:

bash$ locale -ck LC_MESSAGES
LC_MESSAGES
yesexpr="^[yY]"
noexpr="^[nN]"

Cygwin User’s Guide 82 / 111

yesstr="yes"
nostr="no"
messages-codeset="UTF-8"
bash$ locale noexpr
^[nN]

3.8.9 minidumper

minidumper — Write minidump from WIN32PID to FILENAME.dmp

Synopsis

minidumper [OPTION] FILENAME WIN32PID

Options

-t, --type minidump type flags
-n, --nokill don’t terminate the dumped process
-d, --verbose be verbose while dumping
-h, --help output help information and exit
-q, --quiet be quiet while dumping (default)
-V, --version output version information and exit

Description

The minidumper utility can be used to create a minidump of a running Windows process. This minidump can be later analysed
using breakpad or Windows debugging tools.

minidumper can be used with cygwin’s Just-In-Time debugging facility in exactly the same way as dumper (See dumper(1)).

minidumper can also be started from the command line to create a minidump of any running process. For compatibility with
dumper the target process is terminated after dumping unless the -n option is given.

3.8.10 mkgroup

mkgroup — Write /etc/group-like output to stdout

Synopsis

mkgroup [OPTION]...

Options

Options:

-l,--local [machine] Print local group accounts of \"machine\",
from local machine if no machine specified.
Automatically adding machine prefix for local
machine depends on settings in /etc/nsswitch.conf.

-L,--Local machine Ditto, but generate groupname with machine prefix.
-d,--domain [domain] Print domain groups,

Cygwin User’s Guide 83 / 111

from current domain if no domain specified.
-c,--current Print current group.
-S,--separator char For -L use character char as domain\\group

separator in groupname instead of default ’+’.
-o,--id-offset offset Change the default offset (0x10000) added to gids
-g,--group groupname Only return information for the specified group.

One of -l, -d must be specified, too.
-b,--no-builtin Don’t print BUILTIN groups.
-U,--unix grouplist Print UNIX groups when using -l on a UNIX Samba

server. Grouplist is a comma-separated list of
groupnames or gid ranges (root,-25,50-100).
Enumerating large ranges can take a long time!

-h,--help Print this message.
-v,--version Print version information and exit.

Default is to print local groups on stand-alone machines, plus domain
groups on domain controllers and domain member machines.

Description

Don’t use this command to generate a local /etc/group file, unless you really need one. See the Cygwin User’s Guide for more
information.

The mkgroup program can be used to create a local /etc/group file. Cygwin doesn’t need this file, because it reads group
information from the Windows account databases, but you can add an /etc/group file for instance, if your machine is often
disconnected from its domain controller.

Note that this information is static, in contrast to the information automatically gathered by Cygwin from the Windows account
databases. If you change the group information on your system, you’ll need to regenerate the group file for it to have the new
information.

By default, the information generated by mkgroup is equivalent to the information generated by Cygwin itself. The -d and -l/
-L options allow you to specify where the information comes from, some domain, or the local SAM of a machine. Note that you
can only enumerate accounts from trusted domains. Any non-trusted domain will be ignored. Access-restrictions of your current
account apply. The -l/-L when used with a machine name, tries to contact that machine to enumerate local groups of other
machines, typically outside of domains. This scenario cannot be covered by Cygwin’s account automatism. If you want to use
the -L option, but you don’t like the default domain/group separator from /etc/nsswitch.conf, you can specify another
separator using the -S option, for instance:

Example 3.7 Setting up group entry for current user with different domain/group separator

$ mkgroup -L server1 -S= > /etc/group

For very simple needs, an entry for the current user’s group can be created by using the option -c.

The -o option allows for (unlikely) special cases with multiple machines where the GIDs might match otherwise. The -g
option only prints the information for one group. The -U option allows you to enumerate the standard UNIX groups on a Samba
machine. It’s used together with -l samba-server or -L samba-server. The normal UNIX groups are usually not
enumerated, but they can show up as a group in ls -l output.

3.8.11 mkpasswd

mkpasswd — Write /etc/passwd-like output to stdout

Synopsis

mkpasswd [OPTIONS]...

Cygwin User’s Guide 84 / 111

Options

Options:

-l,--local [machine] Print local user accounts of \"machine\",
from local machine if no machine specified.
Automatically adding machine prefix for local
machine depends on settings in /etc/nsswitch.conf.

-L,--Local machine Ditto, but generate username with machine prefix.
-d,--domain [domain] Print domain accounts,

from current domain if no domain specified.
-c,--current Print current user.
-S,--separator char For -L use character char as domain\\user

separator in username instead of the default ’+’.
-o,--id-offset offset Change the default offset (0x10000) added to uids

of foreign local machine accounts. Use with -l/-L.
-u,--username username Only return information for the specified user.

One of -l, -d must be specified, too
-b,--no-builtin Don’t print BUILTIN users.
-p,--path-to-home path Use specified path instead of user account home dir

or /home prefix.
-U,--unix userlist Print UNIX users when using -l on a UNIX Samba

server. Userlist is a comma-separated list of
usernames or uid ranges (root,-25,50-100).
Enumerating large ranges can take a long time!

-h,--help Displays this message.
-V,--version Version information and exit.

Default is to print local accounts on stand-alone machines, domain accounts
on domain controllers and domain member machines.

Description

Don’t use this command to generate a local /etc/passwd file, unless you really need one. See the Cygwin User’s Guide for more
information.

The mkpasswd program can be used to create a /etc/passwd file. Cygwin doesn’t need this file, because it reads user
information from the Windows account databases, but you can add an /etc/passwd file, for instance if your machine is often
disconnected from its domain controller.

Note that this information is static, in contrast to the information automatically gathered by Cygwin from the Windows account
databases. If you change the user information on your system, you’ll need to regenerate the passwd file for it to have the new
information.

By default, the information generated by mkpasswd is equivalent to the information generated by Cygwin itself. The -d and -
l/-L options allow you to specify where the information comes from, some domain, or the local SAM of a machine. Note that
you can only enumerate accounts from trusted domains. Any non-trusted domain will be ignored. Access-restrictions of your
current account apply. The -l/-L when used with a machine name, tries to contact that machine to enumerate local groups of
other machines, typically outside of domains. This scenario cannot be covered by Cygwin’s account automatism. If you want
to use the -L option, but you don’t like the default domain/group separator from /etc/nsswitch.conf, you can specify
another separator using the -S option, analog to mkgroup.

For very simple needs, an entry for the current user can be created by using the option -c.

The -o option allows for special cases (such as multiple domains) where the UIDs might match otherwise. The -p option causes
mkpasswd to use the specified prefix instead of the account home dir or /home/. For example, this command:

Example 3.8 Using an alternate home root

$ mkpasswd -l -p "$(cygpath -H)" > /etc/passwd

Cygwin User’s Guide 85 / 111

would put local users’ home directories in the Windows ’Profiles’ directory. The -u option creates just an entry for the specified
user. The -U option allows you to enumerate the standard UNIX users on a Samba machine. It’s used together with -l samba-
server or -L samba-server. The normal UNIX users are usually not enumerated, but they can show up as file owners in
ls -l output.

3.8.12 mount

mount — Display information about mounted filesystems, or mount a filesystem

Synopsis

mount [OPTION] [<win32path> <posixpath>]
mount -a
mount <posixpath>

Options

-a, --all mount all filesystems mentioned in fstab
-c, --change-cygdrive-prefix change the cygdrive path prefix to <posixpath>
-f, --force force mount, don’t warn about missing mount

point directories
-h, --help output usage information and exit
-m, --mount-entries write fstab entries to replicate mount points

and cygdrive prefixes
-o, --options X[,X...] specify mount options
-p, --show-cygdrive-prefix show user and/or system cygdrive path prefix
-V, --version output version information and exit

Description

The mount program is used to map your drives and shares onto Cygwin’s simulated POSIX directory tree, much like as is done
by mount commands on typical UNIX systems. However, in contrast to mount points given in /etc/fstab, mount points
created or changed with mount are not persistent. They disappear immediately after the last process of the current user exited.
Please see Section 3.1.2 for more information on the concepts behind the Cygwin POSIX file system and strategies for using
mounts. To remove mounts temporarily, use umount

Using mount

If you just type mount with no parameters, it will display the current mount table for you.

Example 3.9 Displaying the current set of mount points

$ mount
C:/cygwin/bin on /usr/bin type ntfs (binary)
C:/cygwin/lib on /usr/lib type ntfs (binary)
C:/cygwin on / type ntfs (binary)
C: on /mnt/c type ntfs (binary,user,noumount)
D: on /mnt/d type fat (binary,user,noumount)

In this example, c:/cygwin is the POSIX root and the D drive is mapped to /mnt/d. Note that in this case, the root mount is a
system-wide mount point that is visible to all users running Cygwin programs, whereas the /mnt/d mount is only visible to the
current user.

Cygwin User’s Guide 86 / 111

The mount utility is also the mechanism for adding new mounts to the mount table in memory. The following example demon-
strates how to mount the directory //pollux/home/joe/data to /data for the duration of the current session.

