MicroC/OS |

The Real-Time Kerne

Second Edition

Jean J. Labrosse

CMP Books
L awrence, K ansas 66046

CMP Books

CMP MediaLLC

1601 West 23rd Street, Suite 200
L awrence, K ansas 66046

USA

www.cmpbooks.com

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where CMP is aware of a trademark claim, the product name appears in initial
capital letters, in al capital letters, or in accordance with the vendor’s capitalization preference.
Readers should contact the appropriate companies for more complete information on trade-
marks and trademark registrations. All trademarks and registered trademarks in this book are the
property of their respective holders.

Copyright [0 2002 by CMP Books except where noted otherwise. Published by CMP Books,
CMP MediaLLC. All rights reserved. Printed in the United States of America. No part of this
publication may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the publisher; with the excep-
tion that the program listings may be entered, stored, and executed in a computer system, but
they may not be reproduced for publication.

The programsin this book are presented for instructional value. The programs have been care-
fully tested, but are not guaranteed for any particular purpose. The publisher does not offer any
warranties and does not guarantee the accuracy, adequacy, or completeness of any information
herein and is not responsible for any errors or omissions. The publisher assumes no liability
for damages resulting from the use of the information in this book or for any infringement of
the intellectual property rights of third parties that would result from the use of this informa-
tion.

Acquisition Editor: Robert Ward

Managing Editor: Michelle O’ Nea

Copyeditor: Catherine Janzen

Production and Layout: Justin Fulmer and Michelle O’ Neal
Cover Art Design: Robert Ward

Distributed in the U.S. and Canada by:
Publishers Group West

1700 Fourth Street

Berkeley, CA 94710

1-800-788-3123

WWW.pgw.com

ISBN: 1-57820-103-9 C M P BOOkS

To my loving and caring wife, Manon, and to our two
lovely children, James and Sabrina.

Table of Contents

Preface. XV
M eets the Requirements of Safety-Critical Systems XV
What'sNew inthisEdition? XV
HC/OSI GOAlS ..ot XVii
Intended Audience XVil
What YouNeedto Use uWC/OS-I1 . ..o XVil
ThepC/OS StOrY ..ot XVil
Acknowledgments XX

INntroduction XXi
HC/OS-I FEaIUrES . ..ot e e e e XXI
Figures, Listings,and Tables i XXiil
Chapter CONtentSot e XXiii
HC/OSIITWeb SIite . ..o e XXVi

Chapter 1 Getting Started with uC/OS-I1 ... o oL 1

1.00 Instaling WC/OS-IT .. oo 1
101 Example#l ... 2
1.02 Example#2o 10
1.03 Example#3 . ..o 20
1.04 Example#d 31

Vi Table of Contents

Chapter 2

Real-time SystemsConcepts 35
2.00 Foreground/Background Systems....................... 36
2.01 Critical Sectionsof Code ..., 37
2.02 RESOUICES ..ottt it e e e e 37
203 Shared ResOUICESo e 37
204 Multitasking 37
205 TaSKS .ttt 37
2.06 Context Switches (or Task Switches) 39
207 Kenels ... 39
208 Schedulers 40
2.09 Non-PreemptiveKernels. it 40
210 PreemptiveKernels i 42
211 Reentrant Functions 43
2.12 Round-Robin Scheduling 45
213 Task Prionitieso 45
214 SAiCPrionties 45
2.15 DynamiC Priorities 45
216 Priority Inversions. 45
2.17 Assigning Task Priorities ..., 48
218 Mutual Exclusion 49
2.19 Deadlock (or Deadly Embrace) 57
2.20 Synchronizationco.iiiiiiiiinnnnnn. 57
221 EventHags 59
2.22 Intertask Communicationc.cvuuiinaen... 60
2.23 MessageMailboxes. 60
224 Message QUEUESot 61
225 INEITUPLS . .o 62
2.26 InterruptLatency 62
227 Interrupt RESPONSE . .. oo 63
2.28 INterrupt RECOVENY ... o 64
2.29 Interrupt Latency, Response, and Recovery 64
230 ISRProcessing Time.ot 66
2.31 NonmaskableInterrupts, 66
232 Clock Tick . .. oo 68
2.33 Memory Requirementst 70
2.34 Advantages and Disadvantages of Rea-TimeKernels. 71
2.35 Red-TimeSystemsSummarycooven... 71

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Table of Contents Vi

Kerne Structure, 73
3.00 Critical Sections, 0S_ENTER_CRITICAL() and
OS_EXIT_CRITICALC) v 74
B0l TaSKS ottt 78
302 Task StAES ..o vi e 79
3.03 Task Control Blocks (0S_TCB), 81
304 Ready List ..o 88
305 TaskSchedulingciiiiiii i 90
3.06 Task Level Context Switch, OS_TASK_SW() 92
3.07 Locking and Unlocking the Scheduler 96
308 IdleTask ..o 98
3.09 StatisticSTasK .« . vvvv et 99
3.10 InterruptsUnder pC/OS-IT ..o 103
311 Clock TicK . .o o v 108
3.12 PC/OSHI Initidization ..., 111
313 Starting C/OS-IT ..o 114
3.14 Obtaining the Current uC/OS-Il1 Version 116
Task Management 117
4.00 CreatingaTask, 0STaskCreate() 118
4.01 CreatingaTask, 0STaskCreateExt() 120
402 Task StaCKS . . oo 123
4.03 Stack Checking, 0STaskStkChk() 125
4.04 DeletingaTask, 0STaskDel() ..., 129
4.05 Requesting to Deletea Task, 0STaskDelReq() 132
4.06 Changing aTask’sPriority,0STaskChangePrio() 136
4.07 Suspending aTask, 0STaskSuspend() 139
4.08 ResumingaTask, 0STaskResume() 141
4.09 Getting Information about a Task, 0STaskQuery() 142
TimeManagement 145
5.00 DelayingaTask, 0STimeDly () ...ooivniinninnn.. 146
5.01 DelayingaTask, 0STimeDTyHMSM()ovvvinenrnn... 148
5.02 Resuming aDelayed Task,0STimeDlyResume() 150
5.03 System Time, 0STimeGet () and OSTimeSet() 151
Event Control Blocks 153
6.00 PlacingaTask intheECB WaitList 156
6.01 Removing aTask froman ECB WaitList 157

6.02 Finding the Highest Priority Task Waitingonan ECB 157

Viil Table of Contents

Chapter 7

Chapter 8

Chapter 9

Chapter 10

6.03 Listof FreeECBSt
6.04 Initializingan ECB, 0S_EventWaitListInit()
6.05 Making aTask Ready, 0S_EventTaskRdy()
6.06 Making aTask Wait for an Event, 0S_EventTaskWait() .
6.07 Making a Task Ready Because of a Timeout,
OS_EventTO() v e

SemaphoreManagement

7.00 Creating a Semaphore, 0SSemCreate()
7.01 Deleting a Semaphore, 0SSemDeT()
7.02 Waiting on a Semaphore (Blocking), 0SSemPend()
7.03 Signaling a Semaphore, 0SSemPost()
7.04 Getting a Semaphore Without Waiting (Non-blocking),

0SSemAccept () vt
7.05 Obtaining the Status of a Semaphore, 0SSemQuery ()

Mutual Exclusion Semaphores...............

8.00 Creating aMutex, OSMutexCreate()
8.01 DeletingaMutex, OSMutexDeT()iviion..
8.02 Waiting on aMutex (Blocking), OSMutexPend()
8.03 Signaling aMutex, 0SMutexPost()
8.04 Getting a Mutex without Waiting (Non-blocking),
OSMutexAccept() .
8.05 Obtaining the Status of a Mutex, 0SMutexQuery()

Event FlagManagement

9.00 EventFlagInternals,
9.01 Creating an Event Flag Group, 0SFTagCreate()
9.02 Deleting an Event Flag Group, 0SFTagDel ()
9.03 Waiting for Event(s) of an Event Flag Group,
OSFTagPend() ...t i
9.04 Setting or Clearing Event(s) in an Event Flag Group,
OSFTagPoSt() i e
9.05 Looking for Event(s) of an Event Flag Group,
OSFlagAccept() i i
9.06 Querying an Event Flag Group, 0SFTagQuery()

Message Mailbox Management

10.00 Creating aMailbox, 0SMboxCreate()
10.01 Deleting aMailbox, 0SMboxDel()covn...

.163

Chapter 11

Chapter 12

Chapter 13

Table of Contents 1X

10.02 Waiting for aMessage at aMailbox, 0SMboxPend() 235
10.03 Sending a Message to aMailbox, 0SMboxPost() 238
10.04 Sending a Message to a Mailbox, 0SMboxPostOpt() 239
10.05 Getting a Message without Waiting (Non-blocking),
OSMboxXACCept () i e e 241
10.06 Obtaining the Status of aMailbox, 0SMboxQuery () 242
10.07 Using aMailbox asaBinary Semaphore 244
10.08 Using aMailbox Instead of 0STimeDly() 245
Message Queue Management 247
11.00 Creating aMessage Queue, 0SQCreate() 251
11.01 Deleting a Message Queue, 0SQDel () 253
11.02 Waiting for aMessage at a Queue (Blocking), 0SQPend() ..256
11.03 Sending a Message to a Queue (FIFO), 0SQPost() 259

11.04 Sending a Message to a Queue (LIFO), 0SQPostFront() 261
11.05 Sending a Message to a Queue (FIFO or LIFO),

0SQPOSEOPL() vvie i 262
11.06 Getting a Message Without Waiting, 0SQAccept() 265
11.07 Flushing aQueue, 0SQFTush() ..., 267
11.08 Obtaining the Status of a Queue, 0SQQuery () 268
11.09 Using a Message Queue When Reading Analog Inputs . .. 270
11.10 Using a Queue asa Counting Semaphore 271
Memory Management 273
12.00 Memory Control Blockst 274
12.01 Creating a Partition, 0SMemCreate() 276
12.02 Obtaining a Memory Block, 0SMemGet () 279
12.03 Returning aMemory Block, 0SMemPut () 280
12.04 Obtaining Status of a Memory Partition, 0OSMemQuery () ...282
12.05 Using Memory Partitions 283
12.06 Waiting for Memory Blocks from a Partition 285
Porting uC/OS-I1o 287
13.00 Development Tools oo 289
13.01 Directoriesand Files ..., 290
13.02 INCLUDES . H vt e e e 291
13.03 0S_CPU.H o e e 291
13.04 0S_CPU_C.C vt e e 297
13.05 0S_CPU_A.ASM it e 304

13.06 TestingaPort 310

X Table of Contents

OSCEXSW () ot e e e 322
0SInitHookBegin() ...t 323
0SInitHookEnd() . .vvii e 324
OSTNECEXSW() v i e e e 325
0SStartHighRdy () ... 326
0STaskCreateHook() ...t 327
0STaskDeTHOOK() e e e 328
0STaskIdleHooK() v e 329
O0STaskStatHook() .o e 330
OSTaskStKINTE() o e e 331
0STasSkSWHOOK () vuv v e 333
OSTCBINTtHOOK() vt e e 334
OSTICKISR() v e e e e 335
OSTimeTickHOOK() v e 336
Chapter 14 80x86Port i, 337
Real Mode, Large Model with Emulated Floating-Point
Support
14.00 Development ToOolS 339
14.01 Directoriesand Files ..., 340
14.02 INCLUDES . H vt e e e 341
14.03 0S_CPU.H ot e e e 341
14.04 0S_CPU_C.C vt e e 345
14.05 0S_CPU_A.ASM e 357
1406 Memory USageiviiii i 370
Chapter 15 80x86Port 377
Real Mode, Large Model with Har dwar e Floating-Point
Support
15.00 Development Toolso 377
15.01 Directoriesand Files, 380
15.02 INCLUDES . H e 380
15.03 0S_CPU.H vt e e 381
15.04 0S_CPU_C.C vvv it e e e e 383
15.05 0S_CPU_A.ASM e 393
15.06 Memory Usageot 402
Chapter 16 HC/OS-II ReferenceManual 405
OS_ENTER_CRITICALC) vt e 406

OS_EXIT_CRITICALC) v 406

Table of Contents ~ XI

OSFTagAccept () vt 407
OSFTagCreate() ... e 409
OSFTagDel () v e e e 410
OSFTagPend() ..o e 412
OSFTagPost () v 414
OSFTagQuery () ot e e e 416
OSTNT () v 417
OSIntENnter() vt e 418
OSTNEEXTE () vii e e e 420
OSMbOXACCEPE() v 421
OSMboxCreate() ... e s 422
OSMBOXDET () v it e e 423
OSMbOXPend () vt e 425
OSMBOXPOSE () vt e 427
OSMBOXPOSTOPT() vt 429
OSMBOXQUErY () vttt e e e 431
OSMemCreate() .. i e e s 433
OSMEmMGEL () v it e 435
OSMEmMPUL () v e e 437
OSMemQUETrY () vttt 439
OSMutexAccept() v 441
OSMutexCreate() ... e 443
OSMUtexDeT () vt e e 445
OSMutexPend() ... e 447
OSMUutexPosSt() ..ot 449
OSMutexQuery () .o 451
0SQACCEPE () v 453
0SACreate () v 454
0SADET () vt 455
OSQAFTUSN () e e e 457
0SAPend () oo v it e 458
0SQPOSE () i 460
0SQPoStFront () .. 462
O0SQPOSTOPL() vt 464
0SQAUErY () v vt 466
0SSchedLock() v e 468
0SSchedUnTock() v e 469
0SSemAcCept() vt e 470
0SSemCreate() .o e 471
0SSemDeEl () v e 472

0SSemPend () o 474

Xii Table of Contents

Chapter 17

Chapter 18

0SSEmMPOSE () vttt e 476
0SSemQuEry () vt 478
0SSEart () vt 480
0SStatInit() ... 481
0STaskChangePrio() ... 482
0STaskCreate() . e e e e 483
OSTaskCreateExt() ... 487
0STaskDel () v e 493
0STaskDeTREq() it e 495
OSTaskQUEery () vt e e e e 497
OSTaskResume () . e 499
0STaskStKChK() o e e 500
0STaskSuspend() ... e e e 502
OSTIimeDTY () v 504
OSTimeDTYHMSM() oot e e 505
OSTimeDIyResume() ot 507
OSTImMEGEE () vttt e 508
OSTimeSet () i e 509
OSTImMETICK() v e 510
OSVErSTON () vt e 512
HC/OSII Configuration Manual 513
17.00 Miscellaneous 513
1701 EventFlags 516
17.02 MessageMailboxes. 516
17.03 Memory Management 517
17.04 Mutual Exclusion Semaphores 517
17.05 Message QUEUES . ..ot vt it e i 518
17.06 SEMAPNOrES . . .ottt 519
17.07 Task Managementcoouieienennenn. 519
17.08 TimeManagementcouiirenunnnnnn. 520
17.09 Function SUMMAryouiiiiiiiiennnnnn. 520
PCSEIVICES . . .ot 525
18.00 Character-Based Displayccovuiinnin.... 525
18.01 Saving and Restoring DOS'sContext 529
18.02 Elapsed-TimeMeasurement 531
18.03 Miscallaneoust 531
18.04 InterfaceFunctions 532
PC_DispChar() ... e 533

PC_DispCIrCol() v e e 534

Appendix A

Appendix B

Appendix C

Table of Contents ~ Xiii

PC_DispCIrROW() ©vv e e e e 535
PC_DispCIrScr() o e e e 536
PC_DISpSEr() e 537
PC_DOSREtUrN () vt e 539
PC_DOSSaveReturn() ... 540
PC_ETapsedInit() ... e 541
PC_ETapsedStart() i, 542
PC_ETapsedStop() ... 544
PC_GetDateTime() .. 545
PC_GetKey () v e 546
PC_SetTickRate() ...ouvuiii e 547
PC_VectGet () v e e 548
PC_VectSet() .o e e e e 549
18.05 Bibliography 550
C CodingConventions. 551
Al Headero 552
A2 IncludeFles. ... 552
A.3 Namingldentifiers 553
A.4 Acronyms, Abbreviations, and Mnemonics. 554
A5 Comments 556
A6 fHdefines . 557
A7 DataTypeS . ..o 557
A8 Local Variables 558
A.9 FunctionPrototypes 559
A.10 FunctionDeclarationsc.cciiiiiiinen... 559
Adl Indentation i 560
A.12 Statementsand Expressions......................... 563
A.13 StructuresandUnions 564
A.14 Bibliography 564
Licensing Policy for uC/OS-I1ot 567
B.1 CollegesandUniversitiest 567
B2 Commercial USe ...t 567
HC/OS1 Quick Reference 569
Miscellaneoust 570
Task Managementc i 571

TimeManagementi it 573

XIV Table of Contents

Appendix D

Appendix E

Appendix F

SemaphoreManagemento 574
Mutual Exclusion Semaphore Management 575
Event FlagManagement 576
Message Mailbox Management 577
Message Queue Management, 579
Memory Management i 581
TOULIItY oot et 583
Bibliography 585
CompanionCD................ ... io... 587
F.1 FilesandDirectories, 589
.. 593

Preface

Ten years ago (1992), | wrote my first book called, uC/OS, The Real-Time Kernel. Towards the end of
1998, it was replaced by MicroC/OS-I1, The Real-Time Kernel. The word Micro now replaces the Greek
letter 1 on the book cover because bookstores didn’t know how to file uC/OS properly. However, for all
intents and purposes, MicroC/OS and uC/OS are synonymous, and, in this book, | mostly use uC/OS-11.
Thisisthe second edition of uC/OS-11 but, in away, the third edition of the uC/OS series.

Meets the Requirements of Safety-Critical Systems

In July of 2000, uC/OS-11 was certified in an avionics product by the Federal Aviation Administration
(FAA) for use in commercia aircraft by meeting the demanding requirements of the RTCA DO-178B
standard for software used in avionics equipment. In order to meet the requirements of this standard, it
must be possible to demonstrate through documentation and testing that the software is both robust and
safe. Thisissueis particularly important for an operating system as it demonstrates that it has the proven
quality to be usable in any application. Every feature, function, and line of code of pC/OS-I1 has been
examined and tested to demonstrate that it is safe and robust enough to be used in safety-critical systems
where human lifeis on the line.

What's New in this Edition?

This book has been completely revised since the first edition of MicroC/OS-11, The Real-Time Kernel.

More Chapters

The previous edition contained 12 chapters while this edition has 18. | decided to break the old
Chapter 6 (Intertask Communications & Synchronization) into six chapters. | how dedicate awhole
chapter to event control blocks (ECBs), one for semaphores, one for mutual exclusion semaphores,
one for event flags, one for message mailboxes, and finally, one for message queues.

The previous edition contained a port for the Intel 80x86 family of processors, but this port only
handled context switching of integer registers. | added a chapter that describes a port that also saves
and restores floating-point registers, which are common to the 80486 and Pentium processors.

XV

XVi Preface

| also added a chapter that describes the services | use from a PC.
Finally, | added two appendices. Coding Conventions and a uC/OS-11 Quick Reference.

Removed Chapters

| decided to remove the chapter on porting uC/OS to UC/OS-II because very few people are still
using UC/OS because uC/OS-11 offers so much more.

| also removed the appendix on HPLISTC because most good code editors allow you to neatly print
source listings.

Removed Code Listings

| decided to remove the code listings that were found in Appendices A, B, and C. | have three rea-
sons for removing the listings. First, this edition contains over 150 pages of new material. If | were
to leave the listings in the appendices, this book would exceed 750 pages and would be a monster to
carry around (it's already big asit is). The second reason is that the code comes on the companion
CD, and it's better to refer to the code using a computer anyway. Also, the code is already described
in the book, so the appendices were a duplication of the code. Finaly, like any piece of software,
MC/OS-1 is subject to changes and upgrades. Because of this, the listings in the appendi ces become
obsolete over time and thus have little value.

Additional Services

The code for uC/OS-1I is basically the same as the previous edition, except for the addition of new
services. The previous edition contained the following services:

» Time management

» Binary and counting semaphores

* Message mailboxes

¢ Message queues

» Fixed-sized memory block manager

This new edition adds:
e Mutual exclusion semaphores (mutexes)
» Eventflags

More Examples

In some of the chapters, | added examples on how you can use the services described.

New Structure

| rearranged the structure of the book to make it much more usable. | found that the way the code
was described was cumbersome, and | decided to completely redo it. You should notice that when |
reference a specific element in afigure, | use the letter F followed by the figure number. The number
in parenthese following the figure number represents a specific element in the figure to which | am

HC/OS| Goals XVii

trying to bring your attention. F1.2(3) thus means “please look at the item numbered “3” in Figure
1.2. 1 used this scheme in the previous edition, but thistime | decided to place these reference mark-
ersin the margin instead of burying them in the text. | find that it's alot easier to follow the code or
figure using this scheme and | hope you do too.

UC/OS-I1 Goals

My most important goal is to demystify real-time kernel internals. By understanding how a kernel
works, you arein a better position to determine whether you need a kernel for your own products. Most
of the concepts presented in this book are applicable to alarge number of commercia kernels. My next
most important goal is to provide you with a quality product that you can potentially use in your own
products. UC/OS-11 is not freeware nor is it open source code. If you use uC/OS-11 in a commercial
product, you need to license its use (see Appendix B, “Licensing Policy for uC/OS-11").

| ntended Audience

This book is intended for embedded system programmers, consultants, and students interested in
real-time operating systems. uC/OS-11 is a high performance, deterministic, real-time kernel and can be
(and has been) used in commercial embedded products.

Instead of writing your own kernel, you should consider uC/OS-11. You will find, as | did, that writ-
ing akernel isnot as easy asit first looks.

I’m assuming that you know C and have a minimum knowledge of assembly language. You should
a so understand microprocessor architectures.

What You Need to Use uC/OS- |

The code supplied with this book assumes that you are using an IBM-PC/AT or compatible (80386 min-
imum) computer running under DOS 4.x or higher. The code was compiled with the Borland C++
v4.51. You should have about 10 MB of free disk space on your hard drive. | actually compiled and exe-
cuted the sample code provided in this book on a 300 MHz Pentium Il computer running Microsoft’'s
Windows 2000. | have successfully compiled and run the code on Windows 95, 98, and NT-based
machines.

To use uC/OS-I1 on a different target processor (other than a PC), you need to either port uC/OS-I|
to that processor yourself or obtain such a port from the officiad pC/OS-II Web site at
http://www.uC0S-11.com..You also need appropriate software development tools, such asan ANSI C
compiler, an assembler, linker/locator, and some way of debugging your application.

The uC/OS Story

Many years ago, | designed a product based on an Intel 80C188 at Dynalco Controls, and | needed a
real-time kernel. | had been using awell-known kernel (1’1l cal it kernel A) in my work for a previous
employer, but it was too expensive for the application | was designing. | found a lower-cost kernel
(%$1,000 at thetime) (I'll call it kernel B) and started the design. | spent about two months trying to get a
couple of very ssimple tasks to run. | was calling the vendor amost on a daily basis for help to make it

XViil Preface

work. The vendor claimed that kernel B was written in C (the language); however, | had to initialize
every single object using assembly language code. Although the vendor was very patient, | decided that
I had had enough. The product was falling behind schedule, and | really didn’t want to spend my time
debugging this low-cost kernel. It turns out that | was one of the vendor’s first customers, and the kernel
really was not fully tested and debugged.

To get back on track, | decided to go back and use kernel A. The cost was about $5,000 for five
development seats, and | had to pay a per-usage fee of about $200 for each unit that was shipped. This
was a lot of money at the time, but it bought some peace of mind. | got the kernel up and running in
about two days. Three months into the project, one of my engineers discovered what looked like a bug
in the kernel. | sent the code to the vendor, and, sure enough, the bug was confirmed as being in the ker-
nel. The vendor provided a 90-day warranty but that had expired, so, in order to get support, | had to pay
an additional $500 per year for maintenance. | argued with the salesperson for a few months that they
should fix the bug because | was actually doing them a favor. They wouldn’'t budge. Finally, | gave in
and bought the maintenance contract, and the vendor fixed the bug six months later. Yes, six months
later! | was furious and, most importantly, late delivering the product. In al, it took close to ayear to get
the product to work reliably with kernel A. | must admit, however, that | have had no problems with it
since.

Asthiswas going on, | naively thought that it couldn’t be that difficult to write akernel. All it needs
to do is save and restore processor registers. That's when | decided to write my own kernel (part time,
nights and weekends). It took me about a year to get the kernel to work as well, and, in some ways bet-
ter, than kernel A. | didn’t want to start a company and sell it because there were already about 50 ker-
nels out there, so why have another one?

Then | thought of writing a paper for a magazine. First, | went to C User’s Journal (CUJ) because
the kernel was written in C. | had heard CUJ was offering $100 per published page when other maga-
zines were only paying $75 per page. My paper had 70 or so pages, so that would be nice compensation
for al the time | spent working on my kernel. Unfortunately, the article was rejected for two reasons.
First, the article was too long, and the magazine didn’t want to publish a series. Second, they didn’'t want
“another kernel article.”

| decided to turn to Embedded Systems Programming (ESP) magazine because my kernel was
designed for embedded systems. | contacted the editor of ESP (Mr. Tyler Sperry) and told him that | had
akernel | wanted to publish in his magazine. | got the same response from Tyler that | did from CUJ:
“Not another kerndl article?’ | told him that this kernel was different — it was preemptive, it was com-
parable to many commercial kernels, and the source code could be posted on the ESP BBS (bulletin
board system). | was calling Tyler two or three times a week, basically begging him to publish my arti-
cle. Hefinally gave in, probably because he was tired of my calls. My article was edited down from 70
pages to about 30 pages and was published in two consecutive months (May and June 1992). The article
was probably the most popular article in 1992. ESP had over 500 downloads of the code from the BBS
in the first month. Tyler might have feared for his life because kernel vendors were upset that he pub-
lished akernel in hismagazine. | guess that these vendors must have recognized the quality and capabil-
ities of uC/OS (called pCOS then). The article was redlly the first that exposed the internal workings of
area-time kernel, so some of the secrets were out.

About the time the article came out in ESP, | got a call from Dr. Bernard (Berney) Williams at
CMP Books, CMP Media LLC (publisher of CUJ), six months after the initial contact with CUJ. He
left a message with my wife and told her that he was interested in the article. | called him back and
said, “Don’t you think you are alittle bit late with this? The article is being published in ESP” Berney
said, “No, No, you don’'t understand. Because the article is so long, | want to make a book out of it.”
Initially, Berney simply wanted to publish what | had (asis), so the book would only have 80 pages or
so. | told him that if | was going to write a book, | wanted to do it right. | then spent about six months

The pC/OSSory XiX

adding content to what is now known as the first edition. In all, the book was published at about 250
pages. | changed the name from pCOS to uC/OS because ESP readers had been caling it “mucus,”
which didn’'t sound very healthy. Come to think of it, maybe it was a kernel vendor that first came up
with the name. Anyway, uC/OS, The Real-Time Kernel was born. Sales were somewhat slow to start.
Berney and | had projected about 4,000 to 5,000 copies would be sold in the life of the book, but at the
rate it was selling, | thought we'd be lucky if it sold 2,000 copies. Berney insisted that these things
take time to get known, so he continued advertising in CUJ for about a year.

A month or so before the book came out, | went to my first Embedded Systems Conference (ESC) in
Santa Clara, California (September 1992). | met Tyler Sperry for thefirst time, and | showed him a copy
of the first draft of my book. He very quickly glanced at it and asked if | would like to speak at the next
Embedded Systems Conference in Atlanta. Not knowing any better, | said | would and asked him what |
should talk about. He suggested “Using Small Real-Time Kernels.” On the trip back from California, |
was thinking, “What did | get myself into? I've never spoken in front of a bunch of people before. What
if I make afool of myself?What if what | speak about is common knowledge? People pay good money
to attend this conference.” For the next six months, | prepared my lecture. At the conference, | had more
than 70 attendees. In the first twenty minutes, | must have lost one pound of sweat. After my lecture,
about 15 people or so came up to me to say that they were very pleased with the lecture and liked my
book. | was invited back to the conference but could not attend the one in Santa Clara that year (1993)
because my wife was due to have our second child, Sabrina. | was able to attend the next conference in
Boston (1994), and | have been aregular speaker at ESC ever since. For the past several years, |’ve been
on the conference Advisory Committee. | now do at least three lectures at every conference and each has
attendance between 100 and 300 people. My lectures are almost aways ranked among the top 10% at
the conference.

To date, well over 25,000 copies of my uC/OS and uC/OS-11 books have been sold around the world.
| have received and answered thousands of e-mails from over 44 countries. | still try to answer every
single one. | believe that if you take the time to write me, | owe you a response. In 1995, uC/OS, The
Real-Time Kernel was tranglated into Japanese and published in Japan in amagazine called Interface. In
2001, uC/OS-11 was trandlated into Chinese. A Korean translation came out in early 2002. A Japanese
trandation of uC/OS-11 isin the works and should be available in 2002.

MC/OS and uC/OS-I1 have been ported to over 40 different processor architectures, and the number
of portsisincreasing. You should consult the uC/OS-I1 Web siteat http://www.uC0S-11.comto seeif
the processor you intend to use is available.

In 1994, | decided to write a second book: Embedded Systems Building Blocks, Complete and
Ready-to-Use Modules in C (ESBB). A second edition of ESBB was published in 2000. For some rea-
son, ESBB has not been as popular as uC/OS, athough it contains a lot of valuable information not
found anywhere else. | always thought that it would be an ideal book for people just starting in the
embedded world.

In 1998, | opened the official pC/OS Web site http://www.uC0S-I1.com. | intend this site to con-
tain ports, application notes, links, answers to frequently asked questions (FAQS), upgrades for
MC/OS-11, and more. All | need istime!

In 2001, | started a news group to alow users to share information and their experiences with
pC/OSHI.

Back in 1992, | never imagined that writing an article would change my life asit has. | met alot of
very interesting people and made a number of good friends in the process.

Thanks for choosing this book, and | hope you enjoy it!

XX Preface

Acknowledgments

First and foremost, | would like to thank my wife for her support, encouragement, understanding, and
especialy patience. Once again, | underestimated the amount of work for this edition — it was sup-
posed to take just a few weeks and be out by January 2002. | would aso like to thank my children,
James (age 11) and Sabrina (age 8), for putting up with the long hours | had to spend in front of the
compuiter.

A very specia thanks to Mr. Gino Vannelli for creating such wonderful music. As far as I’'m con-
cerned, Gino redefines the word “perfection.” Thanks, Gino, for being with me (in music) for aimost 30
years.

I would also like to thank all the fine people at CMP Books for their help in making this book areal-
ity and for putting up with my insistence on having things done my way.

Finaly, | would like to thank all the people who have purchased my uC/OS, uC/OS-1, and Embed-
ded Systems Building Blocks books over the years.

| ntroduction

This book describes the design and implementation of uC/OS-I1 (pronounced “Micro C O S 27), which
stands for Micro-Controller Operating System, Version 2.

MC/OS-11 is a completely portable, ROMable, scalable, preemptive, real-time, multitasking kernel.
MC/OS-11 iswritten in ANSI C and contains a small portion of assembly language code to adapt it to dif-
ferent processor architectures. To date, WC/OS-11 has been ported to over 40 different processor architec-
tures, ranging from 8- to 64-bit CPUs.

MC/OS-11 is based on uC/OS, The Real-Time Kernel that was first published in 1992. Thousands of
people around the world are using uC/OS and uC/OS-1 in al kinds of applications, such as cameras,
avionics, high-end audio equipment, medical instruments, musical instruments, engine controls, net-
work adapters, highway telephone call boxes, ATM machines, industrial robots, and more. Numerous
colleges and universities have also used UC/OS and pC/OS-11 to teach students about real-time systems.

MC/OS-11 is upward compatible with uC/OS v1.11 (the last released version of uC/OS) but provides
many improvements. If you currently have an application that runs with uC/OS, it should run virtually
unchanged with uC/OS-I1. All of the services (i.e., function calls) provided by uC/OS have been pre-
served. You may, however, have to change include files and product build files to point to the new filena-
mes.

The companion CD for this book contains all the source code for uC/OS-11 and ports for the Intel
80x86 processor running in real mode and for the large model. The code was devel oped and executed on
a PC running Microsoft Windows 2000 but should work just as well on Windows 95, 98, Me, NT, and
XP. Examples run in a DOS-compatible box under these environments. Development was done using
the Borland International C/C++ compiler v4.51. Although pC/OS-I1 was devel oped and tested on a PC,
MC/OS-11 was actually targeted for embedded systems and can be ported easily to many different pro-
cessor architectures.

UC/OS-I1 Features

Source Code Asl| mentioned previously, the companion CD contains all the source code for uC/OS-I1
(about 5,500 lines). | went to alot of effort to provide you with a high-quality product. You might not
agree with some of the style constructs that | use, but you should agree that the code is both clean and
very consistent. Many commercial real-time kernels are provided in source form. | challenge you to find
any such code that is as neat, consistent, well commented, and well organized as uC/OS-1I. Also, |

XXI

Intro

XXii Introduction

believe that simply giving you the source code is not enough. You need to know how the code works and
how the different pieces fit together. This book provides that type of information. The organization of a
real-time kernel is not always apparent when staring at many source files and thousands of lines of code.

Portable Most of uC/OS-11 iswritten in highly portable ANSI C, with target microprocessor-specific
code written in assembly language. Assembly language is kept to a minimum to make uC/OS-I1 easy to
port to other processors. Like uC/OS, uC/OS-11 can be ported to alarge number of microprocessors, as
long as the microprocessor provides a stack pointer and the CPU registers can be pushed onto and
popped from the stack. Also, the C compiler should provide either in-line assembly or language exten-
sions that allow you to enable and disable interrupts from C. uC/OS-11 can run on most 8-, 16-, 32-, or
even 64-bit microprocessors or microcontrollers and digital signal processors (DSP).

All the ports that currently exist for uC/OS can be converted to uC/OS-I1 in about an hour. Also,
because uC/OS-1 is upward compatible with uC/OS, your uC/OS applications should run on uC/OS-|
with few or no changes. Check for the availability of ports on the pC/OS-1I Web site at
www.uCOS-11.com.

ROMable pC/OS-II was designed for embedded applications, which means that if you have the
proper tool chain (i.e., C compiler, assembler, and linker/locator), you can actually embed uC/OS-I1 as
part of a product.

Scalable | designed pC/OS-I1 so that you can use only the services you need in your application,
which means that a product can use just a few uC/OS-Il services, while another product can benefit
from the full set of features. Scalability allows you to reduce the amount of memory (both RAM and
ROM) needed by uC/OS-11 on a per-product basis. Scalability is accomplished with the use of condi-
tional compilation. Simply specify (through jfdefine constants) which features you need for your appli-
cation or product. | did everything | could to reduce both the code and data space required by uC/OS-11.

Preemptive uC/OS-I isafully preemptive real-time kernel, which means that uC/OS-11 always runs
the highest priority task that is ready. Most commercia kernels are preemptive, and uC/OS-11 is compa-
rable in performance with many of them.

Multitasking pC/OS-I1 can manage up to 64 tasks; however, | recommend that you reserve eight of
these tasks for uC/OS-II, leaving your application up to 56 tasks. Each task has a unique priority
assigned to it, which means that pC/OS-11 cannot do round-robin scheduling. There are thus 64 priority
levels.

Deterministic Execution times for most of uC/OS-11 functions and services are deterministic, which
means that you can always know how much time pC/OS-11 will take to execute a function or a service.
Except for 0STimeT1ick() and some of the event flag services, execution times of pC/OS-I1 services do
not depend on the number of tasks running in your application.

Task Stacks Each task requires its own stack; however, uC/OS-11 allows each task to have a different
stack size, which alows you to reduce the amount of RAM needed in your application. With uC/OS-11's
stack-checking feature, you can determine exactly how much stack space each task actually requires.

Services WC/OS-11 provides a number of system services, such as semaphores, mutual exclusion
semaphores, event flags, message mailboxes, message queues, fixed-sized memory partitions, task man-
agement, time management functions, and more.

Figures, Listings, and Tables XXiil
Intro

Interrupt Management Interrupts can suspend the execution of a task. If a higher priority task is
awakened as aresult of the interrupt, the highest priority task runs as soon as all nested interrupts com-
plete. Interrupts can be nested up to 255 levels deep.

Robust and Reliable pC/OS-1I is based on pC/OS, which has been used in hundreds of commercial
applications since 1992. uC/OS-11 uses the same core and most of the same functions as UC/OS, yet
offers many more features. Also, in July of 2000, uC/OS-I1 was certified in an avionics product by the
Federal Aviation Administration (FAA) for use in commercial aircraft by meeting the demanding
requirements of the RTCA DO-178B standard for software used in avionics equipment. In order to meet
the requirements of this standard, it must be possible to demonstrate through documentation and testing
that the software is both robust and safe. Thisissue is particularly important for an operating system as
it demonstates that it has the proven quality to be usable in any application. Every feature, function, and
line of code of uC/OS-11 has been examined and tested to demonstrate that it is safe and robust enough
to be used in safety-critical systems where human lifeison theline.

Figures, Listings, and Tables

You will notice that when | reference a specific element in afigure, | use the letter “F” followed by the
figure number. The number in parenthesis following the figure number represents a specific element in
the figure that | am trying to bring your attention to. F1.2(3) thus means “please look at the item num-
bered “3” in Figure 1.2".

Chapter Contents

Figure 1.1 shows the layout and the flow of this book. | thought this diagram would be useful to under-
stand the relationship between the chapters. Chapter 2 is a standalone chapter and doesn’t depend on
any other chapter. As a minimum, | recommend that you read the Preface, the Introduction, Chapter 1
and Chapter 3. Then with the knowledge you will have gained about uC/OS-11, you ought to be able to
start using uC/OS-11 and thus move to Chapters 16 and 17 to understand what features are available. If
you want to further your understanding of uC/OS-I1, you can proceed with Chapters 4, 5, and 6. After
you understand Chapter 6, you can either jump to the synchronization or communication services.

Chapter 1, Getting Started with uC/OS-I1 This chapter is designed to allow you to experiment with
MC/OS-1I immediately. In fact, | assume you know little about uC/OS-I1 and multitasking; concepts are
introduced as needed. This chapter has been completely re-written from the previous edition.

Chapter 2, Real-time Systems Concepts Here, | introduce you to some real-time systems concepts,
such as foreground/background systems, critical sections, resources, multitasking, context switching,
scheduling, reentrancy, task priorities, mutual exclusion, semaphores, intertask communications, inter-
rupts, and more.

Chapter 3, Kernel Structure This chapter introduces you to uC/OS-I1 and its internal structure. You
will learn about tasks, task states, and task control blocks; how pC/OS-11 implements a ready list, task
scheduling, and the idle task; how to determine CPU usage; how uC/OS-I1 handles interrupts; how to
initialize and start uC/OS-11; and more.

XXIV Introduction

Figurel.l Book layout and flow.

User's Manual
UC/OS-II

Chapter 16 Reference
Manual
uc/os-Ii
Chapter 17 Configuration
Manual
Concepts Synchronization
Real-Time PC Semaphore
Chapter 2 Concepts [Chapter 18 Services Chapter 7 Management
Mutual Exclusion
Semaphore
- Structure - 1 Chaniens Management
Getting Started Kernel Task Time Event Control
with uC/OS-Il Structure Management Management Block (ECB)
Preface Introduction Chapter 1 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 9 Event Flag
Management
. Coding
Appendix A Conventions
Communication
Licensing Policy Memor "
A y Message Mailbox
Appendix B uc;gs-u Chapter 12 | pianagement Chapter 10 | ™ yanagement
R HC/OS-II Message Queue
Appendix C Quick Reference Chapter 11 Management
Pori 80x86 80x86 with Floating-Point
Al dix D TO Utility orting Large-Model Large-Model
ppendix Y uC/oS-1i Port Port
Chapter 13 Chapter 14 Chapter 15
Appendix E Bibliography
I Porti ng —
Appendix F [Companion CD

Chapter 4, Task Management This chapter describes pC/OS-I1 services that create a task, delete a
task, check the size of atask’s stack, change atask’s priority, suspend and resume atask, and get infor-
mation about a task.

Chapter 5, Time Management This chapter describes how PC/OS-11 can suspend atask’s execution
until some user-specified time expires, how such atask can be resumed, and how to get and set the cur-
rent value of a 32-hit tick counter.

Chapter 6, Event Control Blocks This chapter describes a data structure that is used by most of the
kernel objects to do synchronization and communication. This data structure allows tasks and Interrupt
Service Routines (ISR) to communicate with one another and share resources. This chapter is a prereg-
uisite to Chapters 7 through 11.

Chapter 7, Semaphore Management A semaphoreisakernel object that your tasks needsto acquire
in order to gain exclusive access to shared resources. This chapter describes how semaphores are imple-
mented in pC/OS-1.

Chapter Contents XXV

Chapter 8, Mutual Exclusion Semaphores A mutual exclusion semaphores (mutex) is a binary
semaphore that allows you to gain exclusive access to aresource. The mutex reduces priority inversion
issues by automatically changing a task’s priority if needed. This chapter describes how (mutex) are
implemented in uC/OS-11. Mutexes are new servicesin this edition.

Chapter 9, Event Flag Management Event flags are bits for which a task can wait. A task can wait
for one or more of these bits to be set or cleared. This chapter shows how event flags are implemented
and describes the services that are available to your application. Event flags are new servicesin this edi-
tion.

Chapter 10, Message Mailbox Management A message mailbox allows your tasks to send mes-
sages to one another. This chapter shows how these services are implemented.

Chapter 11, Message Queue Management A message queue is like a message mailbox, except that
it allows multiple messages to be sent to one or more tasks. This chapter shows how message queues are
implemented.

Chapter 12, Memory Management This chapter describes the uC/OS-11 dynamic memory aloca
tion feature using fixed-sized memory blocks.

Chapter 13, Porting uC/OS-11 This chapter describes in general terms what needs to be done to
adapt uC/OS-1 to different processor architectures. This chapter has been completely rewritten from the
previous edition.

Chapter 14, 80x86 Port Real Mode, Large Model with Emulated Floating-Point Support This
chapter describes how pC/OS-11 was ported to the Intel/AMD 80x86 processor architecture running in
real mode and for the large-memory model.

Chapter 15, 80x86 Port Real Mode, L arge M odel with Har dwar e Floating-Point Support This
chapter is an extension of the previous one, except that it shows how you can add the floating-point reg-
isters of the 80486, 5x86, and Pentium processors to the context switch. This chapter is new to this edi-
tion.

Chapter 16, uC/OS-11 Reference Manual This chapter describes each of the functions (i.e., ser-
vices) provided by uC/OS-11 from an application devel oper’s standpoint. Each function contains a brief
description, its prototype, the name of the file where the function is found, a description of the function
arguments and the return value, special notes, and examples. Many new services have been added in this
edition (mutexes and event flags), and these have been added in this chapter.

Chapter 17, uC/OS-11 Configuration Manual This chapter describes each of the ffdefine constants
used to configure uC/OS-11 for your application. Configuring uC/OS-I1 allows you to use only the ser-
vices required by your application. This gives you the flexibility to reduce the uC/OS-II memory foot-
print (code and data space). This new edition contains more than three times as many configuration
optionsto allow you to reduce the amount of code and data space needed by uC/OS-11.

Chapter 18, PC Services The examples of Chapter 1 assume the use of a IBM/PC compatible com-
puter. This new chapter shows how | encapsulated some of the services available from a PC.

Intro

XXVI Introduction

Appendix A, C Coding Conventions This appendix shows the coding conventions that | used in this
book and in my everyday activities.

Appendix B, Licensing Policy for uC/OS-11 Thisappendix describes the licensing policy for distrib-
uting UC/OS-11 in source and object form.

Appendix C, uC/OS-11 Quick Reference This appendix provides a quick reference to pC/OS-II's
Services.

Appendix D, TO Utility T0 is a DOS utility that allows you to navigate between DOS directories
without having to type long CD path commands.

Appendix E, Bibliography This appendix provides a bibliography of reference material that you
might find useful if you are interested in getting further information about embedded real-time systems.

Appendix F, Companion CD This appendix tells you how to install pC/OS-I1 and describes what's
on the companion CD.

LC/OS-11 Web Site

To provide better support to you, | created the uC/OS-11 Web site (http://www.uC0S-11.com).You can
obtain information about

* newson UC/OS and uC/OS- 1,

e upgrades,

* bug fixes,

» availability of ports,

» answersto frequently asked questions (FAQs),
» application notes,

* books,

» classes,

» linksto other Web sites, and more.

Chapter 1

Getting Started with pC/OS- |

This chapter provides four examples on how to use uC/OS-I1. | decided to include this chapter early in
the book so you could start using uC/OS-11 as soon as possible. In fact, | assume you know little about
MC/OS-11 and multitasking; concepts are introduced as needed.

The sample code was compiled using the Borland C/C++ compiler v4.51, and options were selected
to generate code for an Intel/AMD 80186 processor (large-memory model). The code was actually run
and tested on a 300MHz Intel Pentium Il PC, running in a DOS window using Microsoft Windows
2000. For al intents and purposes, a Pentium can be viewed as a superfast 80186 processor. The Bor-
land C/C++ v4.51 (caled the Borland Turbo C++ 4.5) is available from www.Borland.com, and | was
assured by Borland that readers would still be able to purchase this compiler for a number of years to
come.

I chose a PC as my target system for a number of reasons. First and foremost, it's alot easier to test
code on a PC than on any other embedded environment (i.e., evaluation board or emulator): there are no
EPROM s or Flash to burn and no downloads to EPROM emulators, or CPU emulators. You simply com-
pile, link, and run. Second, the 80186 object code (real mode, large model) generated using the Borland
C/C++ compiler is compatible with all 80x86 derivative processors from Intel, AMD, and others.

1.00 Installing uC/OS- |

This book includes a companion CD, and you should refer to Appendix F for instruction on how to
install the source of HC/OS-II and executables of the examples on your computer. The installation
assumes that you are installing the software on aWindows 95, 98, Me, NT, 2000, or XP compulter.

2 Chapter 1; Getting Started with pC/OSH |

1.01 Example #1

Example #1 demonstrates basic multitasking capabilities of uC/OS-11. Ten tasks display a number
between 0 and 9 at random |ocations on the screen. Each task displays only one of the number. In other
words, one task displays 0 at random locations, another task displays 1, and so on.

The code for Example #1 is found in the \SOFTWARE\UCOS-TT\EX1_x86L\BC45 directory of the
installation drive (the default is C:). You can open a DOS window (called Command Prompt in
Microsoft Windows 2000) and type

CD \SOFTWARENUCOS-TT\Ex1_x86L\BCAS\TEST

The CD command alows you to change directory and, in this case, go to the TEST directory of
Example #1. The TEST directory contains four files: MAKETEST.BAT, TEST.EXE, TEST.LNK, and
TEST.MAK. To execute Example #1, simply type TEST at the command line prompt. The DOS window
runsthe TEST. EXE program.

After about one second, you should see the DOS window randomly fill up with numbers between 0
and 9, as shown in Figure 1.1.

Figurel.l Example #1 running in a DOS window.

%%]Command Prompt - test == ll

uC/05-11, The Real-Time Kernel

Jean J. Labrosse
EXAMPLE #1

14 53 43372605713768614 71405460499 6853817760802084479 671543688848549974127786
8738 _2090178566020417312905484954687 8 714901269742775626229 19624 7440123710 6192
3 44759610 1 11797297614 108334324002336145697014577500593582911481 7058006348498
304285410023506571155764961 281008889343390103679443504623162842189534299 396013
33098538 3109697 8387 6110312 509 2438604 37136775375124939992509844006283486245
6419918310868291369 28177205 54508765 8348089316596004219 35660974 413976115818
640316052702359766934063 15432 2253304865634953871006940152906104038483064624690
1335144764 786 975137973412697320513050989051352 82356383706 967539 403544488664
955124467 72 3394 13093471 29023561692067466945239739634 4618 053208 1680326 707
877 1 50904458744518222289731807273193 5350816 751190487155 3718363317731 44436
01627 180830614370950307449 9154208673114055742 3060942 586739350211641284494046
1663407270682453932832583830404281 71492899854 7882187929335 0189 080155636037918
0559489930769110967073425277927684 698 5 456245082781677890747912418697420465365
3843771362672820381400 282460345 4530572972 3689298436708060456328428426 00805155
01 89763424951 4£587893845394721 38457369198178 83997842142687691538 638581490891
37 25636453640805024 122536410754826392487991625971347 527063067 875 11791 662868

HTasks 2 CPU Usage: % 80387 FPU
HTask switch/sec: P
<-PRESS 'ESC’ TO QUIT-» W2 . 521

Example #1 consists of 13 tasks, as displayed in the lower |eft of Figure 1.1. uC/OS-I1 creates two inter-
nal tasks: the idle task and a task that determines CPU usage. The code in Example #1 creates the other
11 tasks.

The source code for Example#1 isfound in TEST. C, in the SOURCE directory. You can get there from
the TEST directory by typing

CD ..\SOURCE

Portions of TEST.C are shown in Listing 1.1. You can examine the actual code using your favorite code
editor.

Example#l 3

Listing1l.1 Example#1, TEST.C.

fHinclude "includes.h" (1)
Jidefine TASK_STK_SIZE 512 (2)
fHdefine N_TASKS 10

0S_STK TaskStkIN_TASKSTLTASK_STK_SIZE]; (3)
0S_STK TaskStartStk[TASK_STK_SIZE]; (4)
char TaskData[N_TASKS]T; (5)
O0S_EVENT *RandomSem; (6)

Note: To describe listings and figures, | place a reference in the margin. The reference corre-
sponds to an element of the listing or figure to which | want to bring your attention. For example,
L1.1(1) means:. “please refer to Listing 1.1 and locate the item (1).” This notation also appliesto
figures and thus F3.1(2) means. “please look at Figure 3.1 and examine item (2).”

L1.1(1) First, you noticethat thereisonly asingle ##inc1ude statement. That's becausel like to place
all my header filesin a master header file called INCLUDES.H. Each source file always refer-
encesthissingle include file, and thus | never need to worry about determining which head-
ers | need; they all get included via INCLUDES.H. You can use your code editor to view the
contents of INCLUDES . H, which is also found in the SOURCE directory.

MC/OS-1 is a multitasking kernel and allows you to have up to 63 application tasks. uC/OS-1|
decides when to switch from one task to an other, based on information you provide to uC/OS-11. One of
the items you must tell uC/OS-I1 isthe priority of your tasks. Changing between tasksis called a context
switch.

I will return to Listing 1.1 later as needed. Like most C programs, we need amain(), as shown in
Listing 1.2.

Listingl.2 Example#l1, TEST.C, main().

void main (void)
{

PC_DispClrScr(DISP_FGND_WHITE + DISP_BGND_BLACK); (1)
0SInit(); (2)
PC_DOSSaveReturn(); (3)
PC_VectSet (uC0S, 0SCtxSw); (4)

RandomSem = 0SSemCreate(1); (5)

4 Chapter 1: Getting Sarted with pC/OSH|

Listing1.2 Example#1, TEST.C, main().(Continued)
0STaskCreate(TaskStart, (void *)0, &TaskStartStk[TASK_STK_SIZE - 11, 0); (6)

0SStart(); (7)

}

L1.2(2)

L1.2(2)

L1.2(3)

L1.2(4)

L1.2(5)

L1.2(6)

main() starts by clearing the screen to ensure that no characters are left over from the previ-
ous DOS session. The function PC_DispC1rScr() isfound in afile caled PC.C (see Chapter
18, “PC Services’ for details). PC.C contains functions that provide services if you are run-
ning in a DOS environment (or a window under the Microsoft Windows 95, 98, Me, NT,
2000, or XP operating systems). The PC_ prefix allows you to easily determine the name of
the file from which the function comes; in this case, PC.C. You should note that | specified
white letters on a black background. Because the screen will be cleared, | simply could have
specified a black background and not specified aforeground. If | did this, and you decided to
return to the DOS prompt, you would not see anything on the screen! It's always better to
specify avisible foreground just for this reason.

A requirement of pC/OS-I1 isthat you call 0SInit() before you invoke any of its other ser-
vices. 0SInit() createstwo tasks: an idle task, which executes when no other task isready to
run, and a statistic task, which computes CPU usage.

The current DOS environment is saved by calling PC_D0SSaveReturn(), which allows you
to return to DOS as if you had never started uC/OS-I1. You can refer to Chapter 18, “PC Ser-
vices’ for adescription of what PC_D0SSaveReturn() does.

main() calls PC_VectSet() (see Chapter 18, “PC Services') to install the pC/OS-I1 con-
text-switch handler. Task-level context switching is done by uC/OS-11 by issuing an 80x86
INT instruction to this vector location. | decided to use vector 0x80 (i.e., 128) becauseit’s not
used by either DOS or the BIOS.

A binary semaphore is created to guard access to the random-number generator function pro-
vided by the Borland C/C++ library. A semaphore is an object provided by the kernel to pre-
vent multiple tasks from accessing the same resource (in this case a function) at the same
time. | decided to use a semaphore because | didn’'t know whether or not the random-genera-
tor function was reentrant; | assumed it was not. By initializing the semaphoreto 1, I'm telling
HC/OS-11 to alow only one task to access the random-generator function at any giventime. A
semaphore must be created before it can be used, which is done by calling 0SSemCreate()
and specifying its initial value. 0SSemCreate() returns a handle [see Listing 1.1(6)] to the
semaphore, which must be used to reference this particular semaphore.

Before starting multitasking, you have to create at least one task. For this example, | caled
this task TaskStart (). You create a task because you want to tell pC/OS-11 to manage the
task. The OSTaskCreate() function receives four arguments. The first argument is a pointer
to the task’s address, in thiscase TaskStart (). The second argument is a pointer to data that
you want to pass to the task when it first starts. In this case, thereis nothing to pass, and thus
| passed a NULL pointer. It could, however, have been anything. I'll discuss the use of this
argument in Example #4. The third argument is the task’s top-of-stack (TOS). With
UC/OS-1, as with most preemptive kernel's, each task requiresits own stack space. Each task
in uC/OS-11 can have a different size, but, for simplicity, | made them all the same. On the
80x86 CPU, the stack grows downwards, and thus we must pass the highest, most valid TOS

Example#l 5

address to 0STaskCreate(). In this case, the stack is called TaskStartStk[] and is allo-
cated at compile time. A stack must be declared having atype 0S_STK [see Listing 1.1(4)].
The size of the stack isdeclared in Listing 1.1(2). For the 80x86, an 0S_STK isa 16-hit value,
and thus the size of the stack is 1024 bytes. Finally, we must specify the priority of the task
being created. The lower the priority number, the higher the priority (i.e., itsimportance).

As previously mentioned, uC/OS-11 allows you to create up to 63 tasks. However, each
task must have a unique priority number between 0 and 62. You're the one that actually
decides what priority to give your tasks, based on your application requirements. Priority
level Oisthe highest priority.

L1.2(7) 0SStart() isthen called to start multitasking and give control to uC/OS-I1. It isvery impor-
tant that you create at least one task before calling 0SStart (). Failure to do this action will
certainly make your application crash. In fact, you might always want to create only one task
if you are planning on using the CPU usage statistic task.

0SStart()’sjobisto determine which, of all the tasks created, is the most important one
(highest priority) and start executing thistask. In our case, uC/OS-11 created two low priority
tasks: the idle task and the statistic task. main() created TaskStart() with a priority of O.
As | mentioned, priority O is the highest priority, and thus 0SStart() starts executing
TaskStart().

You should note that 0SStart () doesn't return to main(). However, if you call PC_DOSReturn(),
multitasking is halted, and your application returns to DOS (but not main()). In an embedded system,
there is no need for an equivalent function to PC_DOSReturn() because you would most likely not be
returning to anything!

As | mentioned in the previous section, 0SStart () selects TaskStart() asthe most important task
torunfirst. TaskStart()isshowninListing 1.3.

Listing1.3 Example#l1, TEST.C, TaskStart().

void TaskStart (void *pdata)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendi f
char s[1007;
INT16S key;

pdata = pdata; (1)
TaskStartDispInit(); (2)

OS_ENTER_CRITICAL(); (3)
PC_VectSet(0x08, OSTickISR); (4)
PC_SetTickRate(OS_TICKS_PER_SEC); (5)
OS_EXIT_CRITICAL(); (6)

6 Chapter 1; Getting Started with pC/OSH |

Listing1.3 Example#l, TEST.C, TaskStart (). (Continued)

0SStatlInit(); (7)
TaskStartCreateTasks(); (8)
for (;;) { (9)
TaskStartDisp(); (10)
if (PC_GetKey(&key) == TRUE) { (11)
if (key = 0x1B) { (12)
PC_DOSReturn(); (13)
}
}
0SCtxSwCtr = 0; (14)
0STimeDTyHMSM(0, 0, 1, 0); (15)
}
}
L1.3(1) TaskStart() begins by setting pdata to itself. | do this because some compilers complain

L1.3(2)

L1.3(3)

L1.3(4)

L1.3(5)

(error or warning) if pdata is not referenced. In other words, | fake the usage of pdata!
pdata isapointer passed to your task when the task is created. The second argument passed
in0STaskCreate() isnone other than the argument pdata of atask [see L1.2(6)]. Becausel
passed a NULL pointer [again see L1.2(6)], | am not passing anything to TaskStart().

TaskStart() then calls TaskStartDispInit() to initialize the display, as shown in Figure
1.2. TaskStartDispInit() makes 25 consecutive callsto PC_DispStr() (see Chapter 18,
“PC Services") to fill the 25 lines of text of atypical DOS window.

TaskStart() then invokes the macro OS_ENTER_CRITICAL(). OS_ENTER_CRITICAL() is
basically a processor-specific macro, and it’s used to disable interrupts (see Chapter 13, Port-
ing pC/OSH1).

HUC/OSHI, like all kernels, requires atime source to keep track of delays and timeouts. In real
mode, the PC offers such a time source, which occurs every 54.925ms (18.20648Hz) and is
called atick. PC_VectSet () alows usto replace the address where the PC goesto service the
DOS tick with one that is used by uC/OS-I1. However, uC/OS-1 till calls the DOS tick han-
dler every 54.925ms. Thistechniqueiscalled chaining and is set up by PC_D0SSaveReturn()
(see Chapter 18, “PC Services').

We then change the tick rate from 18.2Hz to 200Hz. | selected 200Hz because it's almost
an exact multiple of 18.2Hz (i.e., 11 times faster). | never quite understood why IBM
selected 18.2Hz instead of 20Hz asthe tick rate on the original PC. Instead of setting up the
82C54 timer to divide the timer input frequency by 59,659 to obtain a nice 20Hz, it appears
that they left the 16-bit timer to overflow every 65,536 pulses! Changing the tick rate is
handled by another PC service called PC_SetTickRate(), which is passed the desired tick
rate (OS_TICKS_PER_SEC isset to 200in 0S_CPU.H).

Example#l 7

L1.3(6) We then invoke the macro OS_EXIT_CRITICAL(). OS_EXIT_CRITICAL() is a proces-
sor-specific macro and is used to reenable interrupts (see Chapter 13, “Porting uC/OS-117).
OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() must be used in pairs.

L1.3(7) 0SStatInit() iscalledto determine the speed of your CPU (see Chapter 3, “ Getting Started
with puC/OS-11"). This function allows uC/OS-11 to know what percentage of the CPU is
actually being used by all the tasks.

L1.3(8) TaskStart()thencdlsTaskStartCreateTasks() tolet uC/OS-11 manage more tasks. Specif-
ically, weare adding N_TASKS identical tasks[seeListing 1.1(2)]. TaskStartCreateTasks() is
showninListing 1.4.

Figure 1.2 Initialization of thedisplay byTaskStartDispInit().

% |Command Prompt - test =laix]
uC/0S-1IT. The Real-Time Kernel
Jean J. Labrosse
EXAMPLE #1
HTasks : CPU Usage: %
#Task switch/sec:
<-PRESS "ESC’ TO QUIT->

Listing1.4 Example#1, TEST.C,
TaskStartCreateTasks().

static void TaskStartCreateTasks (void)
{
INTBU 1

for (i = 0; i < N_TASKS; i++) {
TaskDatali] = '0' + 1; (1)
OSTaskCreate(Task, (2)
(void *)&TaskDatali], (3)

8 Chapter 1: Getting Sarted with uC/OS 11

Listing1.4 Example#1, TEST.C,

}

L1.4(1)
L1.4(2)
L1.4(3)

L1.4(4)
L1.4(5)

TaskStartCreateTasks (). (Continued)

&TaskStk[i1LTASK_STK_SIZE - 11, (4)
i+ 1); (5)

An array isinitialized to contain the ASCI| characters 0to 9 [see also Listing 1.1(5)].

The loop initializes N_TASKS identical tasks called Task(). Task() isresponsible for placing
an ASCII character at a random location on the screen. In fact, each instance of Task()
places a different character.

Each of these task receive a pointer to the array of ASCII characters. Each task in fact
receives a pointer to a different character.

Again, each task requiresits own stack space [see Listing 1.1(3)].

With pC/OS-11, each task must have a unique priority. Because priority number O is already
used by TaskStart(), | decided to create tasks with priorities 1 through 10.

As each task is created, pC/OS-11 determines whether the created task is more important
than the creator. If the created task had a higher priority, then uC/OS-11 would immediately
run the created task. However, because TaskStart () has the highest priority (priority 0),
none of the created tasks execute just yet.

We can now resume discussion of Listing 1.3.

L1.3(9)
L1.3(10)

L1.3(11)
L1.3(12)
L1.3(13)

L1.3(14)

L1.3(15)

With pC/OS-1, each task must be an infinite loop.

TaskStartDisp() is called to display information at the bottom of the DOS window (see
Figure 1.1). Specifically, TaskStartDisp() prints the number of tasks created, the current
CPU usage in percentage, the number of context switches, the version of uC/OS-1, and,
finally, whether your processor has a floating-point unit (FPU) or not.

TaskStart () then checksto seeif you pressed akey by calling PC_GetKey ().

TaskStart () determines whether you pressed the Esc key on your keyboard and, if so, calls
PC_DOSReturn() to exit this example and return to the DOS prompt. You can find out how
this action is done by referring to Chapter 18, “PC Services”

If you didn’t press the Esc key, the global variable 0SCtxSwCtr (the context-switch counter)
is cleared so that we can display the number of context switches in one second.

Finally, TaskStart() is suspended (does not run) for one complete second by calling
0STimeD1yHMSM(). The HMSM stands for hours, minutes, seconds, and milliseconds and cor-
responds to the arguments passed to 0STimeD1yHMSM(). Because TaskStart() issuspended
for one second, UC/OS-I1 starts executing the next most important task, in this case Task()
at priority 1. You should note that without 0STimeD1yHMSM() (or other similar functions),
TaskStart () would be atrue infinite loop, and other tasks would never get a chance to run.

The codefor Task() isshowninListing 1.5.

L1.5(1)

As| previously mentioned, a uC/OS-11 task is typically an infinite loop.

Example#l 9

Listingl.5 Example#l, TEST.C, Task().

void Task (void *pdata)

{

INT8U x;
INT8U y;
INT8U err;

for (;;) {

}

L1.5(2)

L1.5(3)

L1.5(4)
L1.5(5)

L1.5(6)

L1.5(7)

0SSemPend(RandomSem, 0, &err);
X = random(80);

y = random(16);

0SSemPost (RandomSem) ;

~ o~ o~ ~
o1 oW N =
— — — — —

PC_DispChar(x, y + 5, *(char *)pdata, DISP_FGND_LIGHT GRAY); (6)
0STimeDly(1); (7)

Thetask starts by acquiring the semaphore, which guards access to the Borland compiler ran-
dom-number-generator function. To call the semaphore, call 0SSemPend() and pass it the
handle [see L1.1(6)] of the semaphore, which was created to guard access to the random-
number-generator function. The second argument of 0SSemPend () is used to specify atime-
out. A value of 0 means that this task will wait forever for the semaphore. Because the
semaphore was initialized with a count of one and no other task has requested the semaphore,
Task() is alowed to continue execution. If the semaphore was owned by another task,
MC/OS-11 would have suspended this task and executed the next most important task.

The random-number-generator function is called and a value between 0 and 79 (inclusively)
isreturned. This value happens to be the x-coordinate where we want to display the charac-
ter O (for thistask) on the screen.

Again, the random-number-generator is called, and returns a number between 0 and 15
(inclusively). This value is used to determine the y-coordinate of the character to display.

The semaphore is released by caling 0SSemPost (). Here we simply need to specify the
semaphore handle.

We can now display the character that was passed to Task () when Task() was created. For
thefirst instance of Task(), the character is0O, and isthelast instance, it's 9. | added an offset
of fivelinesfrom the top so that | don’t overwrite the header at the top of the display (see Fig-
ure1.1).

Finally, Task() calls0STimeD1y () to tell uC/OS-11 that it's done executing and to give other
tasks a chance to run. The value of 1 means that | want this task to delay for one clock tick,
or 5ms because the tick rate is 200Hz. When 0STimeD1y () iscaled, uC/OS-11 suspends the
calling function and executes the next most important task. In thiscase, it is another instance
of Task(), which displays 1. This process goes on for all instances of Task(), and thus
that’s why Figure 1.1 looks the way it does.

10 Chapter 1: Getting Started with pC/OSH |

If you have the Borland C/C++ v4.5x compiler installed in the C:\BC45 directory, you can experi-
ment with TEST.C. After modifying TEST.C, you can type MAKETEST from the command prompt of the
TEST directory to build anew TEST.EXE. If you don't have the Borland C/C++ v4.5x compiler or you
have it installed in a different directory, you can make the appropriate changes to TEST.MAK,
INCLUDES.H, and TEST. LNK

The SOURCE directory containsfour files: INCLUDES.H, 0S_CFG.H, TEST.C, and TEST. LNK. 0S_CFG.H
is used to determine uC/OS-I1 configuration options. TEST. LNK is the linker-command file for the Bor-
land linker, TLINK.

1.02 Example #2

Example #2 demonstrates the stack-checking feature of uC/OS-I11. The amount of stack space used by
each task is displayed along with the amount of free stack space. Also, Example #2 shows the execution
time of the stack-checking function 0STaskStkChk () because it depends on the size of each stack. It
turns out that a heavily used stack requires less processing time.

The code for Example #2 is found in the \SOFTWARE\uCOS-IT\EX2_x86L\BC45 directory. You can
open a DOS window and type

CD \SOFTWARE\UCOS-TT\Ex2_x86L\BCAS\TEST

To execute Example #2, type TEST at the command prompt. The DOS window runs the TEST . EXE
program.

After about one second, you should see the screen shown in Figure 1.3.

Example #2 consists of nine tasks, as displayed in the lower left of Figure 1.3. Of those nine tasks,
HC/OS-I creates two internal tasks: the idle task and a task that determines CPU usage. Example #2
creates the other seven tasks.

Example #2 shows you how you can display task statistics beyond the number of tasks created, the
number of context switches, and the CPU usage. Specifically, Example #2 shows you how you can find
out how much stack space each task is actually using and how much execution time it takes to determine
the size of each task stack.

Example #2 makes use of the extended task-create function (0STaskCreateExt()) and the pC/OS-11
stack-checking feature [0STaskStkChk()]. Stack checking is useful when you don't actually know
ahead of time how much stack space you need to allocate for each task. In this case, you allocate much
more stack space than you think you need and let pC/OS-I1 tell you exactly how much stack space is
actually used. You obviously need to run the application long enough and under your worst case condi-
tions to get valid numbers. Your final stack size should accommodate system expansion, so make sure
you alocate between 10-25% more. In safety-critical applications, however, you might even want to
consider 100% more! What you get from stack checking is a ballpark figure; you are not looking for an
exact stack usage.

The pC/OS-11 stack-checking function fills the stack of atask with zeros when the task is created. You
accomplish this by telling 0STaskCreateExt () that you want to clear the stack upon task creation and
that you want to check the stack (i.e., by setting the 0S_TASK_0PT_STK_CLR and 0S_TASK_OPT_STK_CHK
for the opt argument). If you intend to create and del ete tasks, you should set these options so that a new
stack is cleared every time the task is created. You should note that having 0STaskCreateExt () clear the
stack increases execution overhead, which obviously depends on the stack size.

HC/OS-11 scansthe stack, starting at the bottom until it finds a nonzero entry. As the stack is scanned,
MC/OS-I1 increments a counter that indicates how many entries are free.

The source code for Example #2 isfound in TEST. C, in the SOURCE directory. To get there from the
TEST directory, type

CD ..\SOURCE

Example#2 11

Portionsof TEST.C areshownin Listing 1.6. You can examine the actual code using your favorite code
editor.

Figure 1.3 Example #2 running in a DOS window.

% |Command Prompt - test =laix]
uC/0S-1IT. The Real-Time Kernel
Jean J. Labrosse
EXAMPLE #2

Task Total Stack Free Stack Used Stack ExecTime {uS$)
TaskStart(): 624 170 454 9
TaskClk() 1024 688 336 20
Taskl() : 1024 6oh 370 20
Task2() : 1024 956 68 30 ﬂ
Task3() : 1024 4oh 570 14
Taska() : 1024 940 84 28
Task5() : 1024 924 168 30 B
HTasks : CPU Usage: % 80387 FPU
#Task switch/sec: 2002-01-28 20:35:16

<-PRESS "ESC’ TO QUIT-> W2.52

Listing1l.6 Example#2, TEST.C.

jHinclude "includes.h" (1)
fHdefine TASK_STK_SIZE 512 (2)
fHdefine TASK_START ID 0 (3)
ffdefine TASK_CLK_ID 1
ffdefine TASK_1_1ID 2
Jkdefine TASK_2 1D 3
ftdefine TASK_3 1D 4
ffdefine TASK_4_1D 5
ffdefine TASK 5 1D 6
ffdefine TASK_START_PRIO 10 (4)
ffdefine TASK_CLK_PRIO 11
ftdefine TASK_1_PRIO 12
ffdefine TASK_2_PRIO 13

jtdefine TASK_3_PRIO 14

12 Chapter 1: Getting Started with pC/OSH|

Listing1l.6 Example#2, TEST. C. (Continued)

ffdefine TASK_4_PRIO 15

fHdefine TASK_5_PRIO 16

0S_STK TaskStartStk[TASK_STK_SIZE]; (5)
0S_STK TaskCTkStk[TASK_STK_SIZET;

0S_STK Task1Stk[TASK_STK_SIZE];

0S_STK Task2Stk[TASK_STK_SIZE];

0S_STK Task3Stk[TASK_STK_SIZE];

0S_STK Task4Stk[TASK_STK_SIZE];

0S_STK Task5Stk[TASK_STK_SIZE];

OS_EVENT *AckMbox ; (6)

OS_EVENT *TxMbox ;

Based on what you learned in Example #1, you should recognize:
L1.6(1) INCLUDES.H asthe master includefile.

L1.6(2) The size of each task’s stack (TASK_STK_SIZE). Again, | made all stack sizes the same for
simplicity, but, with uC/OS-11, the stack size for each task can be different.

L1.6(5) Thestoragefor the task stacks.

main() for Example #2 isshownin Listing 1.7 and looks very similar to themain() of Example #1.
| only describe the differences.

Listing1l.7 Example#2, TEST.C, main().

void main (void)

{
0S_STK *ptos;
0S_STK *pbos;
INT32U size;
PC_DispClrScr(DISP_FGND_WHITE);
0SInit();

PC_DOSSaveReturn();
PC_VectSet(uC0S, 0SCtxSw);

PC_ETapsedInit(); (1)

ptos = &TaskStartStk[TASK_STK_SIZE - 11; (2)

Example#2 13

Listingl.7 Example#2, TEST.C, main(). (Continued)

pbos = &TaskStartStk[0];

size = TASK_STK_SIZE;

0STaskStkInit_FPE_x86(&ptos, &pbos, &size); (3)

0STaskCreateExt(TaskStart, (4)
(void *)0,
ptos, (5)
TASK_START_PRIO, (6)
TASK_START_ID, (7)
pbos, (8)
size, (9)
(void *)0, (10)
OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR); (11)

0SStart();

}
L1.7(1) main() calsPC_ElapsedInit() to initialize the elapsed-time-measurement function that is

L1.7(2)
L1.7(3)

L1.7(4)

L1.7(5)

L1.7(6)

used to measure the execution time of 0STaskStkChk(). This function basically measures
the execution time (i.e., overhead) of two functions: PC_ElapsedStart() and PC_Elapsed-
Stop(). By measuring this time, we can determine fairly precisely how long it takes to exe-
cute code that’s wrapped between these two calls.

TaskStart () in Example #2 isinvoking the floating-point emulation library instead of mak-
ing use of the floating-point unit (FPU), which is present on 80486 and higher-end PCs. The
Borland compiler defaults to use its emulation library if an FPU is not detected. In other
words, if you were to run TEST.EXE on a DOS-based machine equiped with an Intel
80386EX (without an 80387 coprocessor), then the floating-point unit would be emulated.
The emulation library is unfortunately non-reentrant, and we have to trick it in order to alow
multiple tasks to do floating-point math. For now, let me just say that we have to modify the
task stack to accommodate the floating-point emulation library. This modification is accom-
plished by calling 0STaskStkInit_FPE_x86() (see Chapter 14, “80x86 Port”). You should
notice from Figure 1.3 that the stack size reported for TaskStart() is 624 instead of 1024.
That's because 0STaskStkInit_FPE_x86() reserves the difference for the floating-point
emulation library.

Instead of calling 0STaskCreate() tocreate TaskStart(), wemust call 0STaskCreateExt()
[the extended version of 0STaskCreate ()] because we modified the stack and also because we
want to check the stack size at run time (described later).

0STaskStkInit_FPE_x86() modifies the top-of-stack pointer, so we must pass the new
pointer to 0STaskCreateExt ().

Instead of passing a hard-coded priority (as| did in Example #1), | created ajfdefine symbol
[see L1.6(4)].

14 Chapter 1: Getting Started with pC/OSH |

L1.7(7)
L1.7(8)
L1.7(9)
L1.7(10)

L1.7(11)

0STaskCreateExt() reguires that you pass a task identifier (ID). The actual value can be
anything because thisfield is not actually used by pC/OS-1 at thistime.

0STaskStkInit_FPE_x86() modifies the bottom-of-stack pointer, so we must pass the new
pointer to 0STaskCreateExt ().

0STaskStkInit_FPE_x86() also modifiesthe size of the stack, so we must pass the new size
to 0STaskCreateExt().

One of 0STaskCreateExt()’'s arguments is a task-control-block (TCB) extension pointer.
This argument is not used in Example #2, so we simply pass aNULL pointer.

Finally, the last argument to 0STaskCreateExt() is a set of options (i.e., bits) that tell
0STaskCreateExt() that we are doing stack-size checking and that we want to clear the
stack when the task is created.

TaskStart() is similar to the one described in Example #1 and is shown in Listing 1.8. Again, |
only describe the differences.

Listing1.8 Example#2, TEST.C, TaskStart().
void TaskStart (void *pdata)

{

J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

ffendif

INT16S key;

pdata = pdata;

TaskStartDispInit(); (1)

OS_ENTER_CRITICAL();
PC_VectSet(0x08, OSTickISR);
PC_SetTickRate(0OS_TICKS_PER_SEC);
OS_EXIT_CRITICAL();

0SStatInit();

AckMbox = 0SMboxCreate((void *)0); (2)
TxMbox = 0SMboxCreate((void *)0);

TaskStartCreateTasks(); (3)
for (;;) {

TaskStartDisp();

if (PC_GetKey(&key)) {

Example#2 15

Listing1.8 Example#2, TEST.C, TaskStart (). (Continued)

}

L1.8(1)

if (key = 0x1B) {
PC_DOSReturn();

0SCtxSwCtr = 0;
0STimeD1y(OS_TICKS_PER_SEC); (4)

Although the function call is identical, TaskStartDispInit() initializes the display, as
shown in Figure 1.4.

Figure 1.4 Initialization of thedisplay byTaskStartDispInit().

% | Command Prompt - test SEE

uC/0S-1IT. The Real-Time Kernel

Task

Jean J. Labrosse

EXAMPLE #2

Total Stack Free Stack Used Stack ExecTime (u$)

HTasks :
#Task switch/sec:

TaskStart():
TaskClk()
Task1()
Task2()
Task3()
Task4 ()
Task5()

CPU Usage: %
<-PRESS "ESC’ TO QUIT—>

L1.8(2)

L1.8(3)

MC/OS-11 alows you to have tasks or 1SRs send messages to other tasks. In Example #2, |
have Task 4 send a message to Task 5, and Task 5 will respond back to Task 4 with an
acknowledgment message (described later). For this purpose, we need to create two kernel
objects that are called mailboxes. A mailbox allows a task or an ISR to send a pointer to
another task. The mailbox only has room for a single pointer. What the pointer pointstois
application specific, and, of course both the sender and the receiver need to agree about the
contents of the message.

TaskStartCreateTasks() creates six tasksusing 0STaskCreateExt (). These tasks are not
doing floating-point operations, and thus thereisno need to call 0STaskStkInit_FPE_x86()
to modify the stacks. However, | am doing stack checking on these tasks, so | call
0STaskCreateExt () with the proper options set.

16 Chapter 1: Getting Started with pC/OSH|

L1.8(4) InExample#l, | caled 0STimeD1yHMSM() to delay TaskStart() for one second. | decided
to use 0STimeD1y(0S_TICKS_PER_SEC) to show you that you can use either method. How-
ever, 0STimeD1y () isdlightly faster than 0STimeD1yHMSM().

The code for Task1() isshown in Listing 1.9. Task1() checks the size of the stack for each of the
seven application tasks (the six tasks created by TaskStart() and TaskStart() itself).

Listing1.9 Example#2, TEST.C, Task1().

void Taskl (void *pdata)
{

INT8U err;
0S_STK_DATA data;
INT16U time;
INT8U i
char s[807;

pdata = pdata;
for (;;) {
for (i =0; 1 <7; i++) |
PC_ElapsedStart(); (
err = 0STaskStkChk(TASK_START_PRIO + i, &data); (2)
time = PC_ElapsedStop(); (
if (err = 0S_NO_ERR) {
sprintf(s, "%41d %41d %41d %6d", (4)
data.0SFree + data.0SUsed,
data.OSFree,
data.0SUsed,

time);
PC_DispStr(19, 12 + i, s, DISP_FGND_YELLOW); (5)
}
}
0STimeD1yHMSM(0, 0, 0, 100); (6)

L1.9(1)

L1.9(3) The execution time of 0STaskStkChk() is measured by wrapping 0STaskStkChk() with
callsto PC_ElapsedStart() and PC_ElapsedStop(). PC_ElapsedStop() returnsthe time
difference in microseconds.

L1.9(2) 0STaskStkChk() is a service provided by pC/OS-1I to allow your code to determine the
actual stack usage of atask. You call 0STaskStkChk() by passing it the task priority of the
task you want to check. The second argument to the function is a pointer to a data structure

Example#2 17

that holds information about the task’s stack. Specifically, 0S_STK_DATA contains the number
of bytes used and the number of bytesfree. 0STaskStkChk() returnsan error code that indi-
cates whether the call was successful. It would not be successful if | had passed the priority
number of atask that didn't exist.

L1.9(4)
L1.9(5) Theinformation retrieved by 0STaskStkChk() isformatted into a string and displayed.

L1.9(6) | decided to execute this task 10 times per second, but, in an actual product or application,
you would most likely run stack checking every few seconds or so. In other words, it would
make no sense to consume valuable CPU-processing time to determine worst-case stack
growth.

The code for Task2() and Task3() isshown in Listing 1.10. Both of these tasks display a spinning
wheel. The two tasks are almost identical. Task3() allocates and initializes a dummy array of 500
bytes. | wanted to consume stack space to show you that 0STaskStkChk () would report that Task3()
has 502 bytes less than Task2() on its stack (500 bytes for the array and two bytes for the 16-bit inte-
ger). Task2()'swheel spins clockwise at five rotations per second, and Task3()'swheel spins counter-
clockwise at 2.5 rotations per second. Task4 () and Task5() are shownin Listing 1.11.

Note: If you run Example #2 in awindow under Microsoft Windows 95, 98, Me, NT, 2000, or XP,
the rotation might not appear as quick. Simply press and hold the Alt key and then press the Enter
key on your keyboard to make the DOS window use the whole screen. You can go back to window
mode by repeating the operation.

Listing 1.10 Example#2, TEST.C, Task2() and
Task3().

void Task2 (void *data)
{
data = data;
for (;;) {
PC_DispChar(70, 15, "|', DISP_FGND_WHITE + DISP_BGND_RED);
0STimeD1y(10);
PC_DispChar(70, 15, '/', DISP_FGND_WHITE + DISP_BGND_RED);
0STimeDly(10);
PC_DispChar(70, 15, '-', DISP_FGND_WHITE + DISP_BGND_RED);
OSTimeD1y(10);
PC_DispChar(70, 15, "\\', DISP_FGND_WHITE + DISP_BGND_RED);
0STimeD1y(10);

18 Chapter 1: Getting Started with pC/OSH |

Listing 1.10 Example#2, TEST.C, Task2() and
Task3(). (Continued)

void Task3 (void *data)
{
char dummy[50017;
INT16U 1;

data = data;

for (i =0; 1 < 499; i++) {
dummy[i] = '?";

}

for (;;) {
PC_DispChar(70, 16, '|', DISP_FGND_WHITE + DISP_BGND_BLUE);
0STimeD1y(20);
PC_DispChar(70, 16, "\\', DISP_FGND_WHITE + DISP_BGND_BLUE);
0STimeDly(20);
PC_DispChar(70, 16, '-', DISP_FGND_WHITE + DISP_BGND_BLUE);
0STimeD1y(20);
PC_DispChar(70, 16, "'/', DISP_FGND_WHITE + DISP_BGND_BLUE);
0STimeD1y(20);

}

Listing1.11 Example#2, TEST.C, Task4() and
Task5().

void Task4 (void *data)
{

char txmsg;

INT8U err;

data = data;
txmsg = 'A';
for (;;) {

0SMboxPost (TxMbox, (void *)&txmsg); (1)

0SMboxPend(AckMbox, 0, &err); (2
txmsg++; (3
if (txmsg = 'Z') {

txmsg = 'A';

Example#2 19

Listing1.11 Example#2, TEST.C, Task4() and

}

Task5(). (Continued)

void Taskb (void *data)

{

char *rxmsg;

INT8U err;

data = data;

for (;;) {
rxmsg = (char *)0SMboxPend(TxMbox, 0, &err); (4)
PC_DispChar(70, 18, *rxmsg, DISP_FGND_YELLOW + DISP_BGND_RED); (5)
0STimeDTyHMSM(0, 0, 1, 0); (6)
0SMboxPost (AckMbox, (void *)1); (7)

}

L1.11(1)

L1.11(2)

L1.11(3)
L1.11(4)

L1.11(5)
L1.11(6)
L1.11(7)

Task4 () sends a message (an ASCII character) to Task5() by posting the message to the
TxMbox.

Task4 () then waits for an acknowledgment from Task5() by waiting on the AckMbox. The
second argument to the 0SMboxPend () call specifiesatimeout, and | specified to wait forever
because | passed avalue of 0. By specifying anon-zero value, Task4 () would have given up
waiting after the specified timeout. The timeout is specified as an integral number of clock
ticks.

The message is changed when Task5 () acknowledges the previous message.

When Task5() starts execution, it immediately waits (forever) for a message to arrive
through the mailbox TxMbox.

When the message arrives, Task5() displaysit on the screen.

Task5() then waits for one second before acknowledging Task4 (). | decided to wait for one
second so that you could see it change on the screen. In fact, there must either be adelay in
Task5() oronein Task4 (), otherwise all lower priority tasks would not be alowed to run!

20 Chapter 1: Getting Sarted with pC/OSH1

Finally, the code for TaskC1k() isshown in Listing 1.12. This task executes every second, simply
obtains the current date and time from a PC service called PC_GetDateTime() (see Chapter 18, “PC
Services’), and displaysit on the screen.

Listing 1.12 Example#2, TEST.C, TaskCI1k().

void TaskClk (void *data)
{

char s[407];
data = data;
for (;;) {

PC_GetDateTime(s);
PC_DispStr(60, 23, s, DISP_FGND_BLUE + DISP_BGND_CYAN);
0STimeD1y(0S_TICKS_PER_SEC);

If you have the Borland C/C++ v4.5x compiler installed in the C:\BC45 directory, you can experi-
ment with TEST.C. After modifying TEST.C, you can type MAKETEST from the command prompt of the
TEST directory to build anew TEST.EXE. If you don't have the Borland C/C++ v4.5x compiler or you
have it installed in a different directory, you can make changes to TEST.MAK, INCLUDES.H, and
TEST. LNK accordingly.

The SOURCE directory contains four files: INCLUDES.H, 0S_CFG.H, TEST.C, and TEST. LNK. 0S_CFG.H
is used to determine pC/OS-11 configuration options. TEST. LNK is the linker-command file for the Bor-
land linker, TLINK.

1.03 Example #3

Example #3 shows how you can extend the functionality of pC/OS-I1. Specifically, Example #3 uses
the TCB extension capability of 0STaskCreateExt(), the user-defined context-switch hook
[0STaskSwHook ()], the user-defined statistic-task hook [0STaskStatHook ()], and message queues. In
this example, you should see how easy it isto determine how many times atask executes and how much
time atask takes to execute. The execution time can be used to determine the CPU usage of atask rela-
tive to the other tasks.

The code for Example #3 is found in the \SOFTWARE\uCOS-II\EX3_x86L\BC45 directory. You can
open a DOS window and type

CD \SOFTWARE\UCOS-TIT\Ex3_x86L\BCAL\TEST

As usual, to execute Example #3, type TEST at the command prompt. The DOS window runs the
TEST.EXE program.

After about one second, you should see the screen shown in Figure 1.5. | let TEST.EXE run for a
couple of seconds before | captured the screen shot. Seven tasks are shown along with how many
times they executed (Counter column), the execution time of each task in microseconds

Example#3 21

(Exec.Time(uS) column), the total execution time since | started (Tot.Exec.Time(uS) column), and
finally, the percentage of execution time of each task relative to the other tasks (%Tot. column).

Example #3 consists of nine tasks, as displayed in the lower |eft of Figure 1.5. Of those nine tasks,
MC/OS-11 creates two internal tasks: the idle task and a task that determines CPU usage. Example #3
creates the other seven tasks.

Figure1.5 Example #3 running in a DOS window.

% |Command Prompt - test =laix]
uC/0S-1IT. The Real-Time Kernel
Jean J. Labrosse
EXAMPLE #3

Task Name Counter Exec.Time{u$) Tot.Exec.Time(u$S) #Tot.
StartTask 00006 12 139 4l %
Clock Task 00006 89 483 27 %
Msg(Rx Task 00025 12 241 13 % [ESEA
MsgQ Tx Task #2 00012) 69 3%
Msgl Tx Task #3 00006 1 4o 2 %
MsgQ Tx Task #4 00006 8 43 2 %
TimeDlyTask 00030 6 156 8 #%
HTasks : CPU Usage: % 80387 FPU
#Task switch/sec: 41 2002-01-28 20:38:42

<-PRESS "ESC’ TO QUIT—> W2.52

Portions of TEST. C are shown in Listing 1.13. You can examine the actual code using your favorite code
editor.

Listing 1.13 Example#3, TEST.C.

fHinclude "includes.h"

fHdefine TASK_STK_SIZE 512
fdefine TASK_START_ID 0
fdefine TASK_CLK_ID 1
ffdefine TASK_1_1D 2
fidefine TASK_2_ID 3
fHdefine TASK_3_1ID 4
ffdefine TASK_4_1D 5
fHdefine TASK_5_1ID 6

22 Chapter 1: Getting Sarted with puC/OSH1

Listing 1.13 Example#3, TEST. C. (Continued)

ffdefine
fidefine
fHdefine
ffdefine
fidefine
fHdefine
ffdefine

ffdefine

typedef
cha

TASK_START_PRIO 10

TASK_CLK_PRIO 11

TASK_1_PRIO 12

TASK_2_PRIO 13

TASK_3_PRIO 14

TASK_4_PRIO 15

TASK_5_PRIO 16

MSG_QUEUE_SIZE 20
struct { (1)
i TaskName[307;

INT16U TaskCtr;

INT16U TaskExecTime;

INT32U TaskTotExecTime;
} TASK_USER_DATA;

0S_STK TaskStartStk[TASK_STK_SIZET;
0S_STK TaskCTkStk[TASK_STK_SIZET;
0S_STK Task1Stk[TASK_STK_SIZET;
0S_STK Task2Stk[TASK_STK_SIZE];
0S_STK Task3Stk[TASK_STK_SIZET;
0S_STK Task4Stk[TASK_STK_SIZET;
0S_STK TaskbStk[TASK_STK_SIZE];
TASK_USER_DATA TaskUserDatal7]; (2)
OS_EVENT *MsgQueue; (3)
void *MsgQueueTh1[20];
L1.13(1) A datastructureis created to hold additional information about atask. Specifically, the data

L1.13(2)

L1.13(3)

structure allows you to add a name to atask (UC/OS-II doesn’'t directly provide this feature),
keep track of how many times a task has executed, how long a task takes to execute, and
finally the total time atask has executed.

An array of the TASK_USER_DATA structure is allocated to hold information about each task
created (except the idle and statistic tasks).

HC/OS-I1 provides another message-passing mechanism called a message queue. A message
gueueislike amailbox except that instead of being able to send a single pointer, a queue can
hold more than one message (i.e., pointers). A message queue thus allows your tasks or
I SRs to send messages to other tasks. What each of the pointers point to is application spe-
cific, and, of course, both the sender and the receiver need to agree about the contents of the

Example#3 23

messages. Two elements are needed to create a message queue: an 0S_EVENT structure and
an array of pointers. The depth of the queue is determined by the number of pointers allo-
cated in the pointer array. In this case, the message queue contains 20 entries.

main() isshownin Listing 1.14. Once more, only the new features are described.

Listing1.14 Example#3, TEST.C, main().

void main (void)
{
PC_DispClrScr(DISP_BGND_BLACK) ;

0SInit();
PC_DOSSaveReturn();
PC_VectSet (uCOS, 0SCtxSw);
PC_ElapsedInit();

strcpy(TaskUserData[TASK_START_ID].TaskName, "StartTask"); (1)
OSTaskCreateExt(TaskStart,
(void *)0,
&TaskStartStk[TASK_STK_SIZE - 17,
TASK_START_PRIO,
TASK_START_ID,
&TaskStartStk[0],
TASK_STK_SIZE,
&TaskUserData[TASK_START_IDT, (2)
0);
0SStart();

L1.14(1) Before atask is created, we assign a name to the task using the ANSI C library function
strcpy (). The nameisstored in the data structure [see L1.13(1)] assigned to the task.

L1.14(2) TaskStart() is created using 0STaskCreateExt() and passed a pointer to its user data
structure. The TCB of each task in uC/OS-1l can store a pointer to a user-provided data
structure (see Chapter 3, “Kernel Structure” for details). This feature allows you to extend
the functionality of uC/OS-11, as you will see shortly.

24 Chapter 1: Getting Sarted with pC/OSH1

The codefor TaskStart() isshownin Listing 1.15

Listing 1.15 Example#3, TEST.C, TaskStart().

void TaskStart (void *pdata)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendi
INT16S key;

pdata = pdata;
TaskStartDispInit();
OS_ENTER_CRITICAL();
PC_VectSet(0x08, OSTickISR);
PC_SetTickRate(OS_TICKS_PER_SEC);

OS_EXIT_CRITICAL();

0SStatInit();

MsgQueue = 0SQCreate(&MsgQueueTbl[0], MSG_QUEUE_SIZE);

TaskStartCreateTasks();

for (;;) {
TaskStartDisp();

if (PC_GetKey(&key)) {
if (key = 0x1B) {
PC_DOSReturn();

0SCtxSwCtr = 0;
0STimeD1y(OS_TICKS_PER_SEC);

(2)

Example#3 25

L1.15(1) Not much has been added except the creation of the message queue that is used by Task1(),
Task2(), Task3(), and Task4().

L1.15(2) Aswith Example#2, TaskStartCreateTasks() create six tasks. The differenceisthat each
task isassigned an entry in the TaskUserDatal] array. Aseach task is created, it's assigned
anamejust as| did when | created TaskStart() [see L1.14(1)].