Example 3.10 Adding mount points
$ ls /data
ls: /data: No such file or directory
$ mount //pollux/home/joe/data /data
mount: warning - /data does not exist!
$ mount
//pollux/home/joe/data on /data type smbfs (binary)
C:/cygwin/bin on /usr/bin type ntfs (binary)
C:/cygwin/lib on /usr/lib type ntfs (binary)
C:/cygwin on / type ntfs (binary)
C: on /c type ntfs (binary,user,noumount)
D: on /d type fat (binary,user,noumount)

A given POSIX path may only exist once in the mount table. Attempts to replace the mount will fail with a busy error. The -f
(force) option causes the old mount to be silently replaced with the new one, provided the old mount point was a user mount point.
It’s not valid to replace system-wide mount points. Additionally, the -f option will silence warnings about the non-existence of
directories at the Win32 path location.

The -o option is the method via which various options about the mount point may be recorded. The following options are
available (note that most of the options are duplicates of other mount flags):

acl - Use the filesystem’s access control lists (ACLs) to
implement real POSIX permissions (default).

binary - Files default to binary mode (default).
bind - Allows to remount part of the file hierarchy somewhere else.

Different from other mount calls, the first argument
specifies an absolute POSIX path, rather than a Win32 path.
This POSIX path is remounted to the POSIX path specified as
the second parameter. The conversion to a Win32 path is done
within Cygwin immediately at the time of the call. Note that
symlinks are ignored while performing this path conversion.

cygexec - Treat all files below mount point as cygwin executables.
dos - Always convert leading spaces and trailing dots and spaces to

characters in the UNICODE private use area. This allows to use
broken filesystems which only allow DOS filenames, even if they
are not recognized as such by Cygwin.

exec - Treat all files below mount point as executable.
ihash - Always fake inode numbers rather than using the ones returned

by the filesystem. This allows to use broken filesystems which
don’t return unambiguous inode numbers, even if they are not
recognized as such by Cygwin.

noacl - Ignore ACLs and fake POSIX permissions.
nosuid - No suid files are allowed (currently unimplemented)
notexec - Treat all files below mount point as not executable.
override - Override immutable mount points.
posix=0 - Switch off case sensitivity for paths under this mount point.
posix=1 - Switch on case sensitivity for paths under this mount point

(default).
sparse - Switch on support for sparse files. This option only makes

sense on NTFS and then only if you really need sparse files.
text - Files default to CRLF text mode line endings.

For a more complete description of the mount options and the /etc/fstab file, see Section 3.1.2.

Note that all mount points added with mount are user mount points. System mount points can only be specified in the /etc/
fstab file.

If you added mount points to /etc/fstab or your /etc/fstab.d/<username> file, you can add these mount points
to your current user session using the -a/--all option, or by specifing the posix path alone on the command line. As an

Cygwin User’s Guide 87 / 111

example, consider you added a mount point with the POSIX path /my/mount. You can add this mount point with either one of
the following two commands to your current user session.

$ mount /my/mount
$ mount -a

The first command just adds the /my/mount mount point to your current session, the mount -a adds all new mount points to
your user session.

If you change a mount point to point to another native path, or if you changed the flags of a mount point, you have to umount
the mount point first, before you can add it again. Please note that all such added mount points are added as user mount points,
and that the rule that system mount points can’t be removed or replaced in a running session still applies.

To bind a POSIX path to another POSIX path, use the bind mount flag.

$ mount -o bind /var /usr/var

This command makes the file hirarchy under /var additionally available under /usr/var.

The -m option causes the mount utility to output the current mount table in a series of fstab entries. You can save this output
as a backup when experimenting with the mount table. Copy the output to /etc/fstab to restore the old state. It also makes
moving your settings to a different machine much easier.

Cygdrive mount points

Whenever Cygwin cannot use any of the existing mounts to convert from a particular Win32 path to a POSIX one, Cygwin will,
instead, convert to a POSIX path using a default mount point: /cygdrive. For example, if Cygwin accesses z:\foo and the
z drive is not currently in the mount table, then z:\ will be accessible as /cygdrive/z. The mount utility can be used to
change this default automount prefix through the use of the "--change-cygdrive-prefix" option. In the following example, we will
set the automount prefix to /mnt:

Example 3.11 Changing the default prefix

$ mount --change-cygdrive-prefix /mnt

Note that the cygdrive prefix can be set both per-user and system-wide, and that as with all mounts, a user-specific mount takes
precedence over the system-wide setting. The mount utility creates system-wide mounts by default if you do not specify a type.
You can always see the user and system cygdrive prefixes with the -p option. Using the --options flag with --change-
cygdrive-prefix makes all new automounted filesystems default to this set of options. For instance (using the short form
of the command line flags)

Example 3.12 Changing the default prefix with specific mount options

$ mount -c /mnt -o binary,noacl

Limitations

Limitations: there is a hard-coded limit of 64 mount points. Also, although you can mount to pathnames that do not start with
"/", there is no way to make use of such mount points.

Normally the POSIX mount point in Cygwin is an existing empty directory, as in standard UNIX. If this is the case, or if there is
a place-holder for the mount point (such as a file, a symbolic link pointing anywhere, or a non-empty directory), you will get the
expected behavior. Files present in a mount point directory before the mount become invisible to Cygwin programs.

It is sometimes desirable to mount to a non-existent directory, for example to avoid cluttering the root directory with names such
as a, b, c pointing to disks. Although mount will give you a warning, most everything will work properly when you refer to the
mount point explicitly. Some strange effects can occur however. For example if your current working directory is /dir, say,
and /dir/mtpt is a mount point, then mtpt will not show up in an ls or echo * command and find . will not find mtpt.

Cygwin User’s Guide 88 / 111

3.8.13 passwd

passwd — Change USER’s password or password attributes.

Synopsis

passwd [OPTION] [USER]

Options

User operations:
-l, --lock lock USER’s account.
-u, --unlock unlock USER’s account.
-c, --cannot-change USER can’t change password.
-C, --can-change USER can change password.
-e, --never-expires USER’s password never expires.
-E, --expires USER’s password expires according to system’s

password aging rule.
-p, --pwd-not-required no password required for USER.
-P, --pwd-required password is required for USER.
-R, --reg-store-pwd enter password to store it in the registry for

later usage by services to be able to switch
to this user context with network credentials.

System operations:
-i, --inactive NUM set NUM of days before inactive accounts are disabled

(inactive accounts are those with expired passwords).
-n, --minage MINDAYS set system minimum password age to MINDAYS days.
-x, --maxage MAXDAYS set system maximum password age to MAXDAYS days.
-L, --length LEN set system minimum password length to LEN.

Other options:
-d, --logonserver SERVER connect to SERVER (e.g. domain controller).

Usually not required.
-S, --status display password status for USER (locked, expired,

etc.) plus global system password settings.
-h, --help output usage information and exit.
-V, --version output version information and exit.

If no option is given, change USER’s password. If no user name is given,
operate on current user. System operations must not be mixed with user
operations. Don’t specify a USER when triggering a system operation.

Don’t specify a user or any other option together with the -R option.
Non-Admin users can only store their password if cygserver is running.
Note that storing even obfuscated passwords in the registry is not overly
secure. Use this feature only if the machine is adequately locked down.
Don’t use this feature if you don’t need network access within a remote
session. You can delete your stored password by using ‘passwd -R’ and
specifying an empty password.

Description

passwd changes passwords for user accounts. A normal user may only change the password for their own account, but admin-
istrators may change passwords on any account. passwd also changes account information, such as password expiry dates and
intervals.

Cygwin User’s Guide 89 / 111

For password changes, the user is first prompted for their old password, if one is present. This password is then encrypted and
compared against the stored password. The user has only one chance to enter the correct password. The administrators are
permitted to bypass this step so that forgotten passwords may be changed.

The user is then prompted for a replacement password. passwd will prompt twice for this replacement and compare the second
entry against the first. Both entries are required to match in order for the password to be changed.

After the password has been entered, password aging information is checked to see if the user is permitted to change their
password at this time. If not, passwd refuses to change the password and exits.

To get current password status information, use the -S option. Administrators can use passwd to perform several account
maintenance functions (users may perform some of these functions on their own accounts). Accounts may be locked with the -
l flag and unlocked with the -u flag. Similarly, -c disables a user’s ability to change passwords, and -C allows a user to change
passwords. For password expiry, the -e option disables expiration, while the -E option causes the password to expire according
to the system’s normal aging rules. Use -p to disable the password requirement for a user, or -P to require a password.

Administrators can also use passwd to change system-wide password expiry and length requirements with the -i, -n, -x, and
-L options. The -i option is used to disable an account after the password has been expired for a number of days. After a user
account has had an expired password for NUM days, the user may no longer sign on to the account. The -n option is used to
set the minimum number of days before a password may be changed. The user will not be permitted to change the password
until MINDAYS days have elapsed. The -x option is used to set the maximum number of days a password remains valid. After
MAXDAYS days, the password is required to be changed. Allowed values for the above options are 0 to 999. The -L option sets
the minimum length of allowed passwords for users who don’t belong to the administrators group to LEN characters. Allowed
values for the minimum password length are 0 to 14. In any of the above cases, a value of 0 means `no restrictions’.

All operations affecting the current user are by default run against the logon server of the current user (taken from the environment
variable LOGONSERVER. When password or account information of other users should be changed, the logon server is evaluated
automatically. In rare cases, it might be necessary to switch to another domain controller to perform the action. In this case,
use the -d option to specify the machine to run the command against. Note that the current user must have account operator
permissions to perform user account changes in a domain.

Users can use the passwd -R to enter a password which then gets stored in a special area of the registry on the local system,
which is also used by Windows to store passwords of accounts running Windows services. When a privileged Cygwin application
calls the set{e}uid(user_id) system call, Cygwin checks if a password for that user has been stored in this registry area. If so, it
uses this password to switch to this user account using that password. This allows you to logon through, for instance, ssh with
public key authentication and get a full qualified user token with all credentials for network access. However, the method has
some drawbacks security-wise. This is explained in more detail in Section 3.6.

Please note that storing passwords in that registry area is a privileged operation which only administrative accounts are allowed
to do. Administrators can enter the password for other user accounts into the registry by specifying the username on the com-
mandline. If normal, non-admin users should be allowed to enter their passwords using passwd -R, it’s required to run cygserver
as a service under the LocalSystem account before running passwd -R. This only affects storing passwords. Using passwords in
privileged processes does not require cygserver to run.

Limitations: Users may not be able to change their password on some systems.

3.8.14 pldd

pldd — List dynamic shared objects loaded into a process

Synopsis

pldd [OPTION...] PID

Options

-?, --help Give this help list
--usage Give a short usage message

-V, --version Print program version

Cygwin User’s Guide 90 / 111

Description

pldd prints the shared libraries (DLLs) loaded by the process with the given PID.

3.8.15 ps

ps — Report process status

Synopsis

ps [-aefls] [-u UID]

Options

-a, --all show processes of all users
-e, --everyone show processes of all users
-f, --full show process uids, ppids
-h, --help output usage information and exit
-l, --long show process uids, ppids, pgids, winpids
-p, --process show information for specified PID
-s, --summary show process summary
-u, --user list processes owned by UID
-V, --version output version information and exit
-W, --windows show windows as well as cygwin processes

With no options, ps outputs the long format by default

Description

The ps program gives the status of all the Cygwin processes running on the system (ps = "process status"). Due to the limitations
of simulating a POSIX environment under Windows, there is little information to give.

The PID column is the process ID you need to give to the kill command. The PPID is the parent process ID, and PGID is the
process group ID. The WINPID column is the process ID displayed by NT’s Task Manager program. The TTY column gives
which pseudo-terminal a process is running on, or a ’?’ for services. The UID column shows which user owns each process.
STIME is the time the process was started, and COMMAND gives the name of the program running. Listings may also have
a status flag in column zero; S means stopped or suspended (in other words, in the background), I means waiting for input or
interactive (foreground), and O means waiting to output.

By default, ps will only show processes owned by the current user. With either the -a or -e option, all user’s processes (and
system processes) are listed. There are historical UNIX reasons for the synonomous options, which are functionally identical.
The -f option outputs a "full" listing with usernames for UIDs. The -l option is the default display mode, showing a "long"
listing with all the above columns. The other display option is -s, which outputs a shorter listing of just PID, TTY, STIME, and
COMMAND. The -u option allows you to show only processes owned by a specific user. The -p option allows you to show
information for only the process with the specified PID. The -W option causes ps show non-Cygwin Windows processes as well
as Cygwin processes. The WINPID is also the PID, and they can be killed with the Cygwin kill command’s -f option.

3.8.16 regtool

regtool — View or edit the Windows registry

Synopsis

regtool [OPTION] (add|check|get|list|remove|unset|load|unload|save) KEY

Cygwin User’s Guide 91 / 111

Options

Actions:

add KEY\SUBKEY add new SUBKEY
check KEY exit 0 if KEY exists, 1 if not
get KEY\VALUE prints VALUE to stdout
list KEY list SUBKEYs and VALUEs
remove KEY remove KEY
set KEY\VALUE [data ...] set VALUE
unset KEY\VALUE removes VALUE from KEY
load KEY\SUBKEY PATH load hive from PATH into new SUBKEY
unload KEY\SUBKEY unload hive and remove SUBKEY
save KEY\SUBKEY PATH save SUBKEY into new file PATH
restore KEY\SUBKEY PATH restore SUBKEY from file PATH

Options for ’list’ Action:

-k, --keys print only KEYs
-l, --list print only VALUEs
-p, --postfix like ls -p, appends ’\’ postfix to KEY names

Options for ’get’ Action:

-b, --binary print REG_BINARY data as hex bytes
-n, --none print data as stream of bytes as stored in registry
-x, --hex print numerical data as hex numbers

Options for ’set’ Action:

-b, --binary set type to REG_BINARY (hex args or ’-’)
-D, --dword-be set type to REG_DWORD_BIG_ENDIAN
-e, --expand-string set type to REG_EXPAND_SZ
-i, --integer set type to REG_DWORD
-m, --multi-string set type to REG_MULTI_SZ
-n, --none set type to REG_NONE
-Q, --qword set type to REG_QWORD
-s, --string set type to REG_SZ

Options for ’set’ and ’unset’ Actions:

-K<c>, --key-separator[=]<c> set key separator to <c> instead of ’\’

Options for ’restore’ action:

-f, --force restore even if open handles exist at or beneath the location
in the registry hierarchy to which KEY\SUBKEY points

Other Options:

-h, --help output usage information and exit
-q, --quiet no error output, just nonzero return if KEY/VALUE missing
-v, --verbose verbose output, including VALUE contents when applicable
-w, --wow64 access 64 bit registry view (ignored on 32 bit Windows)
-W, --wow32 access 32 bit registry view (ignored on 32 bit Windows)
-V, --version output version information and exit

KEY is in the format [host]\prefix\KEY\KEY\VALUE, where host is optional
remote host in either \\hostname or hostname: format and prefix is any of:

root HKCR HKEY_CLASSES_ROOT (local only)
config HKCC HKEY_CURRENT_CONFIG (local only)
user HKCU HKEY_CURRENT_USER (local only)

Cygwin User’s Guide 92 / 111

machine HKLM HKEY_LOCAL_MACHINE
users HKU HKEY_USERS

You can use forward slash (’/’) as a separator instead of backslash, in
that case backslash is treated as escape character
Example: regtool get ’\user\software\Microsoft\Clock\iFormat’

Description

The regtool program allows shell scripts to access and modify the Windows registry. Note that modifying the Windows registry
is dangerous, and carelessness here can result in an unusable system. Be careful.

The -v option means "verbose". For most commands, this causes additional or lengthier messages to be printed. Conversely, the
-q option supresses error messages, so you can use the exit status of the program to detect if a key exists or not (for example).

The -w option allows you to access the 64 bit view of the registry. Several subkeys exist in a 32 bit and a 64 bit version when
running on Windows 64. Since Cygwin is running in 32 bit mode, it only has access to the 32 bit view of these registry keys.
When using the -w switch, the 64 bit view is used and regtool can access the entire registry. This option is simply ignored when
running on 32 bit Windows versions.

The -W option allows you to access the 32 bit view on the registry. The purpose of this option is mainly for symmetry. It permits
creation of OS agnostic scripts which would also work in a hypothetical 64 bit version of Cygwin.

You must provide regtool with an action following options (if any). Currently, the action must be add, set, check, get,
list, remove, set, or unset.

The add action adds a new key. The check action checks to see if a key exists (the exit code of the program is zero if it does,
nonzero if it does not). The get action gets the value of a key, and prints it (and nothing else) to stdout. Note: if the value doesn’t
exist, an error message is printed and the program returns a non-zero exit code. If you give -q, it doesn’t print the message but
does return the non-zero exit code.

The list action lists the subkeys and values belonging to the given key. With list, the -k option instructs regtool to print
only KEYs, and the -l option to print only VALUEs. The -p option postfixes a ’/’ to each KEY, but leave VALUEs with no
postfix. The remove action removes a key. Note that you may need to remove everything in the key before you may remove it,
but don’t rely on this stopping you from accidentally removing too much.

The get action prints a value within a key. With the -b option, data is printed as hex bytes. -n allows to print the data as a
typeless stream of bytes. Integer values (REG_DWORD, REG_QWORD) are usually printed as decimal values. The -x option
allows to print the numbers as hexadecimal values.

The set action sets a value within a key. -bmeans it’s binary data (REG_BINARY). The binary values are specified as hex bytes
in the argument list. If the argument is ’-’, binary data is read from stdin instead. -d or -i means the value is a 32 bit integer
value (REG_DWORD). -Dmeans the value is a 32 bit integer value in Big Endian representation (REG_DWORD_BIG_ENDIAN).
-Qmeans the value is a 64 bit integer value (REG_QWORD). -smeans the value is a string (REG_SZ). -emeans it’s an expand-
ing string (REG_EXPAND_SZ) that contains embedded environment variables. -mmeans it’s a multi-string (REG_MULTI_SZ).
If you don’t specify one of these, regtool tries to guess the type based on the value you give. If it looks like a number, it’s a
DWORD, unless it’s value doesn’t fit into 32 bit, in which case it’s a QWORD. If it starts with a percent, it’s an expanding string.
If you give multiple values, it’s a multi-string. Else, it’s a regular string.

The unset action removes a value from a key.

The load action adds a new subkey and loads the contents of a registry hive into it. The parent key must be HKEY_LOCAL_MACHINE
or HKEY_USERS. The unload action unloads the file and removes the subkey.

The save action saves a subkey into a registry file. Ideally you append the suffix .reg to the file so it gets automatically
recognized as registry file by Windows Explorer.

The restore action restores a registry subkey from a file saved via the aforementioned save action.

By default, the last "\" or "/" is assumed to be the separator between the key and the value. You can use the -K option to provide
an alternate key/value separator character.