Assoon as TaskStart() calls 0STimeD1y(0S_TICKS_PER_SEC), HC/OS-II locates the next highest
priority task that's ready to run, which is Task1(). Listing 1.16 shows the code for Task1(), Task2(),
Task3(), and Task4 () because | discuss them next.

Listing1.16 Example#3, TEST.C, Task1 () through
Task4().

void Taskl (void *pdata)
{

char *msg;
INT8U err;

pdata = pdata;

for (;;5) f
msg = (char *)0SQPend(MsgQueue, 0, &err); (1)
PC_DispStr(70, 13, msg, DISP_FGND_YELLOW + DISP_BGND_BLUE); (2)
0STimeDTyHMSM(O, 0, 0, 100); (3)

void Task2 (void *pdata)
{
char msg[20];

pdata = pdata;

strcpy(&msg[0], "Task 2");

for (;;) f
0SQPost(MsgQueue, (void *)&msgl[0]); (4)
0STimeDTyHMSM(Q, 0, 0, 500); (5)

26 Chapter 1: Getting Sarted with puC/OSH1

Listing 1.16 Example#3, TEST.C, Task1() through
Task4 (). (Continued)

void Task3 (void *pdata)
{
char msg[20];

pdata = pdata;

strcpy(&msg[0], "Task 3");

for (;5) f
0SQPost (MsgQueue, (void *)&msgl[0]); (6)
0STimeD1yHMSM(O, 0, 0, 500);

void Task4 (void *pdata)
{
char msg[20];

pdata = pdata;

strcpy(&msg[0], "Task 4");

for (;;) {
0SQPost(MsgQueue, (void *)&msg[0]1); (7)
0STimeD1yHMSM(O, 0, 0, 500);

}

L1.16(1) Taskl() waitsforever for amessage to arrive through a message queue.

L1.16(2) When amessage arrives, it is displayed on the screen.

L1.16(3) Thetask isdelayed for 100msto allow you to see the message received.

L1.16(4) Task2() sendsthe message “Task 2" to Task1() through the message queue.

L1.16(5) Task2() waitsfor half asecond before sending another message.

L1.16(6)

L1.16(7) Task3() and Task4 () send their messages and also wait half a second between messages.
Another task, Task5() (not shown) does nothing useful except delay itself for 1/10 of a second.

Notethat all pC/OS-1 tasks must call a service provided by pC/OS-I1 to wait either for timeto expire or

for an event to occur. If this action is not done, the task prevents all lower priority tasks from running.
Finally, TaskC1k() (also not shown) displays the current date and time once a second.

Events happen behind the scenes that are not apparent just by looking at the tasks in TEST.C.
MC/OS-I is provided in source form, and it's quite easy to add functionality to uC/OS-11 through special

Example#3 27

functions called hooks. As of v2.52, nine hook functions exist, and the prototypes for these functions are
shownin Listing 1.17.

Listing1.17 pC/OS-11's hooks.

void 0SInitHookBegin(void);

void 0SInitHookEnd(void);

void 0STaskCreateHook(0S_TCB *ptch);
void 0STaskDelHook(OS_TCB *ptch);
void 0STaskIdleHook(void);

void 0STaskStatHook(void);

void 0STaskSwHook(void);

void OSTCBInitHook(OS_TCB *ptch);
void O0STimeTickHook(void);

The hook functions are normally found in afile called 0S_CPU_C.C and are generally written by the
person who does the port for the processor you intend to use. However, if you set a configuration constant
called 0S_CPU_HOOKS_ENto O, you can declare the hook functionsin adifferent file. 0S_CPU_HOOKS_EN is
one of many configuration constants found in the header file 0S_CFG.H. Every project that uses uC/OS-1
needs its own version of 0S_CFG.H because you might want to configure uC/OS-I1 differently for each
projet. Each example provided in this book containsits own 0S_CFG.H in the SOURCE directory.

In Example #3, | set 0S_CPU_HOOKS_EN to O and redefined the functionality of the hook functionsin
TEST.C. Asshown in Listing 1.18, seven of the nine hooks don’t actually do anything and thus don’t
contain any code.

Listing 1.18 Example#3, TEST. C, empty hook
functions.

void 0SInitHookBegin (void)
{
}

void 0SInitHookEnd (void)
{
}

void 0STaskCreateHook (0S_TCB *ptchb)
{
ptch = ptch;

void O0STaskDelHook (0S_TCB *ptch)
{
ptcb = ptch;

28 Chapter 1: Getting Sarted with puC/OSH1

Listing 1.18 Example#3, TEST. C, empty hook
functions. (Continued)

void OSTaskIdleHook (void)
{
}

void OSTCBInitHook (0S_TCB *ptch)
{
ptch = ptch;

void OSTimeTickHook (void)
{
}

The code for 0STaskSwHook () isshown in Listing 1.19 and allows us to measure the execution time
of each task, keepstrack of how often each task executes, and accumul ates total execution times of each
task. 0STaskSwHook () is called when pC/OS-11 switches from a low priority task to a higher priority
task.

Listing 1.19 Thetask switch hook, 0STaskSwHook ().

void 0STaskSwHook (void)

{
INT16U time;
TASK_USER_DATA *puser;

time = PC_ElapsedStop();
PC_ETapsedStart();
puser = OSTCBCur->0STCBExtPtr;

—~ o~ o~
wWw N
— — —

if (puser != (TASK_USER_DATA *)0) { (4)
puser->TaskCtr+t; (5)
puser->TaskExecTime = time; (6)
puser->TaskTotExecTime += time; (7)

L1.19(1) A timer on the PC obtains the execution time of the task being switched out through
PC_ETlapsedStop().

Example#3 29

L1.19(2) It is assumed that the timer was started by calling PC_ETapsedStart() when the task was
switched in. The first context switch probably reads an incorrect value, but thisis not really
critical.

L1.19(3) When 0STaskSwHook () is caled, the global pointer 0STCBCur points to the TCB of the cur-
rent task, while 0STCBHighRdy points to the TCB of the new task. In this case, however, we
don't use 0STCBHighRdy. 0STaskSwHook () retrieves the pointer to the TCB extension that
was passed in 0STaskCreateExt().

L1.19(4) We then check to make sure we don’'t de-reference a NULL pointer. In fact, some of the tasks
in this example do not contain a TCB extension pointer: the idle and the statistic tasks.

L1.19(5) We increment a counter that indicates how many times the task has executed. This counter is
useful to determineif a particular task is running.

L1.19(6) The measured execution time (in microseconds) is stored in the TCB extension.

L1.19(7) The total execution time (in microseconds) of the task is also stored in the TCB extension.
This element allows you to determine the percent of time each task takes with respect to
other tasksin an application (discussed shortly).

When enabled (see 0S_TASK_STAT_EN in 0S_CFG.H), the statistic task 0STaskStat() cals the
user-definable function 0STaskStatHook () that is shown in Listing 1.20. 0STaskStatHook () is called
every second.

Listing1.20 The statistic task hook,
0STaskStatHook ().

void 0STaskStatHook (void)
{

char s[801;

INTBU 7;

INT32U total;

INT8U pct;

total oL;

for (i

total += TaskUserDatal[i].TaskTotExecTime;

0; 1 < 7; i++) {

DispTaskStat(i);

30 Chapter 1: Getting Sarted with pC/OS1

Listing1.20 The statistic task hook,
0STaskStatHook (). (Continued)

if (total > 0) {
for (i =0; i < 7; i+H) {

pct = 100 * TaskUserDatal[i].TaskTotExecTime / total; (3)

sprintf(s, "%3d %%", pct);

PC_DispStr(62, (4)
i+ 11,

S,
DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY);

if (total > 1000000000L) f
for (i =0; i < 7; i++) {
TaskUserDatal[i].TaskTotExecTime = OL;

}

L1.20(1) Thetotal execution time of al the tasks (except the statistic task) is computed.

L1.20(2) Individual statistics are displayed at the proper location on the screen by DispTaskStat(),
which takes care of converting the valuesinto ASCII. In addition, DispTaskStat() also dis-
plays the name of each task.

L1.20(3)
L1.20(4) The percent execution timeis computed for each task and displayed.

If you have the Borland C/C++ v4.5x compiler installed in the C:\BC45 directory, you can experi-
ment with TEST.C. After modifying TEST.C, you can type MAKETEST from the command prompt of the
TEST directory to build anew TEST.EXE. If you don't have the Borland C/C++ v4.5x compiler or your
have it installed in a different directory, you can make changes to TEST.MAK, INCLUDES.H, and
TEST. LNK accordingly.

The SOURCE directory contains four files: INCLUDES.H, 0S_CFG.H, TEST.C, and TEST.LNK. 0S_CFG.H
is used to determine uC/OS-11 configuration options. TEST. LNK is the linker-command file for the Bor-
land linker, TLINK.

Example#4 31

1.04 Example#4

MC/OS-1 is written entirely in C and requires some processor-specific code to adapt it to different pro-
cessors. This processor-specific code is called a port. This book comes with two ports for the Intel
80x86 family of processors:. Ix86L (see Chapter 14) and Ix86L-FP (see Chapter 15). Ix86L isused with
80x86 processors that are not fortunate enough to have an FPU, and Ix86L isused in all the examples so
far. You should note that Ix86L still runs on 80x86 processors that do have an FPU. 1x86L-FP alows
your applications to use the floating-point hardware capabilities of higher-end 80x86 compatible pro-
cessors. Example #4 uses Ix86L-FP.

In this example, | created 10 identical tasks, each running 200 times per second. Each task com-
putes the sine and cosine of an angle (in degrees). The angle being computed by each task is offset by 36
degrees (360 degrees divided by 10 tasks) from each other. Every time the task executes, it increments
the angle to compute by 0.01 degree.

The code for Example #4 is found in the \SOFTWARE\UCOS-TT\EX4_x86L.FP\BC45 directory. You
can open a DOS window and type

CD \SOFTWARE\uCOS-TI\Ex4_x86L.FP\BC45\TEST

Asusual, to execute Example #4, smply type TEST at the command line prompt. The DOS window
runsthe TEST.EXE program.

After about two seconds, you should see the screen shownin Figure 1.6. | let TEST. EXE run for afew
seconds before | captured the screen shot.

Example #4 consists of 13 tasks, as displayed in the lower left of Figure 1.6. Of those 13 tasks,
UC/OS-I1 creates two internal tasks: the idle task and a task that determines CPU usage. Example #4
creates the other 11 tasks.

Figure 1.6 Example #4 running in a DOS window.

] Command Prompt - test =laix]
uC/0S-1IT., The Real-Time Kernel
Jean J. Labrosse
EXAMPLE #4

TaskPrio Angle cos({Angle) sin{Angle)

1 43,769 0.722 0.692

2 19. 71712 0.178 0.984

3 115.772 -0.435 0.901

[151.766 -0.881 0.413

5 187.766 -0.991 -0.135

6 223.166 -0.122 -0.692

i 299.711 -0.178 -0.984

8 295.718 0.435 -0.900

9 331.718 0.881 -0.473

10 8.760 0.988 0.152
#Tasks 0 CPU Usage: % 80387 FPU
HTask switch/sec: YWY

<-PRESS "ESC’ TO QUIT—> W2 .52

32 Chapter 1: Getting Sarted with pC/OS1

By now, you should be able to find your way around TEST.C. Example #4 doesn’t introduce too
many new concepts. However, there are a few subtleties done behind the scene, which | describe after
discussing a few items in TEST.C. Listing 1.21 shows the code to create the 10 identical application
tasks.

Listing1.21 Example#4, TEST.C, TaskStartCreateTasks ().

static void TaskStartCreateTasks (void)
{

INT8U i

INT8U prio;

for (i =0; i < N_TASKS; i++) {
prio =9+ 1; (1)
TaskDatali] = prio; (2)
0STaskCreateExt(Task,
(void *)&TaskDatali], (3)
&TaskStk[i]J[TASK_STK_SIZE - 17,
prio,
0,
&TaskStk[i]1L0],
TASK_STK_SIZE,
(void *)0,
OS_TASK_OPT_SAVE_FP); (4)

L1.21(1) Because uC/OS-11 doesn’'t allow multiple tasks at the same priority, | offset the priority of the
identical tasks by 1 because task priority #0 isassigned to TaskStart().

L1.21(2) Thetask priority of each task isplaced in an array.

L1.21(3) pC/OS-I alows you to pass an argument to a task when the task isfirst started. This argu-
ment is apointer, and | generally cal it pdata (pointer to data). The task priority saved in the
array is actually passed as the task argument, pdata.

L1.21(4) Each of the tasks are doing floating-point calculations, and we want to tell the port (see
Chapter 15) to save the floating-point registers during a context switch.

Example#4 33

Listing 1.22 shows the actual task code.

Listing 1.22 Example#4, TEST.C, Task().

void Ta

{
FP32
FP32
FP32
FP32
char
INT8

YPos
angl
for

sk (void *pdata)

%
Y
angle;
radians;
s[811;

U ypos;

*(INT8U *)pdata + 7;

e = (FP32)(*(INT8U *)pdata) * (FP32)36.0; (1)
(53) |
radians

(FP32)2.0 * (FP32)3.141592 * angle / (FP32)360.0; (2)
X = cos(radians);
y sin(radians);
sprintf(s, " %ed %8.3f %8.3f %8.3F",
*(INT8U *)pdata, angle, x, y);

PC_DispStr(0, ypos, s, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY);
if (angle >= (FP32)360.0) {

angle = (FP32)0.0;
} else {

angle += (FP32)0.01;

}
0STimeDly(1); (3)

L1.22(1) Theargument pdata pointsto an 8-bit integer containing the task priority. To make each task
calculate different angles (not that it really matters), | decided to offset each task by 36
degrees.

L1.22(2) sin() and cos() assumes radiansinstead of degrees, and thus the conversion.

L1.22(3) Each task isdelayed by one clock tick (i.e., 50ms), and thus each task executes 200 times per
second.

Except for specifying 0S_TASK_OPT_SAVE_FP in TaskStartCreateTasks(), you couldn’t tell from
TEST.C that we are using a different port from the other examples. In fact, it might be a good idea to
always specify the option 0S_TASK_OPT_SAVE_FP when you create atask [using 0STaskCreateExt ()],

and, if the

port supports floating-point hardware, uC/OS-11 can take the necessary steps to save and

retrieve the floating-point registers during a context switch. That's, in fact, one of the beauties of
MC/OS-11: portability of your applications across different processors.

34 Chapter 1: Getting Sarted with pC/OS1

In order to use adifferent port (at least for the 80x86), you only need to change the following files:

INCLUDES . H (in the SOURCE directory):
Instead of including:
\software\ucos-i1\ix861\bc45\os_cpu.h
you simply need to point to adifferent directory:
\software\ucos-ii\ix861-fp\bc45\os_cpu.h

TEST. LNK (in the SOURCE directory):
The linker-command file includes the floating-point emulation library in the non-floating-point ver-
sion:
C:\BCAS\LIB\EMU.LIB
and the hardware floating-point library needs to be referenced for the code that makes use of the
FPU:
C:\BC45\LIB\FP87.LIB
TEST.MAK (in the TEST directory):
The directory of the port is changed from:
PORT=\SOFTWARE\UCOS-TI\Ix86L\BC45
to:
PORT=\SOFTWARE\UCOS-TI\Ix86L-FP\BC45

The compiler flags in the macro C_FLAGS include -f287 for the floating-point version of the code
and omitsit in the non-fl oating-point version.

Chapter 2

Real-time Systems Concepts

Real-time systems are characterized by the severe consequences that result if logical as well as timing
correctness properties of the system are not met. Two types of real-time systems exist: soft and hard. In
a soft real-time system, tasks are performed by the system as fast as possible, but the tasks don’t have to
finish by specific times. In hard real-time systems, tasks have to be performed not only correctly but on
time. Most real-time systems have a combination of soft and hard requirements. Real-time applications
cover awide range, but most real-time systems are embedded. An embedded system is a computer built
into a system and not seen by the user as being a computer. The following list shows afew examples of
embedded systems.

Process control Communication
Food processing Switches
Chemical plants Routers
Automotive Robots
Engine controls Aerospace
Antilock braking systems Flight management systems
Office automation Weapons systems
FAX machines Jet engine controls
Copiers Domestic
Computer peripherals Microwave ovens
Printers Dishwashers
Terminals Washing machines
Scanners Thermostats
Modems

Real-time software applications are typically more difficult to design than non-real-time applications.
This chapter describes real-time concepts.

35

36 Chapter 2: Real-time Systems Concepts

2.00 Foreground/Background Systems

Small systems of low complexity are generally designed as shown in Figure 2.1. These systems are
called foreground/background systems or super-loops. An application consists of an infinite loop that
calls modules (i.e., functions) to perform the desired operations (background). Interrupt service routines
(ISRs) handle asynchronous events (foreground). Foreground is also called interrupt level; background
iscalled task level. Critical operations must be performed by the I SRs to ensure that they are dealt with
in atimely fashion. Because of this, ISRs have a tendency to take longer than they should. Also, infor-
mation for a background module that an | SR makes availableis not processed until the background rou-
tine gets its turn to execute, which is called the task-level response. The worst case task-level response
time depends on how long the background loop takes to execute. Because the execution time of typical
code is not constant, the time for successive passes through a portion of the loop is nondeterministic.
Furthermore, if a code change is made, the timing of the loop is affected.

Figure2.1 Foreground/background systems.

Background —— Foreground ——
ISR
4
<
v
Time
> ISR ISR
H H
I
PN
\X Code execution

Most high-volume microcontroller-based applications (e.g., microwave ovens, telephones, toys, and
so on) are designed as foreground/background systems. Also, in microcontroller-based applications, it
might be better (from a power consumption point of view) to halt the processor and perform all of the
processing in ISRs.

Critical Sectionsof Code 37

2.01 Ciritical Sections of Code

A critical section of code, also called acritical region, is code that needs to be treated indivisibly. After
the section of code starts executing, it must not be interrupted. To ensure that execution is not inter-
rupted, interrupts are typically disabled before the critical code is executed and enabled when the criti-
cal codeisfinished (see also Section 2.03, “ Shared Resources’).

2.02 Resources

A resource is any entity used by atask. A resource can thus be an 1/O device, such as a printer, a key-
board, adisplay, avariable, a structure, or an array.

2.03 Shared Resources

A shared resource is aresource that can be used by more than one task. Each task should gain exclusive
access to the shared resource to prevent data corruption. This process is called mutual exclusion, and
techniques to ensure mutual exclusion are discussed in Section 2.18, “Mutua Exclusion”.

2.04 Multitasking

Multitasking is the process of scheduling and switching the central processing unit (CPU) between sev-
eral tasks; a single CPU switches its attention between several sequential tasks. Multitasking is like
foreground/background with multiple backgrounds. Multitasking maximizes the use of the CPU and
aso provides for modular construction of applications. One of the most important aspects of multitask-
ing is that it alows the application programmer to manage complexity inherent in real-time applica-
tions. Application programs are typically easier to design and maintain if multitasking is used.

2.05 Tasks

A task, also called athread, is a simple program that thinks it has the CPU all to itself. The design pro-
cess for areal-time application involves splitting the work to be done into tasks responsible for aportion
of the problem. Each task is assigned a priority, its own set of CPU registers, and its own stack area (as
shown in Figure 2.2).

Each task typically is an infinite loop that can be in any one of five states: dormant, ready, running,
waiting (for an event), or ISR (interrupted) (Figure 2.3). The dormant state corresponds to a task that
resides in memory but has not been made available to the multitasking kernel. A task is ready when it
can execute but its priority is less than the currently running task. A task is running when it has control
of the CPU. A task is waiting when it requires the occurrence of an event (for example, waiting for an
I/0O operation to compl ete, a shared resource to be available, atiming pulse to occur, or time to expire).
Finaly, atask isin the ISR state when an interrupt has occurred and the CPU isin the process of servic-
ing the interrupt. Figure 2.3 aso shows the functions provided by pC/OS-11 to make a task move from
one state to another.

38 Chapter 2: Real-time Systems Concepts

Figure2.2 Multiple tasks.

TASK #1 TASK #2 TASK #n
Stack Stack Stack
—>
—>
—>
Task Control Block Task Control Block Task Control Block
Status Status Status
SP SP SP
Priority Priority Priority

MEMORY

CPU

CPU Registers

SP

Context

|

Context Switches (or Task Switches) 39

Figure2.3 Task states.

T

OSFl agPost () OSFl agPend()
OSMboxPost () OSMboxPend()
OSMboxPost Opt ()
OsMwut exPost () OsMut exPend()
OSQPost () GsQPend()
osTaskDel () osQPost Front ()
OsQPost Opy ()
OSSenfPost () OsSenPend()
OSTaskResune() OSTaskSuspend()
OSTi meDl yResune() OsSTi neDl y()
CSTi neTi ck() QOSTi meDl yHVBM)
osstart ()
OSTaskCr eat e() GSInt Exi t ()
OSTaskCr eat eExt () O8_TASK_SW() I'nterrupt
TASK TASK
DORNVANT RUNNI NG
OSTaskDel () b\ Task is Preenpted % OSIntExit() /
\ OSTaskDel () /

2.06 Context Switches (or Task Switches)

When a multitasking kernel decides to run a different task, it saves the current task’s context (CPU reg-
isters) in the current task’s context storage area — its stack (Figure 2.2). After this operation is per-
formed, the new task’s context is restored from its storage area and then resumes execution of the new
task’s code. This processis called a context switch or atask switch. Context switching adds overhead to
the application. The more registers a CPU has, the higher the overhead. The time required to perform a
context switch is determined by how many registers have to be saved and restored by the CPU. Perfor-
mance of areal-time kernel should not be judged by how many context switches the kernel is capabl e of
doing per second.

2.07 Kernes

The kernel isthe part of a multitasking system responsible for management of tasks (i.e., for managing
the CPU’s time) and communication between tasks. The fundamental service provided by the kernel is
context switching. The use of a real-time kernel generally simplifies the design of systems by alowing
the application to be divided into multiple tasks that the kernel manages.

A kernel adds overhead to your system because the services provided by the kernel require execu-
tion time. The amount of overhead depends on how often you invoke these services. In awell-designed
application, a kernel uses between 2 and 5% of CPU time. Because a kernel is software that gets added

40 Chapter 2: Real-time Systems Concepts

to your application, it requires extra ROM (code space) and additional RAM (data space) for the kernel
data structures, and each task requires its own stack space, which eats up RAM quickly.

Single-chip microcontrollers are generally not able to run areal-time kernel because they have very
little RAM. A kernel alows you to make better use of your CPU by providing indispensable services,
such as semaphore management, mailboxes, queues, and time delays. After you design a system using a
real-time kernel, you will not want to go back to aforeground/background system.

2.08 Schedulers

The scheduler, also called the dispatcher, is the part of the kernel responsible for determining which
task runs next. Most real-time kernels are priority based. Each task is assigned a priority based on its
importance. The priority for each task is application specific. In a priority-based kernel, control of the
CPU is aways given to the highest priority task ready to run. When the highest priority task gets the
CPU, however, is determined by the type of kernel used. Two types of priority-based kernels exist:
non-preemptive and preemptive.

2.09 Non-Preemptive Kernels

Non-preemptive kernels require that each task does something to explicitly give up control of the CPU.
To maintain the illusion of concurrency, this process must be done frequently. Non-preemptive schedul-
ing is also called cooperative multitasking; tasks cooperate with each other to share the CPU. Asynchro-
nous events are still handled by ISRs. An ISR can make a higher priority task ready to run, but the ISR
aways returns to the interrupted task. The new higher priority task gains control of the CPU only when
the current task gives up the CPU.

One of the advantages of a non-preemptive kernel is that interrupt latency istypically low (see Sec-
tion 2.26, “Interrupt Latency”). At the task level, non-preemptive kernels can also use non-reentrant
functions (Section 2.11, “Reentrant Functions’). Non-reentrant functions can be used by each task with-
out fear of corruption by another task. This is because each task can run to completion before it relin-
quishes the CPU. However, non-reentrant functions should not be alowed to give up control of the
CPU.

Task-level response using a non-preemptive kernel can be much lower than with foreground/back-
ground systems because task-level response is now given by the time of the longest task.

Another advantage of non-preemptive kernelsis the lesser need to guard shared data through the use
of semaphores. Each task owns the CPU, and you don’'t have to fear that atask will be preempted. This
ruleis not absolute, and, in some instances, semaphores should still be used. Shared 1/0 devices can still
require the use of mutual exclusion semaphores; for example, atask might still need exclusive accessto
aprinter.

The execution profile of anon-preemptive kernel is shown in Figure 2.4 and described as follows.

Non-Preemptive Kernels 41

Figure 2.4 Non-preemptive kernel.

Low Priority Task

(1) (2) ISR

>

(3)

<
(4)

ISR makes the high v
priority task ready Time

\\Jh

(5)

High Priority Task
4

(6)

Low priority task (7

relinquishes the CPU

_

N\

F2.4(1) A taskisexecuting but isinterrupted.
F2.4(2) If interrupts are enabled, the CPU vectors (jumps) to the I SR.
F2.4(3) ThelSR handlesthe event and makes a higher priority task ready to run.

F2.4(4) Upon completion of the ISR, a Return From Interrupt instruction is executed, and the CPU
returns to the interrupted task.

F2.4(5) Thetask code resumes at the instruction following the interrupted instruction.

F2.4(6) When the task code completes, it cals a service that the kernel provides to relinquish the
CPU to another task.

F2.4(7) Thekernel seesthat a higher priority task has been made ready to run (it doesn’t necessarily
know that it was from an ISR nor does it care), and thus the kernel performs a context switch
so that it can run (i.e., execute) the higher priority task to handle the event that the ISR sig-
naled.

The most important drawback of a non-preemptive kernel is responsiveness. A higher priority task
that has been made ready to run might have to wait along time to run because the current task must give
up the CPU when it isready to do so. As with background execution in foreground/background systems,
task-level response time in a non-preemptive kernel is nondeterministic; you never really know when
the highest priority task will get control of the CPU. It is up to your application to relinquish control of
the CPU.

To summarize, a non-preemptive kernel allows each task to run until it voluntarily gives up control
of the CPU. An interrupt preempts atask. Upon completion of the ISR, the ISR returnsto the interrupted
task. Task-level response is much better than with a foreground/background system but is still nondeter-
ministic. Very few commercial kernels are non-preemptive.

42 Chapter 2: Real-time Systems Concepts

2.10 Preemptive Kernels

A preemptive kernel is used when system responsiveness is important; therefore, LWC/OS-11 and most
commercial real-time kernels are preemptive. The highest priority task ready to run is always given con-
trol of the CPU. When a task makes a higher priority task ready to run, the current task is preempted
(suspended), and the higher priority task is immediately given control of the CPU. If an ISR makes a
higher priority task ready, when the ISR completes, the interrupted task is suspended, and the new
higher priority task is resumed.

The execution profile of a preemptive kernel is shown in Figure 2.5 and described as follows.

Figure2.5 Preemptive kernel.

Low Priority Task

w (2, ISR 1

High Priority Task

Ohd
(3)
ISR makes the high (5) _'
priority task ready Time
<

(6)

(7

F2.5(1) A task isexecuting but isinterrupted.
F2.5(2) If interrupts are enabled, the CPU vectors (jumps) to the ISR.

F2.5(3) ThelSR handlesthe event and makes a higher priority task ready to run. Upon completion of
the ISR, aservice provided by the kernel isinvoked (i.e., afunction that the kernel providesis
called).

F2.5(4)

F2.5(5) Thisfunction knowsthat a more important task has been made ready to run, and thus, instead
of returning to the interrupted task, the kernel performs a context switch and executes the
code of the more important task. When the more important task is done, another function that
the kernel provides is called to put the task to sleep waiting for the event (i.e., the ISR) to
occur.

F2.5(6)

F2.5(7) Thekernel then seesthat alower priority task needs to execute, and another context switch is
done to resume execution of the interrupted task.

Reentrant Functions 43

With a preemptive kernel, execution of the highest priority task is deterministic; you can determine
when it will get control of the CPU. Task-level response time is thus minimized by using a preemptive
kernel.

Application code using a preemptive kernel should not use non-reentrant functions unless exclusive
access to these functions is ensured through the use of mutual exclusion semaphores, because both a
low and a high priority task can use a common function. Corruption of data can occur if the higher pri-
ority task preempts a lower priority task that is using the function.

To summarize, a preemptive kernel always executes the highest priority task that is ready to run. An
interrupt preempts atask. Upon completion of an I SR, the kernel resumes execution of the highest prior-
ity task ready to run (not “necessarily” the interrupted task). Task-level response is optimum and deter-
ministic. uC/OS-1 is a preemptive kernel.

2.11 Reentrant Functions

A reentrant function can be used by more than one task without fear of data corruption. A reentrant
function can be interrupted at any time and resumed at alater time without loss of data. Reentrant func-
tions either use local variables (i.e., CPU registers or variables on the stack) or protect data when global
variables are used. An example of areentrant function is shown in Listing 2.1.

Listing2.1 Reentrant function.

void strcpy(char *dest, char *src)
{

while (*dest++ = *srct++) |

}
*dest = NUL;

Because copies of the arguments to strcpy() are placed on the task’s stack, strcpy() can be
invoked by multiple tasks without fear that the tasks will corrupt each other’s pointers.

An example of a non-reentrant function is shown in Listing 2.2. swap() is a simple function that
swaps the contents of its two arguments. For the sake of discussion, | assume that you are using a pre-
emptive kernel, that interrupts are enabled, and that Temp is declared as a global integer:

Listing2.2 Non-reentrant function.
int Temp;

void swap(int *x, int *y)
{

Temp = *x;

XSy

*y = Temp;

44 Chapter 2: Real-time Systems Concepts

The programmer intended to make swap () usable by any task. Figure 2.6 shows what could happen
if alow-priority task isinterrupted while swap () is executing.

Figure 2.6 Non-reentrant function.

LOW PRIORITY TASK HIGH PRIORITY TASK
Temp == 1
whi | e_(1) OBl nt Exi t () whi | e_(1?
y =2 (2) Csa
—»| ISR | O.S. {
swa?(&x, &); (1) swap(&z, &);
Tenp = *X; { Tenp = *z;
PEERC I

F2.6(1)
F2.6(2)
F2.6(3)

F2.6(4)

F2.6(5)

o =y < O.S.) it
R (4
R\————Tenp == 3l

. .OSTi meDl y(1);
bSTi meDl y(1); /
} }

Temp == 3

When swap () isinterrupted Temp contains 1.

The ISR makes the higher priority task ready to run, so at the completion of the ISR, the ker-
nel (assuming uC/OS-11) isinvoked to switch to thistask. The high priority task sets Temp to
3 and swaps the contents of its variables correctly (i.e.,, zis4 and t is 3).

The high priority task eventually relinquishes control to the low priority task by calling aker-
nel service to delay itself for one clock tick (Section 2.32, “Clock Tick”).

The lower priority task is thus resumed. Note that at this point, Temp is still set to 3! When the
low priority task resumes execution, the task sets y to 3 instead of 1.

Note that this example is simple, so it is obvious how to make the code reentrant. You can make
swap () reentrant with one of the following techniques:

» Declare Temp local to swap().
» Disableinterrupts before the operation and enable them afterwards.
» Useasemaphore (Section 2.18, “Mutual Exclusion”).

» Other situations are not as easy to solve. An error caused by a non-reentrant function might not
show up in your application during the testing phase; it will most likely occur after the product
has been delivered! If you are new to multitasking, you need to be careful when using non-reen-
trant functions.

If the interrupt occurs either before or after swap (), the x and y values for both tasks are correct.

Round-Robin Scheduling 45

2.12 Round-Robin Scheduling

When two or more tasks have the same priority, the kernel allows one task to run for a predetermined
amount of time, called a quantum, and then selects another task. This process is called round-robin
scheduling or time slicing. The kernel gives control to the next task in line if

 the current task has no work to do during its time slice or
» the current task completes before the end of itstime slice or
» thetimedlice ends.

MC/OS-11 does not currently support round-robin scheduling. Each task must have a unique priority in
your application.

2.13 Task Priorities

A priority is assigned to each task. The more important the task, the higher the priority given to it. With
most kernels, you are generally responsible for deciding what priority each task gets.

2.14 Static Priorities

Task priorities are static when the priority of each task does not change during the application’s execu-
tion. Each task is thus given a fixed priority at compile time. All the tasks and their timing constraints
are known at compile time in a system where priorities are static.

2.15 Dynamic Priorities

Task priorities are dynamic if the priority of tasks can be changed during the application’s execution;
each task can change its priority at run time. This is a desirable feature to have in a real-time kernel to
avoid priority inversions. uC/OS-I1 provides this feature.

2.16 Priority Inversions

Priority inversion is a problem in rea-time systems and occurs mostly when you use a real-time kernel.
Figure 2.7 illustrates apriority inversion scenario. Task 1 has ahigher priority than Task 2, whichinturn
has a higher priority than Task 3.

46 Chapter 2: Real-time Systems Concepts

Figure2.7 Priority inversion problem.

Priority Inversion

\ 4

A

(5) (13)
Task 1 (H) %,
(9)
Task 2 (M)
(1) i(3) (7) (11)
Task 3 (L) |
Task 3 Gets Semaphore
(2) Task 3 Resumes
Task 1 Preempts Task 3 (10)
(4)
Task 1 Tries to get Semaphore Task 3 Releases the Semaphore
(6) (12)

F2.7(2)
F2.7(2)

F2.7(3)
F2.7(4)

F2.7(5)
F2.7(6)
F2.7(7)

F2.7(8)

F2.7(9)
F2.7(10)

Task 2 Preempts Task 3
(8)
Task 1 and Task 2 are both waiting for an event to occurs and Task 3 is executing.

At some point, Task 3 acquires a semaphore (see Section 2.18.04, “ Semaphores’), which the
task needs before it can access a shared resource.

Task 3 performs some operations on the acquired resource.

The event for which Task 1 was waiting occurs, and thus the kernel suspends Task 3 and
starts executing Task 1 because Task 1 has a higher priority.

Task 1 executes for a while until it also wants to access the resource (i.e., it attempts to get
the semaphore that Task 3 owns). Because Task 3 owns the resource, Task 1 isplaced in alist
of tasks waiting for the kernel to free the semaphore.

Task 3 resumes and continues execution until it is preempted by Task 2 because the event for
which Task 2 was waiting occurred.

Task 2 handles the event for which it was waiting, and, when it's done, the kernel relin-
quishes the CPU back to Task 3.

Priority Inversions 47

F2.7(11)

F2.7(12) Task 3 finishes working with the resource and releases the semaphore. At this point, the ker-
nel knows that a higher priority task is waiting for the semaphore and performs a context
switch to resume Task 1.

F2.7(13) Atthispoint, Task 1 has the semaphore and can access the shared resource.

The priority of Task 1 has been virtually reduced to that of Task 3 because Task 1 waswaiting for the
resource that Task 3 owned. The situation was aggravated when Task 2 preempted Task 3, which further
delayed the execution of Task 1.

You can correct this situation by raising the priority of Task 3, just for the time it takes to access the
resource, and then restoring the original priority level when the task is finished. The priority of Task 3
should be raised up to or above the highest priority of the other tasks competing for the resource. A
multitasking kernel should alow task priorities to change dynamically to help prevent priority inver-
sions. However, it takes some time to change atask’s priority. What if Task 3 had completed access of
the resource before it was preempted by Task 1 and then by Task 2? Had you raised the priority of Task
3 before accessing the resource and then lowered it when done, you would have wasted valuable CPU
time. What isreally needed to avoid priority inversionis akernel that changesthe priority of atask auto-
matically, which is called priority inheritance. uC/OS-I1 provides this feature (see Chapter 8, “Mutual
Exclusion Semaphores”).

Figure 2.8 illustrates what happens when a kernel supports priority inheritance.

Figure 2.8 Kernel that supports priority inheritance.

Priority Inversion

—>
(5 (9)
Task 1 (H) 2
(11)
Task 2 (M)
(H i3 (7
Task 3 (L) |
Task 3 Gets Mutex
(2)
Task 1 Preempts Task 3 Task 1 Completes
(4) (10)
Task 1 Tries to get Mutex Task 3 Releases the Mutex

(Priority of Task 3 is raised to Task 1's) (Task 1 Resumes)
(6) (8)

48 Chapter 2: Real-time Systems Concepts

F2.8(1)

F2.8(2) As with the previous example, Task 3 is running but, this time, acquires a mutual exclusion
semaphore (also called a mutex) to access a shared resource.

F2.8(3)

F2.8(4) Task 3 accesses the resource and then is preempted by Task 1.

F2.8(5)

F2.8(6) Task 1 executes and tries to obtain the mutex. The kernel sees that Task 3 has the mutex and
knows that Task 3 has alower priority than Task 1. In this case, the kernel raises the priority
of Task 3 to the same level as Task 1.

F2.8(7) Thekernel places Task 1 in the mutex wait list and then resumes execution of Task 3 so that
this task can continue with the resource.

F2.8(8) When Task 3 isdonewith the resource, it rel eases the mutex. At this point, the kernel reduces
the priority of Task 3toitsoriginal value and looksin the mutex waiting list to seeif atask is
waiting for the mutex. The kernel seesthat Task 1 iswaiting and gives it the mutex.

F2.8(9) Task 1isnow freeto access the resource.
F2.8(10)

F2.8(11) When Task 1 is done executing, the medium priority task (i.e., Task 2) gets the CPU. Note
that Task 2 could have been ready to run any time between F2.8(3) and F2.8(10) without
affecting the outcome. Some level of priority inversion cannot be avoided but far less is
present than in the previous scenario.

2.17 Assigning Task Priorities

Assigning task prioritiesis not atrivial undertaking because of the complex nature of real-time systems.
In most systems, not all tasks are considered critical. Noncritical tasks should obviously be given low
priorities. Most rea -time systems have a combination of soft and hard requirements. In a soft real-time
system, tasks are performed as quickly as possible, but they don’t have to finish by specific times. In
hard real-time systems, tasks have to be performed not only correctly but on time.

An interesting technique called rate monotonic scheduling (RMS) has been established to assign
task priorities based on how often tasks execute. Simply put, tasks with the highest rate of execution are
given the highest priority (Figure 2.9).

RM S makes a number of assumptions:

» All tasksare periodic (they occur at regular intervals).

» Tasksdo not synchronize with one another, share resources, or exchange data.

» The CPU must always execute the highest priority task that is ready to run. In other words, pre-
emptive scheduling must be used.

Given a set of n tasks that are assigned RM S priorities, the basic RMS theorem states that all task
hard real-time deadlines are always met if the inequality in Equation [2.1] is verified.

E.
[2.1] Y=< n(2""-1)
] |

Mutual Exclusion 49

Where E; corresponds to the maximum execution time of task i and T; corresponds to the execution
period of task i. In other words, E; / T, corresponds to the fraction of CPU time required to execute task
i. Table 2.1 (page 50) shows the value for size n(2¥» — 1) based on the number of tasks. The upper bound
for an infinite number of tasksis given by In(2), or 0.693, which means that to meet al hard real-time
deadlines based on RMS, CPU use of al time-critical tasks should be less than 70 percent! Note that
you can still have non-time-critical tasksin a system and thus use 100 percent of the CPU’stime. Using
100 percent of your CPU’s time is not a desirable goal because it does not alow for code changes and
added features. As arule of thumb, you should always design a system to use less than 60 to 70 percent
of your CPU.

RMS says that the highest rate task has the highest priority. In some cases, the highest rate task
might not be the most important task. Your application dictates how you need to assign priorities. How-
ever, RMSis an interesting starting point.

Figure2.9 Assigning task priorities based on task execution rate.

High

—>
@

Priority
@

l_
o
=

Task Execution Rate (Hz)

2.18 Mutual Exclusion

The easiest way for tasks to communicate with each other is through shared data structures. This pro-
cessisespecialy easy when all tasks exist in a single address space and can reference elements, such as
global variables, pointers, buffers, linked lists, and ring buffers. Although sharing data simplifies the
exchange of information, you must ensure that each task has exclusive access to the data to avoid con-
tention and data corruption. The most common methods of obtaining exclusive access to shared
resources are

» disabling interrupts,

» performing test-and-set operations,

» disabling scheduling, and

* using semaphores.

50 Chapter 2: Real-time Systems Concepts

Table2.1 Allowable CPU use based
on number of tasks.

Number of Tasks n(2vn - 1)
1.000
0.828
0.779
0.756
0.743

a ~h WO N

0.693

21801 Disablingand Enabling Interrupts

The easiest and fastest way to gain exclusive access to a shared resource is by disabling and enabling
interrupts, as shown in the pseudocode in Listing 2.3.

Listing2.3 Disabling and enabling interrupts.

Disable interrupts;
Access the resource (read/write from/to variables);
Reenable interrupts;

MC/OS-11 uses this technique (as do most, if not al, kernels) to access internal variables and data struc-
tures. In fact, uC/OS-I1 provides two macros that allow you to disable and then enable interrupts from
your C code: 0S_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively [see Section 3.00, “Criti-
cal Sections, O0S_ENTER_CRITICAL() and OS_EXIT_CRITICAL()"]. You aways need to use these
macros in tandem, as shown in Listing 2.4.

Listing2.4 Using uC/OS-11 macros to disable and enable
interrupts.

void Function (void)
{
OS_ENTER_CRITICALC();

/* You can access shared data in here */

OS_EXIT_CRITICAL();

Mutual Excluson 51

You must be careful, however, not to disable interrupts for too long. Doing so affects the response of
your system to interrupts, which is known as interrupt latency. You should consider this method when
you are changing or copying a few variables. Also, this method is the only way that a task can share
variables or data structures with an ISR. In all cases, you should keep interrupts disabled for as little
time as possible.

If you use a kernel, you are basically allowed to disable interrupts for as much time as the kernel
does without affecting interrupt latency. Obviously, you need to know how long the kernel will disable
interrupts. Any good kernel vendor should provide you with this information. After al, if they sell a
real-time kernel, time is important!

21802 Ted-and-Set Operations

If you are not using akernel, two functions could agree that to access a resource, they must check aglo-
bal variable and if the variableis 0, the function has access to the resource. To prevent the other function
from accessing the resource, however, the first function that gets the resource sets the variable to 1,
which is called atest-and-set (or TAS) operation. Either the TAS operation must be performed indivisi-
bly (by the processor), or you must disable interrupts when doing the TAS on the variable, as shown in
Listing 2.5.

Listing2.5 Using test-and-set to access a resource.

Disable interrupts;
if (‘Access Variable’ is 0) {
Set variable to 1;
Reenable interrupts;
Access the resource;
Disable interrupts;
Set the ‘Access Variable’ back to 0;
Reenable interrupts;
} else {
Reenable interrupts;
/* You don’t have access to the resource, try back Tater; */

Some processors actually implement a TAS operation in hardware (e.g., the 68000 family of processors
have the TAS instruction).

21803 Disabling and Enabling the Scheduler

If your task is not sharing variables or data structures with an ISR, you can disable and enable sched-
uling (see Section 3.07, “Locking and Unlocking the Scheduler”), as shown in Listing 2.6 (using
MC/OS-11 as an example). In this case, two or more tasks can share data without the possibility of
contention. You should note that while the scheduler is locked, interrupts are enabled, and, if an inter-
rupt occurs while in the critical section, the ISR is executed immediately. At the end of the ISR, the
kernel always returns to the interrupted task, even if the ISR has made a higher priority task ready to
run. Because the I SR returns to the interrupted task, the behavior of the kernel is very similar to that
of a non-preemptive kernel (at least, while the scheduler is locked). The scheduler is invoked when

52 Chapter 2: Real-time Systems Concepts

0SSchedUnTock() is called to see if a higher priority task has been made ready to run by the task or
an ISR. A context switch resultsif a higher priority task is ready to run. Although this method works
well, you should avoid disabling the scheduler because it defeats the purpose of having akernel in the
first place. The next method should be chosen instead.

Listing2.6 Accessing shared data by disabling and enabling
scheduling.

void Function (void)
{
0SSchedlLock();

/* You can access shared data in here (interrupts are recognized) */

0SSchedUnlock();

21804 Semaphores

The semaphore was invented by Edgser Dijkstra in the mid-1960s. It is a protocol mechanism offered
by most multitasking kernels. Semaphores are used to

» control access to a shared resource (mutua exclusion),
» signal the occurrence of an event, and
» dlow two tasksto synchronize their activities.

A semaphoreis akey that your code acquiresin order to continue execution. If the semaphore is aready
in use, the requesting task is suspended until the semaphore is released by its current owner. In other
words, the requesting task says: “ Give me the key. If someone elseis using it, | am willing to wait for
it!” Two types of semaphores exist: binary semaphores and counting semaphores. Asits nameimplies, a
binary semaphore can only take two values. 0 or 1. A counting semaphore allows values between 0 and
255, 65,535, or 4,294,967,295, depending on whether the semaphore mechanism is implemented using
8, 16, or 32 hits, respectively. The actual size depends on the kernel used. Along with the semaphore’'s
value, the kernel also needsto keep track of tasks waiting for the semaphore’s avail ability.

Generdly, only three operations can be performed on asemaphore: INITIALIZE (also called CREATE),
WAIT (also called PEND), and SIGNAL (also called POST). Theinitial value of the semaphore must be pro-
vided when the semaphoreisinitialized. The waiting list of tasks is always initialy empty.

A task desiring the semaphore performs a WAIT operation. If the semaphore is available (the sema-
phore value is greater than 0), the semaphore value is decremented, and the task continues execution. If
the semaphore'svalueis 0, the task performing aWAIT on the semaphoreis placed in awaiting list. Most
kernels alow you to specify atimeout; if the semaphore is not available within a certain amount of time,
the requesting task is made ready to run, and an error code (indicating that a timeout has occurred) is
returned to the caller.

A task releases a semaphore by performing a SIGNAL operation. If no task is waiting for the sema-
phore, the semaphore value is simply incremented. If any task is waiting for the semaphore, however,
one of the tasks is made ready to run, and the semaphore value is not incremented; the “key” is given to
one of the tasks waiting for it. Depending on the kernel, the task that receives the semaphore is either

Mutual Excluson 53

» the highest priority task waiting for the semaphore or
» thefirst task that requested the semaphore (First In First Out, or FIFO).

Some kernels have an option that allows you to choose either method when the semaphoreisinitial-
ized. LC/OS-11 only supports the first method. If the readied task has a higher priority than the current
task (the task releasing the semaphore), a context switch occurs (with a preemptive kernel), and the
higher priority task resumes execution; the current task is suspended until it again becomes the highest
priority task ready to run.

Listing 2.7 shows how you can share data using a semaphore (in LC/OS-11). Any task needing access
to the same shared data calls 0SSemPend(), and, when the task is done with the data, the task calls
0SSemPost (). Both of these functions are described later. You should note that a semaphore is an object
that needsto beinitialized before it’s used; for mutual exclusion, a semaphoreisinitialized to a value of
1. Using a semaphore to access shared data doesn’t affect interrupt latency. If an ISR or the current task
makes a higher priority task ready to run while accessing shared data, the higher priority task executes
immediately.

Listing 2.7 Accessing shared data by obtaining a semaphore.
OS_EVENT *SharedDataSem;

void Function (void)
{
INT8U err;

0SSemPend(SharedDataSem, 0, &err);

/* You can access shared data in here (interrupts are recognized) */

0SSemPost (SharedDataSem) ;

Semaphores are especially useful when tasks share I/O devices. Imagine what would happen if two
tasks were allowed to send characters to a printer at the same time. The printer would contain inter-
leaved data from each task. For instance, the printout from Task 1 printing “I am Task 1!” and Task 2
printing “1 am Task 2!” could result in:

I laamm T Tasask k1 12!

In this case, use a semaphore and initializeit to 1 (i.e., abinary semaphore). The ruleis simple: to access
the printer, each task first must obtain the resource’'s semaphore. Figure 2.10 shows tasks competing for
asemaphore to gain exclusive access to the printer. Note that the semaphoreis represented symbolically
by akey, indicating that each task must obtain this key to use the printer.

54 Chapter 2: Real-time Systems Concepts

Figure2.10 Using a semaphore to get permission to access a printer.

"I amtask #1!I"

Acquire Semaphore \

L SEMAPHORE | PRINTER

/l
Acquire Semaphore /’

"l amtask #2!"

The above example implies that each task must know about the existence of the semaphore in order
to access the resource. In some situations, it is better to encapsulate the semaphore. Each task would
thus not know that it is actually acquiring a semaphore when accessing the resource. For example, an
RS-232C port is used by multiple tasks to send commands and receive responses from a device con-
nected at the other end (Figure 2.11).

The function CommSendCmd () is called with three arguments: the ASCII string containing the com-
mand, a pointer to the response string from the device, and, finally, atimeout in case the device doesn’t
respond within a certain amount of time. The pseudocode for this function is shown in Listing 2.8.

Listing2.8 Encapsulating a semaphore.

INT8U CommSendCmd(char *cmd, char *response, INT16U timeout)
{
Acquire port's semaphore;
Send command to device;
Wait for response (with timeout);
if (timed out) {
Release semaphore;
return (error code);
} else {
Release semaphore;
return (no error);

Each task that needs to send a command to the device has to call this function. The semaphore is
assumed to be initialized to 1 (i.e., available) by the communication driver initialization routine. The
first task that calls CommSendCmd () acquires the semaphore, proceeds to send the command, and waits

Mutual Excluson 55

for aresponse. If another task attempts to send a command while the port is busy, this second task is
suspended until the semaphore is released. The second task appears simply to have made a call to a nor-
mal function that does not return until the function has performed its duty. When the semaphore is

released by the first task, the second task acquires the semaphore and is alowed to use the RS-232C
port.
Figure2.11 Hiding a semaphore from tasks.

—>

CommSendCmd()

DRIVER [¢—¥ RS-232C

LSemaphore

A counting semaphore is used when a resource can be used by more than one task at the same time.
For example, a counting semaphore is used in the management of a buffer pool, as shown in Figure
2.12. Assume that the buffer pool initially contains 10 buffers. A task obtains a buffer from the buffer
manager by calling BufReq(). When the buffer is no longer needed, the task returns the buffer to the
buffer manager by calling BufRel (). The pseudocode for these functionsis shown in Listing 2.9.

Listing2.9 Buffer management using a sesmaphore.

BUF *BufReqg(void)
{
BUF *ptr;

Acquire a semaphore;
Disable interrupts;

ptr = BuffFreelist;
BufFreelist = ptr->BufNext;
Enable interrupts;

return (ptr);

56 Chapter 2: Real-time Systems Concepts

Listing2.9 Buffer management using a sesmaphore. (Continued)

void BufRel(BUF *ptr)

{
Disable interrupts;
ptr->BufNext = BuffFreelist;
Buffreelist = ptr;
Enable interrupts;
Release semaphore;

Figure2.12 Using a counting semaphore.

Buf Fr eeli st
| +—»| Next +»| Next +—»{ Next 1 0

! 10 !

Buf Req() |€—> I<—> Buf Rel ()

\ / f Buffer Manager

The buffer manager satisfies the first 10 buffer requests because 10 keys exist. When all semaphores
are used, atask requesting a buffer is suspended until a semaphore becomes available. Interrupts are dis-
abled to gain exclusive access to the linked list (this operation is very quick). When atask is finished
with the buffer it acquired, the task calls BufRel () to return the buffer to the buffer manager; the buffer
is inserted into the linked list before the semaphore is released. By encapsulating the interface to the
buffer manager in BufReq() and BufRel (), the caller doesn’'t need to be concerned with the actual
implementation details.

Semaphores are often overused. The use of a semaphore to access a simple shared variable is over-
kill in most situations. The overhead involved in acquiring and releasing the semaphore can consume
valuable time. You can do the job just as efficiently by disabling and enabling interrupts (see Section
2.18.01, “Disabling and Enabling Interrupts’). Suppose that two tasks are sharing a 32-bit integer vari-

able. The first task increments the variable while the other task clearsit. If you consider how long a pro-
cessor takes to perform either operation, you should realize that you do not need a semaphore to gain

Deadlock (or Deadly Embrace) 57

exclusive access to the variable. Each task simply needs to disable interrupts before performing its oper-
ation on the variable and enabl e interrupts when the operation is complete. A semaphore should be used,
however, if the variable is afloating-point variable and the microprocessor doesn’t support floating point
in the hardware. In this case, the processing time involved in processing the floating-point variable
could affect interrupt latency if you had disabled interrupts.

2.19 Deadlock (or Deadly Embrace)

A deadlock, also called a deadly embrace, is a situation in which two tasks are each unknowingly wait-
ing for resources held by the other. Assume Task T1 has exclusive access to Resource R1 and Task T2
has exclusive access to Resource R2. If T1 needs exclusive access to R2 and T2 needs exclusive access
to R1, neither task can continue. They are deadlocked. The simplest way to avoid adeadlock isfor tasks
to

» acquire all resources before proceeding,
» acquire the resources in the same order, and
» release theresourcesin the reverse order.

Most kernels alow you to specify a timeout when acquiring a semaphore. This feature alows a
deadlock to be broken. If the semaphore is not available within a certain amount of time, the task
requesting the resource resumes execution. Some form of error code must be returned to the task to
notify it that a timeout occurred. A return error code prevents the task from thinking it has obtained the
resource. Deadlocks generally occur in large multitasking systems, not in embedded systems (at |east
they better not!).

2.20 Synchronization

A task can be synchronized with an ISR (or another task when no datais being exchanged) by using a
semaphore, as shown in Figure 2.13. Note that, in this case, the semaphore is drawn as aflag to indicate
that it is used to signal the occurrence of an event (rather than to ensure mutual exclusion, in which case
it would be drawn as akey). When used as a synchronization mechanism, the semaphoreisinitialized to
0. Using a semaphore for this type of synchronization is called a unilateral rendezvous. For example, a
task can initiate an 1/0O operation and then wait for the semaphore. When the I/O operation is complete,
an ISR (or another task) signals the semaphore, and the task is resumed.

Figure2.13 Synchronizing tasks and | SRs.

ISR POST F PEND

POST F PEND ,

58 Chapter 2: Real-time Systems Concepts

If the kernel supports counting semaphores, the semaphore accumulates events that have not yet
been processed. Note that more than one task can be waiting for an event to occur. In this case, the ker-
nel signals the occurrence of the event either to

» thehighest priority task waiting for the event to occur or
» thefirst task waiting for the event.

Depending on the application, more than one | SR or task can signal the occurrence of the event.

Two tasks can synchronize their activities by using two semaphores, as shown in Figure 2.14, which
iscalled abilateral rendezvous. A bilateral rendezvousis similar to aunilateral rendezvous, except both
tasks must synchronize with one another before proceeding. A bilatera rendezvous cannot be per-
formed between atask and an ISR because an I SR cannot wait on a semaphore. For example, two tasks
are executing, as shown in Listing 2.10.

Figure2.14 Tasks synchronizing their activities.

POST | PEND
PEND F POST

Listing 2.10 Bilateral rendezvous.

Task1()
{
for (5;5) f
Perform operation;
Signal task #2; (1)
Wait for signal from task #2; (2)

Continue operation;

Task2()
{
for (;;) f
Perform operation;
Signal task #1; (3)
Wait for signal from task #1; (4)

Continue operation;

Event Flags 59

L2.10(1)

L2.10(2) When the first task reaches a certain point, it signals the second task and then waits for a
return signal.

L2.10(3) 2
L2.10(4) Similarly, when the second task reaches a certain point, it signalsthefirst task and waitsfor a

return signal. At this point, both tasks are synchronized with each other.

2.21 Event Flags

Event flags are used when a task needs to synchronize with the occurrence of multiple events. The task
can be synchronized when any of the events have occurred, which is called disjunctive synchronization
(logical OR). A task can also be synchronized when all events have occurred, which is called conjunctive
synchronization (logical AND). Disjunctive and conjunctive synchronization are shown in Figure 2.15.

Figure2.15 Digunctive and conjunctive synchronization.
Zasi)
\.

/ Events Semaphore
-’ 3 OR POST > F PEND ’
=S

Zas)

TASK

/ Events Semaphore
> 0| = m’
L)

Common events can be used to signal multiple tasks, as shown in Figure 2.16. Events are typically
grouped. Depending on the kernel, a group consists of 8, 16, or 32 events, each represented by a bit.
(mostly 32 bits, though). Tasks and ISRs can set or clear any event in a group. A task is resumed when
all the eventsit requires are satisfied. The evaluation of which task will be resumed is performed when a
new set of events occurs (i.e., during a SET operation).

Kernels, like pC/OS-11, which support event flags offer services to SET event flags, CLEAR event
flags, and WAIT for event flags (conjunctively or disunctively).

DISJUNCTIVE SYNCHRONIZATION

CONJUNCTIVE SYNCHRONIZATION

60 Chapter 2: Real-time Systems Concepts

2.22 Intertask Communication

It is sometimes necessary for atask or an ISR to communicate information to another task. This infor-
mation transfer is called intertask communication. Information can be communicated between tasks in
two ways: through global data or by sending messages.

When using global variables, each task or ISR must ensure that it has exclusive access to the vari-
ables. If an ISR isinvolved, the only way to ensure exclusive access to the common variablesisto dis-
able interrupts. If two tasks are sharing data, each can gain exclusive access to the variables either by
disabling and enabling interrupts or with the use of a semaphore (as we have seen). Note that atask can
only communicate information to an ISR by using global variables. A task is not aware when a global
variable is changed by an ISR, unless the ISR signals the task by using a semaphore or unless the task
polls the contents of the variable periodically. To correct this situation, you should consider using either
amessage mailbox or a message queue.

Figure2.16 Event flags.

/—

kTASK) (EJ

~——

Events
(8, 16, or 32 bits)

Semaphore
Events

o * EOR&, Fﬂ,

Semaphore

Events

ww

ANDI-ESST F PEND

2.23 Message Mailboxes

Messages can be sent to a task through kernel services. A message mailbox, also called a message
exchange, istypically apointer-size variable. Through a service provided by the kernel, atask or an ISR
can deposit amessage (the pointer) into this mailbox. Similarly, one or more tasks can receive messages
through a service provided by the kernel. Both the sender and receiving task agree on what the pointer is
actually pointing to.

A waiting list is associated with each mailbox in case more than one task wants to receive messages
through the mailbox. A task desiring a message from an empty mailbox is suspended and placed on the
waiting list until a message is received. Typicaly, the kernel allows the task waiting for a message to
specify atimeout. If a message is not received before the timeout expires, the requesting task is made

Message Queues 61

ready to run, and an error code (indicating that a timeout has occurred) is returned to it. When a message
is deposited into the mailbox, either the highest priority task waiting for the message is given the mes-
sage (priority-based), or the first task to request a message is given the message (First-In First-Out, or
FIFO). uC/OS-11 only supports the first mechanism — give the message to the highest priority task wait-
ing. Figure 2.17 shows atask depositing a message into a mailbox. Note that the mailbox is represented
by an I-beam and the timeout is represented by an hourglass. The number next to the hourglass repre-
sents the number of clock ticks (Section 2.32, “ Clock Tick™) the task will wait for a message to arrive.

Figure2.17 Message mailbox.

Mailbox
TASK POST >I PEND >

€L

Kernelstypically provide the following mailbox services.
» Initialize the contents of a mailbox. The mailbox initially might or might not contain a message.
» Deposit amessage into the mailbox (POST).
» Wait for amessage to be deposited into the mailbox (PEND).

» Get a message from a mailbox, if one is present, but do not suspend the caller if the mailbox is
empty (ACCEPT). If the mailbox contains a message, the message is extracted from the mailbox.

Message mailboxes can also simulate binary semaphores. A message in the mailbox indicates that the
resource is available, and an empty mailbox indicates that the resource is already in use by another task.

2.24 Message Queues

A message queue is used to send one or more messages to atask. A message queue is basically an array
of mailboxes. Through a service provided by the kernel, atask or an ISR can deposit a message (the
pointer) into a message queue. Similarly, one or more tasks can receive messages through a service pro-
vided by the kernel. Both the sender and receiving task or tasks have to agree as to what the pointer is
actually pointing to. Generally, the first message inserted in the queueis the first message extracted from
the queue (FIFO). In addition, to extract messagesin aFIFO fashion, uC/OS-11 allows atask to get mes-
sages Last-In-First-Out (LIFO).

As with the mailbox, a waiting list is associated with each message queue, in case more than one
task is to receive messages through the queue. A task desiring a message from an empty queue is sus-
pended and placed on the waiting list until a message is received. Typically, the kernel alows the task
waiting for a message to specify atimeout. If a message is not received before the timeout expires, the
requesting task is made ready to run, and an error code (indicating atimeout has occurred) is returned to
it. When a message is deposited into the queue, either the highest priority task, or the first task to wait
for the message is given the message. UC/OS-I1 only supports the first mechanism — give the message to
the highest priority task waiting. Figure 2.18 shows an | SR depositing a message into a queue. Note that
the queue is represented graphically by a double I-beam. The “10” indicates the number of messages
that can accumulate in the queue. A “0” next to the hourglass indicates that the task will wait forever for
amessage to arrive.

62 Chapter 2: Real-time Systems Concepts

Figure2.18 Message queue.

Queue

POST PEND
Interrupt —s— ISR 10—=—»

Xo

Kernels typically provide these message queue services:

» Initialize the queue. The queue is always assumed to be empty after initialization.
» Deposit amessage into the queue (POST).

» Wait for amessage to be deposited into the queue (PEND).

» Get amessage from aqueue, if oneis present, but do not suspend the caller if the queue is empty
(ACCEPT). If the queue contains a message, the message is extracted from the queue.

2.25 Interrupts

Aninterrupt is a hardware mechanism used to inform the CPU that an asynchronous event has occurred.
When an interrupt is recognized, the CPU saves part (or al) of its context (i.e., registers) and jumpsto a
special subroutine, called an interrupt service routine (ISR). The ISR processes the event, and, upon
completion of the ISR, the program returns to

 the background for a foreground/background system,
» theinterrupted task for a non-preemptive kernel, or
» the highest priority task ready to run for a preemptive kernel.

Interrupts allow a microprocessor to process events when they occur, which prevents the micropro-
cessor from continuously polling (looking at) an event to seeif it has occurred. Microprocessors allow
interrupts to be ignored and recognized through the use of two special instructions: disable interrupts
and enable interrupts, respectively. In areal-time environment, interrupts should be disabled as little as
possible. Disabling interrupts affects interrupt latency (see Section 2.26, “Interrupt Latency”) and can
cause interrupts to be missed. Processors generally alow interrupts to be nested, which means that
while servicing an interrupt, the processor recognizes and services other (more importantly) interrupts,
as shown in Figure 2.19.

2.26 Interrupt Latency

Probably the most important specification of areal-time kernel is the amount of time interrupts are dis-
abled. All real-time systems disable interrupts to manipulate critical sections of code and reenable inter-
rupts when the critical sections have been executed. The longer interrupts are disabled, the higher the
interrupt latency. Interrupt latency is given by Equation [2.2].

[2.2] Maximum amount of time interrupts are disabled
+ Time to start executing the first instruction in the ISR

Interrupt Response 63

Figure2.19 Interrupt nesting.

TIME

TAsK [N
|

ISR #1 I-]

ISR #2] e

ISR #3]

/7
4

Interrupt #1

4
4
'l

Interrupt #2

7
d
7

Interrupt #3

2.27 Interrupt Response

Interrupt response is defined as the time between the reception of the interrupt and the start of the user
code that handles the interrupt. The interrupt response time accounts for al of the overhead involved in
handling an interrupt. Typically, the processor’s context (CPU registers) is saved on the stack before the
user code is executed.

For a foreground/background system, the user ISR code is executed immediately after saving the
processor’s context. The response time is given by Equation [2.3].

[2.3] Interrupt latency + Time to save the CPU’s context

For a non-preemptive kernel, the user ISR code is executed immediately after the processor’s con-
text is saved. The response time to an interrupt for a non-preemptive kernel is given by Equation [2.4].

[2.4] Interrupt latency + Time to save the CPU’s context

For a preemptive kernel, a special function provided by the kernel needs to be called to notify the
kernel that an ISR is starting. This function allows the kernel to keep track of interrupt nesting. The rea-
son this function is needed is explained in Section 2.28, “Interrupt Recovery”. For uC/OS-I1, this func-
tion is called 0SIntEnter(). The response time to an interrupt for a preemptive kernel is given by
Equation [2.5].

[2.5] Interrupt latency
+ Time to save the CPU'’s context
+ Execution time of the kernel ISR entry function

64 Chapter 2: Real-time Systems Concepts

A system’s worst case interrupt response time is its only response. Your system might respond to
interrupts in 50us 99 percent of the time, but, if it responds to interrupts in 250us the other 1 percent,
you must assume a 250us interrupt response time.

2.28 Interrupt Recovery

Interrupt recovery is defined as the time required for the processor to return to the interrupted code or to
ahigher priority task, in the case of a preemptive kernel. Interrupt recovery in aforeground/background
system simply involves restoring the processor’s context and returning to the interrupted task. Interrupt
recovery is given by Equation [2.6].

[2.6] Time to restore the CPU’s context
+ Time to execute the return from interrupt instruction

As with a foreground/background system, interrupt recovery with a non-preemptive kernel (Equa-
tion [2.7]) simply involves restoring the processor’s context and returning to the interrupted task.

[2.7] Time to restore the CPU’s context
+ Time to execute the return from interrupt instruction

For a preemptive kernel, interrupt recovery is more complex. Typically, a function provided by the
kernel is caled at the end of the ISR. For uC/OS-11, thisfunction is called 0SIntExit () and alowsthe
kernel to determine if al interrupts have nested. If they have nested (i.e., a return from interrupt would
return to task-level code), the kernel determinesif a higher priority task has been made ready to run asa
result of the ISR. If ahigher priority task isready to run asaresult of the ISR, thistask isresumed. Note
that, in this case, the interrupted task resumes only when it again becomes the highest priority task ready
to run. For a preemptive kernel, interrupt recovery is given by Equation [2.8].

[2.8] Timeto determine if ahigher priority task is ready
+ Time to restore the CPU’s context of the highest priority task
+ Time to execute the return from interrupt instruction

2.29 Interrupt Latency, Response, and Recovery

Figure 2.20 through 2.22 show the interrupt latency, response, and recovery for a foreground/back-
ground system, a non-preemptive kernel, and a preemptive kernel, respectively.

You should note that for a preemptive kernel, the exit function decides to return either to the inter-
rupted task [F2.22(A)] or to a higher priority task that the ISR has made ready to run [F2.22(B)]. In the
later case, the execution time is dlightly longer because the kernel has to perform a context switch. |
made the difference in execution time somewhat to scale, assuming pC/OS-11.

Interrupt Latency, Response, and Recovery 65

Figure2.20 Interrupt latency, response, and recovery
(foreground/background).

TIME

>
Interrupt Request
BACKGROUND BACKGROUND

T CPU Context Saved

- .
%

CPU context
User ISR Code restored

ISR

Interrupt Latency
<y

Interrupt Recovery

Interrupt Response

Figure2.21 Interrupt latency, response, and recovery
(non-preemptive kernel).

TIME -
>
Interrupt Request
TASK TASK
by CPU Context Saved
|
I
ISR | K
I CPU context
— | |
____________ |
I
I
I
|
|
i

Interrupt Latency
!

Interrupt Recovery

Interrupt Response

66 Chapter 2: Real-time Systems Concepts

Figure2.22 Interrupt latency, response, and recovery
(preemptive kerndl).

TIME

v

Interrupt Request

Interrupt Recovery

TASK | TAsk W
1
|
1
CPU Context Saved Kernel's ISR | A
; Exit function 7 : J
|
ISR Kernel's ISR _f i &?QJ&T“
Entry function :
[User ISR Code
p— -
|
1
|
1
| _
! W
nterrupt Latenc Kernel's ISR RL_ CPU context
Exit function | restored B
|g—nterrupt Response o |
| TAsK J
—>

Interrupt Recovery

2.30 ISR Processing Time

Although | SRs should be as short as possible, no absolute limits on the amount of time exist for an ISR.
One cannot say that an ISR must always be less than 100us, 500us, or 1ms. If the ISR code is the most
important code that needs to run at any given time, it could be as long as it needs to be. In most cases,
however, the ISR should recognize the interrupt, obtain data or a status from the interrupting device, and
signal atask to perform the actual processing. You should aso consider whether the overhead involved
in signaling a task is more than the processing of the interrupt. Signaling a task from an ISR (i.e,,
through a semaphore, amailbox, or aqueue) requires some processing time. If processing your interrupt
requires |less than the time required to signal atask, you should consider processing the interrupt in the
ISR itself and possibly enabling interrupts to allow higher priority interrupts to be recognized and ser-
viced.

2.31 Nonmaskable | nterrupts

Sometimes, an interrupt must be serviced as quickly as possible and cannot afford to have the latency
imposed by akernel. In these situations, you might be able to use the nonmaskable interrupt (NMI) pro-
vided on most microprocessors. Because the NMI cannot be disabled, interrupt latency, response, and
recovery are minimal. The NMI is generally reserved for drastic measures, such as saving important
information during a power down. If, however, your application doesn't have this requirement, you
could use the NMI to service your most time-critical I1SR. The following equations show how to deter-
mine the interrupt latency [2.9], response [2.10], and recovery [2.11], respectively, of an NMI.

Nonmaskable Interrupts 67

[2.9] Interrupt Latency = Time to execute longest instruction
+ Time to start executing the NMI ISR

[2.10] Interrupt Response = Interrupt latency
+ Time to save the CPU’s context

[2.11] Interrupt Recovery = Time to restore the CPU’s context
+ Time to execute the return from interrupt instruction

I have used the NMI in an application to respond to an interrupt that could occur every 150us. The
processing time of the ISR took from 80 to 125us, and the kernel | used had an interrupt response of
about 45us. As you can see, if | had used maskable interrupts, the ISR could have been late by 20us
(125ps + 45us > 150ps).

When you are servicing an NMI, you cannot use kernel servicesto signal atask because NMIs can-
not be disabled to access critical sections of code. However, you can still pass parameters to and from
the NMI. Parameters passed must be global variables, and the size of these variables must be read or
written indivisibly; that is, not as separate byte read or write instructions.

NMIs can be disabled by adding external circuitry, as shown in Figure 2.23. Assuming that both the
interrupt and the NMI are positive-going signals, a simple AND gate is inserted between the interrupt
source and the processor’'s NMI input. Interrupts are disabled by writing a 0 to an output port. You
wouldn’t want to disable interrupts to use kernel services, but you could use this feature to pass parame-
ters(i.e, larger variables) to and from the ISR and a task.

Figure2.23 Disabling nonmaskable interrupts.

NMI Interrupt Source_L
Output } To Processor's NMI Input
Port

Now, suppose that the NMI service routine needs to signal a task every 40 times it executes. If the
NMI occurs every 150pus, a signal would be required every 6ms (40 x 150us). From a NMI ISR, you
cannot use the kernel to signal the task, but you can use the scheme shown in Figure 2.24. In this case,
the NMI service routine generates a hardware interrupt through an output port (i.e., brings an output
high). Because the NMI service routine typically has the highest priority and interrupt nesting is typi-
cally not allowed while servicing the NMI ISR, the interrupt is not recognized until the end of the NMI
service routine. At the completion of the NMI service routine, the processor is interrupted to service this
hardware interrupt. This ISR clears the interrupt source (i.e., brings the port output low) and posts to a
semaphore that wakes up the task. As long as the task services the semaphore well within 6ms, your
deadlineis met.

68 Chapter 2: Real-time Systems Concepts

Figure2.24 Signaling a task from a nonmaskable interrupt.

Issues interrupt by writing

to an output port
? Semaphore

NMI :>C)|SR POST> F PEND>

2.32 Clock Tick

A clock tick is a special interrupt that occurs periodically. This interrupt can be viewed as the system’s
heartbeat. The time between interrupts is application specific and is generally between 10 and 200ms.
The clock tick interrupt allows a kernel to delay tasks for an integral number of clock ticks and to pro-
vide timeouts when tasks are waiting for events to occur. The faster the tick rate, the higher the overhead
imposed on the system.

All kernels alow tasks to be delayed for a certain number of clock ticks. The resolution of delayed
tasks is one clock tick; however, this does not mean that its accuracy is one clock tick.

Figure 2.25 through 2.27 are timing diagrams that show atask delaying itself for one clock tick. The
shaded areas indicate the execution time for each operation performed. Note that the time for each oper-
ation varies to reflect typical processing, which would include loops and conditional statements (i.e.,
ifl else, switch, and ?:). The processing time of the tick ISR has been exaggerated to show that it too
is subject to varying execution times.

Case 1 (Figure 2.25) shows a situation where higher priority tasks and | SRs execute prior to the task,
which needs to delay for onetick. Asyou can see, the task attempts to delay for 20ms but because of its
priority, actually executes at varying intervals. The variables execution time causes the execution of the
task to jitter.

Figure2.25 Delaying atask for onetick (Case 1).

<4“—20ms—»
Tick Interrupt I I I I I
Tick ISR . . I I .
All higher priority tasks - - I -

Call to delay 1 tick (20 ms
Call to delay 1 tick (20 ms) y Ltick ()

Delayed Task - I - -

(19 ms) —— 12— (27 ms)
(17 ms)

Call to delay 1 tick (20 ms)

Clock Tick 69

Case 2 (Figure 2.26) shows a situation where the execution times of al higher priority tasks and
ISRs are dightly less than one tick. If the task delays itself just before a clock tick, the task executes
again amost immediately! Because of this, if you need to delay atask at least one clock tick, you must

specify one extratick. In other words, if you need to delay atask for at least five ticks, you must specify
six ticks!

Figure2.26 Delaying a task for onetick (Case 2).

<4+—20ms —P
Tick Interrupt I I I I I
Tick ISR N B i 1 B
All higher priority tasks _ I I -

Call to delay 1 tick (20 ms)

Call to delay 1 tick (20 ms) Call to delay 1 tick (20 ms)

Delayed Task ._- - .
tl —— 2—P} (27tr3ns)
(6 ms) (19 ms)

Case 3 (Figure 2.27) shows a situation in which the execution times of all higher priority tasks and
I SRs extend beyond one clock tick. In this case, the task that triesto delay for one tick actually executes
two ticks later and misses its deadline. Missing the deadline might be acceptable in some applications,
but in most casesitisn't.

Figure2.27 Delaying a task for onetick (Case 3).

<4+—200ms—p
Tick Interrupt I I I I I
Tick ISR [| [] [| | [|
All higher priority tasks . _ -
Call to delay 1 tick (20 ms) —| Call to delay 1 tick (20 ms) —|

Delayed Task - I -

ol

t1 (26 ms)
(40 ms)

These situations exist with al real-time kernels. They are related to CPU processing load and possi-
bly incorrect system design. Here are some possible solutions to these problems:

» Increase the clock rate of your microprocessor.
» Increase the time between tick interrupts.

70 Chapter 2: Real-time Systems Concepts

» Rearrange task priorities.

» Avoid using floating-point math (if you must, use single precision).
» Get acompiler that performs better code optimization.

* Writetime-critical code in assembly language.

» If possible, upgrade to a faster microprocessor in the same family — that is, 8086 to 80186,
68000 to 68020, etc.

Regardless of what you do, jitter will always occur.

2.33 Memory Requirements

If you are designing a foreground/background system, the amount of memory required depends solely
on your application code.With a multitasking kernel, things are quite different. To begin with, a kernel
requires extra code space (ROM). The size of the kernel depends on many factors. Depending on the
features provided by the kernel, you can expect anywhere from 1 to 100K bytes. A minimal kernel for
an 8-bit CPU that provides only scheduling, context switching, semaphore management, delays, and
timeouts should require about 1 to 3K bytes of code space. The total code space is given by Equation
[2.12].

[2.12] Application code size + Kernel code size

Because each task runs independently of the others, it must be provided with its own stack area
(RAM). As a designer, you must determine the stack regquirement of each task as closely as possible
(which is sometimes a difficult undertaking). The stack size must not only account for the task require-
ments (local variables, function calls, etc.), it must also account for maximum interrupt nesting (saved
registers, local storage in ISRs, etc.). Depending on the target processor and the kernel used, a separate
stack can be used to handle al interrupt-level code, which is a desirable feature because the stack
requirement for each task can be substantially reduced. Another desirable feature isthe ability to specify
the stack size of each task on an individual basis (LC/OS-I1 permits this behavior). Conversely, some
kernels require that all task stacks be the same size. All kernels require extra RAM to maintain internal
variables, data structures, queues, etc. The total RAM required if the kernel does not support a separate
interrupt stack is given by Equation [2.13].

[2.13] Application code requirements
+ Data space (i.e., RAM) needed by the kernel itself
+ SUM (task stacks + MAX(ISR nesting))

If the kernel supports a separate stack for interrupts, the total RAM required is given by Equation [2.14].

[2.14] Application code requirements
+ Data space (i.e., RAM) needed by the kernel
+ SUM (task stacks)
+ MAX(ISR nesting)

Unless you have large amounts of RAM with which to work, you need to be careful how you use the
stack space. To reduce the amount of RAM needed in an application, you must be careful how you use
each task’s stack for

» large arrays and structures declared locally to functions and ISR,
» function (i.e., subroutine) nesting,

Advantages and Disadvantages of Real-Time Kernedls 71

e interrupt nesting,
 library functions stack usage, and
» function calls with many arguments.

To summarize, a multitasking system requires more code space (ROM) and data space (RAM) than
aforeground/background system. The amount of extra ROM depends only on the size of the kernel, and
the amount of RAM mostly depends on the number of tasksin your system.

2.34 Advantages and Disadvantages of Real-Time
Kernels

A real-time kernel, also called a Real-Time Operating System (RTOS), allows real-time applications to
be designed and expanded easily; functions can be added without requiring major changes to the soft-
ware. Infact, if you add low priority tasksto your system, the responsiveness of your system to high pri-
ority tasks is amost not affected! The use of an RTOS simplifies the design process by splitting the
application code into separate tasks. With a preemptive RTOS, all time-critical events are handled as
quickly and as efficiently as possible. An RTOS allows you to make better use of your resources by pro-
viding you with valuable services, such as semaphores, mailboxes, queues, time delays, and timeouts.

You should consider using a real-time kernel if your application can afford the extra requirements:
extra cost of the kernel, more ROM/RAM, and 2 to 4 percent additional CPU overhead.

The one factor | haven't mentioned so far is the cost associated with the use of areal-time kernel. In
some applications, cost is everything and would preclude you from even considering an RTOS.

Currently about 150+ RTOS vendors exist. Products are available for 8-, 16-, 32-, and even 64-bit
microprocessors. Some of these packages are complete operating systems and include not only the
real-time kernel but also an input/output manager, windowing systems (display), afile system, network-
ing, language interface libraries, debuggers, and cross-platform compilers. The development cost to use
an RTOS varies from 70 USD (US Dollars) to well over 30,000 USD. The RTOS vendor might also
require royalties on a per-target-system basis. Royalties are like buying a chip from the RTOS vendor
that you include with each unit sold. The RTOS vendors call this silicon software. The royalty fee varies
between 5 USD to more than 500 USD per unit. pC/OS-1 is not free software and needs to be licensed
for commercia use (see Appendix B, “Licensing Policy for uC/OS-11"). Like any other software pack-
age these days, you aso need to consider the maintenance cost, which can set you back another 15% of
the development cost of the RTOS per year!

2.35 Real-Time Systems Summary

Table 2.2 summarizes the three types of real-time systems: foreground/background, non-preemptive
kernel, and preemptive kernel.

72 Chapter 2: Real-time Systems Concepts

Table 2.2 Real-time systems summary.
Foregroun Non-Preemptiw .
SRl) ° puve Preemptive Kernel
Background Kernel
MAX(Longest instruc- MAX(Longest instruc- MAX (Longest instruction,
Interrupt tion, tion, User int. disable,
latency User int. disable) User int. disable, Kernel int. disable)
(Time) + Vector to ISR Kernel int. disable) + Vector to ISR
+ Vector to ISR
| nterrupt Int. latency Int. latency Interrupt latency
response + Save CPU'’ s context + Save CPU'’ s context + Save CPU'’ s context
(Time) + Kernel ISR entry function
Int " Restore background’s Restore task’ s context Find highest priority task
nterrup context + Return fromint. + Restore highest priority
r_?:overy + Return fromint. task’ s context
(Time) + Return from interrupt
Task Background Longest task Find highest priority task
+ Find highest priority + Context switch
response task
(=) + Context switch
. Application code Application code Application code
ROM size + Kernel code + Kernel code
Application RAM Application RAM Application RAM
RAM § + Kernel RAM + Kernel RAM
Size + SUM(Task stacks + SUM(Task stacks
+ MAX(ISR stack)) + MAX(ISR stack))
Services Application code must Yes Yes

available?

provide

Chapter 3

Kernel Structure

This chapter describes some of the structural aspects of uC/OS-I1. You will learn
* how puC/OS-11 handles access to critical sections of code,

* whatataskis

* how puC/OS-11 knows about your tasks,

* how tasks are scheduled,

* how puC/OS-11 determines the percent CPU your application is using,

* how to write interrupt service routines (ISR),

» what aclock tick is, how pC/OS-11 handles them,

* how toinitialize uC/OS-11, and

* how to start multitasking.

This chapter also describes the application serviceslisted in Table 3.1. The code for 0SSchedLock ()
and 0SSchedUnlock() can be disabled by setting 0S_SCHED_LOCK_EN to 0 in 0S_CFG.H, as shown in
Table 3.1. You should note that the other services cannot be compiled out because they are an integral
part of the core services offered by uC/OS-I1.

73

74 Chapter 3: Kernel Sructure

Table 3.1 Core services configuration constantsin
0S_CFG.H.

HC/OS-I1 Core Service Enabled when setto 1in 0S_CFG.H
OS_ENTER_CRITICALC()

OS_EXIT_CRITICAL()

0SInit()

0SStart()

0SIntEnter()

0SIntExit()

0SSchedlLock() 0S_SCHED_LOCK_EN

0SSchedUnTock() 0S_SCHED_LOCK_EN

0SVersion()

Figure 3.1 shows the pC/OS-I1 architecture and its relationship with the hardware. When you use
HC/OSHI in an application, you are responsible for providing the application software and the
HC/OS-I configuration sections. This book and CD contain all the source code for the proces
sor-independent code section, as well as the processor-specific code section for the Intel 80x86, real
mode, large model. If you intend to use HC/OS-I1 on a different processor, you need to either obtain a
copy of a port for the processor you intend to use or write one yourself if the desired processor port is
not available. Check the official uC/OS-11 Web site at www.uCOS-11.comfor alist of available ports.

3.00 Ciritical Sections, 0S _ENTER CRITICAL() and
OS EXIT CRITICAL()

HC/OS-1, like al real-time kernels, needs to disable interrupts in order to access critical sections of
code and to reenable interrupts when done. Being able to disable interrupts allows uC/OS-1 to protect
critical code from being entered simultaneously from either multiple tasks or ISRs. Theinterrupt disable
time is one of the most important specifications that a real-time kernel vendor can provide because it
affects the responsiveness of your system to real-time events. pC/OS-11 triesto keep the interrupt disable
time to a minimum, but with pC/OS-11, interrupt disable time is largely dependent on the processor
architecture and the quality of the code generated by the compiler.

Processors generally provide instructions to disable/enable interrupts, and your C compiler must
have a mechanism to perform these operations directly from C. Some compilers allow you to insert
in-line assembly language statements into your C source code, which makes it quite easy to insert pro-
cessor instructions to enable and disable interrupts. Other compilers contain language extensions to
enable and disable interrupts directly from C.

To hide the implementation method chosen by the compiler manufacturer, uC/OS-11 defines two
macros to disable and enable interrupts: 0S_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respec-
tively. Because these macros are processor specific, they are found in afile called 0S_CPU. H. Each pro-
cessor port thus hasits own 0S_CPU.H file.

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() are always used together to wrap critical sections
of code as shown in the following segment:

Critical Sections, 0S_ENTER_CRITICAL()and OS_EXIT_CRITICAL() 15

OS_ENTER_CRITICAL();
/* pC/0S-1I1I critical code section */
OS_EXIT_CRITICAL();

Figure3.1 HC/OSH | file structure.

Application Software
(Your Code!)

HC/OS-II HC/OS-1l Configuration
(Processor-Independent Code) (Application-Specific)
OS_CORE. C Chapter 3
OS_FLAG C Chapter 9
OS_MBOX. C Chapter 10
OS_MEM C Chapter 12
OS_MJTEX. C Chapter 8 OS_ CFG H Chapter 9
s QcC Chapter 11 | NCLUDES. H Chapter 1
OS_SEM C Chapter 7
OS_TASK. C Chapter 4
OS TIME C Chapter 5
uCos_11.C Chapter 3
uCos Il.H Chapter 3

HC/OS-II Port
(Processor-Specific Code)
OS_CPU. H Chapters 14,15
OS_CPU_A. ASM Chapters 14,15
s CPUC C Chapters 14,15
Software
Hardware
CPU Timer

Your application can also use 0S_ENTER_CRITICAL() and OS_EXIT_CRITICAL() to protect your
own critical sections of code. Be careful, however, because your application will crash (i.e., hang) if you
disable interrupts before calling a service such as 0STimeD1y () (see Chapter 5). This problem happens

76 Chapter 3: Kernel Sructure

because the task is suspended until time expires, but, because interrupts are disabled, you would never
servicethetick interrupt! Obvioudly, all the PEND calls are also subject to this problem, so be careful. As
agenera rule, you should always call uC/OS-I1 services with interrupts enabled!

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() can be implemented using three different meth-
ods. The actual method used by your port depends on the capabilities of the processor, as well as the
compiler used (see Chapter 13, Porting uC/OS-11). The method used is selected by the ffdefine con-
stant 0S_CRITICAL_METHOD, which is defined in 0S_CPU.H of the port you are using for your applica-
tion (i.e., product).

OS CRITICAL_METHOD ==

The first and simplest way to implement these two macros is to invoke the processor instruction to dis-
ableinterruptsfor 0S_ENTER_CRITICAL() and to enable interruptsinstruction for 0S_EXIT_CRITICAL().
However, there is a little problem with this scenario. If you call a uC/OS-1 function with interrupts dis-
abled, on return from apC/OS-11 service (i.e., function), interrupts are enabled! If you had disabled inter-
rupts prior to calling pC/OS-11, you might want them to be disabled on return from the pC/OS-lI
function. In this case, this implementation is not adequate. However, with some processors/compilers,
this method is the only one you can use.

OS CRITICAL_METHOD ==

The second way to implement 0S_ENTER_CRITICAL() is to save the interrupt disable status onto the
stack and then disable interrupts. 0S_EXIT_CRITICAL() is simply implemented by restoring the inter-
rupt status from the stack. Using this scheme, if you call a uC/OS-1I service with interrupts either
enabled or disabled, the status is preserved across the call. In other words, interrupts are enabled after
the call if they were enabled before the call, and interrupts are disabled after the call if they were dis-
abled before the call. Be careful when you call a uC/OS-11 service with interrupts disabled because you
are extending the interrupt latency of your application. The pseudocode for these macrosis:

jtdefine OS_ENTER_CRITICAL() \

asm(*“ PUSH PSW”) \
asm(“ DI”)

Jkdefine OS_EXIT_CRITICAL() \
asm(*“ POP PSW”)

Here, I’'m assuming that your compiler alows you to execute in-line assembly language statements
directly from your C code, as shown above. You need to consult your compiler documentation for this.

The PUSH PSW instruction pushes the processor status word (PSW) (also known as the condition code
register or processor flags) onto the stack. The DI instruction stands for disable interrupts. Finally, the
POP PSW instruction is assumed to restore the origina state of the interrupt flag from the stack. The
instructions | use are only for illustration purposes and might not be actual processor instructions.

Some compilers do not optimize in-line code very well, and thus this method might not work
because the compiler might not be smart enough to know that the stack pointer was changed (by the
PUSH instruction). Specifically, the processor you are using might provide a stack pointer relative
addressing mode, which the compiler can use to access local variables or function arguments using an
offset from the stack pointer. Of course, if the stack pointer is changed by the 0S_ENTER_CRITICAL()
macro, then all these stack offsets might be wrong and would most likely lead to incorrect behavior.

Critical Sections, 0S_ENTER_CRITICAL()and OS_EXIT CRITICAL() 77

OS CRITICAL_METHOD ==

Some compilers provide you with extensions that allow you to obtain the current value of the processor
status word (PSW) and save it into alocal variable declared within a C function. The variable can then
be used to restore the PSW, as shown in Listing 3.1.

Listing3.1 Saving and restoring the PSW.

void Some_uCOS_II_Service (arguments)

{

0S_CPU_SR cpu_sr; (1)
cpu_sr = get_processor_psw(); (2)
disable_interrupts(); (3)
/* Critical section of code */ (4)
set_processor_psw(cpu_sr); (5)
}
L3.1(1) 0S_CPU_SRisauC/OS-I datatypethat isdeclared in the processor-specific file 0S_CPU . H. When

L3.1(2)

L3.1(3)

L3.1(4)
L3.1(5)

you select this critical section method, 0S_ENTER_CRITICAL() and OS_EXIT_CRITICAL(),
always assume the presence of the cpu_sr variable. In other words, if you use this method to pro-
tect your own critical sections, you need to declare a cpu_sr variablein your function.

To enter acritical section, afunction provided by the compiler vendor is called to obtain the
current state of the PSW (condition code register, processor flags, or whatever else this register
iscalled for your processor). | called thisfunction get_processor_psw() for sake of discus-
sion, but it likely has a different name for your compiler.

Another compiler-provided function (disable_interrupt()) is of course called to disable
interrupts.

At this point, the critical code can execute.

After the critical section has completed, interrupts can be reenabled by calling another com-
piler-specific extension that, for sake of discussion, | call set_processor_psw(). Thefunc-
tion receives as an argument the previous state of the PSW. It's assumed that this function
restores the processor PSW to this value.

78 Chapter 3: Kernel Sructure

Because | don’t know what the compiler functions are (there is no standard naming convention), the
MC/OS-11 macros are used to encapsul ate the functionality as shown:

jidefine OS_ENTER_CRITICAL() \
cpu_sr = get_processor_psw(); \
disable_interrupts();

ftdefine OS_EXIT_CRITICALC() \
set_processor_psw(cpu_sr);

3.01 Tasks

A task istypically an infinite loop function, as shown in Listing 3.2.

Listing3.2 Ataskisan infinite loop.

void YourTask (void *pdata) (1)
{
for (;3) | (2)
/* USER CODE */

Call one of uC/0S-II's services:
0SFlagPend();

0SMboxPend() ;
0SMutexPend() ;

0SQPend();

0SSemPend() ;

0STaskDel (0S_PRIO_SELF);
0STaskSuspend(0S_PRIO_SELF);
0STimeDly();
0STimeD1yHMSM() ;

/* USER CODE */

L3.2(1) Thereturntype must always be declared void. An argument is passed to your task code when
the task first starts executing. Notice that the argument is a pointer to a void, which alows
your application to pass just about any kind of data to your task. The pointer is a universal
vehicle used to pass your task the address of a variable, a structure, or even the address of a
function if necessary! It is possible (see Example #1 in Chapter 1) to create many identical
tasks, al using the same function (or task body). For example, you could have four asynchro-
nous serial ports that each are managed by their own task. However, the task code is actually
identical. Instead of copying the code four times, you can create atask that receives a pointer
to a data structure that defines the serial port’s parameters (for example, baud rate, 1/0 port
addresses, and interrupt vector number.) as an argument.

Task Qates 79

L3.2(2) You could also useawhile (1) statement, if you prefer. A task looks just like any other C
function that containes a return type and an argument, but it never returns.

Alternatively, the task can delete itself upon completion, as shown in Listing 3.3. Note that the task
code is not actually deleted; uC/OS-11 ssimply doesn’'t know about the task anymore, so the task code
does not run. Also, if the task calls 0STaskDel (), the task never returns.

Listing3.3 A task that deletesitself when done.

void YourTask (void *pdata)
{
/* USER CODE */
0STaskDel (0OS_PRIO_SELF);
}

MC/OS-I1 can manage up to 64 tasks; however, the current version of HC/OS-I1 uses two tasks for sys-
tem use. | recommend that you don’t use priorities 0, 1, 2, 3, 0S_LOWEST_PRI0-3, 0S_LOWEST_PRI0-2,
0S_LOWEST_PRIO-1, and OS_LOWEST_PRIO because | might use them in future versions of uC/OS-II.
However, if you need to keep your application as tight as possible, then go ahead and use whatever priori-
ties you need, as long as you don't use 0S_LOWEST_PRIO. 0S_LOWEST_PRIO is a ffdefine constant,
defined in the file 0S_CFG.H. Therefore, you can have up to 63 of your own application tasks unless you
decide to not use the top and bottom four prioritiesas | recommend. In this case, you “can” have up to 56
of your own tasks.