Cygwin User’s Guide 93 / 111

3.8.17 setfacl

setfacl — Modify file and directory access control lists (ACLs)

Synopsis

setfacl [-n] {-f ACL_FILE | -s acl_entries} FILE...
setfacl [-n] {[-bk]|[-x acl_entries] [-m acl_entries]} FILE...

Options

-b, --remove-all remove all extended ACL entries\n"
-x, --delete delete one or more specified ACL entries\n"
-f, --set-file set ACL entries for FILE to ACL entries read\n"

from ACL_FILE\n"
-k, --remove-default remove all default ACL entries\n"
-m, --modify modify one or more specified ACL entries\n"
-n, --no-mask don’t recalculate the effective rights mask\n"

--mask do recalculate the effective rights mask\n"
-s, --set set specified ACL entries on FILE\n"
-V, --version print version and exit\n"
-h, --help this help text\n"

At least one of (-b, -x, -f, -k, -m, -s) must be specified\n"

Description

For each file given as parameter, setfacl will either replace its complete ACL (-s, -f), or it will add, modify, or delete ACL
entries. For more information on Cygwin and Windows ACLs, see Section 3.6 in the Cygwin User’s Guide.

Acl_entries are one or more comma-separated ACL entries from the following list:

u[ser]::perm
u[ser]:uid:perm
g[roup]::perm
g[roup]:gid:perm
m[ask]::perm
o[ther]::perm

Default entries are like the above with the additional default identifier. For example:

d[efault]:u[ser]:uid:perm

perm is either a 3-char permissions string in the form "rwx" with the character ’-’ for no permission or it is the octal represen-
tation of the permissions, a value from 0 (equivalent to "---") to 7 ("rwx"). uid is a user name or a numerical uid. gid is a group
name or a numerical gid.

The following options are supported:

-b,--remove-all Remove all extended ACL entries. The base ACL entries of the owner, group and others are retained. This
option can be combined with the -k,--remove-default option to delete all non-standard POSIX permissions.

-x,--deleteDelete one or more specified entries from the file’s ACL. The owner, group and others entries must not be deleted.
Acl_entries to be deleted should be specified without permissions, as in the following list:

Cygwin User’s Guide 94 / 111

u[ser]:uid[:]
g[roup]:gid[:]
m[ask][:]
d[efault]:u[ser][:uid]
d[efault]:g[roup][:gid]
d[efault]:m[ask][:]
d[efault]:o[ther][:]

-f,--set-file Take the Acl_entries from ACL_FILE one per line. Whitespace characters are ignored, and the character "#"
may be used to start a comment. The special filename "-" indicates reading from stdin. Note that you can use this with getfacl
and setfacl to copy ACLs from one file to another:

$ getfacl source_file | setfacl -f - target_file

Required entries are: one user entry for the owner of the file, one group entry for the group of the file, and one other entry.

If additional user and group entries are given: a mask entry for the file group class of the file, and no duplicate user or group
entries with the same uid/gid.

If it is a directory: one default user entry for the owner of the file, one default group entry for the group of the file, one default
mask entry for the file group class, and one default other entry.

-k,--remove-default Remove all default ACL entries. If no default ACL entries exist, no warnings are issued. This option
can be combined with the -b,--remove-all option to delete all non-standard POSIX permissions.

-m,--modify Add or modify one or more specified ACL entries. Acl_entries is a comma-separated list of entries from the
same list as above.

-n,--no-mask Valid in conjunction with -m. Do not recalculate the effective rights mask. The default behavior of setfacl is to
recalculate the ACL mask entry, unless a mask entry was explicitly given. The mask entry is set to the union of all permissions
of the owning group, and all named user and group entries. (These are exactly the entries affected by the mask entry).

--mask Valid in conjunction with -m. Do recalculate the effective rights mask, even if an ACL mask entry was explicitly given.
(See the -n option.)

-s,--set Like -f, but set the file’s ACL with Acl_entries specified in a comma-separated list on the command line.

While the -x and -m options may be used in the same command, the -f and -s options may be used only exclusively.

Directories may contain default ACL entries. Files created in a directory that contains default ACL entries will have permissions
according to the combination of the current umask, the explicit permissions requested and the default ACL entries.

3.8.18 setmetamode

setmetamode — Get or set keyboard meta mode

Synopsis

setmetamode [metabit|escprefix]

Options

Without argument, it shows the current meta key mode.

metabit|meta|bit The meta key sets the top bit of the character.
escprefix|esc|prefix The meta key sends an escape prefix.

Other options:

-h, --help This text
-V, --version Print program version and exit

Cygwin User’s Guide 95 / 111

Description

setmetamode can be used to determine and set the key code sent by the meta (aka Alt) key.

3.8.19 ssp

ssp — Single-step profile COMMAND

Synopsis

ssp [options] low_pc high_pc command...

Options

-c, --console-trace trace every EIP value to the console. *Lots* slower.
-d, --disable disable single-stepping by default; use

OutputDebugString ("ssp on") to enable stepping
-e, --enable enable single-stepping by default; use

OutputDebugString ("ssp off") to disable stepping
-h, --help output usage information and exit
-l, --dll enable dll profiling. A chart of relative DLL usage

is produced after the run.
-s, --sub-threads trace sub-threads too. Dangerous if you have

race conditions.
-t, --trace-eip trace every EIP value to a file TRACE.SSP. This

gets big *fast*.
-v, --verbose output verbose messages about debug events.
-V, --version output version information and exit

Example: ssp 0x401000 0x403000 hello.exe

Description

SSP - The Single Step Profiler

Original Author: DJ Delorie

The SSP is a program that uses the Win32 debug API to run a program one ASM instruction at a time. It records the location
of each instruction used, how many times that instruction is used, and all function calls. The results are saved in a format that is
usable by the profiling program gprof, although gprof will claim the values are seconds, they really are instruction counts. More
on that later.

Because the SSP was originally designed to profile the Cygwin DLL, it does not automatically select a block of code to report
statistics on. You must specify the range of memory addresses to keep track of manually, but it’s not hard to figure out what to
specify. Use the "objdump" program to determine the bounds of the target’s ".text" section. Let’s say we’re profiling cygwin1.dll.
Make sure you’ve built it with debug symbols (else gprof won’t run) and run objdump like this:

$ objdump -h cygwin1.dll

It will print a report like this:

cygwin1.dll: file format pei-i386

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 0007ea00 61001000 61001000 00000400 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE, DATA

Cygwin User’s Guide 96 / 111

1 .data 00008000 61080000 61080000 0007ee00 2**2
CONTENTS, ALLOC, LOAD, DATA

. . .

The only information we’re concerned with are the VMA of the .text section and the VMA of the section after it (sections are
usually contiguous; you can also add the Size to the VMA to get the end address). In this case, the VMA is 0x61001000 and the
ending address is either 0x61080000 (start of .data method) or 0x0x6107fa00 (VMA+Size method).

There are two basic ways to use SSP - either profiling a whole program, or selectively profiling parts of the program.

To profile a whole program, just run ssp without options. By default, it will step the whole program. Here’s a simple example,
using the numbers above:

$ ssp 0x61001000 0x61080000 hello.exe

This will step the whole program. It will take at least 8 minutes on a PII/300 (yes, really). When it’s done, it will create a file
called "gmon.out". You can turn this data file into a readable report with gprof:

$ gprof -b cygwin1.dll

The "-b" means ’skip the help pages’. You can omit this until you’re familiar with the report layout. The gprof documentation
explains a lot about this report, but ssp changes a few things. For example, the first part of the report reports the amount of time
spent in each function, like this:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
10.02 231.22 72.43 46 1574.57 1574.57 strcspn
7.95 288.70 57.48 130 442.15 442.15 strncasematch

The "seconds" columns are really CPU opcodes, 1/100 second per opcode. So, "231.22" above means 23,122 opcodes. The
ms/call values are 10x too big; 1574.57 means 157.457 opcodes per call. Similar adjustments need to be made for the "self" and
"children" columns in the second part of the report.

OK, so now we’ve got a huge report that took a long time to generate, and we’ve identified a spot we want to work on optimizing.
Let’s say it’s the time() function. We can use SSP to selectively profile this function by using OutputDebugString() to control
SSP from within the program. Here’s a sample program:

#include <windows.h>
main()
{
time_t t;
OutputDebugString("ssp on");
time(&t);
OutputDebugString("ssp off");

}

Then, add the -d option to ssp to default to *disabling* profiling. The program will run at full speed until the first OutputDe-
bugString, then step until the second. You can then use gprof (as usual) to see the performance profile for just that portion of the
program’s execution.

There are many options to ssp. Since step-profiling makes your program run about 1,000 times slower than normal, it’s best to
understand all the options so that you can narrow down the parts of your program you need to single-step.

-v - verbose. This prints messages about threads starting and stopping, OutputDebugString calls, DLLs loading, etc.

-t and -c - tracing. With -t, *every* step’s address is written to the file "trace.ssp". This can be used to help debug functions,
since it can trace multiple threads. Clever use of scripts can match addresses with disassembled opcodes if needed. Warning:
creates *huge* files, very quickly. -c prints each address to the console, useful for debugging key chunks of assembler. Use add
r2line -C -f -s -e foo.exe < trace.ssp > lines.ssp and then perl cvttrace to convert to symbolic
traces.

Cygwin User’s Guide 97 / 111

-s - subthreads. Usually, you only need to trace the main thread, but sometimes you need to trace all threads, so this enables that.
It’s also needed when you want to profile a function that only a subthread calls. However, using OutputDebugString automatically
enables profiling on the thread that called it, not the main thread.