Each task must be assigned a unique priority level from 0 to 0S_LOWEST_PRI0-2, inclusively. The
lower the priority number, the higher the priority of the task. uC/OS-11 always executes the highest pri-
ority task ready to run. In the current version of uC/OS-11, the task priority number also serves as the
task identifier. The priority humber (i.e., task identifier) is used by some kernel services, such as
0STaskChangePrio() and 0STaskDel ().

In order for WC/OS-11 to manage your task, you must create a task by passing its address along with
other argumentsto one of two functions: 0STaskCreate() or 0STaskCreateExt().0STaskCreateExt()
is an extended version of 0STaskCreate() and provides additional features. These two functions are
explained in Chapter 4, “ Task Management.”

3.02 Task States

Figure 3.2 shows the state transition diagram for tasks under uC/OS-11. At any given time, atask can be
in any one of five states.

The TASK DORMANT state corresponds to atask that residesin program space (ROM or RAM) but has
not been made available to uC/OS-11. A task is made available to uC/OS-11 by calling either 0STaskCre-
ate() or 0STaskCreateExt(). These calls are simply used to tell uC/OS-11 the starting address of your
task, what priority you want to give to the task being created, how much stack space your task uses, and
so on. When atask is created, it is made ready to run and placed in the TASK READY state. Tasks can be
created before multitasking starts or dynamically by a running task. If multitasking has started and a
task created by another task has a higher priority than its creator, the created task is given control of the
CPU immediately. A task can return itself or another task to the dormant state by calling 0STaskDe1 ().

Multitasking is started by calling 0SStart (). 0SStart() must only be called once during startup
and starts the highest priority task that has been created during your initialization code. The highest pri-

80 Chapter 3: Kernel Structure

ority task is thus placed in the TASK RUNNING state. Only one task can be running at any given time. A
ready task does not run until all higher priority tasks are either placed in the TASK WAITING state or are
deleted.

Figure3.2 Task states.

T

OSFl agPost () GOSFl agPend()
OSMhoxPost () OSMooxPend()
OSMhoxPost Opt ()
OsMut exPost () Oswut exPend()
OSQPost () OSQPend()
OSTaskDel () GsQPost Front ()
O8QPost Qpy()
OSSenPost () OsSenPend()
OSTaskResune() OSTaskSuspend()
OSTi neDl yResume() OsTi neDl y()
CSTi neTi ck() OSTi neDl yHVBM)
osstart ()
OsTaskCr eat e() Gsl nt Exi t ()
OSTaskCr eat eExt () O5_TASK_SW() Interrupt
TASK TASK
DORNMANT RUNNI NG

OSTaskDel () b\ Task is Preenpted / OSInt Exi t ()
\ OsTaskDel () /

The running task can delay itself for a certain amount of time by calling either 0STimeD1y() or
0STimeD1yHMSM(). This task would be placed in the TASK WATITING state until the time specified in the
call expires. Both of these functions force an immediate context switch to the next highest priority task
that is ready to run. The delayed task is made ready to run by 0STimeTick() when the desired time
delay expires (see Section 3.11 “Clock Tick” on page 108). 0STimeTick() is an interna function to
MC/OS-11 and thus, you don't have to actually call this function from your code.

The running task may also need to wait until an event occurs by calling either 0SFl1agPend(),
0SSemPend(), 0SMutexPend(), 0SMboxPend(), or 0SQPend(). If the event did not aready occur, the
task that calls one of these functions is placed in the TASK WAITING state until the occurrence of the
event. When atask pends on an event, the next highest priority task isimmediately given control of the
CPU. The task is made ready when the event occurs or when a timeout expires. The occurrence of an
event can be signaled by either another task or an ISR.

A running task can always be interrupted, unless the task or uC/OS-I1 disables interrupts as we have
seen. The task thus entersthe ISR RUNNING state. When an interrupt occurs, execution of the task is sus-
pended, and the | SR takes control of the CPU. The ISR can make one or more tasks ready to run by sig-
naling one or more events. In this case, before returning from the ISR, uC/OS-11 determines if the
interrupted task is still the highest priority task ready to run. If the ISR makes a higher priority task
ready to run, the new highest priority task is resumed; otherwise, the interrupted task is resumed.

When al tasks are waiting either for events or for time to expire, UC/OS-I1 executes an internal task
caled theidletask, 0S_TaskIdle().

Task Control Blocks (0S_7CB) 81

3.03 Task Control Blocks (0S_TCB)

When atask is created, it is assigned atask control block, 0S_TCB (Listing 3.4). A task control block isa
data structure that is used by pC/OS-11 to maintain the state of a task when it is preempted. When the
task regains control of the CPU, the task control block allows the task to resume execution exactly
where it left off. All 0S_TCBs reside in RAM. You should notice that | organized its fields to allow for
data structure packing, while maintaining alogical grouping of members.

Listing3.4 The pC/OS-1 task control block.

typedef struct os_tcb {
0S_STK *0STCBStkPtr;

##if OS_TASK_CREATE_EXT_EN > 0

void *0STCBExtPtr;
0S_STK *0STCBStkBottom;
INT32U 0STCBStkSize;
INT16U 0STCBOpt;
INT16U 0STCBId;

frendif

struct os_tch *OSTCBNext;
struct os_tchb *0STCBPrev;

FHE ((0S_Q_EN > 0) && (0S_MAX_QS > 0)) || (OS_MBOX_EN > 0) || (OS_SEM_EN > 0) || (OS_MUTEX_EN > 0)

OS_EVENT *0STCBEventPtr;

frendif

#if ((OS_Q_EN > 0) && (0S_MAX_QS > 0)) || (OS_MBOX_EN > 0)
void *0STCBMsg;

frendif

#Hif (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0)
#Hif OS_TASK_DEL_EN > 0
0S_FLAG_NODE *0STCBFlagNode;

frendif
0S_FLAGS OSTCBFlagsRdy;
frendif
INT16U OSTCBD1y;
INT8U OSTCBStat;
INT8U OSTCBPrio;
INT8U 0STCBX;
INT8U OSTCBY;

INT8U 0STCBBitX;

82 Chapter 3: Kernel Structure

Listing3.4 The pC/OS-1 task control block. (Continued)

INT8U 0STCBBitY;

JHif OS_TASK_DEL_EN > 0

BOOLEAN 0STCBDeTReq;
ffendif
} 0S_TCB;

.OSTCBStkPtr

contains a pointer to the current top-of-stack for the task. uC/OS-I1 allows each task to have its own
stack, but, just asimportantly, each stack can be any size. Some commercial kernels assume that all
stacks are the same size unless you write complex hooks. This limitation wastes RAM when all
tasks have different stack requirements because the largest anticipated stack size has to be allocated
for all tasks. .0STCBStkPtr should be the only field in the 0S_TCB data structure that is accessed
from assembly language code (from the context-switching code). | decided to place .0STCBStkPtr
asthefirst entry in the structure to make accessing this field easier from assembly language code (it
ought to be at offset zero).

.OSTCBExtPtr

is a pointer to a user-definable task control block extension, which alows you or the user of
HC/OS-1 to extend the task control block without having to change the source code for pC/OS-I1.
.0STCBExtPtrisonly used by 0STaskCreateExt (), soyou need to set 0S_TASK_CREATE_EXT_ENin
0S_CFG.Hto 1 to enable this field. After it is enabled, you can use .0STCBExtPtr to point to a data
structure that contains the name of the task, to keep track of the execution time of the task, or to
track the number of times a task has been switched-in (see Example #3 in Chapter 1). Notice that |
decided to place this pointer immediately after the stack pointer, in case you need to access thisfield
from assembly language. This position makes calculating the offset from the beginning of the data
structure easier.

.0STCBStkBottom

is apointer to the bottom of the task’s stack. If the processor’s stack grows from high to low memory
locations, then . 0STCBStkBottom points at the lowest valid memory location for the stack. Similarly,
if the processor’s stack grows from low to high memory locations, then . 0STCBStkBottom points at
the highest valid stack address. . 0STCBStkBottomisused by 0STaskStkChk() to check the size of a
task’s stack at run time, which allows you to determine the amount of free stack space available for
each stack. Stack checking can only occur if you create atask with 0STaskCreateExt(), soyou need
to set 0S_TASK_CREATE_EXT_ENin OS_CFG.H to 1 to enable thisfield.

.0STCBStkSize
holds the size of the stack in number of elements instead of bytes (0S_STK isdeclared in 0S_CPU. H),
which meansthat if a stack contains 1,000 entries and each entry is 32-bits wide, then the actual size
of the stack is 4,000 bytes. Similarly, a stack where entries are 16-bits wide contains 2,000 bytes for
the same 1,000 entries. . 0STCBStkSize isused by 0STaskStkChk(). Again, thisfieldisvalid only if
you set 0S_TASK_CREATE_EXT_EN in 0S_CFG.Hto 1.

.0STCBOpt
holds options that can be passed to 0STaskCreateExt(), so this field is valid only if you set
0S_TASK_CREATE_EXT_EN in OS_CFG.H to 1. uC/OS-11 currently defines only three options (see
UCOS_TT.H): OS_TASK_OPT_STK_CHK, OS_TASK_OPT_STK_CLR, and OS_TASK_OPT_SAVE_FP.

Task Control Blocks (0S_7CB) 83

0S_TASK_OPT_STK_CHK is used to specify to 0STaskCreateExt () that stack checking is enabled for the
task being created. uC/OS-11 does not automatically perform stack checking because | didn’t want to
use valuable CPU time unless you actually want to do stack checking. Stack checking is performed by
your application code by calling 0STaskStkChk () (see Chapter 4, “ Task Management”).

0S_TASK_OPT_STK_CLR indicates that the stack needs to be cleared (i.e., uC/OS-1I writes zeros in
every location of the stack) when the task is created. The stack only needs to be cleared if you intend
to do stack checking. If you do not specify 0S_TASK_OPT_STK_CLR and you then create and delete
tasks, stack checking reports incorrect stack usage. If you never delete a task after it's created and
your startup code clears all RAM, you can save valuable execution time by not specifying this option.
Passing 0S_TASK_OPT_STK_CLR increases the execution time of 0STaskCreateExt() becauseit clears
the contents of the stack. The larger your stack, the longer it takes. Again, stack checking is invoked
by your application code and not automatically by pC/OS-11.

0S_TASK_OPT_SAVE_FP tells 0STaskCreateExt () that the task will be doing floating-point computa-
tions. If the processor provides hardware-assisted floating-point capability, the floating-point registers
need to be saved for the task being created and during a context switch.

.0STCBId
is used to hold an identifier for the task. Thisfield is currently not used and has only been included
for future expansion.

.0STCBNext and .0STCBPrev
are used to doubly link 0S_TCBs. 0STimeTick() uses the forward link (pointed to by . 0STCBNext)
chain of 0S_TCBs to update the . 0STCBD1y field for each task. The 0S_TCB for each task is linked
(using both pointers) when thetask is created, and the 0S_TCB isremoved from the list when the task
isdeleted. A doubly-linked list permits an element in the chain to be quickly inserted or removed.

.0STCBEventPtr
is apointer to an event control block and is described later (see Chapter 6, “Kernel Structure”).

.0STCBMsg
isapointer to amessage that is sent to atask. The use of thisfield is described later (see Chapters 10
and 11).

.0STCBFTagNode
isapointer to an event flag node (see Chapter 9, “Event Flag Management”). Thisfield isonly used
by 0STaskDel () when we delete atask that waits on an event flag group. Thisfield is present in the
0S_TCB only when 0S_FLAG_EN in 0S_CFG.Hissetto 1.

.OSTCBFTagsRdy
contains the event flags that made the task ready to run when the task was waiting on an event flag
group (see Chapter 9, “Event Flag Management”). This field is present in the 0S_TCB only when
OS_FLAG_ENIn 0S_CFG.Hissetto 1.

.0STCBD1y
is used when atask needs to be delayed for a certain number of clock ticks or a task needs to pend
for an event to occur with a timeout. In this case, this field contains the number of clock ticks the
task is alowed to wait for the event to occur. When this variable is 0, the task is not delayed or has
no timeout when waiting for an event.

84 Chapter 3: Kernel Sructure

.0STCBStat
contains the state of the task. When .0STCBStat is 0S_STAT_READY, the task is ready to run. Other
values can be assignhed by uC/OS-11 to . 0STCBStat, and these values are described in uCOS_IT.H
(see 0S_STAT_2?27?).

.0STCBPrio
contains the task priority. A high-priority task hasalow .0STCBPrio value (i.e., the lower the num-
ber, the higher the actual priority).

.0STCBX, .0STCBY, .0STCBBitX, and .0STCBBitY
are used to accelerate the process of making atask ready to run or to make atask wait for an event (to
avoid computing these values at run time). The values for these fields are computed when the task is
created or when the task’s priority is changed. The values are obtained as shown in Listing 3.5.

Listing3.5 Calculating 0S_TCB members.

.0STCBY = priority >> 3;

.0OSTCBBitY = OSMapTb1[priority >> 31;
.OSTCBX = priority & 0x07;

.0OSTCBB1i tX = OSMapTbl[priority & 0x077];

.0STCBDe1Req
is aboolean used to indicate whether or not atask has requested that the current task be deleted. The
use of this field is described later (see Chapter 4, “Task Management”). This field is present in the
0S_TCB only when 0S_TASK_DEL_ENin0S_CFG.Hissetto 1.

You probably noticed that some of the fields in the 0S_TCB structure are wrapped with conditional
compilation statements. This wrapping is done to allow you to reduce the amount of RAM needed by
UC/OS-1 if you don't need all the features that pC/OS-11 provides.

The maximum number of tasks (0S_MAX_TASKS) that an application can have is specified in 0S_
CFG.H and determines the number of 0S_TCBs allocated for your application. You can reduce the
amount of RAM needed by setting 0S_MAX_TASKS to the actual number of tasks needed in your appli-
cation. All 0S_TCBs are placed in 0STCBTb1[]. Note that uC/OS-11 alocates 0S_N_SYS_TASKS (see
uCOS_IT.H) extra 0S_TCBsfor internal use. Currently, an 0S_TCB is used for the idle task, and another
is used for the statistic task (if 0S_TASK_STAT_EN in 0S_CFG.H is set to 1). When uC/OS-11 is initial-
ized, all 0S_TCBsin thetable arelinked in asingly linked list of free 0S_TCBs, as shown in Figure 3.3.
When a task is created, the 0S_TCB to which 0STCBFreelist points is assigned to the task, and
0STCBFreelist isadjusted to point to the next 0S_TCB in the chain. When atask is deleted, its 0S_TCB
isreturned to the list of free 0S_TCBs.

Figure 3.3 List of free 0S_TCBs.

OSTCBTbI [OS_MAX_TASKS+0S_N_SYS_TASKS- 1]

OSTCBTHI [0] OSTCBTDI [1] OSTCBTDI [2] \
OSTCBFr eeLi st — osTcanext OF—| osTcaNext O—| osTCBNext @ P csTceNext O— 0

Task Control Blocks (0S_7CB) 85

An 0S_TCB isinitialized by the function 0S_TCBInit() (see Listing 3.6) when atask is created.
0S_TCBInit() iscalled by either 0STaskCreate() or 0STaskCreateExt () (see Chapter 4,“ Task Man-
agement”). 0S_TCBInit() receives seven arguments:

prio isthetask priority.

ptos isapointer to thetop of stack after the stack frame has been built by 0STaskStkInit()
(described in Chapter 13, “Porting uC/OS-I11") and is stored in the .0STCBStkPtr
field of the 0S_TCB.

pbos is a pointer to the stack bottom and is stored in the .0STCBStkBottom field of the
0S_TCB.
id isthe task identifier and is saved in the .0STCBId field.
stk_size isthe total size of the stack and is saved in the .0STCBStkSi ze field of the 0S_TCB.
pext isthevalueto placeinthe .0STCBExtPtr field of the 0S_TCB.
opt arethe 0S_TCB options and are saved in the . 0STCBOpt field.
Listing3.6 0S_TCBInit().
INT8U 0S_TCBInit (INT8U prio, 0S_STK *ptos, 0S_STK *pbos, INT16U id,

INT32U stk_size, void *pext, INT16U opt)
{

##if OS_CRITICAL_METHOD =
0S_CPU_SR cpu_sr;
frendi f
0S_TCB *ptch;

OS_ENTER_CRITICAL();

ptcb = OSTCBFreelist; (1)
if (ptch != (0S_TCB *)0) { (2)
OSTCBFreelist = ptchb->0STCBNext;
OS_EXIT_CRITICAL();
ptcb->0STCBStkPtr = ptos; (3)
ptchb->0STCBPrio = (INT8U)prio;
ptch->0STCBStat = OS_STAT_RDY;
ptcb->0STCBD1y = 0y

JHif OS_TASK_CREATE_EXT_EN > 0
ptcb->0STCBEXtPtr pext; (4)
ptcb->0STCBStkSize = stk_size;
ptcb->0STCBStkBottom = pbos;

ptchb->0STCBOpt = opt;
ptch->0STCBId = id;

felse
pext = pext;
stk_size = stk_size;
pbos = pbos;
opt = opt;
id = id;

ffendif

86 Chapter 3: Kernel Structure

Listing 3.6 0S_TCBInit (). (Continued)

f#if OS_TASK_DEL_EN > 0

ptcb->0STCBDelReq = 0S_NO_ERR; (5)
ffendif

ptcb->0STCBY = prio >> 3; (6)

ptch->0STCBBitY = OSMapTb1[ptchb->0STCBY];

ptchb->0STCBX = prio & 0x07;

ptcb->0STCBBitX = O0SMapTh1[ptchb->0STCBX];

i OS_EVENT_EN > 0
ptcb->0STCBEventPtr = (OS_EVENT *)0; (7)
frendif

#Hif (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0) && (OS_TASK_DEL_EN > 0)
ptcb->0STCBFTagNode = (OS_FLAG_NODE *)0; (8)
frendif

i 0S_MBOX_EN || (OS_Q_EN && (0S_MAX_QS >= 2))
ptcb->0STCBMsg = (void *)0;
ffendi f

##if OS_VERSION >= 204

0STCBInitHook(ptch); (9)
frendi f

0STaskCreateHook(ptch); (10)

OS_ENTER_CRITICALC(); (11)

0STCBPrioTh1[prio] = ptch; (12)

ptcb->0STCBNext = OSTCBList;

ptcb->0STCBPrev = (0S_TCB *)0;

if (OSTCBList != (OS_TCB *)0) {
0STCBList->0STCBPrev = ptcb;

}

OSTCBList = ptchb;

0SRdyGrp |= ptcb->0STCBBitY; (13)

OSRdyTb1[ptch->0STCBY] |= ptcb->0STCBBitX;

OS_EXIT_CRITICALC();

return (0S_NO_ERR); (14)
}
OS_EXIT_CRITICALC();
return (0S_NO_MORE_TCB);

L3.6(1) O0S_TCBInit() firsttriesto obtain an 0S_TCB from the 0S_TCB pool.

L3.6(2)
L3.6(3)

L3.6(4)

L3.6(5)

L3.6(6)
L3.6(7)

L3.6(8)

L3.6(9)

L3.6(10)

L3.6(11)
L3.6(12)

L3.6(13)
L3.6(14)

Task Control Blocks (0S_TCB) 87

If the pool contains a free 0S_TCB, it isinitialized. Note that after an 0S_TCB is allocated,
0S_TCBInit() canre-enableinterrupts because at this point the creator of the task ownsthe
0S_TCB and it cannot be corrupted by another concurrent task creation. 0S_TCBInit() can
thus proceed to initialize some of the 0S_TCB fields with interrupts enabled.

If you enabled code generation for 0STaskCreateExt () (OS_TASK_CREATE_EXT_EN issetto
1in 0S_CFG.H) then additional fieldsin 0S_TCB arefilled in.

The presence of the flag . 0STCBDe1Req in 0S_TCB depends on whether 0S_TASK_DEL_EN has
been enabled (see 0S_CFG.H). In other words, if you never intend to delete tasks, you can
save yourself the storage area of a BOOLEAN in every single 0S_TCB.

In order to save a hit of processing time during scheduling, 0S_TCBInit() precalculates
somefields. | decided to exchange execution timein favor of data space storage.

If you don't intend to use any semaphores, mutexes, message mailboxes, and message
gueues in your application, then the field .0STCBEventPtr inthe 0S_TCB is not be present.

If you enabled event flags (i.e., you set 0S_FLAGS_ENto 1in 0S_CFG.H), then the pointer to an
event flag node is intitialized to point to nothing because the task is not waiting for an event
flag, it's only being created.

In uC/OS-I1 V2.04, | added a call to afunction that can be defined in the processor’s port file
— 0STCBInitHook(). Thisfunction alows you to add extensions to the 0S_TCB. For exam-
ple, you could initialize and store the contents of floating-point registers, MMU registers, or
anything else that can be associated with a task. However, you typically store this additional
information in memory that is allocated by your application. Note that interrupts are enabled
when 0S_TCBInit() calls0STCBInitHook().

0S_TCBInit() then calls 0STaskCreateHook(), which is a user-specified function that
allows you to extend the functionality of 0STaskCreate() or 0STaskCreateExt().
0STaskCreateHook () can be declared either in 0S_CPU_C.C (if 0S_CPU_HOOKS_EN is set to
1) or elsewhere (if 0S_CPU_HOOKS_EN is set to 0). Note that interrupts are enabled when
0S_TCBInit() calls 0STaskCreateHook().

You should notethat | could have cdled only one of the two hook functions: 0STCBInitHook ()
or 0STaskCreateHook(). The reason there are two functions is to allow you to group (i.e.,
encapsulate) items that are tied with the 0S_TCB in 0STCBInitHook () and other task-related
initialization in 0STaskCreateHook ().

0S_TCBInit() disablesinterrupts when it needs to insert the 0S_TCB into the doubly linked
list of tasks that have been created. Thelist startsat 0STCBL1st, and the 0S_TCB of anew task
isawaysinserted at the beginning of the list.

Finaly, the task is made ready to run, and 0S_TCBInit() returns to its caller
[0STaskCreate() or 0STaskCreateExt()] with a code indicating that an 0S_TCB has been
allocated and initialized.

88 Chapter 3: Kernel Sructure

3.04 Ready List

Each task is assigned a unique priority level between 0 and 0S_LOWEST_PRIO, inclusive (see 0S_CFG.H).
Task priority 0S_LOWEST_PRIO isaways assigned to theidle task when uC/OS-1 isinitialized. Note that
0S_MAX_TASKS and 0S_LOWEST_PRIO are unrelated. You can have only 10 tasks in an application while
still having 32 priority levels (if you set 0S_LOWEST_PRIO to 31).

Each task that is ready to run is placed in a ready list consisting of two variables, 0SRdyGrp and
OSRdyTb1[]. Task priorities are grouped (eight tasks per group) in 0SRdyGrp. Each bit in 0SRdyGrp
indicates when atask in agroup is ready to run. When atask is ready to run, it also sets its correspond-
ing bit in the ready table, 0SRdyTb1[1. The relationship between 0SRdyGrp and 0SRdyTb1[] isshownin
Figure 3.4 and is given by the following rules:

Bit 0in 0SRdyGrp is 1 when any bit in 0SRdyTb1[0] is 1.
Bit 1in 0SRdyGrp is 1 when any bit in 0SRdyTb1[17is 1.
Bit 2in 0SRdyGrp is 1 when any bit in 0SRdyTb1[2]is 1.
Bit 3in 0SRdyGrp is 1 when any bit in 0SRdyTb1[3]is 1.
Bit 4in 0SRdyGrp is 1 when any bit in 0SRdyTb1[47]is 1.
Bit 5in 0SRdyGrp is 1 when any bit in 0SRdyTb1[5]is 1.
Bit 6in 0SRdyGrp is 1 when any bit in 0SRdyTb1[6]is 1.
Bit 7in OSRdyGrp is 1 when any bit in 0SRdyTb1[77is 1.

The size of 0SRdyTb1[] depends on 0S_LOWEST_PRIO (see uCOS_ITI.H). This feature allows you to
reduce the amount of RAM (data space) needed by pC/OS-11 when your application requires few task
priorities.

To determine which priority (and thus which task) will run next, the scheduler in uC/OS-11 deter-
mines the lowest priority number that has its bit set in 0SRdyTb1[].

The codein Listing 3.7 is used to place atask in the ready list. prio isthetask’s priority.

Listing 3.7 Making atask ready to run.

0SRdyGrp |= 0SMapTb1[prio >> 31;
OSRdyTb1[prio >> 3] |= 0SMapTbl[prio & 0x071;

Asyou can see from Figure 3.4, the lower three bits of the task’s priority are used to determine the
bit position in 0SRdyTb1[], and the next three most significant bits are used to determine the index into
OSRdyTb1[]. Note that 0SMapTh1[] (see 0S_CORE.C) isin ROM and is used to equate an index from O
to 7 to abit mask, as shown in Table 3.2.

Ready List 89

Figure3.4 TheuC/OS-| ready list.

OSRdyG p

OSRdy Tbl [OS_LOWEST PRIO / 8 + 1]

L7]e|s]|a]3]|2]2]0]

A A A A A A Highest Priority Task
X]

o) f7|e6f|5|4]|3|[2]1]0

A

[1] 15114|13|12(11]101 9| 8

[2] 23122121(20])19|18| 17|16

[3] 31(30|129|28|27]|26(25]24

(4] 39|38|37|36]|35(34|33]32

[5] 47146|45|44143|42]41|40

[6] 55|54|53(52]51|50]|49]|48

[7] 63|62|61(60]59|58]|57]| 56

Task Priority # l

Lowest Priority Task
X I (Idle Task)

Task's Priority

Lofo|v]v|y]|x]x

Bit position in OSRdyTbl [OS_LOAEST_PRIO / 8 + 1]

Bit position in OSRdyG p and
Index into OSRdyTbl [OS_LOAEST_PRIO / 8 + 1]

Table 3.2 Contents of OSMapTbl[].

I ndex Bit Mask (Binary)

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

N o o~ NP O

90 Chapter 3: Kernel Sructure

A task isremoved from the ready list by reversing the process using the code in Listing 3.8.

Listing3.8 Removing a task from the ready list.

if ((OSRdyTbl[prio >> 3] &= ~0SMapTbl[prio & 0x07]) = 0)
OSRdyGrp &= ~0SMapTbl[prio >> 31;

This code clears the ready bit of the task in 0SRdyTb1[] and clears the bit in 0SRdyGrp only if all
tasks in a group are not ready to run; that is, all bitsin 0SRdyTb1[prio >> 3] are 0. Another table
lookup is performed, rather than scanning through the table starting with 0SRdyTh1[017, to find the high-
est priority task ready to run. 0SUnMapTh1[256] is a priority resolution table (see 0S_CORE.C). Eight
bits represent when tasks are ready in a group. The least significant bit has the highest priority. Using
this byte to index 0SUnMapTb1[] returns the bit position of the highest priority bit set — a number
between 0 and 7. Determining the priority of the highest priority task ready to run is accomplished with
the codein Listing 3.9.

Listing 3.9 Finding the highest priority task ready to run.

y = 0SUnMapTb1[OSRdyGrp]; /* Determine Y position in OSRdyTbl[] */
X = 0SUnMapTbT[OSRdyTb1Ly1]; /* Determine X position in OSRdyTbT[Y] */
prio = (y << 3) + x;

For example, as shown in Figure 3.5, if 0SRdyGrp contains 01101000 (binary) or 0x68, then the table
lookup 0SUnMapTb1[0SRdyGrp] yields avalue of 3, which corresponds to bit 3 in 0SRdyGrp. Note that
bit positions are assumed to start on the right with bit O being the rightmost bit. Similarly, if
OSRdyTb1[3] contains 11100100 (binary) or 0xE4, then 0SUnMapTh1[0SRdyTb1[3]] resultsin avalue
of 2 (bit 2). The task priority (prio) isthen 26 (i.e., 3 x 8 + 2). Getting a pointer to the 0S_TCB for the
corresponding task is done by indexing into 0STCBPrioTb1[] using the task’s priority.

3.05 Task Scheduling

HC/OS-11 always executes the highest priority task ready to run. The determination of which task hasthe
highest priority, thus which task will be next to run, is determined by the scheduler. Task-level schedul-
ing is performed by 0S_Sched(). ISR-level scheduling is handled by another function [0STntExit()]
described later. The code for 0S_Sched() is shown in Listing 3.10. puC/OS-1I task-scheduling time is
constant irrespective of the number of tasks created in an application.

Task Scheduling 91

Figure3.5 Finding the highest priority task ready to run.

OSRdyG p cont ai ns 0x68

INT8U const OSUnMapThl [] = {
0,0 1 0, 2 0,1, 0, 3 0, , 2,0 1,0, /* 0x00 to OxOF */
4, 0,1, 0, 2, 0, 1, 0, 3, 0, 0, 2, 0, 1, 0, /* 0x10 to Ox1F x|
50 1,0 2 0,1, 0, 3 0, 1/0, 2, 0, 1, 0, /* 0x20 to Ox2F */
4, 0,1, 0 2 0, 1, 0, 3, 0, 0, 2, 0, 1, 0, /* 0x30 to Ox3F */
6, 0,1, 0, 2 0, 1,0 3, 0 1,0 2 0, 1, 0, /* 0x40 to Ox4F */
4, 0,1, 0 2, 0 1, 0, 3, 0, ®, 0, 2, 0, 1, 0, /* 0x50 to Ox5F */
50,1, 0, 2 0,1, 0, 3, , 0, 2, 0, 1, 0, /* 0x60 to Ox6F */
4, 0,1, 0 2 0 1,0, 3 0, 1, 0, 2, 0, 1, 0, /* 0x70 to Ox7F */
7,01, 0,2 0,1, 0,3 0,1, 0 2 0,1 0, /* 0x80 to Ox8F */
4, 0,1, 0 2 0 1, 0,3 0,1, 0, 2 0, 1, 0, /* 0x90 to Ox9F */
5 0 1, 0,2 0,1, 0 3, 0,1, 0, 2,0, 1, 0, I* OxAO to OxAF x|
4, 0,10 2 0, 1,0, 3 0,1, 0, 2 0, 1, 0, /* 0xBO to OxBF */
6, 0,1, 0, 2, 0,1, 0,3 0,1 0, 2 0,1 0, /* 0xC0 to OXCF */
4, 0,10 20,10, 3 0,1, 0, 2 0, 1, 0, /* 0xDO to OxDF */
5 0, 1, 0, 1, 0, 3,0, 1, 0, 2, 0, 1, 0, /* OXEO to OXEF *f
4, 0, 1, 0, X 1, 0, 3,0, 1, 0,2 0,1, 0 /* OxFO to OxFF */

}

OSRdyTbl [3] contai ns OxE4
3 = OSUnMapTbl [0x68];
2 = OSUnMapTbl[OxE4];

26 = (3 << 3) + 2

Listing 3.10 Task scheduler.

void 0S_Sched (void)
{
Jif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
frendif
INT8U Y

OS_ENTER_CRITICAL();

if ((0SIntNesting = 0) && (0SLockNesting = 0)) { (1)
y = 0SUnMapTbT[OSRdyGrp]; (2)
0SPrioHighRdy = (INT8U)((y << 3) + 0SUnMapTb1[OSRdyTb1[y11);
if (OSPrioHighRdy != 0SPrioCur) { (3)

OSTCBHighRdy = OSTCBPrioThb1[0SPrioHighRdy]; (4)
0SCEXSwCEr+t; (5)
OS_TASK_SW(); (6)

}
OS_EXIT_CRITICAL();

92 Chapter 3: Kernel Sructure

L3.10(1) 0S_Sched() exitsif called froman ISR (i.e., 0SIntNesting > 0) or if scheduling has been
disabled because your application called 0SSchedlLock() at least once (i.e., 0SLockNesting
> 0).

L3.10(2) If 0S_Sched() is not caled from an ISR and the scheduler is enabled, then 0S_Sched()
determines the priority of the highest priority task that is ready to run. A task that is ready to
run hasits corresponding bit set in 0SRdyTb1[1.

L3.10(3) After the highest priority task has been found, 0S_Sched () verifiesthat the highest priority task
is not the current task. Verification is done to avoid an unnecessary context switch, which would
be time consuming. Note that pC/OS (V1.xx) obtained 0STCBHighRdy (a pointer) and com-
pared it with 0STCBCur (another pointer). On 8- and some 16-bit processors, this operation was
relatively slow because a comparison was made of pointersinstead of 8-bit integers asit is now
done in pC/OS-I. Also, there is no point in looking up 0STCBHighRdy in OSTCBPrioTh1[]
(see L3.10(4)) unless you actually need to do a context switch. The combination of comparing
8-bit values instead of pointers and looking up 0STCBH1ighRdy only when needed should make
HC/OS-| faster than pC/OS on 8- and some 16-bit processors.

L3.10(4) To perform a context switch, 0STCBHighRdy must point to the 0S_TCB of the highest priority
task, which is done by indexing into 0STCBPrioTb1[], using 0SPrioHighRdy.

L3.10(5) Next, the statistic counter 0SCtxSwCtr (a32-hit variable) is incremented to keep track of the
number of context switches. This counter serves no other purpose except that it allows you to
determine the number of context switchesin one second. Of course, do to this, you'd haveto
save 0SCtxSwCtr in another variable (for example, 0SCtxSwCtrPerSec) every second and
then clear 0SCtxSwCtr.

L3.10(6) Finally, the macro 0S_TASK_SW() isinvoked to do the actual context switch.

A context switch consists of saving the processor registers on the stack of the task being suspended
and restoring the registers of the higher priority task from its stack. In uC/OS-11, the stack frame for a
ready task always looks as if an interrupt has just occurred and all processor registers were saved onto
it. In other words, al that uC/OS-Il has to do to run aready task is restore all processor registers from
the task’s stack and execute a return from interrupt. To switch context, you implement 0S_TASK_SW()
so that you simulate an interrupt. Most processors provide either a software interrupt or TRAP instruc-
tions to accomplish this switch. The interrupt service routine (ISR) or trap handler (also called the
exception handler) must vector to the assembly language function 0SCtxSw(). 0SCtxSw() expects to
have 0STCBH1ghRdy point to the 0S_TCB of the task to be switched in and to have 0STCBCur point to the
0S_TCB of the task being suspended. Refer to Chapter 13, “Porting uC/OS-11,” for additional details on
0SCtxSw(). For now, you only need to know that 0S_TASK_SW () suspends execution of the current task
and allows the CPU to resume execution of the more important task.

All of the code in 0S_Sched() is considered a critical section. Interrupts are disabled to prevent
ISRs from setting the ready bit of one or more tasks during the process of finding the highest priority
task ready to run. Note that 0S_Sched () could be written entirely in assembly language to reduce sched-
uling time. 0S_Sched () waswrittenin C for readability and portability and to minimize use of assembly
language.

3.06 Task Level Context Switch, 0S _TASK SW()

As we discussed in the previous section, after the scheduler has determined that a more important task
needsto run, 0S_TASK_SW() is called to perform a context switch. The context of atask is generaly the

Task Level Context Switch, 0S_TASK _SW() 93

contents of all of the CPU registers. The context-switch code simply needsto save the register values of
the task being preempted and load into the CPU the values of the registers for the task to resume.
0S_TASK_SW() is a macro that normally invokes a microprocessor software interrupt because
MC/OS-11 assumes that context switching will be done by interrupt-level code. What pC/OS-I1 thus
needs is a processor instruction that behaves just like a hardware interrupt (thus the name software inter-
rupt). A macro is used to make pC/OS-11 portable across multiple platforms by encapsulating the actual

processor-specific software interrupt mechanism. Chapter 13, “Porting pC/OS-I1” discusses how to

implement 0S_TASK_SW().

Figure 3.6 shows the state of some UC/OS-11 variables and data structures just prior to calling

0S_TASK_SW(). For sake of discussion, | created a fictitious CPU containing seven registers:
A stack pointer (SP)
A program counter (PC)

A processor status word (PSW)

Four general purpose registers (R1,
HUC/OS- | structureswhen 0S_TASK_SW() is called.

Figure 3.6

R3, and R4)

Low Priority Task

osTCcBCur —P

(1)

Stack Growth

|

F3.6(1) OSTCBCur pointstothe 0S_TCB of the task being suspended (the low priority task).

os_TCB

LOW MEMORY

(2)

HIGH MEMORY

OSTCBHi ghRdy
(3)

CPU

SP

BBEI

R4

H

PSW

High Priority Task

—>

(5)

os_TCB

LOW MEMORY

R4 <

R3
R2
RL

PC
PSW

HIGH MEMORY

(4)

F3.6(2) The CPU’s stack pointer (SP register) points to the current top-of-stack of the task being pre-

empted.

F3.6(3) (0STCBHighRdy pointsto the 0S_TCB of the task that will execute after completing the context

switch.

94 Chapter 3: Kernel Sructure

F3.6(4) The .0STCBStkPtr fieldinthe 0S_TCB points to the top-of-stack of the task to resume.

F3.6(5) The stack of the task to resume contains the desired register values to load into the CPU.
These values could have been saved by a previous context switch, aswe will see shortly. For
the time being, let's simply assume that they have the desired values.

Figure 3.7 shows the state of the variables and data structures after calling 0S_TASK_SW() and after
saving the context of the task to suspend.

Figure 3.7 Saving the current task’s context.

Low Priority Task High Priority Task
0s_TCB 0s_TCB
osTCBCur —W . OSTCBHi ghRdy —P [
“3)
3 LOW MEMORY ~, CPU LOW MEMORY
R1
R2
R3
, R4
N N <
B oo B
= (2 =
Stack Growth
R Rl
PC ¥ PC
(1)
PSW PSW
HIGH MEMORY HIGH MEMORY

F3.7(1) Caling 0S_TASK_SW() invokes the software interrupt instruction, which forces the processor
to save the current value of the PSW and the PC onto the current task’s stack. The processor
then vectors to the software interrupt handler, which is responsible for completing the
remaining steps of the context switch.

F3.7(2) The software interrupt handler starts by saving the general purpose registers, R1, R2, R3, and
R4, inthis order.

F3.7(3) Thestack pointer register isthen saved into the current task’s 0S_TCB. At this point, both the
CPU'’s SP register and 0STCBCur->0STCBStkPtr are pointing to the same location into the
current task’s stack.

Figure 3.8 shows the state of the variables and data structures after executing the last part of the con-
text-switch code.

Task Level Context Switch, 0S_TASK _SW() 95

Figure 3.8 Resuming the current task.

Low Priority Task High Priority Task

0s_TCB 0s_TCB

OSTCBH ghRdy j . [
osTCBCuUr

(1)

3 LOW MEMORY LOW MEMORY

A

v

T D
N

Stack Growth (4 ™, R
RL

PC PC
PSW PSW
(4)

HIGH MEMORY HIGH MEMORY

F3.8(1) Because the new current task is now the task being resumed, the context-switch code copies
OSTCBHighRdy to OSTCBCur.

F3.8(2) The stack pointer of the task to resume is extracted from the 0S_TCB (from
0STCBHighRdy->0STCBStkPtr) and loaded into the CPU’s SP register. At this point, the SP
register points to the stack location containing the value of register R4.

F3.7(3) Thegenera purpose registers are popped from the stack in the reverse order (R4, R3, R2, and
R1).
F3.8(4) The PC and PSW registers are loaded back into the CPU by executing a return from interrupt

instruction. Because the PC is changed, code execution resumes at the point to which the PC
is pointing, which happens to be in the new task’s code.

The pseudocode for the context switch is shown in Listing 3.11. 0SCtxSw() is generally written in
assembly language because most C compilers cannot manipulate CPU registers directly from C. Chap-
ter 14, “80x86 Port; Real Mode, Large Model with Emulated Floating-Point Support” discusses how
0SCtxSw(), aswell as other uC/OS-I1 functions, look on area processor, the Intel 80x86.

96 Chapter 3: Kernel Sructure

Listing 3.11 Context-switch pseudocode.

void 0SCtxSw (void)
{

PUSH R1, R2, R3 and R4 onto the current stack; See F3.6(2)
0STCBCur->0STCBStkPtr = SP; See F3.6(3)
0STCBCur = OSTCBHighRdy; See F3.7(1)
SP = OSTCBHighRdy->0STCBStkPtr; See F3.7(2)
POP R4, R3, R2 and Rl from the new stack; See F3.7(3)
Execute a return from interrupt instruction; See F3.7(4)

3.07 Locking and Unlocking the Scheduler

The 0SSchedlLock () function (Listing 3.12) is used to prevent task rescheduling until its counterpart,
0SSchedUnlock() (Listing 3.13), is caled. The task that calls 0SSchedlLock() keeps control of the
CPU even though other higher priority tasks are ready to run. Interrupts, however, are still recognized
and serviced (assuming interrupts are enabled). 0SSchedlLock() and 0SSchedUnTock() must be used
in pairs. The variable 0SLockNesting keeps track of the number of times 0SSchedlLock() has been
called. Nested functions can thus contain critical code that other tasks cannot access. uC/OS-I1 allows
nesting up to 255 levels deep. Scheduling is re-enabled when 0SLockNesting is 0. 0SSchedLock()
and 0SSchedUnTock () must be used with caution because they affect the normal management of tasks
by nC/OS-I.

Listing 3.12 Locking the scheduler.

void 0SSchedlLock (void)

{

#Hif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

Jfendif
if (OSRunning = TRUE) { (1)
OS_ENTER_CRITICAL();
if (0SLockNesting < 255) ({ (2)

OSLockNesting++;
}
OS_EXIT_CRITICAL();

L3.12(1) It only makes sense to lock the scheduler if multitasking has started (i.e., 0SStart() was
called).

Locking and Unlocking the Scheduler 97

L3.12(2) Before incrementing 0SLockNesting, we need to make sure that we have not exceeded the
alowable number of nesting levels.

After calling 0SSchedlock (), your application must not make any system callsthat suspend execution
of the current task; that is, your application cannot call 0SF1agPend(), 0SMboxPend(), OSMutexPend(),
0SQPend(), 0SSemPend (), 0STaskSuspend(0S_PRIO_SELF), 0STimeD1ly (), or 0STimeD1yHMSM() until
OSLockNesting returns to O because 0SSchedlock () prevents other tasks from running and thus your
system will lock up.

You might want to disable the scheduler when alow-priority task needs to post messages to multiple
mailboxes, queues, or semaphores (see Chapter 6, “Event Control Blocks’) and you don’t want a higher
priority task to take control until all mailboxes, queues, and semaphores have been posted to.

Listing 3.13 Unlocking the scheduler.

void 0SSchedUnlock (void)

{

fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

frendif
if (OSRunning == TRUE) { (1)
OS_ENTER_CRITICAL();
if (OSLockNesting > 0) { (2)
0SLockNesting--; (3)
if ((0SLockNesting = 0) && (0SIntNesting == 0)) { (4)
OS_EXIT_CRITICAL();
0S_Sched(); (5)
} else {

OS_EXIT_CRITICAL();
}
} else {
OS_EXIT_CRITICAL(C);

L3.13(1) It only makes sense to unlock the scheduler if multitasking has started (i.e., 0SStart() was
called).

L3.13(2) We make sure 0SLockNestingisnot aready 0. If it were, it would be an indication that you
called 0SSchedUnTock () too many times. In other words, you would not have the same num-
ber of 0SSchedlLock() as0SSchedUnTock().

L3.13(3) 0SLockNesting isdecremented.

98 Chapter 3: Kernel Sructure

L3.13(4)

L3.13(5) We only want to allow the scheduler to execute when all nesting fuctions are complete.
0SSchedUnlock() is called from a task because events could have made higher priority
tasks ready to run while scheduling was locked.

3.08 IdleTask

MC/OS-I1 always creates a task (also called the idle task) that is executed when none of the other tasks
are ready to run. The idle task, 0S_TaskIdle(), is aways set to the lowest priority, 0S_LOWEST_PRIO.
The code for the idle task is shown in Listing 3.14. The idle task can never be deleted by application
software.

Listing 3.14 ThepC/OSH 1 idle task.

void 0S_TaskIdle (void *pdata)

{

fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

ffendif

pdata = pdata;

for (;3) f
OS_ENTER_CRITICAL();
0SIdleCtr++; (1)
OS_EXIT_CRITICAL();
0STaskIdleHook(); (2)

L3.14(1) 0S_TaskIdle() incrementsa32-bit counter called 0SId1eCtr, whichis used by the statistics
task (see Section 3.09, “ Statistics Task”) to determine the percentage of CPU time actually
being consumed by the application software. Interrupts are disabled and then enabled around
the increment because on 8- and most 16-bit processors, a 32-bit increment requires multiple
instructions that must be protected from being accessed by higher priority tasks or ISRs.

L3.14(2) 0S_TaskIdle() calls 0STaskIdleHook(), which is a function that you can write to do just
about anything you want. You can use 0STaskIdleHook() to STOP the CPU so that it can
enter low-power mode. This feature is useful when your application is battery powered.
0S_TaskIdle() must always be ready to run, so don’t call one of the PEND functions,
0STimeD1y??7?() functions, or 0STaskSuspend() from 0STaskIdleHook().

Satistics Task 99

3.09 Statistics Task

MC/OS-11 contains atask that provides run-time statistics. Thistask is called 0S_TaskStat() and iscre-
ated by uC/OS-1 if you set the configuration constant 0S_TASK_STAT_EN (see 0S_CFG.H) to 1. When
enabled, 0S_TaskStat() (see 0S_CORE.C) executes every second and computes the percentage of CPU
usage. In other words, 0S_TaskStat () tells you how much of the CPU timeis used by your application,
as apercentage. Thisvaueis placed in the signed 8-bit integer variable, 0SCPUUsage. The resolution of
0SCPUUsage is 1 percent.

If your application uses the statistic task, you must call 0SStatInit() (see 0S_CORE.C) from the
first and only task created in your application during initialization. In other words, your startup code
must create only one task before calling 0SStart (). From this one task, you must call 0SStatInit()
before you create your other application tasks. The single task that you create is, of course, allowed to
create other tasks, but only after calling 0SStatInit(). The pseudocode in Listing 3.15 shows what
needs to be done.

Listing 3.15 Initializing the statistic task.

void main (void)

{

0SInit(); /* Initialize uC/0S-1I (1)*/
/* Install uC/0S-I1's context switch vector */

/* Create your startup task (for sake of discussion, TaskStart()) (2)*/
0SStart(); /* Start multitasking (3)*/

void TaskStart (void *pdata)
{

/* Install and initialize pC/0S-11’s ticker (4)*/
0SStatInit(); /* Initialize statistics task (5)*/
/* Create your application task(s) */

for (;;) {

/* Code for TaskStart() goes here! */

Because your application must create only onetask, TaskStart(), uHC/OS-11 has only three tasks
to manage when main() calls 0SStart(): TaskStart(), 0S_TaskIdle(), and 0S_TaskStat().
Please note that you don’t have to call the startup task: TaskStart() — you can call it anything you
like. Your startup task has the highest priority because uC/OS-11 sets the priority of the idle task to
0S_LOWEST_PRIO and the priority of the statistic task to 0S_LOWEST_PRIO — 1 internaly.

Figure 3.9 illustrates the flow of execution when initiaizing the statistic task.

100 Chapter 3: Kernel Structure

Figure 3.9 Statistic task initialization.

Highest Priority OS_LOWEST_PRIO -1 OS_LOWEST_PRIO
mai n() TaskStart () OS_TaskStat () 0S_Taskl dl e()
{ { {
osinit(); (1)
Install context switch vector; (2)
Create TaskStart(); (3)
osstart();
| Scheduler
} blmt uc/ Cs-11's ticker; (5)
(4) osstatInit(): (6)
E mEeRnttl GsTi meDl y(2); (7
I Scheduler P while (CSStatRdy == FALSE) { (8)
OSTi neDl y(2 seconds) ; (9)
2 ticks ! Scheduler B o () (
After 2 ticks o8l dl eCtr++; (10)
D !
' osldleCr = 0; (12)
JIIIlIIINIIITosTi meDl y(1 second); (13)
L Scheduler for (;;) {
2 seconds P sidiear+ (14)
1 second After 1 second }
_________________ CBIdletrMax = OsldleCr; (15)
0SSt at Rdy = TRUE (16)
for (53) {
Task code;
\ 4) for (53) |
} Conmpute Statistics; (17)

}
}

F3.9(1) Thefirst function that you must call in uC/OS-I1 is0SInit (), which initializes uC/OS-I1.

F3.9(2) Next, you need to install the interrupt vector that performs context switches. Note that on
some processors (specifically the Motorola 68HC11), you do not need to install a vector
because the vector is aready resident in ROM.

F3.9(3) Youmust create TaskStart() by caling either 0STaskCreate() or 0STaskCreateExt ().

F3.9(4) After you are ready to multitask, call 0SStart (), which schedules TaskStart() for execu-
tion because it has the highest priority.

F3.9(5) TaskStart() isresponsible for initiaizing and starting the ticker. You want to initialize the
ticker in the first task to execute because you don’t want to receive atick interrupt until you
are actually multitasking.

F3.9(6) Next, TaskStart() calls 0SStatInit(). 0SStatInit() determines how high the idle
counter (0SIdTeCtr) can count if no other task in the application is executing. A Pentium 11
running at 333MHz increments this counter to a value of about 15,000,000. 0SIdleCtr is
till far from wrapping around the 4,294,967,296 limit of a 32-bit value. At the rate processor
speeds are getting, it will not be too long before 0S1dTeCtr overflows. If overflow becomes
a problem, you can always introduce some software delaysin 0STaskIdleHook(). Because
0S_TaskIdle() really doesn't execute any useful code, it's OK to throw away CPU cycles.

F3.9(7) 0SStatInit() startsoff by caling 0STimeD1y (), which puts TaskStart() to sleep for two
ticks. This action is done to synchronize 0SStatInit () with the ticker. pC/OS-11 then picks
the next highest priority task that is ready to run, which happensto be 0S_TaskStat ().

F3.9(8) The code for 0S_TaskStat() is discussed later, but as a preview, the very first thing
0S_TaskStat() does is check to see if the flag 0SStatRdy is set to FALSE and then
delays for two secondsiif it is.

SatisticsTask 101

F3.9(9) It so happensthat 0SStatRdy isinitialized to FALSE by 0SInit(), so 0S_TaskStat() infact
putsitself to sleep for two seconds. This action causes a context switch to the only task that is
ready to run, 0S_TaskIdle().

F3.9(10) The CPU staysin 0S_TaskIdle() until thetwo ticksof TaskStart() expire.
F3.9(11)

F3.9(12) After two ticks, TaskStart() resumes execution in 0SStatInit(), and 0SIdleCtr is
cleared.

F3.9(13) Then, 0SStatInit() delaysitself for one full second. Because no other task is ready to run,
0S_TaskIdle() again gets control of the CPU.

F3.9(14) During that time, 0SId1eCtr iscontinuously incremented.

F3.9(15) After one second, TaskStart() is resumed, till in 0SStatInit(), and the value that
0SIdleCtr reached during that one second issaved in 0SIdleCtrMax.

F3.9(16)

F3.9(17) 0SStatInit() sets 0SStatRdy to TRUE, which allows 0S_TaskStat() to perform a CPU
usage computation after its delay of two seconds expires.

The code for 0SStatInit() isshownin Listing 3.16.

Listing 3.16 Initializing the statistic task.

void 0SStatInit (void)

{

J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

ffendif
0STimeDly(2);
OS_ENTER_CRITICAL();
0SIdleCtr = 0L;

OS_EXIT_CRITICAL();
0STimeD1y(OS_TICKS_PER_SEC);
OS_ENTER_CRITICALC();
0SIdleCtrMax = 0SIdleCtr;
0SStatRdy = TRUE;
OS_EXIT_CRITICAL();

102 Chapter 3: Kernel Structure

The code for 0S_TaskStat () isshownin Listing 3.17.

Listing 3.17 Statistics task.

void O0S_TaskStat (void *pdata)

{

J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

ffendif
INT32U run;
INT32U max;
INT8S usage;

pdata = pdata;
while (0SStatRdy == FALSE) {
0STimeDly(2 * OS_TICKS_PER _SEC);

max = 0SIdleCtrMax / 100L;

for (;;) {
OS_ENTER_CRITICAL();
0SIdleCtrRun = 0SIdleCtr;
run 0SIdleCtr;
0SIdleCtr oL;
OS_EXIT_CRITICAL();
if (max > OL) {

usage = (INT8S)(100L - run / max);

if (usage >= 0) {
0SCPUUsage = usage;
} else {
0SCPUUsage = 0;
}

} else {

0SCPUUsage = 0;

max = (0SIdleCtrMax / 100L;
}
0STaskStatHook();

0STimeD1y(OS_TICKS_PER_SEC);

(3)

(5)

L3.17(2)

L3.17(3)

L3.17(4)
[3.1]

L3.17(2)

[3.2]

[3.3]

L3.17(5)

3.10

Interrupts Under pC/0S11 - 103

I’ve already discussed why 0S_TaskStat() hasto wait for the flag 0SStatRdy to be set to
TRUE in the previous paragraphs. The task code executes every second and basically deter-
mines how much CPU time is actually consumed by all the application tasks. When you
start adding application code, the idle task gets less of the processor’stime, and 0SIdleCtr
is not allowed to count as high as it did when nothing else was running. Remember that
0SStatInit() saved thismaximum valuein 0SIdleCtrMax.

Every second, the value of the idle counter is copied into the global variable 0STd1eCtrRun.
This variable thus holds the maximum value of the idle counter for the second that just
passed. Thisvalueis not used anywhere else by uC/OS-11 but can be monitored (and possi-
bly displayed) by your application. The idle counter is then reset to O for the next measure-
ment.

CPU use (Equation [3.1]) is stored in the variable 0SCPUUsage

OSldleCtr
SldleCtrMaxJ

OSCPUUsage,, = 100 x %1—0
Equation 3.1 needs to be re-written because 0S1d1eCtr / 0SIdleCtrMax will awaysyield 0

because of the integer operation. The new equation is

100 x OSldleCtr
OSldleCtrMax

OSCPUUsage ;) = £100-

Multiplying 0SId1eCtr by 100 limits the maximum value that 0STd1eCtr can take, espe-
cialy on fast processors. In other words, in order for the multiplication of 0SId1eCtr to not
overflow, 0SId1eCtr must never be higher than 42,949,672! With fast processors, it's quite
likely that 0STd1eCtr can reach thisvalue. To correct this potential problem, all we need to
doisdivide 0SIdleCtrMax by 100 instead as shown in Equation 3.3.

U U

) U

OSCPUUsage,y = 100 - OSldleCtr (]
’ 0 OSldleCtrMax{]

OO0 100

Thelocal variable max isthus precomputed to hold 0STd1eCtrMax, divided by 100.

After the computation is performed, 0S_TaskStat () calls 0STaskStatHook(), a user-defin-
able function that allows the statistic task to be expanded. Indeed, your application can com-
pute and display the total execution time of all tasks, the percentage of time actually
consumed by each task, and more (see Chapter 1, Example #3).

| nterrupts Under pC/OS- |

MC/OS-1 requires that an interrupt service routine (ISR) be written in assembly language. However, if
your C compiler supports in-line assembly language, you can put the ISR code directly in a C source

file.

104 Chapter 3: Kernel Sructure

The pseudocode for an ISR isshown in Listing 3.18.

Listing 3.18 1SRsunder uC/OS- 1.

YourISR:
Save all CPU registers; (1)
Call OSIntEnter() or, increment 0SIntNesting directly; (2)
if (0SIntNesting = 1) { (3)
OSTCBCur->0STCBStkPtr = SP;

}

Clear interrupting device; (5)
Re-enable interrupts (optional) (6)
Execute user code to service ISR; (7)
Call OSINtExit(); (8)
Restore all CPU registers; (9)
Execute a return from interrupt instruction; (10)

L3.18(1) Your code should save all CPU registers onto the current task stack. Note that on some pro-

L3.18(2)

L3.18(3)
L3.18(4)

L3.18(5)
L3.18(6)
L3.18(7)

L3.18(8)

cessors, like the Motorola 68020 (and higher), a different stack is used when servicing an
interrupt. uC/OS-11 can work with such processors as long as the registers are saved on the
interrupted task’s stack when a context switch occurs.

MC/OS-1 needsto know that you are servicing an ISR, so you need to either call 0SIntEnter()
or increment the globa variable 0SIntNesting. 0SIntNesting can be incremented directly.
Incrementing 0SIntNesting directly is much faster than calling 0SIntEnter () and isthusthe
preferred way.

Certain processors, such as the Motorola 68020, allow interrupts to be nested even though
you are just starting to service an interrupt. The beginning of the ISR needs to be different
for these processors. | do not discuss this issue here but, it might be worthwhile for you to
download the CPU32 port from www. uC0S-11.com to see how to handle this situation.

We check to seeif thislevel is the first interrupt level, and, if it is, we immediately save the
stack pointer into the current task’s 0S_TCB. You should note that | added these two lines of
code since uC/OS-I1 V2.04. If you have a port that assumes uC/OS-11 V2.04 or earlier, you
should simply add these two linesin all your ISRs.

You must clear the interrupt source because you stand the chance of re-entering the ISR if
you decide to re-enable interrupts.

You can re-enable interrupts if you want to allow interrupt nesting. pC/OS-11 alows you to
nest interrupts because it keepstrack of ISR nesting in 0SIntNesting.

After you have done the previous steps, you can start servicing the interrupting device. This
section is obviously application specific.

The conclusion of the ISR is marked by calling 0SIntExit(), which decrements the inter-
rupt nesting counter. When the nesting counter reaches 0, al nested interrupts are compl ete,
and PC/OS-11 needs to determine whether a higher priority task has been awakened by the
ISR (or any other nested ISR). If ahigher priority task is ready to run, pC/OS-11 returnsto the
higher priority task rather than to the interrupted task.

Interrupts Under pC/0s1l - 105

L3.18(9) If theinterrupted task is still the most important task to run, 0SIntExit() returnsto the ISR.

L 3.18(10) At that point, the saved registers are restored, and a return from interrupt instruction is exe-
cuted. Note that uC/OS-II returns to the interrupted task if scheduling has been disabled
(OSLockNesting > 0).

The previous description is further illustrated in Figure 3.10.

Figure3.10 Servicing an interrupt.

Time

v

i4 Task Response—————P)
Interrupt Requesl(1)
HC/OS-llor your application

I
1
|
has interrupts disabled. :
I
1
I
[l

! i (2) Interrupt Recovery
| |
+ No New HPT or, A
i |
Vectoring - OSLOCkNeStmg >10 -Return from interrupt
(3) ! A (9)
v |
Saving Context - -Restore context
(4) + f (8)
Notify kernel: Notify k |: OSI nt Exi
GsIntEnter () or,.| A- otfy eme(7) neeato
OSintNesting++ ¢ User ISR code 1
(5) -
| N |
! (6) v
— Interrupt Response [¢— I oy kernel: osi nt Exi t ()
' ! (10)
v
- Restore context
! (11)
=
. Return from interrupt
ISR signals a task
g New HPT L (12)
——
|
— Interrupt Recovery [4—
1
Task Response >

Note:
In (5), for a port done with the V2.51 algorithm, add:
OSTCBCur - >OSTCBSt kPt r = SP

F3.10(1) The interrupt is received but is not recognized by the CPU, either because interrupts have
been disabled by uC/OS-11 or your application or, because the CPU has not completed exe-

cuting the current instruction.
F3.10(2)

F3.10(3) After the CPU recognizes the interrupt, the CPU vectors (at least on most microprocessors)

to the ISR.
Asdescribed in Figure 3.10, the I SR saves the CPU registers (i.e., the CPU’s context).

After the CPU registers are saved, your | SR notifies uC/OS-11 by calling 0SIntEnter() or by
incrementing 0SIntNesting. You also need to save the stack pointer into the current task’s
0S_TCB.

Your ISR code then executes. Your | SR should do aslittle work as possible and defer most of the
work at the task level. A task is notified of the ISR by calling 0SF1agPost (), 0SMboxPost (),

F3.10(4)
F3.10(5)

F3.10(6)

106 Chapter 3: Kernel Sructure

0SQPost(), 0SQPostFront(), or 0SSemPost (). The receiving task might or might not be
pending at the event flag, mailbox, queue, or semaphore when the ISR occurs and the post is
made.

F3.10(7) After the user ISR code has completed, you need to call 0SIntExit(). Ascan be seen from
the timing diagram, 0SIntExit () takeslesstime to return to the interrupted task when there
isno higher priority task (HPT) readied by the ISR.

F3.10(8)

F3.10(9) Inthiscase, the CPU registers are then simply restored and a return from interrupt instruction
is executed.

F3.10(10) If the ISR makes a higher priority task ready to run, then 0SIntExit() takes longer to exe-
cute because a context switch is now needed.

F3.10(11)

F3.10(12) Theregisters of the new task are restored, and a return from interrupt instruction is executed.

The code for 0SIntEnter() is shown in Listing 3.19, and the code for 0SIntExit() is shown in
Listing 3.20. Very little needs to be said about 0SIntEnter().

Listing 3.19 Notify pC/OS-11 about beginning an | SR.

void OSIntEnter (void)
{
if (OSRunning = TRUE) {
if (0SIntNesting < 255) {
0SIntNestingt+t;

}

Listing 3.20 Notify pC/OS-11 about leaving an | SR.

void OSIntExit (void)

{

fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

frendif

Interrupts Under pC/0s1t - 107

Listing 3.20 Notify pC/OS-11 about leaving an |1 SR. (Continued)

OS_ENTER_CRITICAL();
if (OSRunning == TRUE) {
if (0SIntNesting > 0) { (1)
0SIntNesting--;
}
if ((0SIntNesting == 0) && (OSLockNesting = 0)) {
0SIntExity = 0SUnMapTb1[0SRdyGrp]; (2)
OSPrioHighRdy = (INT8U)((OSIntExitY << 3)
0SUnMapTh1[OSRdyTb1[0SIntExitY]1);
if (OSPrioHighRdy != OSPrioCur) f{
OSTCBHighRdy = OSTCBPrioThb1[0SPrioHighRdy];
0SCtxSwCtr++;
0SIntCtxSw(); (3)

+

}
OS_EXIT_CRITICAL();

0SIntExit() looks strangely like 0S_Sched() except for three differences:

L3.20(1) Theinterrupt-nesting counter isdecremented in 0SIntExit(), and rescheduling occurs when
both the interrupt-nesting counter and the lock-nesting counter (0SLockNesting) are 0.

L3.20(2) TheY index needed for OSRdyTb1[] is stored in the global variable 0SIntExitY because
prior to uC/OS-11 V2.51, 0SIntCtxSw() needed to account for local variables and return
addresses. As of pC/OS-11 V2.51, 0SIntCtxSw() doesn’t need to account for these. How-
ever, | decided to leave 0SIntExitY as aglobal for backwards compatibility with previous
ports.

L3.20(3) If acontext switchisneeded, 0SIntExit() calls0SIntCtxSw() instead of 0S_TASK_SW(), as
itdidin 0S_Sched().

You need to call 0SIntCtxSw(), instead of 0S_TASK_SW(), because the ISR has already saved the
CPU registers onto the interrupted task and thus shouldn’t be saved again. Implementation details about
0SIntCtxSw() are provided in Chapter 13, Porting uC/OS-11.

Some processors, such as the Motorola 68HC11, require that you implicitly re-enable interrupts in
order to allow nesting. This process can be used to your advantage. Indeed, if your ISR needs to be ser-
viced quickly and it doesn’t need to notify atask about itself, you don’'t need to call 0SIntEnter() (or
increment 0SIntNesting) or 0SIntExit(), aslong asyou don't enable interrupts within the ISR. The
pseudocode in Listing 3.21 shows this situation. In this case, the only way atask and this ISR can com-
municate is through global variables.

108 Chapter 3: Kernel Sructure

Listing3.21 ISRson a Motorola 68HC11.

M68HC11_ISR: /* Fast ISR, MUST NOT enable interrupts */
A1l register saved automatically by the CPU;
Execute user code to service the interrupt;
Execute a return from interrupt instruction;

3.11 Clock Tick

MC/OS-1 requires that you provide a periodic time source to keep track of time delays and timeouts. A
tick should occur between 10 and 100 times per second, or Hertz. The faster thetick rate, the more over-
head pC/OS-11 imposes on the system. The actua frequency of the clock tick depends on the desired
tick resolution of your application. You can obtain atick source either by dedicating a hardware timer or
by generating an interrupt from an AC power line (50/60HZz) signal.

You must enable ticker interrupts after multitasking has started, that is, after calling 0SStart(). In
other words, you should initialize ticker interrupts in the first task that executes following a call to
0SStart(). A common mistake is to enable ticker interrupts after 0SInit() and before 0SStart(), as
shown in Listing 3.22. Potentialy, the tick interrupt could be serviced before pC/OS-I1 starts the first
task. At this point, uC/OS-11 isin an unknown state, so your application crashes.

Listing 3.22 Incorrect way to start the ticker.

void main(void)
{

0SInit(); /* Initialize _C/0S-1I x/

/* Application initialization code ... &/
/* ... Create at Teast one task by calling OSTaskCreate() o/
Enable TICKER interrupts; /* DONOT DO THISHERE!! */
0SStart(); /* Start multitasking =

The pC/OS-11 clock tick is serviced by calling 0STimeTick() from atick ISR. 0STimeTick() keeps
track of all of the task timers and timeouts. The tick ISR follows all the rules described in Section 3.10,
“Interrupts Under pC/OS-11". The pseudocode for the tick 1SR is shown in Listing 3.23. This code must
be written in assembly language because you cannot access CPU registers directly from C. Because the
tick ISR isalways needed, it is generally provided with a port.

Clock Tick 109

Listing 3.23 Pseudocode for tick | SR.

void 0STickISR(void)
{
Save processor registers;

Call OSIntEnter() or increment OSIntNesting;
if (0SIntNesting = 1) {
0STCBCur->0STCBStkPtr = SP;

}

Call OSTimeTick();

Clear interrupting device;
Re-enable interrupts (optional);
Call OSIntExit();

Restore processor registers;

Execute a return from interrupt instruction;

The code for 0STimeTick() isshownin Listing 3.24.

Listing 3.24 Serviceatick, 0STimeTick().

void O0STimeTick (void)
{
#if OS_CRITICAL_METHOD ==
0S_CPU_SR cpu_sr;
frendif
0S_TCB *ptcb;

0STimeTickHook(); (1)
JHif OS_TIME_GET_SET_EN > 0O
OS_ENTER_CRITICAL();

0STime++; (2)
OS_EXIT_CRITICALC();
ffendif
if (OSRunning == TRUE) {
ptcb = OSTCBList; (3)
while (ptcb->0STCBPrio != OS_IDLE_PRIO) { (4)

OS_ENTER_CRITICAL();
if (ptcb->0STCBDly != 0) {
if (--ptcb->0STCBDly == 0) {

if ((ptchb->0STCBStat & OS_STAT_SUSPEND) = 0x00) { (5)
0SRdyGrp |= ptcb->0STCBBitY; (6)
OSRdyTb1[ptch->0STCBY] |= ptcb->0STCBBitX;

} else {

ptcb->0STCBD1y = 1;

110 Chapter 3: Kernel Structure

Listing3.24 Serviceatick, 0STimeTick(). (Continued)

}

L3.24(1)

L3.24(2)

L3.24(3)
L3.24(4)

L3.24(6)

L3.24(5)

}

}
ptcb = ptcb->0STCBNext;
0S_EXIT_CRITICAL();

0STimeTick() starts by calling the user-definable function 0STimeTickHook (), which can
be used to extend the functionality of 0STimeTick(). | decided to call 0STimeT1ickHook()
first to give your application a chance to do something as soon as the tick is serviced because
you may have some time-critical work to do. Most of the work done by 0STimeT1ick() basi-
cally consists of decrementing the .0STCBD1y field for each 0S_TCB (if it's nonzero).

0STimeTick() aso accumulates the number of clock ticks since power-up in an unsigned
32-bit variable called 0STime. Note that | disable interrupts before incrementing 0STime
because on some processors, a 32-bit increment is likely to be done using multiple CPU
instructions.

0STimeTick() follows the chain of 0S_TCB, starting at 0STCBList, until it reaches the idle
task.

When the .0STCBD1y field of atask’s 0S_TCB is decremented to 0, the task is made ready to
run.

Thetask is not readied, however, if it has been explicitly suspended by 0STaskSuspend().

The execution time of 0STimeTick() is directly proportional to the number of tasks created in an
application; however, execution timeis still very deterministic.

If you don’t like to make | SRs any longer than they must be, 0STimeTick() can be called at the task
level, as shown in Listing 3.25. To do this, create a task that has a higher priority than all your other
application tasks. The tick ISR needs to signal this high-priority task by using either a semaphore or a
message mailbox.

Listing3.25 Serviceatick, TickTask().

void TickTask (void *pdata)

{

pdata = pdata;
for (;;)

0SMboxPend(...); /* Wait for signal from Tick ISR */
0STimeTick();
0S_Sched();

PC/OSHI Initialization 111

You obviously need to create a mailbox (with contents initialized to NULL) that will be used to signal
the task that atick interrupt has occurred (Listing 3.26).

Listing3.26 Serviceatick, O0STickISR().

void 0STickISR(void)
{
Save processor registers;
Call OSIntEnter() or increment OSIntNesting;
if (0SIntNesting = 1) {
O0STCBCur->0STCBStkPtr = SP;

Post a 'dummy' message (e.g. (void *)1) to the tick mailbox;

Call OSIntExit();
Restore processor registers;
Execute a return from interrupt instruction;

3.12 uC/OSI Initialization

A requirement of uC/OS-I1 isthat you call 0SInit () beforeyou call any of pC/OS-11's other services.
0SInit() initializesall uC/OS-I1 variables and data structures (see 0S_CORE.C). 0SInit() createsthe
idle task 0S_TaskIdle(), which is aways ready to run. The priority of 0S_TaskIdle() is always set
to OS_LOWEST_PRIO. If OS_TASK_STAT_EN and OS_TASK_CREATE_EXT_EN (see 0S_CFG.H) are both set
to 1, 0SInit() also createsthe statistic task 0S_TaskStat () and makesit ready to run. The priority of
0S_TaskStat() isalways set to 0S_LOWEST_PRIO-1.

Figure 3.11 shows the relationship between some UC/OS-I| variables and data structures after calling
0SInit(). Theillustration assumesthat the following #define constants are set asfollowsin 0S_CFG. H:

o 0S_TASK_STAT ENissettol,

e OS_FLAG_ENissettol,

* 0S_LOWEST_PRIOissetto 63, and
* OS_MAX_TASKS isset to 62.

112 Chapter 3: Kernel Structure

Figure 3.11

Variables and data structures after calling 0SInit().

OSTCBPri oThl []

COSPri oCur =0
0 ; _
OSRdyG p H OSPri oHi ghRdy = 0
(4) CLLLELRR (2 osTCBOUr = NULL
OSRdyThbl [] [3] OSTCBHi ghRdy = NULL
I—boooooooo COSTi e = 0oL
:gggggggg CSIntNesting =0
»oToTolololololo E OSLockNesting = 0
»[ofofolofololo]o H G8Ct xSwCt r =0
»lofolofofololofo : OSTaskCtr =2
>1010104010101010 ' OSRunni ng = FALSE
> H
ilalofololofolo : O8CPUUsage -0
(4) H csldleCtrMax = OL
: OSldleCtrRun = OL
H csldieCtr = 0L
0SSt at Rdy = FALSE
® [GS_LOWEST_PRI O- 1] OSIntExityY 0
[OS_LOVEST_PRI O o—
0s_TCB 0s_TCB
of of
OS_TaskStat () OS_Taskl dl e()
OSTCBSt kPt T ® OSTCBSt kPt r ®
OSTCBEXt Pt r = NULL OSTCBEXt Pt r = NULL
OSTCBStkBottom @ OSTCBStkBottom @
OSTCBSt kSi ze = stk_size OSTCBSt kSi ze = stk_size
OSTCBOpt = 0OS_TASK_OPT_STK_CHK 0STCBODt = O5_TASK_OPT_STK_CHK
| OS_TASK_OPT_STK_CLR | OS_TASK_OPT_STK_CLR
(2) osTCBI d = OS_LOEST_PRIO-1 osTCBl d = OS_LOVEST_PRI O
OSTCBLi st =] OSTCBNext ® $ | OSTCBNext ® »0
OSTCBPr ev 1 OSTCBPr ev
o e A « & _» (3)
(3) OSTCBEventPtr = NULL OSTCBEventPtr = NULL
OSTCBMsg = NULL OSTCBMsg = NULL
OSTCBFl agNode = NULL OSTCBFl agNode = NULL
OSTCBFl agsRdy = 0 OSTCBFl agsRdy = 0
OSTCBD y =0 osTCBD y =0
OsTCBSt at = O5_STAT_RDY OSTCBSt at = O5_STAT_RDY
OSTCBPri 0 = OS_LOVEST_PRIO1 OSTCBPri 0 = OS_LOVEST_PRI O
OSTCBX =6 0STCBX =7
osTCBY =7 osTCBY =7
OSTCBBI t X = 0x40 OSTCBBI t X = 0x80
OSTCBBI t Y = 0x80 OSTCBBI t Y = 0x80
OSTCBDel Req = FALSE osTCBDel Req = FALSE

Task
St ack

Task
St ack

Ly

HC/OSHI Initialization 113

F3.11(1) Notice that the task control blocks (0S_TCBs) of 0S_TaskIdle() and 0S_TaskStat() are
chained together in adoubly linked list.

F3.11(2) 0STCBList pointsto the beginning of this chain. When atask is created, it is always placed at
the beginning of the list. In other words, 0STCBL1st always points to the 0S_TCB of the last
task created.

F3.11(3) Both ends of the doubly linked list point to NULL (i.e., 0).

F3.11(4) Because both tasks are ready to run, their corresponding bits in 0SRdyTb1[] are set to 1.
Also, because the bits of both tasks are on the same row in 0SRdyTb1[1, only one bit in
0SRdyGrpissetto 1.

MC/OS-1 dso initializes five pools of free data structures, as shown in Figure 3.12. Each of these
poals is a singly linked list and allows uC/OS-11 to obtain and return an element from and to a pool
quickly.

Figure3.12 Freepools.

os_TCB 0s_TCB Gs_TCB 0s_TCB

OSTCBFr eeli st ———p| OSTCBNext » | OSTCBNext » | OSTCBNext $-| OSTCBNext —4—» 0
OS_EVENT OS_EVENT OS_EVENT OS_EVENT

OSEvent Fr eelLi st —®| osEvent Pt r ® | csEvent Pt r ® | osEvent Pt r ® &=| OSEvent Pt r o+—» 0

s Q s Q s Q 6_Q
OSQFreeLi st = OSQPLT ® | 5Pt r * | OSQPtr ° | oscptr o—» 0
OS_FLAG_GRP OS_FLAG GRP OS_FLAG GRP OS_FLAG GRP

QOSFI agFr eeLi st —p| OSFI agWi t Li st P > OSFl agWai t Li st P > OSFl ag\i t Li st ° > OSFl ag\éi t Li st o » 0
OS_MEM Os_MEM Cs_MEM Os_MEM

OSMenfFr eeli st ——4p| OSMenFr eeli st [| CShenfr eeli st [| CSMenfr eelLi st [] 9= OSMenfreeli st o+—> 0

After 0SInit() has been called, the 0S_TCB pool contains 0S_MAX_TASKS entries. The OS_EVENT
pool contains 0S_MAX_EVENTS entries, the 0S_Q pool contains 0S_MAX_QS entries, the 0S_FLAG_GRP pool
contains 0S_MAX_FLAGS entries, and, finally, the 0S_MEM pool contains 0S_MAX_MEM_PART entries. Each
of the free pools are NUL L-pointer terminated to indicate the end. The pool is, of course, empty if any of
thelist pointers point to NULL. You define the size of these poolsin 0S_CFG.H.

114 Chapter 3: Kernel Structure

3.13 Starting pC/OS- |

You start multitasking by calling 0SStart (). However, before you start pC/OS-I1, you must creste at
least one of your application tasks, as shown in Listing 3.27.

Listing 3.27 Initializing and starting uC/OS-1 1.

void main (void)
{
0SInit(); /* Initialize uC/0S-11)

Create at least 1 task using either 0STaskCreate() or O0STaskCreateExt();

0SStart(); /* Start multitasking! O0SStart() will not return */

The code for 0SStart () isshown in Listing 3.28.

Listing 3.28 Starting multitasking.

void 0SStart (void)
{

INT8U y;

INT8U x;

if (OSRunning == FALSE) {

y = 0SUnMapTh1[0OSRdyGrp];

X = 0SUnMapTbT[OSRdyTb1Ly1];

OSPrioHighRdy = (INT8U)((y << 3) + x);

OSPrioCur = OSPrioHighRdy;

O0STCBHighRdy = OSTCBPrioTb1[0SPrioHighRdy]; (1)
OSTCBCur = OSTCBHighRdy;

0SStartHighRdy(); (2)

L3.28(1) When caled, 0SStart() finds the 0S_TCB (from the ready list) of the highest priority task
that you have created.

L3.28(2) Then, 0SStart() calls 0SStartHighRdy (), which is found in 0S_CPU_A.ASM for the pro-
cessor being used (see Chapter 13, “Porting WC/OS-11"). Basically, 0SStartHighRdy ()
restores the CPU registers by popping them off the task’s stack and then executing areturn

Sarting uC/0s11 115

from interrupt instruction, which forces the CPU to execute your task’s code. Note that
0SStartHighRdy () never returnsto 0SStart().

Figure 3.13 shows the contents of the variables and data structures after multitasking has started.
Here, | assume that the task you created has a priority of 6. Notice that 0STaskCtr indicates that three
tasks have been created: 0SRunning is set to TRUE, indicating that multitasking has started; 0SPrioCur
and 0SPrioHighRdy contain the priority of your application task; and 0STCBCur and 0STCBHighRdy
both point to the 0S_TCB of your task.

Figure3.13 Variables and data structures after calling 0SStart ().

CSTCBPr i 0Tbl []

. QSPr i oCur =6
OSRAyG p H CBPr i oH ghRdy = 6
[IofololoTolol:] [2]
OSRdyTbl [] (3
Tolo (4 CsTi e = 0L
:g:g {:} CslntNesting =0
1442 & GSLockNesting = 0
Tolo T OSCt xSwet r =0
Tofo ' CsTaskCtr =3
Ig{g ' OSRunni ng = TRUE
' OSCPUUsage = 0
' osldleCtrMax = OL
' CsldlerRun = OL
H osldlectr = oL
Osst at Rdy = FALSE
[OS_LOVEST_PRI O 1] OSIntExityY =0
[CS_LONEST_PRIQ)
05 TCB 05 TCB s TCB
of of of
First App. Task() Cs_TaskSt at () 0s_Taskl dl e()
CSTCBS kPL T OSTCBS kPL T OSTCBS kPL T
OSTCBEXtPtr = NULL OSTCBEXtPtr = NULL OSTCBEXtPtr = NULL
OSTCBS! kBot t om OSTCBSt kBot t om OSTCBSt kBot t om
osTCBStkSiZe = stk_size oSTCBSLKSizZe = stk_size oSTCBSLKSizZe = stk_size
OSTCBQUr =]
csTCBOp = O5_TASK_OPT_STK_CHK osTCBOp = O8_TASK_CPT_STK_CHK osTCBOp = 08_TASK_CPT_STK_CHK
| OS_TASK_CPT_STK_CLR | OS_TASK_GPT_STK_CLR | OS_TASK_OPT_STK_CLR
OSTOBH ghRdy —PR 5rcpi g =6 osTCBl d = O5_LO/EST PRIO-1 osTCBI d = O5_LOKEST_PRIO
OSTCBLI 5t =————pp] OSTCBNext CSTCBNext OSTCBNext
CSTCBPr ev OSTCBPY ev OSTCBPr ev
0 A A A
OSTCBEVent Ptr = NULL OSTCBEVent Ptr = NULL OSTCBEVent Ptr = NULL
CsTCBMS g = NULL osTCBMSg = NULL osTCBMGg = NULL
CSTCBFI aghode = NULL OSTCBFI aghode = NULL OSTCBFl aghode = NULL
CSTCBFI agsRdy = 0 OSTCBFl agsRly = 0 OSTCBFl agsRdy = 0
osTCBD y =0 osTCBD ¥ =0 osTCBD y =0
osTCBSt at = C5_STAT_RDY osTCBSt at = 08_STAT_RDY osTCBSt at = 08_STAT_RDY
CSTCBPri 0 =6 OSTCBPri 0 = CS_LOMEST PRO1 OSTCBPri 0 = OS_LOMEST_PRIO
CSTCBX =6
osTCBY =7 osTCBX -6 osTCBX =7
OSTCBEI t X = 0x40 osTCBY =7 osTCBY =7
osTCBBItY = 0x01 OSTCHBI t X = 0x40 OSTCBBI t X = 0x80
OSTCBDEIReq = FALSE OSTCBBI t Y = 0x80 OSTCBBI t Y = 0x80
OSTCBDEl Req = FALSE OSTCBDEl Req = FALSE
Task
St ack Task
Task St ack
St ack

116 Chapter 3: Kernel Sructure

3.14 Obtaining the Current uC/OS-11 Version

You can obtain the current version of uC/OS-11 from your application by calling 0SVersion() (Listing
3.29). 0SVersion() returns the version number, multiplied by 100. In other words, pC/OS-1l version
2.52 isreturned as 252.

Listing 3.29 Getting the current uC/OS-11 version.

INT16U 0SVersion (void)
{
return (OS_VERSION);

To find out about the latest version of uC/OS-I1 and how to obtain an upgrade, you should check the
official uC/OS-11 Web siteat http://www.uC0S-11.com.

Chapter 4

Task Management

In the previous chapter, | specified that atask is either an infinite loop function or a function that deletes
itself when it is done executing. Note that the task code is not actually deleted — pC/OS-11 simply
doesn’t know about the task anymore, so that code will not run. A task looks just like any other C func-
tion, containing a return type and an argument, but the task must never return. The return type of atask
must always be declared void. The functions described in this chapter are found in the file 0S_TASK.C.
A task must have one of the two structures:

void YourTask (void *pdata)
{
for (;;5) f
/* USER CODE */
Call one of uC/0S-II's services:
0SFlagPend();
0SMboxPend() ;
OSMutexPend();
0SQPend () ;
0SSemPend () ;
0STaskSuspend(0S_PRIO_SELF);
0STimeDly();
0STimeDTyHMSM() ;
/* USER CODE */

117

118 Chapter 4: Task Management

or

void YourTask (void *pdata)
{
/* USER CODE */
0STaskDel (0OS_PRIO_SELF);

This chapter describes the services that allow your application to create atask, delete atask, change
atask’s priority, suspend and resume a task, and obtain information about a task.

UC/OS-11 can manage up to 64 tasks, although | recommend reserving the four highest priority tasks
and the four lowest priority tasks for future use by uC/OS-I1. However, at this time, only two priority
levels are actually used by uC/OS-I1, 0S_LOWEST_PRIO and 0S_LOWEST_PRIO-1 (see 0S_CFG.H). This
leaves you with up to 56 application tasks. The lower the value of the priority, the higher the priority of
the task. In the current version of uC/OS-11, the task priority number also serves as the task identifier.

4.00 CreatingaTask, 0STaskCreate()

In order for uC/OS-11 to manage your task, you must create it. You create atask by passing its address and
other arguments to one of two functions: 0STaskCreate() or 0STaskCreateExt (). 0STaskCreate() is
backward compatible with pC/OS, and 0STaskCreateExt() is an extended version of
0STaskCreate(), providing additional features. A task can be created using either function. A task can
be created prior to the start of multitasking or by another task. You must create at least one task before
you start multitasking [i.e., before you call 0SStart()]. An ISR cannot create atask.

The code for 0STaskCreate() isshown in Listing 4.1. As can be seen, 0STaskCreate() requires
four arguments: task is a pointer to the task code, pdata is a pointer to an argument that is passed to
your task when it starts executing, ptos is a pointer to the top of the stack that is assigned to the task
(see Section 4.02, “Task Stacks'), and prio isthe desired task priority.

Listing4.1 0STaskCreate().

INT8U 0STaskCreate (void (*task)(void *pd), void *pdata, 0S_STK *ptos, INT8U prio)

{
##if OS_CRITICAL_METHOD ==
0S_CPU_SR cpu_sr;

frendif
void *psp;
INT8U err;

#Hif O0S_ARG_CHK_EN > 0
if (prio > OS_LOWEST_PRIO) { (1)
return (0S_PRIO_INVALID);

}
frendif

OS_ENTER_CRITICAL();
if (OSTCBPrioTbl[prio] == (0S_TCB *)0) { (2)

Creating a Task, 0STaskCreate() 119

Listing4.1 0STaskCreate(). (Continued)

OSTCBPrioTh1[prio] = (0S_TCB *)1; (3)
0S_EXIT_CRITICAL(); (4)
psp = (void *)0STaskStkInit(task, pdata, ptos, 0); (5)
err = 0S_TCBInit(prio, psp, (void *)0, 0, 0, (void *)0, 0); (6)
if (err = 0S_NO_ERR) { (7)
OS_ENTER_CRITICAL();
0STaskCtr+t; (8)
OS_EXIT_CRITICAL();
if (OSRunning == TRUE) { (9)
0S_Sched(); (10)
}
} else {
0S_ENTER_CRITICAL();
OSTCBPrioThb1[prio] = (0S_TCB *)0; (11)

OS_EXIT_CRITICAL();
}
return (err);

OS_EXIT_CRITICAL();
return (OS_PRIO_EXIST);

}

L4.1(1)

L4.1(2)
L4.1(3)

L4.1(4)

L4.1(5)

If the configuration constant 0S_ARG_CHK_EN (seefile 0S_CFG.H) issetto 1, 0STaskCreate()
checks that the task priority is valid. The priority of atask must be a number between 0 and
0S_LOWEST_PRIO, inclusive. Please note that 0S_LOWEST_PRIO isreserved by uC/OS-1I'sidle
task. Don't worry, your application can not call 0STaskCreate() and create atask at priority
0S_LOWEST_PRIO because the priority will have already been ‘reserved’ for the idle task by
0SInit(). If youtry to, 0STaskCreate() returns 0S_PRIO_EXIST.

Next, 0STaskCreate() makessurethat atask has not already been created at the desired pri-
ority. With uC/OS-11, all tasks must have a unique priority.

If the desired priority isfree, UC/OS-11 reservesthe priority by placing anon-NULL pointer in
OSTCBPrioTh1[].

Thisalows 0STaskCreate() to re-enableinterrupts while the function sets up the rest of the
data structures for the task because no other concurrent calls to 0STaskCreate() can now
use this priority.

0STaskCreate() then calls 0STaskStkInit(), which is responsible for setting up the task
stack. This function is processor specific and is found in 0S_CPU_C.C. Refer to Chapter 13,
“Porting uC/OS-11” for details on implementing 0STaskStkInit(). If you already have a
port of uC/OS-I1 for the processor you are intending to use, you don’t need to be concerned
about implementation details. 0STaskStkInit() returns the new top-of-stack (psp), which
will be saved in the task’s 0S_TCB. You should note that the fourth argument (opt) to
0STaskStkInit() issetto 0. Unlike OSTaskCreateExt(), however, 0STaskCreate() does
not support options, so ho options are available to passto 0STaskStkInit(). uC/OS-1I sup-
ports processors that have stacks that grow either from high to low memory or from low to
high memory. When you call 0STaskCreate(), you must know how the stack grows (see

120 Chapter 4: Task Management

L4.1(6)

L4.1(7)
L4.1(8)

L4.1(11)

L4.1(9)
L4.1(10)

4.01

0S_STACK_GROWTH in 0S_CPU.H of the processor you are using) because you must pass the
task’s top-of-stack to 0STaskCreate(), which can be either the lowest or the highest mem-
ory location of the stack.

After 0STaskStkInit() has completed setting up the stack, 0STaskCreate() calls
0S_TCBInit() to obtain and initialize an 0S_TCB from the pool of free 0S_TCBs. The
code for 0S_TCBInit() was described in Section 3.03, “Task Control Blocks (0S_TCB)”
and is found in 0S_CORE.C instead of 0S_TASK.C.

Upon return from 0S_TCBInit(), OSTaskCreate() checks the return code and, upon suc-
cess, increments 0STaskCtr, which keeps track of the number of tasks created.

If 0S_TCBInit() failed, the priority level is relinquished by setting the entry in
OSTCBPrioThlI[prio]to 0.

Finally, if 0STaskCreate() iscalled from atask (i.e.,, 0SRunning is set to TRUE), the sched-
uler is called to determine whether the created task has a higher priority than its creator. Cre-
ating a higher priority task resultsin a context switch to the new task. If the task was created
before multitasking has started [i.e., you did not call 0SStart() yet], the scheduler is not
caled.

Creating a Task, 0STaskCreateExt()

Creating atask using 0STaskCreateExt () offers more flexibility but at the expense of additional over-
head. The code for 0STaskCreateExt () isshown in Listing 4.2.

As can be seen, 0STaskCreateExt() requires nine arguments! The first four arguments (task,
pdata, ptos, and prio) are exactly the same asin 0STaskCreate(), and they are located in the same
order. | created the function this way to make it easier to migrate your codeto use 0STaskCreateExt ().

id Establishes a unique identifier for the task being created. This argument has been
added for future expansion and is otherwise unused by PC/OS-II. This identifier
allows me to extend uC/OS-11 beyond its limit of 64 tasks. For now, simply set the
task’s | D to the same value as the task’s priority.

pbos Is a pointer to the task’s bottom-of-stack. This argument is used to perform stack

checking.

stk_size Specifiesthesizeof the stack in number of elements. For example, if astack entry is

four bytes wide, then a stk_size of 1000 means that the stack has 4,000 bytes.
Again, thisargument is used for stack checking.

pext Isapointer to a user-supplied data area that can be used to extend the 0S_TCB of the

opt

task. For example, you can add anameto atask (see Example #3 in Chapter 1), stor-
age for the contents of floating-point registers (see Example #4 in Chapter 1) during
a context switch, a port address to trigger an oscilloscope during a context switch,
and more.

Specifies options to 0STaskCreatebxt (). This argument specifies whether stack
checking is allowed, whether the stack will be cleared, and whether float-
ing-point operations are performed by the task, among others. uC0S_II.H con-
tains a list of available options (0S_TASK_OPT_STK_CHK, OS_TASK_OPT_STK_CLR,

Creating a Task, 0STaskCreateExt() 121

and 0S_TASK_OPT_SAVE_FP). Each option consists of abit. The option is selected
when the bit is set (simply OR the above 0S_TASK_0PT_??? constants).

Listing4.2 0STaskCreateExt().

INT8U O0STaskCreateExt (void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT8U prio,
INT16U id,
0S_STK *pbos,
INT32U stk_size,
void *pext,
INT16U opt)

{
JHf OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

Jfendif
0S_STK *psp;
INT8U err;

JFif OS_ARG_CHK_EN > 0
if (prio > OS_LOWEST_PRIO) f{ (1)
return (OS_PRIO_INVALID);
}

{fendif
OS_ENTER_CRITICALC();
if (OSTCBPrioTbl[prio] == (0S_TCB *)0) { (2)
OSTCBPrioTbl[prio] = (0S_TCB *)1; (3)
OS_EXIT_CRITICALC); (4)
if (((opt & OS_TASK_OPT_STK_CHK) != 0x0000) || (5)

((opt & OS_TASK_OPT_STK_CLR) != 0x0000)) {

fHif OS_STK_GROWTH ==

(void)memset(pbos, 0, stk _size * sizeof(0S_STK));
ffelse

(void)memset(ptos, 0, stk_size * sizeof(0S_STK));
frendi f

122 Chapter 4: Task Management

Listing4.2 0STaskCreateExt (). (Continued)

}

psp = (0S_STK *)0STaskStkInit(task, pdata, ptos, opt);
err = 0S_TCBInit(prio, psp, pbos, id, stk_size, pext, opt);
if (err == O0S_NO_ERR) {

OS_ENTER_CRITICAL();

—~ o~ o~ o~
W O ~N O
—_ = — —

0STaskCtr++;
OS_EXIT_CRITICAL();
if (OSRunning = TRUE) { (10)
0S_Sched(); (11)
}
} else {

OS_ENTER_CRITICALC();
OSTCBPrioTbl[priol = (0S_TCB *)0;
OS_EXIT_CRITICAL();

}

return (err);

OS_EXIT_CRITICALC();
return (OS_PRIO_EXIST);

}

L4.2(1)

L4.2(2)
L4.2(3)
L4.2(4)

L4.2(5)

L4.2(6)

0STaskCreateExt () gartsby checking that thetask priority isvalid. The priority of atask must be
anumber between 0 and 0S_LOWEST_PRIO, inclusive. Please note again that 0S_LOWEST_PRIO
isreserved by HC/OS-II'sidle task. Your application can not call 0STaskCreateExt () and crestea
task at priority 0S_LOWEST_PRI0 because the priority will have dready been ‘reserved’ for theidle
task by 0SInit (). If youtry, 0STaskCreateExt () returns0S_PRIO_EXIST.

Next, 0STaskCreateExt() makes surethat atask has not already been created at the desired
priority. With uC/OS-11, al tasks must have a unique priority.

If the desired priority is free, then uC/OS-1l reserves the priority by placing a non-NULL
pointer in OSTCBPrioTb1[].

This allows 0STaskCreateExt () to re-enable interrupts while it sets up the rest of the data
structures for the task.

In order to perform stack checking on a task (see Section 4.03 “Stack Checking,
0STaskStkChk()” on page 125), you must set the 0S_TASK_OPT_STK_CHK flag in the
opt argument. Also, stack checking requires that the stack contain zeros (i.e., it is
cleared) when the task is created. To specify that atask gets cleared when it is created, set
0S_TASK_OPT_STK_CLR in the opt argument. When both of these flags are set,
OSTaskCreateExt() clears the stack. Note that | used memset() because it's an ANSI
standard function and should be optimized by the compiler vendor.

0STaskCreateExt () then cals 0STaskStkInit(), which is responsible for setting up the
task stack. This function is processor specific and isfound in 0S_CPU_C.C. Refer to Chapter
13, “Porting uC/OS-I1”, for details on implementing 0STaskStkInit(). If you aready have
aport of uC/OS-I1 for the processor you are intending to use, then you don’t need to be con-

L4.2(7)
L4.2(8)
L4.2(9)
L4.2(12)

L4.2(10)
L4.2(11)

4.02

Task Sacks 123

cerned about implementation details. 0STaskStkInit() returns the new top-of-stack (psp)
which will be saved in the task’s 0S_TCB. UC/OS-11 supports processors that have stacks that
grow either from high to low memory or from low to high memory (see Section 4.02). When
you call 0STaskCreateExt (), you must know how the stack grows (see 0S_CPU.H of the pro-
Cessor you are using) because you must pass the task’s top-of-stack, which can either be the
lowest memory location of the stack (when 0S_STK_GROWTH is 0) or the highest memory
location of the stack (when 0S_STK_GROWTH is 1), to 0STaskCreateExt ().

After 0STaskStkInit() has completed setting up the stack, 0STaskCreateExt() calls
0S_TCBInit() to obtain and initialize an 0S_TCB from the pool of free 0S_TCBs. The code
for 0S_TCBInit() isdescribed in Section 3.03, “Task Control Blocks (0S_TCB)”.

Upon return from 0S_TCBInit(), 0STaskCreateExt() checks the return code and, upon
success, increments 0STaskCtr, which keeps track of the number of tasks created.

If 0S_TCBInit() failed, the priority level is relinquished by setting the entry in
OSTCBPrioTbl[prio] to 0.

Finally, if 0STaskCreateExt () iscalled after multitasking has started (i.e., OSRunning isset
to TRUE), the scheduler is called to determine whether the created task has a higher priority
than its creator. Creating a higher priority task results in a context switch to the new task. If
the task was created before multitasking started [i.e., you did not call 0SStart() yet], the
scheduler is not called.

Task Stacks

Each task must have its own stack space. A stack must be declared as being of type 0S_STK and must
consist of contiguous memory locations. You can allocate stack space either statically (at compile-time)
or dynamically (at run-time). A static stack declaration is shown in Listings 4.3 and 4.4. Either declara-
tion is made outside a function.

Listing4.3 Static stack.

static

or

0S_STK MyTaskStack[stack_sizel;

Listing4.4 Static stack.

0S_STK

MyTaskStack[stack_size];

You can allocate stack space dynamically by using the C compiler’'smalloc() function, asshownin
Listing 4.5. However, you must be careful with fragmentation. Specifically, if you create and delete
tasks, your memory allocator might not be able to return a stack for your task(s) because the heap even-
tually becomes fragmented.

124 Chapter 4: Task Management

Listing4.5 Usingmalloc() to allocate stack space for a task.
0S_STK *pstk;

pstk = (0S_STK *)malloc(stack_size);
if (pstk != (0S_STK *)0) f{ /* Make sure malloc() has enough space */
Create the task;

Figure4.l Fragmentation.

A
(1K8) 1KB
3KB B B
(1KB) (1KB)
C
(1K) 1KB
(1) (2) (3

F4.1(1) Figure4.lillustrates a heap containing 3KB of available memory that can be allocated with
malloc(). For the sake of discussion, you create three tasks (tasks A, B, and C), each requir-
ing 1KB.

F4.1(2) Assumethat thefirst 1IKB isgiven to task A, the second to task B, and the third to task C.

F4.1(3) Your application then deletes task A and task C and relinquishes the memory to the heap
using free(). Your heap now has 2KB of memory free, but the memoy’s not contiguous,
which means that you cannot create another task (i.e., task D) that requires 2 KB because
your heap is fragmented. If, however, you never delete a task, the use of malloc() is per-
fectly acceptable.

Because nC/OS-I1 supports processors with stacks that grow either from high to low memory or
from low to high memory, you must know how the stack grows when you call either 0STaskCreate()
or 0STaskCreateExt() because you need to pass the task’s top-of-stack to these functions. When
0S_STK_GROWTH is set to 0 in 0S_CPU.H, you need to pass the lowest memory location of the stack to
the task create function, as shown in Listing 4.6.

Listing4.6 Stack grows from low to high memory.
0S_STK TaskStk[TASK_STK_SIZE];

OSTaskCreate(task, pdata, &TaskStk[Ol, prio);

Sack Checking, 0STaskStkChk() 125

When 0S_STK_GROWTH isset to 1 in 0S_CPU.H, you need to pass the highest memory location of the
stack to the task create function, as shown in Listing 4.7.

Listing4.7 Stack grows from high to low memory.
0S_STK TaskStk[TASK_STK_SIZE];

0STaskCreate(task, pdata, &TaskStk[TASK_STK_SIZE-17, prio);

This requirement affects code portability. If you need to port your code from a processor architecture
that supports a downward-growing stack to one that supports an upward-growing stack, you might need
to make your code handle both cases. Specificaly, Listings 4.6 and 4.7 are rewritten, as shown in List-
ing 4.8.

Listing4.8 Supporting stacks that grow in either direction.
0S_STK TaskStk[TASK_STK_SIZE];

fHi f OS_STK_GROWTH == 0

OSTaskCreate(task, pdata, &TaskStk[0], prio);
felse

OSTaskCreate(task, pdata, &TaskStk[TASK_STK SIZE-17, prio);
frendif

The size of the stack needed by your task is application specific. When sizing the stack, however,
you must account for nesting of al the functions called by your task, the number of local variables that
will be alocated by all functions called by your task, and the stack requirements for all nested interrupt
service routines. In addition, your stack must be able to store all CPU registers.

4.03 Stack Checking, 0STaskStkChk()

Sometimes it is necessary to determine how much stack space a task actually uses. Stack checking
allows you to reduce the amount of RAM needed by your application code by not overallocating stack
space. UIC/OS-11 provides 0STaskStkChk (), which provides you with this valuable information.

In order to use the uC/OS-11 stack-checking facilities, you must do the following:

* Set 0S_TASK_CREATE_EXTto 1inOS_CFG.H.

» Create atask using 0STaskCreateExt () and give the task much more space than you think it
really needs. You can call 0STaskStkChk() for any task, from any task.

e Settheopt argumentin 0STaskCreateExt () to0S_TASK_OPT_STK_CHK+ 0S_TASK_OPT_STK_CLR.
Notethat if your Sartup code clearsdl RAM and you never delete tasks after they are created, you don't
need to set the 0S_TASK_OPT_STK_CLR option. Not setting the option reduces the execution time of
0STaskCreateExt().

126 Chapter 4: Task Management

e Call 0STaskStkChk() from atask by specifying the priority of the task you want to check. You
can inquire about any task stack, not just the running task.

Figure4.2 Stack checking.

F4.2(1)

F4.2(2)

F4.2(3)
F4.2(4)

F4.2(5)

F4.2(6)
F4.2(8)

LOW MEMORY
o 44— .OSTCBStkBottom Yy
o (3)
0
Free Stack Space (2)
(6) ;
0 Deepest
< Stack
Growth OSTCBStkSi
B 1ze
(5)
(4

Current

Location of —Pp»

Stack Pointer

Stack Growth
7
(7 / (1)
Used Stack Space
(8) «4—— Initial TOS y

HIGH MEMORY

In Figure 4.2, | assume that the stack grows from high memory to low memory (i.e.,
0S_STK_GROWTH is set to 1), but the following discussion applies equally well to a stack
growing in the opposite direction. pC/OS-11 determines stack growth by looking at the
contents of the stack itself. Stack checking is performed on demand, as opposed to
continuously.

To perform stack checking, uC/OS-1I requires that the stack be filled with zeros when the
task is created.

Also, uC/OS-11 needs to know the location of the bottom-of-stack (BOS) and the size of the
stack you assigned to the task. These two values are stored in the task’s 0S_TCB when the task
is created but only if the task was created with 0STaskCreateExt ().

0STaskStkChk() computes the amount of free stack space by walking from the bottom of
the stack and counting the number of zero-value entries on the stack until anonzero valueis
found. Note that stack entries are checked using the data type of the stack (see 0S_STK in
0S_CPU.H). In other words, if a stack entry is 32-bits wide, the comparison for a zero value
isdone using 32 hits.

The amount of stack space used is obtained by subtracting the number of zero-value
entries from the stack size you specified in 0STaskCreateExt(). 0STaskStkChk() actu-
ally places the number of bytes free and the number of bytes used in a data structure of
type 0S_STK_DATA (see uCOS_II.H).

Sack Checking, 0STaskStkChk() 127

F4.2(7) Note that at any given time, the stack pointer for the task being checked might be pointing
somewhere between the initial top-of-stack (TOS) and the deepest stack growth.

F4.2(5) Also, every timeyou call 0STaskStkChk(), you may get a different value for the amount of
free space on the stack until your task has reached its deepest growth.

You need to run the application long enough and under your worst-case conditions to get proper
numbers. After 0STaskStkChk() provides you with the worst-case stack requirement, you can go back
and set the final size of your stack. You should accommodate system expansion, so make sure you allo-
cate between 10 and 100 percent more stack than what 0STaskStkChk () reports. What you should get
from stack checking is a ballpark figure; you are not looking for an exact stack usage.

The code for 0STaskStkChk() is shown in Listing 4.9. The data structure 0S_STK_DATA (see
uC0S_IT.H) isused to hold information about the task stack. | decided to use a data structure for two
reasons. First, | consider 0STaskStkChk() to be a query-type function, and | wanted to have all
guery functions work the same way — return data about the query in a data structure. Second, pass-
ing data in a data structure is efficient and allows me to add additional fields in the future without
changing the application programming interface (API) of 0STaskStkChk(). For now, 0S_STK_DATA
only contains two fields: 0SFree and 0SUsed. Asyou can see, you invoke 0STaskStkChk () by speci-
fying the priority of the task on which you want to perform stack checking.

Listing4.9 Stack-checking function.

INT8U 0STaskStkChk (INT8U prio, OS_STK _DATA *pdata)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendi f
0S_TCB *ptcb;
0S_STK *pchk;
INT32U free;
INT32U size;

JHif OS_ARG_CHK_EN > 0
if (prio > OS_LOWEST_PRIO && prio != OS_PRIO_SELF) { (1)
return (OS_PRIO_INVALID);
}
ffendif
pdata->0SFree = 0;
pdata->0SUsed = 0;
OS_ENTER_CRITICAL();
if (prio = 0S_PRIO_SELF) { (2)
prio = 0STCBCur->0STCBPrio;
}
ptch = OSTCBPrioTbl[priol;
if (ptcb = (0S_TCB *)0) { (3)

4

128 Chapter 4: Task Management

Listing4.9 Stack-checking function. (Continued)

J

OS_EXIT_CRITICAL();
return (OS_TASK_NOT_EXIST);

if ((ptcb->0STCBOpt & OS_TASK_OPT_STK_CHK) = 0) { (4)

}

OS_EXIT_CRITICAL();
return (OS_TASK_OPT_ERR);

free = 0; (5)
size = ptch->0STCBStkSize;
pchk = ptcb->0STCBStkBottom;

OS_EXIT_CRITICAL();
##1f 0S_STK_GROWTH = 1
while (*pchk++ = (0S_STK)0) {

freet+t;
}
felse
while (*pchk-- = (0S_STK)0) {
freet+t;
}
ffendif
pdata->0SFree = free * sizeof(0S_STK); (6)

pdata->0SUsed
return (0S_NO

}

L4.9(1)
L4.9(2)
L4.9(3)

L4.9(4)

L4.9(5)

L4.9(6)

(size - free) * sizeof(0S_STK);
ERR) ;

If 0S_ARG_CHK_EN is set to 1 in 0S_CFG.H, 0STaskStkChk() verifies that the priority is
within avalid range.

If you specify 0S_PRIO_SELF, the function assumes that you want to know the stack informa-
tion about the current task.

Obvioudly, the task must exist. Simply checking for the presence of a non-NULL pointer in
0STCBPrioTb1[] ensuresthat the task exists.

To perform stack checking, you must have created the task using 0STaskCreateExt(), and
you must have passed the option 0S_TASK_OPT_STK_CHK. If you called 0STaskStkChk()
from atask that was created by 0STaskCreate() [instead of 0STaskCreateExt ()], then the
opt argument [passed to 0S_TCBInit ()] would have been 0, and the test would fail.

If al of the proper conditions are met, 0STaskStkChk() computes the free stack space as
described above by walking from the bottom of stack until a nonzero stack entry is encoun-
tered.

Finally, the information that is stored in 0S_STK_DATA is computed. Note that the function
computes the actual number of bytes free and the number of bytes used on the stack as

Deleting a Task, 0STaskDel ()

opposed to the number of elements. Obviously, the actual stack size (in bytes) can be

obtained by adding these two values.

4.04 DeletingaTask, 0STaskDel ()

Sometimesit is necessary to delete atask. Deleting atask means that the task is returned to the dormant
state (see Section 3.02, “ Task States’) and does not mean that the code for the task is actually “ deleted.”
The task code is simply no longer scheduled by uC/OS-11. You delete a task by calling 0STaskDel ()

(Listing 4.10).

Listing4.10 Task delete.

INT8U 0STaskDel (INT8U prio)

{

J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR Cpu_sr;

ffendi

JHif OS_EVENT_EN > 0
OS_EVENT *pevent;

ffendi f

JHif (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (0S_MAX_FLAGS > 0)
0S_FLAG_NODE *pnode;

ffendif
0S_TCB *ptch;
BOOLEAN self;

if (0SIntNesting > 0) {
return (OS_TASK_DEL_ISR);
}
JHif OS_ARG_CHK_EN > 0
if (prio = 0S_IDLE_PRIO) {
return (OS_TASK_DEL_IDLE);
}
if (prio >= OS_LOWEST_PRIO && prio != OS_PRIO_SELF) {
return (OS_PRIO_INVALID);
}
frendif
OS_ENTER_CRITICAL();
if (prio == OS_PRIO_SELF) {

129

(1)

(2)

(4)

130 Chapter 4: Task Management

Listing4.10 Task delete. (Continued)

}

prio = 0STCBCur->0STCBPrio;

ptch = OSTCBPrioTbl[priol;
if (ptchb != (0S_TCB *)0) {

if ((OSRdyTb1[ptcb->0STCBY] &= ~ptch->0STCBBitX) == 0x00) {

OSRdyGrp &= ~ptchb->0STCBBitY;
}

JHf OS_EVENT_EN > 0

Jfendif

pevent = ptcb->0STCBEventPtr;
if (pevent != (OS_EVENT *)0) {

(5)
(6)

(7)

if ((pevent->0SEventTbl[ptcb->0STCBY] &= ~ptcb->0STCBBitX) = 0) {

pevent->0SEventGrp &= ~ptchb->0STCBBitY;

JHf (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0)

Jfendif

pnode = ptcb->0STCBF1agNode;
if (pnode != (0S_FLAG_NODE *)0) f{
0S_FlagUnlink(pnode);

ptchb->0STCBD1y 0;

ptcb->0STCBStat = OS_STAT_RDY;

if (0SLockNesting < 255) {
OSLockNesting++;

}

OS_EXIT_CRITICAL(C);

0S_Dummy () ;

OS_ENTER_CRITICALC();

if (0SLockNesting > 0) {
OSLockNesting--;

}

0STaskDelHook(ptch);

0STaskCtr--;

OSTCBPrioTh1[prio] = (0S_TCB *)0;

if (ptch->0STCBPrev == (0S_TCB *)0) {
ptcb->0STCBNext->0STCBPrev = (0S_TCB *)0;
OSTCBList ptcb->0STCBNext;

} else {

(8)

(9)
(10)
(11)

(12)
(13)

(14)

(15)
(16)
(17)
(18)

Deleting a Task, 0STaskDel() 131

Listing4.10 Task delete. (Continued)

ptch->0STCBPrev->0STCBNext = ptcb->0STCBNext;
ptcb->0STCBNext->0STCBPrev = ptchb->0STCBPrev;
}
ptcb->0STCBNext = OSTCBFreelist; (19)
OSTCBFreelList = ptcb;
OS_EXIT_CRITICALC);

0S_Sched(); (20)
return (OS_NO_ERR);
}

OS_EXIT_CRITICAL();
return (OS_TASK_DEL_ERR);
}

L4.10(1) 0STaskDel() startsoff by making sure you are not attempting to delete a task from within an
ISR, because that’s not allowed.

L4.10(2) 0STaskDel() checks that you are not attempting to delete the idle task because thisis also
not allowed.

L4.10(3) You are alowed to delete the statistic task (0S_LOWEST_PRI0-1) and al higher priority tasks
(i.e., thetask priority has alower number).

L4.10(4) Thecaller can deleteitself by specifying 0S_PRIO_SELF asthe argument.

L4.10(5) 0STaskDel() verifies that the task to delete does in fact exist. This test obviously passes if
you specified 0S_PRIO_SELF. | didn’'t want to create a separate case for this situation because
it would have increased code size and thus execution time. If 0S_PRIO_SELF is specified, we
simply obtain the priority of the current task, which is stored in its 0S_TCB.

After all conditions are satisfied, the 0S_TCB is removed from all possible uC/OS-11 data structures.
0STaskDel () doesthis action in two parts to reduce interrupt latency.

L4.10(6) First, if thetask isintheready ligt, it isremoved.

L4.10(7) If thetask isin alist waiting for a mutex, mailbox, queue, or semaphore, it is removed from
that list.

L4.10(8) If thetask isin alist waiting for an event flag, it is removed from that list.

L4.10(9) Next, 0STaskDel () forces the delay count to zero to make sure that the tick ISR does not
ready thistask after | re-enable interrupts (see L4.10(12)).

L4.10(10) 0STaskDel () sets the task’s .0STCBStat flag to OS_STAT_RDY. Note that 0STaskDel() is
not trying to make the task ready; it is simply preventing another task or an ISR from
resuming thistask [i.e., in case the other task or ISR calls 0STaskResume()]. This situation
could occur because 0STaskDe1 () will be re-enabling interrupts (see L4.10(12)), so an ISR
can make a higher priority task ready, which could resume the task you are trying to delete.
Instead of setting the task’s .0STCBStat flag to 0S_STAT_RDY, | simply could have cleared
the 0S_STAT_SUSPEND hit (which would have been clearer), but this action takes slightly
more processing time.

132 Chapter 4: Task Management

L4.10(11) At this point, the task to delete cannot be made ready to run by another task or an ISR
because it’s been removed from the ready list, it's not waiting for an event to occur, it's not
waiting for time to expire, and it cannot be resumed. For al intents and purposes, the task is
dormant. Because the task is dormant, 0STaskDe1 () must prevent the scheduler from switch-
ing to another task because if the current task is almost deleted, it could not be rescheduled!

L4.10(12) At this point, 0STaskDel() re-enables interrupts in order to reduce interrupt latency.
0STaskDel() could thus service an interrupt, but, because it incremented 0SLockNesting,
the ISR would return to the interrupted task. Note that 0STaskDe1() is still not done with
the del etion process because it heeds to unlink the 0S_TCB from the TCB chain and return the
0S_TCB to the free 0S_TCB list.

L4.10(13) Notethat | cal the dummy function 0S_Dummy () immediately after calling 0S_EXIT_CRITICAL().
| want to make sure that the processor executes at least one instruction with interrupts enabled.
On many processors, executing an interrupt-enable instruction forces the CPU to have inter-
rupts disabled until the end of the next instruction! The Intel 80x86 and Zilog Z-80 proces-
sors actually work this way. Enabling and immediately disabling interrupts would behave
just asif | didn’t enable interrupts, which would, of course, increase interrupt latency. Calling
0S_Dummy () thus ensures that | execute a call and a return instruction before re-disabling
interrupts. You could certainly replace 0S_Dummy () with amacro that executes a no-operation
instruction and thus slightly reduce the execution time of 0STaskDel (). | didn’'t think it was
worth the effort of creating yet another macro that would reguire porting.

L4.10(14) 0STaskDel() can now continue with the deletion process of the task. After 0STaskDel ()
re-disables interrupts, 0STaskDe1 () re-enables scheduling by decrementing the lock nesting
counter.

L4.10(15) 0STaskDel () then calls the user-definable task delete hook 0STaskDelHook (), which allows
user-defined 0S_TCB extensions to be relinquished.

L4.10(16) Next, 0STaskDel () decrements the task counter to indicate that uC/OS-I1 is managing one
less task.

L4.10(17) 0STaskDel () removes the 0S_TCB from the priority table by simply replacing the link to the
0S_TCB of the task being deleted with a NULL pointer.

L4.10(18) 0STaskDel () then removes the 0S_TCB of the task being deleted from the doubly linked list
of 0S_TCBs that starts at 0STCBList. Note you do not need to check for the case where
ptch->0STCBNext == NULL because 0STaskDel () cannot delete the idle task, which always
happens to be at the end of the chain.

L4.10(19) The 0S_TCB isreturned to the freelist of 0S_TCBsto allow another task to be created.

L4.10(20) Finally, the scheduler is called to see if a higher priority task has been made ready to run by
an ISR that would have occurred when 0STaskDel() re-enabled interrupts at step
[L4.11(12)].

4.05 Requestingto Delete a Task, 0STaskDelReq()

Sometimes, a task owns resources such as memory buffers or a semaphore. If another task attempts to
delete this task, the resources are not freed and thus are lost. This would lead to memory leaks whichis
not acceptable for just about any embedded system. In this type of situation, you somehow need to tell
the task that owns these resources to delete itself when it’s done with the resources. You can accomplish

Requesting to Delete a Task, 0STaskDelReq() 133

this with the 0STaskDelReq() function. Both the regquester and the task to be deleted need to call
0STaskDelReq(). Therequester codeis shown in Listing 4.11.

Listing4.11 Requester code requesting a task to delete itself.

void RequestorTask (void *pdata)
{
INT8U err;

pdata = pdata;
for (;3) f

/* Application code */

if ('TaskToBeDeleted()' needs to be deleted) { (1)
while (0STaskDelReq(TASK_TO_DEL_PRIO) != OS_TASK_NOT_EXIST) ({ (2)
0STimeDly(1); (3)
}
}
/* Application code */ (4)

}

L4.11(1) The task that makes the request needs to determine what conditions can cause a request for
the task to be deleted. In other words, your application determines what conditions lead to
this decision.

L4.11(2) If thetask needsto be deleted, call 0STaskDelReq() by passing the priority of the task to be
deleted. If the task to delete does not exist, 0STaskDelReq() returns 0S_TASK_NOT_EXIST.
You get this response if the task to delete has already been deleted or has not been created
yet. If the return valueis 0S_NO_ERR, the request has been accepted, but the task has not been
deleted yet. You might want to wait until the task to be deleted does in fact del ete itself.

L4.11(3) You can do this by delaying the requester for a certain amount of time. | decided to delay for
onetick, but you can certainly wait longer if needed.

L4.11(4) When the requested task eventually deletes itself, the return value in L4.11(2) is
0S_TASK_NOT_EXIST, and the loop exits.

The pseudocode for the task that needs to delete itself is shown in Listing 4.12. This task polls
a flag that resides inside the task’s 0S_TCB. The value of this flag is obtained by calling
0STaskDe1Req(0S_PRIO_SELF).

Listing4.12 Task requesting to delete itsalf.

void TaskToBeDeleted (void *pdata)
{
INT8U err;

134 Chapter 4: Task Management

Listing4.12 Task requesting to delete itself. (Continued)

pdata = pdata;
for (;;) {
/* Application code */
if (0STaskDelReq(OS_PRIO_SELF) == OS_TASK_DEL_REQ) {
Release any owned resources;
De-allocate any dynamic memory;
0STaskDel (0S_PRIO_SELF);
} else {
/* Application code */

}

(1)
(2)

(3)

L4.12(1) When 0STaskDelReq() returns 0S_TASK_DEL_REQ to its caller, it indicates that another task

has requested that this task needs to be deleted.
L4.12(2)

L4.12(3) In this case, the task to be deleted releases any resources owned and calls
0STaskDel(0S_PRIO_SELF) to delete itself. As previously mentioned, the code for the
task is not actually deleted. Instead, uC/OS-11 simply does not schedule the task for exe-
cution. In other words, the task code no longer runs. You can, however, recreate the task

by calling either 0STaskCreate() or 0STaskCreateExt ().

The code for 0STaskDelReq() isshown in Listing 4.13. As usual, 0STaskDe1Req() needs to check

for boundary conditions.

Listing4.13 0STaskDelReq().

INT8U 0STaskDelReq (INT8U prio)

{

fFif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

Jfendif
BOOLEAN stat;
INT8U err;

0S_TCB “itcls

JHif OS_ARG_CHK_EN > 0
if (prio = OS_IDLE_PRIO) {
return (OS_TASK_DEL_IDLE);

Requesting to Delete a Task, 0STaskDelReq() 135

Listing4.13 0STaskDelReq(). (Continued)

if (prio >= OS_LOWEST_PRIO && prio != OS_PRIO_SELF) { (2)
return (OS_PRIO_INVALID);

}

fendi

if (prio = OS_PRIO_SELF) { (3)
OS_ENTER_CRITICAL(C);
stat = OSTCBCur->0STCBDelReq;
OS_EXIT_CRITICAL();
return (stat);

}
OS_ENTER_CRITICALC();
ptch = OSTCBPrioTbl[priol;

if (ptchb != (OS_TCB *)0) { (4)
ptcb->0STCBDelReq = OS_TASK_DEL_REQ; (5)
err = 0S_NO_ERR;

} else {
err = OS_TASK_NOT_EXIST; (6)

}
OS_EXIT_CRITICAL();
return (err);

}

L4.13(1) First, 0STaskDelReq() notifiesthe caller in case the caller requests to delete the idle task.
L4.13(2) Next, it must ensure that the caller is not trying to request to delete an invalid priority.
L4.13(3) If thecaller isthe task to be deleted, the flag stored in the 0S_TCB is returned.

L4.13(4)

L4.13(5) If you specified a task with a priority other than 0S_PRIO_SELF and the task exists,
0STaskDelReq() setstheinterna flag for that task.

L4.13(6) If the task does not exist, 0STaskDelReq() returns 0S_TASK_NOT_EXIST to indicate that the
task must have deleted itself.

136 Chapter 4: Task Management

4.06 ChangingaTask’s
Priority,0STaskChangePrio()

When you create a task, you assign the task a priority. At runtime, you can change the priority of any
task by calling 0STaskChangePrio(). In other words, uC/OS-I1 allows you to change priorities dynam-
ically. The code for 0STaskChangePrio() isshownin Listing 4.14.

Listing4.14 0STaskChangePrio().

INT8U 0STaskChangePrio (INT8U oldprio, INT8U newprio)
{
JFif OS_CRITICAL_METHOD = 3
0S_CPU_SR Cpu_sr;
ffendif

#Hif OS_EVENT_EN > 0
OS_EVENT *pevent;

frendi f
0S_TCB *ptch;
INT8U 58
INT8U Y
INT8U bitx;
INT8U bity;

#if OS_ARG_CHK_EN > 0

if ((oldprio >= OS_LOWEST_PRIO && oldprio != OS_PRIO_SELF) || (1)
newprio >= 0S_LOWEST_PRIO) ({
return (OS_PRIO_INVALID);

}

ffendif

OS_ENTER_CRITICAL();

if (OSTCBPrioTbl[newprio] != (0S_TCB *)0) { (2)
OS_EXIT_CRITICAL();
return (OS_PRIO_EXIST);

} else {
O0STCBPrioTh1[newprio] = (0S_TCB *)1; (3)
OS_EXIT_CRITICAL();
y = newprio >> 3; (4)
bity = 0SMapTh1ly];
X = newprio & 0x07;
bitx = 0SMapTh1[x]1;
OS_ENTER_CRITICAL();
if (oldprio = OS_PRIO_SELF) { (5)

oldprio = OSTCBCur->0STCBPrio;

Changing a Task's Priority,0STaskChangePrio() 137

Listing4.14 0STaskChangePrio(). (Continued)

}
ptcb = OSTCBPrioTbl[oldpriol;
if (ptcb != (0S_TCB *)0) {
0STCBPrioTbl[oldprio] = (0S_TCB *)0;
if ((OSRdyTb1[ptchb->0STCBY] & ptchb->0STCBBitX) != 0x00) {
if ((OSRdyTbl1[ptcb->0STCBY] &= ~ptcb->0STCBBitX) == 0x00) {
0SRdyGrp &= ~ptcb->0STCBBitY;

O 00 ~N O

}
OSRdyGrp |= bity; (10)
OSRdyTb1Ly] |= bitx;
#if OS_EVENT_EN > 0
} else {
pevent = ptcb->0STCBEventPtr;
if (pevent != (OS_EVENT *)0) { (11)
if ((pevent->0SEventTh1[ptch->0STCBY] &= ~ptch->0STCBBitX) == 0) {
pevent->0SEventGrp &= ~ptcb->0STCBBitY;

}
pevent->0SEventGrp |= bity; (12)
pevent->0SEventTb1ly] |= bitx;

ffendi f
}
0STCBPrioTh1[newprio] = ptch; (13)
ptch->0STCBPrio = newprio; (14)
ptcb->0STCBY =Y; (15)
ptch->0STCBX = X;
ptchb->0STCBBitY bity;
ptchb->0STCBBitX bitx;
OS_EXIT_CRITICAL();
0S_Sched(); (16)
return (0S_NO_ERR);

} else {
0STCBPrioTb1Lnewprio]
OS_EXIT_CRITICAL();
return (OS_PRIO_ERR);

(0S_TCB *)0; (17)

L4.14(1) You cannot change the priority of theidle task. You can change either the priority of the call-
ing task or another task. To change the priority of the calling task, specify either the old prior-
ity of that task or 0S_PRIO_SELF, and 0STaskChangePrio() determines what the priority of
the calling task is for you. You must also specify the new (i.e., desired) priority.

138 Chapter 4: Task Management

L4.14(2) Because MPC/OS-1I cannot have multiple tasks running at the same priority,
0STaskChangePrio() needsto check that the new desired priority is available.

L4.14(3) If the desired priority is available, uC/OS-11 reserves the priority by loading something into
0STCBPrioTb1[newpriol, thus reserving that entry, which allows 0STaskChangePrio() to
re-enable interrupts and know that no other task can either create atask at the desired priority
or have another task call 0STaskChangePrio() by specifying the same new priority.

L4.14(4) 0STaskChangePrio() precomputes some values that are stored in the task’s 0S_TCB. These
values are used to put in or remove the task from the ready list (see Section 3.04, “Ready
List").

L4.14(5) 0STaskChangePrio() then checks to seeif the current task is attempting to change its own
priority.

L4.14(6) Next, we see if the task for which 0STaskChangePrio() is trying to change the priority
exists. Obviously, if it's the current task, this test succeeds.

L4.14(17) However, if 0STaskChangePrio() istrying to change the priority of atask that doesn’t exist,
it must relinquish the “reserved” priority back to the priority table, 0STCBPrioTb1[], and
return an error code to the caller.

L4.14(7) 0STaskChangePrio() now removes the pointer to the 0S_TCB of the task from the priority
table by inserting a NULL pointer, which makes the old priority available for reuse.

L4.14(8) Then, we check to seeiif the task for which 0STaskChangePrio() is changing the priority is
ready to run.

L4.14(9)

L4.14(10) If thetask isready to run, the task must be removed from the ready list at the current priority
and inserted back into the ready list at the new priority. Note here that 0STaskChangePrio()
uses the precomputed values [L4.14(4)] to insert the task in the ready list.

L4.14(11) If the task is not ready, it could be waiting on a semaphore, mutex, mailbox, or queue.
0STaskChangePrio() knows that the task is waiting for one of these events if the
0STCBEventPtrisnon-NULL.

L4.14(12) If the task is waiting for an event, 0STaskChangePrio() must remove the task from the wait
list (at the old priority) of the event control block (see Chapter 6, “Event Control Blocks’)
and insert the task back into the wait list, but this time at the new priority. The task could be
waiting for time to expire (see Chapter 5, “Time Management”) or the task could be sus-
pended [see section 4.07, Suspending a Task, 0STaskSuspend()]. In these cases, items
L4.14(8) through L4.14(12) are skipped.

L4.14(13) Next, 0STaskChangePrio() stores apointer to the task’s 0S_TCB in OSTCBPrioTb1[].
L4.14(14)

L4.14(15) The new priority is saved in the 0S_TCB, and the precomputed values are also saved in the
0S_TCB.

L4.14(16) After 0STaskChangePrio() exitsthe critical section, the scheduler is called in case the new
priority is higher than the old priority or the priority of the calling task.

Suspending a Task, 0STaskSuspend() 139

4.07 Suspending a Task, 0STaskSuspend()

Sometimesit is useful to suspend the execution of atask explicitly. Suspension is accomplished with the
0STaskSuspend() function call. A suspended task can only be resumed by calling the 0STaskResume ()
function call. Task suspension is additive, which means that if the task being suspended is also waiting
for time to expire, the suspension needs to be removed and the time needs to expire in order for the task
to be ready to run. A task can suspend either itself or another task.

The code for 0STaskSuspend() isshown in Listing 4.15.

Listing4.15 0STaskSuspend().

INT8U 0STaskSuspend (INT8U prio)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendi
BOOLEAN self;
0S_TCB *ptcb;

##1f OS_ARG_CHK_EN > 0
if (prio = OS_IDLE_PRIO) f{ (1)
return (OS_TASK_SUSPEND_IDLE);
}
if (prio >= OS_LOWEST_PRIO && prio != OS_PRIO_SELF) { (2)
return (OS_PRIO_INVALID);
}

ffendi

OS_ENTER_CRITICALC();

if (prio = 0S_PRIO_SELF) f{ (3)
prio = 0STCBCur->0STCBPrio;
self = TRUE;

} else if (prio == OSTCBCur->0STCBPrio) f{ (4)
self = TRUE;

} else {
self = FALSE;

}

ptcb = 0STCBPrioThbl[priol; (5)

if (ptchb = (0S_TCB *)0) {
0S_EXIT_CRITICAL();
return (0S_TASK_SUSPEND_PRIO):

140 Chapter 4: Task Management

Listing4.15 0STaskSuspend (). (Continued)
if ((OSRdyTb1[ptch->0STCBY] &= ~ptch->0STCBBitX) == 0x00) { (6)

}

OSRdyGrp &= ~ptch->0STCBBitY;

ptcb->0STCBStat |= OS_STAT_SUSPEND; (7)
OS_EXIT_CRITICAL();
if (self == TRUE) {

}

0S_Sched(); (8)

return (0S_NO_ERR);

}

L4.15(1)
L4.15(2)

L4.15(3)

L4.15(4)

L4.15(5)
L4.15(6)

L4.15(7)

L4.15(8)

0STaskSuspend() ensures that your application is not attempting to suspend the idle task.

Next, you must specify a valid priority. Remember that the highest valid priority number
(i.e., lowest priority) is0S_LOWEST_PRIO-1. Note that you can suspend the statistic task. You
might have noticed that the first test [L4.15(1)] is replicated in [L4.15(2)]. | replicated these
tests to be backward compatible with pC/OS. The first test could be removed to save alittle
bit of processing time, but the amount is really insignificant so | decided to leaveit.

Next, 0STaskSuspend() checksto seeif you specified to suspend the calling task by specify-
ing OS_PRIO_SELF. Inthis case, the current task’s priority isretrieved from its 0S_TCB.

You could also decided to suspend the calling task by specifying its priority. In both of these
cases, the scheduler needs to be called, which iswhy | created the local variable self, which
will be examined at the appropriate time. If you are not suspending the calling task, then
0STaskSuspend() does not need to run the scheduler because the calling task is suspending a
lower priority task.

0STaskSuspend() then checks to see that the task to suspend exists.

If so, thetask isremoved from the ready list. Note that the task to suspend might not bein the
ready list because it could be waiting for an event or for timeto expire. In this case, the corre-

sponding bit for the task to suspend in 0SRdyTb1[] would aready be cleared (i.e., 0). Clear-
ing it again is faster than checking to seeif it's clear and then clearing it if it's not.

Now 0STaskSuspend() setsthe 0S_STAT_SUSPEND flag in the task’s 0S_TCB to indicate that
the task is now suspended.

Finally, 0STaskSuspend() calls the scheduler only if the task being suspended is the calling
task.

Resuming a Task, 0STaskResume() 141

4.08 Resuming a Task, 0STaskResume()

As mentioned in the previous section, a suspended task can only be resumed by calling
0STaskResume (). The code for 0STaskResume() isshownin Listing 4.16.

Listing4.16 0STaskResume().

INT8U 0STaskResume (INT8U prio)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendi
0S_TCB *ptch;

JFif OS_ARG_CHK_EN > 0
if (prio >= O0S_LOWEST_PRIO) { (1)
return (OS_PRIO_INVALID);
}
frendif
OS_ENTER_CRITICAL();
ptch = OSTCBPrioTbl[priol;
if (ptch = (0S_TCB *)0) { (2)
OS_EXIT_CRITICAL();
return (OS_TASK_RESUME_PRIOQ);
}

if ((ptcb->0STCBStat & OS_STAT_SUSPEND) != 0x00) { (3)
if (((ptcb->0STCBStat &= ~0S_STAT_SUSPEND) == OS_STAT_RDY) && (4)
(ptch->0STCBDly == 0)) f{ (5)

OSRdyGrp |= ptcb->0STCBBitY; (6)

OSRdyTb1[ptcb->0STCBY] |= ptcb->0STCBBitX;
OS_EXIT_CRITICAL();
0S_Sched(); (7)
} else {
OS_EXIT_CRITICAL();
}
return (0S_NO_ERR);
}
OS_EXIT_CRITICAL(C);
return (OS_TASK_NOT_SUSPENDED) ;

142 Chapter 4: Task Management

L4.16(1) Because 0STaskSuspend() cannot suspend the idle task, it must verify that your application
is not attempting to resume thistask. Note that this test also ensures that you are not trying
to resume 0S_PRIO_SELF (OS_PRIO_SELF is ffdefined to OxFF, which is always greater
than 0S_LOWEST_PRIO), which wouldn't make sense — you can’'t resume self because self
cannot possibly be suspended.

L4.16(2)

L4.16(3) The task to resume must exist because you will be manipulating its 0S_TCB and must also
have been suspended.

L4.16(4) 0STaskResume() removes the suspension by clearing the 0S_STAT_SUSPEND bhit in the

.0STCBStat field.

L4.16(5) For the task to be ready to run, the .0STCBD1y field must be 0 because no flags exist in
0STCBStat to indicate that atask iswaiting for time to expire.

L4.16(6) Thetask is made ready to run only when both conditions are satisfied.
L4.16(7) Findly, thescheduler iscalled to seeif the resumed task has ahigher priority than the calling task.

4.09 Getting Information about a Task,
0STaskQuery()

Your application can obtain information about itself or other application tasks by calling 0STaskQuery ().
In fact, 0STaskQuery () obtainsacopy of the contents of the desired task’s 0S_TCB. The fields available to
you in the 0S_TCB depend on the configuration of your application (see 0S_CFG.H). Indeed, because
MC/OSH 1 isscaable, it only includes the features that your application requires.

To call 0STaskQuery (), your application must allocate storage for an 0S_TCB, as shown in Listing
4.17. This0S_TCBisin atotally different data space from the 0S_TCBs allocated by uC/OS-1. After call-
ing 0STaskQuery (), this 0S_TCB contains a snapshot of the 0S_TCB for the desired task. You need to be
careful with the links to other 0S_TCBs (i.e., .0STCBNext and .0STCBPrev); you don’t want to change
what these links are pointing to! In general, only use this function to see what atask is doing — a great
tool for debugging.

Listing4.17 Obtaining information about a task.

void MyTask (void *pdata)
{
0S_TCB MyTaskData;

pdata = pdata;

for (;;5) f
/* User code &/
err = 0STaskQuery (10, &MyTaskData);
/* Examine error code .. o

/* User code &7

Getting Information about a Task, 0STaskQuery() 143

The code for 0STaskQuery () isshown in Listing 4.18.

Listing4.18 0STaskQuery().
INT8U 0STaskQuery (INT8U prio, 0S_TCB *pdata)

{

Jif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

ffendif

0S_TCB *ptch;

i f OS_ARG_CHK_EN > 0

if

}
{fendif

0S_

if

}

(prio > OS_LOWEST_PRIO && prio != OS_PRIO_SELF) { (1)
return (OS_PRIO_INVALID);

ENTER_CRITICALC();
(prio = 0S_PRIO_SELF) { (2)
prio = 0STCBCur->0STCBPrio;

ptch = OSTCBPrioTbl[priol;

if (ptcb == (0S_TCB *)0) { (3)
OS_EXIT_CRITICALC();
return (0OS_PRIO_ERR);
}
memcpy (pdata, ptcb, sizeof(0S_TCB)); (4)
OS_EXIT_CRITICAL();

return (0S_NO_ERR);

L4.18(1)

L4.18(2)
L4.18(3)

L4.18(4)

Note that | allow you to examine all the tasks, including the idle task. You need to be espe-
cialy careful not to change what .0STCBNext and .0STCBPrev points to.

As usual, 0STaskQuery () checks to see if you want information about the current task and
that the task has been created.

All fields are copied using the assignment shown instead of field by field. Using memcpy () is
much faster than field-by-field copy or even-structure copies because the compiler will most
likely generate memory-copy instructions.

144 Chapter 4: Task Management

Chapter 5

Time Management

Section 3.11, “Clock Tick,” established that uC/OS-11 requires (as do most kernels) that you provide a
periodic interrupt to keep track of time delays and timeouts. This periodic time source is called a clock
tick and should occur between 10 and 100 times per second, or Hertz. The actual frequency of the clock
tick depends on the desired tick resolution of your application. However, the higher the frequency of the
ticker, the higher the overhead.

Section 3.10, “Interrupts Under uC/OS-11", discussed the tick ISR, as well as the function to call to
notify pC/OS-11 about the tick interrupt — 0STimeT1ick (). This chapter describes five services that deal
with time issues:

e OSTimeDly(),

e 0STimeD1yHMSM(),

e (STimeDlyResume(),
e 0STimeGet(), and

e 0STimeSet().

The functions described in this chapter are found in the file 0S_TIME.C.

Some of the time management services must be enabled by setting configuration constants in
0S_CFG.H. Specifically, Table 5.1 shows which services are compiled, based on the value of config-
uration constants found in 0S_CFG.H.

Table5.1 Time management configuration constantsin 0S_CFG.H.

HC/OS-I1 Time Management Service Enabled when setto 1in 0S_CFG.H
0STimeDly()

0STimeD1yHMSM() OS_TIME_DLY_HMSM_EN
0STimeD1yResume() OS_TIME_DLY_RESUME_EN
0STimeGet() OS_TIME_GET_SET_EN
0STimeSet () OS_TIME_GET_SET_EN

145

146 Chapter 5: Time Management

5.00 DelayingaTask, 0STimeD1y()

MC/OS-11 provides a service that alows the calling task to delay itself for a user-specified number of
clock ticks. This function is called 0STimeD1y (). Calling this function causes a context switch and
forces uC/OS 11 to execute the next highest priority task that is ready to run. The task calling
0STimeD1y() is made ready to run as soon as the time specified expires or if another task cancels the
delay by calling 0STimeD1yResume (). Note that this task runs only when it’s the highest priority task.

Listing 5.1 shows the code for 0STimeD1y (). Your application calls this function by supplying the
number of ticksto delay — avalue between 1 and 65,535. A value of 0 specifies no delay.

Listing5.1 0STimeDly().

void 0STimeDly (INT16U ticks)
{

if (ticks > 0) | (1)
OS_ENTER_CRITICAL();
if ((OSRdyTb1[OSTCBCur->0STCBY] &= ~OSTCBCur->0STCBBitX) = 0) { (2)

OSRdyGrp &= ~OSTCBCur->0STCBBitY;
}

O0STCBCur->0STCBD1y = ticks; (3)
OS_EXIT_CRITICAL();
0SSched(); (4)

L5.1(1) If you specify avalue of 0, you are indicating that you don’'t want to delay the task, so the
function returns immediately to the caller.

L5.1(2) A nonzerovalue causes 0STimeD1y () to remove the current task from the ready list.

L5.1(3) Next, the number of ticks are stored in the 0S_TCB of the current task, where 0STimeTick()
decrements it on every clock tick. You should note that the calling task is not placed in any
wait list. Simply having a non zero value in .0STCBD1y is sufficient for 0STimeTick() to
know that the task is delayed.

L5.1(4) Finaly, because the task is no longer ready, the scheduler is called so that the next highest
priority task that is ready to run is executed.

It isimportant to realize that the resolution of adelay is between zero and onetick. In other words, if
you try to delay for only one tick, you could end up with an intermediate delay between zero and one
tick. This is assuming, however, that your processor is not heavily loaded. Figure 5.1 illustrates what
happens.

Delaying a Task, 0STimeDly() 147

Figure5.1 Delay resolution.

r 10 mS ’i
\; Tick interrupt
)
(2) (5)
OSTickISR() . .
(3)
AlLHPT I

Low Priority Task

F5.1(1)
F5.1(2)

F5.1(3)
F5.1(4)

F5.1(5)
F5.1(6)

4

Task calls OSTimeDly(1) here!

5mS

A tick interrupt occurs every 10ms.

Assuming that you are not servicing any other interrupts and that you have interrupts
enabled, the tick ISR isinvoked.

You might have a few high priority tasks (HPT) waiting for time to expire, so they execute
next.

The low priority task (LPT) shown in Figure 5.1 then executes and, upon completion, calls
0STimeD1y (1) a the moment shown. uC/OS-I1 puts the task to sleep until the next tick.

When the next tick arrives, the tick 1SR executes, but thistime no HPTs exist to execute, and
HC/OS-I1 executes the task that delayed itself for one tick. As you can see, the task actually
delayed for less than one tick! On heavily loaded systems, the task can call 0STimeD1y(1) a
few tens of microseconds before the tick occurs, and thus the delay results in amost no delay
because the task is immediately rescheduled. If your application must delay for at least one
tick, you must call 0STimeD1y (2) and thus specify adelay of two ticks.

148 Chapter 5: Time Management

5.01 DelayingaTask, 0STimeD]1yHMSM()

0STimeD1y() isavery useful function, but your application needs to know time in terms of ticks. You
can use the global jfdefine constant 0S_TICKS_PER_SEC (see 0S_CFG.H) to convert time to ticks by
declaring some ftdefines asfollows:

jidefine OS_TIME_100mS (INT16U)((INT32U)OS_TICKS PER_SEC * 100L / 1000L)
ffdefine OS_TIME_500mS (INT16U)((INT32U)OS_TICKS_PER_SEC * 500L / 1000L)
fidefine OS_TIME_2S (INT16U)(OS_TICKS_PER_SEC * 2)

However, this process is somewhat awkward. | added the function 0STimeD1yHMSM() so that you can
specify time in hours (H), minutes (M), seconds (S), and milliseconds (ms), which is more natural. Like
calling 0STimeD1y (), calling this function causes a context switch and forces pC/OS-11 to execute the
next highest priority task that is ready to run. Thetask calling 0STimeD1yHMSM() is made ready to run
as soon as the time specified expires or if another task cancels the delay by calling
0STimeD1yResume () [see Section 5.02, “Resuming a Delayed Task,0STimeD1yResume()"]. Again,
this task runs only when it again becomes the highest priority task. Listing 5.2 shows the code for
0STimeD1yHMSM(). Asyou can see, your application calls this function by supplying the delay in hours,
minutes, seconds, and milliseconds. In practice, you should avoid delaying a task for long periods of
time because it's always a good idea to get some feedback activity from atask (for example increment a
counter or blink an LED,). However, if you do need long delays, pC/OS-11 can delay a task for 256
hours (close to 11 days).

Listing5.2 0STimeD1yHMSM().

INT8U OSTimeDT1yHMSM (INT8U hours, INT8U minutes, INT8U seconds, INT16U milli)
{

INT32U ticks;

INT16U Toops;

if (hours > 0 || minutes > 0 || seconds > O || milli > 0) { (1)
if (minutes > 59) {
return (OS_TIME_INVALID_MINUTES);
}
if (seconds > 59) {
return (OS_TIME_INVALID_SECONDS);
}
if (milli > 999) {
return (OS_TIME_INVALID_MILLI);

Delaying a Task, 0STimeD1yHMSM() 149

Listing5.2 0STimeD1yHMSM(). (Continued)

J

ticks = (INT32U)hours * 3600L * OS_TICKS_PER_SEC (2)
+ (INT32U)minutes * 60L * OS_TICKS_PER_SEC
(INT32U)seconds * 0S_TICKS_PER_SEC

+ OS_TICKS_PER_SEC * (CINT32U)milli
500L / OS_TICKS_PER_SEC) / 1000L;

loops = ticks / 65536L;
ticks = ticks % 65536L;
0STimeDly(ticks);
while (Toops > 0) f{ (7)
0STimeD1y(32768) ; (8)
0STimeD1y(32768) ;
loops--;

+

Il +
~ o~ o~ ~
o o1 B~ W
NSNS NN

}
return (OS_NO_ERR);

return (OS_TIME_ZERO_DLY); (9)

}

L5.2(1)
L5.2(9)

L5.2(3)

L5.2(4)
L5.2(5)

L5.2(6)
L5.2(7)
L5.2(8)

0STimeD1yHMSM() starts by checking that you have specified valid values for its arguments.
Aswith 0STimeD1y (), 0STimeD1yHMSM() exitsif you specify no delay.

Because uC/OS-11 only knows about ticks, the total number of ticks is computed from the
specified time. The code shown in Listing 5.2 is obviously not very efficient. | just showed
the equation this way so you can see how the total ticks are computed. The actual code effi-
ciently factorsin 0S_TICKS_PER_SEC.

This portion of the equation determines the number of ticks given the specified milliseconds
with rounding to the nearest tick. Thevalue 500/0S_TICKS_PER_SECOND basically corresponds
to 0.5 ticks converted to milliseconds. For example, if the tick rate (0S_TICKS_PER_SEC) is set
to 100Hz (10ms), adelay of 4msresultsin no delay! A delay of Smsresultsin adelay of 10ms,
and so on.

MC/OS-I1 only supports delays of up to 65,535 ticks. To support longer delays, obtained by
L5.2(2), 0STimeD1yHMSM() determines how many times you need to delay for more than
65,535 ticks, as well as the remaining number of ticks. For example, if 0S_TICKS_PER_SEC
is 100 and you want adelay of 15 minutes, then 0STimeD1yHMSM() hasto delay for 15 x 60 x
100 = 90,000 ticks. This delay is broken down into two delays of 32,768 ticks and one delay
of 24,464 ticks (because you can’t delay 65,536 ticks, only 65,535).

In this case, 0STimeD1yHMSM() takes care of the remainder first, then the number of times
65,535 is exceeded (i.e., two 32,768-tick delays).

150 Chapter 5: Time Management

Because of the way 0STimeD1yHMSM() is implemented, you cannot resume (see Section 5.02,
“Resuming a Delayed Task,0STimeD1yResume()") atask that calls 0STimeD1yHMSM() with a com-
bined time that exceeds 65,535 clock ticks. In other words, if the clock tick runs at 100Hz, you cannot
resume a delayed task that calls 0STimeD1yHMSM(0, 10, 55, 350) or higher.

5.02 Resuming a Delayed Task,0STimeD1yResume ()

Instead of waiting for time to expire, a delayed task can be made ready to run by another task that can-
celsthe delay. Thisactionis done by calling 0STimeD1yResume () and specifying the priority of the task
to resume. In fact, 0STimeD1yResume () also can resume atask that iswaiting for an event (see Chapters
7 through 11), although this action is not recommended. In this case, the task pending on the event
thinksit timed out waiting for the event. The code for 0STimeD1yResume() isshownin Listing 5.3.

Listing5.3 Resuming a delayed task.

INT8U 0STimeDlyResume (INT8U prio)
{
JHif OS_CRITICAL_METHOD == 3
0S_CPU_SR cpu_sr;
frendi f
0S_TCB *ptcb;

if (prio >= 0S_LOWEST_PRIO) ({ (1)
return (OS_PRIO_INVALID);

}

OS_ENTER_CRITICALC();

ptcb = (0S_TCB *)OSTCBPrioTb1[priol;

if (ptch != (0S_TCB *)0) { (2)
if (ptcb->0STCBDly != 0) { (3)
ptcb->0STCBDly = 0; (4)

if ((ptcb->0STCBStat & OS_STAT_SUSPEND) = OS_STAT_RDY) { (5)
OSRdyGrp |= ptcb->0STCBBitY; (6)

OSRdyTb1[ptchb->0STCBY] |= ptcb->0STCBBitX;
OS_EXIT_CRITICAL();
0S_Sched(); (7)
} else {
OS_EXIT_CRITICAL();
}
return (0S_NO_ERR);
} else {
OS_EXIT_CRITICAL();
return (OS_TIME_NOT_DLY);

}
OS_EXIT_CRITICAL();
return (OS_TASK_NOT_EXIST);

System Time, 0STimeGet () and 0STimeSet() 151

L5.3(1) 0STimeDlyResume() beginsby making surethe task hasavalid priority.
L5.3(2) Next, 0STimeDlyResume() verifiesthat the task to resume doesin fact exist.

L5.3(3) If thetask exists, 0STimeD1yResume() checksto seeif the task is waiting for time to expire.
Whenever the 0S_TCB field .0STCBD1y contains a nonzero value, the task is waiting for time
to expire because the task called either 0STimeD1y (), 0STimeD1yHMSM(), or any of the PEND
functions described in subsequent chapters.

L5.3(4) Thedelay isthen canceled by forcing .0STCBD1y toO.

L5.3(5) A delayed task might also have been suspended; thus, the task is only made ready to run if
the task was not suspended.

L5.3(6) Thetask isplaced in theready list when the above conditions are satisfied.

L5.3(7) Atthispoint, 0STimeDlyResume() callsthe scheduler to seeif the resumed task has a higher
priority than the current task, which results in a context switch.

Note that you could also have atask delay itself by waiting on a semaphore, mutex, event flag, mail-
box, or queue with atimeout (see Chapters 7 through 11). You resume such atask by simply posting to
the semaphore, mutex, event flag, mailbox, or queue, respectively. The only problem with this scenario
is that it requires you to alocate an event control block (see Section 6.00, “Placing a Task in the ECB
Wait List”), so your application would consume alittle bit more RAM.

5.03 System Time, 0STimeGet () and 0STimeSet()

Whenever a clock tick occurs, UC/OS-I1 increments a 32-bit counter. This counter starts at zero when
you initiate multitasking by calling 0SStart () and rolls over after 4,294,967,295 ticks. At atick rate of
100Hz, this 32-bit counter rolls over every 497 days. You can obtain the current value of this counter by
calling 0STimeGet (). You can aso change the value of the counter by calling 0STimeSet (). The code
for both functions is shown in Listing 5.4. Note that interrupts are disabled when accessing 0STime
because incrementing and copying a 32-bit value on most 8-bit processors requires multiple instructions
that must be treated indivisibly.

Listing5.4 Obtaining and setting the system time.

INT32U 0STimeGet (void)
{
#Hif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
Jfendif
INT32U ticks;

OS_ENTER_CRITICALC();
ticks = 0STime;
OS_EXIT_CRITICAL();
return (ticks);

152 Chapter 5: Time Management

Listing5.4 Obtaining and setting the system time. (Continued)

void OSTimeSet (INT32U ticks)

{

J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

ffendif

OS_ENTER_CRITICAL();
OSTime = ticks;
OS_EXIT_CRITICAL();

Chapter 6

Event Control Blocks

Figure 6.1 (page 153) shows how tasks and ISRs can interact with each other. A task or an ISR signalsa
task through akernel object called an event control block (ECB). The signal is considered to be an event,
which explains my choice of this name.

Figure6.1 Use of event control blocks.

Signal ECB Wait
(1) X @

(3) A

Signal ECB Wait)
(1) X @

Timeout

(3)

Signal

ECB

. Timeout
Wait/Signal

(4)

ECB C

Wait/Signal

(4)

Timeout

153

154 Chapter 6: Event Control Blocks

F6.1A(1) AnISR or atask can signal an ECB.

F6.1A(2) Only atask can wait for another task or an ISR to signal the ECB. An ISR is not alowed to
wait on an ECB.

F6.1A(3) An optional timeout can be specified by the waiting task in case the object is not signaled
within a specified time period.

F6.1B Multiple tasks can wait for a task or an ISR to signal an ECB. When the ECB is sighaled,
only the highest priority task waiting on the ECB is signaled and made ready to run. An ECB
can be a semaphore, a message mailbox, or a message queue, as discussed later.

F6.1C(4) When an ECB is used as a semaphore, tasks can both wait on and signal the ECB.

An ECB is used as a building block to implement services, such as “ Semaphore Management”
(Chapter 7), “Mutual Exclusion Semaphores’ (Chapter 8), “Message Mailbox Management” (Chapter
10), and “Message Queue Management” (Chapter 11).

MC/OS-1I maintains the state of an ECB in a data structure called 0S_EVENT (see uC0S_II.H). The
state of an event consists of the event itself (a counter for a semaphore, a bit for amutex, a pointer for a
message mailbox, or an array of pointers for a queue) and alist of tasks waiting for the event to occur.
Each semaphore, mutual exclusion semaphore, message mailbox, and message queue is assigned an
ECB. The data structure for an ECB is shown in Listing 6.1 and also graphicaly in Figure 6.2

(page 155).

Listing6.1 Event control block data structure.
typedef struct f{

INT8U OSEventType; /* Event type &/
INT8U OSEventGrp; /* Group for wait Tist &/
INT16U OSEventCnt; /* Count (when event is a semaphore) */
void *OSEventPtr; /* Ptr to message or queue structure */
INT8U OSEventTb1[OS_EVENT_TBL_SIZE]; /* Wait Tist for event to occur &/
} OS_EVENT;
.0SEventType

contains the type associated with the ECB and can have the following values: 0S_EVENT_TYPE_SEM,
OS_EVENT_TYPE_MUTEX, OS_EVENT_TYPE_MBOX, or OS_EVENT_TYPE_Q. This field is used to make
sure you are accessing the proper object when you perform operations on these objects through
HC/OS-I's service calls. .0SEventType isthefirst field (and first byte) of the data structure. This
allows run-time checking to determine whether the pointer points to an ECB or an event flag (see
Chapter 9).

.0SEventPtr
is only used when the ECB is assigned to a message mailbox or a message queue. It points to the
message when used for a mailbox or to a data structure when used for a queue (see Chapter 10,
“Message Mailbox Management” and Chapter 11, “Message Queue Management”).

.0SEventTb1[] and .0SEventGrp
aresimilar to 0SRdyTh1[] and 0SRdyGrp, respectively, except that they contain alist of taskswaiting
on the event instead of alist of tasks ready to run (see Section 3.04, “Ready List").

155

.0SEventCnt
is used to hold the semaphore count when the ECB is used for a semaphore (see Chapter 7, “ Sema-
phore Management”) or the mutex and PIP when the ECB is used for a mutex (see Chapter 8,
“Mutual Exclusion Semaphores’).

Figure 6.2 Event Control Block (ECB).

OS_EVENT

pevent ——» . OSEvent Type

. OSEvent Cnt

. OSEvent Pt r
. CSEvent G p

716|514 (3|2|1]fo0

. OSEvent Thbl []

63 6261|6059 |58(|57 |56 v

Each task that needsto wait for the event to occur is placed in the wait list, which consists of the two
variables, .0SEventGrp and .0SEventTh1[]. Notethat | used adot (.) in front of the variable name to
indicate that the variableis part of a data structure. Task priorities are grouped (eight tasks per group) in
.0SEventGrp. Each bitin .0SEventGrp is used to indicate when any task in a group is waiting for the
event to occur. When atask iswaiting, its corresponding bit is set in the wait table, .0SEventTb1[]. The
size (in bytes) of .0SEventTb1[] depends on 0S_LOWEST_PRIO (see uCOS_IT.H). Thisallows pC/OS-|
to reduce the amount of RAM (i.e., data space) when the application requires just afew task priorities.

The task that is resumed when the event occurs is the highest priority task waiting for the event and
correspondsto the lowest priority number that hasabit setin .0SEventTb1[]. The relationship between
.0SEventGrp and .0SEventTb1[] isshown in Figure 6.3 and is given by the following rules.

Bit0in .0SEventGrpis1lwhenany bitin .0SEventTb1[0]is1.
Bit1in .0SEventGrpislwhenany bitin .0SEventTb1[1]is1.
Bit2in .0SEventGrpis1lwhenany bitin .0SEventTb1[2]is1.
Bit 3in .0SEventGrpislwhenany bitin .0SEventTb1[3]is1.
Bit4in .0SEventGrpislwhenany bitin .0SEventTb1[4]is1.
Bit5in .0SEventGrpis1lwhenany bitin .0SEventTb1[5]is1.
Bit6in .0SEventGrpislwhenany bitin .0SEventTb1[6]is1.
Bit 7in .0SEventGrpis1lwhenany bitin .0SEventTb1[7]is1.

156 Chapter 6: Event Control Blocks

Figure6.3 Wait list for task waiting for an event to occur.

.OSEventGrp

.OSEventTbI[OS_LOWEST_PRIO /8 + 1]

[7]6|s5[afs][2]2]0]

A A A A A Highest Priority Task Waiting
L A »/
(0]

716(514]13]2|1]0

A

(1] Q15|14|13|12|11]|10] 9| 8

[2] 23122121120 19|18]| 17|16

3] WM31|30]|29|28]|27|26]25]|24

[4] 39|38|37|36|35]|34|33]32

[5] 471464544 |143|42]141|40

6] W55|54|53|52|51]|50(49]48

[7] 63]62]|61|60|59|58]|57]|56 v

Priority of task waiting __\

for the event to occur.

Task's Priority

IO OlY|Y]Y]| X]|X XI Lowest Priority Task
(Idle Task, can NEVER be waiting)

Bit position in .OSEventTbl[OS_LOWEST_PRIO /8 + 1]

Bit position in .OSEventGrp and
Index into .OSEventTbhI[OS_LOWEST_PRIO /8 + 1]

6.00 Placing a Task in the ECB Wait List

The codein Listing 6.2 places atask in the wait list:

Listing6.2 Making atask wait for an event.

pevent->0SEventGrp |= OSMapTbl[prio >> 31;
pevent->0SEventTbl[prio >> 31 |= 0SMapTbl[prio & 0x077;

prio isthetask’s priority, and pevent isa pointer to the event control block.

You should realize from Listing 6.2 that the time required to insert a task in the wait list is constant
and does not depend on how many tasks are in the system. Also, from Figure 6.3, the lower 3 bits of the
task’s priority are used to determine the bit position in .0SEventTh1[], and the next three most signifi-
cant bits are used to determine the index into .0SEventTb1[]. Note that 0SMapTb1[] (see 0S_CORE.C)
isatablein ROM, used to equate an index from 0O to 7 to a bit mask, as shown in the Table 6.1.

Removing a Task from an ECB Wait List 157

Table6.1 Content of OSMapTbl1[].

I ndex Bit Mask (Binary)
0 00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

N o oA WODN B

6.01 Removing a Task from an ECB Wait List

A task isremoved from the wait list by reversing the process asin Listing 6.3.

Listing6.3 Removing a task from a wait list.

if ((pevent->0SEventTbl[prio >> 3] & ~0SMapTbl[prio & 0x07]1) == 0) {
pevent->0SEventGrp &= ~0SMapTbl[prio >> 37;

This code clears the bit corresponding to the task in .0SEventTb1[] and clears the bit in
.0SEventGrp, only if all tasksin a group are not waiting; that is, all bitsin .0SEventTb1[prio >> 3]
are 0.

6.02 Findingthe Highest Priority Task Waiting on
an ECB

The code to find the highest priority task waiting for an event to occur is shown in Listing 6.4. Table
lookups are again used for performance reasons because we don’'t want to scan the .0SEventTb1[] one
bit at atime to locate the highest priority task waiting on the event.

Listing 6.4 Finding the highest priority task waiting for the event.

y = 0SUnMapTb1[pevent->0SEventGrpl; (1)
X = 0SUnMapTh1[pevent->0SEventTh1ly]]; (2)
prio = (y << 3) + x; (3)

L6.4(1) Using .0SEventGrp asanindex into 0SUnMapTb1[] (see Listing 6.5) you can quickly locate
which entry in .0SEventTb1[] holds the highest priority task waiting for the ECB.

158 Chapter 6: Event Control Blocks

0SUnMapTb1[] returns the bit position of the highest priority bit set — a number between 0
and 7. This number correspondsto theY positionin .0SEventTb1[] (see Figure 6.3).

L6.4(2) After we know which row (see Figure 6.3) contains the highest priority task waiting for the
ECB, we can zoom in on the actual bit by performing another lookup in 0SUnMapTh1[] but
this time, with the entry in .0SEventTb1[] just found. Again, we get a number between 0
and 7. This number corresponds to the X positionin .0SEventTb1[] (see Figure 6.3).

L6.4(3) By combining the two previous operations, we can determine the priority number of the

highest priority task waiting on the ECB. This number is between 0 and 63.

Listing 6.5 0SUnMapTbli[].

INT8U const OSUnMapTh1[] = {

0,01,¢0,2,0,1,0,3,0,1,0,2,0,1,0, /*
4,0,1,0,2,0,1,0,3,60,1, 0, 2,0,1, 0, 7
5,0,1,0,2,0,1, 0, 3,0,1, 0, 2,0,1,0, /=
4,0,1,0,2,0,1,0,3,0,1,0,2, 0,1, 0, /*
6,0,1,0,2,0,1,0,3,0,1, 0,2, 0,1, 0, 7
4,0,1,0,2,0,1,0,3,0,1, 0, 2,0, 1, 0, /=
5, 0,1, 0, 2,0,1,0,3,0,1,0,2,0,1,0, /*
4,0,1,0,2,0,1,0,3,60,1, 0,2, 0,1, 0, 7
/7,0, 1,0,2,60,1,0, 3,0,1, 0,2, 0,1, 0, /=
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /*
5,0,1,60,2,0,1,0,3,0,1, 0, 2, 0,1, 0, 7
4,0,1,0,2,0,1,0,3,0,1, 0, 2,0, 1, 0, /=
6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /*
4,0,1,0,2,0,1,0,3,0,1, 0,2, 0,1, 0, 7
5,0,1,60,2,0,1, 0, 3,0,1, 0,2, 0,1, 0, /=
4,0,1,0,2,0,1,0,3,0,1,0, 2,0, 1,0 /*

Let's look at an example, as shown in Figure 6.4, if .0SEventGrp contains 11001000 (binary) or
0xC8, 0SUnMapTb1[.0SEventGrp] yields avalue of 3, which corresponds to bit 3in .0SEventGrp and
also happens to be the index in .0SEventTb1[], which contains the first non-zero entry. Note that bit
positions are assumed to start on the right with bit O being the rightmost bit. Similarly, if
.0SEventTh1[3] contains 00010000 (binary) or 0x10, 0SUnMapTb1[.0SEventTh1[3]] results in a
valueof 4 (bit 4). The priority of thetask waiting (prio) isthus28 (3 x 8 + 4), which correspondsto

the number in .0SEventTb1[] of Figure 6.3.

0x00
0x10
0x20
0x30
0x40
0x50
0x60
0x70
0x80
0x90
0xAQ
0xBO
0xC0
0xDO0
OxEQ
OxFO

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

Ox0F
Ox1F
Ox2F
Ox3F
Ox4F
Ox5F
Ox6F
Ox7F
Ox8F
Ox9F
OxAF
OxBF
OxCF
OxDF
OxEF
OxFF

*/
=/
*/
*/
=/
*/
*/
=/
*/
*/
=/
*/
*/
=/
*/
*/

List of FreeECBs 159

Figure 6.4 Example of ECB wait list.

. OSEvent G p

7 6 5 4 3 2 1 0
IllOOlOOOI
A A A 4 2 L < I
[0] 0
[1]
[2]

(3]
[4]

N

A

~
o
a
IN
w
N
[
o

[N
w

o|lo|o

oO|l|o|l|lo|J]o|lo|o

(5]
(6]
[7]

ojlojo|j]o|]o]|]o|o

o o o o | o o o | o

o o o o |+

o o o o | o o o | o

o [l o o | o o o | o

o o o o | o o o | o

o o o o | o o o | o
IN

. OSEvent Tbl []
Task's Priority

lolofolsf[1]1]0]0]

Bit position in . OSEvent Tbl []

Bit position in . OSEventGp and
Index into . OSEvent Thi []

6.03 List of Free ECBs

The number of ECBs to allocate depends on the number of semaphores, mutual exclusion semaphores,
mailboxes, and queues needed for the application. The number of ECBsis established by the #fdefine
0S_MAX_EVENTS, which is found in 0S_CFG.H. When 0SInit() is called (see Section 3.12, “uC/OS-|
Initialization™), all ECBs are linked in asingly linked list — the list of free ECBs (Figure 6.5). When a
semaphore, mutex, mailbox, or queue is created, an ECB isremoved from thislist and initialized. ECBs
can be returned to the list of free ECBs by invoking the 05??7De1 () functions for semaphore, mutex,
mailbox, or queue services.

160 Chapter 6: Event Control Blocks

Figure 6.5 List of free ECBs.

OS_EVENT OS_EVENT OS_EVENT OS_EVENT
| cstventFreetist o> . CSEvent Type OSEvent Type OsEvent Type QsEvent Type
. CSEvent Cnt . CsEvent Cnt OsEvent Gnt . CSEvent Cnt
OSEvent Pt r o> CSEvent Ptr o1 cseventptr @ = — — — — P CSEvent Ptr o+4—» 0
OSEvent G p OSEvent G p OSEvent G p . CSEvent G p
7le]s]afs|2]1]0 7]efs]af3]z2]1]0 7]efs]af3]z2]1]0 7[es]a]s|2]1]0
6362|61|60]59]58]57 |56 6362616059 58[57[56 6362616059 58]57[56 63|62 [61]60[59]58[57 [s6
< OS_MAX_EVENTS

v

Four common operations can be performed on ECBs:

» initialize an ECB,

* make atask ready,

» make atask wait for an event, and

» make atask ready because atimeout occurred while waiting for an event.

To avoid duplicating code and thus to reduce code size, four functions have been created to perform these
operations. 0S_EventWaitListInit(), 0S_EventTaskRdy(), OS_EventWait(), and 0S_EventTO(),
respectively.

6.04 Initializing an ECB,
0S_EventWaitListInit()

Listing 6.6 shows the code for 0S_EventWaitListInit(), which is a function called when a sema-
phore, mutex, message mailbox, or message queue is created [see 0SSemCreate(), 0SMutexCreate(),
0SMboxCreate(), or 0SQCreate()]. All that isaccomplished by 0S_EventWaitListInit() istoindi-
cate that no task is waiting on the ECB. 0S_EventWaitlListInit() ispassed a pointer to an event con-
trol block, which is assigned when the semaphore, mutex, message mailbox, or message queue is
created. The codeisimplemented inline to avoid the overhead of afor loop.

Listing 6.6 Initializing the wait list.

void OS_EventWaitListInit (OS_EVENT *pevent)
{
INT8U *pthl;

pevent->0SEventGrp
ptbl

0x00;
&pevent->0SEventTb1[0];

Making a Task Ready, 0S_EventTaskRdy() 161

Listing 6.6 Initializing the wait list. (Continued)

JHif OS_EVENT _TBL _SIZE > 0
*ptbhl++ = 0x00;
Jfendif

JFif OS_EVENT_TBL_SIZE > 1
*pthl++ = 0x00;
ffendi f

JFif OS_EVENT_TBL_SIZE > 2
*ptbl++ = 0x00;
ffendif

JHif OS_EVENT _TBL SIZE > 3
*ptbhl++ = 0x00;
Jfendif

JFif OS_EVENT_TBL_SIZE > 4
*pthl++ = 0x00;
ffendi f

JFif OS_EVENT_TBL_SIZE > 5
*ptbl++ = 0x00;
ffendif

JHif OS_EVENT _TBL _SIZE > 6
*ptbhl++ = 0x00;
Jfendif

JFif OS_EVENT_TBL_SIZE > 7
*pthl = 0x00;

ffendi f

}

6.05 Making a Task Ready, 0S_EventTaskRdy()

Listing 6.7 shows the code for 0S_EventTaskRdy (). Thisfunctionis called by the POST functions for a
semaphore, a mutex, a message mailbox, or a message queue when an ECB is signaled and the highest
priority task waiting on the ECB needs to be made ready to run. In other words, 0S_EventTaskRdy ()
removes the highest priority task (HPT) from the wait list of the ECB and makes this task ready to run.

162 Chapter 6: Event Control Blocks

Listing 6.7 Making a task ready to run.

INT8U 0S_EventTaskRdy (OS_EVENT *pevent, void *msg, INT8U msk)
{
0S_TCB *ptcb;

INTBU x;

INT8U y;

INT8U Dbitx;

INT8U bity;

INT8U prio;

y = 0SUnMapTb1[pevent->0SEventGrpl; (D
bity = 0SMapTh1ly]; (2)
x = 0SUnMapTb1[pevent->0SEventTb1[y1]; (3)
bitx = 0SMapTb1[x]; (4)
prio = (INTBU)((y << 3) + X); (5)
if ((pevent->0SEventTbl[y] &= ~bitx) = 0x00) { (6)

pevent->0SEventGrp &= ~bity;
}

ptch = OSTCBPrioTbl[priol; (7)
ptch->0STCBD1y = g (8)
ptch->0STCBEventPtr = (OS_EVENT *)O; (9)
#if ((0S_Q_EN > 0) && (0S_MAX_QS > 0)) || (OS_MBOX_EN > 0)
ptch->0STCBMsg = msgq; (10)
frelse
msg = msg;
ffendif
ptcb->0STCBStat &= ~msk; (11)
if (ptcb->0STCBStat == OS_STAT_RDY) { (12)
OSRdyGrp |= bity; (13)
0SRdyTb1[y] |= bitx;
}
return (prio); (14)

}

L6.7(1) 0S_EventTaskRdy() starts by determining the index into .0SEventTb1[] of the HPT, a
number between 0 and 0S_LOWEST_PRI0/8 + 1.

L6.7(2) Thenthebit mask of the HPT in .0SEventGrp isobtained (see Table 6.1 for possible values).

Making a Task Wait for an Event, 0S_EventTaskWait() 163

L6.7(3)

L6.7(4) 0S_EventTaskRdy() then determines the bit position of the task in .0SEventTb1[], avaue
between 0 and 0S_LOWEST_PRI0/8 + 1, and the bit mask of the HPT in .0SEventTh1[] (see
Table 6.1 for possible values).

L6.7(5) The priority of the task being made ready to run is determined by combining the x and y indi-
ces.

L6.7(6) At thispoint, you can extract the task from the wait list. The code looks alittle bit different
than what was presented in Listing 6.3, but otherwise, it works just the same.

L6.7(7) Thetask control block (TCB) of the task being readied contains information that needs to be
changed. Knowing the task’s priority, you can obtain a pointer to that TCB.

L6.7(8) Becausethe HPT isnot waiting anymore, you need to make sure that 0STimeT1ick () does not
attempt to decrement the .0STCBD1y value of that task, which is done by forcing .0STCBD1y
to 0.

L6.7(9) The pointer to the ECB isforced to NULL because the HPT is no longer waiting on this ECB.
L6.7(10) A messageissenttotheHPT if 0S_FventTaskRdy () iscalled by the POST functions for mes-
sage mailboxes and message queues. This message is passed as an argument and needs to be
placed in the task’s TCB.

L6.7(11) When 0S_EventTaskRdy () is caled, the msk argument contains the appropriate bit mask to
clear the bit in .0STCBStat, which corresponds to the type of event signaled (0S_STAT_SEM,
0S_STAT_MUTEX, OS_STAT_MBOX, or 0S_STAT_Q).

L6.7(12)

L6.7(13) If .0STCBStat indicates that the task is now ready to run, 0S_EventTaskRdy () inserts this
task in UC/OS-I1's ready list. Note that the task might not be ready to run becauseit could have
been explicitly suspended [see Section 4.07, “Suspending a Task, 0STaskSuspend()”, and
Section 4.08, “Resuming aTask, 0STaskResume ()"].

L6.7(14) 0S_EventTaskRdy() returnsthe priority of the task readied.

Note that 0S_EventTaskRdy () iscaled with interrupts disabled.

6.06 Making a Task Wait for an Event,
0S_EventTaskWait()

Listing 6.8 shows the code for 0S_FventTaskWait (). Thisfunction is called by the PEND functions of a
semaphore, mutex, message mailbox, and message queue when a task must wait on an ECB. In other
words, 0S_FventTaskWait() removesthe current task from theready list and placesit in the wait list of
the ECB.

164 Chapter 6: Event Control Blocks

Listing 6.8 Making atask wait on an ECB.

void OS_EventTaskWait (OS_EVENT *pevent)

{
OSTCBCur->0STCBEventPtr = pevent; (1)
if ((OSRdyTb1[OSTCBCur->0STCBY] &= ~0STCBCur->0STCBBitX) = 0x00) { (2)

OSRdyGrp &= ~0STCBCur->0STCBBitY;

}
pevent->0SEventTb1[OSTCBCur->0STCBY] |= OSTCBCur->0STCBBitX; (3)
pevent->0SEventGrp |= OSTCBCur->0STCBBitY;

}

L6.8(1) The pointer to the ECB is placed in the task’s TCB, linking the task to the event control
block.

L6.8(2) Thetask isremoved from the ready list.
L6.8(3) Thetask isplaced inthe wait list for the ECB.

6.07 Making a Task Ready Because of a Timeout,
0S_EventTO()

Listing 6.9 shows the code for 0S_EventTO(). This function is called by PEND functions for a sema-
phore, mutex, message mailbox, and message queue when 0STimeTick() has readied a task to run,
which means that the ECB was not signaled within the specified timeout period.

Listing6.9 Making atask ready because of a timeout.

void O0S_EventTO (OS_EVENT *pevent)
{
if ((pevent->0SEventTb1[OSTCBCur->0STCBY] &= ~OSTCBCur->0STCBBitX) = 0x00) f{ (1)
pevent->0SEventGrp &= ~0STCBCur->0STCBBitY;
}
0STCBCur->0STCBStat = 0S_STAT_RDY; (2)
O0STCBCur->0STCBEventPtr = (O0S_EVENT *)0; (3)
}

L6.9(1) 0S_EventTO() must remove the task from the wait list of the ECB. The code look alittle bit
different than the code shown in Listing 6.3. However, it does the same thing.

L6.9(2) Thetask isthen marked as being ready.
L6.9(3) Thelink to the ECB isfinaly removed from the task’s TCB.
You should note that 0S_EventT0() isalso called with interrupts disabled.

Chapter 7

Semaphore Management

MC/OS-1I semaphores consist of two elements: a 16-bit unsigned integer used to hold the semaphore
count (0 to 65,535) and alist of tasks waiting for the semaphore count to be greater than 0. uC/OS-11 pro-
vides six services to access semaphores. 0SSemAccept (), 0SSemCreate(), 0SSemDel (), 0SSemPend (),
0SSemPost () and 0SSemQuery ().

To enable uC/OS-11 semaphore services, you must set the configuration constants in 0S_CFG.H.
Specifically, Table 7.1 shows which services are compiled, based on the value of configuration constants
found in 0S_CFG.H. You should note that none of the semaphore services are enabled when 0S_SEM_EN
isset to 0. To enable the feature (i.e., service), simply set the configuration constant to 1. You should
notice that 0SSemCreate(), 0SSemPend(), and 0SSemPost () cannot be individually disabled as can the
other services. That's because they are always needed when you enable pC/OS-I1 semaphore manage-
ment.

Table7.1 Semaphore configuration constantsin 0S_CFG. H.

HC/OS-I1 Semaphore Service Enabled when set to 1in 0S_CFG.H
0SSemAccept () 0S_SEM_ACCEPT_EN

0SSemCreate()

0SSemDel () 0S_SEM_DEL_EN

0SSemPend()
0SSemPost ()
0SSemQuery () 0S_SEM_QUERY_EN

Figure 7.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and a semaphore.
Note that the symbology used to represent a semaphore is either akey or aflag. You use akey symbol in
such flow diagrams if the semaphore is used to access shared resources. The N next to the key represents
how many resources are available. Nis1 for abinary semaphore. Use aflag symbol when a semaphore
is used to signal the occurrence of an event. N in this case represents the number of times the event can
be signaled. The hourglass represents a timeout that can be specified with the 0SSemPend () call.

165

166 Chapter 7: Semaphore Management

As you can see from Figure 7.1, a task or an ISR can call 0SSemAccept(), 0SSemPost(), or
0SSemQuery (). However, only tasks are allowed to call 0SSemDe1 () or 0SSemPend ().

Figure7.1 Relationships between tasks, | SRs, and a semaphore.

OSSentr eat e() OSSemAccept ()

ossenDel () X OSSenPend()

OSSenPost () OSSemQuer y()
R

Z

N
% OSSemccept () -

7.00 Creating a Semaphore, 0SSemCreate()

A semaphore needs to be created before it can be used. You create a semaphore by calling 0SSemCreate ()

and specifying the initial count of the semaphore. The initia value of a semaphore can be between 0 and

65,535. If you use the semaphore to signal the occurrence of one or more events, you typicaly initialize

the semaphore to 0. If you use the semaphore to access a single shared resource, you need to initialize the

semaphore to 1 (i.e., use it as a binary semaphore). Finaly, if the semaphore allows your application to

obtain any one of n identical resources, initialize the semaphore to n and use it as a counting semaphore.
The code to create a semaphoreis shown in Listing 7.1.

Listing7.1 Creating a sesmaphore.

O0S_EVENT *0SSemCreate (INT16U cnt)
{
JHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr; (1)
frendif
OS_EVENT *pevent;

if (0SIntNesting > 0) { (2)
return ((OS_EVENT *)0);

}

OS_ENTER_CRITICAL();

pevent = 0SEventFreelist; (3)

if (OSEventFreelist != (OS_EVENT *)0) { (4)
OSEventFreelist = (OS_EVENT *)0SEventFreelist->0SEventPtr; (5)

Creating a Semaphore, 0SSemCreate() 167

Listing 7.1 Creating a semaphore. (Continued)
OS_EXIT_CRITICAL();

if (pevent != (OS_EVENT *)0) f{ (6)
pevent->0SEventType = OS_EVENT_TYPE_SEM; (7)
pevent->0SEventCnt = cnt; (8)
pevent->0SEventPtr = (void *)0; (9)
0S_EventWaitListInit(pevent); (10)

}

return (pevent); (11)

}

L7.1(1)
L7.1(2)
L7.1(3)

L7.1(4)
L7.1(5)
L7.1(6)
L7.1(7)

L7.1(8)
L7.1(9)

L7.1(10)

L7.1(11)

A local variable called cpu_sr to support 0S_CRITICAL_METHOD #3 isallocated.

0SSemCreate() starts by making sure you are not calling this function from an ISR because
thisisnot allowed. All kernel objects need to be created from task-level code or before mul-
titasking starts.

0SSemCreate() then attempts to obtain an ECB from the free list of ECBs (see Figure 6.5,
page 160).

Thelinked list of free ECBsis adjusted to point to the next free ECB.

If an ECB isavailable, the ECB typeisset to 0S_EVENT_TYPE_SEM. Other 0SSem??7?() func-
tion calls check this structure member to make sure that the ECB is of the proper type (i.e., a
semaphore). This prevents you from calling 0SSemPost () on an ECB that was created for
use as a message mailbox (see Chapter 10, “Message Mailbox Management”).

Next, the desired initial count for the semaphore is stored in the ECB.

The .0SEventPtr field is then initialized to point to NULL because it doesn’t belong to the
free ECB linked list anymore.

The wait list isthen initialized by calling 0S_EventWaitListInit() [see Section 6.04, “Ini-
tializing an ECB, 0S_EventWaitListInit()"]. Because the semaphore is being initial-
ized, there are no tasks waiting for it and thus, 0S_EventWaitListInit() clears
.0SEventGrp and .0SEventTb1[].

Finally, 0SSemCreate () returnsapointer to the ECB. This pointer must be used in subsequent
calls to manipulate semaphores 0SSemAccept (), 0SSemDel (), 0SSemPend(), 0SSemPost ()
and 0SSemQuery (). The pointer is basically used as the semaphore'shandle. If no more ECBs
exist, 0SSemCreate() returns a NULL pointer. You should make it a habit to check the return
values to ensure that you are getting the desired results. Passing NULL pointers to uC/OS-1|
does not make it fail because uC/OS-1l validates arguments (only if 0S_ARG_CHK_EN is set to
1, though).

Figure 7.2 shows the content of the ECB just before 0SSemCreate() returns.

168 Chapter 7: Semaphore Management

Figure7.2 ECB just before 0SSemCreate() returns.

OS_EVENT

pevent — 0S_EVENT_TYPE_SEM

cnt

(void *)0

0x00

716 |54 |13(2]1

63 |62 | 61|60 |59 |58]|57

56

. OSEvent Type
. CSEvent Cnt

. OSEvent Ptr

. CSEvent G p

. CSEvent Tbl []

ALL
initialized
to

0x00

7.01 Deleting a Semaphore, 0SSemDel ()

The code to delete a semaphore is shown in Listing 7.2, and code is only generated by the compiler if
0S_SEM_DEL_ENissetto1in 0S_CFG.H. You must use this function with caution because multiple tasks
could attempt to access a deleted semaphore. You should always use this function with great care. Gen-
erally speaking, before you del ete a semaphore, you should first delete all the tasks that access the sema-

phore.

Listing7.2 Deleting a semaphore.

OS_EVENT ~ *0SSemDel (OS_EVENT *pevent, INT8U opt, INT8U *err)

{
JHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendif
BOOLEAN tasks_waiting;

Deleting a Semaphore, 0SSemDel() 169

Listing 7.2 Deleting a semaphore. (Continued)

if (0SIntNesting > 0) { (1)
*err = OS_ERR_DEL_ISR;
return (pevent);
}
fFif OS_ARG_CHK_EN > 0
if (pevent == (OS_EVENT *)0) { (2)
*err = 0S_ERR_PEVENT_NULL;
return (pevent);
}
if (pevent->0SEventType != OS_EVENT_TYPE_SEM) { (3)
*err = OS_ERR_EVENT_TYPE;
return (pevent);
}
ffendif
OS_ENTER_CRITICAL();
if (pevent->0SEventGrp != 0x00) { (4)
tasks_waiting = TRUE;
} else |
tasks_waiting = FALSE;

}
switch (opt) f{
case OS_DEL_NO_PEND:

if (tasks_waiting = FALSE) ({ (5)
pevent->0SEventType = OS_EVENT_TYPE_UNUSED; (6)
pevent->0SEventPtr = OSEventFreelist; (7)

OSEventFreelist = pevent;

OS_EXIT_CRITICAL();

*err = 0S_NO_ERR;

return ((OS_EVENT *)0); (8)
} else {

OS_EXIT_CRITICAL();

*err = OS_ERR_TASK_WAITING;

return (pevent);

170 Chapter 7: Semaphore Management

Listing 7.2 Deleting a semaphore. (Continued)

}

L7.2(1)

L7.2(2)
L7.2(3)

L7.2(4)

L7.2(5)
L7.2(6)
L7.2(7)

L7.2(8)

case OS_DEL_ALWAYS: (9)
while (pevent->0SEventGrp != 0x00) { (10)
0S_EventTaskRdy(pevent, (void *)0, OS_STAT_SEM);
}
pevent->0SEventType = OS_EVENT_TYPE_UNUSED; (11)
pevent->0SEventPtr 0SEventFreelist; (12)
OSEventFreelist = pevent;
OS_EXIT_CRITICAL();
if (tasks_waiting = TRUE) {
0S_Sched(); (13)

}
*err = 0S_NO_ERR;
return ((OS_EVENT *)0); (14)

default:
OS_EXIT_CRITICAL();
*err = OS_ERR_INVALID_OPT;
return (pevent);

0SSemDe1 () starts by making sure that this function is not called from an ISR because that's
not allowed.

0SSemDel () validates pevent to ensure that it's not a NULL pointer and that it points to an
ECB that was created as a semaphore.

0SSemDe1 () then determines whether there are any tasks waiting on the semaphore. Theflag
tasks_waiting isset accordingly.

Based on the option (i.e., opt) specified in the call, 0SSemDe1 () either deletes the sema-
phore only if no tasks are pending on the semaphore (opt = 0S_DEL_NO_PEND) or deletes
the semaphore even if tasks are waiting (opt == 0S_DEL_ALWAYS).

When opt is set to 0S_DEL_NO_PEND and no task is waiting on the semaphore, 0SSemDe1 ()
marks the ECB as unused, and the ECB is returned to the free list of ECBs. This action
allows another semaphore (or any other ECB-based object) to be created.

You should note that 0SSemDe1 () returnsaNULL pointer because, at this point, the semaphore
should no longer be accessed through the original pointer. 0SSemDel () returns an error code
if tasks are waiting on the semaphore (i.e., 0S_ERR_TASK_WAITING) because, by specifying
0S_DEL_NO_PEND, you indicated that you didn't want to delete the semaphore if tasks are
waiting on the semaphore.

Waiting on a Semaphore (Blocking), 0SSemPend() 171

L7.2(9)

L7.2(10) When opt is set to 0S_DEL_ALWAYS, then all tasks waiting on the semaphore are readied.
Each task thinks it has access to the semaphore. Of course, that's a dangerous outcome
because the whole point of having a semaphore could be to protect against multiple accesses
to aresource.

L7.2(11)

L7.2(12) After all pending tasks are readied, 0SSemDe1 () marks the ECB as unused, and the ECB is
returned to the freelist of ECBs.

L7.2(13) Thescheduler iscalled only if tasks were waiting on the semaphore.

L7.2(14) Again, you should note that 0SSemDe1 () returns a NULL pointer because, at this point, the
semaphore should no longer be accessed through the original pointer.

7.02 Waiting on a Semaphore (Blocking),
0SSemPend ()

The code to wait on a semaphoreis shown in Listing 7.3.