-l - dll profiling. Generates a pretty table of how much time was spent in each dll the program used. No sense optimizing a
function in your program if most of the time is spent in the DLL. I usually use the -v, -s, and -l options:

$ ssp -v -s -l -d 0x61001000 0x61080000 hello.exe

3.8.20 strace

strace — Trace system calls and signals

Synopsis

strace [OPTIONS] <command-line>
strace [OPTIONS] -p <pid>

Options

-b, --buffer-size=SIZE set size of output file buffer
-d, --no-delta don’t display the delta-t microsecond timestamp
-e, --events log all Windows DEBUG_EVENTS (toggle - default true)
-f, --trace-children trace child processes (toggle - default true)
-h, --help output usage information and exit
-m, --mask=MASK set message filter mask
-n, --crack-error-numbers output descriptive text instead of error

numbers for Windows errors
-o, --output=FILENAME set output file to FILENAME
-p, --pid=n attach to executing program with cygwin pid n
-q, --quiet toggle "quiet" flag. Defaults to on if "-p",

off otherwise.
-S, --flush-period=PERIOD flush buffered strace output every PERIOD secs
-t, --timestamp use an absolute hh:mm:ss timestamp insted of

the default microsecond timestamp. Implies -d
-T, --toggle toggle tracing in a process already being

traced. Requires -p <pid>
-u, --usecs toggle printing of microseconds timestamp
-V, --version output version information and exit
-w, --new-window spawn program under test in a new window

MASK can be any combination of the following mnemonics and/or hex values
(0x is optional). Combine masks with ’+’ or ’,’ like so:

--mask=wm+system,malloc+0x00800

Mnemonic Hex Corresponding Def Description
===
all 0x000001 (_STRACE_ALL) All strace messages.
flush 0x000002 (_STRACE_FLUSH) Flush output buffer after each message.
inherit 0x000004 (_STRACE_INHERIT) Children inherit mask from parent.
uhoh 0x000008 (_STRACE_UHOH) Unusual or weird phenomenon.
syscall 0x000010 (_STRACE_SYSCALL) System calls.
startup 0x000020 (_STRACE_STARTUP) argc/envp printout at startup.
debug 0x000040 (_STRACE_DEBUG) Info to help debugging.
paranoid 0x000080 (_STRACE_PARANOID) Paranoid info.
termios 0x000100 (_STRACE_TERMIOS) Info for debugging termios stuff.

Cygwin User’s Guide 98 / 111

select 0x000200 (_STRACE_SELECT) Info on ugly select internals.
wm 0x000400 (_STRACE_WM) Trace Windows msgs (enable _strace_wm).
sigp 0x000800 (_STRACE_SIGP) Trace signal and process handling.
minimal 0x001000 (_STRACE_MINIMAL) Very minimal strace output.
pthread 0x002000 (_STRACE_PTHREAD) Pthread calls.
exitdump 0x004000 (_STRACE_EXITDUMP) Dump strace cache on exit.
system 0x008000 (_STRACE_SYSTEM) Serious error; goes to console and log.
nomutex 0x010000 (_STRACE_NOMUTEX) Don’t use mutex for synchronization.
malloc 0x020000 (_STRACE_MALLOC) Trace malloc calls.
thread 0x040000 (_STRACE_THREAD) Thread-locking calls.
special 0x100000 (_STRACE_SPECIAL) Special debugging printfs for

non-checked-in code

Description

The strace program executes a program, and optionally the children of the program, reporting any Cygwin DLL output from the
program(s) to stdout, or to a file with the -o option. With the -w option, you can start an strace session in a new window, for
example:

$ strace -o tracing_output -w sh -c ’while true; do echo "tracing..."; done’ &

This is particularly useful for strace sessions that take a long time to complete.

Note that strace is a standalone Windows program and so does not rely on the Cygwin DLL itself (you can verify this with
cygcheck). As a result it does not understand symlinks. This program is mainly useful for debugging the Cygwin DLL itself.

3.8.21 tzset

tzset — Print POSIX-compatible timezone ID from current Windows timezone setting

Synopsis

tzset [OPTION]

Options

Options:
-h, --help output usage information and exit.
-V, --version output version information and exit.

Description

Use tzset to set your TZ variable. In POSIX-compatible shells like bash, dash, mksh, or zsh:

export TZ=$(tzset)

In csh-compatible shells like tcsh:

setenv TZ ‘tzset‘

The tzset tool reads the current timezone from Windows and generates a POSIX-compatible timezone information for the TZ
environment variable from that information. That’s all there is to it. For the way how to use it, see the above usage information.

Cygwin User’s Guide 99 / 111

3.8.22 umount

umount — Unmount filesystems

Synopsis

umount [OPTION] [<posixpath>]

Options

-h, --help output usage information and exit
-U, --remove-user-mounts remove all user mounts
-V, --version output version information and exit

Description

The umount program removes mounts from the mount table in the current session. If you specify a POSIX path that corresponds
to a current mount point, umount will remove it from the current mount table. Note that you can only remove user mount points.
The -U flag may be used to specify removing all user mount points from the current user session.

See Section 3.1.2 for more information on the mount table.

3.9 Using Cygwin effectively with Windows

Cygwin is not a full operating system, and so must rely on Windows for accomplishing some tasks. For example, Cygwin
provides a POSIX view of the Windows filesystem, but does not provide filesystem drivers of its own. Therefore part of using
Cygwin effectively is learning to use Windows effectively. Many Windows utilities provide a good way to interact with Cygwin’s
predominately command-line environment. For example, ipconfig.exe provides information about network configuration, and
net.exe views and configures network file and printer resources. Most of these tools support the /? switch to display usage
information.

Unfortunately, no standard set of tools included with all versions of Windows exists. Generally, the younger the Windows
version, the more complete are the on-board tools. Additionally, many independent sites such as download.com, simtel.net, and
Microsoft’s own Sysinternals provide quite useful command-line utilities, as far as they are not already provided by Cygwin. A
few Windows tools, such as find.exe, link.exe and sort.exe, may conflict with the Cygwin versions make sure that you use the
full path (/usr/bin/find) or that your Cygwin bin directory comes first in your PATH.

3.9.1 Pathnames

Windows programs do not understand POSIX pathnames, so any arguments that reference the filesystem must be in Windows (or
DOS) format or translated. Cygwin provides the cygpath utility for converting between Windows and POSIX paths. A complete
description of its options and examples of its usage are in cygpath(1), including a shell script for starting Windows Explorer in
any directory. The same format works for most Windows programs, for example

notepad.exe "$(cygpath -aw "Desktop/Phone Numbers.txt")"

A few programs require a Windows-style, semicolon-delimited path list, which cygpath can translate from a POSIX path with
the -p option. For example, a Java compilation from bash might look like this:

javac -cp "$(cygpath -pw "$CLASSPATH")" hello.java

Since using quoting and subshells is somewhat awkward, it is often preferable to use cygpath in shell scripts.

http://download.com
http://simtel.net
http://technet.microsoft.com/en-us/sysinternals/default.aspx

Cygwin User’s Guide 100 / 111

3.9.2 Cygwin and Windows Networking

Many popular Cygwin packages, such as ncftp, lynx, and wget, require a network connection. Since Cygwin relies on
Windows for connectivity, if one of these tools is not working as expected you may need to troubleshoot using Windows tools.
The first test is to see if you can reach the URL’s host with ping.exe, one of the few utilities included with every Windows
version since Windows 95. If you chose to install the inetutils package, you may have both Windows and Cygwin versions
of utilities such as ftp and telnet. If you are having problems using one of these programs, see if the alternate one works as
expected.

There are a variety of other programs available for specific situations. If your system does not have an always-on network
connection, you may be interested in rasdial.exe for automating dialup connections. Users who frequently change their network
configuration can script these changes with netsh.exe. For proxy users, the open source NTLM Authorization Proxy Server or
the no-charge Hummingbird SOCKS Proxy may allow you to use Cygwin network programs in your environment.

3.9.3 Creating shortcuts

By default, Cygwin does not create symlinks as .lnk files, but there’s an option to do that, see Section 3.5. These symlink .lnk
files are compatible with Windows-created .lnk files, but they are still different. They do not include much of the information
that is available in a standard Microsoft shortcut, such as the working directory, an icon, etc. The cygutils package includes
a mkshortcut utility for creating standard native Microsoft .lnk files from the command line.

But here’s the problem. If Cygwin handled these native shortcuts like any other symlink, you could not archive Microsoft .lnk
files into tar archives and keep all the information in them. After unpacking, these shortcuts would have lost all the extra
information and would be no different than standard Cygwin symlinks. Therefore these two types of links are treated differently.
Unfortunately, this means that the usual Unix way of creating and using symlinks does not work with native Windows shortcuts.

3.9.4 Printing

There are several options for printing from Cygwin, including the lpr found in cygutils-extra (not to be confused with the
native Windows lpr.exe). The easiest way to use cygutils-extra’s lpr is to specify a default device name in the PRINTER
environment variable. You may also specify a device on the command line with the -d or -P options, which will override the
environment variable setting.