Listing 7.3 Waiting on a semaphore.

void 0SSemPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
{
Jif OS_CRITICAL_METHOD = 3

0S_CPU_SR cpu_sr;

ffendi f
if (0SIntNesting > 0) { (1)
*err = 0S_ERR_PEND_ISR;
return;

}
J#if OS_ARG_CHK_EN > 0
if (pevent = (OS_EVENT *)0) { (2)
*err = OS_ERR_PEVENT_NULL;
return;
}
if (pevent->0SEventType != OS_EVENT_TYPE_SEM) { (3)
*err = OS_ERR_EVENT_TYPE;
return;
}
frendi f
OS_ENTER_CRITICAL();

172 Chapter 7: Semaphore Management

Listing 7.3 Waiting on a semaphore. (Continued)

if (pevent->0SEventCnt > 0) { (4)
pevent->0SEventCnt--; (5)
OS_EXIT_CRITICAL(C);

*err = 0S_NO_ERR; (6)
return;

}

OSTCBCur->0STCBStat |= OS_STAT_SEM; (7)

OSTCBCur->0STCBDly = timeout; (8)

0S_EventTaskWait(pevent); (9)

OS_EXIT_CRITICAL(C);

0S_Sched(); (10)

OS_ENTER_CRITICAL();

if (OSTCBCur->0STCBStat & OS_STAT_SEM) { (11)
0S_EventTO(pevent); (12)
OS_EXIT_CRITICAL(C);

*err = 0S_TIMEOUT; (13)
return;

}

OSTCBCur->0STCBEventPtr = (O0S_EVENT *)0; (14)

OS_EXIT_CRITICALC();
*err = 0S_NO_ERR;

}

L7.3(2)

L7.3(2)
L7.3(3)

L7.3(4)
L7.3(5)
L7.3(6)

L7.3(6)

0SSemPend () checks to see if an ISR called the function. It doesn't make sense to call
0SSemPend () from an ISR because an ISR cannot be made to wait. Instead, you should call
0SSemAccept () (see Section 7.04, “Getting a Semaphore Without Waiting (Non-blocking),
0SSemAccept ()").

If 0S_ARG_CHK_ENissetto 1, 0SSemPend() checksthat pevent isnotaNULL pointer and that
0SSemCreate() has created the ECB.

If the semaphoreis available (its count is nonzero), the count is decremented, and the function
returnsto its caller with an error code indicating success. If your code calls 0SSemPend (), you
want this outcome because it indicates that your code can proceed and access the resource (if
0SSemPend() is used to guard a shared resource). This aso happens to be the fastest path
through 0SSemPend ().

If the semaphore is not available (the count was zero), 0SSemPend() checks to seeif an ISR
called the function. It doesn’t make sense to call 0SSemPend() from an ISR because an ISR
cannot be made to wait. Instead, you should call 0SSemAccept () [see Section 7.04, “ Getting
a Semaphore Without Waiting (Non-blocking), 0SSemAccept ()”]. | decided to add this
check just in case.

L7.3(7)

L7.3(8)

L7.3(9)

L7.3(10)

L7.3(11)

L7.3(12)
L7.3(13)

L7.3(14)

7.03

Sgnaling a Semaphore, 0SSemPost () 173

If the semaphore count is zero, the calling task needsto be put to sleep until ancther task (or
an ISR) signals the semaphore [see Section 7.03, “Signaling a Semaphore, 0SSemPost ()"].
0SSemPend () alowsyou to specify a timeout value (in integral number of ticks) as one of its
arguments (i.e., timeout). Thisfeatureisuseful to avoid waiting indefinitely for the semaphore.
If the value passed is nonzero, 0SSemPend () suspends the task until the semaphoreis signaled
or the specified timeout period expires. Note that atimeout value of 0 indicates that the task is
willing to wait forever for the semaphore to be signaled.

To put the calling task to sleep, 0SSemPend () setsthe status flag in the task’s TCB to indicate
that the task is suspended while waiting for a semaphore.

The timeout is also stored in the TCB so that it can be decremented by 0STimeTick(). You
should recall (see Section 3.11, “Clock Tick”) that 0STimeTick() decrements each of the
created task’s .0STCBD1y field if the count is nonzero.

The actual work of putting the task to sleep is done by 0S_EventTaskWait() [see Section
6.06, “Making a Task Wait for an Event, 0S_EventTaskWait()"].

Because the calling task is no longer ready to run, the scheduler is called to run the next
highest priority task that is ready to run. Asfar as your task is concerned, it made a call to
0SSemPend (), and it doesn’t know that it is suspended until the semaphore is signaled.

When the semaphore is signaled (or the timeout period expires) 0SSemPend () resumes exe-
cution immediately after the call to 0S_Sched(). 0SSemPend() then checksto seeif the TCB
status flag is still set to indicate that the task is waiting for the semaphore. If the task is still
waiting for the semaphore, it must not have been signaled by an 0SSemPost () call. Indeed,
the task must have been readied by 0STimeTick(), indicating that the timeout period has
expired.

In this case, the task is removed from the wait list for the semaphore by calling 0S_EventT0(),
and an error code is returned to the task that called 0SSemPend() to indicate that a timeout
occurred. If the status flag in the task’'s TCB doesn’t have the 0S_STAT_SEM hit set, the sema-
phore must have been signaled by 0SSemPost () [see Section 7.03, “ Signaling a Semaphore,
0SSemPost()”] and thetask that called 0SSemPend () can now conclude that it has the sema-
phore.

Finally, the link to the ECB is removed.

Signaling a Semaphore, 0SSemPost ()

The code to signal a semaphoreis shownin Listing 7.4.

Listing 7.4 Signaling a semaphore.

INT8U
{

JHf 0S_|
0S_

ffendif

0SSemPost (OS_EVENT *pevent)

CRITICAL_METHOD = 3
CPU_SR cpu_sr;

174 Chapter 7: Semaphore Management

Listing 7.4 Signaling a semaphore. (Continued)

#Hif OS_ARG_CHK_EN > 0
if (pevent == (OS_EVENT *)0) {
return (OS_ERR_PEVENT_NULL);
}
if (pevent->0SEventType != OS_EVENT_TYPE_SEM) {
return (OS_ERR_EVENT_TYPE);
}
ffendif

OS_ENTER_CRITICAL();
if (pevent->0SEventGrp != 0x00) { (3)

}

0S_EventTaskRdy(pevent, (void *)0, OS_STAT_SEM); (4)
OS_EXIT_CRITICAL(C);
0S_Sched(); (5)
return (OS_NO_ERR);

if (pevent->0SEventCnt < 65535) f

}

pevent->0SEventCnt+t; (6)
OS_EXIT_CRITICAL();
return (0S_NO_ERR);

OS_EXIT _CRITICAL();
return (OS_SEM_OQVF); (7)

}

L7.4(2)

L7.4(2) If 0S_ARG_CHK_ENissettol, 0SSemPost() checksthat pevent isnot a NULL pointer and
that the ECB being pointed to by pevent has been created by 0SSemCreate().

L7.4(3) 0SSemPost() then checksto seeif any tasks are waiting on the semaphore. Tasks waiting are
when the . 0SEventGrp field in the ECB contains a nonzero value.

L7.4(4)

L7.4(5) 0S_EventTaskRdy() removes the highest priority task waiting for the semaphore from the

wait list [see Section 6.05, “Making a Task Ready, 0S_EventTaskRdy()"]. The task is
ready-to-run. 0S_Sched() isthen called to seeif the task made ready is now the highest pri-
ority task ready-to-run. If it is, acontext switch results[only if 0SSemPost () iscalled from a
task] and the readied task is executed. In other words, the task that called 0SSemPost () does
not continue execution because 0SSemPost () made a more important task ready to run and
HC/OS-I1 does thus resume execution of that task. If the readied task is not the highest prior-
ity task, 0S_Sched () returns, and the task that called 0SSemPost () continues execution.

Getting a Semaphore Without Waiting (Non-blocking), 0SSemAccept() 175

L7.4(6)

L7.4(7) If no tasks are waiting on the semaphore, the semaphore count ssimply gets incremented.
Note that a counting semaphore is implemented in uC/OS-11 using a 16-bit variable, and
0SSemPost () ensures that the semaphore does not overflow.

It'simportant to note that a context switch does not occur if an ISR calls 0SSemPost () because con-
text switching from an ISR can only occur when 0SIntExit() is called at the completion of the ISR
from the last nested I SR (see Section 3.10, “Interrupts Under pC/OS-117).

7.04 Getting a SemaphoreWithout Waiting
(Non-blocking), 0SSemAccept ()

It is possible to obtain a semaphore without putting a task to sleep if the semaphore is not available.
This action is accomplished by calling 0SSemAccept (), asshownin Listing 7.5.

Listing7.5 Getting a semaphore without waiting.

INT16U 0SSemAccept (OS_EVENT *pevent)
{
Jif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendif
INT16U cnt;

##f OS_ARG_CHK_EN > 0

if (pevent == (OS_EVENT *)0) { (1)
return (0);

}

if (pevent->0SEventType != OS_EVENT_TYPE_SEM) { (2)
return (0);

}

frendif

OS_ENTER_CRITICAL();

cnt = pevent->0SEventCnt; (3)

if (cnt > 0) { (4)
pevent->0SEventCnt--; (5)

}
OS_EXIT _CRITICAL();
return (cnt); (6)

176 Chapter 7: Semaphore Management

L7.5(2)
L7.5(2) If 0S_ARG_CHK_ENissetto1inQS_CFG.H, 0SSemAccept() starts by checking that pevent is

not a NULL pointer and that the ECB being pointed to by pevent has been created by
0SSemCreate().

L7.5(3)

L7.5(4) 0SSemAccept() then gets the current semaphore count to determine whether the semaphore
isavailable (i.e., anonzero value).

L7.5(5) Thecount isdecremented only if the semaphore is available.
L7.5(6) Finaly, the original count of the semaphoreisreturned to the caller.

The code that calls 0SSemAccept () needs to examine the returned value. A returned value of zero
indicates that the semaphore is not available; a nonzero value indicates that the semaphore is available.
Furthermore, a nonzero value indicates to the caller the number of resources that are available. Keegp in
mind that, in this case, one of the resources has been allocated to the calling task because the count has
been decremented.

An ISR could use 0SSemAccept (). However, it's not recommended to have a semaphore shared
between atask and an ISR. Semaphores are supposed to be task-level objects. If asemaphoreis used as
asignalling object between an ISR and atask, the ISR should only POST to the semaphore.

7.05 Obtaining the Status of a Semaphore,
0SSemQuery ()

0SSemQuery () alows your application to take a snapshot of an ECB that is used as a semaphore
(Listing 7.6). 0SSemQuery () receives two arguments: pevent contains a pointer to the semaphore,
which 0SSemCreate() returns when the semaphore is created, and pdata is a pointer to a data struc-
ture (0S_SEM_DATA, see uC0S_II.H) that holds information about the semaphore. Your application
thus needs to allocate a variable of type 0S_SEM_DATA that is used to receive the information about the
desired semaphore. | decided to use a new data structure because the caller should only be concerned
with semaphore-specific data, as opposed to the more generic 0S_EVENT data structure, which con-
tains two additional fields (.0SEventType and .0SEventPtr). 0S_SEM_DATA contains the current
semaphore count (.0SCnt) and the list of tasks waiting on the semaphore (.0SEventTb1[] and
.0SEventGrp).

Listing7.6 Obtaining the status of a semaphore.

INT8U 0SSemQuery (OS_EVENT *pevent, 0S_SEM DATA *pdata)
{
fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
frendif
INT8U *psrc;
INT8U *pdest;

Obtaining the Status of a Semaphore, 0SSemQuery() 177

Listing 7.6~ Obtaining the status of a semaphore. (Continued)

#Hif OS_ARG_CHK_EN > 0
if (pevent = (OS_EVENT *)0) { (1)
return (OS_ERR_PEVENT_NULL);
}
if (pevent->0SEventType != OS_EVENT_TYPE_SEM) ({ (2)
return (OS_ERR_EVENT_TYPE) ;
}

ffendi f
OS_ENTER_CRITICAL();
pdata->0SEventGrp = pevent->0SEventGrp; (3)
psrc = &pevent->0SEventTb1[0];
pdest = &pdata->0SEventTh1[0];
##if OS_EVENT_TBL_SIZE > 0
*pdest++ = *psrctt;
frendi f

f#if OS_EVENT_TBL_SIZE > 1
*pdest++ = *psrc+t;
ffendif

JFif OS_EVENT_TBL_SIZE > 2
*pdest++ = *psrc+t;
Jfendif

##if OS_EVENT_TBL_SIZE > 3
*pdest++ = *psrctt;
frendif

f#if OS_EVENT_TBL_SIZE > 4
*pdest++ = *psrc+t;
ffendif

JHif OS_EVENT_TBL_SIZE > 5
*pdest++ = *psrc+t;
ffendif

##if OS_EVENT_TBL_SIZE > 6
*pdest++ = *psrctt;
frendif

178 Chapter 7: Semaphore Management

Listing 7.6~ Obtaining the status of a semaphore. (Continued)

##if OS_EVENT_TBL_SIZE > 7
*pdest = *psrc;
frendi f
pdata->0SCnt = pevent->0SEventCnt; (4)

0S_

EXIT_CRITICAL();

return (0S_NO_ERR);

}

L7.6(1)
L7.6(2)

L7.6(3)

L7.6(4)

As aways, if 0S_ARG_CHK_EN is set to 1, 0SSemQuery () checks that pevent is not a NULL
pointer and that it pointsto an ECB containing a semaphore.

0SSemQuery () then copies the wait list from the 0S_EVENT structure to the 0S_SEM_DATA
structure. You should note that | decided to do the copy asinline code instead of using aloop
for performance reasons.

Finally, 0SSemQuery () copies the current semaphore count from the 0S_EVENT structure to
the 0S_SEM_DATA structure.

Chapter 8

Mutual Exclusion Semaphores

Mutual exclusion semaphores (mutexes) are used by tasks to gain exclusive access to resources.
Mutexes are binary semaphores that have additional features beyond the normal semaphores mechanism
provided by uC/OS-1.

A mutex is used by your application code to reduce the priority inversion problem as described in
Section 2.16. A priority inversion occurs when alow priority task owns a resource needed by a high pri-
ority task. In order to reduce priority inversion, the kernel can increase the priority of the lower priority
task to the priority of the higher priority task until the lower priority task is done with the resource.

In order to implement mutexes, a real-time kernel needs to provide the ability to support multiple
tasks at the same priority. Unfortunately, uC/OS-11 doesn’t allow multiple tasks at the same priority.
However, there is away around this problem. What if a priority just above the highest priority task that
needs to access the mutex was reserved by the mutex to allow alower priority task to beraised in prior-
ity?

Let’s use an example to illustrate how pC/OS-I1 mutexes work. Listing 8.1 shows three tasks that
might need to access a common resource. To access the resource, each task must pend on the mutex
ResourceMutex. Task #1 has the highest priority (10), task #2 has a medium priority (15), and task #3,
the lowest (20). An unused priority just above the highest task priority (i.e., priority 9) isreserved asthe
priority inheritance priority (PIP).

Listing8.1 Mutex use example.

OS_EVENT *ResourceMutex;

0S_STK TaskPriolOStk[10007;
0S_STK TaskPriolbStk[1000];
0S_STK TaskPrio20Stk[10007;

179

180 Chapter 8: Mutual Exclusion Semaphores

Listing8.1 Mutex use example. (Continued)

void main (void)
{
INT8U err;

0SInit();
---------- Application Initialization ----------
0SMutexCreate(9, &err);
0STaskCreate(TaskPriolO, (void *)0, &TaskPriolOStk[999], 10);
0STaskCreate(TaskPriol5, (void *)0, &TaskPriol5Stk[999], 15);
0STaskCreate(TaskPrio20, (void *)0, &TaskPrio20Stk[999], 20);
---------- Application Initialization ----------
0SStart();

void TaskPriolO (void *pdata)
{
INT8U err;

pdata = pdata;
while (1) {
————————— Application Code ----------
OSMutexPend(ResourceMutex, 0, &err);
fffffff Access common resource ------
OSMutexPost(ResourceMutex) ;
--------- Application Code ----------

(2)
(3)

(4)

/* Task 1 */

181

Listing8.1 Mutex use example. (Continued)

void TaskPriol5 (void *pdata) /* Task {2 */

{
INT8U err;

pdata = pdata;
while (1) {
fffffffff Application Code ----------
O0SMutexPend(ResourceMutex, 0, &err);
——————— Access common resource ------
0SMutexPost(ResourceMutex) ;
————————— Application Code ----------

void TaskPrio20 (void *pdata) /* Task #3 */

{
INT8U err;

pdata = pdata;
while (1) {
————————— Application Code ----------
OSMutexPend(ResourceMutex, 0, &err);
fffffff Access common resource ------
OSMutexPost(ResourceMutex) ;
————————— Application Code ----------

L8.1(1)

L8.1(2) Asshowninmain(), uC/OSIisinitidized and amutex iscreated by caling 0SMutexCreate().
You should note that 0SMutexCreate() ispassed the PIP (i.e, 9).

L8.1(3)

L8.1(4) Thethreetasksarethen created, and uC/OS-1I is started.

Suppose that this application has been running for a while and that, at some point, task #3 accesses
the common resource first and thus acquires the mutex. Task #3 runs for a while and then gets pre-
empted by task #1. Task #1 needs the resource and thus attempts to acquire the mutex (by calling
0SMutexPend()). Inthis case, 0SMutexPend () notices that a higher priority task needs the resource

182 Chapter 8: Mutual Exclusion Semaphores

and thus raises the priority of task #3 to 9, which forces a context switch back to task #3. Task #3 pro-
ceeds and hopefully releases the resource quickly. When done with the resource, task #3 calls
O0SMutexPost () to release the mutex. 0SMutexPost () notices that the mutex was owned by a
lower priority task that got its priority raised and thus, returns task #3 to its original priority.
0SMutexPost () notices that a higher priority task (i.e., task #1) needs access to the resource, gives
the resource to task #1, and perform a context switch to task #1.

MC/OS-11's mutexes consist of three elements: a flag indicating whether the mutex is available (0 or
1), apriority to assign the task that owns the mutex in case a higher priority task attempts to gain access
to the mutex, and alist of tasks waiting for the mutex.

MC/OS-11 provides six servicesto access mutexes. 0SMutexCreate(), 0SMutexDel (), 0SMutexPend(),
0SMutexPost (), 0SMutexAccept (), and 0SMutexQuery ()

To enable uC/OS-11 mutex services, you must set the configuration constantsin 0S_CFG.H. Specifi-
cally, Table 8.1 shows which services are compiled, based on the value of configuration constants found
in 0S_CFG.H. You should note that none of the mutex services are enabled when 0S_MUTEX_EN is set to
0. To enable specific features (i.e., services) listed in Table 8.1, set the configuration constant to 1. You
should notice that 0SMutexCreate(), 0SMutexPend (), and 0SMutexPost () cannot be individually dis-
abled as can the other services. That's because they are always needed when you enable uC/OS-II's
mutual exclusion semaphore management.

Table 8.1 Mutex configuration constantsin 0S_CFG. H.

HC/OS-I1 mutex service Enabled when setto 1 in 0S_CFG.H

OSMutexAccept () OS_MUTEX_ACCEPT_EN
O0SMutexCreate()

0SMutexDel () OS_MUTEX_DEL_EN
0SMutexPend ()

0SMutexPost()

0SMutexQuery () OS_MUTEX_QUERY_EN

Figure 8.1 shows a flow diagram to illustrate the relationship between tasks and a mutex. A mutex
can only be accessed by tasks. Note that the symbology used to represent a mutex is a key. The key
symbology shows that the mutex is used to access shared resources.

Figure8.1 Relationship between tasks and a mutex.

OSMut exCr eat e() OsMut exPend()
Oosmwut exDel () OsMut exAccept ()

OSMut exPost () t osMut exQuer y()
>

Creating a Mutex, 0SMutexCreate() 183

8.00 CreatingaMutex, 0SMutexCreate()

A mutex needs to be created before it can be used. Creating a mutex is accomplished by calling
O0SMutexCreate(). Theinitial value of amutex is always set to 1, which indicates that the resourceis
available. The code to create amutex is shown in Listing 8.2.

Listing8.2 Creating a mutex.

OS_EVENT *0SMutexCreate (INT8U prio, INT8U *err)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendi
OS_EVENT *pevent;

if (0SIntNesting > 0) { (1)
*err = O0S_ERR_CREATE_ISR;
return ((OS_EVENT *)0);

}

i f OS_ARG_CHK_EN

if (prio >= OS_LOWEST_PRIO) { (2)
*err = 0S_PRIO_INVALID;
return ((OS_EVENT *)0);

}
ffendi f
OS_ENTER_CRITICAL();
if (OSTCBPrioTbl[prio] != (0S_TCB *)0) f (3)
*err = 0S_PRIO_EXIST;
OS_EXIT_CRITICAL();
return ((OS_EVENT *)0);
}
OSTCBPrioTbl[prio] = (0S_TCB *)1; (4)
pevent OSEventFreelist; (5)
if (pevent = (OS_EVENT *)0) {
OSTCBPrioTb1[prio] = (0S_TCB *)0;
OS_EXIT_CRITICALC();
H@IFP

OS_ERR_PEVENT_NULL;
return (pevent);
}
OSEventFreelist = (OS_EVENT *)O0SEventFreelist->0SEventPtr; (6)
OS_EXIT_CRITICAL();

184 Chapter 8: Mutual Exclusion Semaphores

Listing8.2 Creating a mutex. (Continued)

pevent->0SEventType = OS_EVENT_TYPE_MUTEX; (7)
pevent->0SEventCnt = (prio << 8) | OS_MUTEX_AVAILABLE; (8)
pevent->0SEventPtr = (void *)0; (9)
0SEventWaitListInit(pevent); (10)
*err = 0S_NO_ERR;

return (pevent); (11)

}

L8.2(1) OSMutexCreate() starts by making sure it's not called from an ISR because that’s not
allowed.

L8.2(2) 0SMutexCreate() then verifiesthat the PIPiswithin avalid range, based on what you deter-
mined the lowest priority isfor your application, as specified in 0S_CFG. H.

L8.2(3) 0SMutexCreate() then checks to see that there isn't aready atask assigned to the PIP. A
NULL pointer in 0STCBPrioTh1[] indicatesthat the PIP is available.

L8.2(4) If anentryisavailable, OSMutexCreate() reservesthe priority by placing anon-NULL pointer
in OSTCBPrioTb1[priol. This action prevents you from using this priority to create other
tasks or other mutexes using this priority.

L8.2(5) 0SMutexCreate() then attemptsto obtain an event control block (ECB) from the freelist of
ECBs.

L8.2(6) Thelinked list of free ECBsis adjusted to point to the next free ECB.

L8.2(7) If an ECB isavailable, the ECB typeis set to 0S_EVENT_TYPE_MUTEX. Other uC/OS-1 ser-
vices check this field to make sure that the ECB is of the proper type. This check prevents
you from calling 0SMutexPost() on an ECB created for use as a message mailbox, for
example.

L8.2(8) 0SMutexCreate() then setsthe mutex value to available, and the PIP is stored.

It is worth noting that the .0SEventCnt field is used differently. Specifically, the upper 8 bits of
.0SEventCnt are used to hold the PIP, and the lower 8 bits are used to hold either the value of the mutex
when the resource is available (0xFF) or the priority of the task that owns the mutex (a value between 0
and 62). This configuration prevents having to add extra fields in an 0S_EVENT structure and thus
reduces the amount of RAM needed by pC/OS-11.

L8.2(9) Becausethe mutex isbeing initialized, no tasks are waiting for it.
L8.2(10) Thewait list isthen initialized by calling 0SEventWaitListInit().

L8.2(11) Finaly, 0SMutexCreate() returnsapointer to the ECB. This pointer must be used in subse-
guent calls to manipulate mutexes (0SMutexPend(), 0SMutexPost(), 0SMutexAccept(),
0SMutexDel (), and 0SMutexQuery()). The pointer is used as the mutex’s handle. If there
were no more ECBs, 0SMutexCreate () would have returned a NULL pointer.

Figure 8.2 shows the ECB just before returning from 0SMutexCreate().

Deleting a Mutex, OSMutexDel() 185

Figure 8.2 ECB just before 0SMutexCreate() returns.

pevent 5| (S _EVENT_TYPE_MJTEX . CSEvent Type
prio | OxFF . CSEvent Cnt
(void ©)0 . CSEvent Ptr
0x00 . OSEvent G p

7|6 |s5|a|3|2]|1|0]| .csEventThi[]

ALL
initialized
to

0x00

63 (62 |61|60|59|58|57 |56

8.01 Deleting a Mutex, OSMutexDel ()

The code to delete amutex is shown in Listing 8.3, this service isavailable only if 0S_MUTEX_DEL_ENis
setto 1in 0S_CFG.H. Thisfunction is dangerous to use because multiple tasks could attempt to access a
deleted mutex. You should always use this function with great care. Generally speaking, before you
delete a mutex, you should first delete al the tasks that can access the mutex.

Listing 83 Deleting a mutex.

OS_EVENT *0SMutexDel (OS_EVENT *pevent, INT8U opt, INT8U *err)
{
fFif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
frendi f
BOOLEAN tasks_waiting;

if (0SIntNesting > 0) { (1)
*err = OS_ERR_DEL_ISR;
return (pevent);

}

fFif OS_ARG_CHK_EN

if (pevent == (OS_EVENT *)0) { (2)
*err = 0S_ERR_PEVENT_NULL;
return (pevent);

186 Chapter 8: Mutual Exclusion Semaphores

Listing 8.3

Deleting a mutex. (Continued)

if (pevent->0SEventType != OS_EVENT_TYPE_MUTEX) {
OS_EXIT_CRITICAL();

*err

= OS_ERR_EVENT_TYPE;

return (pevent);

}
Jfendif

OS_ENTER_CRITICALC();
if (pevent->0SEventGrp != 0x00) {

tasks_waiting

} else {

tasks_waiting

}

TRUE;

FALSE;

switch (opt) {

case

case

0S_DEL_NO_PEND:

if (tasks_waiting == FALSE) ({
pevent->0SEventType = OS_EVENT_TYPE_UNUSED;
pevent->0SEventPtr = OSEventFreelist;
OSEventFreelist = pevent;
OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;
return ((OS_EVENT *)0);

} else {
OS_EXIT_CRITICALC();
*err = OS_ERR_TASK_WAITING;
return (pevent);

OS_DEL_ALWAYS:
while (pevent->0SEventGrp != 0x00) f

0S_EventTaskRdy(pevent, (void *)0, OS_STAT_MUTEX);

}
pevent->0SEventType = OS_EVENT_TYPE_UNUSED;
pevent->0SEventPtr = OSEventfFreelist;
OSEventFreelist = pevent;
OS_EXIT_CRITICAL();
if (tasks_waiting == TRUE) {

0S_Sched();

}
*err = 0S_NO_ERR;
return ((OS_EVENT *)0);

(3)

(4)

(5)
(6)
(7)

(8)

(9)
(10)

(11)
(12)

(13)

(14)

Deleting a Mutex, OSMutexDel() 187

Listing 8.3 Deleting a mutex. (Continued)

}

L8.3(1)

L8.3(2)
L8.3(3)

L8.3(4)

L8.3(5)
L8.3(6)
L8.3(7)

L8.3(9)
L8.3(10)

L8.3(11)
L8.3(12)

L8.3(13)
L8.3(14)

default:
OS_EXIT_CRITICAL();
*err = 0S_ERR_INVALID_OPT;
return (pevent);

0SMutexDel () makes sure that this function is not called from an ISR because that’s not
allowed.

We then check the arguments passed to it — pevent cannot be a NULL pointer, and pevent
needs to point to a mutex.

0SMutexDel () then determines whether any tasks are waiting on the mutex. The flag
tasks_waitingisset accordingly.

Based on the option (i.e., opt) specified in the call, 0SMutexDel() either deletes the
mutex only if no tasks are pending on the mutex (opt == 0S_DEL_NO_PEND) or deletes the
mutex even if tasks are waiting (opt = 0S_DEL_ALWAYS).

When opt is set to 0S_DEL_NO_PEND and no task is waiting on the mutex, 0SMutexDel ()
marks the ECB as unused, and the ECB is returned to the free list of ECBs. This process
allows another mutex (or any other ECB-based object) to be created. You should note that
0SMutexDel () returns a NULL pointer [L8.3(8)] because, at this point, the mutex should no
longer be accessed through the original pointer.

When opt is set to 0S_DEL_ALWAYS, all tasks waiting on the mutex are readied. Each task
thinks it has access to the mutex. Of course, that's a dangerous outcome because the whole
point of having a mutex is to protect against multiple accesses of a resource. Again, you
should delete all the tasks that can access the mutex before you del ete the mutex.

After all pending tasks are readied, 0SMutexDel () marksthe ECB as unused, and the ECB is
returned to the freelist of ECBs.

The scheduler is called only if tasks were waiting on the mutex.

You should note that 0SMutexDel () returns a NULL pointer because, at this point, the mutex
should no longer be accessed through the original pointer.

188 Chapter 8: Mutual Exclusion Semaphores

8.02 Waiting on a Mutex (Blocking), 0SMutexPend ()

The code to wait on amutex is shown in Listing 8.4.

Listing8.4 Waiting for a mutex.

void OSMutexPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
{
#Hif OS_CRITICAL_METHOD = 3

0S_CPU_SR cpu_sr;

frendi f
INT8U pip;
INT8U mprio;

BOOLEAN rdy;
0S_TCB *ptcb;

if (0SIntNesting > 0) { (1)
*err = OS_ERR_PEND_ISR;
return;

}
##if OS_ARG_CHK_EN

if (pevent = (OS_EVENT *)0) { (2)
*err = 0S_ERR_PEVENT_NULL;
return;
}
frendif

OS_ENTER_CRITICAL();
fHi f OS_ARG_CHK_EN
if (pevent->0SEventType != OS_EVENT_TYPE_MUTEX) { (3)
OS_EXIT_CRITICALC();
*err = 0S_ERR_EVENT_TYPE;
return;
}

jtendif
(4)
if ((INT8U)(pevent->0SEventCnt & OS_MUTEX_KEEP_LOWER 8) == OS_MUTEX_AVAILABLE) {
pevent->0SEventCnt &= OS_MUTEX_KEEP_UPPER_8; (5)
pevent->0SEventCnt |= OSTCBCur->0STCBPrio; (6)
pevent->0SEventPtr = (void *)0STCBCur; (7)

OS_EXIT_CRITICALC();
*err = 0S_NO_ERR;
return;

Wiaiting on a Mutex (Blocking), OSMutexPend() 189

Listing84 Waiting for a mutex. (Continued)

pip = (INT8U)(pevent->0SEventCnt >> 8); (8)
mprio = (INT8U) (pevent->0SEventCnt & OS_MUTEX_KEEP_LOWER_8); (9)
ptcb = (0S_TCB *)(pevent->0SEventPtr); (10)
if (ptcb->0STCBPrio != pip && mprio > OSTCBCur->0STCBPrio) ({ (11)
if ((OSRdyTb1[ptcb->0STCBY] & ptch->0STCBBitX) != 0x00) { (12)
(13)

if ((OSRdyTb1[ptcb->0STCBY] &= ~ptcb->0STCBBitX) = 0x00) {
0SRdyGrp &= ~ptch->0STCBBitY;
}

rdy = TRUE; (14)
} else {

rdy = FALSE; (15)
}
ptch->0STCBPrio = pip; (16)
ptcb->0STCBY = ptch->0STCBPrio >> 3;
ptch->0STCBBitY = 0SMapTb1[ptch->0STCBYI;

ptch->0STCBX ptch->0STCBPrio & 0x07;

ptcb->0STCBBitX 0SMapTbT[ptcb->0STCBXT;

if (rdy = TRUE) { (17)
0SRdyGrp |= ptchb->0STCBBitY;
OSRdyTb1[ptcb->0STCBY] |= ptchb->0STCBBitX;

}

0STCBPrioTb1[pip] = (0S_TCB *)ptch;
}
0STCBCur->0STCBStat |= OS_STAT_MUTEX; (18)
OSTCBCur->0STCBDly = timeout; (19)
0S_EventTaskWait(pevent); (20)
OS_EXIT_CRITICAL();
0S_Sched(); (21)
OS_ENTER_CRITICAL();
if (OSTCBCur->0STCBStat & OS_STAT_MUTEX) { (22)
0S_EventTO(pevent); (23)
OS_EXIT_CRITICAL();
*err = 0S_TIMEOUT; (24)
return;
}
0STCBCur->0STCBEventPtr = (OS_EVENT *)0; (25)

OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;

L8.4(1) Like al uC/OS-1I pend calls, 0SMutexPend() cannot be called from an ISR, and thus
0SMutexPend() checks for this condition first.

190 Chapter 8: Mutual Exclusion Semaphores

L8.4(2)
L8.4(3)

L8.4(4)
L8.4(5)
L8.4(6)

L8.4(7)

L8.4(8)
L8.4(9)
L8.4(10)

L8.4(11)

L8.4(12)
L8.4(13)
L8.4(14)

L8.4(15)

L8.4(16)

L8.4(17)

Assuming that the configuration constant 0S_ARG_CHK_EN is set to 1, 0SMutexPend() makes
sure that the handle pevent isnot a NULL pointer and that 0SMutexCreate() has created the
ECB being pointed to.

The mutex is available if the lower 8 bits of .0SEventCnt are set to OxFF (i.e.,
OS_MUTEX_AVAILABLE). If thisis the case, 0SMutexPend() grants the mutex to the
calling task, and 0SMutexPend() sets the lower 8 bits of .0SEventCnt to the calling
task’s priority.

0SMutexPend() then sets .0SEventPtr to point to the TCB of the calling task and returns.
At this point, the caller can proceed with accessing the resource because the return error code
is set to 0S_NO_ERR. Obvioudly, if you want the mutex, this is the outcome you want. This
also happens to be the fastest (normal) path through 0SMutexPend().

If the mutex is owned by another task, the calling task needs to be put to sleep until the
other task relinguishes the mutex [see 0SMutexPost()]. 0SMutexPend() alowsyou to spec-
ify a timeout value as one of its arguments (i.e., timeout). This feature is useful to avoid
waiting indefinitely for the mutex. If the value passed is nonzero, then 0SMutexPend() sus-
pends the task until the mutex is signaled or the specified timeout period expires. Note that a
timeout value of O indicates that the task is willing to wait forever for the mutex to be sig-
naled.

Before the calling task is put to sleep, 0SMutexPend () extracts the PIP of the mutex, the pri-
ority of the task that owns the mutex, and a pointer to the TCB of the task that owns the
mutex.

If the owner’s priority is lower (a higher number) than the task that calls 0SMutexPend()
then the priority of the task that owns the mutex is raised to the mutex's PIP. This action
allows the owner of the mutex to relinquish the mutex sooner.

0SMutexPend() then determines if the task that owns the mutex is ready to run.

If thetask isready to run, that task is made no longer ready to run at the owner’s priority, and
theflag rdy is set indicating that the mutex owner was ready to run.

If the task was not ready to run, rdy is set accordingly. The reason the flag is set is to deter-
mine whether we need to make the task ready to run at the new, higher priority (i.e., at the
PIP).

0SMutexPend() then computes task control block (TCB) elements at the PIP. You should
note that | could have saved this information in the 0S_EVENT data structure when the mutex
was created in order to save processing time. However, saving this would have meant addi-
tional RAM for each 0S_EVENT instantiation.

From this information and the state of the rdy flag, we determine whether the mutex owner
needs to be made ready to run at the PIP.

L8.4(18)

L8.4(19)

L8.4(20)
L8.4(21)

L8.4(22)

L8.4(23)
L8.4(24)

L8.4(25)

8.03

Sgnaling a Mutex, OSMutexPost() 191

To put the calling task to sleep, 0SMutexPend() sets the status flag in the task’s TCB to indi-
cate that the task is suspended while waiting for a mutex.

The timeout is also stored in the TCB so that it can be decremented by 0STimeTick(). You
should recall that 0STimeTick() decrements each of the created tasks .0STCBD1y fields if
they are nonzero.

The actua work of putting the task to deep isdone by 0S_FventTaskWait().

Because the calling task is no longer ready to run, the scheduler is called to run the next high-
est priority task that is ready to run.

When the mutex is signaled (or the timeout period expires) and the task that called
0SMutexPend() isagain the highest priority task, 0S_Sched () returns.

0SMutexPend() then checksto seeif the TCB’s status flag is still set to indicate that the task
iswaiting for the mutex. If the task is still waiting for the mutex, then it must not have been
signaled by an 0SMutexPost () call. Indeed, the task must have be readied by 0STimeTick(),
which indicates that the timeout period has expired.

In this case, the task is removed from the wait list for the mutex by calling 0S_EventT0(),
and an error code is returned to the task that called 0SMutexPend() to indicate that a timeout
occurred.

If the status flag in the task’s TCB doesn’'t have the 0S_STAT_MUTEX bit set, then the
mutex must have been signaled, and the task that called 0SMutexPend() can now conclude
that it has the mutex.

Finally, the link to the ECB is removed.

Signaling a Mutex, 0SMutexPost ()

The code to signal amutex isshown in Listing 8.5.

Listing8.5 Signaling a mutex.
INT8U OSMutexPost (OS_EVENT *pevent)

{

JHf OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

Jfendif
INT8U pip;
INT8U prio;
if (0SIntNesting > 0) { (1)

return (OS_ERR_POST_ISR);

192 Chapter 8: Mutual Exclusion Semaphores

Listing85 Signaling a mutex. (Continued)

fFif OS_ARG_CHK_EN
if (pevent = (OS_EVENT *)0) {
return (OS_ERR_PEVENT_NULL);
}
ffendif
OS_ENTER_CRITICAL();
pip = (INT8U)(pevent->0SEventCnt >> 8);
prio = (INT8U)(pevent->0SEventCnt & OS_MUTEX_KEEP_LOWER_8);
fFif OS_ARG_CHK_EN
if (pevent->0SEventType != OS_EVENT_TYPE_MUTEX) {
OS_EXIT_CRITICAL();
return (OS_ERR_EVENT_TYPE);
}
if (0STCBCur->0STCBPrio != pip ||
OSTCBCur->0STCBPrio != prio) {
OS_EXIT_CRITICALC);
return (OS_ERR_NOT_MUTEX_OWNER) ;
}
frendi
if (OSTCBCur->0STCBPrio == pip) f

if ((OSRdyTb1[OSTCBCur->0STCBY] &= ~OSTCBCur->0STCBBitX)
OSRdyGrp &= ~0STCBCur->0STCBBitY;
}

O0STCBCur->0STCBPrio = prio;

0STCBCur->0STCBY = prio > 3;
0STCBCur->0STCBBitY = O0SMapTb1[OSTCBCur->0STCBYJ;
OSTCBCur->0STCBX = prio & 0x07;
0STCBCur->0STCBB1itX = OSMapTb1[OSTCBCur->0STCBX];
0SRdyGrp |= OSTCBCur->0STCBBitY;
OSRdyTb1[OSTCBCur->0STCBY] |= OSTCBCur->0STCBBitX;
OSTCBPrioTh1[prio] = (0S_TCB *)OSTCBCur;

}
OSTCBPrioTbl1[pip] = (0S_TCB *)1;
if (pevent->0SEventGrp != 0x00) f

prio = 0S_EventTaskRdy(pevent, (void *)0,
pevent->0SEventCnt &= O0xFFOO;
pevent->0SEventCnt |= prio;

(3)

(4)

(5)

(6)

= 0) {

(7)
(8)
OS_STAT_MUTEX) ;
(9)

Sgnaling a Mutex, OSMutexPost() 193

Listing85 Signaling a mutex. (Continued)

}

pevent->0SEventPtr = OSTCBPrioTbl[priol;

OS_EXIT_CRITICAL();

0S_Sched(); (10)
return (0S_NO_ERR);

pevent->0SEventCnt |= OxO00FF; (11)
pevent->0SEventPtr = (void *)0;

OS_EXIT_CRITICAL();

return (0S_NO_ERR);

}

L8.5(1)
L8.5(2)
L8.5(3)

L8.5(4)

L8.5(5)

L8.5(6)
L8.5(7)
L85(8)

L8.5(9)
L8.5(10)

L8.5(11)

Mutual exclusion semaphores must only be used by tasks, and thus a check is performed to
make sure that 0SMutexPost () isnot called from an ISR.

Assuming that the configuration constant 0S_ARG_CHK_EN isset to 1, 0SMutexPost () checks
that the handle pevent is not a NULL pointer and that OSMutexCreate() created the ECB
being pointed to.

0SMutexPost () makes surethat the task that is signaling the mutex actually owns the mutex.
The owner’s priority must either be set to the PIP (0SMutexPend() could have raised the
owner’s priority) or the priority stored in the mutex itself.

0SMutexPost () then checksto see if the priority of the mutex owner had to be raised to the
PIP because a higher priority task attempted to access the mutex. In this case, the priority of
the owner is reduced to its original value. The original task priority is extracted from the
lower 8 bits of .0SEventCnt.

The calling task is removed from the ready list at the PIP and placed in the ready list at the
task’soriginal priority. Notethat the TCB fields are recomputed for the original task priority.

Next, we check to see if any tasks are waiting on the mutex. Tasks are waiting when the
.0SEventGrp field in the ECB contains a nonzero value.

Thehighest priority task waiting for the mutex isremoved from thewait list by 0S_EventTaskRdy ()
[see Section 6.05, “Making aTask Ready, 0S_EventTaskRdy ()], andthistask isready to run.

The priority of the new owner is saved in the mutex’'s ECB.

0S_Sched() is then called to see if the task made ready is now the highest priority task
ready to run. If itis, a context switch results, and the readied task is resumed. If the read-
ied task is not the highest priority task, then 0S_Sched() returns, and the task that called
0SMutexPost () will continue execution.

If no tasks are waiting on the mutex, the lower 8 bitsof .0SEventCnt are set to 0xFF, which
indicates that the mutex isimmediately available.

194 Chapter 8: Mutual Exclusion Semaphores

8.04 Getting a Mutex without Waiting (Non-blocking),
OSMutexAccept ()

It is possible to obtain a mutex without putting a task to leep if the mutex is not available. This action
is accomplished by calling 0SMutexAccept (), and the code for this function is shown in Listing 8.6.

Listing8.6 Getting a mutex without waiting.

INT8U OSMutexAccept (OS_EVENT *pevent, INT8U *err)
{
fHif OS_CRITICAL_METHOD = 3

0S_CPU_SR cpu_sr;

{fendif
if (0SIntNesting > 0) { (1)
*err = 0S_ERR_PEND_ISR;
return (0);

}
fFif OS_ARG_CHK_EN
if (pevent = (OS_EVENT *)0) ({
*err = OS_ERR_PEVENT_NULL;
return (0);
}
frendif
OS_ENTER_CRITICAL();
fHi f OS_ARG_CHK_EN
if (pevent->0SEventType != OS_EVENT_TYPE_MUTEX) ({
OS_EXIT_CRITICAL();
*err = OS_ERR_EVENT_TYPE;
return (0);
}
frendif
OS_ENTER_CRITICAL();
(2)

Obtaining the Status of a Mutex, 0SMutexQuery() 195

Listing 8.6 Getting a mutex without waiting. (Continued)
if ((pevent->0SEventCnt & OS_MUTEX_KEEP_LOWER_8) == OS_MUTEX_AVAILABLE) {

pevent->0SEventCnt &= OS_MUTEX_KEEP_UPPER_8; (3)
pevent->0SEventCnt |= O0STCBCur->0STCBPrio;
pevent->0SEventPtr = (void *)0STCBCur; (4)

OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;
return (1);

}

OS_EXIT_CRITICAL();

*err = 0S_NO_ERR;

return (0);

}

L8.6(1) Aswith the other calls, if 0S_ARG_CHK_EN issetto 1in 0S_CFG.H, OSMutexAccept() starts
by ensuring that it's not called from an ISR and performs boundary checks.

L8.6(2) 0SMutexAccept() then checksto seeif the mutex isavailable (the lower 8 bitsof .0SEventCnt
are set to OxFF).

L8.6(3)

L8.6(4) If themutex isavailable, 0SMutexAccept () acquiresthe mutex by writing the priority of the
mutex owner in the lower 8 bits of .0SEventCnt and by linking the owner’'s TCB.

The code that called 0SMutexAccept () needs to examine the returned value. A returned value of 0
indicates that the mutex is not available. A return value of 1 indicates that the mutex is available, and the
caller can access the resource.

8.05 Obtaining the Status of a Mutex,
OSMutexQuery()

0SMutexQuery () allows your application to take a snapshot of an ECB that is used as a mutex. The
code for this function is shown in Listing 8.7.

Listing 8.7 Obtaining the status of a mutex.

INT8U OSMutexQuery (OS_EVENT *pevent, OS_MUTEX_DATA *pdata)
{
fFif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
frendi f
INT8U *psrc;
INT8U *pdest;

196 Chapter 8: Mutual Exclusion Semaphores

Listing 8.7 Obtaining the status of a mutex. (Continued)

if (0SIntNesting > 0) {
return (OS_ERR_QUERY_ISR);
}
fFif OS_ARG_CHK_EN
if (pevent = (OS_EVENT *)0) {
return (OS_ERR_PEVENT_NULL);
}
ffendif
OS_ENTER_CRITICAL();
fFif OS_ARG_CHK_EN
if (pevent->0SEventType != OS_EVENT_TYPE_MUTEX) {
OS_EXIT_CRITICAL();
return (OS_ERR_EVENT_TYPE);
}
frendi f
pdata->0SMutexPIP (INT8U) (pevent->0SEventCnt >> 8);
pdata->0SOwnerPrio = (INT8U)(pevent->0SEventCnt & OxO00FF);
if (pdata->0SOwnerPrio == OxFF) {
pdata->0SValue = 1;
b else {
pdata->0SValue

Il
o

}
pdata->0SEventGrp = pevent->0SEventGrp;

psrc = &pevent->0SEventTb1[0];
pdest = &pdata->0SEventTb1[0];
Jif OS_EVENT_TBL_SIZE > O
*pdest++ = ADS|ECHk;
ffendif

JHif OS_EVENT_TBL_SIZE > 1
*pdest++ = *psrct+;
ffendi f

#Hif OS_EVENT_TBL_SIZE > 2
*pdest++ = *psrctt;
ffendif

f#if OS_EVENT_TBL_SIZE > 3
*pdest++ = *psrctt;
ffendif

(1)

(3)

Obtaining the Status of a Mutex, 0SMutexQuery() 197

Listing 8.7 Obtaining the status of a mutex. (Continued)

f#if OS_EVENT_TBL_SIZE > 4
*pdest++ = *psrctt;
ffendif

JHif OS_EVENT_TBL_SIZE > 5
*pdest++ = *psrct+;
ffendi f

JHif OS_EVENT_TBL_SIZE > 6
*pdest++ = *psrc++;
frendif

JFif OS_EVENT_TBL_SIZE > 7
*pdest = ~DSEC;
ffendif
OS_EXIT_CRITICAL();
return (OS_NO_ERR);

O0SMutexQuery() recieves two arguments. pevent contains a pointer to the mutex, which
OSMutexCreate() returns when the mutex is created, and pdata, which is a pointer to a data
structure (0S_MUTEX_DATA, see uC0S_I1.H) that holds information about the mutex. Your application
thus needs to allocate a variable of type 0S_MUTEX_DATA that is used to receive the information
about the desired mutex. | decided to use a new data structure because the caller should only be
concerned with mutex-specific data, as opposed to the more generic 0S_EVENT data structure.
0S_MUTEX_DATA contains the mutex PIP (.0SMutexPIP), the priority of the task owning the
mutex (.0SMutexPrio), and the value of the mutex (.0SMutexValue), which is set to 1 when the
mutex is available and O if it's not. Note that .0SMutexPrio contains OxFF if no task owns the
mutex. Finally, 0S_MUTEX_DATA contains the list of tasks waiting on the mutex (.0SEventTb1[] and
.0SEventGrp).

L8.7(1) Aswithall mutex calls, 0SMutexQuery () determines whether the call is made from an ISR.
L8.7(2)

L8.7(3) If the configuration constant 0S_ARG_CHK_EN is set to 1, 0SMutexQuery () checks that the
handle pevent isnot a NULL pointer and that 0SMutexCreate() has created the ECB being
pointed to.

L8.7(4) 0SMutexQuery() then loads the 0S_MUTEX_DATA structure with the appropriate fields. We
extract the PIP from the upper 8 bits of the . 0SEventCnt field of the mutex.

L8.7(5) Next, we obtain the mutex value from the lower 8 bits of the . 0SEventCnt field of the mutex.
If the mutex isavailable (i.e., lower 8 bits set to 0xFF), then the mutex value is assumed to be 1.

198 Chapter 8: Mutual Exclusion Semaphores

L8.7(6) Otherwise, the mutex valueisO (i.e., unavailable because it’'s owned by atask).

L8.7(7) Finally, the mutex wait list is copied into the appropriate fields in 0S_MUTEX_DATA. For per-
formance reasons, | decided to use inline code instead of using a for loop.

Chapter 9

Event Flag Management

MC/OS-11 event flags consist of two elements:. a series of bits (either 8, 16, or 32) used to hold the current
state of the eventsin the group and alist of tasks waiting for a combination of these bits to be either set
(1) or cleared (0). pPC/OS-II provides six services to access semaphores. 0SFlagAccept(),
0SFlagCreate(), 0SFTagDel(), 0SFlagPend(), 0SFlagPost(), and 0SFTagQuery().

To enable uC/OS-I1 event-flag services, you must set the configuration constantsin 0S_CFG.H. Spe-
cifically, Table 9.1 shows which services are compiled, based on the value of configuration constants
found in 0S_CFG.H. You should note that none of the event flag services are enabled when 0S_FLAG_EN
isset to 0. To enable the feature (i.e., service), simply set the configuration constant to 1. You should
notice that 0SF1agCreate(), 0SFTagPend(), and 0SFlagPost () cannot be individually disabled like
the other services because they are aways needed when you enable pC/OS-11 event flag management.

Table 9.1 Event flag configuration constantsin 0S_CFG. H.

UC/OS 11 Event Flag Service Enabled when setto 1in 0S_CFG.H

0SFlagAccept() 0S_FLAG_ACCEPT_EN
O0SFlagCreate()
0SFlagDel() 0S_FLAG_DEL_EN

0SFlagPend()
0SFlagPost()
0SFTagQuery() 0S_FLAG_QUERY_EN

Figure 9.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and event flags.
Note that the symbology used to represent an event flag group is a series of 8 bits even though the event
flag group can contain 8, 16, or 32 bits (see 0S_FLAGS in 0S_CFG.H). The hourglass represents atimeout
that can be specified with the 0SF1agPend() call.

As you can see from Figure 9.1, a task or an ISR can call 0SFlagAccept(), 0SFlagPost(), or
0SFlagQuery(). However, only tasks are allowed to call 0SFlagCreate(), OSFlagDel(), or
0SFlagPend().

199

200 Chapter 9: Event Flag Management

Figure9.1 HC/OS-I1 event flag services.

OSFl agCreat e() OSFl agAccept ()
OSFl agblel () OSFl agPend()
OSFl agPost () ‘jfiijiffiiiilzzzw

/YEvent Flag Grou\A
OSFl agPost () gi: :gg‘jzssx)

9.00 Event Flag Internals

A uC/OS-I's event flag group consist of three el ements, as shown in the 0S_FLAG_GRP structure (Listing
9.1).

Listing9.1 Event flag group data structure.

typedef struct {
INT8U 0SFlagType; (1)
void *0SFlagWaitlList; (2)
0S_FLAGS O0SFlagFlags; (3)
} OS_FLAG_GRP;

L9.1(1) .0SFlagTypeisavariable, which isused to make sure that you are pointing to an event flag
group. Thisfield isthefirst field of the structure because it allows pC/OS-11 services to vali-
date the type of structure to which you are pointing. For example, if you were to pass a
pointer to an event flag group to 0SSemPend (), pC/OS-I1 would return an error code indicat-
ing that you are not passing the proper object to the semaphore pend call. You should note
that an event control block (ECB) also hasitsfirst byte containing the type of OS object (i.e.,
semaphore, mutex, message mailbox, or message queue).

L9.1(2) .0SFlagWaitList containsalist of taskswaiting for events.

L9.1(3) .0SFlagFlags isaseriesof flags (i.e., bits) that holds the current status of events. The num-
ber of bits used is decided at compile time and can either be 8, 16, or 32, depending on the
datatype you assign to 0S_FLAGS in 0S_CFG.H.

You should note that the wait list for event flags is different than the other wait lists in pC/OS-I.
With event flags, the wait list is accomplished through a doubly linked list, as shown in Figure 9.2.
Three data structures are involved. 0S_FLAG_GRP (mentioned above), 0S_TCB, which is the task control
block, and 0S_FLAG_NODE, which is used to keep track of the bits for which the task is waiting and the
type of wait (AND or OR). Asyou can see, alot of pointers are involved.

Event Flag Internals 201

Figure9.2 Relationship between event flag group, event flag nodes,
and TCBs.
0S_FLAG GRP l l J—| 0S_FLAG_NODE
. OSFl ag\ai t Li st ® > ® ® ® . OSTCBFI agNode
08 agFl ags LT (LT (T (T + O6Fl aghodeF ags
. OSFl agType OS_EVENT_TYPE_FLAG AND or CR AND or OR AND or OR . OSFl agNodeWai t Type
@ @ [3 O . OsFl agNodeNext
L] L] L) . OSFI agNodePr ev
® [J [] . CSFl agNodeTCB
* ‘ * . OSTCBFI agNode
Os_TCB

An 0S_FLAG_NODE is created when atask desires to wait on bits of an event flag group, and the node
is destroyed when the event(s) occur. In other words, a node is created by 0SFlagPend() as we see

shortly. Before we discussthis, let'slook at the 0S_FLAG_NODE data structure.

Event flag group node data structure.

Listing 9.2

typedef struct f{
void *0SFlagNodeNext ;
void *0SFlagNodePrev;
void *0SFlagNodeTCB;
void *0SFlagNodeFlagGrp;

0S_FLAGS 0OSFlagNodeFlags;

INT8U

OSFlagNodeWaitType;
} OS_FLAG_NODE;

(1)

(2)
(3)
(4)
(5)

L9.2(1) The .0SFTlagNodeNext and .0SFlagNodePrev are used to maintain a doubly linked list of
0S_FLAG_NODEs. The doubly linked list allows usto easily insert and especially remove nodes
from the wait list.

L9.2(2) .0SFlagNodeTCB is used to point to the TCB of the task waiting on flags belonging to the
event flag group. In other words, this pointer allows us to know which task is waiting for the
specified flags.

202 Chapter 9: Event Flag Management

L9.2(3)

L9.2(4)

L9.2(5)

.0SFTagNodeFTagGrp alows alink back to the event flag group. This pointer is used when
removing the node from the doubly linked list and is needed by 0STaskDel() when the
pended task needs to be deleted.

The .0SFlagNodeFlags contains the bit-pattern of the flags for which the task is waiting.
For example, your task might have performed an 0SF1agPend() and specified that the task
wants to wait for bits 0, 4, 6, and 7 (bit O is the rightmost bit). In this case,
.0SFlagNodeFlags contains 0xD1. Depending on the size of the data type, 0S_FLAGS,
.0SFlagNodeF1ags iseither 8, 16, or 32 bits. 0S_FLAGS is specified in your application con-
figuration file, i.e.,, 0S_CFG.H. Because uC/OS-11 and the ports are provided in source form,
you can easily change the number of bits in an event flag group to satisfy your requirements
for a specific application or product. The reason you would limit the number of bitsto 8 isto
reduce both RAM and ROM for your application. However, for maximum portability of your
applications, you should set 0S_FLAGS to an INT32U datatype.

The last member of the 0S_FLAG_NODE data structure is 0SF1agNodeWaitType, which deter-
mines whether the task is waiting for ALL (AND wait) the bits in the event flag group that
match OSFlagNodeFTags or ANY (OR wait) of the bits in the event flag group that match
0SFTagNodeFTags. 0SFTagNodeWaitType can be set to

O0S_FLAG_WAIT_CLR_ALL
O0S_FLAG_WAIT_CLR_AND

O0S_FLAG_WAIT_CLR_ANY
O0S_FLAG_WAIT_CLR_OR

O0S_FLAG_WAIT_SET_ALL
OS_FLAG_WAIT_SET_AND

OS_FLAG_WAIT_SET_ANY
O0S_FLAG_WAIT_SET_OR

You should note that AND and AL L mean the same thing, and either one can be used. | pre-
fer touse OS_FLAG_WAIT_???_ALL because it’s more obvious, but you are certainly welcome
to use 0S_FLAG_WATT_???_AND. Similarly, OR or ANY means the same thing, and either one
can be used. Again, | prefer to use 0S_FLAG_WAIT_?7??_ANY because it's more obvious, but,
again, you can use 0S_FLAG_WAIT_???_OR. The other thing to notice is that you can wait for
either bitsto be set or cleared.

Creating an Event Flag Group, 0SFlagCreate() 203

9.01 Creating an Event Flag Group,
OSFlagCreate()

The code to create an event flag group is shown in Listing 9.3.

Listing9.3 Creating an event flag group.

OS_FLAG_GRP *0SFlagCreate (OS_FLAGS flags, INT8U *err)
{
fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendif
0S_FLAG_GRP *pgrp;

if (0SIntNesting > 0) { (1)
*err = OS_ERR_CREATE_ISR;
return ((0OS_FLAG_GRP *)0);

}

OS_ENTER_CRITICAL();

pgrp = OSFlagFreelist; (2)
if (pgrp != (0S_FLAG_GRP *)0) { (3)
(4)

OSFlagFreelList = (OS_FLAG_GRP *)0SFlagFreelList->0SFlagWaitList;
pgrp->0SFlagType = OS_EVENT_TYPE_FLAG; (5)
pgrp->0SFlagFTags = flags; (6)
pgrp->0SFlagWaitlist = (void *)0; (7)
OS_EXIT_CRITICALC();
*err = 0S_NO_ERR;

} else {
OS_EXIT_CRITICALC();
*err = OS_FLAG_GRP_DEPLETED;

}

return (pgrp); (8)

L9.3(1) OSFlagCreate() starts by making sure it's not called from an ISR because that's not
allowed.

L9.3(2) 0SFlagCreate() then attemptsto get afree event flag group (i.e., an 0S_FLAG_GRP) from the
freelist.

L9.3(3) Annon-NULL pointer indicates that an event flag group is available.

204 Chapter 9: Event Flag Management

L9.3(4)

L9.3(5)

L9.3(6)

L9.3(7)

L9.3(8)

After agroup is alocated, the freelist pointer is adjusted. Note that the number of event flag
groups that you can create is determined by the #define constant 0S_MAX_FLAGS, which is
defined in 0S_CFG.H in your application.

0SFlagCreate() then fillsin the fields in the event flag group. OS_EVENT_TYPE_FLAG indi-
cates that this control block isan event flag group. Becausethisfield isfirst in the data struc-
ture, it's at offset zero. In uC/OS-1, the first byte of an event flag group or an event control
block used for semaphores, mailboxes, queues, and mutexes indicates the type of kernel
object. This process allows us to check that we are pointing to the proper object.

0SFlagCreate() then stores the initial value of the event flags into the event flag group.
Typicaly, you initialize the flags to all Os, but, if you are checking for cleared bits then, you
could initialize the flags to all 1s.

Because we are creating the group, no tasks are waiting on the group, and thus the wait list
pointer isinitialized to NULL.

The pointer to the created event flag group is returned. If no more groups are available,
0SFlagCreate() returnsaNULL pointer.

Figure9.3 Event flag group just before 0SFTagCreate() returns.

05_FLAG GRP
. OSFl agType 05_EVENT_TYPE_FLAG Value of "flags' argument
. OSFIl agFl ags '//////
. OSFI ag\ai t Li st @ > 0
9.02 Deleting an Event Flag Group, 0SFlagDel ()

The code to delete an event flag group is shown in Listing 9.4.

Listing9.4 Deleting an event flag group.
0S_FLAG_GRP *0SFlagDel (OS_FLAG_GRP *pgrp, INT8U opt, INT8U *err)

{

#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

ffendi f
BOOLEAN tasks_waiting;
0S_FLAG_NODE *pnode;

Deleting an Event Flag Group, 0SF1agDel() 205

Listing9.4 Deleting an event flag group. (Continued)

if (0SIntNesting > 0) { (1)
*err = OS_ERR_DEL_ISR;
return (pgrp);

}

fHi f OS_ARG_CHK_EN > 0

if (pgrp = (0S_FLAG_GRP *)0) { (2)
*err = 0S_FLAG_INVALID_PGRP;
return (pgrp);

}

if (pgrp->0SFlagType != OS_EVENT_TYPE_FLAG) { (3)
*err = OS_ERR_EVENT_TYPE;
return (pgrp);

}

ffendif

OS_ENTER_CRITICAL();

if (pgrp->0SFlagWaitList !'= (void *)0) { (4)
tasks_waiting = TRUE;

} else |
tasks_waiting = FALSE;

}

switch (opt) {

case OS_DEL_NO_PEND: (5)
if (tasks_waiting == FALSE) {
pgrp->0SFlagType = OS_EVENT_TYPE_UNUSED;
pgrp->0SFTagWaitlist = (void *)0SFlagFreelist; (6)
OSFlagFreelist = pgrp;
OS_EXIT_CRITICAL();
e = 0S_NO_ERR;
return ((OS_FLAG_GRP *)0); (7)
} else {
OS_EXIT_CRITICAL();
*err = OS_ERR_TASK_WAITING;

return (pgrp);

206 Chapter 9: Event Flag Management

Listing9.4 Deleting an event flag group. (Continued)

case OS_DEL_ALWAYS: (8)
pnode = pgrp->0SFlagWaitList;
while (pnode != (OS_FLAG_NODE *)0) ({ (9)

0S_FlagTaskRdy(pnode, (OS_FLAGS)0);
pnode = pnode->0SFlagNodeNext;
}

pgrp->0SFlagType = OS_EVENT_TYPE_UNUSED;

pgrp->0SFlagWaitlList = (void *)0SFlagFreelist; (10)

OSFlagFreelist = pgrp;

OS_EXIT_CRITICALC);

if (tasks_waiting == TRUE) { (11)
0S_Sched();

}
*err = 0S_NO_ERR;
return ((OS_FLAG_GRP *)0); (12)

default:
OS_EXIT_CRITICAL();
*err = OS_ERR_INVALID_OPT;
return (pgrp);

You should use this function with caution because multiple tasks could attempt to access a deleted
event flag group. Generally speaking, before you delete an event flag group, you first delete al the tasks
that access the event flag group.

L9.4(1) 0SFlagDel () startsby making sure that thisfunction isnot called from an I SR because that's
not allowed.

L9.4(2)
L9.4(3) We then validate the arguments passed to 0SF1agDel (). First, we make sure that pgrp is not
aNULL pointer and that pgrp points to an event flag group. Note that this code is condition-

ally compiled, and thus, if 0S_ARG_CHK_EN is set to O, then this code is not compiled. This
process is done to allow you to reduce the amount of code space needed by this module.

L9.4(4) 0SFlagDel() then determines whether any tasks are waiting on the event flag group and sets
the local boolean variable tasks_waiting accordingly.

Based on the option (i.e., opt) passed in the call, 0SF1agDel () either deletes the event
flag group only if no tasks are pending on the event flag group (opt = 0S_DEL_NO_PEND) or
deletes the event flag group even if tasks are waiting (opt = 0S_DEL_ALWAYS).

Waiting for Event(s) of an Event Flag Group, 0SFlagPend() 207

L9.4(5)

L9.4(6) When opt is set to 0S_DEL_NO_PEND and no task is waiting on the event flag group,
0SF1agDel () marks the group as unused, and the event flag group is returned to the free list
of groups. This process allows another event flag group to be created by reusing this event

flag group.

L9.4(7) You should note that 0SF1agDel () returns a NULL pointer because, at this point, the event
flag group should no longer be accessed through the original pointer.

L9.4(8)

L9.4(9) Whenoptissetto0S_DEL_ALWAYS, all tasks waiting on the event flag group are readied. Each
task thinks the event(s) that the task was waiting for occurred. We discuss 0S_FlagTaskRdy ()
when we look at the code for 0SF1agPost ().

L9.4(10) After al pending tasks are readied, 0SF1agDel () marks the event flag group as unused, and
the group is returned to the freelist of groups.

L9.4(11) Thescheduler iscaled only if tasks were waiting on the event flag group.

L9.4(12) You should note that 0SF1agDel () returns a NULL pointer because, at this point, the event
flag group should no longer be accessed through the original pointer.

9.03 Waiting for Event(s) of an Event Flag Group,
O0SFlagPend()

The code to wait for event(s) of an event flag group is shown in Listing 9.5.

Listing9.5 Waiting for event(s) of an event flag group.

0S_FLAGS O0SFlagPend (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT16U timeout, INT8U *err)
{
##if OS_CRITICAL_METHOD ==

0S_CPU_SR cpu_sr;

frendif
0S_FLAG_NODE node;
O0S_FLAGS flags_cur;
0S_FLAGS flags_rdy;
BOOLEAN consume;
if (0SIntNesting > 0) { (1)

*err = 0S_ERR_PEND_ISR;
return ((0S_FLAGS)0);
}
#if 0S_ARG_CHK_EN > 0
if (pgrp = (0S_FLAG_GRP *)0) { (2)
*err = 0S_FLAG_INVALID_PGRP;
return ((0S_FLAGS)0);

208 Chapter 9: Event Flag Management

Listing9.5 Waiting for event(s) of an event flag group. (Continued)

if (pgrp->0SFlagType != OS_EVENT_TYPE_FLAG) { (3)
*err = OS_ERR_EVENT_TYPE;
return ((0S_FLAGS)0);

}

ffendif

if (wait_type & OS_FLAG_CONSUME) { (4)
wait_type &= ~0S_FLAG_CONSUME;
consume = TRUE;

} else {
consume = FALSE;

}
OS_ENTER_CRITICAL();

switch (wait_type) { (5)
case OS_FLAG_WAIT_SET ALL:
flags_rdy = pgrp->0SFlagFlags & flags; (6)
if (flags_rdy = flags) f (7)
if (consume = TRUE) { (8)
pgrp->0SFlagFlags &= ~flags_rdy; (9)
}
flags_cur = pgrp->0SFlagFlags; (10)
OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;
return (flags_cur); (11)
} else { (12)

0S_FlagBlock(pgrp, &node, flags, wait_type, timeout);
0S_EXIT_CRITICAL();

}

break;

case OS_FLAG_WAIT_SET_ANY:

flags_rdy = pgrp->0SFlagFlags & flags; (13)
if (flags_rdy != (OS_FLAGS)0) { (14)
if (consume = TRUE) { (15)
pgrp->0SFlagFlags &= ~flags_rdy; (16)
}
flags_cur = pgrp->0SFlagFlags; (17)
OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;
return (flags_cur); (18)
} else { (19)

0S_FTlagBlock(pgrp, &node, flags, wait_type, timeout);
OS_EXIT_CRITICAL();

}

break;

Waiting for Event(s) of an Event Flag Group, 0SF1agPend() 209

Listing9.5 Waiting for event(s) of an event flag group. (Continued)

#Hif OS_FLAG_WAIT_CLR_EN > 0
case OS_FLAG _WAIT_CLR_ALL:

flags_rdy = ~pgrp->0SFlagFlags & flags;

if (flags_rdy == flags) f{
if (consume == TRUE) {

pgrp->0SFlagFlags |= flags_rdy;

}
flags_cur = pgrp->0SFlagFlags;
OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;
return (flags_cur);

} else {
0S_FlagBlock(pgrp, &node, flags, wait_type, timeout);
OS_EXIT_CRITICAL();

}

break;

case OS_FLAG_WAIT_CLR_ANY:
flags_rdy = ~pgrp->0SFlagFlags & flags;
if (flags_rdy != (OS_FLAGS)0) {
if (consume == TRUE) {
pgrp->0SFlagFlags |= flags_rdy;

}

flags_cur = pgrp->0SFlagFlags;
0S_EXIT_CRITICAL();

*err = 0S_NO_ERR;

return (flags_cur);

} else {
0S_FTlagBlock(pgrp, &node, flags, wait_type, timeout);

OS_EXIT_CRITICAL();
}

break;
frendi f
default:
0S_EXIT _CRITICAL();
flags_cur = (0S_FLAGS)O0;
*err = OS_FLAG_ERR_WAIT_TYPE;
return (flags_cur);
}
0S_Sched(); (20)
OS_ENTER_CRITICAL();
(21)

if (OSTCBCur->0STCBStat & OS_STAT_FLAG) f

210 Chapter 9: Event Flag Management

Listing9.5 Waiting for event(s) of an event flag group. (Continued)

0S_FlagUnTink(&node); (22)
OSTCBCur->0STCBStat = OS_STAT_RDY;
OS_EXIT_CRITICAL();

flags_cur = (0S_FLAGS)O0;
*err = 0S_TIMEOUT;
} else {
if (consume == TRUE) { (23)

}

switch (wait_type) {
case OS_FLAG_WAIT_SET_ALL:
case OS_FLAG_WAIT_SET_ANY: (24)
pgrp->0SFlagFlags &= ~0STCBCur->0STCBFTagsRdy;
break;

case OS_FLAG_WAIT_CLR_ALL:
case OS_FLAG_WAIT_CLR_ANY:
pgrp->0SFlagFlags |= OSTCBCur->0STCBFlagsRdy;

break;
}
}
flags_cur = pgrp->0SFlagFlags; (25)
OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;

return (flags_cur);

}

L9.5(1)

L9.5(2)
L9.5(3)

As with all pC/OS-I1 PEND calls, 0SFlagPend() cannot be called from an ISR, and thus
0SFlagPend () checksfor this condition first.

Assuming that the configuration constant 0S_ARG_CHK_EN is set to 1, 0SF1agPend() makes
surethat the handle pgrp isnot aNULL pointer and that pgrp pointsto an event flag group that
should have been created by 0SF1agCreate().

0SFlagPend() allowsyou to specify whether you SET or CLEAR flags after they satisfy the
condition for which you are waiting. This process is accomplished by ADDing (or ORing)
0S_FLAG_CONSUME to the wait_type argument during the call to 0SF1agPend(). For exam-
ple, if you want towait for BIT0 to be SET in the event flag group and if BITO isin fact SET, it
is cleared by 0SFlagPend() if you add 0S_FLAG_CONSUME to the type of wait desired, as
shown below

0SFlagPend(0SFlagMyGrp,
(0S_FLAGS)0x01,
FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME,
0,
derr);

L9.5(4)

L9.5(5)

Waiting for Event(s) of an Event Flag Group, 0SFlagPend() 211

Because the consumption of the flag(s) is done later in the code, 0SF1agPend() saves the
consume option in the boolean variable called consume.

0SFlagPend() then executes code, based on the wait type specified in the function called.
There are four choices:

1. wait for all bits specified to be set in the event flag group,
2. wait for any bit specified to be set in the event flag group,
3. wait for all bits specified to be cleared in the event flag group,
4. wait for any bit specified to be cleared in the event flag group.

Thelast two choices are identical to thefirst two choices except that 0SF1agPend () looks
for the bits specified to be cleared (i.e., 0) instead of being set (i.e., 1). For thisreason, | only
discuss the first two choices. In fact, in order to conserve ROM, you might not need to look
for bits to be cleared, and thus you can compile out all the corresponding code out by setting
0S_FLAG_WAIT_CLR_ENtoOin OS_CFG.H.

Wait for all of the specified bitsto be set:

L9.5(6)

L9.5(7)

L9.5(8)
L9.5(9)

L9.5(10)
L9.5(11)
L9.5(12)

When wait_type is set to either OS_FLAG_WAIT_SET_ALL or OS_FLAG_WAIT_SET_AND,
0SFlagPend () extracts the desired bits (which are specified in the flags argument) from the
event flag group.

If all the bits extracted match the bits that you specified in the f1ags argument, then the event
flags that the task wants are all set. Thus, the PEND call returnsto the caller.

Before we return, we need to determine whether we need to consume the flags, and if so, we
clear all the flags that satisfy the condition.

The new value of the event flag group is obtained and returned to the caller.

If all the desired bits in the event flag group were not set, then the calling task blocks (i.e.,
suspends) until all the bits are either set or atimeout occurs. Instead of repeating code for all
four types of wait, | created a function [0S_FTagBlock()] to handle the details of blocking
the calling task (described later).

Wait for any of the specified bits to be set:

L9.5(13)

L9.5(14)

L9.5(15)
L9.5(16)

L9.5(17)
L9.5(18)
L9.5(19)

When wait_type is set to either O0S_FLAG_WAIT_SET_ANY or OS_FLAG_WAIT_SET_OR,
0SFlagPend () extracts the desired bits (which are specified in the flags argument), from the
event flag group.

If any of the bits extracted match the bits that you specified in the f1ags argument, then the
PEND call returnsto the caller.

Before we return, we need to determine whether we need to consume the flag(s), and if so,
we need to clear all the flag(s) that satisfied the condition.

The new value of the event flag group is obtained and returned to the caller.

If none of the desired bits in the event flag group were not set, then the calling task will
blocks (i.e., suspends) until any of the bitsis either set or atimeout occurs.

212 Chapter 9: Event Flag Management

As mentioned previoudly, if the desired bits and conditions of a PEND call are not satisfied the calling
task is suspended until either the event or atimeout occurs. The task is suspended by 0S_FlagBlock()
(see Listing 9.6), which adds the calling task to the wait list of the event flag group. The process is
shown in Figure 9.4.

Listing9.6 Adding a task to the event flag group wait list.

static void 0S_FlagBlock (OS_FLAG_GRP *pgrp,
0S_FLAG_NODE *pnode,

0S_FLAGS flags,
INT8U wait_type,
INT16U timeout)

0S_FLAG_NODE *pnode_next;

0STCBCur->0STCBStat |= OS_STAT_FLAG; (1)
OSTCBCur->0STCBD1y = timeout;
fFif OS_TASK_DEL_EN > 0
0STCBCur->0STCBFlagNode = pnode; (2)
ffendif
pnode->0SFlagNodeFlags = flags; (3)
pnode->0SFTagNodeWaitType = wait_type;
pnode->0SFTagNodeTCB = (void *)0STCBCur; (4)
pnode->0SFTagNodeNext = pgrp->0SFlagWaitlist; (5)
pnode->0SFTagNodePrev = (void *)0; (6)
pnode->0SFlagNodeFlagGrp = (void *)pgrp; (7)
pnode_next = pgrp->0SFlagWaitlist;
if (pnode_next != (void *)0) {
pnode_next->0SFlagNodePrev = pnode; (8)
}
pgrp->0SFlaghWaitlist = (void *)pnode; (9)
(10)

if ((OSRdyTb1[OSTCBCur->0STCBY] &= ~OSTCBCur->0STCBBitX) = 0) {
OSRdyGrp &= ~0STCBCur->0STCBBitY;

L9.6(1)

F9.4(1) 0S_FlagBlock() starts by setting the appropriate fields in the task control block. You
should note that an 0S_FLAG_NODE is allocated on the stack of the calling task (see
0SFlagPend(), Listing 9.5). This allocation means that we don’'t need to keep a separate
freelist of 0S_FLAG_NODE because these data structures can simply be allocated on the stack
of the calling task. That being said, the calling task must have sufficient stack space to allo-
cate this structure on its stack.

L9.6(2)
F9.4(2)

L9.6(3)
F9.4(3)

Waiting for Event(s) of an Event Flag Group, 0SFlagPend() 213

We then link the 0S_FLAG_NODE to the TCB but only if 0S_TASK_DEL_ENissetto 1. Thislink
allows 0STaskDel () to remove the task being suspended from the wait list, should another
task decide to delete this task.

Next, 0S_FlagBlock() savesthe flags for which the task is waiting, as well as the wait type
inthe 0S_FLAG_NODE structure.

Figure9.4 Adding the current task to the wait list of the event flag

group.
05_FLAG GRP
OS_EVENT_TYPE_FLAG :
LT, 05_FLAG_NCDE
. : > . .
N LTI LT
\\ E Type Type
QIO o+ e —1—o
S | O—1—O® |«—1—@
® ® K ®
@)]]]]Mk””: ,,,,,,,,, Y
Type """)
——T._,
(6)
0+~ — : 0S_FLAG NODE Ps ®
@ 1@
1 v
osTCBCur _.| e |
|
| | oS TCB
: (1) |
e]
TCB

L9.6(4)
F9.4(4)
L9.6(5)
F9.4(5)

We then link the TCB to the 0S_FLAG_NODE.

The 0S_FLAG_NODE isthen linked to the other 0S_FLAG_NODEsin the wait list.

214 Chapter 9: Event Flag Management

L9.6(6)
F9.4(6)

L9.6(7)
F9.4(7)

L9.6(8)
F9.4(8)
L9.6(9)
F9.4(9)
L9.6(10)

You should note that the 0S_FLAG_NODE is simply inserted at the beginning of the doubly
linked list for ssimplicity’s sake.

We then link the event flag group to the 0S_FLAG_NODE. Thislinkage is again done to alow
us to delete the task that is being added to the wait list of the event flag group.

0S_FTlagBlock() then links the previous first node in the wait list to the new 0S_FLAG_NODE.

Finally, the pointer of the beginning of thewait list is updated to point to the new 0S_FLAG_NODE,
and the calling task is made not ready to run.

You should note that interrupts are disabled during the process of blocking the calling task.

L9.5(20)

L9.5(21)

L9.5(22)

L9.5(23)
L9.5(24)

L9.5(25)

When 0S_F1agBlock() returns, the scheduler is called because, of course, the calling task is
no longer able to run because the event(s) for which it was looking did not occur.

When pC/OS-11 resumes the calling task, 0SF1agPend() checks how the task was readied. 1If
the status field in the TCB still indicates that the task is still waiting for event flags to be
either set or cleared, then the task must have been readied because of a timeout.

In this case, the 0S_FLAG_NODE is removed from the wait list by calling 0S_FlagUnlink(),
and an error code is returned to the caller indicating the outcome of the call. The code for
0S_FTlagUnlink() isnot shown but should be quite obvious because we are simply removing
anode from adoubly linked list. The code provided on the CD-ROM contains comments so
you can easily follow what’s going on.

If the calling task is not resumed because of a timeout, then it must have been resumed
because the event flags for which it was waiting have been either set or cleared. In this case,
we determine whether the calling task wanted to consume the event flags. If thisisthe case,
the appropriate flags are either set or cleared based on the wait type.

Finally, 0SF1agPend() obtains the current value of the event flags in the group in order to
return this information to the caller.

Setting or Clearing Event(s) in an Event Flag Group, 0SFlagPost() 215

9.04 Setting or Clearing Event(s) in an Event Flag
Group, 0SFlagPost()

The code for either setting or clearing bits in an event flag group is done by calling 0SF1agPost (), and
the code for this function is shown in Listing 9.7.

Listing9.7 Setting or clearing bits (i.e., events) in an event flag
group.
O0S_FLAGS O0SFTagPost (0S_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U opt, INT8U *err)

{
fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR Cpu_sr;

frendif
0S_FLAG_NODE *pnode;
BOOLEAN sched;
0S_FLAGS flags_cur;
0S_FLAGS flags_rdy;

JHif OS_ARG_CHK_EN > 0
if (pgrp = (O0S_FLAG_GRP *)0) { (1)
*err = OS_FLAG_INVALID_PGRP;
return ((0S_FLAGS)0);

}

if (pgrp->0SFlagType != OS_EVENT_TYPE_FLAG) { (2)
*err = OS_ERR_EVENT_TYPE;
return ((0S_FLAGS)0);

}

ffendif
OS_ENTER_CRITICAL();
switch (opt) { (3)
case 0S_FLAG_CLR:
pgrp->0SFlagFlags &= ~flags; (4)
break;

case OS_FLAG_SET:
pgrp->0SFlagFlags |= flags; (5)
break;

216 Chapter 9: Event Flag Management

Listing 9.7 Setting or clearing bits (i.e., events) in an event flag

group. (Continued)

default:
OS_EXIT_CRITICAL();
*err = 0S_FLAG_INVALID_OPT;
return ((0S_FLAGS)0);
}
sched = FALSE;
pnode = pgrp->0SFlagWaitList;
while (pnode != (OS_FLAG_NODE *)0) {
switch (pnode->0SFlagNodeWaitType) f
case OS_FLAG_WATT_SET_ALL:
flags_rdy = pgrp->0SFlagFlags & pnode->0SFlagNodeFlags;
if (flags_rdy = pnode->0SFlagNodeFlags) {
if (0S_FlagTaskRdy(pnode, flags_rdy) = TRUE) {
sched = TRUE;

}

break;

case OS_FLAG_WAIT_SET_ANY:
flags_rdy = pgrp->0SFlagFlags & pnode->0SFlagNodeFlags;
if (flags_rdy != (0S_FLAGS)0) {
if (0S_FlagTaskRdy(pnode, flags_rdy) = TRUE) {
sched = TRUE;

}

break;

it OS_FLAG_WAIT_CLR_EN > O
case OS_FLAG_WAIT CLR_ALL:

flags_rdy = ~pgrp->0SFlagFlags & pnode->0SFlagNodeFlags;

if (flags_rdy = pnode->0SFlagNodeFlags) f
if (0S_FlagTaskRdy(pnode, flags_rdy) = TRUE) {
sched = TRUE;

break;

Setting or Clearing Event(s) in an Event Flag Group, 0SFlagPost() 217

Listing 9.7 Setting or clearing bits (i.e., events) in an event flag
group. (Continued)
case OS_FLAG_WAIT_CLR_ANY:
flags_rdy = ~pgrp->0SFlagFlags & pnode->0SFlagNodeFlags;

if (flags_rdy != (0S_FLAGS)0) {
if (0S_FlagTaskRdy(pnode, flags_rdy) = TRUE) {

sched = TRUE;
}
}
break;
ffendi f
}
pnode = pnode->0SFlagNodeNext; (12)
}
OS_EXIT_CRITICAL();
if (sched = TRUE) { (13)
0S_Sched(); (14)

}

OS_ENTER_CRITICAL();

flags_cur = pgrp->0SFlagFlags; (15)
OS_EXIT_CRITICAL();

return (flags_cur); (16) “

*err = 0S_NO_ERR;

}

L9.7(1)

L9.7(2) Assuming that the configuration constant 0S_ARG_CHK_EN isset to 1, 0SFlagPost() makes
surethat the handle pgrp isnot aNULL pointer and that pgrp points to an event flag group that
should have been created by 0SFTagCreate().

L9.7(3)
L9.7(4)

L9.7(5) Depending on the option you specified in the opt argument of 0SF1agPost (), the flags spec-
ified in the flags argument are either set (when opt = 0S_FLAG_SET) or cleared (when opt
= 0S_FLAG_CLR). If opt isnot one of the two choices, the call is aborted, and an error code
isreturned to the caller.

L9.7(6) We next start by assuming that posting doesn’t make a higher priority task ready to run, and
thus we set the boolean variable sched to FALSE. If this assumption is not verified because
we make a higher priority task ready to run, then sched is simply be set to TRUE.

L9.7(7) We then go through the wait list to see if any task iswaiting on one or more events.

218 Chapter 9: Event Flag Management

L9.7(15)
L9.7(16)

L9.7(8)

L9.7(9)
L9.7(10)

L9.7(12)

L9.7(12)

If the wait list is empty, we simply get the current state of the event flag bits and return this
information to the caller.

If one or more tasks are waiting on the event flag group, we go through thelist of 0S_FLAG_NODES
to seeif the new event flag bits now satisfy any of the waiting task conditions. Each one of the
tasks can be waiting for one of four conditions:

1. all of the bits specified in the PEND call to be set.

2. any of the bits specified in the PEND call to be set.

3. all of the bits specified in the PEND call to be cleared.

4. any of the bits specified in the PEND call to be cleared.

Note that the last two conditions can be compiled out by setting 0S_FLAG_WAIT_CLR_ENto O
(see 0S_CFG. H). You would do thisif you didn’t need the functionality of waiting for cleared
bits and/or you need to reduce the amount of ROM in your product. When a waiting task’s
condition is satisfied, the waiting task is readied by calling 0S_FlagTaskRdy () (see Listing
9.9). | only discuss the first wait condition because the other cases are similar enough.

Because a task is made ready to run, the scheduler has to be called. However, we only call
the scheduler after going through all waiting tasks because thereis no need to call the sched-
uler every time atask is made ready to run.

We proceed to the next node by following the linked list.

You should note that interrupts are disabled while we are going through the wait list. The implica-
tion isthat 0SF1agPost () can potentialy disable interrupts for along period of time, especialy if mul-
tiple tasks are made ready to run. However, execution timeis bounded and still deterministic.

L9.7(13)
L9.7(14)

L9.7(15)

When we have gone through the whole waiting list, we examine the sched flag to see if we
need to run the scheduler and thus possibly perform a context switch to a higher priority task
that just received the event flag(s) for which it was waiting.

L9.7(16) 0SFlagPost() returnsthe current state of the event flag group.

As previously mentioned, the code in Listing 9.8 is executed to make atask ready to run.

Listing9.8 Make a waiting task ready to run.

static

{

BOOLEAN 0S_FlagTaskRdy (OS_FLAG_NODE *pnode, OS_FLAGS flags_rdy)

0S_TCB *ptchb;
BOOLEAN sched;

ptch
ptch->0STCBD1y

(0S_TCB *)pnode->0SFlagNodeTCB;
0;

ptch->0STCBFTagsRdy = flags_rdy;

Setting or Clearing Event(s) in an Event Flag Group, 0SFlagPost() 219

Listing9.8 Make a waiting task ready to run. (Continued)
ptcb->0STCBStat &= ~0S_STAT_FLAG;

if (ptch->0STCBStat = O0S_STAT_RDY) { (1)
0SRdyGrp |= ptcb->0STCBBitY;
OSRdyTb1[ptcb->0STCBY] |= ptcb->0STCBBitX;
sched = TRUE; (2)
} else |
sched = FALSE; (3)
}
0S_FlagUnlink(pnode); (4)

return (sched);
}

L9.8(4) Thisprocedureis standard in uC/OS-11 except for the fact that the 0S_FLAG_NODE needsto be
unlinked from the waiting list of the event flag group, as well as the task’s 0S_TCB (see Sec-
tion 6.05, “Making a Task Ready, 0S_EventTaskRdy ()").

L9.8(1)

L9.8(2)

L9.8(3) Note that even though this function removes the waiting task from the event flag group wait

list, the task could till be suspended and might not be ready to run, which is why the bool-
ean variable sched is used and returned to the caller.

The unlinking of the 0S_FLAG_NODE is performed by the function 0S_FlagUn1ink(), as shown in
Listing 9.9. Figure 9.5 shows the four possible locations of an 0S_FLAG_NODE, which needs to be
removed from the event flag wait list. The doubly linked list removal problem is classic except that
other pointers must be adjusted.

Listing 9.9 Unlinking an 0S_FLAG_NODE.

void O0S_FlagUnTink (OS_FLAG_NODE *pnode)
{
JHif OS_TASK_DEL_EN > 0
0S_TCB *ptch;
frendi f
0S_FLAG_GRP *pgrp;
0S_FLAG_NODE *pnode_prev;
0S_FLAG_NODE *pnode_next;

pnode_prev = pnode->0SFlagNodePrev;

pnode_next = pnode->0SFlagNodeNext;

if (pnode_prev = (0S_FLAG_NODE *)0) f{
pgrp = pnode->0SFlagNodeFTlagGrp;
pgrp->0SFlagWaitList = (void *)pnode_next;

~ o~ o~ —~
oW N
— — — ~— —

220 Chapter 9: Event Flag Management

Listing9.9 Unlinking an 0S_FLAG_NODE. (Continued)

if (pnode_next != (OS_FLAG_NODE *)0) ({ (6)
pnode_next->0SFlagNodePrev = (0S_FLAG_NODE *)0; (7)
}
} else {
pnode_prev->0SFlagNodeNext = pnode_next; (8)
if (pnode_next != (0S_FLAG_NODE *)0) {
pnode_next->0SFlagNodePrev = pnode_prev; (10)

}
JHif OS_TASK_DEL_EN > 0
ptch = (0S_TCB *)pnode->0SFTagNodeTCB; (11)
ptch->0STCBFTagNode = (void *)0; (12)
ffendi f
}

Figure9.5 Removing an 0S_FLAG_NODE from the wait list.

pnode pnode
. OSFl agNodeFl agG p
. OSFl ag\ai t Li st h |
OS_FLAG_NCDE m-» [® OS_FLAG_NODE
05 _FLAG GRP . OSFI agNodeNext 5_FLAG GRP Tpe Tpe
» 0 > » 0
0« 0« <
‘ " [] [] []
. OBFI agNodePr ev
4 OSFl agNode TCB 4 4
v v \4
[] [] []
A . OSTCBFI aghode B
0s_TCB pnode 0s_TCB pnode

| ll

e AR i i R
OS5 FLAG GRP Type Type Type 0S_FLAG GRP pe Tyee

- > > »0 > » 0

0« < < 0« <
® ® ® L] L]
A A A 4 4

v v A vy vy
) ° ° L4 L4

Setting or Clearing Event(s) in an Event Flag Group, 0SFlagPost() 221

L9.9(1)

L9.9(2) 0S_FlagUnlink() starts off by setting up two local pointers: pnode_next and pnode_prev,
which point to the next and previous 0S_FLAG_NODE in the wait list, respectively.

L9.9(3)

F9.5(A,B)The previous pointer is examined to see if we have the first two cases of Figure 9.6 (an
0S_FLAG_NODE, which is the first node in the wait list).

L9.9(4)

L9.9(5) If the 0S_FLAG_NODE is the first node, the wait-list pointer of the event flag group needs to
point to the node immediately after the 0S_FLAG_NODE to be removed.

L9.9(6)

L9.9(7)

F9.5(B) If an 0S_FLAG_NODE isto the right of the node to delete, then that node now points to where
the previous pointer of the node to delete is pointing, which is, of course, a NULL pointer
because the node to remove was the first one.

L9.9(8)

F9.5(C,D) Because the node to delete is not the first node in the wait list, the node to the left of the node
to delete must now point to the node to the right of the node to delete.

L9.9(9)

L9.9(10) If anodeisto theright of the node to delete, the previous pointer of that node must now point
to the previous node of the node to delete.

L9.9(11)

L9.9(12) In all cases, the .0STCBF1agNode field must now point to NULL because the node to be
deleted will no longer exist after it's deallocated from the task that created the node in the
first place.

Figures 9.6 through 9.9 show the before and after for each case mentioned. The number in parenthesis
corresponds to the number in parenthesis of list Listing 9.9. You should notice that 0S_FTagUnTink()
updates three pointers at most. Because the node being removed exists on the stack of the task being read-
ied (it was alocated by 0SFlagPend()), that node automatically disappears! As far as the task that
pended on the event flag is concerned, it doesn’t even know about the 0S_FLAG_NODE.

222 Chapter 9: Event Flag Management

Removing an 0S_FLAG_NODE from the wait list,

Figure 9.6
CaseA.

pnode

pnode
v] l’ v ‘l
0 OS_FLAG_NODE

08_FLAG GRP]]]]]]]].II]II]ﬂOS_FLAG_NODE @@_’(5)
(12)
I v
BEFORE AFTER
Figure9.7 Removing an 0S_FLAG_NODE from the wait list,
CaseB.
pnode

WT’ % 05_FLAG_NCDE

I]]]]]]Ioﬂm—» [] ®]os FLAG NoDE
OS_FLAG GRP R .o OS_FLAG GRP (7) .o
0« < 0«
® ® ®
S prode —f g "
\ \ r \
° ° 0« [}
]
(12) A
0«1
0s_TCB
0s_TCB

BEFORE

Setting or Clearing Event(s) in an Event Flag Group, 0SFlagPost() 223

Figure9.8 Removing an 0S_FLAG_NODE from the wait list,

Case C.
pnode pnode
T h]]]mu]]md* i Wﬁ I
® [] [} 0S_FLAG_NCDE [} 0S_FLAG_NCDE
0S_FLAG GRP Type . Type R Type .o 08 _FLAG GRP Type (8) e .o
°t () * ® * ® ot () :(10) ®
A \ \ L v / \
)))) L])
&
o
®
0s_TCB 0s_TCB ¥d
]
(12)
BEFORE AFTER

Figure 9.9 Removing an 0S_FLAG_NODE from the wait list,

pnode pnode
® ® 0S_FLAG_NCDE hﬂﬂﬂm—» [® 0S_FLAG_NCDE
T [T T 8 [T
OS_FLAG GRP Type Type OS_FLAG GRP Type (8) Type
- C > e—t»o0 - &—1—»0 &——»0
o¢—o |« ® o+H—o |« ®
[) [[) [
A 4 A
v v \4 (12) v
® L) L) 0<«—o
0s_TCB 0s_TCB

BEFORE AFTER

224 Chapter 9: Event Flag Management

9.05 Looking for Event(s) of an Event Flag Group,
O0SFlagAccept()

The code to look for desired event(s) from an event flag group without waiting is shown in Listing 9.10.
This function is quite similar to 0SF1agPend() except that the caller is not suspended (i.e., blocked)
should the event(s) not be present. The only two different things are:

1. 0SFlagAccept() can be called from an ISR, unlike some of the other calls.