A device name may be a UNC path (\\server_name\printer_name), a reserved DOS device name (prn, lpt1), or a
local port name that is mapped to a printer share. Note that forward slashes may be used in a UNC path (//server_name/
printer_name), which is helpful when using lpr from a shell that uses the backslash as an escape character.

lpr sends raw data to the printer; no formatting is done. Many, but not all, printers accept plain text as input. If your printer
supports PostScript, packages such as a2ps and enscript can prepare text files for printing. The ghostscript package
also provides some translation from PostScript to various native printer languages. Additionally, a native Windows application
for printing PostScript, gsprint, is available from the Ghostscript website.

http://apserver.sourceforge.net
http://www.hummingbird.com/products/nc/socks/index.html
http://www.cs.wisc.edu/~ghost/

Cygwin User’s Guide 101 / 111

Chapter 4

Programming with Cygwin

4.1 Using GCC with Cygwin

4.1.1 Standard Usage

Use gcc to compile, just like under UNIX. Refer to the GCC User’s Guide for information on standard usage and options. Here’s
a simple example:

Example 4.1 Building Hello World with GCC

bash$ gcc hello.c -o hello.exe
bash$ hello.exe
Hello, World

bash$

4.1.2 Building applications for 64 bit Cygwin

The 64 bit Cygwin toolchain uses the Microsoft x64 calling convention by default, so you can create applications using the
Win32 API just as with the 32 bit Cygwin toolchain.

There’s just one important difference. The 64 bit Cygwin compilers use a different data model than the Mingw and Microsoft
compilers. For reference, see the Wikipedia entry on 64-bit computing.

While the Mingw and Microsoft compilers use the LLP64 data model, Cygwin compilers use the LP64 data model, just like
Linux. This affects the size of the type long. In the LLP64 model preferred by Microsoft, sizeof(long) is 4. This applies
for the related Win32 types like LONG, ULONG, DWORD, etc., too.

In the LP64 model used by Cygwin, sizeof(long) is 8, just like the size of pointers or the types size_t/ssize_t. This
simplifies porting Linux applications to 64 bit Cygwin, but it requires due diligence when calling Windows functions taking
LONG, ULONG, DWORD, or any other equivalent type. This is especially important in conjunction with pointers.

Here’s an example. The Win32 function ReadFile returns the number of read bytes via a pointer to a DWORD variable:

BOOL WINAPI ReadFile (HANDLE, PVOID, DWORD, PDWORD, LPOVERLAPPED);

Note that the forth parameter is a pointer to a DWORD, thus it’s a pointer to a 4 byte type, on 32 as well as on 64 bit Windows.
Now we write our own my_read function using ReadFile:

http://en.wikipedia.org/wiki/X86_calling_convention#Microsoft_x64_calling_convention
http://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models

Cygwin User’s Guide 102 / 111

Example 4.2 64bit-programming, Using ReadFile, 1st try

ssize_t
my_read (int fd, void *buffer, size_t bytes_to_read)
{

HANDLE fh = _get_osfhandle (fd);
ssize_t bytes_read;

if (ReadFile (fh, buffer, bytes_to_read, (PDWORD) &bytes_read, NULL))
return bytes_read;

set_errno_from_get_last_error ();
return -1;

}

While this example code works fine on 32 bit Windows, it has in fact a bad bug. The assumption that the size of ssize_t is the
same as the size of DWORD is wrong for 64 bit. In fact, since sizeof(ssize_t) is 8, ReadFile will write the number
of read bytes into the lower 4 bytes of the variable bytes_read, while the upper 4 bytes will contain an undefined value.
my_read will very likely return the wrong number of read bytes to the caller.

Here’s the fixed version of my_read:

Example 4.3 64bit-programming, Using ReadFile, 2nd try

ssize_t
my_read (int fd, void *buffer, size_t bytes_to_read)
{

HANDLE fh = _get_osfhandle (fd);
DWORD bytes_read;

if (ReadFile (fh, buffer, bytes_to_read, &bytes_read, NULL))
return (ssize_t) bytes_read;

set_errno_from_get_last_error ();
return -1;

}

4.1.3 GUI Mode Applications

Cygwin comes with an X server, so usually you should compile your GUI applications as X applications to allow better interop-
erability with other Cygwin GUI applications.

Other than that, Cygwin allows you to build programs with full access to the standard Windows API, including the GUI functions
as defined in any Microsoft or off-the-shelf publication.

The build process is similar to any other build process. The only difference is that you use gcc -mwindows to link your program
into a GUI application instead of a command-line application. Here’s an example Makefile:

myapp.exe : myapp.o myapp.res
gcc -mwindows myapp.o myapp.res -o $@

myapp.res : myapp.rc resource.h
windres $< -O coff -o $@

Note the use of windres to compile the Windows resources into a COFF-format .res file. That will include all the bitmaps,
icons, and other resources you need, into one handy object file. For more information on windres, consult the Binutils manual.

Cygwin User’s Guide 103 / 111

4.2 Debugging Cygwin Programs

When your program doesn’t work right, it usually has a "bug" in it, meaning there’s something wrong with the program itself that
is causing unexpected results or crashes. Diagnosing these bugs and fixing them is made easy by special tools called debuggers.
In the case of Cygwin, the debugger is GDB, which stands for "GNU DeBugger". This tool lets you run your program in a
controlled environment where you can investigate the state of your program while it is running or after it crashes. Crashing
programs sometimes create "core" files. In Cygwin these are regular text files that cannot be used directly by GDB.

Before you can debug your program, you need to prepare your program for debugging. What you need to do is add -g to all the
other flags you use when compiling your sources to objects.

Example 4.4 Compiling with -g

bash$ gcc -g -O2 -c myapp.c
bash$ gcc -g myapp.c -o myapp

What this does is add extra information to the objects (they get much bigger too) that tell the debugger about line numbers,
variable names, and other useful things. These extra symbols and debugging information give your program enough information
about the original sources so that the debugger can make debugging much easier for you.

To invoke GDB, simply type gdb myapp.exe at the command prompt. It will display some text telling you about itself, then
(gdb) will appear to prompt you to enter commands. Whenever you see this prompt, it means that gdb is waiting for you to type
in a command, like run or help. Oh :-) type help to get help on the commands you can type in, or read the [?] for a complete
description of GDB and how to use it.

If your program crashes and you’re trying to figure out why it crashed, the best thing to do is type run and let your program run.
After it crashes, you can type where to find out where it crashed, or info locals to see the values of all the local variables. There’s
also a print that lets you look at individual variables or what pointers point to.

If your program is doing something unexpected, you can use the break command to tell gdb to stop your program when it gets
to a specific function or line number:

Example 4.5 "break" in gdb

(gdb) break my_function
(gdb) break 47

Now, when you type run your program will stop at that "breakpoint" and you can use the other gdb commands to look at the
state of your program at that point, modify variables, and step through your program’s statements one at a time.

Note that you may specify additional arguments to the run command to provide command-line arguments to your program.
These two cases are the same as far as your program is concerned:

Example 4.6 Debugging with command line arguments

bash$ myprog -t foo --queue 47

bash$ gdb myprog
(gdb) run -t foo --queue 47

4.3 Building and Using DLLs

DLLs are Dynamic Link Libraries, which means that they’re linked into your program at run time instead of build time. There
are three parts to a DLL:

• the exports

• the code and data

Cygwin User’s Guide 104 / 111

• the import library

The code and data are the parts you write - functions, variables, etc. All these are merged together, like if you were building one
big object files, and put into the dll. They are not put into your .exe at all.

The exports contains a list of functions and variables that the dll makes available to other programs. Think of this as the list
of "global" symbols, the rest being hidden. Normally, you’d create this list by hand with a text editor, but it’s possible to do it
automatically from the list of functions in your code. The dlltool program creates the exports section of the dll from your
text file of exported symbols.

The import library is a regular UNIX-like .a library, but it only contains the tiny bit of information needed to tell the OS how
your program interacts with ("imports") the dll. This information is linked into your .exe. This is also generated by dlltool.

4.3.1 Building DLLs

This page gives only a few simple examples of gcc’s DLL-building capabilities. To begin an exploration of the many additional
options, see the gcc documentation and website, currently at http://gcc.gnu.org/

Let’s go through a simple example of how to build a dll. For this example, we’ll use a single file myprog.c for the program
(myprog.exe) and a single file mydll.c for the contents of the dll (mydll.dll).

Fortunately, with the latest gcc and binutils the process for building a dll is now pretty simple. Say you want to build this minimal
function in mydll.c:

#include <stdio.h>

int
hello()
{

printf ("Hello World!\n");
}

First compile mydll.c to object code:

gcc -c mydll.c

Then, tell gcc that it is building a shared library:

gcc -shared -o mydll.dll mydll.o

That’s it! To finish up the example, you can now link to the dll with a simple program:

int
main ()
{

hello ();
}

Then link to your dll with a command like:

gcc -o myprog myprog.c -L./ -lmydll

However, if you are building a dll as an export library, you will probably want to use the complete syntax:

gcc -shared -o cyg${module}.dll \
-Wl,--out-implib=lib${module}.dll.a \
-Wl,--export-all-symbols \
-Wl,--enable-auto-import \
-Wl,--whole-archive ${old_libs} \
-Wl,--no-whole-archive ${dependency_libs}

The name of your library is ${module}, prefixed with cyg for the DLL and lib for the import library. Cygwin DLLs use the
cyg prefix to differentiate them from native-Windows MinGW DLLs, see the MinGW website for more details. ${old_libs}
are all your object files, bundled together in static libs or single object files and the ${dependency_libs} are import libs
you need to link against, e.g ’-lpng -lz -L/usr/local/special -lmyspeciallib’.

http://gcc.gnu.org/
http://mingw.org

Cygwin User’s Guide 105 / 111

4.3.2 Linking Against DLLs

If you have an existing DLL already, you need to build a Cygwin-compatible import library. If you have the source to compile
the DLL, see Section 4.3.1 for details on having gcc build one for you. If you do not have the source or a supplied working
import library, you can get most of the way by creating a .def file with these commands (you might need to do this in bash for
the quoting to work correctly):

echo EXPORTS > foo.def
nm foo.dll | grep ’ T _’ | sed ’s/.* T _//’ >> foo.def

Note that this will only work if the DLL is not stripped. Otherwise you will get an error message: "No symbols in foo.dll".

Once you have the .def file, you can create an import library from it like this:

dlltool --def foo.def --dllname foo.dll --output-lib foo.a

4.4 Defining Windows Resources

windres reads a Windows resource file (*.rc) and converts it to a res or coff file. The syntax and semantics of the input file
are the same as for any other resource compiler, so please refer to any publication describing the Windows resource format for
details. Also, the windres program itself is fully documented in the Binutils manual. Here’s an example of using it in a project:

myapp.exe : myapp.o myapp.res
gcc -mwindows myapp.o myapp.res -o $@

myapp.res : myapp.rc resource.h
windres $< -O coff -o $@

What follows is a quick-reference to the syntax windres supports.

id ACCELERATORS suboptions
BEG
"^C" 12
"Q" 12
65 12
65 12 , VIRTKEY ASCII NOINVERT SHIFT CONTROL ALT
65 12 , VIRTKEY, ASCII, NOINVERT, SHIFT, CONTROL, ALT
(12 is an acc_id)
END

SHIFT, CONTROL, ALT require VIRTKEY

id BITMAP memflags "filename"
memflags defaults to MOVEABLE

id CURSOR memflags "filename"
memflags defaults to MOVEABLE,DISCARDABLE

id DIALOG memflags exstyle x,y,width,height styles BEG controls END
id DIALOGEX memflags exstyle x,y,width,height styles BEG controls END
id DIALOGEX memflags exstyle x,y,width,height,helpid styles BEG controls END

memflags defaults to MOVEABLE

Cygwin User’s Guide 106 / 111

exstyle may be EXSTYLE=number
styles: CAPTION "string"

CLASS id
STYLE FOO | NOT FOO | (12)
EXSTYLE number
FONT number, "name"
FONT number, "name",weight,italic
MENU id
CHARACTERISTICS number
LANGUAGE number,number
VERSIONK number

controls:
AUTO3STATE params
AUTOCHECKBOX params
AUTORADIOBUTTON params
BEDIT params
CHECKBOX params
COMBOBOX params
CONTROL ["name",] id, class, style, x,y,w,h [,exstyle] [data]
CONTROL ["name",] id, class, style, x,y,w,h, exstyle, helpid [data]
CTEXT params
DEFPUSHBUTTON params
EDITTEXT params
GROUPBOX params
HEDIT params
ICON ["name",] id, x,y [data]
ICON ["name",] id, x,y,w,h, style, exstyle [data]
ICON ["name",] id, x,y,w,h, style, exstyle, helpid [data]
IEDIT params
LISTBOX params
LTEXT params
PUSHBOX params
PUSHBUTTON params
RADIOBUTTON params
RTEXT params
SCROLLBAR params
STATE3 params
USERBUTTON "string", id, x,y,w,h, style, exstyle

params:
["name",] id, x, y, w, h, [data]
["name",] id, x, y, w, h, style [,exstyle] [data]
["name",] id, x, y, w, h, style, exstyle, helpid [data]

[data] is optional BEG (string|number) [,(string|number)] (etc) END

id FONT memflags "filename"
memflags defaults to MOVEABLE|DISCARDABLE

id ICON memflags "filename"
memflags defaults to MOVEABLE|DISCARDABLE

LANGUAGE num,num

id MENU options BEG items END
items:

"string", id, flags
SEPARATOR
POPUP "string" flags BEG menuitems END

flags:
CHECKED
GRAYED

Cygwin User’s Guide 107 / 111

HELP
INACTIVE
MENUBARBREAK
MENUBREAK

id MENUEX suboptions BEG items END
items:

MENUITEM "string"
MENUITEM "string", id
MENUITEM "string", id, type [,state]
POPUP "string" BEG items END
POPUP "string", id BEG items END
POPUP "string", id, type BEG items END
POPUP "string", id, type, state [,helpid] BEG items END

id MESSAGETABLE memflags "filename"
memflags defaults to MOVEABLE

id RCDATA suboptions BEG (string|number) [,(string|number)] (etc) END

STRINGTABLE suboptions BEG strings END
strings:

id "string"
id, "string"

(User data)
id id suboptions BEG (string|number) [,(string|number)] (etc) END

id VERSIONINFO stuffs BEG verblocks END
stuffs: FILEVERSION num,num,num,num

PRODUCTVERSION num,num,num,num
FILEFLAGSMASK num
FILEOS num
FILETYPE num
FILESUBTYPE num

verblocks:
BLOCK "StringFileInfo" BEG BLOCK BEG vervals END END
BLOCK "VarFileInfo" BEG BLOCK BEG vertrans END END

vervals: VALUE "foo","bar"
vertrans: VALUE num,num

suboptions:
memflags
CHARACTERISTICS num
LANGUAGE num,num
VERSIONK num

memflags are MOVEABLE/FIXED PURE/IMPURE PRELOAD/LOADONCALL DISCARDABLE

4.5 Profiling Cygwin Programs

4.5.1 Introduction

Profiling is a way to analyze your program to find out where it is spending its time. You might need to do this if it seems your
program is taking more time to do its job than you think it should. It is always preferable to profile your program than to just
guess where the time is being spent; even expert programmers are known to guess badly at this.

Cygwin User’s Guide 108 / 111

In Cygwin, you enable profiling with a compiler flag and you display the resulting profiling data with gprof. Read on to find out
how.

To enable profiling of your program, first compile it with an additional gcc flag: -pg. That flag should be used when compiling
every source file of the program. If your program has a Makefile, you would add the flag to all gcc compilation commands or to
the CFLAGS= setting. A manual compilation that enables profiling looks like this:

bash$ gcc -pg -g -o myapp myapp.c

The -pg flag causes gcc to do two additional things as it compiles your program. First, a small bit of code is added to the
beginning of each function that records its address and the address it was called from at run time. gprof uses this data to generate
a call graph. Second, gcc arranges to have a special "front end" added to the beginning of your program. The front end starts a
recurring timer and every time the timer fires, 100 times per second, the currently executing address is saved. gprof uses this data
to generate a "flat profile" showing where your program is spending its time.

After compiling your program (and linking it, if you do that as a separate step), you are ready to profile it. Just run it as you
normally would. If there are specific code paths you want to profile, take the actions that would exercise those code paths. When
your program exits, you will have an additional file in the current directory: gmon.out. That file contains the profiling data gprof
processes and displays.

gprof has many flags to control its operation. The [?] details everything gprof can do. We will only use a few of gprof’s flags
here. You launch gprof as follows:

bash$ gprof [flags] appname [datafile]...

If you don’t specify any flags, gprof operates as if you gave it flags -p -q which means: generate a flat profile with descriptive
text and generate a call graph with more descriptive text. In the examples below we will give specific flags to gprof to demonstrate
specific displays. We’ll also use flag -b which means: be brief, i.e. don’t display the descriptive text. You can also specify a
trailing list of one or more profiling data files. If you don’t, gprof assumes gmon.out is the only file to process and display.

4.5.2 Examples

Example 4.7 Flat profile

bash$ gprof -b -p myapp
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
25.11 13.34 13.34 1 13.34 13.34 func0
25.00 26.62 13.28 1 13.28 13.28 func1
25.00 39.90 13.28 1 13.28 13.28 func3
24.89 53.12 13.22 1 13.22 13.22 func2

Example 4.8 Call graph

bash$ gprof -b -q myapp
Call graph

granularity: each sample hit covers 4 byte(s) for 0.02% of 53.12 seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.00 53.12 main [1]
13.34 0.00 1/1 func0 [2]
13.28 0.00 1/1 func1 [3]
13.28 0.00 1/1 func3 [4]

Cygwin User’s Guide 109 / 111

13.22 0.00 1/1 func2 [5]

13.34 0.00 1/1 main [1]
[2] 25.1 13.34 0.00 1 func0 [2]

13.28 0.00 1/1 main [1]
[3] 25.0 13.28 0.00 1 func1 [3]

13.28 0.00 1/1 main [1]
[4] 25.0 13.28 0.00 1 func3 [4]

13.22 0.00 1/1 main [1]
[5] 24.9 13.22 0.00 1 func2 [5]

Index by function name

[2] func0 [5] func2
[3] func1 [4] func3

Example 4.9 Source line profile

bash$ gprof -b -l myapp
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
25.11 13.34 13.34 1 13.34 13.34 func0 (myapp.c:9 @ 1004010e0)
25.00 26.62 13.28 1 13.28 13.28 func1 (myapp.c:10 @ 10040111a)
25.00 39.90 13.28 1 13.28 13.28 func3 (myapp.c:12 @ 10040118e)
24.89 53.12 13.22 1 13.22 13.22 func2 (myapp.c:11 @ 100401154)

Call graph

granularity: each sample hit covers 4 byte(s) for 0.02% of 53.12 seconds

index % time self children called name
13.34 0.00 1/1 main (myapp.c:26 @ 10040123c) [1]

[2] 25.1 13.34 0.00 1 func0 (myapp.c:9 @ 1004010e0) [2]

13.28 0.00 1/1 main (myapp.c:26 @ 10040123c) [1]
[3] 25.0 13.28 0.00 1 func1 (myapp.c:10 @ 10040111a) [3]

13.28 0.00 1/1 main (myapp.c:28 @ 100401246) [5]
[4] 25.0 13.28 0.00 1 func3 (myapp.c:12 @ 10040118e) [4]

13.22 0.00 1/1 main (myapp.c:27 @ 100401241) [7]
[6] 24.9 13.22 0.00 1 func2 (myapp.c:11 @ 100401154) [6]

Index by function name

[2] func0 (myapp.c:9 @ 1004010e0) [6] func2 (myapp.c:11 @ 100401154)
[3] func1 (myapp.c:10 @ 10040111a) [4] func3 (myapp.c:12 @ 10040118e)

Cygwin User’s Guide 110 / 111

4.5.3 Special situations

4.5.3.1 Profiling multi-threaded programs

Multi-threaded programs are profiled just like single-threaded programs. There is no mechanism to turn profiling on or off for
specific threads. gprof combines the data for all threads when generating its displays.