2. If the conditions are not met, the call does not block and simply returns an error code that the caller
should check.

Listing 9.10 Looking for event flags without waiting.

0S_FLAGS OSFTagAccept (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT8U *err)
{
fHif OS_CRITICAL_METHOD = 3

0S_CPU_SR Cpu_sr;

ffendif
0S_FLAGS flags_cur;
0S_FLAGS flags_rdy;
BOOLEAN consume;

JHif OS_ARG_CHK_EN > 0
if (pgrp = (0S_FLAG_GRP *)0) {
*err = OS_FLAG_INVALID_PGRP;
return ((0S_FLAGS)0);
}
if (pgrp->0SFlagType != OS_EVENT_TYPE_FLAG) {
*err = 0S_ERR_EVENT_TYPE;
return ((0S_FLAGS)0);
}
frendi f
if (wait_type & OS_FLAG_CONSUME) {
wait_type &= ~O0S_FLAG_CONSUME;

consume = TRUE;
} else {
consume = FALSE;

OS_ENTER_CRITICAL();
switch (wait_type) f{

Looking for Event(s) of an Event Flag Group, 0SFlagAccept() 225

Listing 9.10 Looking for event flags without waiting. (Continued)

case OS_FLAG_WAIT_SET_ALL:
flags_rdy = pgrp->0SFlagFlags & flags;
if (flags_rdy = flags) {
if (consume == TRUE) {
pgrp->0SFlagFlags &= ~flags_rdy;
}
flags_cur = pgrp->0SFlagFlags;
OS_EXIT_CRITICAL();
e = 0S_NO_ERR;
} else {
flags_cur = pgrp->0SFlagFlags;
OS_EXIT_CRITICAL();
*err = 0S_FLAG_ERR_NOT_RDY;

}
break;

case OS_FLAG_WAIT_SET_ANY:

flags_rdy = pgrp->0SFlagFlags & flags;

if (flags_rdy != (0OS_FLAGS)0) {
if (consume == TRUE) {

pgrp->0SFlagFlags &= ~flags_rdy;

}
flags_cur = pgrp->0SFlagFlags;
OS_EXIT_CRITICAL();
e = 0S_NO_ERR;

} else {
flags_cur = pgrp->0SFlagFlags;
OS_EXIT_CRITICAL();
*err = OS_FLAG_ERR_NOT_RDY;

}
break;

JHif OS_FLAG_WAIT_CLR_EN > 0
case OS_FLAG_WAIT_CLR_ALL:
flags_rdy = ~pgrp->0SFlagFlags & flags;
if (flags_rdy = flags) {
if (consume == TRUE) {
pgrp->0SFlagFlags |= flags_rdy;

226 Chapter 9: Event Flag Management

Listing 9.10 Looking for event flags without waiting. (Continued)

flags_cur = pgrp->0SFlagFlags;
OS_EXIT_CRITICAL();
0S_NO_ERR;

e
} else {

flags_cur = pgrp->0SFlagFlags;

OS_EXIT_CRITICAL();

*err = 0S_FLAG_ERR_NOT_RDY;

}
break;

case OS_FLAG_WAIT_CLR_ANY:

flags_rdy = ~pgrp->0SFlagFlags & flags;

if (flags_rdy != (0OS_FLAGS)0) {
if (consume == TRUE) {

pgrp->0SFlagFlags |= flags_rdy;

}
flags_cur = pgrp->0SFlagFlags;
OS_EXIT_CRITICAL();
e = 0S_NO_ERR;

} else {
flags_cur = pgrp->0SFlagFlags;
OS_EXIT_CRITICAL();
*err = OS_FLAG_ERR_NOT_RDY;

}

break;

ffendif

default:
OS_EXIT_CRITICAL();
flags_cur = (0S_FLAGS)O0;
*err = OS_FLAG_ERR_WAIT_TYPE;
break;
}
return (flags_cur);

Querying an Event Flag Group, 0SFlagQuery() 227

9.06 Querying an Event Flag Group,
O0SFlagQuery()

0SFlagQuery () alowsyour codeto get the current val ue of the event flag group. The code for thisfunc-
tionisshownin Listing 9.11.

Listing9.11 Obtaining the current flags of an event flag group.

O0S_FLAGS O0SFTagQuery (OS_FLAG_GRP *pgrp, INT8U *err)
{
fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
frendif
OS_FLAGS flags;

#Hif OS_ARG_CHK_EN > 0

if (pgrp == (OS_FLAG_GRP *)0) { (1)
*err = 0S_FLAG_INVALID_PGRP;
return ((0S_FLAGS)0);

}

if (pgrp->0SFlagType != OS_EVENT_TYPE_FLAG) { (2)
*err = 0S_ERR_EVENT_TYPE;
return ((0S_FLAGS)0);

}

ffendi f
OS_ENTER_CRITICAL();
flags = pgrp->0SFlagFlags; (3)

OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;
return (flags); (4)

0SFlagQuery () is passed two arguments: pgrp contains a pointer to the event flag group, which was
returned by 0SFlagCreate() when the event flag group is created; and err, which is a pointer to an
error code that lets the caller know whether the call was successful or not.

L9.11(1)

L9.11(2) As with al uC/OS-1I calls, 0SF1agQuery () performs argument checking if this feature is
enabled when 0S_ARG_CHK_ENissetto 1in 0S_CFG.H.

L9.11(3)

L9.11(4) If no errorsexist, 0SF1agQuery () obtains the current state of the event flags and returns this
information to the caller.

228 Chapter 9: Event Flag Management

Chapter 10

Message Mailbox Management

A message mailbox (or smply a mailbox) is a uC/OS-11 object that alows a task or an ISR to send a
pointer-sized variable to another task. The pointer istypicaly initidized to point to some applicationspecific
data structure containing amessage. UIC/OS-I1 provides six services to access mailboxes. 0SMboxCreate(),
0SMboxPend (), 0SMboxPost (), 0SMboxPostOpt(), 0SMboxAccept (), and 0SMboxQuery ().

To enable pC/OS-I1 message-mailbox services, you must set configuration constants in 0S_CFG. H.
Specifically, Table 10.1 showswhich services are compiled, based on the value of configuration constants
foundin 0S_CFG.H. You should note that none of the mailbox services are enabled when 0S_MBOX_EN is
set to 0. To enable specific features (i.e., services) listed in Table 10.1, simply set the configuration con-
stant to 1. You should notice that 0SMboxCreate() and 0SMboxPend() cannot be individually disabled
like the other services. That's because they are always needed when you enable uC/OS-11 message mail-
box management. You must enable at least one of the post services. 0SMboxPost() and
0SMboxPostOpt().

Table 10.1 Mailbox configuration constantsin 0S_CFG. H.

UC/OS 11 Event Flag Service Enabledwhen setto1in 0S_CFG.H

0SMboxAccept () 0S_MBOX_ACCEPT_EN
0SMboxCreate()

0SMboxDel () 0S_MBOX_DEL_EN
0SMboxPend()

0SMboxPost () 0S_MBOX_POST_EN
0SMboxPost0Opt () 0S_MBOX_POST_OPT_EN
0SMboxQuery () 0S_MBOX_QUERY_EN

Figure 10.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and a message
mailbox. Note that the symbology used to represent a mailbox is an I-beam. The hourglass represents a
timeout that can be specified with the 0SMboxPend () call. The content of the mailbox is a pointer to a

229

230 Chapter 10: Message Mailbox Management

message. What the pointer points to is application specific. A mailbox can only contain one pointer
(mailbox isfull) or apointer to NULL (mailbox is empty).

As you can see from Figure 10.1, atask or an ISR can call 0SMboxPost () or 0SMboxPostOpt ().
However, only tasks are allowed to call 0SMboxDe1 (), 0SMboxPend (), and 0SMboxQuery (). Your appli-
cation can have just about any humber of mailboxes. Thelimit isset by 0S_MAX_EVENTS in 0S_CFG.H.

Figure10.1 Relationships between tasks, | SRs, and a message

mailbox.
OSMhoxCr eat e()
OSMboxDel () OSMboxAccept ()
OSMboxPost () X OSMooxPend()

Ll
ISR CB'VbOXPOSt() Mallbox
OSMhoxPost Opt ()

Message

10.00 Creating a Mailbox, O0SMboxCreate()

A mailbox needs to be created before it can be used. Creating a mailbox is accomplished by calling
0SMboxCreate() and specifying the initial value of the pointer. Typically, the initial value is a NULL
pointer, but amailbox caninitially contain amessage. If you use the mailbox to signal the occurrence of
an event (i.e.,, send a message), you typicaly initialize it to a NULL pointer because the event (most
likely) has not occurred. If you use the mailbox to access a shared resource, you initialize the mailbox
with anon-NULL pointer. In this case, you basically use the mailbox as a binary semaphore.

The code to create a mailbox is shown in Listing 10.1.

Listing 10.1 Creating a mailbox.

OS_EVENT *0SMboxCreate (void *msg)
{
JHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr; (1)
ffendif
OS_EVENT *pevent;

if (0SIntNesting > 0) { (2)
return ((OS_EVENT *)0);

Creating a Mailbox, 0SMboxCreate() 231

Listing 10.1 Creating a mailbox. (Continued)
OS_ENTER_CRITICALC();

pevent = OSEventFreelist; (3)
if (OSEventFreelist != (OS_EVENT *)0) { (4)
O0SEventFreelist = (OS_EVENT *)0OSEventFreelList->0SEventPtr; (5)

}

OS_EXIT_CRITICAL();

if (pevent != (OS_EVENT *)0) { (6)
pevent->0SEventType = OS_EVENT_TYPE_MBOX; (7)
pevent->0SEventCnt = 0; (8)
pevent->0SEventPtr = msg; (9)
0S_EventWaitListInit(pevent); (10)

}

return (pevent); (11)

}

L10.1(1)
L10.1(2)
L10.1(3)

L10.1(4)
L10.1(5)
L10.1(6)
L10.1(7)

L10.1(8)

L10.1(9)

A local variable called cpu_sr to support 0S_CRITICAL_METHOD {3 isallocated.

0SMboxCreate() starts by making sure you are not caling this function from an ISR
because that’s not allowed. All kernel objects need to be created from task-level code or
before multitasking starts.

0SMboxCreate() then attempts to obtain an event control block (ECB) from the free list of
ECBs (see Figure 6.5).

Thelinked list of free ECBsis adjusted to point to the next free ECB.

If an ECB is available, the ECB type is set to 0S_EVENT_TYPE_MBOX. Other 0SMbox???2()
function calls checks this structure member to make sure that the ECB is of the proper type
(i.e., amailbox). This check prevents you from calling 0SMboxPost () on an ECB that was
created for use as a message queue.

The .0SEventCnt field is then initialized to zero because this field is not used by message
mailboxes.

Theinitia value of the message is stored in the ECB.

L10.1(10) Thewait list isthen initialized by calling 0S_EventWaitListInit() [see Section 6.04, “Ini-

tializing an ECB, 0S_EventWaitListInit()”]. Becausethe mailbox isbeing initialized,
no tasks are waiting for it, and thus 0S_EventWaitListInit() clearsthe .0SEventGrp and
.0SEventTh1[] fields of the ECB.

L10.1(11) Finally, 0SMboxCreate () returns a pointer to the ECB. This pointer must be used in sub-

seguent calls to manipulate mailboxes [0SMboxAccept (), 0SMboxDel (), 0SMboxPend (),
0SMboxPost (), 0SMboxPost0Opt (), and 0SMboxQuery ()] . The pointer is basically used as
the mailbox handle. If no more ECBs are present, 0SMboxCreate() returns a NULL pointer.
You should make it a habit to check return values to ensure that you are getting the desired

232 Chapter 10: Message Mailbox Management

results. Passing NULL pointers to pC/OS-I1 does not make it fail because uC/OS-11 validates
arguments (only if 0S_ARG_CHK_EN isset to 1, though). Figure 10.2 shows the content of the
ECB just before 0SMboxCreate() returns.

Figure10.2 ECB just before 0SMboxCreate() returns.

OS_EVENT
pevent —— 0S_EVENT_TYPE_MBOX _ OSEvent Type
0x00 . OSEvent Cnt
msg . CSEvent Pt r
0x00 . CSEvent G p

7|6 |5|4a|3|2]|1|0]| .osEventTbli[]

ALL
initialized
to

0x00

63 |62 | 61|60 |59 |58|57 |56

10.01 Deleting a Mailbox, 0SMboxDel ()

The code to delete a mailbox is shown in Listing 10.2, and this codeis only generated by the compiler if
0S_MBOX_DEL_EN isset to 1 in 0S_CFG.H. You must use this function with caution because multiple
tasks could attempt to access a deleted mailbox. Generally speaking, before you delete a mailbox, you
first delete all the tasks that can access the mailbox.

Listing 10.2 Deleting a mailbox.

OS_EVENT *0SMboxDel (OS_EVENT *pevent, INT8U opt, INT8U *err)
{
fHif OS_CRITICAL METHOD = 3
0S_CPU_SR cpu_sr;
frendi f
BOOLEAN tasks_waiting;

if (0SIntNesting > 0) { (1)
*err = OS_ERR_DEL_ISR;
return (pevent);

Deleting a Mailbox, 0SMboxDel() 233

Listing 10.2 Deleting a mailbox. (Continued)

#Hif OS_ARG_CHK_EN > 0
if (pevent = (OS_EVENT *)0) ({ (2)
*err = 0S_ERR_PEVENT_NULL;
return (pevent);
}
if (pevent->0SEventType != OS_EVENT_TYPE_MBOX) { (3)
*err = 0S_ERR_EVENT_TYPE;
return (pevent);
}
ffendif
OS_ENTER_CRITICALC();
if (pevent->0SEventGrp != 0x00) ({ (4)
tasks_waiting = TRUE;
} else {
tasks_waiting = FALSE;
}
switch (opt) {
case OS_DEL_NO_PEND:
if (tasks_waiting = FALSE) {

pevent->0SEventType = OS_EVENT_TYPE_UNUSED; (5)
pevent->0SEventPtr = O0SEventFreelist; (6)
OSEventFreelist = pevent; (7)

OS_EXIT_CRITICAL();

*err = 0S_NO_ERR;

return ((OS_EVENT *)0); (8)
b oelse f

OS_EXIT_CRITICAL(C);

*err = 0S_ERR_TASK_WAITING;

return (pevent);

case OS_DEL_ALWAYS:

while (pevent->0SEventGrp != 0x00) { (9)
0S_EventTaskRdy(pevent, (void *)0, OS_STAT_MBOX); (10)

}

pevent->0SEventType = OS_EVENT_TYPE_UNUSED; (11)

pevent->0SEventPtr = 0SEventFreelist; (12)

OSEventFreelist = pevent;

OS_EXIT_CRITICALC();
if (tasks_waiting = TRUE) {

234 Chapter 10: Message Mailbox Management

Listing 10.2 Deleting a mailbox. (Continued)

}

L10.2(1)

L10.2(2)
L10.2(3)

L10.2(4)

L10.2(5)
L10.2(6)
L10.2(7)

L10.2(8)

L10.2(9)

0S_Sched(); (13)
}
*err = 0S_NO_ERR;
return ((OS_EVENT *)0); (14)

default:
OS_EXIT_CRITICAL();
*err = OS_ERR_INVALID_OPT;
return (pevent);

0SMboxDe1 () starts by making sure that thisfunction is not called from an I SR because that's
not allowed.

We then validate pevent to ensure that it's not a NULL pointer and that it points to an ECB
that was created as a mailbox.

0SMboxDel() then determines whether any tasks are waiting on the mailbox. The flag
tasks_waiting isset accordingly.

Based on the option (i.e., opt) specified in the call, 0SMboxDe1 () either deletes the mail-
box only if no tasks are pending on the mailbox (opt = 0S_DEL_NO_PEND) or deletes the
mailbox even if tasks are waiting (opt == 0S_DEL_ALWAYS).

When opt is set to 0S_DEL_NO_PEND and no task is waiting on the mailbox, 0SMboxDe1 ()
marks the ECB as unused, and the ECB is returned to the free list of ECBs. This process
allows another mailbox (or any other ECB-based abject) to be created.

You should note that 0SMboxDe1 () returns a NULL pointer because, at this point, the mailbox
should no longer be accessed through the original pointer. You ought to call 0SMboxDel () as
follows

MbxPtr = OSMboxDel(MbxPtr, opt, &err);

This feature allows the pointer to the mailbox to be atered by the call. 0SMboxDel ()
returns an error code if any tasks are waiting on the mailbox (i.e., 0S_ERR_TASK_WAITING)
because by specifying 0S_DEL_NO_PEND you indicated that you didn't want to delete the
mailbox if tasks are waiting on the mailbox.

L10.2(10) When opt isset to 0S_DEL_ALWAYS, then all tasks waiting on the mailbox are readied. Each

task thinks it received a NULL message. Each task should examine the returned pointer to
make sureit’'snon-NULL. Also, you should note that interrupts are disabled while each task is
being readied. Thisfeature, of course, increases the interrupt latency of your system.

Waiting for a Message at a Mailbox, 0SMboxPend() 235

L10.2(11)

L10.2(12) After all pending tasks are readied, 0SMboxDe1 () marks the ECB as unused, and the ECB is
returned to the free list of ECBs.

L10.2(13) The scheduler is called only if tasks are waiting on the mailbox.

L10.2(14) Again, you should note that 0SMboxDe1 () returns a NULL pointer because, at this point, the
mailbox should no longer be accessed through the original pointer.

10.02 Waiting for a Message at a Mailbox,
0SMboxPend ()

The code to wait for a message to arrive at amailbox is shownin Listing 10.3.

Listing 10.3 Waiting for a message at a mailbox (blocking),
0SMboxPend ().

void *0SMboxPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
{
fFif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
frendi f
void *msg;

if (0SIntNesting > 0) {
*err = OS_ERR_PEND_ISR;
return ((void *)0);

}
fHi f OS_ARG_CHK_EN > 0
if (pevent = (OS_EVENT *)0) ({ (2)
*err = 0S_ERR_PEVENT_NULL;
return ((void *)0);
}
if (pevent->0SEventType != OS_EVENT_TYPE_MBOX) { (3)
*err = 0OS_ERR_EVENT_TYPE;
return ((void *)0);
}
ffendif

236 Chapter 10: Message Mailbox Management

Listing 10.3 Waiting for a message at a mailbox (blocking),
0SMboxPend (). (Continued)

OS_ENTER_CRITICAL();

msg = pevent->0SEventPtr; (4)
if (msg != (void *)0) {
pevent->0SEventPtr = (void *)0; (5)

OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;

return (msg); (6)
}
OSTCBCur->0STCBStat |= OS_STAT_MBOX; (7)
OSTCBCur->0STCBDly = timeout; (8)
0S_EventTaskWait(pevent); (9)
OS_EXIT_CRITICAL();
0S_Sched(); (10)

OS_ENTER_CRITICAL();
msg = OSTCBCur->0STCBMsg;
if (msg != (void *)0) { (11)
0STCBCur->0STCBMsg = (void *)0;
0STCBCur->0STCBStat 0S_STAT_RDY;
0STCBCur->0STCBEventPtr = (OS_EVENT *)0;
OS_EXIT_CRITICAL();

*err = 0S_NO_ERR;

return (msg); (12)
}
0S_EventTO(pevent); (13)
OS_EXIT_CRITICAL();
*err = 0S_TIMEOUT;
return ((void *)0); (14)

}

L10.3(1) 0SMboxPend() checks to seeif the function was called by an ISR. It doesn’t make sense to
call 0SMboxPend() from an ISR because an | SR cannot be made to wait. Instead, you should
call 0SMboxAccept() (see Section Section 10.05, “Getting a Message without Waiting
(Non-blocking), 0SMboxAccept ()™).

L10.3(2)

L10.3(3) If 0S_ARG_CHK_EN (see0S_CFG.H)issetto1, 0SMboxPend () checksthat pevent isnotaNULL
pointer and that the ECB to which pevent is pointing has been crested by 0SMboxCreate().

Waiting for a Message at a Mailbox, 0SMboxPend() 237

L10.3(4)
L10.3(5)

L10.3(6) If amessage has been deposited in the mailbox (non-NULL pointer), the messageis extracted from
the mailbox and replaced with aNULL pointer, and the function returnsto its caller with the mes-
sage that was in the mailbox. An error code is aso set indicating success. If your code calls
0SMboxPend(), this outcome is the one for which you are looking because it indicates that
another task or an ISR dready deposited a message. This path is the fastest through
0SMboxPend ().

If the mailbox is empty, the calling task needs to be put to sleep until another task (or an
ISR) sends a message through the mailbox [see Section 10.04, “Sending a Message to a
Mailbox, 0SMboxPostOpt()”]. 0SMboxPend() alows you to specify a timeout value (in
integral number of ticks) as one of its arguments (i.e., timeout). This feature is useful to
avoid waiting indefinitely for a message to arrive at the mailbox. If the timeout value is non-
zero, 0SMboxPend () suspends the task until the mailbox receives a message or the specified
timeout period expires. Note that atimeout value of 0 indicates that the task iswilling to wait
forever for a message to arrive.

L10.3(7) To put the calling task to sleep, 0SMboxPend() sets the status flag in the task’s task control
block (TCB) to indicate that the task is suspended waiting at a mailbox.

L10.3(8) Thetimeout is also stored in the TCB so that it can be decremented by 0STimeTick(). You
should recall (see Section 3.11, “Clock Tick”) that 0STimeTick() decrements each of the
created task’s .0STCBD1y field if it's nonzero.

L10.3(9) The actual work of putting the task to sleep is done by 0S_EventTaskWait() [see Section
6.06, “Making a Task Wait for an Event, 0S_EventTaskWait()"].

L10.3(10) Because the calling task is no longer ready to run, the scheduler is called to run the next highest
priority task that isready to run. Asfar asyour task isconcerned, it made acall to 0SMboxPend (),
and it doesn’t know that it is suspended until a message arrives. When the mailbox receives a
message (or the timeout period expires), 0SMboxPend () resumes execution immediately after
the call to 0S_Sched().

L10.3(11) When 0S_Sched () returns, 0SMboxPend () checksto seeif a message has been placed in the
task’s TCB by 0SMboxPost ().

L10.3(12) If so, the call is successful, and the message is returned to the caller.

L10.3(13) If amessage is not received, then 0S_Sched () must have returned because of atimeout. The
calling task is then removed from the mailbox wait list by calling 0S_EventT0().

L10.3(14) Note that the returned pointer is set to NULL because no message is available to return. The
calling task should either examine the contents of the return pointer or the return code to
determine whether a valid message has been received.

238 Chapter 10: Message Mailbox Management

10.03 Sending a Messageto a Mailbox, 0SMboxPost ()

The code to deposit a message in amailbox is shown in Listing 10.4.

Listing 10.4 Posting a message to a mailbox,
0SMboxPost ().

INT8U OSMboxPost (OS_EVENT *pevent, void *msg)
{
fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendif

JHif OS_ARG_CHK_EN > 0

if (pevent = (OS_EVENT *)0) { (1)
return (OS_ERR_PEVENT_NULL) ;

}

if (msg = (void *)0) {
return (OS_ERR_POST_NULL_PTR);

}

if (pevent->0SEventType != OS_EVENT_TYPE_MBOX) {
return (OS_ERR_EVENT_TYPE) ;

}

ffendif
OS_ENTER_CRITICAL(C);
if (pevent->0SEventGrp != 0x00) f{ (2)
0S_EventTaskRdy(pevent, msg, O0S_STAT_MBOX); (3)
OS_EXIT_CRITICAL();
0S_Sched(); (4)

return (0S_NO_ERR);
}
if (pevent->0SEventPtr != (void *)0) { (5)
OS_EXIT_CRITICAL();
return (0S_MBOX_FULL);
}
pevent->0SEventPtr = msg; (6)
OS_EXIT_CRITICAL(C);
return (OS_NO_ERR);

Sending a Message to a Mailbox, 0SMboxPostOpt() 239

L10.4(1) If OS_ARG_CHK_ENissetto1lin OS_CFG.H, 0SMboxPost() checksto seethat pevent isnot a
NULL pointer, that the message being posted is not a NULL pointer, and finally makes sure that
the ECB is amailbox.

L10.4(2) 0SMboxPost() then checksto seeif any task is waiting for a message to arrive at the mail-
box. Tasks are waiting when the .0SEventGrp field in the ECB contains a honzero value.

L10.4(3) The highest priority task waiting for the message is removed from the wait list by
0S_EventTaskRdy() [see Section 6.05, “Making a Task Ready, 0S_EventTaskRdy()"],
and this task is made ready to run.

L10.4(4) 0S_Sched() isthen called to seeif the task made ready is now the highest priority task ready
to run. If it is, a context switch results [only if 0SMboxPost () is called from atask], and the
readied task is executed. If the readied task is not the highest priority task, 0S_Sched()
returns, and the task that called 0SMboxPost () continues execution.

L10.4(5) Atthispoint, no tasksare waiting for amessage at the specified mailbox. 0SMboxPost () then
checksto see that amessage isn't already in the mailbox. Because the mailbox can only hold
one message, an error code is returned if we get this outcome.

L10.4(6) If no tasks are waiting for a message to arrive at the mailbox, then the pointer to the message is
saved in the mailbox. Storing the pointer in the mailbox alowsthe next task to call 0SMboxPend ()
to get the message immediately.

Note that a context switch does not occur if 0SMboxPost() is called by an ISR because context
switching from an ISR only occurs when 0SIntExit() iscalled at the completion of the ISR and from
the last nested I SR (see Section 3.10, “Interrupts Under uC/OS-117).

10.04 Sending a Message to a Mailbox,
0SMboxPostOpt ()

You can dso post amessageto amailbox using an dternate and more powerful function called 0SMboxPost0Opt ().
There are two post cals for backwards compatibility with previous versions of PC/OS-I.
0SMboxPostOpt () isthe newer function and can replace 0SMboxPost (). In addition, 0SMboxPost0Opt ()
allows posting amessage to all tasks (i.e., broadcast) waiting on the mailbox. The code to deposit ames-
sagein amailbox isshownin Listing 10.5.

Listing 10.5 Posting a message to a mailbox,
O0SMboxPostOpt().

INT8U 0SMboxPostOpt (OS_EVENT *pevent, void *msg, INT8U opt)
{
fFif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
frendi f

240 Chapter 10: Message Mailbox Management

Listing 10.5 Posting a message to a mailbox,
0SMboxPostOpt (). (Continued)

JHif OS_ARG_CHK_EN > 0

if (pevent = (OS_EVENT *)0) { (1)
return (OS_ERR_PEVENT_NULL) ;

}

if (msg = (void *)0) {
return (OS_ERR_POST_NULL_PTR);

}

if (pevent->0SEventType != OS_EVENT_TYPE_MBOX) {
return (OS_ERR_EVENT_TYPE) ;

}

frendif
OS_ENTER_CRITICAL(C);
if (pevent->0SEventGrp != 0x00) f{ (2)
if ((opt & OS_POST_OPT_BROADCAST) != 0x00) { (3)
while (pevent->0SEventGrp != 0x00) { (4)
0S_EventTaskRdy(pevent, msg, O0S_STAT_MBOX); (5)
}
} else {
0S_EventTaskRdy(pevent, msg, OS_STAT_MBOX); (6)

}
OS_EXIT_CRITICAL();
0S_Sched(); (7)
return (OS_NO_ERR);

}

if (pevent->0SEventPtr != (void *)0) { (8)
OS_EXIT_CRITICALC();
return (0OS_MBOX_FULL);

}

pevent->0SEventPtr = msg; (9)

OS_EXIT_CRITICAL(C);

return (0OS_NO_ERR);

}

L10.5(1) If OS_ARG_CHK_ENissetto 1in OS_CFG.H, 0SMboxPostOpt() checksto seethat pevent is
not a NULL pointer, that the message being posted is not a NULL pointer, and finally checks to
make sure that the ECB is a mailbox.

L10.5(2) 0SMboxPost() then checks to see if any task is waiting for a message to arrive at the mail-
box. Tasks are waiting when the .0SEventGrp field in the ECB contains a honzero value.

Getting a Message without Waiting (Non-blocking), 0SMboxAccept() 241

L10.5(3)
L10.5(4)

L10.5(5) If yousetthe0S_POST_OPT_BROADCAST hitinthe opt argument, then all taskswaiting for ames-
sage recavesthe message. All tasks waiting for the message are removed from the wait list by
0S_EventTaskRdy () [see Section 6.05, “Making a Task Ready, 0S_EventTaskRdy ()"].
You should notice that interrupt-disable time is proportional to the number of tasks waiting for a
message from the mailbox.

L10.5(6) If abroadcast was not requested, then only the highest priority task waiting for a message is
made ready to run. The highest priority task waiting for the message is removed from the
wait list by 0S_EventTaskRdy ().

L10.5(7) 0S_Sched() isthen called to seeif the task made ready is now the highest priority task ready
torun. If itis, acontext switch results [only if 0SMboxPostOpt () iscalled from atask], and
the readied task is executed. |f the readied task is not the highest priority task, 0S_Sched()
returns, and the task that called 0SMboxPostOpt () continues execution.

L10.5(8) If nothing iswaiting for amessage, the message to post needs to be placed in the mailbox. In
this case, 0SMboxPostOpt() makes sure that a message isn't already in the mailbox.
Remember that a mailbox can only contain one message. An error code is returned if an
attempt is made to add a message to an aready full mailbox.

L10.5(9) 0SMboxPostOpt() then deposits the message in the mailbox.

Note that a context switch does not occur if 0SMboxPost0Opt () is called by an ISR because context
switching from an ISR only occurs when 0SIntExit() iscalled at the completion of the ISR and from
the last nested ISR (see Section 3.10, “Interrupts Under uC/OS-11").

10.05 Getting a Message without Waiting
(Non-blocking), 0SMboxAccept ()

You can obtain a message from a mailbox without putting a task to sleep if the mailbox is empty. This
action is accomplished by calling 0SMboxAccept (), shownin Listing 10.6.

Listing 10.6 Getting a message without waiting.

void *0SMboxAccept (OS_EVENT *pevent)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendi f
void *msg;

i f 0S_ARG_CHK_EN > 0
if (pevent = (OS_EVENT *)0) { (1)
return ((void *)0);

242 Chapter 10: Message Mailbox Management

Listing 10.6 Getting a message without waiting. (Continued)

}

if (pevent->0SEventType != OS_EVENT_TYPE_MBOX) { (2)
return ((void *)0);

}

ffendif
OS_ENTER_CRITICAL();
msg = pevent->0SEventPtr; (3)
pevent->0SEventPtr = (void *)0; (4)
OS_EXIT_CRITICAL(C);
return (msg); (5)

}

L10.6(1)

L10.6(2) If OS_ARG_CHK_EN is set to 1 in 0S_CFG.H, 0SMboxAccept() starts by checking that
pevent isnot a NULL pointer and that the ECB to which pevent is pointing has been cre-
ated by 0SMboxCreate().

L10.6(3) 0SMboxAccept () then getsthe current contents of the mailbox in order to determine whether
amessage isavailable (i.e., anon-NULL pointer).

L10.6(4) If amessageisavailable, the mailbox is emptied. You should note that this operation is done
even if the message already contains a NULL pointer. This operation is done for performance
considerations.

L10.6(5) Finaly, the original contents of the mailbox is returned to the caller.

The code that calls 0SMboxAccept () must examine the returned value. If 0SMboxAccept () returnsa
NULL pointer, then a message was not available. A non-NULL pointer indicates that a message has been
deposited in the mailbox. An ISR should use 0SMboxAccept () instead of 0SMboxPend().

You can use 0SMboxAccept () to flush (i.e., empty) the contents of a mailbox.

10.06 Obtaining the Status of a Mailbox,
O0SMboxQuery ()

0SMboxQuery () alows your application to take a snapshot of an ECB used for amessage mailbox. The
code for thisfunction is shown in Listing 10.7. 0SMboxQuery () is passed two arguments. pevent con-
tains a pointer to the message mailbox, which is returned by 0SMboxCreate () whenthe mailbox is cre-
ated; and pdata isapointer to adatastructure (0S_MBOX_DATA, see uC0S_I1.H) that holds information
about the message mailbox. Your application needsto allocate a variable of type 0S_MBOX_DATA that can
be used to receive the information about the desired mailbox. | decided to use a new data structure
because the caller should only be concerned with mailbox-specific data, as opposed to the more generic
0S_EVENT data structure, which contains two additional fields (.0SEventCnt and .0SEventType).

Obtaining the Status of a Mailbox, OSMboxQuery() 243

0S_MBOX_DATA contains the current contents of the message (.0SMsg) and the list of tasks waiting for a
message to arrive (.0SEventTb1[] and .0SEventGrp).

Listing 10.7 Obtaining the status of a mailbox.

INT8U O0SMboxQuery (OS_EVENT *pevent, O0S_MBOX_DATA *pdata)
{
Jif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendif
INT8U *psrc;
INT8U *pdest;

JHif OS_ARG_CHK_EN > 0
if (pevent = (OS_EVENT *)0) { (1)
return (OS_ERR_PEVENT_NULL);
}
if (pevent->0SEventType != OS_EVENT_TYPE_MBOX) { (2)
return (OS_ERR_EVENT_TYPE);
}

ffendif
OS_ENTER_CRITICAL();
pdata->0SEventGrp = pevent->0SEventGrp; (3)
psrc = &pevent->0SEventThb1[0];
pdest = &pdata->0SEventTb1[0];

JHf OS_EVENT_TBL_SIZE > 0
*pdest++ = *psrc++;
frendi f

##if OS_EVENT_TBL_SIZE > 1
*pdest++ = *psrc+t;
ffendif

Jpif OS_EVENT_TBL_SIZE > 2
*pdest++ = *psrct+t;
ffendi f

JHf OS_EVENT_TBL_SIZE > 3
*pdest++ = *psrc++;
frendi f

244 Chapter 10: Message Mailbox Management

Listing 10.7 Obtaining the status of a mailbox. (Continued)

Jif OS_EVENT_TBL_SIZE > 4
*pdest++ = *psrc+t;
fendi

Jpif OS_EVENT_TBL_SIZE > 5
*pdest++
ffendif

*psrctt;

##if OS_EVENT_TBL_SIZE > 6
*pdest++
frendi f

*psrct+t;

##if OS_EVENT_TBL_SIZE > 7

*pdest = *psrc;
fendi
pdata->0SMsg = pevent->0SEventPtr; (4)

OS_EXIT_CRITICAL();
return (0OS_NO_ERR);
}

L10.7(1)

L10.7(2) Asaways, if 0S_ARG_CHK_EN isset to 1, 0SMboxQuery () checks that pevent is not a NULL
pointer and that it points to an ECB containing a mailbox.

L10.7(3) 0SMboxQuery() then copies the wait list. You should note that | decided to do the copy as
in-line code instead of using aloop for performance reasons.

L10.7(4) Finally, the current message, from the 0S_EVENT structure, is copied to the 0S_MBOX_DATA
structure.

10.07 Using a Mailbox as a Binary Semaphore

A message mailbox can be used as a hinary semaphore by initializing the mailbox with a non-NULL
pointer [(void *)1 workswell]. A task requesting the semaphore calls 0SMboxPend () and releases the
semaphore by calling 0SMboxPost (). Listing 10.8 shows how this process works. You can use this
technique to conserve code space if your application only needs binary semaphores and mailboxes. In
this case, set 0S_MBOX_EN to 1 and 0S_SEM_EN to 0 so that you use only mailboxes instead of both mail-
boxes and semaphores.

Using a Mailbox Instead of 0STimeD1y() 245

Listing 10.8 Using a mailbox as a binary semaphore.
OS_EVENT *MboxSem;

void Taskl (void *pdata)
{

INT8U err;
for (;;) {
0SMboxPend(MboxSem, 0, &err); /* 0Obtain access to resource(s) */
/* Task has semaphore, access resource(s) K/

OSMboxPost (MboxSem, (void *)1); /* Release access to resource(s) */

10.08 Using a Mailbox Instead of 0STimeD1y ()

The timeout feature of a mailbox can be used to simulate a call to 0STimeD1y (). Asshown in Listing
10.9, Task1() resumes execution after the time period expiresif no messageis received within the spec-
ified timeout. This process is basically identical to 0STimeD1y(TIMEOUT). However, the task can be
resumed by Task2() when Task(2) posts adummy message to the mailbox before the timeout expires.
This operation is the same as calling 0STimeD1yResume () had Task1() called 0STimeD1y (). Note that
the returned message is ignored because you are not actually looking to get a message from another task 10
or an ISR.

246 Chapter 10: Message Mailbox Management

Listing 10.9 Using a mailbox as a time delay.
OS_EVENT *MboxTimeDly;

void Taskl (void *pdata)
{
INT8U err;

for (;;) {
0SMboxPend(MboxTimeDly, TIMEOUT, &err); /* Delay task)

/* Code executed after time delay or dummy message is received */

void TaskZ2 (void *pdata)
{
INT8U err;

for (;;) {
0SMboxPost (MboxTimeDly, (void *)1); /* Cancel delay for Taskl */

Chapter 11

Message Queue Management

A message queue (or simply a queue) is a PC/OS-I1 object that allows a task or an ISR to send
pointer-sized variables to another task. Each pointer typicaly is initialized to point to some applica
tion-specific data structure containing a message. UC/OS-1l provides nine services to access message
queues. 0SQCreate(), 0SQDel (), 0SQPend(), 0SQPost(), 0SQPostFront(), 0SQPostOpt(),
0SQAccept (), 0SQFTush(), and 0SQQuery ().

To enable uC/OS-11 message-queue services, you must set configuration constantsin 0S_CFG. H. Spe-
cifically, Table 11.1 shows which services are compiled, based on the value of configuration constants
found in 0S_CFG. H. You should note that none of the queue services are enabled when 0S_Q_EN isset to
Oor 0S_MAX_QS isset to 0. To enable a specific feature (i.e., service), simply set the corresponding config-
uration constant to 1. You should notice that 0SQCreate() and 0SQPend() cannot be individualy dis-
abled like the other services. That's because they are always needed when you enable uC/OS-11 message
gueue management. You must enable at least one of the post services: 0SQPost (), 0SQPostFront(), and
0SQPostOpt().

Table 11.1 Message queue configuration constantsin 0S_CFG. H.

UC/OS 11 Event Flag Service Enabledwhensettolin 0S_CFG.H

0SQAccept() 0S_Q_ACCEPT_EN
0SQCreate()

0SQDel () 0S_Q_DEL_EN
0SQFTush() 0S_Q_FLUSH_EN
0SQPend()

0SQPost() 0S_Q_POST_EN
0SQPostFront() 0S_Q_POST_FRONT_EN
0SQPostOpt() 0S_Q_POST_OPT_EN
0SQQuery () 0S_Q_QUERY_EN

247

248 Chapter 11: Message Queue Management

Figure 11.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and a message
gueue. Note that the symbology used to represent a queue looks like a mailbox with multiple entries. In
fact, you can think of a queue as an array of mailboxes, except that only one wait list is associated with
the queue. The hourglass represents a timeout that can be specified with the 0SQPend() call. Again,
what the pointers point to is application specific. N represents the number of entries the queue holds.
The queue is full when your application calls 0SQPost() [or 0SQPostFront() or 0SQPostOpt()] N
times before your application has called 0SQPend () or 0SQAccept ().

AsyoucanseefromFigure 11.1, atask or an ISR cancdl 0SQPost (), 0SQPostFront(),0SQPostOpt(),
0SQFTush(), or 0SQAccept(). However, only tasks are allowed to call 0SQDel(), 0SQPend(), and

0SQQuery ().

Figure1l.l Relationships between tasks, | SRs, and a message
queue.

OSQCr eat e()
OSQel ()
OSQFI ush()

OSQPost ()
0SQPost Front () 2822?}3?; 0

/ w‘

OSQPost ()
OSQPost Front ()
OSQPost Opt ()

Message

249

Figure1l.2 Datastructuresused in a message queue.

OS_EVENT (v
pevent — O5_EVENT_TYPE_Q OSEvent Type
0x00 . OSEvent Ont
L J CSEvent Pt r
0x00 . CSEvent G p
716 |5|4a|3]|2|1|0] .osEventTbi[]
ALL
initialized
to
0x00
void *MsgTbI[] &
63 (62 |61)|60|59|58|57 |56
OS Q
L, osPLr N @ | » nessage -
. OsQstart [= @ —— nessage
. 08Qsi ze @ ——— nessage
. O8QEntries
. osQaut ® @————» nessage
.0sQn [] @—|—» nessage
. 0SQend [= @ —— nessage
. OSEntries —> 6 ze

Figure 11.2 shows the different data structures needed to implement a message queue.

F11.2(1) An ECB isrequired because you need await list, and using an ECB allows queue services to
use some of the same code used by semaphores, mutexes, and mailboxes.

F11.2(2) When a message queue is created, a queue control block (i.e., an 0S_Q, see 0S_Q.C) isallo-
cated and linked to the ECB using the .0SEventPtr field in OS_EVENT.

F11.2(3) Before you create a queue, however, you need to allocate an array of pointers that contains
the desired number of queue entries. In other words, the number of elementsin the array cor-
responds to the number of entries in the queue. The starting address of the array is passed to
0SQCreate() asan argument, aswell asthe size (in number of elements) of the array. In fact,
you don't actually need to use an array as long as the memory occupies contiguous locations.

The configuration constant 0S_MAX_QS in 0S_CFG.H specifies how many queues you are alowed to
have in your application and must be greater than 0. When pC/OS-1 is initialized, alist of free queue
control blocksis created, as shown in Figure 11.3.

250 Chapter 11: Message Queue Management

Figure11.3 List of free queue control blocks.
« 0S_MAX_QS >
OSQFreeList —» OSQPr e }—» PR T SS— —> OSQPr e}
OSQStart OSQStart OSQStart
0OSQSize 0SQSize 0OSQSize
0SQOut 0SQOut 0SQOut
0sQIn 0sQIn 0sQIn
OSQEnd OSQEnd OSQEnd
OSQEntries OSQEntries OSQEntries

Lo\

A gueue control block is a data structure used to maintain information about the queue. It contains
the fields described in the following list. Note that the fields are preceded with a dot to show that they
are members of a structure, as opposed to simple variables.

.0SQPtr links queue control blocks in the list of free queue control blocks. After the queue is cre-
ated, thisfield is not used.

.0SQStart contains a pointer to the start of the message queue storage area. Your application must
declare this storage area before creating the queue.

.0SQEnd isapointer to onelocation past the end of the queue. This pointer is used to make the queue
acircular buffer.

.0SQIn is a pointer to the location in the queue where the next message will be inserted. .0SQ1In is
adjusted back to the beginning of the message storage areawhen .0SQIn equals .0SQEnd.

.0SQOut isapointer to the next message to be extracted from the queue. . 0SQ0ut is adjusted back to
the beginning of the message storage areawhen .0SQ0ut equals . 0SQEnd. .0SQ0ut isalso used to insert
amessage [see 0SQPostFront() and 0SQPostOpt()].

.0SQS1 ze contains the size of the message storage area. The size of the queue is determined by your
application when the queue is created. Note that uC/OS-1l allows the queue to contain up to 65,535
entries.

.0SQEntries contains the current number of entries in the message queue. The queue is empty
when .0SQEntries is0and full when it equals .0SQS1ze. The message queue is empty when the queue
is created.

A message queueis basically a circular buffer, as shown in Figure 11.4.

Creating a Message Queue, 0SQCreate()

Figure1l.4 A message queueasa circular buffer of pointers.

251

.0sQst art . OSQEnd
) x { ®)

OSQQUE ====mmee
() A
. OsQQut . OSQSi ze
(4) ©)
[J
. — .0sQ n
.OS@Entries)
3)

Pointer to message

F11.4(1)

F11.4(3) Each entry contains a pointer. The pointer to the next message is deposited at the entry to which
.0SQ1In points, unless the queueis full (i.e, .0SQEntries == .0SQSize). Depositing the
pointer a .0SQIn implements a First-In-First-Out (FIFO) queue, which is what 0SQPost ()

does.

F11.4(2) pC/OSII implements a Last-In-First-Out (LIFO) queue by pointing to the entry preceding

.0SQ0ut and depositing the pointer at that location [see 0SQPostFront () and 0SQPostOpt ()].
F11.4(4) The pointer is also considered full when .0SQEntries = .0SQSize. Message pointers are

always extracted from the entry to which .05SQ0ut points.

F11.4(5) Thepointers .0SQStart and .0SQEnd are simply markers used to establish the beginning and
end of the array so that .0SQIn and .0SQ0ut can wrap around to implement this circular

motion.

11.00 Creating a Message Queue, 0SQCreate()

A message queue (or ssimply a queue) needs to be created before it can be used. Creating a queue is
accomplished by calling 0SQCreate() and passing it two arguments; a pointer to an array that holds the
messages and the size of this array. The array must be declared as an array of pointersto void, asfol-

lows
void *MyArrayOfMsg[SIZE];

You would pass the address of MyArray0fMsg[] to 0SQCreate(), as well as the size of this array.

The message queue is assumed to be initially empty — it doesn’t contain any messages.

252 Chapter 11: Message Queue Management

The code to create aqueueis shown in Listing 11.1.

Listing11.1 Creating a message queue.

OS_EVENT *0SQCreate (void **start, INT16U size)
{
J#if OS_CRITICAL_METHOD = 3

0S_CPU_SR cpu_sr;

ffendif
OS_EVENT *pevent;
0S_Q *pq;

if (0SIntNesting > 0) {
return ((OS_EVENT *)0);
}
OS_ENTER_CRITICAL();
pevent = OSEventFreelist;
if (OSEventFreelist != (OS_EVENT *)0) {
OSEventFreelist = (OS_EVENT *)0SEventFreelist->0SEventPtr;
}
OS_EXIT_CRITICAL(C);
if (pevent != (OS_EVENT *)0) {
OS_ENTER_CRITICAL();
pg = 0SQFreelist;
if (pg != (0S_Q *)0) {

0SQFreelist = 0SQFreelList->0SQPtr;
OS_EXIT_CRITICAL();

pg->0SQStart = start;
pg->0SQEnd = &startlsizel;
pg->0SQIn = start;
pg->0SQ0ut = start;
pg->0SQSize = Size;
pg->0SQEntries =0;
pevent->0SEventType = OS_EVENT_TYPE_Q;
pevent->0SEventCnt = 0;
pevent->0SEventPtr = pq;

0S_EventWaitListInit(pevent);

} else {
pevent->0SEventPtr = (void *)0SEventFreelist;
OSEventFreelist = pevent;

OS_EXIT_CRITICAL();

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Deleting a Message Queue, 0SQDe1() 253

Listing11.1 Creating a message queue. (Continued)

J

pevent = (OS_EVENT *)0;

return (pevent); (9)

}

L11.1(2)
L11.1(2)

L11.1(3)

L11.1(4)

L11.1(5)
L11.1(6)

L11.1(7)
L11.1(8)

L11.1(9)

A local variable called cpu_sr to support 0S_CRITICAL_METHOD 43 is allocated.

0SQCreate() starts by making sure you are not calling this function from an ISR because
that’s not allowed. All kernel objects need to be created from task-level code or before multi-
tasking starts.

0SQCreate() then attempts to obtain an ECB from the freelist of ECBs (see Figure 6.5) and
adjusts the linked list accordingly.

If an ECB isavailable, 0SQCreate() attempts to alocate a queue control block (0S_Q) from
the free list of queue control blocks (refer to Figure 11.3) and adjusts the linked list accord-

ingly.

If a queue control block is available from the free list, the fields of the queue control block
are initialized, followed by the ones of the ECB. You should note that the .0SEventType
field is set to 0S_EVENT_TYPE_Q so that subsequent message-queue services can check the
validity of the ECB.

Thewait list is cleared, indicating that no task is currently waiting on the message queue.

If an ECB is available but a queue control block is not, then the ECB is returned to the free
list because we cannot satisfy the request to create a queue unless we also have a queue con-
trol block.

0SQCreate() returns either a pointer to the ECB upon successfully creating a message queue
or aNULL pointer if not. This pointer must be used (if not NULL) in subsequent calls that oper-
ate on message queues. The pointer is used as the queue's handle.

11.01 Deleting a Message Queue, 0SQDel ()

The code to delete a message queue is shown in Listing 11.2, and this code is only generated by the
compiler if 0S_Q_DEL_ENissetto1in 0S_CFG.H. You must use this function with caution because mul-
tiple tasks could attempt to access a deleted message queue. Generally speaking, before you delete a
message queue, you first delete all the tasks that can access the message queue.

Listing11.2 Deleting a message queue.
OS_EVENT *0SQDel (OS_EVENT *pevent, INT8U opt, INT8U *err)

{

J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

254 Chapter 11: Message Queue Management

Listing11.2 Deleting a message queue. (Continued)

ffendif
BOOLEAN tasks_waiting;
0S_Q *pq;

if (0SIntNesting > 0) {
*err = 0S_ERR_DEL_ISR;
return ((OS_EVENT *)0);

}

#Hif OS_ARG_CHK_EN > 0

if (pevent = (OS_EVENT *)0) {
*err = 0S_ERR_PEVENT_NULL;
return (pevent);

}

if (pevent->0SEventType != OS_EVENT_TYPE_Q) {
*err = 0S_ERR_EVENT_TYPE;
return (pevent);

}

ffendif

OS_ENTER_CRITICALC();

if (pevent->0SEventGrp != 0x00) ({
tasks_waiting = TRUE;

} else {
tasks_waiting = FALSE;

}

switch (opt) {
case OS_DEL_NO_PEND:

if (tasks_waiting = FALSE) f{

pq = pevent->0SEventPtr;
pg->0SQPtr = 0SQFreelist;
0SQFreelist = pg;

pevent->0SEventType = OS_EVENT_TYPE_UNUSED;
pevent->0SEventPtr = OSEventFreelist;
OSEventFreelist = pevent;
OS_EXIT_CRITICAL();

*err = 0S_NO_ERR;

return ((OS_EVENT *)0);

(1)

(2)

(3)

(4)

(5)

(6)
(7)

(8)

Deleting a Message Queue, 0SQDe1() 255

Listing11.2 Deleting a message queue. (Continued)

} else {
OS_EXIT_CRITICAL();
*err = 0S_ERR_TASK_WAITING;
return (pevent);

case OS_DEL_ALWAYS:

while (pevent->0SEventGrp != 0x00) f{ (9)
0S_EventTaskRdy(pevent, (void *)0, OS_STAT_Q); (10)

}

pq = pevent->0SEventPtr; (11)

pq->0SQPtr = 0SQFreelist;

0SQFreelist = pq;

pevent->0SEventType = OS_EVENT_TYPE_UNUSED; (12)

pevent->0SEventPtr = OSEventFreelist; (13)

OSEventFreelist = pevent;

OS_EXIT_CRITICAL();
if (tasks_waiting = TRUE) {
0S_Sched(); (14)
}
*err = 0S_NO_ERR;
return ((OS_EVENT *)0); (15)

default:
OS_EXIT_CRITICAL();
*err = OS_ERR_INVALID_OPT;
return (pevent);

}

L11.2(1) 0SQDel () starts by making surethat this function is not called from an ISR because that’s not
allowed.

L11.2(2)

L11.2(3) If 0S_ARG_CHK_EN (see 0S_CFG.H) isset to 1, 0SQDel () validates pevent to ensure that it's
not aNULL pointer and that it points to an ECB that was created as a queue.

L11.2(4) 0SQDel () then determineswhether any tasks are waiting on the queue. Theflag tasks_waiting
is set accordingly.

Based on the option (i.e., opt) specified in the call, 0SQDe1 () either deletes the queue
only if no tasks are pending on the queue (opt == 0S_DEL_NO_PEND) or deletes the queue
even if tasksare waiting (opt = 0S_DEL_ALWAYS).

256 Chapter 11: Message Queue Management

L11.2(5) When opt isset to 0S_DEL_NO_PEND and no task iswaiting on the queue, 0SQDe1() startsby
returning the queue control block to the free list.

L11.2(6)

L11.2(7) 0SQDel () then marks the ECB as unused, and the ECB is returned to the free list of ECBs.
This process allows another message queue (or any other ECB-based object) to be created.

L11.2(8) You should notethat 0SQDel () returnsaNULL pointer because, at this point, the queue should
no longer be accessed through the original pointer. You should call 0SQDe1 () asfollows

QPtr = 0SQDel(QPtr, opt, &err);

0SQDe1 () returnsan error code if any tasks are waiting on the queue (i.e, 0S_ERR_TASK_WAITING)
because by specifying 0S_DEL_NO_PEND you indicated thet you didn't want to delete the queue if
tasksarewaiting on the queue.

L11.2(9)

L11.2(10) When opt isset to 0S_DEL_ALWAYS, then all tasks waiting on the queue are readied. Each task
thinks it received a message when in fact no message has been sent. The task should examine
the pointer returned to it to make sure it’s non-NULL. Also, you should note that interrupts are
disabled while each task is being readied. This feature, of course, increases the interrupt
latency of your system.

L11.2(11) 0SQDel () then returns the queue control block to the free list.
L11.2(12)

L11.2(13) After all pending tasks are readied, 0SQDel () marks the ECB as unused, and the ECB is
returned to the free list of ECBs.

L11.2(14) The scheduler is called only if tasks were waiting on the queue.

L11.2(15) Again, you should note that 0SQDe1 () returnsaNULL pointer because, at this point, the queue
should no longer be accessed through the original pointer.

11.02 Waiting for a Message at a Queue (Blocking),
0SQPend()

The code to wait for amessage to arrive at aqueueis shownin Listing 11.3.

Listing 11.3 Waiting for a messageto arrive at a queue.

void *0SQPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
{
fFif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
frendi f
void *msg;
0S_Q *pq;

Waiting for a Message at a Queue (Blocking), 0SQPend() 257

Listing 11.3 Waiting for a message to arrive at a queue. (Continued)

if (0SIntNesting > 0) { (1)
*err = 0S_ERR_PEND_ISR;
return ((void *)0);
}
fFif OS_ARG_CHK_EN > 0
if (pevent = (OS_EVENT *)0) { (2)
*err = 0S_ERR_PEVENT_NULL;
return ((void *)0);
}
if (pevent->0SEventType != OS_EVENT_TYPE_Q) { (3)
*err = OS_ERR_EVENT_TYPE;
return ((void *)0);
}
ffendif
OS_ENTER_CRITICAL();
pg = (0S_Q *)pevent->0SEventPtr;

if (pg->0SQEntries > 0) { (4)
msg = *pq->0SQOut++; (5)
pq->0SQEntries--; (6)
if (pg->0SQ0ut = pg->0SQEnd) { (7)

pq->0SQ0ut = pg->0SQStart; (8)

}
OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;

return (msg); (9)
}
OSTCBCur->0STCBStat |= OS_STAT_Q; (10)
OSTCBCur->0STCBDly = timeout; (11)
0S_EventTaskWait(pevent); (12)
OS_EXIT_CRITICAL(C);
0S_Sched(); (13)

OS_ENTER_CRITICAL();
msg = O0STCBCur->0STCBMsg; (14)

258 Chapter 11: Message Queue Management

Listing 11.3 Waiting for a message to arrive at a queue. (Continued)
if (msg != (void *)0) {

0STCBCur->0STCBMsg
0STCBCur->0STCBStat
OSTCBCur->0STCBEventPtr
OS_EXIT_CRITICAL();

(void *)0; (15)
0S_STAT_RDY;
(OS_EVENT *)0;

*err = 0S_NO_ERR;
return (msg);
}
0S_EventTO(pevent); (16)
OS_EXIT_CRITICAL(C);
*err = 0S_TIMEQUT;
return ((void *)0); (17)

}

L11.3(1)
L11.3(2)
L11.3(3)

L11.3(4)
L11.3(5)

L11.3(6)

L11.3(7)
L11.3(8)

L11.3(9)

It doesn’t make sense to call 0SQPend () from an I SR because an ISR cannot be made to wait.
Instead, you should call 0SQAccept () (see Section 11.06, “ Getting a M essage Without Wait-
ing, 0SQAccept ()").

If OS_ARG_CHK_EN (see 0S_CFG.H) isset to 1, 0SQPend() verifies that pevent isnot a NULL
pointer and that the ECB to which pevent is pointing has been created by 0SQCreate().

A messageis availablewhen .0SQEntries isgreater than O. In this case, 0SQPend () getsthe
message to which the . 0SQ0ut field of the queue control block is pointing, stores the pointer
to the message in msg, and movesthe . 0SQ0ut pointer so that it points to the next entry in the
queue.

0SQPend() then decrements the number of entries left in the queue because the previous
operation consumed the entry (i.e., removed the oldest message).

Because a message queue is a circular buffer, 0SQPend () needs to check that .0SQ0ut has
not moved past the last valid entry in the array. When this event happens, however, .0SQ0ut
is adjusted to point back to the beginning of the array.

The message extracted from the queue is then returned to the caller of 0SQPend(). This path
iswhat you are looking for when calling 0SQPend (). It also happens to be the fastest path.

If the message queue is empty, the calling task needs to be put to sleep until another task (or an ISR)
sends a message through the queue (see Section 11.04, “Sending a Message to a Queue (LIFO),
0SQPostFront()"). 0SQPend() allows you to specify atimeout value (specified in integral number of
ticks) as one of its arguments (i.e., timeout). This feature is useful to avoid waiting indefinitely for a
message to arrive at the queue. If the timeout value is nonzero, 0SQPend() suspends the task until the
gueue receives a message or the specified timeout period expires. Note that a timeout value of 0
indicates that the task is willing to wait forever for a message to arrive.

Sending a Message to a Queue (FIFO), 0SQPost() 259

L11.3(10) To put the calling task to sleep, 0SQPend () sets the status flag in the task’s TCB to indicate
that the task is suspended waiting for a queue.

L11.3(11) The timeout is also stored in the TCB so that it can be decremented by 0STimeTick(). You
should recall (see Section 3.11, “Clock Tick”) that 0STimeTick() decrements each of the
created task’s .0STCBD1y field if it's nonzero.

L11.3(12) The actual work of putting the task to sleep is done by 0S_EventTaskWait() [see Section
6.06, “Making a Task Wait for an Event, 0S_EventTaskWait()"].

L11.3(13) Becausethe calling task is no longer ready to run, the scheduler is called to run the next high-
est priority task that is ready to run. As far as your task is concerned, it made a cal to
0SQPend(), and it doesn’'t know that it is suspended until a message arrives. When the queue
receives a message (or the timeout period expires), 0SQPend() resumes execution immedi-
ately after the call to 0S_Sched().

L11.3(14) When 0S_Sched() returns, 0SQPend() checks to see if a message has been placed in the
task’'s TCB by 0SQPost ().
L11.3(15) If so, the call is successful, and the message is returned to the caller.

L11.3(16) If amessage is not received, then 0S_Sched () must have returned because of atimeout. The
calling task is then removed from the queue wait list by calling 0S_EventTO().

L11.3(17) Note that the returned pointer is set to NULL because no message is available to return. The
calling task should either examine the contents of the return pointer or the return code to
determine whether a valid message has been received.

11.03 Sending a Message to a Queue (FIFO),
0SQPost()

The code to deposit amessage in aqueueisshown in Listing 11.4.

Listing11.4 Depositing a message in a queue (FIFO),
0SQPost ().

INT8U 0SQPost (OS_EVENT *pevent, void *msg)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendif
0S_Q *pq;

JHif OS_ARG_CHK_EN > 0
if (pevent = (OS_EVENT *)0) { (1)
return (OS_ERR_PEVENT_NULL);

260 Chapter 11: Message Queue Management

Listing11.4 Depositing a message in a queue (FIFO),
0SQPost (). (Continued)

if (msg = (void *)0) { (2)
return (OS_ERR_POST_NULL_PTR);

}

if (pevent->0SEventType != OS_EVENT_TYPE_Q) { (3)
return (OS_ERR_EVENT_TYPE);

}

frendif
OS_ENTER_CRITICAL();
if (pevent->0SEventGrp != 0x00) { (4)
0S_EventTaskRdy(pevent, msg, OS_STAT_Q); (5)
OS_EXIT_CRITICAL();
0S_Sched(); (6)

return (0S_NO_ERR);

}

pq = (0S_Q *)pevent->0SEventPtr;

if (pg->0SQEntries >= pg->0SQSize) { (7)
OS_EXIT_CRITICAL();
return (0S_Q_FULL);

}

*pq->0SQIn++ = msg; (8)
pg->0SQEntries++; (9)
if (pg->0SQIn == pq->0SQEnd) { (10)

pg->0SQIn = pg->0SQStart;
}
OS_EXIT_CRITICAL();
return (OS_NO_ERR);
}

L11.4(1)
L11.4(2)

L11.4(3) If 0S_ARG_CHK_ENissetto1in 0S_CFG.H, 0SQPost () checksto seethat peventisnotaNULL
pointer, that the message being posted is also not a NULL pointer, and finally checks to make
sure that the ECB is a queue.

L11.4(4) 0SQPost() then checks to see if any task is waiting for a message to arrive at the queue.
Tasks are waiting when the . 0SEventGrp field in the ECB contains a nonzero value.

L11.4(5) Thehighest priority task waiting for the messageisremoved fromthewait lis by 0S_EventTaskRdy ()
[see Section 6.05, “Making a Task Ready, 0S_EventTaskRdy()"], and this task is made
ready to run.

Sending a Message to a Queue (LIFO), 0SQPostFront() 261

L11.4(6) 0S_Sched() isthen called to seeif the task made ready is now the highest priority task ready
torun. If itis, acontext switch results[only if 0SQPost () iscalled from atask], and the read-
ied task is executed. If the readied task is not the highest priority task, 0S_Sched() returns,
and the task that called 0SQPost () continues execution.

L11.4(7) If notask iswaiting for a message, the message to post needs to be placed in the queue. In
this case, 0SQPost() makes sure that there is till room in the queue. An error code is
returned if an attempt is made to add a message to an already full queue.

L11.4(8)

L11.4(9) If no tasks are waiting for a message to arrive at the queue and the queue is not already full,
then the message to post is inserted in the next free location (FIFO), and the number of
entries in the queue is incremented.

L11.4(10) Finaly, 0SQPost () adjusts the circular-buffer pointer to prepare for the next post.

Note that a context switch does not occur if 0SQPost () iscalled by an ISR because context switch-
ing from an ISR only occurswhen 0SIntExit() iscalled at the completion of the ISR and from the last
nested ISR (see Section 3.10, “Interrupts Under uC/OS-117).

11.04 Sending a Messageto a Queue (LIFO),
0SQPostFront()

0SQPostFront() is basicaly identical to 0SQPost(), except that 0SQPostFront() uses .0SQOut
instead of .0SQIn asthe pointer to the next entry to insert. The codeis shownin Listing 11.5.

Listing11.5 Depositing a messagein a queue (LIFO),
0SQPostFront().

INT8U 0SQPostFront (OS_EVENT *pevent, void *msg)
{
fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendif
0S_Q *pq;

fHi f OS_ARG_CHK_EN > 0

if (pevent = (OS_EVENT *)0) ({
return (OS_ERR_PEVENT_NULL);

}

if (msg = (void *)0) {
return (OS_ERR_POST_NULL_PTR);

}

if (pevent->0SEventType != OS_EVENT_TYPE_Q) f{
return (OS_ERR_EVENT_TYPE);

262 Chapter 11: Message Queue Management

Listing11.5 Depositing a messagein a queue (LIFO),
0SQPostFront (). (Continued)

}
frendif

OS_ENTER_CRITICAL();

if (pevent->0SEventGrp != 0x00) {
0S_EventTaskRdy(pevent, msg, O0S_STAT_Q);
OS_EXIT_CRITICAL();
0S_Sched();
return (0S_NO_ERR);

}

pg = (0S_Q *)pevent->0SEventPtr;

if (pg->0SQEntries >= pq->0SQSize) f{
OS_EXIT_CRITICAL();
return (0S_Q_FULL);

}

if (pg->0SQ0ut == pqg->0SQStart) { (1)
pg->0SQ0ut = pg->0SQEnd; (2)

}

pg->0SQ0ut--; (3)

*pg->0SQ0ut = msg;

pg->0SQEntries++;

OS_EXIT_CRITICAL(C);

return (0S_NO_ERR);
}

L11.5(1)

L11.5(2) You should note that .0SQOut points to an already inserted entry, so .0SQ0ut must be made
to point to the previous entry. If .0SQOut points at the beginning of the array, then a decre-
ment really means positioning .0SQ0ut at the end of the array.

L11.5(3) However, .0SQEnd points to one entry past the array, and thus . 0SQ0ut needs to be adjusted
to be within range. 0SQPostFront () implements a LIFO queue because the next message
extracted by 0SQPend () isthe last message inserted by 0SQPostFront().

11.05 Sending a Messageto a Queue (FIFO or LIFO),
0SQPostOpt()

You can also post a message to a queue using an aternate and more flexible function called
0SQPost0Opt (). There are three post calls for backwards compatibility with previous versions of
MC/OS-11. 0SQPost0Opt () isthe newer function and can replace both 0SQPost () and 0SQPostFront()

Sending a Message to a Queue (FIFO or LIFO), 0SQPostOpt() 263

with a single call. In addition, 0SQPost0Opt() alows posting a message to all tasks (i.e., broadcast)
waiting on the queue. The code to deposit a message in aqueue is shown in Listing 11.6.

Listing11.6 Depositing a message in a queue
(Broadcast, FIFO, or LIFO),
0SQPostOpt ().

INT8U 0SQPostOpt (OS_EVENT *pevent, void *msg, INT8U opt)
{
fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendif
0S_Q *pq;

#Hif OS_ARG_CHK_EN > 0

if (pevent = (OS_EVENT *)0) { (1)
return (OS_ERR_PEVENT_NULL);

}

if (msg = (void *)0) { (2)
return (OS_ERR_POST_NULL_PTR);

}

if (pevent->0SEventType != OS_EVENT_TYPE_Q) { (3)
return (OS_ERR_EVENT_TYPE);

}

ffendi f
OS_ENTER_CRITICAL();
if (pevent->0SEventGrp != 0x00) f{ (4)
if ((opt & OS_POST_OPT_BROADCAST) != 0x00) { (5)
while (pevent->0SEventGrp != 0x00) { (6)

0S_EventTaskRdy(pevent, msg, OS_STAT_Q);

}
b else f

0S_EventTaskRdy(pevent, msg, 0S_STAT_Q); (7)
}
OS_EXIT_CRITICAL(C);
0S_Sched(); (8)
return (0S_NO_ERR);

264 Chapter 11: Message Queue Management

Listing11.6 Depositing a message in a queue
(Broadcast, FIFO, or LIFO),
0SQPostOpt (). (Continued)

pg = (0S_Q *)pevent->0SEventPtr;

if (pg->0SQEntries >= pg->0SQSize) { (9)
OS_EXIT_CRITICAL();
return (0S_Q_FULL);

}

if ((opt & OS_POST_OPT_FRONT) != 0x00) { (10)
if (pg->0SQ0ut = pqg->0SQStart) f{ (11)

pg->0SQ0ut = pg->0SQEnd;

}

pg->0SQ0ut--;
*pg->0SQ0ut = msg;
} else {
*pq->0SQIn++ = msg; (12)

if (pg->0SQIn = pq->0SQEnd) {
pg->0SQIn = pg->0SQStart;

}
pq->0SQEntries++; (13)
OS_EXIT_CRITICAL(C);
return (0S_NO_ERR);
}

L11.6(1)
L11.6(2)

L11.6(3) If OS_ARG_CHK ENissettolin OS_CFG.H, 0SQPostOpt() checksto seethat pevent isnot a
NULL pointer, checks that the message being posted is also not a NULL pointer, and finally
checks to make sure that the ECB is a queue.

L11.6(4) 0SQPost() then checks to see if any task is waiting for a message to arrive at the queue.
Tasks are waiting when the . 0SEventGrp field in the ECB contains a nonzero value.

L11.6(5)

L11.6(6) If you set the 0S_POST_OPT_BROADCAST bit in the opt argument, then al tasks waiting for a
message receive the message. All tasks waiting for the message are removed from the wait list by
0S_EventTaskRdy () [see Section 6.05, “Making a Task Ready, 0S_EventTaskRdy ()"].
You should notice that interrupt-disable time is proportional to the number of tasks waiting
for a message from the queue.

L11.6(7) If abroadcast was not requested, then only the highest priority task waiting for a message is

made ready to run. The highest priority task waiting for the message is removed from the
wait list by 0S_EventTaskRdy ().

Getting a Message Without Waiting, 0SQAccept() 265

L11.6(8) 0S_Sched() isthen called to seeif atask made ready is now the highest priority task ready to
run. If it is, a context switch results [only if 0SQPostOpt() is called from a task], and the
readied task is executed. If the readied task is not the highest priority task, 0S_Sched()
returns, and the task that called 0SQPost0Opt () continues execution.

L11.6(9) If notask iswaiting for a message, the message to post needs to be placed in the queue. In
this case, 0SQPostOpt () makes sure that room is till available in the queue. An error code
would be returned if an attempt is made to add a message to an already full queue.

L11.6(10) 0SQPostOpt () then checksthe opt argument to seeif the calling task desiresto post the mes-
sagein FIFO or LIFO (setting opt to 0S_POST_OPT_FRONT) order.

L11.6(11) If LIFO order is selected, 0SQPostOpt () emulates 0SQPostFront().
L11.6(12) If FIFO order, 0SQPostOpt () emulates 0SQPost ().
L11.6(13) In either case, the number of entriesin the queue isincremented.

Note that a context switch does not occur if 0SQPostOpt() is called by an ISR because context
switching from an ISR only occurs when 0SIntExit() iscalled at the completion of the ISR and from
the last nested I SR (see Section 3.10, “Interrupts Under uC/OS-117).

11.06 Getting a Message Without Waiting,
0SQAccept()

You can obtain a message from a queue without putting a task to sleep by calling 0SQAccept () if the
gueue is empty. The code for this function is shown in Listing 11.7.

Listing 11.7 Getting a message without waiting (non-blocking),
0SQAccept ().

void *0SQAccept (OS_EVENT *pevent)

{

fFif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

{fendif
void *msg;
0S_Q *pq;

fHi f OS_ARG_CHK_EN > 0
if (pevent == (OS_EVENT *)0) { (1)
return ((void *)0);
}
if (pevent->0SEventType != OS_EVENT_TYPE_Q) f{ (2)
return ((void *)0);

266 Chapter 11: Message Queue Management

Listing 11.7 Getting a message without waiting (non-blocking),

ffendif

0SQAccept (). (Continued)

OS_ENTER_CRITICAL();

pq
if

}

= (0S_Q *)pevent->0SEventPtr;

(pg->0SQEntries > 0) { (3)
msg = *pq->0SQ0ut++; (4)
pq->0SQEntries--; (5)
if (pg->0SQ0ut = pqg->0SQEnd) { (6)

pg->0SQ0ut = pg->0SQStart;
}
} else {
msg = (void *)0; (7)
EXIT_CRITICAL();

0S_

return (msg);

}

L11.7(1)
L11.7(2)
L11.7(3)
L11.7(4)
L11.7(5)
L11.7(6)

L11.7(7)

If 0S_ARG_CHK_EN issetto 1 in 0S_CFG.H, 0SQAccept () starts by checking that pevent is
not a NULL pointer and that the ECB to which pevent is pointing has been created by
0SQCreate().

0SQAccept () then checks to see if any entries are in the queue by looking at the
.0SQEntries queue control block field.

If amessage is available, the oldest message (FIFO) is retrieved from the queue and copied to
the local pointer msg, and the number of entriesin the queue is decreased by one to reflect the
extraction.

0SQAccept () then adjusts the circular queue pointer by moving the .0SQ0ut pointer to the
next entry.

If no entries are in the queue, the local pointer is set to NULL.

The code that calls 0SQAccept () needs to examine the returned value. If 0SQAccept() returns a
NULL pointer, then a message was not available. You don’t want your application to dereference a NULL
pointer because, by convention, a NULL pointer isinvalid. A non-NULL pointer indicates that a message
pointer is available. An ISR can use 0SQAccept ().

Flushing a Queue, 0SQFTush() 267

11.07 Flushing a Queue, 0SQFTush()

0SQFTush() allows you to remove all the messages posted to a queue and basically start with a fresh
gueue. The code for this function is shown in Listing 11.8.

Listing 11.8 Flushing the contents of a queue.

INT8U 0SQFTush (OS_EVENT *pevent)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendi
0S_Q *pq;

J#if OS_ARG_CHK_EN > 0
if (pevent = (OS_EVENT *)0) { (1)
return (OS_ERR_PEVENT_NULL);
}
if (pevent->0SEventType != OS_EVENT_TYPE_Q) { (2)
return (OS_ERR_EVENT_TYPE);
}

frendif
OS_ENTER_CRITICAL();
pq = (0S_Q *)pevent->0SEventPtr; (3)
pq->0SQIn = pq->0SQStart;
pg->0SQ0ut = pg->0SQStart;

pg->0SQEntries = 0;
OS_EXIT_CRITICAL(); 11

return (OS_NO_ERR);

L11.8(1)

L11.8(2) If OS_ARG_CHK_ENissetto1in 0S_CFG.H, 0SQFTush() starts by checking that pevent is not
a NULL pointer and that the ECB to which pevent is pointing has been created by
0SQCreate().

L11.8(3) The IN and OUT pointers are reset to the beginning of the array, and the number of entriesis
cleared. | decided not to check to see if any tasks were pending on the queue because it is
irrelevant anyway and takes more processing time. In other words, if tasks are waiting on the
gueue, then .0SQEntries isaready set to 0. The only differenceisthat .0SQIn and .0SQ0ut
might be pointing elsewhere in the array. There is also no need to fill the queue with NULL
pointers.

268 Chapter 11: Message Queue Management

11.08 Obtaining the Status of a Queue, 0SQQuery ()

0SQQuery () alows your application to take a snapshot of the contents of a message queue. The code
for this function is shown in Listing 11.9. 0SQQuery () is passed two arguments. pevent contains a
pointer to the message queue, which isreturned by 0SQCreate () when the queue is created; and pdata
is a pointer to a data structure (0S_Q_DATA, see uC0S_I1.H) that holds information about the message
gueue. Your application thus needs to allocate a variable of type 0S_Q_DATA that can receive the infor-
mation about the desired queue. 0S_Q_DATA contains the following fields:

.0SMsg contains the contents to which .0SQ0ut points if entries are in the queue. If the queue is
empty, .0SMsg will contains a NULL pointer.

.0SNMsgs contains the number of messages in the queue (i.e., acopy of .0SQEntries).

.0SQS1 ze contains the size of the queue (in number of entries).

.0SEventTb1[]

.0SEventGrp contains a snapshot of the message queue wait list. The caller to 0SQQuery () can thus
determine how many tasks are waiting for the queue.

Listing 11.9 Obtaining the status of a queue.

INT8U 0SQQuery (OS_EVENT *pevent, 0S_Q_DATA *pdata)
{
fFif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
frendi f
0S_Q *pq;
INT8U *psrc;
INT8U *pdest;

J#if OS_ARG_CHK_EN > 0
if (pevent = (OS_EVENT *)0) { (1)
return (OS_ERR_PEVENT_NULL);
}
if (pevent->0SEventType != OS_EVENT_TYPE_Q) { (2)
return (OS_ERR_EVENT_TYPE);
}

ffendi f
OS_ENTER_CRITICALC();
pdata->0SEventGrp = pevent->0SEventGrp; (3)
psrc = &pevent->0SEventThb1[0];
pdest = &pdata->0SEventTh1[0];
JHif OS_EVENT_TBL_SIZE > O
*pdest++ = *psrct++;

ffendif

Obtaining the Status of a Queue, 0SQQuery() 269

Listing 11.9 Obtaining the status of a queue. (Continued)

J#if OS_EVENT_TBL_SIZE > 1
*pdest++ = *psrc+t;
ffendif

JFif OS_EVENT_TBL_SIZE > 2
*pdest++ = *psrc+t;
Jfendif

#Hif OS_EVENT_TBL_SIZE > 3
*pdest++ = *psrct+;
ffendif

f#if OS_EVENT_TBL_SIZE > 4
*pdest++ = *psrc+t;
ffendif

JHif OS_EVENT_TBL_SIZE > 5
*pdest++ = *psrc+t;
ffendif

##if OS_EVENT_TBL_SIZE > 6
*pdest++ = *psrct+;
ffendif

JHif OS_EVENT_TBL_SIZE > 7
*pdest = *psrc;
ffendif
pq = (0S_Q *)pevent->0SEventPtr;
if (pg->0SQEntries > 0) { (4)
pdata->0SMsg = *pq->0SQ0ut;
} else {
pdata->0SMsg = (void *)0;

}

pdata->0SNMsgs = pg->0SQEntries; (5)
pdata->0SQSize = pqg->0SQSize; (6)
OS_EXIT_CRITICAL();

return (OS_NO_ERR);

270 Chapter 11: Message Queue Management

L11.9(1)

L11.9(2) As aways, if 0S_ARG_CHK_EN is set to 1, 0SQQuery() checks that pevent is not a NULL
pointer and that it points to an ECB containing a queue.

L11.9(3) 0SQQuery () then copiesthe wait list. You should note that | decided to do the copy asin-line
code instead of using aloop for performance reasons.

L11.9(4) If the queue is not empty, the oldest message is extracted (but not removed) from the queue
and copied to . 0SMsg. In other words, 0SQQuery () does not movethe .0SQ0ut pointer. If no
messages are in the queue, the . 0SMsg contains a NULL pointer.

L11.9(5)

L11.9(6) Finaly, the current number of entries and the queue size are placed in the .0SNMsgs and
.0SQS1 ze fields of the 0S_Q_DATA structure, respectively.

11.09 Using a Message Queue When Reading Analog
| nputs

It is often useful in control applications to read analog inputs at regular intervals. To accomplish this
task, create atask, called 0STimeD1y () [see Section 5.00, “Delaying aTask, 0STimeD1y ()"] and spec-
ify the desired sampling period.

As shown in Listing 11.5, you could use a message queue instead and have your task pend on the
gueue with a timeout. The timeout corresponds to the desired sampling period. If no other task sends a
message to the queue, the task is resumed after the specified timeout, which basically emulates the
0STimeD1y () function.

You are probably wondering why | decided to use a queue when 0STimeD1y () does the trick just
fine. By adding a queue, you can have other tasks abort the wait by sending a message, thus forcing an
immediate conversion. If you add some intelligence to your messages, you can tell the analog to digital
converter (ADC) task to convert a specific channel, tell the task to increase the sampling rate, and more.
In other words, you can say to the task: “Can you convert analog input 3 for me now?’ After servicing
the message, the task initiates the pend on the queue, which restarts the scanning process.

Using a Queue as a Counting Semaphore 271

Figure1l5 Reading analog inputs.

Analog Inputs MUX —® ADC

Queue osQPend()

osQPost () —»

XTi meout

11.10 Using a Queue as a Counting Semaphore

A message queue can be used as a counting semaphore by initializing and loading a queue with as many
non-NULL pointers[(void *)1 workswell] as resources are available. A task requesting the semaphore
calls 0SQPend () and releases the semaphore by calling 0SQPost (). Listing 11.10 shows how this pro-
cess works. You can use this technique to conserve code space if your application only needs counting
semaphores and message queues (you then have no need for the semaphore services). In this case, set
0S_SEM_EN to 0 and only use queues instead of both queues and semaphores. Note that this technique
consumes a pointer-sized variable for each resource that the semaphore is guarding and requires a queue
control block. In other words, you are sacrificing data space (i.e. RAM) in order to save code space.
Also, message queue services are slower than semaphore services. This technique is very inefficient if
your counting semaphore (in this case, a queue) is guarding a large amount of resources (because you
would need alarge array of pointers).

272 Chapter 11: Message Queue Management

Listing 11.10 Using a queue as a counting semaphore.

OS_EVENT *QSem;
void *QMsgTh1[N_RESOURCES]

void main (void)
{
0SInit();

QSem = 0SQCreate(&QOMsgTb1[0], N_RESOURCES);
for (i = 0; i < N_RESOURCES; i++) {
0SQPost(QSem, (void *)1);

0STaskCreate(Taskl, .., .., ..);

0SStart();

void Taskl (void *pdata)
{

INT8U err;
for (;;) {
0SQPend(&QSem, 0, &err); /* Obtain access to resource(s) &Y/
/* Task has semaphore, access resource(s) */

0SMQPost (QSem, (void*)1); /* Release access to resource(s) */

Chapter 12

Memory Management

Your application can alocate and free dynamic memory using any ANSI C compiler’smalloc() and
free() functions, respectively. However, usingmalloc() and free() in an embedded real-time system
is dangerous because, eventually, you might not be able to obtain a single contiguous memory area due
to fragmentation. Fragmentation is the development of a large number of separate free areas (i.e., the
total free memory is fragmented into small, non-contiguous pieces). Execution time of malloc() and
free() are aso generally nondeterministic because of the algorithms used to locate a contiguous block
of free memory.

HC/OS-11 provides an alternative to malloc() and free() by alowing your application to obtain
fixed-sized memory blocks from a partition made of a contiguous memory area, as illustrated in Figure
12.1. All memory blocks are the same size, and the partition contains an integral number of blocks.
Allocation and deallocation of these memory blocksis done in constant time and is deterministic.

As shown in Figure 12.2, more than one memory partition can exist, so your application can obtain
memory blocks of different sizes. However, a specific memory block must be returned to the partition
from which it came. This type of memory management is not subject to fragmentation.

To enable uC/OS-11 memory management services, you must set configuration constants in
0S_CFG.H. Specifically, Table 12.1 shows which services are compiled based on the value of con-
figuration constants found in 0S_CFG.H. You should note that none of the memory management
services are enabled when 0S_MEM_EN is set to 0. To enable specific features (i.e. service) listed in
Table 12.1, simply set the configuration constant to 1. You will notice that 0SMemCreate(),
0SMemGet () and OSMemPut() cannot be individually disabled like the other services. That's
because they are always needed when you enable uC/OS-11 memory management.

273

274 Chapter 12: Memory Management

Table12.1 Memory management configuration constants

in 0S_CFG.H.
HC/OS-11 Memory Service Enabled when setto 1in 0S_CFG.H
0SMemCreate()
0SMemGet ()
0SMemPut ()
0SMemQuery () 0S_MEM_QUERY_EN

12.00 Memory Control Blocks

HC/OS-11 keeps track of memory partitions through the use of a data structure called a memory control
block (Listing 12.1). Each memory partition requires its own memory control block.

Listing12.1 Memory control block data structure.

typedef struct {
void *0SMemAddr;
void *0SMemFreelist;
INT32U 0SMemB1kSize;
INT32U 0SMemNB1ks ;
INT32U OSMemNFree;

} 0S_MEM;

.0SMemAddr is apointer to the beginning (base) of the memory partition from which memory blocks
are dlocated. This field is initialized when you create a partition [see Section 12.01, “Creating a
Partition, 0SMemCreate()"] and is not used thereafter.

.0SMemFreeList isapointer used by uC/OS-11 to point either to the next free memory control block
or to the next free memory block. The use depends on whether the memory partition has been created or
not (see Section 12.01, “Creating a Partition, 0SMemCreate()").

.0SMemB1kS1ze determines the size of each memory block in the partition and is a parameter you
specify when the memory partition is created (see Section 12.01, “Creating a Partition,
O0SMemCreate()").

.0SMemNB1ks establishes the total number of memory blocks available from the partition. This
parameter is specified when the partition is created (see Section 12.01, “Creating a Partition,
OSMemCreate()").

.0SMemNFree is used to determine how many memory blocks are available from the partition.

Memory Control Blocks 275

Figure12.1 Memory partition.

Start address —p y ¥
Partition
K
Bl ock
, 4 4

Figure12.2 Multiple memory partitions.

Partition #1 Partition #2 Partition #3 Partition #4

MC/OS-1 initializes the memory manager if you configure 0S_MEM_EN to 1 in 0S_CFG.H. Initializa
tion is done by 0S_MemInit() [called by 0SInit()] and consists of creating a linked list of memory
control blocks, as shown in Figure 12.3. You specify the maximum number of memory partitions with
the configuration constant 0S_MAX_MEM_PART (see 0S_CFG.H), which must be set at least to 2.

As you can see, the 0SMemFreelist field of the control block is used to chain the free control
blocks.

276 Chapter 12: Memory Management

Figure12.3 List of free memory control blocks.

OSMemAddr OsMermAddr OsMermAddr
OSMemFreelList —¥»| oshenfr eelLi st »| oshvenfFreeList W —| osMenFreeList +—P» 0
OsMenBl kSi ze OosmvenBl kSi ze OsmenBl kSi ze
OSMemNBI ks OosMermiNBl ks OSMermN\Bl ks
OSMenmNFr ee OSMeniNFr ee OSMermNFr ee
< 0OS_MAX_MEM_PART >

12.01 Creating a Partition, 0SMemCreate()

Your application must create each partition before it can be used and is this done by calling
0SMemCreate (). Listing 12.2 shows how you could create a memory partition containing 100 blocks
of 32 bytes each.

Listing 12.2 Creating a memory partition.

0S_MEM *CommTxBuf;
INT8U CommTxPart[100]1[32];

void main (void)
{
INT8U err;

0SInit();
CommTxBuf = O0SMemCreate(CommTxPart, 100, 32, &err);

0SStart();

The code to create a memory partition is shown in Listing 12.3. 0SMemCreate () requires four argu-
ments: the beginning address of the memory partition, the number of blocks to be allocated from this
partition, the size (in bytes) of each block, and a pointer to a variable that contains an error code.
0SMemCreate() returns a NULL pointer if OSMemCreate() fails. On success, 0SMemCreate() returns a

Creating a Partition, 0SMemCreate() 277

pointer to the allocated memory control block. This pointer must be used in subsequent callsto memory
management services [see 0SMemGet (), 0SMemPut (), and OSMemQuery () in Sections 12.02-12.04].

Listing12.3 0SMemCreate() .

0S_MEM *0SMemCreate (void *addr, INT32U nblks, INT32U blksize, INT8U *err)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendi
0S_MEM *pmem;
INT8U *pblk;
void **plink;
INT32U 1;

JFif OS_ARG_CHK_EN > 0

if (addr = (void *)0) { (1)
*err = 0S_MEM_INVALID_ADDR;
return ((0OS_MEM *)0);

}

if (nblks < 2) { (2)
*err = 0S_MEM_INVALID_BLKS;
return ((OS_MEM *)0);

}

if (blksize < sizeof(void *)) { (3)
*err = O0S_MEM_INVALID_SIZE;
return ((OS_MEM *)0);

}

frendi f
OS_ENTER_CRITICALC();
pmem = OSMemFreelist; (4)

if (OSMemFreelist != (0S_MEM *)0) {
OSMemFreelist = (0S_MEM *)0SMemFreelist->0SMemFreelist;
}
OS_EXIT_CRITICAL();
if (pmem = (OS_MEM *)0) { (5)
*err = 0S_MEM_INVALID_PART;
return ((OS_MEM *)0);
}
plink = (void **)addr; (6)
pblk = (INT8U *)addr + blksize;

278 Chapter 12: Memory Management

Listing 12.3 0SMemCreate () (Continued).
for (i = 0; i < (nblks - 1); i++) {

*plink = (void *)pblk;
plink = (void **)pblk;

pblk = pblk + blksize;
}
*plink = (void *)0;
pmem->0SMemAddr = addr; (7)
pmem->0SMemFreelist = addr;
pmem->0SMemNFree = nblks;
pmem->0SMemNB1ks = nblks;
pmem->0SMemB1kSize = blksize;
*err = 0S_NO_ERR;
return (pmem); (8)
}

L12.3(1) You must passavalid pointer to the memory allocated that will be used as a partition.

L12.3(2) Each memory partition must contain at least two memory blocks.

L12.3(3) Each memory block must be able to hold the size of a pointer because a pointer is used to
chain all the memory blocks together.

L12.3(4) Next, 0SMemCreate() obtains a memory control block from the list of free memory control
blocks. The memory control block contains run-time information about the memory parti-
tion.

L12.3(5) 0SMemCreate() cannot create a memory partition unless a memory control block is avail-
able.

L12.3(6) If amemory control block is available and al the previous conditions are satisfied, the mem-
ory blocks within the partition are linked together in asingly linked list. A singly linked list
is used because insertion and removal of elementsin the list is aways done from the top of
thelist.

L12.3(7) When al the blocks are linked, the memory control block isfilled with information about the
partition.

L12.3(8) 0SMemCreate() returns the pointer to the memory control block, so it can be used in subse-

guent calls to access the memory blocks from this partition.

Figure 12.4 shows how the data structures look when 0SMemCreate() completes successfully. Note
that the memory blocks are shown linked one after the other. At run time, as you allocate and deall ocate
memory blocks, the blocks will most likely not be in the same order.

Obtaining a Memory Block, 0SMemGet () 279

Figure12.4 Memory partition created by OSMemCreate().

o I
pmem—| osvermddr = addr 0/7'
OsMenfr eeLi st = addr o
o
OSMenBl kSi ze = bl ksi ze
OSMemNBI ks = nbl ks
[N
OSMeniNFr ee = nbl ks

Contiguous memory

OSMemCreate() arguments

AL WAWLWALW

h 4

12.02 Obtaining a Memory Block, 0SMemGet ()

Your application can get a memory block from one of the created memory partitions by calling
0SMemGet (). You must use the pointer returned by 0SMemCreate() inthe call to 0SMemGet () to specify
from which partition the memory block will come. Obviously, your application needs to know how big
the memory block obtained is, so that it doesn’t exceed its storage capacity. In other words, you must
not use more memory than is available from the memory block. For example, if a partition contains
32-byte blocks, then your application can use up to 32 bytes. When you are done using the block, you
must return it to the proper memory partition [see Section 12.03, “Returning a Memory Block,

0SMemPut ()"]. Listing 12.4 shows the code for 0SMemGet (). 12
Listing 12.4 0SMemGet (). -
void *0SMemGet (OS_MEM *pmem, INT8U *err) (1)

{
fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendi f
void *pblk;

280 Chapter 12: Memory Management

Listing 12.4 0SMemGet (). (Continued)

#Hif OS_ARG_CHK_EN > 0
if (pmem = (0S_MEM *)0) { (2)
*err = 0S_MEM_INVALID_PMEM;
return ((OS_MEM *)0);
}

ffendif

OS_ENTER_CRITICALC();

if (pmem->0SMemNFree > 0) { (3)
pb1k = pmem->0SMemFreelist; (4)
pmem->0SMemFreelist = *(void **)pblk; (5)
pmem->0SMemNFree- - ; (6)
OS_EXIT_CRITICAL();
*err = 0S_NO_ERR;
return (pbTk); (7)

}
OS_EXIT_CRITICALC();
*err = 0S_MEM_NO_FREE_BLKS;
return ((void *)0);
}

L12.4(1) The pointer passed to 0SMemGet () specifies the partition from which you want to get amem-
ory block.

L12.4(2) If you enabled argument checking (i.e., 0S_ARG_CHK_EN is set to 1 in 0S_CFG.H), then
0SMemGet () makes sure that you didn’'t pass a NULL pointer instead of a pointer to a partition.
Unfortunately, 0SMemGet () doesn’t know whether anon-NULL is actualy pointing to a valid
partition (pmem could point to anything).

L12.4(3) 0SMemGet () checksto seeif free blocks are available.
L12.4(4) If ablock isavailable, itisremoved from the freelist.
L12.4(5)

L12.4(6) Thefreelist isthen updated so that it points to the next free memory block, and the number
of blocks is decremented, indicating that the block has been allocated.

L12.4(7) The pointer to the allocated block isfinally returned to your application.

Note that you can call this function from an ISR because, if amemory block is not available, thereis
no waiting and the ISR simply receivesaNULL pointer.