4.5.3.2 Profiling programs that fork

Programs that fork, i.e., use the fork() system call with or without using exec() afterwards, require special care. Since there is
only one gmon.out file, profiling data from the parent process might get overwritten by the child process, or vice-versa, after
a fork(). You can avoid this by setting the environment variable GMON_OUT_PREFIX before running your program. If the
variable is non-empty, its contents will be used as a prefix to name the profiling data files. Here’s an example:

bash$ export GMON_OUT_PREFIX=myapp.out
bash$./myapp -fork
bash$ ls myapp.out*
myapp.out.2728 myapp.out.3224

bash$ gprof -bp myapp myapp.out.2728
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
50.25 30.28 30.28 2 15.14 15.14 func3
24.99 45.34 15.06 1 15.06 15.06 func1
24.76 60.26 14.92 1 14.92 14.92 func2

bash$ gprof -bp myapp myapp.out.3224
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
49.25 29.36 29.36 2 14.68 14.68 func3
25.43 44.52 15.16 1 15.16 15.16 func1
25.33 59.62 15.10 1 15.10 15.10 func2

bash$ gprof -bp myapp myapp.out*
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
49.75 59.64 59.64 4 14.91 14.91 func3
25.21 89.86 30.22 2 15.11 15.11 func1
25.04 119.88 30.02 2 15.01 15.01 func2

As the last gprof command above shows, gprof can combine the data from a selection of profiling data files to generate its
displays. Just list the names of those files at the end of the gprof command; you can use a wildcard here. NOTE: If you update
your program, remember to remove stale profiling data files before profiling your program again. If you aren’t careful about this,
gprof could combine data from your most recent version with stale data from prior versions, possibly giving misleading displays.

4.5.3.3 Getting better profiling resolution

To get better resolution (i.e., more data points) when profiling your program, try running it multiple times with the environment
variable GMON_OUT_PREFIX set, as described in the previous situation. There will be multiple profiling data files generated

Cygwin User’s Guide 111 / 111

and you can have gprof combine the data from all of them into one display.

4.5.3.4 Profiling programs with their libraries

At the time of this writing Cygwin’s profiling support only allows for one range of addresses per program. It is hard-wired to
be the range covering the .text segment of your program, which is where your code resides. If you build your program with
static libraries (e.g., libfoo.a), the code from those libraries is linked into your program’s .text segment so will be included when
profiling. But dynamic libraries (e.g., libfoo.dll) reside in other address ranges and code within them won’t be included.

4.5.3.5 Profiling Cygwin itself

Due to the issue mentioned in the previous situation and other issues, at the time of this writing there is no support for profiling
Cygwin itself.

	Cygwin Overview
	What is it?
	Quick Start Guide for those more experienced with Windows
	Quick Start Guide for those more experienced with UNIX
	Are the Cygwin tools free software?
	A brief history of the Cygwin project
	Highlights of Cygwin Functionality
	Introduction
	Permissions and Security
	File Access
	Text Mode vs. Binary Mode
	ANSI C Library
	Process Creation
	Problems with process creation

	Signals
	Sockets
	Select

	What's new and what changed in Cygwin
	What's new and what changed in 2.11
	What's new and what changed in 2.10
	What's new and what changed in 2.9
	What's new and what changed in 2.8
	What's new and what changed in 2.7
	What's new and what changed in 2.6
	What's new and what changed in 2.5
	What's new and what changed in 2.4
	What's new and what changed in 2.3
	What's new and what changed in 2.2
	What's new and what changed in 2.1
	What's new and what changed in 2.0
	What's new and what changed in 1.7.35
	What's new and what changed in 1.7.34
	What's new and what changed in 1.7.33
	What's new and what changed in 1.7.32
	What's new and what changed in 1.7.31
	What's new and what changed in 1.7.29
	What's new and what changed in 1.7.28
	What's new and what changed in 1.7.27
	What's new and what changed in 1.7.26
	What's new and what changed in 1.7.25
	What's new and what changed in 1.7.24
	What's new and what changed in 1.7.23
	What's new and what changed in 1.7.22
	What's new and what changed in 1.7.21
	What's new and what changed in 1.7.19
	What's new and what changed in 1.7.18
	What's new and what changed in 1.7.17
	What's new and what changed in 1.7.16
	What's new and what changed in 1.7.15
	What's new and what changed in 1.7.14
	What's new and what changed in 1.7.13
	What's new and what changed in 1.7.12
	What's new and what changed in 1.7.11
	What's new and what changed in 1.7.10
	What's new and what changed in 1.7.9
	What's new and what changed in 1.7.8
	What's new and what changed in 1.7.7
	What's new and what changed in 1.7.6
	What's new and what changed in 1.7.5
	What's new and what changed in 1.7.3
	What's new and what changed in 1.7.2
	What's new and what changed from 1.5 to 1.7
	OS related changes
	File Access related changes
	Network related changes
	Device related changes
	Other POSIX related changes
	Security related changes
	Miscellaneous

	Setting Up Cygwin
	Internet Setup
	Download Source
	Selecting an Install Directory
	Local Package Directory
	Connection Method
	Choosing Mirrors
	Choosing Packages
	Download and Installation Progress
	Shortcuts
	Post-Install Scripts
	Troubleshooting

	Environment Variables
	Overview
	Restricted Win32 environment

	Changing Cygwin's Maximum Memory
	Internationalization
	Overview
	How to set the locale
	The Windows Console character set
	Potential Problems when using Locales
	List of supported character sets

	Customizing bash

	Using Cygwin
	Mapping path names
	Introduction
	The Cygwin Mount Table
	UNC paths
	The cygdrive path prefix
	The usertemp file system type
	Symbolic links
	Using native Win32 paths
	Using the Win32 file API in Cygwin applications
	Additional Path-related Information

	Text and Binary modes
	The Issue
	The default Cygwin behavior
	Binary or text?
	Programming

	File permissions
	Special filenames
	Special files in /etc
	Invalid filenames
	Forbidden characters in filenames
	Filenames with unusual (foreign) characters
	Case sensitive filenames
	POSIX devices
	The .exe extension
	The /proc filesystem
	The /proc/registry filesystem
	The @pathnames

	The CYGWIN environment variable
	Implemented options
	Obsolete options

	POSIX accounts, permission, and security
	Brief overview of Windows security
	Mapping Windows accounts to POSIX accounts
	Mapping Windows SIDs to POSIX uid/gid values
	Caching account information
	Cygwin user names, home dirs, login shells
	The /etc/nsswitch.conf file
	The /etc/nsswitch.conf syntax
	The passwd: and group: settings
	The db_enum: setting
	Settings defining how to create the passwd entry
	The db_home: setting
	The db_shell: setting
	The db_gecos: setting
	The cygwin schema
	The unix schema
	The desc schema

	NFS account mapping
	Samba account mapping

	File permissions
	Switching the user context
	Switching the user context with password authentication
	Switching the user context without password, Method 1: Create a token from scratch
	Switching the user context without password, Method 2: LSA authentication package
	Switching the user context without password, Method 3: With password
	Switching the user context, how does it all fit together?

	Cygserver
	What is Cygserver?
	Cygserver command line options
	How to install Cygserver
	How to start Cygserver
	The Cygserver configuration file

	Cygwin Utilities
	cygcheck
	cygpath
	dumper
	getconf
	getfacl
	kill
	ldd
	locale
	minidumper
	mkgroup
	mkpasswd
	mount
	passwd
	pldd
	ps
	regtool
	setfacl
	setmetamode
	ssp
	strace
	tzset
	umount

	Using Cygwin effectively with Windows
	Pathnames
	Cygwin and Windows Networking
	Creating shortcuts
	Printing

	Programming with Cygwin
	Using GCC with Cygwin
	Standard Usage
	Building applications for 64 bit Cygwin
	GUI Mode Applications

	Debugging Cygwin Programs
	Building and Using DLLs
	Building DLLs
	Linking Against DLLs

	Defining Windows Resources
	Profiling Cygwin Programs
	Introduction
	Examples
	Special situations
	Profiling multi-threaded programs
	Profiling programs that fork
	Getting better profiling resolution
	Profiling programs with their libraries
	Profiling Cygwin itself