12.03 Returning a Memory Block, 0SMemPut ()

When your application is done with a memory block, it must be returned to the appropriate partition.
This operation is accomplished by calling 0SMemPut (). You should note that 0SMemPut () has no way of
knowing whether the memory block returned to the partition belongsto that partition. In other words, if

Returning a Memory Block, 0SMemPut () 281

you allocate a memory block from a partition containing blocks of 32 bytes, then you should not return
this block to a memory partition containing blocks of 120 bytes. The next time an application requests a
block from the 120-byte partition, it will only get 32 valid bytes; the remaining 88 bytes might belong to
some other task(s). Thisissue could certainly make your system crash.

Listing 12.5 shows the code for 0SMemPut ().

Listing 125 0SMemPut ().

INT8U OSMemPut (OS_MEM *pmem, void *pblk) (1)
{
fHif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendif

JHif OS_ARG_CHK_EN > 0
if (pmem = (OS_MEM *)0) { (2)
return (OS_MEM_INVALID_PMEM);
}
if (pblk == (void *)0) {
return (OS_MEM_INVALID_PBLK);
}
ffendi
OS_ENTER_CRITICALC();
if (pmem->0SMemNFree >= pmem->0SMemNBTks) { (3)
OS_EXIT_CRITICALC();
return (OS_MEM_FULL);
}
*(void **)pblk pmem->0SMemFreelist; (4)
pmem->0SMemFreelist = pblk;
pmem->0SMemNFree++; (5)
OS_EXIT_CRITICAL();
return (OS_NO_ERR);

L12.5(1) You passto 0SMemPut () the address of the memory control block (pmem) to which the mem-
ory block belongs (pb1k).

L12.5(2) 0SMemPut () then checks that the pointers being passed to the function are non-NULL. Unfor-
tunately, 0SMemPut () doesn’t know whether the block returned actually belongs to the parti-
tion. It isassumed that your application is returning the block to its proper place.

L12.5(3) Next, we check to see that the memory partition is not already full. This situation would cer-
tainly indicate that something went wrong during the allocation/deallocation process.
Indeed, you are returning a block to a partition that thinks it has all of its blocks aready
returned to it.

282 Chapter 12: Memory Management

L12.5(4) If the memory partition can accept another memory block, it isinserted into the linked list of
free blocks.

L12.5(5) Finally, the number of memory blocksin the memory partition isincremented.

12.04 Obtaining Status of a Memory Partition,
OSMemQuery ()

0SMemQuery () is used to obtain information about a memory partition. For example, your application
can determine how many memory blocks are free, how many memory blocks have been used (i.e., allo-
cated), and the size of each memory block (in bytes). This information is placed in a data structure
called 0S_MEM_DATA, as shown in Listing 12.6. The code for 0SMemQuery () isshownin Listing 12.7.

Listing 12.6 Data structure used to obtain status from a partition.
typedef struct f{

void *0SAddr; /* Points to beginning address of memory partition =/

void *0SFreelist; /* Points to beginning of free 1ist of memory blocks */

INT32U 0SB1kSize; /* Size (in bytes) of each memory block =)

INT32U OSNBTks; /* Total number of blocks in the partition &/

INT32U OSNFree; /* Number of memory blocks free =/

INT32U OSNUsed; /* Number of memory blocks used)
} OS_MEM_DATA;

Listing 12.7 0SMemQuery ().

INT8U O0SMemQuery (OS_MEM *pmem, OS_MEM_DATA *pdata)
{
J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;
ffendif

fFif OS_ARG_CHK_EN > 0
if (pmem == (0OS_MEM *)0) { (1)
return (OS_MEM_INVALID_PMEM);
}
if (pdata == (0S_MEM_DATA *)0) {
return (OS_MEM_INVALID_PDATA);
}
frendi f
OS_ENTER_CRITICAL();
pdata->0SAddr = pmem->0SMemAddr; (2)
pdata->0SFreelist = pmem->0SMemFreelist;

Using Memory Partitions 283

Listing 12.7 0SMemQuery ().

pdata->0SB1kSize = pmem->0SMemB1kSize;
pdata->0SNBTks pmem->0SMemNBTKks ;

pdata->0SNFree = pmem->0SMemNFree;
OS_EXIT_CRITICAL();
pdata->0SNUsed = pdata->0SNBlks - pdata->0SNFree; (3)

return (0S_NO_ERR);
}

L12.7(1) Asusual, we start off by checking the arguments passed to the function.

L12.7(2) All thefields found in 0S_MEM are copied to the 0S_MEM_DATA data structure with interrupts
disabled. This process ensures that the fields are not altered until they are all copied.

L12.7(3) You should also notice that computation of the number of blocks used is performed outside
of the critical section becauseit’s done using the local copy of the data.

12.05 Using Memory Partitions

Figure 12.5 shows an example of how you can use the dynamic memory allocation feature of pC/OS-I,
as well as its message-passing capability (see Chapter 11, "Message Queue Management"). Also, refer
to Listing 12.9 for the pseudocode of the two tasks shown. The numbers in parentheses in Figure 12.5
correspond to the appropriate action in Listing 12.9.

Figure12.5 Using dynamic memory allocation.

COSTi ne
CSTi meGet ()
(3)
K Err MsgQ
Anal og OSQPost () OsQPend() Error
—> —_—> >
I nputs (5) T (6) Handl er
(1) ~
c o L
(4 T b Ty S
A (7)
svenGet () /" osvenput ()

(2) b e

ErrMsgPart —p[_o——p[——Pp[——P[—1—P[P

284 Chapter 12: Memory Management

Thefirst task reads and checks the value of analog inputs (pressures, temperatures, and voltages) and
sends a message to the second task if any of the analog inputs exceed a threshold. The message sent
contains atime stamp, information about which channel had the error, an error code, an indication of the
severity of the error, and any other information you can think of .

Error handling in this example is centralized. This means that other tasks, or even ISRs, can post
error messages to the error-handling task. The error-handling task can be responsible for displaying
error messages on a monitor (a display), logging errors to a disk, or dispatching other tasks that could
take corrective actions based on the error.

Listing 12.8 Scanning analog inputs and reporting
errors.

AnalogInputTask()
{

for (;;5) f
for (all analog inputs to read) f{
Read analog input; (1)
if (analog input exceeds threshold) {
Get memory block; (2)
Get current system time (in clock ticks); (3)
Store the following items in the memory block. (4)

System time (i.e. a time stamp);
The channel that exceeded the threshold;
An error code;
The severity of the error;
Etc.
Post the error message to error queue; (5)
(A pointer to the memory block containing the data)

}
Delay task until it’s time to sample analog inputs again;

ErrorHandlerTask()
{
for (;;5) f
Wait for message from error queue; (6)
(Gets a pointer to a memory block containing information
about the error reported)

Waiting for Memory Blocks from a Partition 285

Listing 12.8 Scanning analog inputs and reporting
errors. (Continued)

Read the message and take action based on error reported; (7)
Return the memory block to the memory partition; (8)

12.06 Waiting for Memory Blocks from a Partition

Sometimes it's useful to have a task wait for a memory block in case a partition runs out of blocks.
MC/OS-I1 doesn't support pending on partitions, but you can support this requirement by adding a
counting semaphore (see Chapter 7, “ Semaphore Management”) to guard the memory partition. To
obtain a memory block, simply obtain a semaphore and then call 0SMemGet (). To release a block, sim-
ply return the block to its partition and post to the semaphore. The whole process is shown in Listing
12.9.

Listing 129 Waiting for memory blocks from a partition.

OS_EVENT *SemaphorePtr; (1)
0S_MEM *PartitionPtr;
INT8U Partition[1001[321;

0S_STK TaskStk[10001;

void main (void)
{

INT8U err;

0SInit(); (2)
éemaphorePtr = (0SSemCreate(100); (3)
PartitionPtr = OSMemCreate(Partition, 100, 32, &err); (4)
68TaskCreate(Task, (void *)0, &TaskStk[999]1, &err); (5)
6SStart(); (6)

}

void Task (void *pdata)

{
INT8U err;

286 Chapter 12: Memory Management

Listing12.9 Waiting for memory blocks from a partition. (Continued)
INT8U *pblock;

for (;;) {

}

L12.9(1)

L12.9(2)
L12.9(3)

L12.9(4)
L12.9(5)

L12.9(6)
L12.9(7)
L12.9(8)

L12.9(9)

0SSemPend(SemaphorePtr, 0, &err); (7)
pblock = 0SMemGet(PartitionPtr, &err); (8)

/* Use the memory block */

0SMemPut (PartitionPtr, pblock); (9)
0SSemPost (SemaphorePtr); (10)

First, declare your system objects. Note that | used hard-coded constants for clarity. You
would certainly create #idefine constantsin areal application.

Initialize pC/OS-I1 by calling 0SInit() and then create a semaphore with an initial count
corresponding to the number of blocks in the partition.

Next, create the partition and one of the tasks that will be accessing the partition.

By now, you should be able to figure out what you need to do to add the other tasks. It obvi-
ously does not make much sense to use a semaphore if only one task is using memory blocks
— thereis no need to ensure mutual exclusion! In fact, it doesn’t even make sense to use par-
titions unless you intend to share memory blocks with other tasks.

Multitasking isthen started by calling 0SStart ().

When the task executes, it obtains amemory block only if a semaphore is available. After the
semaphore is available, the memory block is obtained. There is no need to check for an error
code from 0SSemPend () because the only way pC/OS-11 can return to thistask isif amemory
block isreleased because atimeout of 0 is specified. Also, you don’'t need the error code from
0SMemGet () for the same reason — you must have at least one block in the partition in order
for the task to resume.

L 12.9(10) When the task is finished with a memory block, the task simply returns the memory block to

the partition and signals the semaphore.

Chapter 13

Porting uC/OS- |

This chapter describes in general terms what needs to be done to adapt uC/OS-11 to different processors.
Adapting areal-time kernel to a microprocessor or a microcontroller is called a port. Most of uC/OS-|
iswritten in C for portability; however, it is still necessary to write some processor-specific code in C
and assembly language. Specifically, uC/OS-I1 manipulates processor registers, which can only be done
through assembly language. Porting uC/OS-II to different processors is relatively easy because
MC/OS-11 was designed to be portable. If you aready have a port for the processor you are intending to
use, you don’'t need to read this chapter, unless of course you want to know how puC/OS-Il proces-
sor-gpecific code works.
A processor can run PC/OS-11 if the processor satisfies the following general requirements:

1. The processor has a C compiler that generates reentrant code.

2. The processor supports interrupts and can provide an interrupt that occurs at regular intervals (typi-
cally between 10 and 100HZ).

3. Interrupts can be disabled and enabled from C.

4. The processor supports a hardware stack that can accommodate a fair amount of data (possibly
many kilobytes).

5. The processor has instructions to load and store the stack pointer and other CPU registers, either on
the stack or in memory.

Processors, such as the Motorola 6805 series, do not satisfy requirements 4 and 5, so uC/OS-I1 can-
not run on such processors.

Figure 13.1 shows the uC/OS-I1 architecture and its relationship with the hardware. When you use
MC/OS-11 in an application, you are responsible for providing the application software and the uC/OS-I|
configuration sections. This book and companion CD contains all the source code for the proces-
sor-independent code section, as well as the processor-specific code section for the Intel 80x86, red
mode, large model. If you intend to use uC/OS-11 on a different processor, you need either to obtain a
copy of a port for the processor you intend to use or to write one yourself if the desired processor port
has not aready been ported. Check the official uC/OS-11 Web site at www.uCO0S-I1.com for alist of
available ports. In fact, you might want to look at other ports and learn from the experience of others.

287

288 Chapter 13: Porting uC/OS1

Figure13.1 pC/OS-11 hardware/software architecture.

Application Software
(Your Code!)
uC/OS-II uC/OS-Il Configuration
(Processor-Independent Code) (Application-Specific)
OS_CORE. C
0S_FLAG. C
0S_MBOX. C
g cs_cra
5.0 C | NCLUDES. H
OS_SEM C
0S_TASK. C
OS_TIME. C
ucos_Il.cC
ucos_I'l. H
HC/OS-II Port
(Processor-Specific Code)
0S_CPU. H
OS_CPU_A. ASM
0S CPU C.C
Software
Hardware
CPU Timer

Porting uC/OS-11 is actually quite straightforward after you understand the subtleties of the target
processor and the C compiler you are using. Depending on the processor, a port can consist of writing or
changing between 50 and 300 lines of code and could take anywhere from afew hours to about a week
to accomplish. The easiest thing to do, however, is to modify an existing port from a processor that is
similar to the one you intend to use. Table 13.1 summarizes the code you must write or modify. |
decided to add a column that indicates the relative complexity involved: 1 means easy, 2 means average,
and 3 means more complicated.

Development Tools 289

Table 13.1 Port summary.

Name Type File isc;rembl V2 Complexity
BOOLEAN DaaType 0S_CPU.H C 1
INT8U DaaType 0S_CPU.H C 1
INT8S DaaType 0S_CPU.H C 1
INT16U DaaType 0S_CPU.H C 1
INT16S DaaType 0S_CPU.H C 1
INT32U DaaType 0S_CPU.H C 1
INT32S DaaType 0S_CPU.H C 1
FP32 DaaType 0S_CPU.H C 1
FP64 DaaType 0S_CPU.H C 1
0S_STK DaaType 0S_CPU.H C 2
0S_CPU_SR DaaType 0S_CPU.H C 2
0S_CRITICAL_METHOD ffdefine 0S_CPU.H C 3
0S_STK_GROWTH jidefine 0S_CPU.H C 1
OS_ENTER_CRITICALC() Macro 0S_CPU.H C 3
OS_EXIT_CRITICAL() Macro 0S_CPU.H C 3
0SStartHighRdy () Function 0S_CPU_A.ASM Assambly 2
0SCtxSw() Function 0S_CPU_A.ASM Assembly 3
0SIntCtxSw() Function 0S_CPU_A.ASM Assembly 3
0STickISR() Function 0S_CPU_A.ASM Assembly 3
0STaskStkInit() Function 0S_CPU_C.C C 3
0SInitHookBegin() Function 0S_CPU_C.C C 1
0SInitHookEnd() Function 0S_CPU_C.C C 1
0STaskCreateHook () Function 0S_CPU_C.C C 1
0STaskDeTHook() Function 0S_CPU_C.C C 1
0STaskSwHook () Function 0S_CPU_C.C C 1
0STaskStatHook () Function 0S_CPU_C.C C 1
0STCBInitHook() Function 0S_CPU_C.C C 1
0STimeTickHook () Function 0S_CPU_C.C C 1
0STaskIdleHook() Function 0S_CPU_C.C C 1

13.00 Development Tools

As previoudly stated, because uC/OS-1 is written mostly in ANSI C, you need an ANSI C compiler for
the processor you intend to use. Also, because uC/OS-I1 is a preemptive kernel, you should only useaC
compiler that generates reentrant code.

290 Chapter 13: Porting uC/OS1

Your tools should also include an assembler because some of the port requires saving and restoring
CPU registers that are generally not accessible from C. However, some C compilers do have extensions
that allow you to manipulate CPU registers directly from C or alow you to write in-line assembly lan-
guage statements.

Most C compilers designed for embedded systems aso include a linker and a locator. The linker is
used to combine object files (compiled and assembled files) from different modules, while the locator
alows you to place the code and data anywhere in the memory map of the target processor.

Your C compiler must also provide a mechanism to disable and enable interrupts from C. Some
compilers alow you to insert in-line assembly language statements into your C source code, which
makes it easy to insert the proper processor instructions to enable and disable interrupts. Other compil-
ers actually contain language extensions to enable and disable interrupts directly from C.

13.01 Directories and Files

The installation program provided on the companion CD installs uC/OS-Il and the port for the Intel
80x86 (real mode, large model) on your hard drive. | devised a consistent directory structure that allows
you to find the files for the desired target processor easily. If you add a port for another processor, you
should consider following the same conventions.

All ports should be placed under \SOFTWARE\UCOS-11 on your hard drive. You should note that |
don’t specify on which disk drive these files should reside; | leave this decision up to you. The
source code for each microprocessor or microcontroller port must be found in either two or three
files: 0S_CPU.H, 0S_CPU_C.C, and, optionally, 0S_CPU_A.ASM. The assembly language file is optional
because some compilers allow you to have in-line assembly language, so you can place the needed
assembly language code directly in 0S_CPU_C.C. The directory in which the port is located deter-
mines which processor you are using. Examples of directories where different ports are stored are
shown in the Table 13.2. Note that each directory contains the same filenames, even though they have
totally different targets. Also, the directory structure accounts for different C compilers. For exam-
ple, the uC/OS-11 port files for the Paradigm C (see www.DevTools.com) compiler should be placed
in a Paradigm sub-directory. Similarly, the port files for the Borland C (see www.Borland.com) com-
piler v4.5 should be placed in a BC45 sub-directory. The port files for other processors, such as the
Motorola 68HC11 processor using a COSMIC compiler (see www.Cosmic-US. com), should be placed
as shown in Table 13.2.

Table 13.2 Examples of port directories.

I ntel/AMD 80186 \SOFTWARE\uCOS-II\Ix86L\PARADIGM

\OS_CPU.H

\OS_CPU_A.ASM

\OS_CPU_C.C

\SOFTWARE\uCOS-II\Ix86L\BC45

\OS_CPU.H

\OS_CPU_A.ASM

\OS_CPU_C.C

INCLUDES.H 291

Table 13.2 Examples of port directories. (Continued)

Motorola 68HC11 \SOFTWARE\uCOS-TT\68HC11\COSMIC
\0S_CPU.H
\0S_CPU_A.ASM
\0S_CPU_C.C

13.02 INCLUDES.H

As mentioned in Chapter 1, INCLUDES.H isamaster include file found at the top of all .C files

#Finclude "includes.h"

INCLUDES.H alows every .C filein your project to be written without concern about which header
file is actually needed. The only drawback to having a master include file is that INCLUDES.H can
include header files that are not pertinent to the actua .C file being compiled. Each file therefore will
require extra time to compile. This inconvenience is offset by code portability. | assume that you have
an INCLUDES.H in each project that uses uC/OS-11. You can edit the INCLUDES . H file that | provide and
add your own header files, but your header files should be added at the end of the list. INCLUDES.H is
not actually considered part of a port, but | decided to mention it here because every uC/OS-1 file
assumesit.

13.03 0S_CPU.H

0S_CPU.H contains processor- and implementation-specific #idefine constants, macros, and typedefs.
The general layout of 0S_CPU.Hisshownin Listing 13.1.

Listing13.1 0S_CPU.H.

/*

% DATA TYPES

* (Compiler Specific)

&/

typedef unsigned char BOOLEAN; (1)
typedef unsigned char INT8U; /* Unsigned 8 bit quantity Y

typedef signed char [INT8S; /* Signed 8 bit quantity i/

typedef unsigned int INT16U; /* Unsigned 16 bit quantity i/

typedef signed int INT16S; /* Signed 16 bit quantity Y

typedef unsigned Tong INT32U; /* Unsigned 32 bit quantity &7

typedef signed lTong INT32S; /* Signed 32 bit quantity &7

292 Chapter 13: Porting uC/OSH1

Listing13.1 0S_CPU. H. (Continued)

typedef float FP32; /* Single precision floating point Y (2)
typedef double FP64; /* Double precision floating point =)

typedef unsigned int OS_STK; /* Each stack entry is 16-bit wide =) (3)
typedef unsigned short 0S_CPU_SR; /* Define size of CPU status register */ (4)
/*

w3 Processor Specifics

=Y

fidefine OS_CRITICAL_METHOD ?2? (5)
i f OS_CRITICAL_METHOD =

jidefine OS_ENTER_CRITICAL() 1?2?2727 (6)
fidefine OS_EXIT_CRITICAL() ?222?

frendif

i f O0S_CRITICAL_METHOD ==

jidefine OS_ENTER_CRITICAL() 27227 (7)
fidefine OS_EXIT_CRITICAL() 2227

ffendif

i OS_CRITICAL_METHOD ==

fidefine OS_ENTER_CRITICAL() 1?2227 (8)
fidefine OS_EXIT_CRITICAL() 2727

ffendif

Jkdefine OS_STK_GROWTH 1 /* Stack growth (0=Up, 1=Down) */ (9)
fidefine OS_TASK_SW() 27727 (10)

13.03.01 Compiler-Specific Data Types

Because different microprocessors have different word lengths, the port of uC/OS-11 includes a series of
type definitions that ensures portability. Specifically, uC/OS-Il code never makes use of C's short,
int, and 1ong data types because they are inherently nonportable.

To complete the data-type section, you need to consult your compiler documentation and find the
standard C data types that correspond to the types expected by pC/OS-II.

L13.1(1) | defined integer data types that are both portable and intuitive. The INT16U data type, for
example, always represents a 16-bit unsigned integer. uC/OS-11 and your application code
can now assume that the range of values for variables declared with this type is from 0 to

0S CPU.H 293

65,535. A UC/OS-11 port to a 32-bit processor means that an INT16U is actually declared asan
unsigned short instead of an unsigned int. Where uC/OS-I1 is concerned, however, it
still deals with an INT16U. All you have to do is determine from your compiler documenta-
tion what combination of standard C data types map to the data types uC/OS-11 expects.

L13.1(2) Also, for convenience, | have included floating-point data types even though pC/OS-|
doesn’t make use of floating-point numbers.

L13.1(3) You must tell uC/OS-11 the data type of a task’s stack, which is done by declaring the
proper C data type for 0S_STK. If stack elements on your processor are 32 hit, you can
declare 0S_STK as

typedef INT32U OS_STK;

This example assumes that the declaration of INT32U precedes that of 0S_STK. When you
create a task and you declare a stack for this task, then you must always use 0S_STK as its
data type.

L13.1(4) If you use 0S_CRITICAL_METHOD #3 (see next section), you need to declare the data type for
the processor status word (PSW) . The PSW is also called the processor flag or status regis-
ter. If the PSW of your processor is 16-bit wide, smply declareit as

typedef INT16U OS_CPU_SR;

13.03.02 OS_ENTER _CRITICAL()and OS_EXIT_CRITICAL()

This section is similiar to Section 3.00, “Critical Sections, 0S_ENTER_CRITICAL() and OS_EXIT_
CRITICAL(),” with some items removed and others added. | decided to repeat this text here to avoid
having you flip back and forth between sections. uC/OS-I1, like al real-time kernels, needs to disable
interrupts in order to access critical sections of code and to reenable interrupts when done. This ability
allows uC/OS-1 to protect critical code from being entered simultaneously from either multiple tasks or
ISRs.

Processors generally provide instructions to disable/enable interrupts, and your C compiler must
have a mechanism to perform these operations directly from C. Some compilers allow you to insert
in-line assembly language statements into your C source code, which makes it quite easy to insert pro-
cessor instructions to enable and disable interrupts. Other compilers contain language extensions to
enable and disable interrupts directly from C.

To hide the implementation method chosen by the compiler manufacturer, uC/OS-11 defines two
macros to disable and enable interrupts: 0S_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respec-
tively [see L13.1(5) through L13.1(8)].

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() are always together to wrap critical sections of
code as shownin Listing 13.2.

294 Chapter 13: Porting uC/OS1

Listing 13.2 Useof critical section.
{

OS_ENTER_CRITICAL();
/* pC/0S-1I1 critical code section */
OS_EXIT_CRITICAL();

Your application can also use 0S_ENTER_CRITICAL() and OS_EXIT_CRITICAL() to protect your
own critical sections of code. Be careful, however, because your application will crash (i.e., hang) if you
disable interrupts before calling a service, such as 0STimeD1y () (see Chapter 5). This problem happens
because the task is suspended until time expires, but because interrupts are disabled, you would never
service thetick interrupt! Obviously, all the PEND calls are also subject to this problem, so be careful. As
ageneral rule, you should always call uC/OS-11 services with interrupts enabled!

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() can be implemented using three different meth-
ods. You only need one of the three methods, even though | show 0S_CPU.H (Listing 13.1) containing
three different methods. The actual method used by your application depends on the capabilities of the
processor, as well as the compiler used. The method used is selected by the #fdefine constant
0S_CRITICAL_METHOD, whichisdefinedin 0S_CPU.H of the port you are using for your application (i.e.,
product). The fidefine constant 0S_CRITICAL_METHOD is necessary in 0S_CPU.H because pC/OS-11
allocates alocal variable called cpu_sr if 0S_CRITICAL_METHOD isset to 3.

OS _CRITICAL_METHOD ==

Thefirst and simplest way to implement these two macrosisto invoke the processor ingtruction to disable
interrupts for 0S_ENTER_CRITICAL() and the enable interrupts instruction for 0S_EXIT_CRITICAL().
However, there is alittle problem with this scenario. If you call a uC/OS-11 function with interrupts dis-
abled, on return from a pC/OS-11 service (i.e., function), interrupts are enabled! If you had disabled
interrupts prior to calling uC/OS-I1, you might want them to be disabled on return from the uC/OS-I1
function. In this case, this implementation is not adequate. However, with some processors/compilers,
this method is the only one you can use. An example declaration is shown in Listing 13.3. Here, |
assume that the compiler you are using provides you with two functions to disable and enable interrupts,
respectively. The names disable_int() and enable_int() are arbitrarily chosen for sake of illustra-
tion. You compiler can have different names for them.

Listing 13.3 Critical method #1.

jidefine OS_ENTER_CRITICAL() disable_int() /* Disable interrupts */
fidefine OS_EXIT_CRITICAL() enable_int() /* Enable interrupts */

OS CRITICAL_METHOD ==

The second way to implement 0S_ENTER_CRITICAL() is to save the interrupt disable status onto the
stack and then disable interrupts. 0S_EXIT_CRITICAL() isimplemented by restoring the interrupt status

0S _CPU.H 295

from the stack. Using this scheme, if you call a uC/OS-I1 service with interrupts either enabled or dis-
abled, the status is preserved across the call. In other words, interrupts are enabled after the call if they
were enabled before the call, and interrupts are disabled after the call if they were disabled before the
call. Be careful when you call apC/OS-11 service with interrupts disabled because you are extending the
interrupt latency of your application. The pseudocode for these macrosis shown in Listing 13.4.

Listing 13.4 Critical method #2.

Jidefine OS_ENTER_CRITICAL() \
asm(“ PUSH PSW”) \
asm(“ DI”);

Jidefine OS_EXIT_CRITICAL() \
asm(* POP PSW”);

Here, I’'m assuming that your compiler allows you to execute in-line assembly language statements
directly from your C code, as shown in Listing 13.4 (thusthe asm() pseudo-function). You need to con-
sult your compiler documentation for this.

The PUSH PSW instruction pushes the ‘ Processor Startus Word’, PSW (also known as the condition
code register or, processor flags) onto the stack. The DI instruction stands for ‘Disable Interrupts’.
Finaly, the POP PSW instruction is assumed to restore the origina state of the interrupt flag from the
stack. Theinstructions| used are only for illustration purposes and may not be actual processor instruc-
tions.

Some compilers do not optimize inline code real well and thus, this method may not work because
the compiler may not be ‘smart’ enough to know that the stack pointer was changed (by the PUSH
instruction). Specifically, the processor you are using may provide a ‘stack pointer relative’ addressing
mode which the compiler can use to access local variables or function arguments using and offset from
the stack pointer. Of course, if the stack pointer is changed by the 0S_ENTER_CRITICAL() macro then
all these stack offsets may be wrong and would most likely lead to incorrect behavior.

OS_CRITICAL_METHOD ==

Some compilers provide you with extensions that allow you to obtain the current value of the PSW and
save it into alocal variable declared within a C function. The variable can then be used to restore the
PSW, as shown in Listing 13.5.

Listing 13.5 Saving and restoring the PSW.

void Some_uCOS_II_Service (arguments)
{

0S_CPU_SR cpu_sr (1)
cpu_sr = get_processor_psw(); (2)
disable_interrupts(); (3)

/* Critical section of code */ (4)

296 Chapter 13: Porting uC/OS1

Listing 13.5 Saving and restoring the PSW. (Continued)

set_processor_psw(cpu_sr); (5)

}

L13.5(1)

L13.5(2)

L13.5(3)

L13.5(4)
L13.5(5)

0S_CPU_SR isauC/OS-I1 datatype that is declared in the processor-specific file 0S_CPU . H.
When you sdlect thiscritical section method, 0S_ENTER_CRITICAL() andOS_EXIT_CRITICAL()
always assume the presence of the cpu_sr variable. In other words, if you use this method to
protect your own critical sections, you need to declare a cpu_sr variable in your function.
However, you do not need to declare this variable in any of the uC/OS-11 functions because
that's already done.

To enter acritical section, a function provided by the compiler vendor is called to obtain the
current state of the PSW (condition code register, processor flags, or whatever else thisregis-
ter iscalled for your processor). | called thisfunction get_processor_psw() for sake of dis-
cussion, but it likely has a different name.

Another compiler-provided function (disable_interrupt()) iscalled, of course, to disable
interrupts.

At this point, the critical code can execute.

After the critical section has completed, interrupts can be reenabled by calling another com-
piler-specific extension that, for sake of discussion, | call set_processor_psw(). Thefunc-
tion receives as an argument the previous state of the PSW. It's assumed that this function
restores the processor PSW to this value.

Because | don't know what the compiler functions are (there is no standard naming convention), the
HUC/OS-I1 macros are used to encapsul ate the functionality as shown

Listing 13.6 Critical method #3.
jidefine OS_ENTER_CRITICAL() \

cpu_sr = get_processor_psw(); \
disable_interrupts();

ftdefine OS_EXIT_CRITICALC() \

set_processor_psw(cpu_sr);

13.03.03 0S_STK_GROWTH

The stack on most microprocessors and microcontrollers grows from high to low memory. However,
some processors work the other way around.

L13.1(9)

UC/OS-11 has been designed to be able to handle either flavor by specifying which way the
stack grows through the configuration constant 0S_STK_GROWTH, as shown.

Set 0S_STK_GROWTH to O for low-to-high memory stack growth.
Set 0S_STK_GROWTH to 1 for high-to-low memory stack growth.

0S cPU_C.c 297

The reason this jidefine constant is provided istwofold. First, 0SInit() needsto know
where the top-of-stack is when it’s creating 0S_TaskIdle() and 0S_TaskStat(). Second,
if you call 0STaskStkChk(), PC/OS-II needs to know where the bottom-of-stack is

(high-memory or low-memory) in order to determine stack usage.

13.03.04 OS_TASK_SW()

L13.1(10) 0S_TASK_SW() isamacro that isinvoked when pC/OS-11 switches from alow priority task to
the highest priority task. 0S_TASK_SW() isaways called from task-level code. Another mech-
anism, 0SIntExit(), isused to perform a context switch when an ISR makes a higher prior-
ity task ready for execution. A context switch simply consists of saving the processor
registers on the stack of the task being suspended and restoring the registers of the higher pri-
ority task from its stack.

In uC/OS-1, the stack frame for aready task aways looks asif an interrupt has just occurred and all
processor registers are saved onto it. In other words, all that pC/OS-11 has to do to run aready task isto
restore all processor registers from the task’s stack and execute areturn from interrupt. You thus need to
implement 0S_TASK_SW() to simulate an interrupt. Most processors provide either software interrupt or
trap instructions to accomplish this task. The ISR or trap handler (also called the exception handler)
must vector to the assembly language function 0SCtxSw() (see Section Section 13.04.02,
“OSTaskCreateHook(),").

For example, a port for an Intel or AMD 80x86 processor uses an INT instruction, as shown in List-
ing 13.7. Theinterrupt handler needs to vector to 0SCtxSw(). You must determine how to do this with
your compiler/processor.

Listing 13.7 Critical method #3.
fidefine OS_TASK_SW() asm INT 080H

A port for the Motorola 68HC11 processor most likely usesthe SWI instruction. Again, the SWI han-
dler is 0SCtxSw(). Finally, a port for a Motorola 680x0/CPU32 processor probably uses one of the 16
TRAP instructions. Of course, the selected trap handler is none other than 0SCtxSw().

Some processors, such asthe Zilog Z80, do not provide a software interrupt mechanism. In this case,
you need to simulate the stack frame as closely to an interrupt stack frame as you can. 0S_TASK_SW()
calls 0SCtxSw() instead of vectoring to it. The Z80 is a processor that has been ported to pC/OS and is
thus portable to uC/OS-11.

13.04 0S_CPU_C.C

A UC/OS-1 port requires that you write 10 fairly simple C functions:

0STaskStkInit()

0STaskCreateHook()

0STaskDeTHook ()

0STaskSwHook ()

0STaskIdleHook()

0STaskStatHook()

0STimeTickHook()

0SInitHookBegin()

298 Chapter 13: Porting uC/OS1

0SInitHookEnd()
0STCBInitHook()

The only required function is 0STaskStkInit (). The other nine functions must be declared but do not
need to contain any code. Function prototypes, as well as a reference manual, is provided at the end of
this chapter.

13.04.01 O0STaskStkInit()

This function is called by 0STaskCreate() and 0STaskCreateExt () to initialize the stack frame of a
task so that the stack looks as if an interrupt has just occurred and all the processor registers have been
pushed onto that stack. The pseudocode for 0STaskStkInit() isshownin Listing 13.8.

Listing 13.8 Pseudocode for 0STaskStkInit().

0S_STK *0STaskStkInit (void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT16U opt);

Simulate call to function with an argument (i.e. pdata); (1)
Simulate ISR vector; (2)
Setup stack frame to contain desired initial values of all registers; (3)
Return new top-of-stack pointer to caller; (4)

Figure 13.2 showswhat 0STaskStkInit () needsto put on the stack of the task being created. Note that
| assume a stack grows from high to low memory. The discussion that follows applies just as well for a
stack growing in the opposite direction.

Listing 13.9 shows the function prototypes for 0STaskCreate(), 0STaskCreateExt(), and
0STaskStkInit(). The argumentsin bold font are passed from the create callsto 0STaskStkInit().
When 0STaskCreate() cals 0STaskStkInit(), 0STaskCreate() sets the opt argument to 0x0000
because 0STaskCreate() doesn’t support additional options.

Listing 13.9 Function prototypes.

INT8U OSTaskCreate (void (*task)(void *pd),
Void *pdata,
0S_STK *ptos,
INT8U prio)

INT8U O0STaskCreateExt (void (*task)(void *pd),
void *pdata,
0S_STK *ptos,

INT8U prio,
INT16U id,
0S_STK *pbos,
INT32U stk_size,
void *pext,
INTI6U opt)

0S CPU_C.Cc 299

Listing 13.9 Function prototypes. (Continued)

0S_STK *0STaskStkInit (void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT16U opt);

Figure13.2 Stack-frameinitialization with pdata passed to the

stack.
LOW MEMORY
<4— Stack Pointer
(5)
(4) Saved Processor Registers
Interrupt Return Address Stack Growth
3
(3) Processor Status Word
(2) Task Start Address
(1) pdata
v

HIGH MEMORY

Recall that under pC/OS-11, atask is an infinite loop but otherwise looks just like any other C func-
tion. When the task is started by uC/OS-11, the task receives an argument just as if it were called by
another function, as shown in Listing 13.10.

Listing 13.10 Task code.

void MyTask (void *pdata)

{
/* Do something with argument 'pdata' */
for (;;) {

/* Task code &7

If | wereto call MyTask() from another function, the C compiler might push the argument onto the
stack followed by the return address of the function calling MyTask(). 0STaskStkInit() needs to
simulate this behavior. Some compilers actually pass pdata in one or more registers. I'll discuss this
situation later.

300 Chapter 13: Porting uC/OS 1

F13.2(1)
L13.8(1)

F13.2(2)
L13.8(1)

F13.2(3)
L13.8(2)

F13.2(4)
L13.8(3)

F13.2(5)
L13.8(4)

Assuming pdata is pushed onto the stack, 0STaskStkInit() simulates the scenario and
loads the stack accordingly.

Unlike a C function call, the return address of the caller is unknown because the task was
never really called (we are just trying to set up the stack frame of atask, asif the code were
called). All 0STaskStkInit() knows about is the start address of the task (it's passed as an
argument). It turns out that you really don’'t need the return address because the task is not
supposed to return to another function anyway.

At this point, 0STaskStkInit() needs to put the registers on the stack. The registers are
automatically pushed by the processor when the function recognizes and starts servicing an
interrupt. Some processors stack all of the registers; others stack just afew. Generally speak-
ing, aprocessor stacks at least the value of the program counter of the instruction to which to
return upon returning from an interrupt and the processor status word. Obviously, you must
match the order exactly.

Next, 0STaskStkInit() needs to put the rest of the processor registers on the stack. The
stacking order depends on whether your processor gives you a choice or hot. Some proces-
sors have one or more instructions that push many registers at once. You would have to emu-
late the stacking order of such instructions. For example, the Intel 80x86 has the PUSHA
instruction, which pushes eight registers onto the stack. On the Motorola 68HC11 processor,
all registers are automatically pushed onto the stack during an interrupt response, so you
would also heed to match the stacking order.

After you've initialized the stack, 0STaskStkInit() needsto return the address to where the
stack pointer points after the stacking is complete. 0STaskCreate() or 0STaskCreateExt()
takes this address and saves it in the task control block. The processor documentation tells
you whether the stack pointer should point to the next free location on the stack or the loca-
tion of the last stored value. For example, on an Intel 80x86 processor, the stack pointer
points to the last stored data, whereas on a Motorola 68HC11 processor, the stack pointer
points at the next free location.

Now it's time to returns to the issue of what to do if your C compiler passes the pdata argument in
registersinstead of on the stack.

F13.3(1)

F13.3(2)

F13.3(3)

Similarly to the previous case, 0STaskStkInit() saves the task address onto the stack in
order to simulate acall to your task code.

Again, 0STaskStkInit() needsto put the registers on the stack. The registers are automati-
cally pushed by the processor when the function recognizes and starts servicing an interrupt.
Some processors stack all of registers; others stack just afew. Generally speaking, a proces-
sor stacks at least the value of the program counter for the instruction to which to return upon
returning from an interrupt and the processor status word. Obviously, you must match the
order exactly.

Next, 0STaskStkInit() needs to put the rest of the processor registers on the stack. The
stacking order depends on whether your processor gives you a choice or not. Some processors

have one or moreinstructions that push many registers at once. You would have to emulate the
stacking order of such instructions. Because the compiler passed arguments to a function in
registers (at least some of them), you need to find out from the compiler documentation the
register in which pdata is stored. pdata is placed on the stack in the same area in which you

save the corresponding register.

F13.3(4) After you'veinitialized the stack, 0STaskStkInit() needsto return the addressto which the
stack pointer points after the stacking is complete. 0STaskCreate() or 0STaskCreateExt ()
takes this address and saves it in the task control block (0S_TCB). Again, the processor docu-
mentation tells you whether the stack pointer should point to the next free location on the

stack or the location of the last stored value.

Figure 13.3 Stack frameinitialization with pdata passed in register.

0S_CPU_C.C

(3)

(2)
(1)

|

LOW MEMORY

Saved Processor Registers

pdata

Interrupt Return Address

Processor Status Word

Task Start Address

HIGH MEMORY

13.04.02 O0STaskCreateHook()

0STaskCreateHook () iscalled by 0S_TCBInit() whenever atask is created. This function allows you
or the user of your port to extend the functionality of pC/OS-11. 0STaskCreateHook() is called when
MC/OS-1 is done setting up most of the 0S_TCB but before the 0S_TCB islinked to the active task chain
and before the task is made ready to run. Interrupts are enabled when this function is called.

When called, 0STaskCreateHook () receives a pointer to the 0S_TCB of the task created and can thus
access al of the structure elements. 0STaskCreateHook () has limited capability when the task is cre-
ated with 0STaskCreate(). However, with 0STaskCreateExt(), you get access to a TCB extension
pointer (OSTCBExtPtr) in 0S_TCB that can be used to access additional data about the task, such as the
contents of floating-point registers, Memory Management Unit (MMU) registers, task counters, and
debug information. You might want to examine 0S_TCBInit() to see exactly what's being done. Chap-

ter 15 shows how you can use this function.

<4— Stack Pointer

(4)

Stack Growth

302 Chapter 13: Porting uC/OS 1

Note about 0S_CPU_HOOKS_EN

The code for the hook functions (0S???Hook()) that are described in this and the following sec-
tions is generated from the file 0S_CPU_C.C only if 0S_CPU_HOOKS_EN isset to 1 in 0S_CFG.H.
The 0S???Hook () functions are always needed, and the jfdefine constant 0S_CPU_HOOKS_EN
doesn’t mean that the code will not be called. All 0S_CPU_HO0KS_EN meansis that the hook func-
tionsarein 0S_CPU_C.C (when 1) or elsewhere, in ancther file (when 0). This feature allows the
user of your port to redefine al the hook functionsin a different file. Obviously, users of your port
need access to the source to compile it with 0S_CPU_HOOKS_EN set to 0 in order to prevent multi-
ply defined symbols at link time. If you don't need to use hook functions because you don’t
intend to extend the functionality of uC/OS-11 through this mechanism, then you can leave the
function bodies empty. Again, WC/OS-I1 always expects that the hook functions exist (i.e., they
must always be declared somewhere).

13.04.03 0STaskDelHook()

0STaskDelHook () iscalled by 0STaskDel () after removing the task from either the ready list or await
list (if the task was waiting for an event to occur). It is called before unlinking the task from uC/OS-11's
internal linked list of active tasks. When called, 0STaskDelHook () receives a pointer to the 0S_TCB of
the task being deleted and can access al structure members. 0STaskDelHook () can seeif aTCB exten-
sion has been created (a non-NULL pointer) and is thus responsible for performing cleanup operations.
0STaskDelHook() is called with interrupts disabled, which means that your 0STaskDelHook() can
affect interrupt latency if it'stoo long. You might want to study 0STaskDel () and see exactly what is
accomplished before calling 0STaskDeTHook (). Chapter 15 shows how you can use this function.

13.04.04 0STaskSwHook()

0STaskSwHook () is called whenever a task switch occurs. The call happens whether the task switch is
performed by 0SCtxSw() or 0SIntCtxSw() (see Section 13.05, “0S_CPU_A.ASM,"). 0STaskSwHook()
can access 0STCBCur and 0STCBH1ighRdy directly because they are global variables. 0STCBCur points to
the 0S_TCB of the task being switched out, and 0STCBH1ighRdy points to the 0S_TCB of the new task.
Note that interrupts are always disabled during the call to 0STaskSwHook (), so you should keep addi-
tional code to a minimum because additional code affects interrupt latency. 0STaskSwHook () has no
arguments and is not expected to return anything. Chapter 15 shows how you can use this function.

13.04.05 (0STaskStatHook()

0STaskStatHook() iscalled once every second by 0STaskStat (). You can extend the statistics capabil-
ity with 0STaskStatHook (). For instance, you can keep track of and display the execution time of each
task, the percentage of the CPU used by each task, how often each task executes, and more.
0STaskStatHook() has no arguments and is not expected to return anything. You might want to exam-
ine 0S_TaskStat (). Example #3 in Chapter 1 shows how you can use this function.

0S cpu_c.c 303

13.04.06 0STimeTickHook()

0STaskTimeHook() is called by 0STimeTick() at every system tick. In fact, 0STimeTickHook() is
called before atick isactually processed by pC/OS-11 in order to give your port or application first claim
tothetick. 0STimeTickHook() hasno arguments and is not expected to return anything.

13.04.07 OSTCBInitHook()

0STCBInitHook() iscalled by 0S_TCBInit() immediately beforeit calls 0STaskCreateHook (), which
is also called by 0S_TCBInit(). | did this so that you could initialize 0S_TCB-related data with
0STCBInitHook() and task-related data with 0STaskCreateHook () (there can be a difference). It's up
to you to decide whether you need to populate both of these functions. Like 0STaskCreateHook(),
0STCBInitHook () receivesapointer to the newly created task’s0S_TCB after initializing most of thefield
but before linking the 0S_TCB to the chain of created tasks. You might want to examine 0S_TCBInit().

13.04.08 0STaskIdleHook()

Many microprocessors allow you to execute instructions that bring the CPU into alow-power mode.
The CPU exits low-power mode when it receives an interrupt. 0STaskIdleHook() is called by
0S_TaskIdle() and, asshown in Listing 13.11, can be made to use this CPU feature.

Listing 13.11 Useof 0STaskIdleHook().

void 0S_TaskIdle (void *pdata)

{

J#if OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

ffendi

pdata = pdata;

for (;;) {
OS_ENTER_CRITICAL();
0SIdleCtr++; (1)
OS_EXIT_CRITICAL();
0STaskIdleHook(); (2)

void 0STaskIdleHook (void)

{
asm(* STOP”); (3)
/* Interrupt received and serviced */ (4)

304 Chapter 13: Porting uC/OS 1

L13.11(1) As you know, 0S_TaskIdle() is executed whenever no other task is ready to run.
0S_TaskIdle() incrementstheidle counter, 0SIdleCtr.

L13.11(2) Next, 0S_TaskIdle() calls the hook function 0STaskIdleHook() that you declare in the
port file 0S_CPU_C.C.

L13.12(3) 0STaskIdleHook() immediately invokes the CPU instruction to bring the CPU into
low-power mode. | assume, for sake of illustration, that your compiler supports in-line
assembly language and that the instruction to execute is called STOP. Other compilers might
not alow you to do in-line assembly language and, in those cases, you could declare
0STaskIdleHook() inthe assembly language file 0S_CPU_A.ASM but make sure you include
a return from the call. Also, the instruction to bring the CPU into low-power mode can be
called something else.

L13.11(4) When an interrupt occurs, the CPU exits low-power mode and processes the ISR. The ISR
signals a higher priority task, which executes upon completion of the ISR because the ISR
calls 0SIntExit(). When all tasks are again waiting for events to occur, uC/OS-11
switches back to the idle task immediately after item L13.9(4), 0STaskIdleHook() returns
to 0S_TaskIdle(), and the same process repeats.

You could also use 0STaskIdleHook () to blink an LED, which could be used as an indi-
cation of how busy the CPU is. A dim LED would indicate a very busy CPU, while a bright
LED indicates alightly loaded CPU.

13.04.09 0SInitHookBegin()

0SInitHookBegin() iscalled immediately upon entering 0SInit(). The reason | added this function
is to encapsulate OS-related initialization within 0SInit(). This encapsulation allows you to extend
0SInit() with your own port-specific code. The user of your port still only sees 0SInit(), and the
code s cleaner.

13.04.10 0SInitHookEnd()

0SInitHookEnd() is similar to 0SInitHookBegin(), except that the hook is called at the end of
0SInit() just before returning to 0SInit()’'s caler. The reason isthe same as above and you can see
an example of the use of 0SInitHookEnd() in Chapter 15.

13.05 0S_CPU_A.ASM

A pC/OS-1 port requires that you write four assembly language functions:

0SStartHighRdy ()

0SCtxSw()

0SIntCtxSw()

O0STickISR()
If your compiler supports in-line assembly language, you could actually place these functions in
0S_CPU_C.C, instead of having a separate assembly language file.

0S_CPU_A.ASM 305

13.05.01 0SStartHighRdy()

0SStartHighRdy() is caled by 0SStart() to start the highest priority task ready to run. The
pseudocode for this function is shown in Listing 13.12. You need to convert this pseudocode to assem-
bly language.

Listing 13.12 Pseudocode for 0SStartHighRdy ().

void 0SStartHighRdy (void)
{

Call user definable 0STaskSwHook(); (1)
OSRunning = TRUE; (2)
Get the stack pointer of the task to resume: (3)

Stack pointer = OSTCBHighRdy->0STCBStkPtr;

Restore all processor registers from the new task's stack; (4)
Execute a return from interrupt instruction; (5)

L13.12(1) 0SStartHighRdy() must call 0STaskSwHook(). However, 0SStartHighRdy() only does
half a context switch — you are only restoring the registers of the highest priority task and
not saving the register of a task. 0STaskSwHook() needs to examine OSRunning to tell
whether 0STaskSwHook () was called from 0SStartHighRdy() (OSRunning is FALSE) or
from aregular context switch (OSRunning is TRUE).

L13.12(2) 0SStartHighRdy () sets OSRunning to TRUE before the highest priority task is restored but
after calling 0STaskSwHook ().

You should note that | should have placed the previous two statements in 0SStart()
instead of requiring that you placethemin 0SStartHighRdy () because they don’'t need to be
done in assembly language. Unfortunately, | didn’'t notice this fact when | first wrote
0SStart(). If I wereto change 0SStart() at this point, alarge number of ports might not
work properly. | have thus decided to leave these statementsin 0SStartHighRdy () in order
to avoid alot of e-mail messages!

L13.12(3) 0SStartHighRdy () then needs to load the stack pointer of the CPU with the top-of-stack
pointer of the highest priority task. 0SStartHighRdy() assumes that 0STCBHighRdy points
to the 0S_TCB of the task with the highest priority. To simplify things, the stack pointer is
always stored at the beginning of the 0S_TCB. In other words, the stack pointer of the task to
resumeis always stored at offset O in the 0S_TCB.

L13.12(4) In pC/OS-1, the stack frame for aready task alwayslooks as if an interrupt has just occurred
and all processor registers have been saved onto it. To run the highest priority task, al you
need to do is restore al processor registers from the task’s stack in the proper order and exe-
cute areturn from interrupt. In this step, 0SStartHighRdy () retrieves the contents of all the
CPU registers from the stack. It'simportant to pop the registersin the reverse order from the
way they were placed onto the stack by 0STaskStkInit() (see Section 13.04.01,
“0STaskStkInit(),").

L13.12(5) The last step is to execute a return-from-interrupt instruction, which causes the CPU to
retrieve the program counter and possibly the CPU flags register (also called the status

306 Chapter 13: Porting uC/OS 1

register) from the stack. This action causes the CPU to resume execution at the first
instruction of the highest priority task.

Remember that before you can call 0SStart (), however, you must have created at least one of your
tasks[see 0STaskCreate() and 0STaskCreateExt()].

13.05.02 0SCtxSw()

A task-level context switch is accomplished by issuing a software-interrupt instruction or, depending on
the processor, executing a TRAP instruction. The interrupt service routine, trap, or exception handler
must vector to 0SCtxSw().

The sequence of events that leads uC/OS-11 to vector to 0SCtxSw() begins when the current task
calls a service provided by uC/OS-11, which causes a higher priority task to be ready to run. At the
end of the service call, uC/OS-Il calls 0S_Sched(), which concludes that the current task is no
longer the most important task to run. 0S_Sched () loads the address of the highest priority task
into OSTCBHighRdy and then executes the software interrupt or TRAP instruction by invoking the
macro 0S_TASK_SW(). Note that the variable 0STCBCur already contains a pointer to the current
task’'s, 0S_TCB. The software interrupt instruction (or TRAP) forces some of the processor registers
(most likely the return address and the processor’s status word) onto the current task’s stack and
then the processor vectorsto 0SCtxSw().

The pseudocode for 0SCtxSw() is shown in Listing 13.13. This code must be written in assembly
language because you cannot access CPU registers directly from C. Note that interrupts are disabled
during 0SCtxSw() and aso during execution of the user-definable function 0STaskSwHook (). When
0SCtxSw() isinvoked, it is assumed that the processor’s program counter (PC) and possibly the flag reg-
ister (or status register) are pushed onto the stack by the software-interrupt instruction, which isinvoked
by the 0S_TASK_SW() macro.

Listing 13.13 Pseudocode for 0SCtxSw().

void 0SCtxSw(void)
{

Save processor registers; (1)

Save the current task’s stack pointer into the current task’s 0S_TCB: (2)
OSTCBCur->0STCBStkPtr = Stack pointer;

0STaskSwHook () ; (3)

OSTCBCur = OSTCBHighRdy; (4)

OSPrioCur = OSPrioHighRdy; (5)

Get the stack pointer of the task to resume: (6)
Stack pointer = OSTCBHighRdy->0STCBStkPtr;

Restore all processor registers from the new task’s stack; (7)

Execute a return from interrupt instruction; (8)

L13.13(1) 0SCtxSw() saves al the processor registers (except the ones already saved by the software
interrupt) in the same order in which 0STaskStkInit() placed them on the stack by.

0S_CPU_A.ASM 307

L13.13(2) After all CPU registers are on the stack of the task to suspend, 0SCtxSw() saves the stack
pointer into the task’s 0S_TCB.

L13.13(3) 0SCtxSw() calls 0STaskSwHook () in case your port needs to extend the functionality of a
context switch. Notethat 0STaskSwHook () isalways called whether this function is declared
in 0S_CPU_C.C or elsewhere.

L13.13(4) 0SCtxSw() then needs to make the pointer to the current 0S_TCB point to the 0S_TCB of the
task being resumed. In other words, the new task becomes the current task.

L13.13(5) 0SCtxSw() needsto copy the new task’s priority into the current task priority.
L13.13(6) The new task’s stack pointer is then retrieved from the new task’s 0S_TCB.

L13.13(7) 0SCtxSw() then needs to restore the value of the CPU registers for the task that is being
resumed. You must restore the registers in exactly the reverse order as they were saved. For
example, if your processor has four registers called R1, R2, R3, and R4 and you saved them in
that order, then you must retrieve them starting from R4 and ending with R1.

L13.13(8) Because the value of the high priority task’s program counter (and possibly the status regis-
ter) are till on the stack, areturn from interrupt causes the program counter and status regis-
ter to be popped off the stack and loaded into the CPU. This action causes your task code to
be resumed.

You can see an animation of a context switch for an Intel 80x86 CPU by visiting www.uC0S-11.com.

13.05.03 O0STickISR()

MC/OS-I1 requires you to provide a periodic time source to keep track of time delays and timeouts. A
tick should occur between 10 and 100 times per second, or Hertz. To provide an appropriate time
source, either dedicate a hardware timer or obtain 50/60Hz from an AC power line.

You must enable ticker interrupts after multitasking has started, that is, after calling 0SStart().
Note that you really can't do this because 0SStart () never returns. However, you can and should ini-
tialize and tick interrupts in the first task that executes following a call to 0SStart(). Thistask isthe
highest priority that you create before calling 0SStart (). A common mistake is to enable ticker inter-
rupts between calling 0SInit() and 0SStart(), as shown in Listing 13.14. Thisissue is a problem
because the tick interrupt could be serviced before uC/OS-II starts the first task and, at that point,
MC/OS-1 isin an unknown state and your application can crash.

Listing 13.14 Incorrect placeto start thetick interrupt.

void main(void)

{
0SInit(); /* Initialize uC/0S-11I =)

/* Application initialization code ... o/
/* ... Create at least on task by calling OSTaskCreate() &/

308 Chapter 13: Porting uC/OS 1

Listing 13.14 Incorrect placeto start thetick interrupt.

Enable TICKER interrupts; /* DO NOT DO THIS HERE!!! &/

0SStart(); /* Start multitasking */

The pseudocode for the tick ISR is shown in Listing 13.15. This code must be written in assembly
language because you cannot access CPU registers directly from C.

Listing 13.15 Pseudocode for tick | SR.

void OSTickISR(void)
{

Save processor registers; (1)
Call OSIntEnter() or increment O0SIntNesting; (2)
if (0SIntNesting = 1) { (3)

O0STCBCur->0STCBStkPtr = Stack Pointer;
}
Clear interrupting device;
Re-enable interrupts (optional);
0STimeTick();
OSIntExit();
Restore processor registers;

~ o~ o~ o~ o~ o~
OW O N O o &~
—_ — — — — —

Execute a return from interrupt instruction;

L13.15(1) Thetick ISR (aswith any ISR) needsto save al the CPU registers onto the current task’s stack.
Of course, they need to be saved in the same order asthey are placed in 0STaskStkInit().

L13.15(2) It isassumed that interrupts are disabled at this point so you can directly increment 0SIntNesting
without fear of data corruption from another ISR. In the past, | recommended that you calle
0SIntEnter(), which handles the increment. At thetime, | wanted to encapsulate the incre-
ment in case | needed to do more processing at the beginning of the ISR. It turns out that |
added a boundary check in 0SIntEnter() to ensure tha interrupt nesting never exceeds 255
levels. If don't expect to nest this deep, you can increment 0SIntNesting without this bound-
ary check. If youwant tobesafe, smply cal 0SIntEnter (). However, caling 0SIntEnter()
adds overhead to the ISR. It's up to you to decide which way you want to implement your
port.

L13.15(3) The tick ISR then needs to check the value of 0SIntNesting, and, if it's one, you need to
save the contents of the stack pointer into the current task’s 0S_TCB. This step has been
added in v2.51, and, although it complicates the ISR dightly, it does make a port more
compiler-independent.

0S_CPU_A.ASM 309

L13.15(4) Depending on the source of the interrupt, the interrupting device might need to be cleared to
acknowledge the interrupt.

L13.15(5) You might want to re-enable interrupts at this point in order to allow higher priority interrupts
to berecognized. Thisstep isoptiona because you might not want to allow nested interrupts
because they consume stack space.

L13.15(6) 0STickISR() must call 0STimeTick(), which is responsible for maintaining pC/OS-11's
internal timers. The timers allow tasks to be suspended for a certain amount of time or allow
timeouts on PEND-type calls.

L13.15(7) Because we are done servicing this ISR, we need to call 0SIntExit(). Asyou probably
remember, 0SIntExit() determines whether a higher priority task has been made ready to
run because of this ISR. If a higher priority task is ready to run, 0SIntExit() does not
return to the interrupted task but instead performs context switch to this higher priority task.

L13.15(8) If thereis no higher priority task, then 0SIntExit () returns, and we simply restore the CPU
registers from the values stacked at the beginning of the ISR. Again, the registers must be
restored in the reverse order.

L13.15(9) 0STickISR() needs to execute a return from interrupt in order to resume execution of the
interrupted task.

13.05.04 O0SIntCtxSw()

0SIntCtxSw() is called by 0SIntExit() to perform a context switch from an ISR. Because
0SIntCtxSw() iscalled from an ISR, we assume that all the processor registers are properly saved onto
the interrupted task’s stack (see Section 13.05.03, “0OSTickISR(),").

The pseudocode for 0SIntCtxSw() is shown in Listing 13.16. This code must be written in assem-
bly language because you cannot access CPU registers directly from C. If your C compiler supports
in-line assembly, put the code for 0SIntCtxSw() in 0S_CPU_C.C instead of 0S_CPU_A.ASM. You should
note that this pseudocode isfor v2.51 (and higher) because prior to v2.51, 0SIntCtxSw() required afew
extra steps. If you have a port that was done for a version prior to v2.51, | highly recommend that you
change it to match the algorithm shown in Listing 13.16.

A lot of the codeisidentical to 0SCtxSw() except that we don’'t save the CPU registers onto the cur-
rent task because that’s already done by the ISR. In fact, you can reduce the amount of code in the port
by jumping to the appropriate section of code in 0SCtxSw() if you want. Because of the similarity
between 0SCtxSw() and 0SIntCtxSw(), after you figure out how to do 0SCtxSw(), you have automati-
cally figured out how to do 0STntCtxSw()!

Listing 13.16 Pseudocode for 0SIntCtxSw() for v2.51
and higher.

void OSIntCtxSw(void)
{
Call user-definable 0STaskSwHook();
OSTCBCur = OSTCBHighRdy;
0SPrioCur = 0SPrioHighRdy;
Get the stack pointer of the task to resume:

310 Chapter 13: Porting uC/OSH 1

Listing 13.16 Pseudocode for 0SIntCtxSw() for v2.51
and higher. (Continued)

Stack pointer = OSTCBHighRdy->0STCBStkPtr;
Restore all processor registers from the new task’s stack;
Execute a return from interrupt instruction;

Listing 13.17 shows the pseudocode for 0SIntCtxSw() for a port made for a version of uC/OS-11
prior to v2.51. You should recognize such a port because of the added two items before calling
0STaskSwHook (): L13.17(1) and L13.17(2). ISRsfor such aport also do not have the statements shown
in L13.15(3) to save the stack pointer into the 0S_TCB of the interrupted task. Therefore, 0SIntCtxSw()
had to do these operations [again, L13.17(1) and L13.17(2)]. However, because the stack pointer was
not pointing to the proper stack-frame location (when 0SIntCtxSw() starts executing, the return address
of 0SIntExit() and 0SIntCtxSw() were placed on the stack by the calls), the stack pointer needed to
be adjusted. The solution was to add an offset to the stack pointer. The value of this offset was depen-
dent on the compiler options and generated more e-mail messages than | expected or cared for. One of
these e-mail messages was from a clever individual named Nicolas Pinault who pointed out how this
stack-adjustment business could all be avoided as previously described. Because of Nicolas, p|C/OS-|
isno longer dependent on compiler options. Thanks again Nicolas!

Listing 13.17 Pseudocode for 0SIntCtxSw() prior to v2.51.

void OSIntCtxSw(void)
{
Adjust the stack pointer to remove calls to: (1)
OSIntExit();
0SIntCtxSw();
Save the current task’s stack pointer into the current task’s OS_TCB: (2)
OSTCBCur->0STCBStkPtr = Stack Pointer;
Call user-definable 0STaskSwHook();
OSTCBCur = OSTCBHighRdy;
0SPrioCur = OSPrioHighRdy;
Get the stack pointer of the task to resume:
Stack pointer = OSTCBHighRdy->0STCBStkPtr;
Restore all processor registers from the new task’s stack;
Execute a return from interrupt instruction;

13.06 Testing a Port

After you have a port of uC/OS-11 for your processor, you need to verify its operation. Thispart is prob-
ably the most complicated part of writing a port. You should test your port without application code. In
other words, test the operations of the kernel by itself. There are two reasons to do this. First, you don’t

TestingaPort 311

want to complicate things anymore than they need to be. Second, if something doesn’t work, you know
that the problem lies in the port as opposed to your application. Start with a couple of simple tasks and
the ticker interrupt service routine. After you get multitasking going, it’s quite simple to add your appli-
cation tasks.

You can use a humber of techniques to test your port depending on your level of experience with
embedded systems and processorsin general. When | write aport, | generally follow the following four
steps:

Ensure that the code compiles, assembles, and links
Verify 0STaskStkInit() and 0SStartHighRdy()
Verify 0SCtxSw()

Verify 0SIntCtxSw() and 0STickISR()

13.06.01 Ensurethat the Code Compiles, Assembles, and Links

After you complete the port, you need to compile, assemble, and link it along with the uC/OS-1I
processor-independent code. This step is obviously compiler specific, and you need to consult your
compiler documentation to determine how to do this step.
| generally set up asimple test directory, asfollows
\SOFTWARE\uUCOS-II\processor\compiler\TEST

where,
processor isthe name of the processor or microcontroller for which you have done the port.
compiler isthe name of the compiler you used.

Table 13.2 shows the directories you will need to work with, along with the files found in those direc-
tories. Inthe TEST directory, you should have at least threefiles: TEST.C, INCLUDES.H, and 0S_CFG.H.
Depending on the processor used, you might also need to have an interrupt-vector table, which |
assumed iscalled VECTORS. C, but it could certainly be called something else.

The TEST directory could also contain a MAKEFILE, which specifies compiler, assembler, and linker
directives to build your project. A MAKEFILE assumes, of course, that you use a make utility. If your
compiler provides an integrated development environment (IDE), you might not have a MAKEFILE, but
instead you could have project files specific to the IDE.

The port you did (refer to Section 13.01, “Directories and Files,”) should be found in the following
directory:

\SOFTWARE\uUCOS-II\processor\compiler

Table 13.3 Files needed to test a port.

Directory File

\SOFTWARE\NUCOS-TTI\processor\compiler\TEST TEST.C

0S_CFG.H

INCLUDES.H

VECTORS.C

MAKEFILE or IDE project file(s)
\SOFTWARE\UCOS-IT\processor\compiler 0S_CPU_A.ASM

0S_CPU_C.C

0S_CPU.H

312 Chapter 13: Porting uC/OS1

Table 13.3 Files needed to test a port.

\SOFTWARE\UCOS-IT\SOURCE 0S_CORE.C
0S_FLAG.C
0S_MBOX.C
0S_MEM.C
0S_MUTEX.C
0S_0Q.C
0S_SEM.C
0S_TASK.C
0S_TIME.C
uCoS_II.C
uCoOS_II.H

Listing 13.18 shows the contents of a typical INCLUDES.H. STRING.H is needed because
0STaskCreateExt () uses the ANSI C function memset () to initialize the stack of atask. The other
standard C header files (STDIO.H, CTYPE.H, and STDLIB.H) are not actually used by uC/OS-I1 but are
included in case your application needs them.

Listing 13.18 Typical INCLUDES.H.

fFinclude <stdio.h>
fFinclude <{string.h>
#Finclude {ctype.h>
fFinclude <stdlib.h>

fFinclude "0s_cpu.h"
JFinclude "os_cfg.h"
Finclude "ucos_ii.h"

Listing 13.19 shows the contents of 0S_CFG. H, which was set up to enable all the features of pC/OS-II.
You can find a similar file in the \SOFTWARE\uCOS-TT\EX1_x86L\BC45\SOURCE directory of the com-
panion CD so that you can useit as a starting point, instead of typing an 0S_CFG.H from scratch.

Listing 13.19 0S_CFG.H that enablesall uC/OS-I |

features.
R R ELEEEEEE MISCELLANEDUS =========szc=222z2222== */
Jkdefine OS_ARG_CHK_EN 1 /* Enable (1) or Disable (0) argument checking */
fidefine OS_CPU_HOOKS_EN 1 /* uC/0S-1I hooks are found in the processor port files */
Jidefine OS_LOWEST_PRIO 63 /* Defines the Towest priority that can be assigned ... &7

/* ... MUST NEVER be higher than 63! */

TestingaPort 313

Listing 13.19 0S_CFG.H that enablesall pC/OS-I |
features. (Continued)

Jtdefine OS_MAX_EVENTS 20 /* Max. number of event control blocks in your application ... */

/* ... MUST be > 0 */
jtdefine OS_MAX_FLAGS 10 /* Max. number of Event Flag Groups in your application ... */

/* ... MUST be > 0 */
Jdefine OS_MAX_MEM_PART 10 /* Max. number of memory partitions ... */

/* ... MUST be > 0 */
fidefine OS_MAX_QS 10 /* Max. number of queue control blocks in your application ... */

/* ... MUST be > 0O */
Jdefine OS_MAX_TASKS 63 /* Max. number of tasks in your application ... =

/* ... MUST be >= 2 */
Jtdefine OS_SCHED_LOCK_EN 1 /* Include code for 0SSchedLock() and 0SSchedUnlock() */
Jtdefine OS_TASK_IDLE_STK_SIZE 512 /* Idle task stack size (# of 0S_STK wide entries) */
Jdefine OS_TASK_STAT_EN 1 /* Enable (1) or Disable(0) the statistics task */
Jtdefine OS_TASK_STAT_STK_SIZE 512 /* Statistics task stack size (# of 0S_STK wide entries) */
Jdefine OS_TICKS_PER_SEC 200 /* Set the number of ticks in one second */

[==sccccscscscscssssssss EVENT FLAGS ======================== */
Jkdefine OS_FLAG_EN 1 /* Enable (1) or Disable (0) code generation for EVENT FLAGS */
Jdefine OS_FLAG_WAIT_CLR_EN 1 /* Include code for Wait on Clear EVENT FLAGS */
Jtdefine OS_FLAG_ACCEPT_EN 1 /* Include code for OSFlagAccept() */
Jtdefine OS_FLAG_DEL_EN 1 /* Include code for 0SFlagDel() */
Jtdefine OS_FLAG_QUERY_EN 1 /* Include code for OSFlagQuery() */

[==scsscscscccscscses MESSAGE MAILBOXES --------------------- */
Jkdefine 0S_MBOX_EN 1 /* Enable (1) or Disable (0) code generation for MAILBOXES */
Jtdefine 0S_MBOX_ACCEPT_EN 1 /* Include code for OSMboxAccept() */
Jtdefine OS_MBOX_DEL_EN 1 /* Include code for 0SMboxDel () */
Jtdefine 0S_MBOX_POST_EN 1 /* Include code for 0SMboxPost() */
Jtdefine 0S_MBOX_POST_OPT_EN 1 /* Include code for 0SMboxPostOpt() */
Jtdefine 0S_MBOX_QUERY_EN 1 /* Include code for OSMboxQuery() */

[s=sccscscscscssssssss MEMORY MANAGEMENT -------------------- */
Jdefine OS_MEM_EN 1 /* Enable (1) or Disable (0) code generation for MEMORY MANAGER */
Jtdefine OS_MEM_QUERY_EN 1 /* Include code for O0SMemQuery() */

[# s=scsss=c=sssses MUTUAL EXCLUSION SEMAPHORES --------------- */

Jdefine OS_MUTEX_EN 1 /* Enable (1) or Disable (0) code generation for MUTEX */

314 Chapter 13: Porting uC/OS 1

Listing 13.19 0S_CFG.H that enablesall pC/OS-I |
features. (Continued)

Jtdefine OS_MUTEX_ACCEPT_EN 1 /* Include code for 0SMutexAccept() */
Jtdefine OS_MUTEX_DEL_EN 1 /* Include code for 0SMutexDel() */
Jtdefine OS_MUTEX_QUERY_EN 1 /* Include code for OSMutexQuery() */

[R e MESSAGE QUEUES ---------------------- */
Jdefine 0S_Q_EN 1 /* Enable (1) or Disable (0) code generation for QUEUES */
Jtdefine 0S_Q_ACCEPT_EN 1 /* Include code for 0SQAccept() */
Jtdefine 0S_Q_DEL_EN 1 /* Include code for 0SQDel() */
Jtdefine 0S_Q_FLUSH_EN 1 /* Include code for 0SQFTush() */
Jtdefine 0S_Q_POST_EN 1 /* Include code for 0SQPost() */
Jtdefine 0S_Q_POST_FRONT_EN 1 /* Include code for 0SQPostFront() */
Jtdefine 0S_Q_POST_OPT_EN 1 /* Include code for 0SQPostOpt() */
Jtdefine 0S_Q_QUERY_EN 1 /* Include code for 0SQQuery() */

JH e SEMAPHORES ------------------------ */
Jdefine OS_SEM_EN 1 /* Enable (1) or Disable (0) code generation for SEMAPHORES */
Jtdefine OS_SEM_ACCEPT_EN 1 /* Include code for 0SSemAccept() */
Jtdefine OS_SEM_DEL_EN 1 /* Include code for 0SSemDel() */
Jtdefine OS_SEM_QUERY_EN 1 /* Include code for 0SSemQuery () */

JE e TASK MANAGEMENT ---------------------- */
Jtdefine OS_TASK_CHANGE_PRIO_EN 1 /* Include code for 0STaskChangePrio() */
Jtdefine OS_TASK_CREATE_EN 1 /* Include code for 0STaskCreate() */
Jtdefine OS_TASK_CREATE_EXT_EN 1 /* Include code for 0STaskCreateExt() */
Jtdefine OS_TASK_DEL_EN 1 /* Include code for 0STaskDel() */
Jtdefine OS_TASK_SUSPEND_EN 1 /* Include code for 0STaskSuspend() and 0STaskResume() */
Jtdefine OS_TASK_QUERY_EN 1 /* Include code for 0STaskQuery() */

JE e TIME MANAGEMENT ---------------------- */
Jtdefine OS_TIME_DLY_HMSM_EN 1 /* Include code for 0STimeD1yHMSM() */
Jtdefine OS_TIME_DLY_RESUME_EN 1 /* Include code for 0STimeDlyResume() */
Jtdefine OS_TIME_GET_SET_EN 1 /* Include code for 0STimeGet() and OSTimeSet() */
typedef INT16U 0S_FLAGS; /* Date type for event flag bits (8, 16 or 32 bits) */

Listing 13.20 shows the contents of asimple TEST. C filewith which you can start to prove your compile
process. For thisfirst step, thereisno need for any more code because all we are trying to accomplishis
abuild. At this point, it's up to you to resolve any compiler, assembler, and/or linker errors. You might
also get some warnings, and you need to determine whether the warnings are severe enough to be a
problem.

TestingaPort 315

Listing 13.20 Minimal TEST. Cfor step #1.

#Hinclude “includes.h”

void main (void)
{
0SInit();
0SStart();

13.06.02 Verify 0STaskStkInit()and 0SStartHighRdy()

After you achieve a successful build, you are actually ready to start testing your port. Asthetitle of this
section suggests, this step verifies the proper operation of 0STaskStkInit() and 0SStartHighRdy ().

Testing with a Source Level Debugger

If you have a source-level debugger, you should be able to verify this step fairly quickly. | assume you
already know how to use your debugger.

Start by modifying 0S_CFG.H to disable the statistic task by setting 0S_TASK_STAT_EN to 0. Because
your TEST. C file (see Listing 13.20) doesn’t create any application task, the only task created isthe uC/OS-1
idletask: 0S_TaskIdle(). Youwill stepinto the code until uC/OS-I1 switchesto 0S_TaskIdle().

You should load the code into the debugger and start single-stepping into main(). You should step
over the function 0SInit() and then step into the code for 0SStart() (shown in Listing 13.21). Step
through the code until you reach the call to 0SStartHighRdy () [the last statement in 0SStart ()] and
then step into the code for 0SStartHighRdy(). At this point, your debugger should switch to
assembly-language mode because 0SStartHighRdy () iswritten in assembly language. Thisisthe code
you wrote to start the first task, and, because we didn’'t create any task other than 0S_TaskIdle(),
0SStartHighRdy () should start this task.

Listing 13.21 0SStart().

void 0SStart (void)
{

INT8U y;

INT8U x;

if (OSRunning == FALSE) {

y = 0SUnMapTh1[0OSRdyGrp];
0SUnMapTb1[OSRdyTb1Ly]1];
OSPrioHighRdy = (INT8U)((y << 3) + x);
OSPrioCur 0SPrioHighRdy;

OSTCBHighRdy = OSTCBPrioTh1[0SPrioHighRdyl;

X

316 Chapter 13: Porting uC/OS 1

Listing 13.21 0SStart(). (Continued)

0STCBCur = OSTCBHighRdy;
0SStartHighRdy();

Step through your code and verify that it does what you expect. Specifically, 0SStartHighRdy ()
should start populating CPU registers in the reverse order that they were placed onto the task stack by
0STaskStkInit() (see 0S_CPU_C.C). If the order isn't correct, you most likely misaligned the stack
pointer. In this case, you must correct 0STaskStkInit() accordingly. The last instruction in
0SStartHighRdy() should be a return from interrupt, and, as soon as you execute that code, your
debugger should be positioned at the first instruction of 0S_TaskIdle(). If thisaction doesn’t happen,
you might not have placed the proper start address of the task onto the task stack, and you will most
likely have to correct this problem in 0STaskStkInit(). If your debugger ends up in 0S_TaskIdle()
and you can execute a few times through the infinite loop, you are done with this step and have succes-
fully verified 0STaskStkInit() and 0SStartHighRdy ().

Go/No Go Testing

If you don’t have access to a source-level debugger but have an LED on your target system, you can
write a Go/No Go test. Start by turning off the LED. If 0STaskStkInit() and 0SStartHighRdy()
works, the LED is turned on by the idle task. In fact, the LED is turned on and off very quickly and
appears to always be on. If you have an oscilloscope, you should be able to confirm that the LED is
blinking at a roughly 50% duty cycle.

For this test, you need to temporarily modify three files: 0S_CFG.H, 0S_CPU_C.C, and TEST.C.
In 0S_CFG.H, you need to disable the statistic task by setting 0S_TASK_STAT_ENto 0. In TEST.C, you
need to add code to turn off the LED, as shown in Listing 13.22. In 0S_CPU_C.C, you need to modify
0STaskIdleHook() to toggle the LED as shown in the pseudocode of Listing 13.23.

The next step is to load the code in your target system and run it. If the LED doesn’t toggle, you
need to find out what's wrong in either 0STaskStkInit() or 0SStartHighRdy (). With such limited
and primitive tools, the best you can do is carefully inspect your code until you find what you did
wrong!

Listing 13.22 Modifyingmain()in TEST.C.

#Hinclude “includes.h”

void main (void)
{
0SInit();
Turn OFF LED;
0SStart();

TestingaPort 317

Listing 13.23 Modifying 0STaskIdleHook()in 0S_CPU_C.C.

void 0STaskIdleHook (void)
{
if (LED is ON) { /* Toggle LED &7/
Turn OFF LED;
} else {
Turn ON LED;

13.06.03 Verify 0SCtxSw()

This step should be easy because in the previous step, we verified that the stack frame of atask is cor-
rectly initialized by 0STaskStkInit(). For thistest, we create an application task and force a context
switch back to theidle task. For this test, you need to ensure that you have correctly set up the software
interrupt or TRAP to vector to 0SCtxSw(). You'll have to determine how to do this.

Testing with a Source-Level Debugger

Start by modifying main() in TEST.C, as shown in Listing 13.24. For sake of discussion, | decided to
assume that the stack of your processor grows downwards from high to low memory and that 100
entries are sufficient stack space for the test task. Of course, you should modify this code according to
your Own processor requirements.

Listing 13.24 Testing 0SCtxSw() using a debugger.

JFinclude “Includes.h”
0S_STK TestTaskStk[100]1;

void main (void)
{

0SInit();
0STaskCreate(TestTask, (void *)0, &TestTaskStk[99], 0); (1)
0SStart();

}

void TestTask (void *pdata) (2)

{
pdata = pdata;
while (1) {
0STimeDly(1); (3)

318 Chapter 13: Porting uC/OS 1

L13.24(1) We create a high priority task. | decided to use priority level 0, but you can use anything
below 0S_LOWEST_PRIO (see 0S_CFG.H).

L13.24(2) Because we proved in Section 13.06.02, “Verify 0STaskStkInit() and
0SStartHighRdy(),” that 0SStartHighRdy() works, UC/OS-1I should start executing
TestTask() asitsfirst task instead of executing the idle task. You can step through the code
until you get to the beginning of TestTask().

L13.24(3) TestTask() enters an infinite loop that continuously calls 0STimeD1y(1). In other words,
TestTask() doesn't redly do anything except wait for time to expire. Because we didn’t
enable interrupts nor did we start the clock tick, 0STimeD1y (1) never returnsto TestTask()!

You can now step into 0STimeD1y (). 0STimeD1y () calls 0S_Sched(), and 0S_Sched() inturn cals
the assembly-language function 0SCtxSw(). In most cases, the call is accomplished through a TRAP or
software-interrupt mechanism. In other words, if you set up the software interrupt or TRAP correctly,
this instruction should cause the CPU to start executing 0SCtxSw(). You can step through the code for
0SCtxSw() and see the registers of TestTask() being saved onto its stack and the value of the registers
for 0S_TaskIdle() being loaded into the CPU. When the return from interrupt is executed (for the soft-
ware interrupt or TRAP), you should bein 0S_TaskIdle()!

If 0SCtxSw() doesn’t bring you into 0S_TaskIdle() you need to find out why and make the neces-
sary correctionsto 0SCtxSw().

Go/No Go Testing

Modify main() in TEST.C, asshownin Listing 13.25. | decided to assume that the stack of your proces-
sor grows downwards from high to low memory and that 100 entries are sufficient stack space for the
test task.

Listing 13.25 Testing 0SCtxSw() usingan LED.

JFinclude “includes.h”
0S_STK TestTaskStk[100];

void main (void)

{

0SInit();
Turn OFF LED; (1)
0STaskCreate(TestTask, (void *)0, &TestTaskStk[99]1, 0); (2)

0SStart();

TestingaPort 319

Listing 13.25 Testing 0SCtxSw() using an LED. (Continued)

void TestTask (void *pdata) (3)
{
pdata = pdata;
while (1) {
0STimeD1y(1); (4)

}

L13.25(1) You need to turn off the LED before you run the rest of the code so that if the test fails, hope-
fully the LED isturned off. | say hopefully because the processor could crash and still turn
the LED on. However, if 0SCtxSw() is written correctly, the LED should toggle very
quickly, and you can thus verify this with an oscilloscope.

L13.25(2) We create a high priority task. | decided to use priority level 0, but you can use anything
below 0S_LOWEST_PRIO (see 0S_CFG.H).

L13.25(3) Because we proved in “Verify 0STaskStkInit() and 0SStartHighRdy ()" (Section
13.06.02) that 0SStartHighRdy () works, WC/OS-11 should start executing TestTask() asits
first task instead of executing the idle task.

L13.25(4) TestTask() enters an infinite loop that continuously calls 0STimeD1y(1). In other words,
TestTask() doesn't really do anything except wait for time to expire. Because we didn’t
enable interrupts nor did we start the clock tick, 0STimeD1y (1) never returnsto TestTask()!
When 0STimeD1y (1) iscalled, acontext switch to theidletask should occur (if 0SCtxSw() is
properly written), and you should get the LED to blink very quickly. In fact, it blinks so fast
that it appears to be always on. You should verify that it blinks using an oscilloscope (if one
isavailable). If the LED is not blinking or is off, you need to find out why and make the nec-
essary correctionsto 0SCtxSw().

13.06.04 Verify 0SIntCtxSw() and OSTickISR()

This step should be easy because 0SIntCtxSw() issimilar to but simpler than 0SCtxSw(). Infact, most
of the code for 0SIntCtxSw() can be borrowed from 0SCtxSw(). For thistest, you need to set up an
interrupt vector for the clock tick ISR. We then initialize the clock tick and enable interrupts.

Start by modifying main() in TEST.C, asshown in Listing 13.26.

Listing 13.26 Testing 0SIntCtxSw() and
OSTickISR().

fHinclude “includes.h”

0S_STK TestTaskStk[100];

320 Chapter 13: Porting uC/OS 1

Listing 13.26 Testing 0SIntCtxSw() and
0STickISR(). (Continued)

void main (void)
{
0SInit();
Turn LED OFF;
Install the clock tick interrupt vector;

O0STaskCreate(TestTask, (void *)0, &TestTaskStk[99], 0);

0SStart();

void TestTask (void *pdata)
{
BOOLEAN Ted_state;

pdata = pdata;
Initialize the clock tick interrupt (i.e. timer);
Enable interrupts;
led_state = FALSE;
Turn ON LED;
while (1) {
0STimeDly(1);
if (led_state = FALSE) {
led_state = TRUE;
Turn ON LED;
} else {
led_state = FALSE;
Turn OFF LED;

(1)
(2)
(3)

(4)

(5)
(6)

(7)

(8)
(9)

TestingaPort 321

L13.26(1) Regardiess of whether you have adegugger or not, it’s useful for thistest to have accessto an
LED (or some display device). You need to turn off the LED before you run the rest of the
code.

L13.26(2) You need to install the clock-tick-interrupt vector. You need to consult your compiler or pro-
cessor documentation to determine how to perform the installation. Some processors do not
allow you to install interrupt vectors at run time (e.g., the Motorola 68HC11 assumes that
vectorsresidein ROM). Thetick interrupt needs to vector to your port’s 0STickISR().

L13.26(3) We create a high priority task. | decided to use priority level O, but you can use anything
below 0S_LOWEST_PRIO (see 0S_CFG.H).

L13.26(4) Again, because we proved in Section 13.06.02, “Verify 0STaskStkInit() and
0SStartHighRdy(),” that 0SStartHighRdy() works, PC/OS-II should start executing
TestTask() asitsfirst task.

L13.26(5) Upon entry into TestTask(), you should intiaize the device (typically atimer) to generate a
clock-tick interrupt at the desired rate. | would recommend making the tick rate 10Hz or so,
in order to be able to make the LED blink at 5Hz. Thistick rate should match what you set
0S_TICKS_PER_SECtoin OS_CFG.H.

L 13.26(6) You can now enable interrupts to allow the tick interrupt to invoke 0STickISR().
L13.26(7) Turn on the LED to show that you madeitto TestTask().

L13.26(8) Thecall to 0STimeD1y () causes a context switch to theidle task using 0SCtxSw(). Theidle
task spins until the tick interrupt is received. Thetick interrupt should invoke 0STickISR(),
which in turn calls 0STimeTick(). 0STimeTick() decrements the .0STCBD1y count of
TestTask() to 0 and makes this task ready to run. When 0STickISR() completes and cals
0SIntExit(), 0SIntExit() should notice that the more important task, TestTask(), is
ready to run. The ISR, therefore, does not return to the idle task, but instead performs a context
switch back to TestTask (). Of course, al thisassumesthat 0STntCtxSw() and 0STickISR()
are both working.

L13.26(9) If 0SIntCtxSw() doeswork, you ought to see the LED blink at 5Hz if you set the tick rate at
10Hz.

If the LED is not blinking and you are using a debugger, you can set a breakpoint in 0STickISR()
and follow what’s going on. | would aso suggest trying to run the ISR without having it call 0SIntExit().
In this case, you could simply have the ISR blink the LED (or another LED). If the LED is blinking,
then the problem iswith 0SIntCtxSw(). Again, because 0SIntCtxSw() should have been derived from
0SCtxSw(), | suspect that the problem isin the 0STickISR().

At this point, your port should work, and you can now start adding application tasks. Have fun!

322 Chapter 13: Porting uC/OS 1

0SCtxSw()

void O0SCtxSw(void)

File Called from
0S_CPU_A.ASM 0S_TASK_SW() Always needed

This function is called to perform atask-level context switch. Generaly, this function isinvoked via a
software-interrupt instruction (also called a TRAP instruction). The pseudocode for thisfunctionis

void 0SCtxSw (void)
{
Save processor registers;
Save the current task’s stack pointer into the current task’s OS_TCB:
OSTCBCur->0STCBStkPtr = Stack pointer;
0STaskSwHook () ;
OSTCBCur = OSTCBHighRdy;
0SPrioCur = OSPrioHighRdy;
Get the stack pointer of the task to resume:
Stack pointer = OSTCBHighRdy->0STCBStkPtr;
Restore all processor registers from the new task’s stack;
Execute a return from interrupt instruction;

Arguments
none

Return Values

none

Notes/Warnings
1. Interrupts are disabled when this function is called.

2. Some compilers allow you to create software interrupts (or TRAPS) directly in C, and thus you
could place this functionin 0S_CPU_C.C. In some cases, the compiler also requires that you
declare the prototype for this function differently. In this case, you can define the ffdefine con-
stant 0S_ISR_PROTO_EXT inyour INCLUDES.H, which alowsyou to delare 0SCtxSw() differently.
In other words, you are not forced to use the void 0SCtxSw(void) prototype.

Example
none

0SInitHookBegin() 323

0SInitHookBegin()
void 0SInitHookBegin(void)
File Called from Code enabledin 0S_CPU_C. Cif
0S_CPU_C.C 0SInit() 0S_CPU_HOOKS_EN — 1

Thisfunctioniscalled by 0SInit() at the very beginning of 0SInit(). Thisfunction allowsyou to per-
form CPU (or other) initialization as part of 0SInit (). For example, you caninitialize I/O devices from
0SInitHookBegin(). The function encapsulates the initialization as part of the port. In other words, it
prevents requiring that the user of pC/OS-11 know anything about such additional initialization.

Arguments
none

Return Values

none

Notes/Warnings
none

Example
none

324 Chapter 13: Porting uC/OS 1

0SInitHookEnd()

void 0SInitHookEnd(void)

File

Called from

Code enabledin 0S_CPU_C. Cif

0S_CPU_C.C

0SInit()

0S_CPU_HOOKS_EN =1

This function is called by 0SInit() at the very end of 0SInit(). This function allows you to perform
CPU (or other) initialization as part of 0SInit(). For example, you can initialize 1/O devices from
0SInitHookEnd(). The function encapsulates the initialization as part of the port. The users of

HC/OS-1, therefore, do no need to know anything about such additional initialization.

Arguments
none

Return Values

none

Notes/Warnings
none

Example
none

0SIntCtxSw() 325

0SIntCtxSw()

void O0SIntCtxSw(void)

File Called from
0S_CPU_A.ASM 0SIntExit() Always needed

This function is called from 0SIntExit() when 0SIntExit() determines that a higher priority task
must be executed because of an ISR. The pseudocode for this function is

void O0SIntCtxSw (void)
{
0STaskSwHook () ;
OSTCBCur = OSTCBHighRdy;
0SPrioCur = OSPrioHighRdy;
Get the stack pointer of the task to resume:
Stack pointer = OSTCBHighRdy->0STCBStkPtr;
Restore all processor registers from the new task’s stack;
Execute a return from interrupt instruction;

Arguments
none

Return Values

none

Notes/Warnings
1. Interrupts are disabled when this function is called.

Example
none

326 Chapter 13: Porting uC/OS 1

0SStartHighRdy ()

void 0SStartHighRdy(void)

File Called from
0S_CPU_A.ASM 0SStart() Always needed

This function is called from 0SStart () to start the highest priority task that you created before you
called 0SStart (). The pseudocode for thisfunctionis

void 0SStartHighRdy (void)
{
0STaskSwHook () ;

OSRunning = TRUE;
Get the stack pointer of the task to resume:

Stack pointer = OSTCBHighRdy->0STCBStkPtr;

Restore all processor registers from the new task's stack;
Execute a return from interrupt instruction;

}

void 0SStartHighRdy (void)

Arguments

none

Return Values
none

Notes/Warnings
1. Interrupts are disabled when this function is called.

Example

none

0STaskCreateHook() 327

0STaskCreateHook()
void 0STaskCreateHook(OS_TCB *ptcb)
File Called from Code enabledin 0S_CPU_C. Cif
0S_CPU_C.C 0STaskCreate() and 0S_CPU_HOOKS_EN =1

0STaskCreateExt()

Thisfunction is called whenever atask is created, after a TCB has been allocated and initialized and after
the stack frame of the task isinitialized. 0STaskCreateHook () alows you to extend the functionality
of the task-creation function with your own features. For example, you can initialize and store the con-
tents of floating-point registers, MMU registers, or anything else that can be associated with atask. Typi-
cally, you store this additional information in memory allocated by your application. You should note that
0STaskCreateHook () iscaled immediately after another hook function called 0STCBInitHook(). In
other words, either of these functions can be used to initialize the TCB. However, you ought to use
0STCBInitHook() for TCB-related items and 0STaskCreateHook() for other task-related items. You
could also use 0STaskCreateHook () to trigger an oscilloscope or alogic analyzer or to set a breakpoint.

Arguments
ptch isapointer to the TCB of the task created.

Return Values

none

Notes/Warnings

1. Interrupts are enabled when this function is called. You, therefore, might need to call
OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() to protect critical sectionsinside
0STaskCreateHook ().

Example

This example assumes that you have created a task using 0STaskCreateExt () because the function
expects to have the .0STCBExtPtr field in the task’s 0S_TCB contain a pointer to storage for float-
ing-point registers.

void OSTaskCreateHook (OS_TCB *ptch)
{

if (ptcb->0STCBExtPtr != (void *)0) {
/* Save contents of floating-point registers in .. */
/* .. the TCB extension &/

328 Chapter 13: Porting uC/OS 1

0STaskDeTHook()

void 0STaskDelHook(0S_TCB *ptch)

File Called from Codeenabledin 0S_CPU_C.Cif
0S_CPU_C.C 0STaskDel () 0S_CPU_HOOKS_EN —

Thisfunction is called whenever you delete atask by calling 0STaskDe1 (). You can dispose of memory
you have allocated through the task-create hook, 0STaskCreateHook(). 0STaskDelHook() is called
just before the TCB is removed from the TCB chain. You can also use 0STaskCreateHook () to trigger
an oscilloscope or alogic analyzer or to set a breakpoint.

Arguments

ptch isapointer to the TCB of the task being deleted.

Return Values

none

Notes/Warnings
1. Interrupts are disabled when thisfunction is called. You, therefore, should keep the code in this func-
tion to aminimum because it directly affects interrupt latency.

Example

void 0STaskDelHook (OS_TCB *ptch)
{
/* Output signal to trigger an oscilloscope)

0STaskIdleHook()

void 0STaskIdleHook(void)

0STaskIdleHook() 329

File Called from

Code enabledin 0S_CPU_C. Cif

0S_CPU_C.C 0S_TaskIdle()

0S_CPU_HOOKS_EN =

This function is called by the idle task [0S_TaskIdle()

] when no other higher priority task is ready to

run. 0STaskIdleHook () can be used to force the CPU in low-power mode for battery-operated products
to conserve energy when none of your tasks need to be serviced.

Arguments
none

Return Values

none

Notes/Warnings

1. 0STaskIdleHook() is called with interrupts enabled.

Example

void 0STaskIdleHook (void)
{
/* Put the CPU in Tow power mode.

*/

330 Chapter 13: Porting uC/OSH1

0STaskStatHook()

void 0STaskStatHook(void)

File

Called from

Code enabledin 0S_CPU_C. Cif

0S_CPU_C.C

0S_TaskStat()

0S_CPU_HOOKS_EN =

This function is called every second by uC/OS-1I's statistic task. 0STaskStatHook () alows you to add

your own statistics.

Arguments

none

Return Values

none

Notes/Warnings

1. Thestatistic task starts executing about five seconds after calling 0SStart (). Note that this function
isnot called if either 0S_TASK_STAT_EN or 0S_TASK_CREATE_EXT_ENissettoO.

Example

void 0STaskStatHook (void)

{

/* Compute the total execution time of all the tasks =Y
/* Compute the percentage of execution of each task &/

0STaskStkInit() 331

0STaskStkInit()

0S_STK *0STaskStkInit(void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT16U opt);

File Called from
0S_CPU_C.C OSTaskCreate() or0STaskCreateExt() Always needed

This function is called by either 0STaskCreate() or 0STaskCreateExt() to initialize the stack frame
of atask. Generally speaking, the stack frame is madeto look asif aninterrupt hasjust occurred and all
the CPU registers have been saved onto it. The pseudocode for this function is

0S_STK *0STaskStkInit (void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT16U opt);

Simulate call to function with an argument (i.e. pdata);

Simulate ISR vector;

Setup stack frame to contain desired initial values of all registers;
Return new top-of-stack pointer to caller;

Arguments
task is a pointer to the task code (i.e., the address of the function that you want to declare as a
task).

pdata is a pointer to a user-supplied data area that is be passed to the task when the task first exe-
cutes. Sometimes, the compiler will pass pdata into registers while other compilers will pass
pdata on the stack. You will need to consult your compiler documentation for the actual
method used.

ptos is a pointer to the top of the stack. It is assumed that ptos points to a free entry on the task
stack. If 0S_STK_GROWTH is set to 1, then ptos contains the highest valid address of the
stack. Similarly, if 0S_STK_GROWTH isset to O, ptos contains the lowest valid address of the
stack.

opt specifies options that can be used to alter the behavior of 0STaskStkInit(). See uCOS_IT.H
for OS_TASK_OPT_?77.

Return Values
A pointer to the new top-of-stack.

332 Chapter 13: Porting uC/OS 1

Notes/Warnings
1. Interrupts are enabled when this function is called.

Example
none

0STaskSwHook() 333

0STaskSwHook ()

void 0STaskSwHook(void)

File Called from Codeenabledin 0S_CPU_C.Cif
0S_CPU_C.C 0SCtxSw() and 0SINtCtxSw() 0S_CPU_HOOKS_EN —

This function is called whenever a context switch is performed. The global variable 0STCBHighRdy
points to the TCB of the task that gets the CPU, and 0STCBCur points to the TCB of the task being
switched out. 0STaskSwHook () is called just after saving the task’s registers and after saving the stack
pointer into the current task’s TCB. You can use this function to save/restore the contents of float-
ing-point registers or MMU registers, to keep track of task-execution time and of how many times the
task has been switched in, and more. 0STaskSwHook() is also called by 0SStartHighRdy(). You,
therefore, need to verify the flag 0SRunning in 0STaskSwHook (), so you don’t perform any action as
you would when atask is switched out (see the example).

Arguments
none

Return Values

none

Notes/Warnings

1. Interrupts are disabled when thisfunction is called. You, therefore, should keep the code in this func-
tion to aminimum because it directly affects interrupt latency.

Example

void OSTaskSwHook (void)
{
if (OSRunning = TRUE) {
/* Save floating-point registers in current task’s TCB ext. */
}
/* Restore floating-point registers from new task’s TCB ext. &

334 Chapter 13: Porting uC/OS 1

OSTCBInitHook()

void OSTCBInitHook(OS_TCB *ptch)

File Called from Codeenabledin 0S_CPU_C. Cif
0S_CPU_C.C 0S_TCBINit() 0S_CPU_HOOKS_EN — 1

This function is called whenever atask is created, after a TCB has been allocated and initialized and
when the stack frame of the task isinitialized. 0STCBInitHook () allowsyou to extend the functionality
of the TCB-creation function with your own features. For example, you can initialize and store the con-
tents of floating-point registers, MMU registers, or anything else that can be associated with atask. Typ-
ically, you store this additional information in memory allocated by your application. You should note
that 0STCBInitHook() is called immediately before 0STaskCreateHook(). In other words, either of
these functions can be used to initialize the TCB. However, you ought to use 0STCBInitHook() for
TCB-related items and 0STaskCreateHook () for other task-related items.

Arguments
ptch isapointer to the TCB of the task created.

Return Values

none

Notes/Warnings

1. Interrupts are enabled when this function is called. You, therefore, might need to call
OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() to protect critical sectionsinside
0STCBInitHook().

Example

This example assumes that you have created a task using 0STaskCreateExt () because the function
expects to have the .0STCBExtPtr field in the task’s 0S_TCB contain a pointer to storage for float-
ing-point registers.

void OSTCBInitHook (OS_TCB *ptch)
{
if (ptcb->0STCBEXtPtr != (void *)0) {
/* Save contents of floating-point registers in .. */
/* .. the TCB extension Y

0STickISR() 335

O0STickISR()

void 0OSTickISR(void)

File Called from
0S_CPU_A.ASM Tick Interrupt Always needed

When atick interrupt occurs, the CPU needs to vector to this ISR. The pseudocode for the ISR is

Void OSTickISR (void)
{
Save processor registers;
Call OSIntEnter() or increment OSIntNesting;
if (0SIntNesting = 1) {
O0STCBCur->0STCBStkPtr = Stack Pointer;
}
Clear interrupting device;
Re-enable interrupts (optional);
0STimeTick();
0SIntExit();
Restore processor registers;
Execute a return from interrupt instruction;

Arguments

none

Return Values
none

Notes/Warnings

1. Theinterrupting device that causes the call to 0STickISR() should generally be set up to generate
an interrupt every 10 to 100ms.

2. Some compilers allow you to create ISRs directly in C, and thus you could place this function in
0S_CPU_C.C. Insome cases, the compiler also requires that you declare the prototype for this func-
tion differently. In this case, you can define the Jtdefine constant 0S_ISR_PROTO_EXT in your
INCLUDES . H, which allows you to delare 0STickISR() differently. In other words, you are not
forced to use the void 0STickISR(void) prototype.

Example
none

336 Chapter 13: Porting uC/OS 1

0STimeTickHook()

void 0STimeTickHook(void)

File

Called from

Code enabledin 0S_CPU_C. Cif

0S_CPU_C.C

0STimeTick()

0S_CPU_HOOKS_EN =

This function is called by 0STimeTick(), which in turn is called whenever a clock tick occurs.
0STimeTickHook() is called immediately upon entering OSTimeTick() and alows execution of
time-critical code in your application. You can also use this function to trigger an oscilloscope for
debugging, trigger alogic analyzer, or establish a breakpoint for an emulator.

Arguments

none

Return Values

none

Notes/Warnings

1. 0STimeTick() isgenerally called by an ISR, so the execution time of thetick ISR isincreased by
the code you provide in this function. Interrupts might or might not be enabled when
0STimeTickHook() is called, depending on how the processor port has been implemented. If inter-
rupts are disabled, this function affects interrupt latency.

Example

void OSTimeTickHook (void)

{

/* Trigger an oscilloscope

*/

Chapter 14

80x86 Port

Real Mode, Large Model
with Emulated Floating-Point Support

This chapter describes how UC/OS-11 has been ported to the Intel 80x86 series of processors running in
real mode, large model for the Borland C++ v4.51 tools. This port assumes that your application does
not do any floating-point math, or, if it does, it uses the Borland Floating-Point Emulation library. In
other words, | assume that you are using this port with embedded 80186, 80286, 80386, or even plain
8086 class processors that rely only on integer math. This port can also be adapted (i.e., changed) to run
plain 8086 processors but requires that you replace the use of the PUSHA/POPA instructions with the
proper number of PUSH/POP instructions.

The Intel 80x86 series includes the 80186, 80286, 80386, 80486, Pentiums™ (all models), and Cel-
eron, as well most 80x86 processors from AMD, NEC (V-series), and others. Literally millions of
80x86 CPUs are sold each year. Most of these end up in desktop computers, but a growing number of
processors are making their way into embedded systems. It’s predicted that we will see 10GHz proces-
sors by 2005.

Most C compilers that support 80x86 processors running in real mode offer different memory mod-
els, each suited for a different program and data size. Each model uses memory differently. The large
model allows your application (code and data) to reside in a IMB memory space. Pointers in this model
require 32 bits, although they only address up to IMB. The next section shows why a 32-bit pointer in
this model can only address 20 bits worth of memory.

Figure 14.1 shows the programming model of an 80x86 processor running in real mode. All registers
are 16-bits wide, and they all need to be saved during a context switch. As can be seen, there are no
floating-point registers because these are emulated by the Borland compiler library using the integer
registers.

The 80x86 provides a clever mechanism to access up to IMB of memory with its 16-bit registers.
Memory addressing relies on using a segment and an offset register. Physical-address calculation is
done by shifting a segment register by four (multiplying it by 16) and adding one of five other registers

337

338 Chapter 14: 80x86 Port

(BP, SP,SI, DI, or IP). Theresult isa20-bit address that can access up to 1IMB Figure 14.2 shows how
the registers are combined. Each segment points to ablock of 16 memory locations called a paragraph.
A 16-hit segment register can point to any of 65,536 different paragraphs of 16 bytes and thus can
address 1,048,576 bytes. Because the offset is also 16 hits, a single segment of code cannot exceed
64K B. In practice, however, programs are made up of many smaller segments.

Figure14.1 80x86 real-mode register model.

15 0

AX AH AL
BX BH BL .
General-Purpose Registers
CX CH cL
DX DH DL
15 0
BP)
Pointers
SP
15 0
Sl)
ol Index Registers
15 0
P | | Instruction Pointer
sSw | | | or|or| e |tr|sF|ze| |af| [Pl [cf| Status Word

15 0

Cs

SS

Segment Registers
DS g g

ES

Figure14.2 Addressing with a segment and an offset register.

15 0
XXXX | XXXX | XXXX | XXXX | 0000 Segment Register
15 0
+ 0000 | XXXX | XXXX | XXxX | xxxx | Offset (Register)

20 0
XXXX | XxXX | xxxx | xxxx | xxxx | Physical Address

Development Tools 339

The code segment register (CS) points to the base of the program currently executing. The stack seg-
ment register (SS) points to the base of the stack. The data segment register (DS) points to the base of
one data area. The extra segment register (ES) points to the base of another area where data can be
stored. Each time the CPU needs to generate a memory address, one of the segment registers is automat-
ically chosen, and its contents are added to an offset register. It is common to find the seg-
ment-colon-offset notation in literature in order to reference a memory location. For example,
1000:00FF represents physical memory location 0x100FF.

14.00 Development Tools

| used the Borland C/C++ v4.51 compiler, along with the Borland Turbo Assembler, to port and test the
80x86 port. This compiler generates reentrant code and provides in-line assembly language instructions
that can be inserted in C code. The compiler comes with a floating-point emulation library that simu-
|ates the floating-point hardware found on 80x86 processors that are equipped with floating-point hard-
ware. Once compiled, the code is executed on a PC. | tested the code on a 300MHz Pentium-11-based
computer running the Microsoft Windows 2000 operating system. In fact, | configured the compiler to
generate a DOS executable, which was run in a DOS window.

I thought of changing compilers because some readers have complained that they can’t find the Bor-
land tools anymore, which makesit harder to build the example code provided in this book. It turns out
that a similar compiler and assembler that can compile the example code is available from Borland for
only $70 USD (circa2002). Borland calsit the Turbo C++ Suite for DOS, and you can order a copy by
visiting the Borland Web site at www.BorTand. com and following the links to this product.

You can also get professional 80x86-level tools from Paradigm (www.DevTools.com) that contain
not only a Borland-compatible compiler and assembler but also an IDE, a utility that allows you to
locate your code for deployment in embedded systems, a source-level debugger, and more. Paradigm
callstheir package, the Paradigm C++ Professional Real.

Finally, you can also adapt the port provided in this chapter to other 80x86 compilers aslong as they
generate real-mode code. You will most likely have to change some of the compiler options and assem-
bler directivesif you use a different development environment.

Table 14.1 shows the Borland C/C++ compiler v4.51 options (i.e., flags) supplied on the command
line. These settings are used to compile the port, as well as the example code provided in Chapter 1.

Table 14.1 Compiler options used to compile port and

examples.
Option (i.e., Setting) Description
-1 Generate 80186 code
-B Compile and call assembler
-C Compiler to . 0BJ
-G Select code for speed
! Path to compiler include filesis C: \BC45\INCLUDE
-k- Standard stack frame

-L Path to compiler librariesis C: \BC45\LIB

340 Chapter 14: 80x86 Port

Table 14.1 Compiler options used to compile port and
examples. (Continued)

-ml

-n..\obj

-0b
-0e
*Og
-01
-01
-0m
*Op
-Qv
-V
-vi
-Wpro
-7

Large-memory model

Do not check for stack overflow

Path where to place object filesis . . \0BJ
Optimize jJumps

Dead code elimination

Global register alocation

Optimize globally

Expand common intrinsic functionsin-line
L oop optimization

Invariant code motion

Copy propagation

Induction variable

Source debugging on

Turn in-line expansion on

Error reporting: call to functions with no prototype
Suppress redundant loads

Table 14.2 shows the Borland Turbo Assembler v4.0 options (i.e., flags) supplied on the command
line. These settings are used to assemble the port’s 0S_CPU_A. ASM.

Table 14.2 Assembler options used to assemble . ASMfiles.

Option (i.e., Setting)
/MX
/71
/0

Description

Case sensitive on globals
Full debugging info
Generate overlay code

14.01 Directories and Files

Theinstallation program provided on the companion CD installs the port for the Intel 80x86 (real mode,
large model) on your hard disk. The port is found under the \SOFTWARE\UCOS-TT\Ix86L\BC45 direc-
tory. The directory name stands for Intel 80x86 real mode, L arge model and is placed in the Bor-
land C++ v4.5x directory. The source code for the port is found in the following files: 0S_CPU.H,
0S_CPU_C.C, and OS_CPU_A.ASM.

INCLUDES.H 341

14.02 INCLUDES.H

INCLUDES.H isamaster include file and is found at the top of al .C files. INCLUDES.H allows every .C
file in your project to be written without concern about which header file is actualy needed. The only
drawbacks to having a master include file are that INCLUDES.H might include header files that are not
pertinent to the actual . C file being compiled and that the compilation process might take longer. These
inconveniences are offset by code portability. You can edit INCLUDES. H to add your own header files, but
your header files should be added at the end of the list. Listing 14.1 shows the contents of INCLUDES.H
for the 80x86 port.

INCLUDES.H is not really part of the port but is described here because it is needed to compile the
port files.

Listing14.1 INCLUDES.H.

fFinclude <stdio.h>
fFinclude <string.h>
JFinclude <{ctype.h>
fFinclude <stdlib.h>
fFinclude <conio.h>
fFinclude <dos.h>

fFinclude <math.h>

#Finclude <setjmp.h>

fFinclude "os_cpu.h"
{Hinclude "os_cfg.h"
fFinclude "ucos_ii.h"
fFinclude "pc.h"

14.03 0S_CPU.H

0S_CPU.H contains processor- and implementation-specific #idefines constants, macros, and typedefs.
0S_CPU.H for the 80x86 port is shown in Listing 14.2.

0S_CPU_GLOBALS and 0S_CPU_EXT alows you to declare global variablesthat are specific to this port
(described later).

Listing14.2 0S_CPU.H.

fifdef OS_CPU_GLOBALS
ffdefine OS_CPU_EXT

frelse

Jfdefine OS_CPU_EXT extern
frendif

342 Chapter 14: 80x86 Port

Listing14.2 0S_CPU. H. (Continued)

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

typedef
typedef

fidefine
fHdefine
ffdefine
fidefine
fHdefine
ffdefine

14.03.01
L14.2(1)

L14.2(2)
L14.2(3)

L14.2(4)

L14.2(5)

unsigned char BOOLEAN; (1)
unsigned char INT8U;
signed char INT8S;
unsigned int INT16U;
signed int INT16S;
unsigned long INT32U;
signed long INT32S;

float FP32; (2)
doubTe FP64;

unsigned int 0S_STK; (3)
unsigned short 0S_CPU_SR; (4)
BYTE INT8S (5)
UBYTE INT8U

WORD INT16S

UWORD INT16U

LONG INT32S

ULONG INT32U

0S_CPU. H, Data Types

If you consult the Borland compiler documentation, you find that an int is 16 bits and a

Tong is 32 bits.

Floating-point data types are included even though pC/OS-11 doesn't make use of float-
ing-point numbers.

A stack entry for the 80x86 processor running in real mode is 16-bits wide; thus, 0S_STK is
declared accordingly. All task stacks must be declared using 0S_STK as the data type.

The status register (also called the processor flags) on the 80x86 processor running in rea
modeis 16-bitswide. The 0S_CPU_SR datatypeisused only if 0S_CRITICAL_METHOD is set
to 3, which it isn’t for this port. | included the 0S_CPU_SR data type anyway, in case you
use a different compiler and need to use 0S_CRITICAL_METHOD #£3.

| aso included data types to allow for backward compatibility with older pC/OS v1.xx
applications. These are not necessary if you don't have any applications written with
MC/OS v1.xx (you can simply delete these lines).

14.03.02

0S crPU.H 343

0S_CPU.H, OS_ENTER_CRITICAL(),and OS_EXIT_CRITICAL()

Listing14.2 0S_CPU.H (Continued)

fidefine OS_CRITICAL_METHOD 2 (6)
fHif OS_CRITICAL_METHOD = 1
Jfdefine OS_ENTER _CRITICAL() asm CLI (7)
fidefine OS_EXIT_CRITICAL() asm STI
ffendif
i f OS_CRITICAL_METHOD = 2
fidefine OS_ENTER_CRITICAL() asm {PUSHF; CLI} (8)
fidefine OS_EXIT_CRITICAL() asm POPF
frendif
fHi f OS_CRITICAL_METHOD = 3
fidefine OS_ENTER_CRITICAL() (cpu_sr = OSCPUSaveSR()) (9)
fidefine OS_EXIT_CRITICAL() (OSCPURestoreSR(cpu_sr))
Jfendif
fHif OS_CRITICAL_METHOD = 3 (10)
0S_CPU_SR 0SCPUSaveSR(void);
void 0SCPURestoreSR(OS_CPU_SR cpu_sr);
ffendif
L14.2(6) uC/OS-I, as with all real-time kernels, needs to disable interrupts in order to access
critical sections of code and re-enable interrupts when done. Because the Borland com-
piler supports in-line assembly language, it's quite easy to specify the instructions to
disable and enable interrupts. uC/OS-11 defines two macros to disable and enable inter-
rupts: OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively. | actually
allow you to use one of three methods for disabling and enabling interrupts. For this
port, the preferred one is the second method because it’s directly supported by the com-
piler.
OS_CRITICAL_METHOD = 1
L14.2(7) The first and simplest way to implement these two macros is to invoke the processor
instruction to disable interrupts (CLI) for OS_ENTER_CRITICAL() and to enable interrupts
(STI) for OS_EXIT_CRITICAL().
OS_CRITICAL_METHOD = 2
L14.2(8) The second way to implement OS_ENTER_CRITICAL() isto save the interrupt-disable status

onto the stack and then disable interrupts. This action is accomplished on the 80x86 by exe-
cuting the PUSHF instruction, followed by the CLT instruction. 0S_EXIT_CRITICAL() sim-
ply needs to execute a POPF instruction to restore the original contents of the processor’s SW
register.

OS_CRITICAL_METHOD = 3

14

344 Chapter 14: 80x86 Port

L14.2(9) Thethird way toimplement 0S_ENTER_CRITICAL() isto write afunction that savesthe sta-
tus register of the CPU in a variable. 0S_EXIT_CRITICAL() invokes another function to
restore the status register from the variable. | didn’t include this codein the port, but, if you
are familiar with assembly language, you should be able to write this easily.

L14.2(10) | recommend that you call the functions expected in 0S_ENTER_CRITICAL() and
OS_EXIT_CRITICAL(): 0SCPUSaveSR() and 0SCPURestoreSR(), respectively. You would
declare the code for these two functionsin 0S_CPU_A. ASM.

14.03.03 0S_CPU. H, Stack Growth

L14.2(11) The stack on an 80x86 processor grows from high to low memory, which means that
0S_STK_GROWTH must be set to 1.

Listing14.2 0S_CPU.H (Continued)
ffdefine 0S_STK_GROWTH 1 (11)

14.03.04 0S_CPU.H, OS_TASK_SW()

Listing14.2 0S_CPU.H (Continued)
Jidefine uC0OS 0x80 (12)

jidefine OS_TASK_SW() asm INT uCOS (13)

L14.2(13) To switch context, 0S_TASK_SW() needs to simulate an interrupt. The 80x86 provides
256 software interrupts to accomplish this. The interrupt service routine (ISR) (also
called the exception handler) must vector to the assembly-language function 0SCtxSw()
(see 0S_CPU_A.ASM). We thus need to ensure that the pointer at vector 0x80 points to
0SCtxSw().

L14.2(12) | tested the code on aPC, and | decided to use interrupt number 128 (0x80) because | found
it to be available. Actualy, the original PC used interrupts 0x80 through 0xFO for the
BASIC interpreter. Few, if any PCs, come with a BASIC interpreter built in anymore, so it
should be safe to use these vectors. Optionally, you can also use vectors 0x4B to 0x58, 0x5D
to 0x66, or 0x68 to 0x6F. If you use this port on an embedded processor, such as the 80186,
you are most likely not as restricted in your choice of vectors.

14.03.05 0S_CPU.H, Tick Rate

The tick rate for an RTOS should generally be set between 10 and 100Hz. It is always preferable (but

not necessary) to set the tick rate to a round number. Unfortunately, on the PC, the defaullt tick rate is

18.20648Hz, which is not what | would call a nice, round number. For this port, | decided to change the

tick rate of the PC from the standard 18.20648Hz to 200Hz (i.e., 5ms between ticks). There are three

reasons to do this:

1. 200Hz happensto be amost exactly 11 times faster than 18.20648Hz. The port needsto chain into
DOS once every 11 ticks. In DOS, thetick handler isresponsible for some system maintenance that
is expected to happen every 54.93ms.

0S _cpU_Cc.c 345

2. It'suseful to have a’5.00ms-time resolution for time delays and timeouts. If you are running the
example code on an 80386 PC, you might find the overhead of a 200Hz tick rate unacceptable. How-
ever, on today’s fast Pentium-class processors, a 200Hz tick rate is not likely to be a problem.

3. Evenif it's possible to change the tick rate on a PC to be exactly 20Hz or even 100Hz, it would be
difficult to chain into the DOS-tick handler at exactly 18.20648Hz. That'swhy | chose an exact
multiple and thus had to choose 200Hz. Of course, | could also have used 22 as a multiple and
would have obtained 400Hz (2.5ms). On afast PC, you should have no problems running at thistick
rate or even faster.

Listing14.2 0S_CPU.H (Continued)
0S_CPU_EXT INT8U OSTickDOSCtr; (14)
L14.2(14) This statement declares an 8-bit variable (0STickDOSCtr) that keeps track of the number of
timestheticker iscalled. Every 11th time, the DOS-tick handler iscalled. 0STickDOSCtr is
used in 0S_CPU_A.ASM and really only appliesto a PC environment. You most likely would

not use this scheme if you designed an embedded system around a non-PC architecture,
because you would set the tick rate to the proper value in the first place.

14.03.06 0S_CPU. H, Floating-Point Emulation

As previously mentioned, the Borland compiler provides a floating-point emulation library. However,
thislibrary is non-reentrant.

Listing14.2 0S_CPU.H (Continued)
void 0STaskStkInit_FPE_x86(0S_STK **pptos, O0S_STK **ppbos, INT32U *psize); (15)
L14.2(15) A function has been added to allow you to pre-condition the stack of atask in order to make

the Borland library think it only has one task and thus make the library reentrant. This func-
tion will be discussed in Section 14.04.02, “0STaskStkInit_FPE_x86()".

14.04 0S_CPU_C.C

A UC/OS-I port requires that you write ten fairly simple C functions:

0STaskStkInit() 0STaskStatHook()
0STaskCreateHook() 0STimeTickHook ()
0STaskDeTHook () 0SInitHookBegin()

0STaskSwHook () 0SInitHookEnd() 14
0STaskIdleHook() 0STCBInitHook()

UC/OS-I1 only requires 0STaskStkInit(). The other nine functions must be declared but don’t need to
contain any code. In the case of this port, | did just that. The ffdefine constant 0S_CPU_HOOKS_EN (see
0S_CFG.H) should be set to 1.

346 Chapter 14: 80x86 Port

140401 OSTaskStkInit()

This function is called by 0STaskCreate() and 0STaskCreateExt() to initialize the stack frame of a
task so that it looks asif an interrupt has just occurred and that all processor registers have been pushed
onto it. Figure 14.3 showswhat 0STaskStkInit() putson the stack of the task being created. Note that
the diagram doesn’t show the stack frame of the code calling 0STaskStkInit() but rather the stack
frame of the task being created.

Figure14.3 Stack frameinitialization with pdata passed
on the stack.

LOW MEMORY

SimulatePUSH DS ~ —-——-—-- DS = Current DS 4—— Top-of-stack
SimulatePUSH ES -===-- ES = 0x4444
DI = 0x3333
S| = 0x2222
BP = 0x1111
Simulate PUSHA SP_= 0x0000
BX = 0xBBBB
DX = 0xDDDD
CX = 0xCCccC
> AX = OxAAAA Stack Growth
COFF task
Simulate Interrupt === SEG t ask
> PSW = 0x0202
OFF task
. SEG t ask
Simulate call to task OFF odat a
§ SEG pdat a 4—— Ptos

HIGH MEMORY

When you create a task, you pass the start address of the task (task), a pointer (pdata), the task’s
top-of-stack (ptos), and the task’'s priority (prio) to OSTaskCreate() or OSTaskCreateExt().
O0STaskCreatefExt() requires additional arguments, but these are irrelevant in discussing

0S crpU_c.c 347

0STaskStkInit(). To properly initialize the stack frame, 0STaskStkInit() (Listing 14.3) requires
only the first three arguments just mentioned (i.e., task, pdata, and ptos).

Listing14.3 0S_CPU_C.C, 0STaskStkInit().

0S_STK *0STaskStkInit (void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT16U opt)

INTI6U *stk;

opt = opt;

stk = (INT16U *)ptos; (1)
*stk-- = (INT16U)FP_SEG(pdata); (2)
*stk-- = (INT16U)FP_OFF(pdata);

*stk-- = (INT16U)FP_SEG(task); (3)
*stk-- = (INT16U)FP_OFF(task);

*stk-- = (INT16U)0x0202; (4)

*stk-- = (INT16U)FP_SEG(task);

*stk-- = (INT16U)FP_OFF(task);

*stk-- = (INT16U)OxXAAAA; (5)
*stk-- = (INT16U)0xCCCC;

*stk-- = (INT16U)0xDDDD;

*stk-- = (INT16U)OxBBBB;

*stk-- = (INT16U)0x0000;

*stk-- = (INT16U)0x1111;

*stk-- = (INT16U)0x2222;

*stk-- = (INT16U)0x3333;

*stk-- = (INT16U)0x4444;

*stk _DS; (6)
return ((0S_STK *)stk); (7)

L14.3(1) 0STaskStkInit() creates and initializes a local pointer to 16-bit elements because stack
entries are 16-bits wide on the 80x86. Note that pC/OS-I1 requires that the pointer ptos
points to an empty stack entry.

L14.3(2) The Borland C compiler passes the argument pdata on the stack instead of registers.
Therefore, pdata is placed on the stack frame with the offset register and segment in the
order shown.

348 Chapter 14: 80x86 Port

L14.3(3)

L14.3(4)

L14.3(5)

L14.3(6)

L14.3(7)

The address of your task is placed on the stack next. In theory, this address should be the
return address of your task. However, in uC/OS-11, a task must never return, so what is
placed hereis not really critical.

The status word (SW) and the task address are placed on the stack to simulate the behavior
of the processor in response to an interrupt. The SW register isinitialized to 0x0202, which
allows the task to have interrupts enabled when it starts. You can in fact start al your tasks
with interrupts disabled by forcing SW to 0x0002 instead. uC/OS-I1 contains no options to
selectively enable interrupts upon startup for some tasks and disable interrupts upon task
startup for others. In other words, either all tasks have interrupts disabled upon startup or
all tasks have them disabled. You could, however, overcome this limitation by passing the
desired interrupt-startup state of atask by using the pdata or the opt arguments for tasks
created with 0STaskCreateExt (). However, the latter is not currently implemented. If you
chose to have interrupts disabled, each task needs to enable them when they execute. In this
case, you also have to modify the code for 0S_TaskIdle() and 0S_TaskStat() to enable
interrupts in those functions. If you don't, your application crashes! | thus recommend that
you leave SW initialized to 0x0202 and have interrupts enabled when the task starts.

The remaining registers are placed on the stack to simulate the PUSHA, PUSH ES, and PUSH
DS instructions, which are assumed to be found at the beginning of every ISR. Note that the
AX, BX, CX, DX, SP, BP, SI, and DI registers are placed to satisfy the order of the PUSHA
instruction. If you port this code to a‘plain’ 8086 processor, you may want to simulate the
PUSHA instruction or place the registersin aneater order. You should al so note that each reg-
ister has a unique value instead of all zeros, which is useful for debugging.

Also, the Borland compiler supports pseudo-registers (i.e., the _DS keyword notifies the
compiler to obtain the value of the DS register), which in this case is used to copy the cur-
rent value of the DS register to the simulated stack frame.

After the task is completed, 0STaskStkInit() returns the address of the new
top-of-stack. 0STaskCreate() or 0STaskCreateExt() takes this address and saves it in
the task’s 0S_TCB.

140402 O0STaskStkInit FPE x86()

When floating-point emulation is enabled (see the Borland documentation), the stack of the
Borland-compiled program is organized as shown in Figure 14.3. The compiler assumes that the appli-
cation runsin asingle-threaded (i.e., tasking) environment.

0S cpU_Cc.c 349

Figure14.4 Borland floating-point emulation stack.

High Memory
On the 80x86, the stack

grows from High-to-Low
/_ memory addresses.

&TaskStk[TASK_STK_SIZE-1] ——
DS:SP —»

DS:0000 —»

7

SS:0000 —»
\ The bottom of the stack is used

by the floating-point emulation
library.

Low Memory

The Borland C Foating-Point Emulation (FPE) library assumes that about 300 bytes starting at
SS:0x0000 are reserved to hold floating-point emulation variables. Asfar as| can tell, thisinformation
applies to the large-memory model only. To accommodate this feature, a special function
[0STaskStkInit_FPE_x86()] must be called prior to calling either 0STaskCreate() or
0STaskCreateExt () in order to properly initialize the stack frame of each task that needs to perform
floating-point operations. This function applies to Borland v3.x and v4.5x compilers, and thus
0STaskStkInit_FPE_x86() ismost likely not included in aport using a different compiler.

The floating-point emulation library stores its data within the reserved space in relation to the cur-
rent SS register value, assuming that some space starting from SS up (from SS:0x0000 up) is reserved
for floating-point operations.

HCOS-II’s task stacks are generally allocated statically as shown

0S_STK TaskIStk[TASK_STK_SIZE]; /* stack table for task 1 */
0S_TSK Task2Stk[TASK_STK_SIZE]; /* stack table for task 2 */

When atask is created by uCOSH1, the highest-table address of the stack is passed to 0STaskCreate()
(or 0STaskCreateExt()) asshown

0STaskCreate(Taskl, (void*)0, &TaskI1Stk[TASK_STK SIZE-11, priol);
0STaskCreate(Task2, (void*)0, &Task2Stk[TASK_STK_SIZE-1], prio2);

The stack of Task1 () startsat DS:&Task1Stk[TASK_STK_SIZE-1] whilethe stack of Task2() starts
at DS:&Task2Stk[TASK_STK_SIZE-1]. After pC/OS-II performs the initialization, the task's
top-of-stack (TOS) is saved in the task’s 0S_TCB.

The stack of the two tasks created from the previous code is shown in Figure 14.5. As can be seen,
both tasks are part of the same segment, and, more importantly, they share the same segment base

350 Chapter 14: 80x86 Port

because both stacks are alocated from the same data segment. When uC/OS-11 loads a task during a
context switch, it setsthe SS register to the value of the DS register of the stack. This causes a problem
because both tasks have to share the same floating-point emulation variables!

Figure14.5 Borland floating-point emulation stack.

High Memory
&Task2Stk[TASK_STK_SIZE-1]
DS:SP l Task2Stk]]
&Task2Stk[TASK_STK_SIZE-1]
DS:SP —b» l Task1Stk[]

DS > I The beginning of the data segment
\ is overwritten by Borland's FPE
library because SS is initialized with

the segment value of the task's stack
segment, which is DS.

Low Memory

The beginning of the data segment is overwritten with the floating-point emulation library even if we
were to use a semaphore to guard access to the region. Protecting this resource with a semaphore alows
exclusive accessto the floating-point variables, but it does not protect the data segment from being over-
writen. Even asingle pCOS-I| task using floating-point variables overwrites the data segment! Further
system behavior depends on what data is overwritten, and typically data-segment overwriting crashes
the system.

A similar situation occurs when the stacks are allocated from the heap, because we don’t know what
part of memory is being overwritten. Typically, the heap is corrupted because the floating-point emula-
tion library overwrites the header of the heap-allocated block.

To fix this problem, the function 0STaskStkInit_FPE_x86(), shown in Listing 14.4, needs to be
called prior to creating atask. This function basically normalizes the stack so that every stack starts at
SS:0x0000, and the function reserves and properly initializes the floating-point emulation variables for
the task being created.

Listing 14.4 0S_CPU_C.C,
0STaskStkInit_FPE_x86().
void 0STaskStkInit_FPE_x86 (0S_STK **pptos,

0S_STK **ppbos,
INT32U *psize)

INT32U Tin_tos;
INT32U Tin_bos;

0S cpU c.c 351

Listing 144 0S_CPU_C.C,
0STaskStkInit_FPE_x86(). (Continued)
INT16U seg;

INT16U off;
INT32U bytes;

seg = FP_SEG(*pptos); (1)
of f = FP_OFF(*pptos);

Tin_tos = ((INT32U)seg << 4) + (INT32U)off; (2)
bytes = *psize * sizeof(0S_STK); (3)
lin_bos = (lin_tos - bytes + 15) & OxFFFFFFFOL; (4)
seg = (INT16U)(1in_bos >> 4); (5)
*ppbos = (0S_STK *)MK_FP(seg, 0x0000); (6)
memcpy (*ppbos, MK_FP(_SS, 0), 384); (7)
bytes = bytes - 16; (8)
*pptos = (OS_STK *)MK_FP(seg, (INTl6U)bytes); (9)
*ppbos = (0S_STK *)MK_FP(seg, 384); (10)
bytes = bytes - 384; (11)
*psize = bytes / sizeof(0S_STK); (12)

As can be seen from the code, you need to pass three argumentsto 0STaskStkInit_FPE_x86():

pptos isapointer to the task’s top-of-stack (TOS) pointer (a pointer to a pointer). Thetask’'s TOS
ispassed to 0STaskCreate() or 0STaskCreateExt () whenyou create atask. The stack is
allocated from the data space and consists of avalue for the DS register and an offset from
this segment register. Because 0STaskStkInit_FPE_x86() normalizes the TOS, a pointer
totheinitial TOS is passed to this function so that it can be altered.

ppbos is a pointer to the task’s bottom-of-stack (BOS) pointer (a pointer to a pointer). The task’s
BOS is not passed to 0STaskCreate(); however, it is passed to 0STaskCreateExt (). In
other words, ppbos is necessary for 0STaskCreateExt (). The bottom of this stack is gen-
erally not located at DS:0000 but instead, at some offset from the DS register. Because
0STaskStkInit_FPE_x86() normalizesthe BOS, a pointer to the initial BOS is passed to
this function so that it can be altered.

psize is a pointer to a variable that contains the size of the stack. The task’s size is not needed
by 0STaskCreate(), but the size is needed for 0STaskCreateExt(). Because
0STaskStkInit_FPE_x86() reserves storage for the floating-point emulation variables, the
available stack sizeis actually altered by this function, which iswhy a pointer to the sizeis
passed. You must ensure that you pass 0STaskStkInit_FPE_x86() astack large enough to
hold the floating-point emulation variables plus the anticipated stack space needed by your
application task.

352 Chapter 14: 80x86 Port

L14.4(1)

L14.4(2)

L14.4(3)

L14.4(4)

L14.4(5)
L14.4(6)
L14.4(7)

L14.4(8)

L14.4(9)
L14.4(10)

L14.4(11)
L14.4(12)

0STaskStkInit_FPE_x86() starts by decomposing the TOS into its segment and offset
components.

We then convert the address of the TOS into alinear address. Remember that on the 80x86
(real mode), the segment is multiplied by 16 and added to the offset to form the actual
memory address.

We then determine the size of the stack (in number of bytes). Remember that with
HC/OS- 1, you must declare a stack using the 0S_STK data type, which can represent an
8-bit wide stack, a 16-bit wide stack, or a 32-bit wide stack. For the Borland compiler, the
stack width is 16 bits, but it's always better to use the C operator sizeof().

The linear address for the BOS is then determined by subtracting the number of bytes allo-
cated to the stack from the TOS address. You should note that | added 15 bytes to the bot-
tom of the stack and ANDed it with OxFFFFFFFOL so that | align the BOS on a paragraph
boundary (i.e., a 16-byte boundary).

From the BOS's linear address, we determine the new segment of the BOS.
A far pointer with an offset of 0x0000 is then created and assigned to the new BOS pointer.

To initialize the floating-point emulation variables of the task’s stack, we can simply copy
the bottom of the calling task’s stack into the new stack. You should note that the calling
task must have also been created from atask that has it stack initialized with the float-
ing-point emulation variables. Failureto do this can cause unpredictable results. The Bor-
land Floating-Point Emulation (FPE) library assumes that about 300 bytes, starting at
SS:0x0000, are reserved to hold floating-point emulation variables. This information
appliesto the ‘large-memory model’ only. Note that | decided to copy 384 bytes (0x0180).
It turns out that you don’t need to copy this many bytes, but | find it safe to add a little
extrain case of expansion. Your task stack, therefore, must have at least 384 bytes plus
the anticipated stack requirements of your task (including ISR nesting, of course). Note
that _SS isaBorland pseudo-register that allows the code to obtain the current value of the
CPU’s stack segment register. Also, | decided to use the ANSI function memcpy () because
Borland most likely optimized this function.

The next step to to determine the normalized address of the TOS. We first need to subtract
16 bytes because we aigned the stack on a page boundary. If | could guarantee that you
would always align your stacks to a paragraph boundary, | would not have to do this.

The new TOS is determined by making a far pointer using the new segment [found in
L14.4(6)] and the new size of the stack (aligned to a paragraph).

Thefinal step isto move the BOS up by 384 bytesin case the BOS is used to perform stack
checking [i.e., if your application calls 0STaskStkChk()].

If you use stack checking, uC/OS-11 needsto know the size of the new stack. Of course, we
don’t want to start the stack check from the bottom of the original stack but in fact the new
stack.

Figure 14.6 shows what 0STaskStkInit_FPE_x86() does. Note that paragraph alignment is not

shown.

0S cpPU_Cc.c 353

Figure14.6 Stack normalization by 0STaskStkInit_FPE_x86().

BEFORE AFTER
ptos ! ptos —3 High Memory
&TaskStk[TASK_STK_SIZE-1]
DS:????
size - 384

size

pbos —p
% Low Memory

pbos ——p SS:0000 —p

DS:??7?7?-size

The bottom of the stack is
reserved for the floating-point
emulation library.

You use 0STaskStkInit_FPE_x86(), as shown in Listing 14.5, which contains an example with
both 0STaskCreate() and 0STaskCreateExt(). The code shows that if your task is to do float-
ing-point math, 0STaskStkInit_FPE_x86() must be called before caling either 0STaskCreate() or
0STaskCreateExt () inorder toinitialize the task’s stack asjust described. The returned pointers (ptos
and pbos) must be used in the task-creation call. Note that pbos ispassed to 0STaskCreateExt () asthe
new bottom of stack. You should note that if you were to call 0STaskStkChk() [only if the task is cre-
ated with 0STaskCreateExt()] to determine the size of the task’s stack at run time, then
0STaskStkChk () would report that the stack contains 384 bytes lessthan it's original size (see the after

case of Figure 14.6)!

Listing14.5 0SS _CPU_C.C, using
0STaskStkInit FPE _x86().

0S_STK Task1Stk[10007:
0S_STK Task2Stk[10007; 14

354 Chapter 14: 80x86 Port

Listing14.5 0S_CPU_C.C, using

0STaskStkInit_FPE_x86(). (Continued)

void main (void)

{

0S_STK *ptos;
0S_STK *pbos;
INT32U size;

0SInit();
ptos = &Taskl1Stk[9997;
pbos = &Task1Stk[0];
size = 1000;
0STaskStkInit_FPE_x86(&ptos, &pbos, &size);
OSTaskCreate(Taskl,
(void *)0,
ptos,
10);
ptos = &Task2Stk[999]7;
pbos = &Task2Stk[0];
size = 1000;

0STaskStkInit_FPE_x86(&ptos, &pbos, &size);
0STaskCreateExt(Task,

(void *)0,

ptos,

11,

11,

pbos,

size,

(void *)0,

OS_TASK_OPT_SAVE_FP);

0SStart();

0S cpPU_Cc.c 355

You should be careful that your code doesn’'t generate any floating-point exceptions (e.g., divide by
zero) because the floating-point library does not work properly under these circumstances. Run-time
exceptions can, however, be avoided by adding range-testing code.

140403 O0STaskCreateHook()

As previously mentioned, 0S_CPU_C. C does not define code for this function. In other words, no addi-
tional work is done by the port when atask is created. The assignment of ptcb to ptcb is done so that
the compiler doesn’t complain about 0STaskCreateHook () not doing anything with the argument.

Listing14.6 0S_CPU_C.C, 0STaskCreateHook().

void O0STaskCreateHook (0S_TCB *ptchb)
{

ptch = ptch;
}

140404 O0STaskDelHook()

As previously mentioned, 0S_CPU_C.C does not define code for this function. In other words, no addi-
tional work is done by the port when atask is deleted. The assignment of ptcb to ptch isagain done so
that the compiler doesn’t complain about 0STaskDelHook () not doing anything with the argument.

Listing14.7 0S_CPU_C.C, 0STaskDelHook ().

void 0STaskDelHook (0S_TCB *ptch)
{

ptch = ptch;
}

140405 0STaskSwHook()

0S_CPU_C.C doesn’'t do anything in this function. You should note that | added the skeleton of the code
you need if you were to actually do somethingin 0STaskSwHook ().

Listing14.8 0S_CPU_C.C, 0STaskSwHook ().

void 0STaskSwHook (void)
{

#Fif 0
if (OSRunning = TRUE) { 14
/* Save for task being ‘switched-out’ */

}

/* Code for task being ‘switched-in’ =)
Jfendif
}

356 Chapter 14: 80x86 Port

140406 0STaskIdleHook()
0S_CPU_C.C doesn't do anything in this function.

Listing14.9 0S_CPU_C.C, 0STaskIdleHook().

void OSTaskIdleHook (void)
{
}

140407 OSTaskStatHook()

0S_CPU_C.C doesn’'t do anything in this function. See Example 3 in Chapter 1 for an example on what
you can do with this function.

Listing 14.10 0S_CPU_C.C, 0STaskStatHook().

void OSTaskStatHook (void)
{
}

140408 0STimeTickHook()
0S_CPU_C.C doesn't do anything in this function.

Listing 14.11 0S_CPU_C.C, 0STimeTickHook ().

void OSTimeTickHook (void)
{
}

140409 0SInitHookBegin()
0S_CPU_C.C doesn't do anything in this function.

Listing 14.12 0S_CPU_C.C, 0SInitHookBegin().

void 0SInitHookBegin (void)
{
}

0S_CPU_A.ASM 357

140410 0SInitHookEnd()
0S_CPU_C.C doesn't do anything in this function.

Listing 14.13 0S_CPU_C.C, 0SInitHookEnd().

void O0SInitHookEnd (void)
{
}

140411 OSTCBInitHook()
0S_CPU_C.C doesn’'t do anything in this function.

Listing 14.14 0S_CPU_C.C, OSTCBInitHook().

void OSTCBI ni t Hook (voi d)

{
}

14.05 0S_CPU_A.ASM

A UC/OS-1 port requires that you write four assembly-language functions:
0SStartHighRdy ()
0SCtxSw()
0SIntCtxSw()
0STickISR()

140501 O0SStartHighRdy()

Thisfunctioniscalled by 0SStart () to start the highest priority task ready to run. However, before you
can call 0SStart(), you must call 0SInit() and create at least one task [see 0STaskCreate() and
0STaskCreateExt()]. 0SStart() setsup 0STCBHighRdy so that it points to the TCB of the task with
the highest priority. Figure 14.7 shows the stack frame for an 80x86 real-mode task created by either
0STaskCreate() or 0STaskCreateExt() just before 0SStart() calls 0SStartHighRdy (). The code
for 0SStartHighRdy () isshownin Listing 14.5.

Listing 14.15 0SStartHighRdy().
_0SStartHighRdy PROC FAR

MOV AX, SEG _OSTCBHighRdy
MOV DS, AX

CALL FAR PTR _0STaskSwHook (1)

MOV AL, 1 (2)

358 Chapter 14: 80x86 Port

Listing 14.15 0SStartHighRdy (). (Continued)
MOV BYTE PTR DS:_OSRunning, AL

LES BX, DWORD PTR DS:_OSTCBHighRdy (3)
MOV SS, ES:[BX+2]
MOV SP, ES:[BX+0]

POP DS (4)
POP ES

POPA

IRET (5)

_0SStartHighRdy ENDP

Figure14.7 80x86 stack frame when task is created.

Low Memory

DS = Current DS 4——— OSTCBH ghRdy- >0STCBSt kPt r

ES = 0x4444

D= 0x3333

S| = 0x2222

BP = 0x1111

SP_= 0x0000

BX = 0OxBBBB

DX = 0xDDDD

CX = 0xCCccc

AX = OxAAAA Stack Growth
OFF task
SEG t ask

PSW = 0x0202] _
OEE t ask 4——— SS:SP points here after executing | RET
SEG t ask (see text)
OFF pdata
SEG pdata

High Memory

L14.15(1) Asmentionedin Chapter 13, 0SStartHighRdy () must call 0STaskSwHook () when it starts.
Remember that your 0STaskSwHook () function must check the state of 0SRunning (which

0S_CPU_A.ASM 359

should be FALSE at this point) so that the function only performs a restore-context operation
instead of a save-and-restore-context operation.

L14.15(2) 0SStartHighRdy() then sets OSRunning to TRUE so that subsequent calls to
0STaskSwHook () are ableto perform both save and restore operations. Because the codeis
donein assembly language, there is no way to get the exact value of TRUE from the C com-
piler. I’m thus assuming that TRUE is 1.

L14.15(3) 0SStartHighRdy() then retrieves and loads the stack pointer from the task’s 0S_TCB. As
mentioned before, | decided to store the stack pointer at the beginning of the TCB (i.e,, its
0S_TCB) to make it easier to access the pointer from assembly language.

L14.15(4) 0SStartHighRdy() then restores the contents of all the CPU-integer registers from the
task’s stack.

L14.15(5) The IRET instruction is executed in order to perform a return from interrupt. Remember
that the stack frame of the task was created so that it looks as if an interrupt has occurred
and all the CPU registers has been pushed onto the task’s stack. The IRET instruction pulls
the task address and places it into the CS:IP registers, followed by the value (called status
word or flags) to load into the SW register.

As seen in Figure 14.7, upon executing the TRET instruction, the stack pointer (SS: SP) points to the
return address of the task and looks as if the task were called by a normal function. SS: SP+4 points to
the argument pdata, which is passed to the task. In other words, your task does not know whether it
was called by 0SStartHighRdy () or by any other function!

140502 0SCtxSw()

A task-level context switch is accomplished on the 80x86 processor by executing a
software-interrupt instruction. The ISR must vector to 0SCtxSw(). The sequence of events that leads
HC/OSH I to vector to 0SCtxSw() begins when the current task calls a service provided by pC/OS-I,
which causes a higher priority task to be ready to run. At the end of the service call, uC/OS-1I calls the
function 0S_Sched (), which concludes that the current task is no longer the most important task to run.
0S_Sched() loads the address of the 0S_TCB of the highest priority task into 0STCBHighRdy and then
executes the software-interrupt instruction by invoking the macro 0S_TASK_SW(). Note that the variable
0STCBCur already contains a pointer to the current task’s 0S_TCB. The code for 0SCtxSw() is shownin
Listing 14.16. Figure 14.8 shows the stack frames of the task being suspended and the task being
resumed.

Listing 14.16 0SCtxSw().
_0SCtxSw PROC FAR (1)

PUSHA (2) 14
PUSH ES
PUSH DS

MOV AX, SEG _OSTCBCur
MOV DS, AX

360 Chapter 14: 80x86 Port

Listing 14.16 0SCtxSw(). (Continued)

_0SCtxSw

F14.8(1)
L14.16(1)

F14.8(2)
L14.16(2)
F14.8(3)
L14.16(3)

L14.16(4)

LES BX, DWORD PTR DS:_OSTCBCur (3)
MOV ES:[BX+2], SS
MOV ES:[BX+0], SP

CALL FAR PTR _0STaskSwHook (4)

MOV AX, WORD PTR DS:_OSTCBHighRdy+2 (5)
MOV DX, WORD PTR DS:_OSTCBHighRdy

MOV WORD PTR DS:_OSTCBCur+2, AX

MOV WORD PTR DS:_OSTCBCur, DX

MOV AL, BYTE PTR DS:_OSPrioHighRdy (6)
MOV BYTE PTR DS:_OSPrioCur, AL

LES BX, DWORD PTR DS:_OSTCBHighRdy (7)
MOV SS, ES:[BX+2]
MOV SP, ES:[BX]

POP DS (8)
POP ES

POPA

IRET (9)
ENDP

On the 80x86 processor, the software-interrupt instruction forces the SW register to be
pushed onto the current task’s stack, followed by the return address (segment and then off-
set) of the task that executed the INT instruction [i.e., the task that invoked 0S_TASK_SW()].

The remaining CPU registers of the task to suspend are saved onto the current task’s stack.

The pointer to the new stack frame is saved into the task’s 0S_TCB. This pointer is com-
posed of the stack segment (SS register) and the stack pointer (SP register). The 0S_TCB in
UC/OS-1 is organized such that the stack pointer is placed at the beginning of the 0S_TCB
structure to make it easier to save and restore the stack pointer using assembly language.

The user-definable task-switch hook 0STaskSwHook () is then called. Note that when
0STaskSwHook () is called, 0STCBCur points to the current task’s 0S_TCB, while
0STCBHighRdy points to the new task’s 0S_TCB. You can thus access each task’s 0S_TCB

L14.16(5)

L14.16(6)
F14.8(4)
L14.16(7)

F14.8(5)
L14.16(8)
F14.8(6)
L14.16(9)

0S_CPU_A.ASM 361

from 0STaskSwHook (). If you never intend to use the context-switch hook, you can com-
ment out the call and save yourself afew clock cycles during the context switch. In other
words, there is no point in going through the overhead of calling and returning from a fun-
tion if your port doesn’t use 0STaskSwHook (). Asagenera rule, however, | like to make
the call to be consistent between ports.

Upon returning from 0STaskSwHook (), OSTCBHighRdy is copied to 0STCBCur because the
new task is now also the current task.

Also, 0SPrioHighRdy iscopied to 0SPrioCur for the same reason.

At this point, 0SCtxSw() loads the processor’s registers with the new task’s context. This
action is done by retrieving the SS and SP registers from the new task’s 0S_TCB.

The remaining CPU registers are pulled from the new task’s stack.

An IRET instruction is executed in order to load the new task’s program counter and status
word. After thisinstruction, the processor resumes execution of the new task.

Figure14.8 80x86 stack frames during a task-level context switch.

OS TCB _ 0S TCB
Pl == N w2l
\‘\\(‘ 3) (4’)‘/‘,"

e 80x86 CPU ’

™. (Real-Mode) x

OSTCBCur - >OSTCBSt kPt r

OSTCBH ghRdy- >0STCBSt kPt r

Low Memory Low Memory

——
——

s 1 (=™
o DS] N DS +—
- D: (1) [¢] (5) . g
T POP DS
(2) PUSHES £ K [psw] (6) 2P PCP ES (5)
PUSH DS 3 o PCPA
D D
CX CX
AX AX
O5_TASK_SW() CFF task CFF fask
(I NT 0x80) | SEGtask | I RET
PSW. PSW 6
(1) (6)
Stack Growth Stack Growth
High Memory High Memory

Note that interrupts are disabled during 0SCtxSw() and aso during execution of the user-definable
function 0STaskSwHook ().

362 Chapter 14: 80x86 Port

Note: You can see an animation of a context switch for the Intel 80x86 processor by visiting
www.uCOS-TI1.com.

140503 0SIntCtxSw()

0SIntCtxSw() is called by 0SIntExit() to perform a context switch from an ISR. Because
0SIntCtxSw() iscalled from an ISR, it is assumed that all the processor registers are aready properly
saved onto the interrupted task’s stack.

The code shown in Listing 14.17 is identical to 0SCtxSw(), except for the fact that there is no need
to save the registers (i.e., no PUSHA, PUSH ES, or PUSH DS) onto the stack because it is assumed that the
beginning of the ISR has already done that. Also, it is assumed that the stack pointer is saved into the
task’s 0S_TCB by the ISR. Figure 14.9 shows the context-switch process, from 0SIntCtxSw()’s point
of view.

To understand the difference, let’s assume that the processor receives an interrupt. Let’s also sup-
pose that interrupts are enabled. The processor completes the current instruction and initiates an inter-
rupt-handling procedure.

F14.9(1) The 80x86 automatically pushes the processor's SW register, followed by the return
address of the interrupted task, onto the stack. The CPU then vectors to the proper ISR.
MC/OS-1 requires that your 1SR begin by saving the rest of the processor registers. After
the registers are saved, HC/OS-II requires that you also save the contents of the stack
pointer in the task’s 0S_TCB.

Your I SR then needs either to call 0SIntEnter() or to increment the global variable 0SIntNesting
by one. At this point, we can assume that the task is suspended and that we could, if needed, switchto a
different task.

The ISR can now start servicing the interrupting device and possibly make a higher priority task
ready. This action occursif the | SR sends a message to atask by calling 0SF1agPost (), 0SMboxPost (),
0SMboxPostOpt (), 0SQPostFront (), 0SQPost (), or 0SQPostOpt (). A higher priority task can also be
resumed if the ISR calls 0STaskResume (), 0STimeTick(), or 0STimeD1yResume().

Assume that a higher priority task is made ready to run by the ISR. pC/OS-1I requires that an ISR
calls 0SIntExit() when it has finished servicing the interrupting device. 0SIntExit() basically tells
HC/OSHI that it's time to return to task-level code if all nested interrupts have completed. In other
words, when 0SIntNesting is decremented to O by 0SIntExit(), 0SIntExit() returns to task-level
code.

When 0SIntExit() executes, it notices that the interrupted task is no longer the task that needs to
run because a higher priority task isnow ready. Inthiscase, the pointer 0STCBHighRdy is made to point
to the new task’s 0S_TCB, and 0SIntExit() calls 0SIntCtxSw() to perform the context switch.

Listing 14.17 0SIntCtxSw().
_0SIntCtxSw PROC FAR

s

CALL FAR PTR _0STaskSwHook (1)

MOV AX, SEG _OSTCBCur
MOV DS, AX

0S_CPU_A.ASM 363

Listing 14.17 0SIntCtxSw(). (Continued)

s

s

MOV AX, WORD PTR DS:_OSTCBHighRdy+2 (2)
MOV DX, WORD PTR DS:_OSTCBHighRdy

MOV WORD PTR DS:_OSTCBCur+2, AX

MOV WORD PTR DS:_OSTCBCur, DX

MOV AL, BYTE PTR DS:_OSPrioHighRdy (3)
MOV BYTE PTR DS:_OSPrioCur, AL

LES BX, DWORD PTR DS:_OSTCBHighRdy (4)
MOV SS, ES:[BX+2]
MOV SP, ES:[BX]

POP DS (5)
POP ES

POPA

IRET (6)

_0SIntCtxSw ENDP

L14.17(1)

L14.17(2)

L14.17(3)
F14.9(2)
L14.17(4)

F14.9(3)
L14.17(5)
F14.9(4)
L14.17(6)

The first thing 0SIntCtxSw() does is call the user-definable task-switch hook
0STaskSwHook (). Note that when 0STaskSwHook () is called, 0STCBCur points to the cur-
rent task’s 0S_TCB, while 0STCBHighRdy points to the new task’s 0S_TCB. You can thus
access each task’s 0S_TCB from 0STaskSwHook (). Again, if you never intend to use the
context-switch hook, you can comment out the call and save yourself a few clock cycles
during the context switch.

Upon returning from 0STaskSwHook (), 0STCBHighRdy is copied to 0STCBCur because the
new task is now also the current task.

0SPrioHighRdy isalso copied to 0SPrioCur for the same reason.

At this point, 0SCtxSw() loads the processor’s registers with the new task’s context. This
action is done by retrieving the SS and SP registers from the new task’s 0S_TCB.

The remaining CPU registers are pulled from the stack.

An IRET instruction is executed in order to load the new task’s program counter and status
word. After thisinstruction, the processor resumes execution of the new task.

Note that interrupts are disabled during 0SIntCtxSw() and aso during execution of the user-defin-
able function 0STaskSwHook ().

364 Chapter 14: 80x86 Port

Figure14.9 80x86 stack frames during an interrupt-level context

os_TCB os_TCB
osTcBCur — ° OSTCBHi ghRdly ~ — °
//' ‘ s '\\
\‘\\ Saved by ISR ‘,,""
(D (2) .
. 80x86 CPU .
... (Real-Mode) 5
OSTCBCur - >OSTCBSt kPt r OSTCBH ghRdy- >QOSTCBSt kPt r
AX
Low Memory BX Low Memory
CX
DX
[D5]
g
L 05 . . B3 +—
ES ES
o T =) (3 ™ >
S g I — OREAN pep bS
e ' [Psw | . d PP ES (3)
Saved by ISR = POPA
(1) DX D
CX [€3
AX AX
OFF task OFF task
SEG task SEG task | RET
PSW Stack Growth Stack Growth PSW (4)
High Memory High Memory

140504 OSTickISR()

As mentioned in Section 14.03.05, “0S_CPU.H, Tick Rate’, the tick rate of an RTOS should be set
between 10 and 100Hz. On the PC, the ticker occurs every 54.93ms (18.20648Hz) and is obtained by a
hardware timer that interrupts the CPU. Recall that | reprogrammed the tick rate to 200Hz. Theticker on
the PC is assigned to vector 0x08, but pC/OS-11 redefined it so that it vectorsto 0STickISR() instead.
Because of this change, the PC's tick handler is saved [see PC.C, PC_D0SSaveReturn()] in vector 129
(0x81). To satisfy DOS, however, the PC’'s handler is called every 54.93ms (described shortly). Figure
14.10 shows the contents of the interrupt-vector table (IVT) before and after installing pC/OS-11.

With pC/OS-1, it is very important that you enable ticker interrupts after multitasking has started,
that is, after calling 0SStart (). In the case of the PC, however, ticker interrupts are already occurring
before you actually execute your pC/OS-11 application.

To prevent the ISR from invoking 0STickISR() until uC/OS-11 is ready, do the following:

main()

Cal 0SInit() toinitidize pC/OSHI.

Call PC_D0SSaveReturn() (seePC.C)

Call PC_VectSet() toinstall context switch-vector 0SCtxSw() at vector 0x80
Create at least one application task

Call 0SStart () when you are ready to multitask

Thefirst task to execute needs to
Install 0STickISR() at vector 0x08

0S_CPU_A.ASM 365

Change the tick rate from 18.20648 to 200Hz

The tick handler on the PC is somewhat tricky, so | explain it using the pseudocode shown in Listing
14.18. This code would normally be written in assembly language.

Listing 14.18 Pseudocodefor 0ST7ckISR().

void OSTickISR (void)
{

Save all registers on the current task's stack; (1)
0SIntNesting++; (2)
if (0SIntNesting = 1) ({ (3)
0STCBCur->0STCBStkPtr = SS:SP (4)
}
0STickDOSCtr--; (5)
if (0STickDOSCtr = 0) { (6)
0STickDOSCtr = 11; (7)
INT 81H; /* Interrupt will be cleared by DOS */
} else {
Send EOI to PIC; (8)
}
0STimeTick(); (9)
0SIntExit(); (10)
Restore all registers that were save on the current task's stack; (11)
Return from Interrupt; (12)

L14.18(1) Likeall pC/OS-11 I1SRs, all registers need to be saved onto the current task’s stack.

L14.18(2) Upon entering an ISR, you need to tell uC/OS-11 that you are starting an ISR by either
caling 0SIntEnter () or directly incrementing 0SIntNesting. | like to increment
0SIntNesting directly becauseit’'s faster. However, 0SIntEnter () checksthat you don't
increment 0SIntNesting beyond 255 and thusis safer if you nest your ISRs.

L14.18(3)

L14.18(4) If thisISR isthefirst nested ISR, you need to save the stack pointer into the current task’s
0S_TCB.

L14.18(5)

L14.18(6)

L14.18(7) Next, the counter 0STickDOSCtr is decremented, and, when it reaches 0, the DOS-ticker
handler is called, which happens every 54.93ms.

L14.18(8) Tentimesout of 11, however, acommand is sent to the priority interrupt controller (PIC) to
clear the interrupt. Note that this action is unnecesary when the DOS ticker is called
because the DOS-tick handler directly clears the interrupt source.

366 Chapter 14: 80x86 Port

L14.18(9) O0STickISR() then cals 0STimeTick() so that pC/OS-11 can update all tasks waiting for
time to expire or pending for some event to occur, with atimeout.

L14.18(10) At the completion of all ISRs, 0SIntExit() is caled. If a higher priority task has been
made ready by this ISR (or any other nested I1SRs) and this is the last nested ISR, then
0SIntExit() doesnot returnto 0STickISR()! Instead, 0SIntCtxSw() restoresthe proces-
sor’s context of the new task and issues an IRET instruction. If the ISR is not the last nested
ISR or the ISR did not cause a higher priority task to be ready, then 0SIntExit() returnsto
OSTickISR().

L14.18(11)

L14.18(12) If 0SIntExit() returns, it's because 0SIntExit() didn’t find any higher priority task to
run, and thus the contents of the interrupt task’s processor registers are restored. When the
IRET instruction is executed, the ISR returns to the interrupted task.

Figure14.10 The PC interrupt-vector table (I1VT).

Before (DOS only) After (uC/OS-Il installed)
Interrupt-Vector Table Interrupt-Vector Table
(IVT) (IVT)
0x00 0x00
0x01 0x01
0x02 0x02
0x03 0x03
0x04 0x04
0x05 0x05
0x06 0x06
0x07 | 0x07 OSTickISR()
DOS-Tick Handl
0x08 o—r—> (¥ nandier 0x08 &———P» (200Hz):

(18.20648H2) Every 11 ticks, do 'INT 0x81'

Ox7F Ox7F
0x80 @——1—» Undefined 0x80 ———P» OSCtxSw()
0x81 @—— 1 Undefined 0x81 @———» DOS-Tick Handler

0S_CPU_A.ASM 367

The actual code for 0STickISR() isshown in Listing 14.19. The number in Listing 14.19 corre-
sponds to the same item in Listing 14.18. You should note that the actual code in the file contains com-

ments.

Listing 14.19 0STickISR().

_0STickISR

s

_OSTickISR1:

_0STickISR2:

_OSTickISR3:

PROC

PUSHA
PUSH
PUSH

MOV
MOV
INC

CMP
JNE
MOV
MOV
LES
MOV
MOV

MOV
MOV
DEC
CMP
JNE

MOV
INT
JMP

MOV
MOV
ouT

CALL

FAR

ES
DS

AX, SEG(_OSIntNesting)
DS, AX
BYTE PTR DS:_0SIntNesting

BYTE PTR DS:_0SIntNesting, 1
SHORT _0STickISR1

AX, SEG(_OSTCBCur)

DS, AX

BX, DWORD PTR DS:_0OSTCBCur
ES:[BX+2], SS

ES:[BX+0], SP

AX, SEG(_OSTickDOSCtr)

DS, AX

BYTE PTR DS:_0STickDOSCtr
BYTE PTR DS:_0STickDOSCtr, O
SHORT _OSTickISR2

BYTE PTR DS:_0STickDOSCtr, 11
081H
SHORT _OSTickISR3

AL, 20H
DX, 20H
DX, AL

FAR PTR _OSTimeTick

(D

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

368 Chapter 14: 80x86 Port

Listing 14.19 0STickISR(). (Continued)

s

CALL FAR PTR _OSIntExit (10)
POP DS (11)
POP ES

POPA

IRET (12)

0STickISR ENDP

You can simplify 0STickISR() by not increasing the tick rate from 18.20648 to 200Hz, as shown in
the pseudocode in Listing 14.20. The actual code is shown in Listing 14.21 and matches the same item
from Listing 14.20. This code isincluded so that you can model your |SRs after it.

Listing 14.20 Pseudocode for 18.2Hz 0STickISR().

void OSTickISR (void)
{

Save all registers on the current task's stack; (1)
0SIntNesting+t; (2)
if (0SIntNesting == 1) { (3)
0STCBCur->0STCBStkPtr = SS:SP (4)
}
INT 81H; (5)
0STimeTick(); (6)
OSIntExit(); (7)
Restore all registers that were save on the current task's stack; (8)
Return from Interrupt; (9)

L14.20(1) Aswithall uC/OS-11 1SRs, all registers need to be saved onto the current task’s stack.
L14.20(2) Upon entering an ISR, you need to tell uC/OS-I1 that you are starting an ISR by either call-

ing O0SIntEnter() or directly incrementing 0SIntNesting. | like to increment
0SIntNesting directly because it's faster.

L14.20(3)

L14.20(4) If thisISR isthefirst nested ISR, you need to save the stack pointer into the current task’s
0S_TCB.

L14.20(5) Next, the DOS-tick handler is called by issuing an INT 81H instruction (see the remapping
of the IVT, Figure 14.10). Note that you do not need to clear the interrupt because the DOS
ticker performs this action.

0S_CPU_A.ASM 369

L14.20(6) Call 0STimeTick() so that pC/OS-11 can update all tasks waiting for time to expire or
pending some event to occur with atimeout. If your ISR is not for the DOS tick, this place
iswhere you put the code to service your own interrupt.

L14.20(7) Whenyou are done servicing the ISR, call 0SIntExit(). If the ISR makesahigher priority
task ready to run, 0SIntExit() does not return to this ISR but instead performs context
switch to the new, higher priority task.

L14.20(8) The processor registers are restored.
L14.20(9) ThelSR returnsto the interrupted source by executing an IRET instruction.

Note that you must not change the tick rate by calling PC_SetTickRate() if you are using this ver-
sion of the code. In other words, you must leave the tick rate alone. You a so have to change the config-
uration constant 0S_TICKS_PER_SEC (see 0S_CFG.H) from 200 to 18. You should note that the tick rate
isnot actually 18 but 18.20648. You need to be aware of thisinformation, especially if you want to delay
atask for 10 seconds. You would specify 10 * 0S_TICKS_PER_SEC ticks, actually ends up being only
9.8866 seconds!

Listing 14.21 18.2Hzversion of OST7ckISR().
_OSTickISR PROC FAR

PUSHA (1)
PUSH ES

PUSH DS

MOV AX, SEG(_0SIntNesting) (2)
MOV DS, AX

INC BYTE PTR DS:_OSIntNesting

CMP BYTE PTR DS:_0SIntNesting, 1 (3)
JNE SHORT _OSTickISR1
MOV AX, SEG(_OSTCBCur)
MOV DS, AX
LES BX, DWORD PTR DS:_OSTCBCur (4)
MOV ES:[BX+27, SS
MOV ES:[BX+0], SP
_OSTickISRL:
INT 081H (5)

CALL FAR PTR _OSTimeTick (6)

CALL FAR PTR _OSIntExit (7)

370 Chapter 14: 80x86 Port

Listing 14.21 18.2Hzversion of 0ST7ckISR(). (Continued)

POP DS (8)
POP ES

POPA

IRET (9)

_0STickISR ENDP

14.06 Memory Usage

Table 14.3 shows the amount of memory (both code and data space) used by PC/OS-I1, based on the
value of configuration constants. Data in this case means RAM, and code means ROM if pC/OS- | is
used in an embedded system.

The spreadsheet is actually provided on the companion CD:

\SOFTWARE\UCOS-TTI\Ix86L\BC45\DOC\80x86L -ROM-RAM. XLS

You need Microsoft Excel for Office 2000 (or higher) to use thisfile. The spreadsheet allows you to
do what-if scenarios based on the options you select. You can change the configuration values (in red)
and see how they affect pC/OS-I1I's ROM and RAM usage on the 80x86. For the ??? EN values, you
must use either O or 1.

| set up the Borland compiler to generate the fastest code. The number of bytes shown are not meant
to be accurate but are simply provided to give you a relative idea of how much code space each of the
HUC/OS-11 group of services requires. For example, if you don’t need message-queue services (0S_Q_EN
is set to 0), then you save between 1,900 and 2,200 bytes of code space.

The spreadsheet also shows you the difference in code size based on the value of 0S_ARG_CHK_EN in
your 0S_CFG.H. You don't need to change the value of 0S_ARG_CHK_EN to see the difference.

The Data column is not as straightforward. Notice that the stacks for both the idle task and the statis-
tics task have been set to 1,024 bytes (1KB) each. Based on your own requirements, these numbers
might be higher or lower. As a minimum, pC/OS-11 requires about 3,500 bytes of RAM for pC/OS-l|
internal data structures if you configure the maximum number of tasks (62 application tasks).

Table 14.4 shows how UC/OS-11 can scale down the amount of memory required with most of the
services disabled. In this case, | alowed only 16 tasks with 20 priority levels (0 to 19). Notice that the
code space is now between 2,400 and 2,700 bytes and that data space for pC/OS-II internals is only
about 500 bytes. However, just about the only service you can use in your tasks is 0STimeD1y ()! Of
course you will still be able to do multitasking.

If you use an 80x86 processor, you will most likely not be too restricted with memory, and thus
HC/OS-1 will most likely not be the largest user of memory.

Table 14.3 Maximum puC/OS-I1 configuration.

Memory Usage

371

Configuration Valuein DATA CODE (bytes) CODE (bytes) Delta Delta

Parameters 0S_ (bytes) OS_ARG_CHK_EN — O OS_ARG_CHK_EN — 1 CODE CODE
CFG.H (bytes) (%)

TOTAL: 5523 13048 14919 1871 14%

0S_MAX_EVENTS 10 164

0S_MAX_FLAGS 14

0S_MAX_MEM_PART 44

0S_MAX_QS 52

0S_MAX_TASKS 62 2,880

0S_LOWEST_PRIO 63 264

0S_TASK_IDLE_STK_SIZE 512 1,024

0S_TASK_STAT_EN 1 10 351 351

0S_TASK_STAT_STK_SIZE 512 1,024

0S_ARG_CHK_EN

0S_CPU_HOOKS_EN

MINIMUM 2,177 2,493 316

OS_FLAG_EN 1 2,174 2,539 82

0S_FLAG_WAIT_CLR_EN 1 108

0S_FLAG_ACCEPT_EN 1 41

0S_FLAG_DEL_EN 1 95

0S_FLAG_QUERY_EN 1 39

0S_MBOX_EN 1 958 1,185 55

0S_MBOX_ACCEPT_EN 1 23

0S_MBOX_DEL_EN 1 49

0S_MBOX_POST_EN 1 36

0S_MBOX_POST_OPT_EN 1 39

0S_MBOX_QUERY_EN 1 25

372 Chapter 14: 80x86 Port

Table 14.3 Maximum pC/OS-11 configuration. (Continued)

Configuration Valuein DATA CODE (bytes) CODE (bytes) Delta Delta
Parameters 0S_ (bytes) OS_ARG_CHK_EN — 0 OS_ARG_CHK_EN — 1 CODE CODE
CFG.H (bytes) (%)

0S_MEM_EN 1 689 838 123
0S_MEM_QUERY_EN 1 26
OS_MUTEX_EN 1 1,596 1,792 83
0S_MUTEX_ACCEPT_EN 1 39
0S_MUTEX_DEL_EN 1 47
0S_MUTEX_QUERY_EN 1 27

0S_Q_EN 1 1,917 2,206 45
0S_Q_ACCEPT_EN 1 23
0S_Q_DEL_EN 1 49
0S_Q_FLUSH_EN 1 25
0S_Q_POST_EN 1 40
0S_Q_POST_FRONT_EN 1 40
0S_0_POST_OPT_EN 1 40
0S_Q_QUERY_EN 1 27
0S_SEM_EN 1 707 864 62
0S_SEM_ACCEPT_EN 1 21
0S_SEM_DEL_EN 1 49
0S_SEM_QUERY_EN 1 25
0S_TASK_CHANGE_PRIO_EN 1 444 466 22
0S_TASK_CREATE_EN 1 185 196 11
0S_TASK_CREATE_EXT_EN 1 441 467 26
0S_TASK_DEL_EN 1 527 578 51
0S_TASK_SUSPEND_EN 1 264 300 36
0S_TASK_QUERY_EN 1 87 103 16
0S_TIME_DLY_HMSM_EN 1 248 248

0S_TIME_DLY_RESUME_EN 1 122 132 10

OS_TIME_GET_SET_EN 1 59 59

Memory Usage 373

Table 14.3 Maximum pC/OS-11 configuration. (Continued)

Configuration Valuein DATA CODE (bytes) CODE (bytes) Delta Delta

Parameters 0S_ (bytes) OS_ARG_CHK_EN = 0 O0S_ARG_CHK_EN = 1 CODE CODE
CFG.H (bytes) (%)

0S_SCHED_LOCK_EN 1 102 102

HC/OS-I Internals 47

Total Application 0

Stacks

Total Application 0

RAM

Table 14.4 Minimum pC/OS-11 configuration.

Configuration Valuein DATA CODE (bytes) CODE (bytes) Delta Delta

Parameters 0S_ (bytes) OS_ARG_CHK_EN = 0 OS_ARG_CHK_EN — 1 CODE CODE
CFG.H (bytes) (%)

TOTAL: 1508 2362 2689 327 14%

0S_MAX_EVENTS 10

0S_MAX_FLAGS 2

0S_MAX_MEM_PART

0S_MAX_QS 2

0S_MAX_TASKS 16 360

0S_LOWEST_PRIO 20 87

0S_TASK_IDLE_STK_SIZE 512 1,024

0S_TASK_STAT_EN 0

0S_TASK_STAT_STK_SIZE 512

0S_ARG_CHK_EN
0S_CPU_HOOKS_EN

MINIMUM 2,177 2,493 316

0S_FLAG_EN
O0S_FLAG_WAIT_CLR_EN
0S_FLAG_ACCEPT_EN

374 Chapter 14: 80x86 Port

Table 14.4 Minimum pC/OS-11 configuration. (Continued)

Configuration Vauein DATA CODE (bytes) CODE (bytes) Delta Delta
Parameters 0S_ (bytes) OS_ARG_CHK_EN = 0 OS_ARG_CHK_EN = 1 CODE CODE
CFG.H (bytes) (%)
0S_FLAG_DEL_EN 1
0S_FLAG_QUERY_EN 1
0S_MBOX_EN 0
0S_MBOX_ACCEPT_EN 1
0S_MBOX_DEL_EN 1
0S_MBOX_POST_EN 1
0S_MBOX_POST_OPT_EN 1
0S_MBOX_QUERY_EN 1

0S_MEM_EN
0S_MEM_QUERY_EN

= O

OS_MUTEX_EN
O0S_MUTEX_ACCEPT_EN
OS_MUTEX_DEL_EN
O0S_MUTEX_QUERY_EN

S =)

0S_Q_EN
0S_Q_ACCEPT_EN
0S_Q_DEL_EN
0S_Q_FLUSH_EN
0S_Q_POST_EN
0S_Q_POST_FRONT_EN
0S_Q_POST_OPT_EN
0S_Q_QUERY_EN

T =)

0S_SEM_EN
0S_SEM_ACCEPT_EN
O0S_SEM_DEL_EN
0S_SEM_QUERY_EN

S =)

0S_TASK_CHANGE_PRIO_EN 0

Memory Usage 375

Table 14.4 Minimum pC/OS-11 configuration. (Continued)

Configuration Valuein DATA CODE (bytes) CODE (bytes) Delta Delta

Parameters 0S_ (bytes) OS_ARG_CHK_EN = 0 OS_ARG_CHK_EN ==1 CODE CODE
CFG.H (bytes) (%)

0S_TASK_CREATE_EN 1 185 196 11

0S_TASK_CREATE_EXT_EN 0

0S_TASK_DEL_EN 0

0S_TASK_SUSPEND_EN 0

0S_TASK_QUERY_EN 0

0S_TIME_DLY_HMSM_EN 0

0S_TIME_DLY_RESUME_EN 0

0S_TIME_GET_SET_EN

0S_SCHED_LOCK_EN 0

HC/OS-I Internals 37

Total Application 0

Stacks

Total Application 0

RAM

Table 14.5 80x86 data sizes.

Data Structures #Bytes
Compiler Alignment 2
BOOLEAN
INT8S
INT8U
INT16U
INT32U
0S_FLAGS
0S_STK
POINTER

A NN DNR R PR

376 Chapter 14: 80x86 Port

Chapter 15

80x86 Port

Real Mode, Large Mode
with Hardware Floating-Point Support

This chapter describes how uC/OS-11 has been ported to the Intel 80x86 series of processors that pro-
vides a floating-point unit (FPU). Some of the processors that can make use of this port are the Intel
80486™, Pentiums™ (all models), Xeon™, AMD Athlon™, K6™-series, ElanSC520™, and more. The
port assumes that you are using the Borland C/C++ compiler v4.51, which was set up to generate code
for the large-memory model. The processor is assumed to be running in real mode. The code for this
port is very similar to the one presented in Chapter 14, and, in some cases, | am only presenting the dif-
ferences.

This port assumes that you have enabled code generation for 0STaskCreateExt () (by setting
0S_TASK_CREATE_EXT_EN to 1 in 0S_CFG.H) and that you have enabled uC/OS-11's memory-manage-
ment services (by setting 0S_MEM_ENto 1 in 0S_CFG.H). Of course, you must set 0S_MAX_MEM_PART to at
least 1. Findly, tasks that perform floating-point operations must be created by using
0STaskCreateExt() and setting the 0S_TASK_OPT_SAVE_FP option.

Figure 15.1 shows the programming model of an 80x86 processor running in real mode. The integer
registers are identical to those presented in Chapter 14. In fact, they are saved and restored using the
same technique. The only difference between this port and the one presented in Chapter 14 is that we
also need to save and restore the FPU registers, which is done by using the context-switch-hook func-
tions.

15.00 Development Tools

Aswith Chapter 14, | used the Borland C/C++ v4.51 compiler, a ong with the Borland Turbo Assembler
for porting and testing. This compiler generates reentrant code and provides in-line assembly language
instructions that can be inserted into C code. The compiler can be directed to generate code specifically

377

378 Chapter 15: 80x86 Port

to make use of the FPU. | tested the code on a 300MHz Pentium-11-based computer running the
Microsoft Windows 2000 operating system. In fact, | configured the compiler to generate a DOS execut-
able, which was run in a DOS window.

Finally, you can also adapt the port provided in this chapter to other 80x86 compilers aslong as they
generate real-mode code. You will most likely have to change some of the compiler options and assem-
bler directivesif you use a different development environment.

Table 15.1 shows the Borland C/C++ compiler v4.51 options (i.e., flags) supplied on the command
line. These settings are used to compile the port, as well as example code provided in Chapter 1.

Figure15.1 80x86 real-mode register model.

Integer FPU
Registers Registers
Sign
15 0 7978 64 63 0
AX AH AL R7 | Exponent Significand
BX BH BL General R6
Purpose
CX CH CcL Registers R5
DX DH DL R4
15 0 R3
BP) R2
Pointers
SP R1
15 0 RO
S Index 15 0 47 0
DI Registers Control Instruction Pointer
15 0 Status Data Pointer
Instruction

15 0
Cs
SS Segment
DS Registers
ES

Development Tools 379

Table 15.1 Compiler options used to compile port and
examples.

Option (i.e., setting) Description

-1 Generate 80186 code

B Compile and call assembler

“c Compiler to .0BJ

-d Merge duplicate strings

-£287 Use FPU hardware instructions

G Select code for speed

-1 Path to compiler includefilesis C: \BC45\INCLUDE
k- Standard stack frame

L Path to compiler librariesis C: \BC45\L1B
-ml Large-memory model

-N- Do not check for stack overflow
-n..\obj Path where to place object filesis . . \0BJ
-0 Optimize jumps

-0b Dead code elimination

“Oe Global register allocation

-0g Optimize globally

-0i Expand common intrinsic functionsin-line
0] Loop optimization

-0m Invariant code motion

-0p Copy propagation

“0v Induction variable

v Source debugging on

Vi Turn in-line expansion on

-Wpro Error reporting: call to functions with no prototype

-7 Suppress redundant loads

380 Chapter 15: 80x86 Port

Table 15.2 shows the Borland Turbo Assembler v4.0 options (i.e., flags) supplied on the command
line. These settings are used to assemble 0S_CPU_A. ASM.

Table 15.2 Assembler options used to assemble . ASMfiles.

Option (i.e., setting) Description

/MX Case sensitive on globals
/71 Full debugging info

/0 Generate overlay code

15.01 Directories and Files

The installation program provided on the companion CD installs the port for the Intel 80x86 (real mode,

large model with FPU support) on your hard disk. The port is found under the
\SOFTWARE\UCOS-TI\Ix86L-FP\BC45

directory. The directory name stands for Intel 80x86 real mode, Large model with hardware Float-

ing-Point instructions and is placed in the Borland C++ v4.5x directory. The source code for the port is

found in the following files: 0S_CPU.H, 0S_CPU_C.C, and 0S_CPU_A.ASM.

15.02 INCLUDES.H

Listing 15.1 shows the contents of INCLUDES.H for this 80x86 port. It is identical to the one used in
Chapter 14. INCLUDES.H is not really part of the port but is described here because it is needed to com-
pile the port files.

Listing15.1 INCLUDES.H.

#Finclude <stdio.h>
JFinclude <string.h>
fHinclude <{ctype.h>
#Finclude <stdlib.h>
#include <conio.h>
fHinclude <dos.h>

#Finclude <math.h>

#include <setjmp.h>

fFinclude "0s_cpu.h"
{Finclude "os_cfg.h"
JFinclude "ucos_ii.h"

fFinclude "pc.h"

0S cPU.H 381

15.03 0S_CPU.H

0S_CPU.H contains processor- and implementation-specific #idefines constants, macros, and typedefs.
0S_CPU. H for the 80x86 port are shown in Listing 15.2. Most of 0S_CPU.H isidentical to the 0S_CPU.H
of Chapter 14.

Listing15.2 0S_CPU.H.

fHifdef OS_CPU_GLOBALS
fkdefine OS_CPU_EXT

felse

fidefine OS_CPU_EXT extern
ffendif

typedef unsigned char BOOLEAN; (1)
typedef unsigned char INT8U;
typedef signed char INT8S;
typedef unsigned int INT16U;
typedef signed int INT16S;
typedef unsigned long INT32U;
typedef signed long INT32S;

typedef float FP32; (2)
typedef double FP64;

typedef unsigned int 0S_STK; (3)
typedef unsigned short OS_CPU_SR; (4)

15.03.01 0S_CPU. H, Data Types

L15.2(1) If you consult the Borland compiler documentation, you find that an int and a short are 16
bitsand a 1ong is 32 hits.

L15.2(2) Floating-point data types are included because it's assumed that you are performing float-
ing-point operations in your tasks. However, pC/OS-II itself doesn't make use of float-
ing-point numbers.

L15.2(3) A stack entry for the 80x86 processor running in real mode is 16-bits wide; thus, 0S_STK is
declared accordingly. The stack width doesn’t change because of this port. All task stacks
must be declared using 0S_STK as the datatype.

L15.2(4) The status register (also called the processor flags) on the 80x86 processor running in real
modeis 16-bitswide. The 0S_CPU_SR datatypeisused only if 0S_CRITICAL_METHOD isset to
3, which it isn’t for this port. | included the 0S_CPU_SR data type anyway, in case you use a
different compiler and need to use 0S_CRITICAL_METHOD #3.

382 Chapter 15: 80x86 Port

15.03.02 0S_CPU.H, OS_ENTER_CRITICAL(),and OS_EXIT_CRITICAL()

Listing 15.2 0S_CPU. H. (Continued)
jidefine OS_CRITICAL_METHOD 2 (5)

jtdefine OS_ENTER_CRITICAL() asm {PUSHF; CLI} (6)
jidefine OS_EXIT CRITICAL() asm POPF

L15.2(5) For this port, the preferred critical method is the second one because it's directly supported
by the compiler.

L15.2(6) OS_ENTER_CRITICAL() isimplemented by saving the interrupt-disable status onto the stack
and then disabling interrupts. This action is accomplished on the 80x86 by executing the
PUSHF instruction, followed by the CLI instruction. 0S_EXIT_CRITICAL() simply needs to
execute a POPF instruction to restore the original contents of the processor's SW register.

15.03.03 0S_CPU. H, Stack Growth

Listing 15.2 0S_CPU. H. (Continued)
#fdefine 0S_STK_GROWTH 1 (7)

L15.2(7) The stack on an 80x86 processor grows from high to low memory, which means that
0S_STK_GROWTH must be set to 1.

15.03.04 0S_CPU.H, OS_TASK_SW()

Listing 15.2 0S_CPU. H. (Continued)
Jkdefine uC0OS 0x80 (8)

jidefine OS_TASK_SW() asm INT uCOS (9)

L15.2(9) To switch context, 0S_TASK_SW() needs to simulate an interrupt. The 80x86 provides 256
software interrupts to accomplish the simulation. The ISR (also called the exception handler)
must vector to the assembly-language function 0SCtxSw() (see 0S_CPU_A.ASM). We thus
need to ensure that the pointer at vector 0x80 pointsto 0SCtxSw().

L15.2(8) | tested the code on aPC, and | decided to use interrupt number 128 (0x80).

0S cpU_Cc.c 383

15.03.05 0S_CPU. H, Tick Rate

| also decided (see Chapter 14 for additional details) to change thetick rate of the PC from the standard
18.20648Hz to 200Hz (i.e., 5ms between ticks).

Listing 15.2 0S_CPU. H. (Continued)
OS_CPU_EXT INT8U OSTickDOSCtr; (10)

L15.2(10) This statement declares an 8-bit variable (0STickD0OSCtr) that keeps track of the number of
times the ticker is called. Every 11th time, the DOS-tick handler is called. 0STickDOSCtr is
used in 0S_CPU_A.ASM and really only applies to a PC environment.

15.03.06 0S_CPU. H, Floating-Point Functions

This port defines three specia functions that are specific to the floating-point capabilities of the 80x86.
In other words, | had to add three new functions to the port to handle the floating-point hardware.

Listing 15.2 0S_CPU. H. (Continued)

void 0SFPInit(void); (11)
void OSFPRestore(void *pblk); (12)
void 0SFPSave(void *pblk); (13)

L15.2(11) A function has been added to initialize the floating-point handling mechanism described in
this port.

L15.2(12) 0SFPRestore() is called to retrieve the value of the floating-point registers when a task is
being switched in. OSFPRestore() is actualy written in assembly language and is thus
found in 0S_CPU_A.ASM.

L15.2(13) 0SFPSave() is called to save the current value of the floating-point registers when a
task is being suspended. 0SFPSave () isalso written in assembly language and found in
0S_CPU_A.ASM.

15.04 0S_CPU_C.C

As mentioned in Chapters 13 and 14, the uC/OS-I1 port requires that you write ten fairly simple C func-
tions:

0STaskStkInit() 0STaskStatHook()
0STaskCreateHook() 0STimeTickHook()
0STaskDeTHook () 0SInitHookBegin()
0STaskSwHook () 0SInitHookEnd()

0STaskIdleHook() 0STCBInitHook()

384 Chapter 15: 80x86 Port

HC/OS-1 itself only requires 0STaskStkInit(). The other nine functions must be declared but don’t
need to contain any code. However, this port uses 0STaskCreateHook(), 0STaskDelHook(),
0STaskSwHook (), and 0SInitHookEnd().

The ffdefine constant 0S_CPU_HOOKS_EN (see 0S_CFG. H) should be set to 1.

150401 OSTaskStkInit()

This function is called by 0STaskCreate() and 0STaskCreateExt() and is identica to the
0STaskStkInit() presented in Section 14.04.01. You might recall that 0STaskStkInit() iscalled to
initialize the stack frame of atask so that it looks as if an interrupt has just occurred and that al of the
processor-integer registers have been pushed onto it. Figure 15.2 (identical to Figure 14.3) shows what
0STaskStkInit() putson the stack of the task being created. Note that the diagram doesn’'t show the
stack frame of the code calling 0STaskStkInit() but rather the stack frame of the task being created.
Also, the stack frame only contains the contents of the integer registers and nothing about the floating
point registers. | discuss how we handle the FPU registers shortly.

Figure15.2 Stack frameinitialization with pdata passed

on the stack.
Low Memory
SimulatePUSH DS -—-—-- DS = Current DS «4—— Top-of-stack
SimulatePUSH ES -——-- ; ES = 0x4444
DI = 0x3333
S| = 0x2222
BP = 0x1111
Simulate PUSHA SP_= 0x0000
BX = 0xBBBB
DX_= 0xDDDD
CX = 0xCccce
> AX = OXAAMA Stack Growth
OFF task
Simulate Interrupt ————1 SEG task
> PSW = 0x0202
COFF task
. SEG task
Simulate Call to Task FE odat &
§ SEG pdata 44— ptos

High Memory

0S cpPU_Cc.c 385

For reference, Listing 15.3 shows the code for 0STaskStkInit(), which is identical to the one
shown in Chapter 14 (Listing 14.3).

Listing15.3 0S_CPU_C.C, 0STaskStkInit().

0S_STK *0STaskStkInit (void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT16U opt)

INTI6U *stk;

opt = opt;

stk = (INT16U *)ptos;

*stk-- = (INT16U)FP_SEG(pdata);
*stk-- = (INT16U)FP_OFF(pdata);
*stk-- = (INT16U)FP_SEG(task);
*stk-- = (INT16U)FP_OFF(task);
*stk-- = (INT16U)0x0202;

*stk-- = (INT16U)FP_SEG(task);
*stk-- = (INT16U)FP_OFF(task);
*stk-- = (INT16U)OxXAAAA;

*stk-- = (INT16U)0xCCCC;

*stk-- = (INT16U)0xDDDD;

*stk-- = (INT16U)OxBBBB;

*stk-- = (INT16U)0x0000;

*stk-- = (INT16U)0x1111;

*stk-- = (INT16U)0x2222;

*stk-- = (INT16U)0x3333;

*stk-- = (INT16U)0x4444;

*stk = _DS;

return ((0S_STK *)stk);

150402 OSFPInit()

0SFPInit() is caled by 0SInitHookEnd() when 0SInit() is done initidlizing pC/OS-I’s internal
structures. 0SFPInit() is basically used to initialize the floating-point context-switching mechanism
presented in this chapter. OSFPInit() assumes that you enabled pC/OS-1I's memory-management 15

386 Chapter 15: 80x86 Port

functions (i.e., you must set 0S_MEM_ENto 1in 0S_CFG.H). Thecodefor OSFPInit() isshowninListing
15.4.

Listing15.4 0S_CPU_C.C, OSFPInit().

ftdefine OS_NTASKS_FP (OS_MAX_TASKS + OS_N_SYS_TASKS - 1) (1)
ftdefine OS_FP_STORAGE_SIZE 128 (2)
static 0S_MEM *0SFPPartPtr; (3)

static INT32U OSFPPart[OS_NTASKS_FPI[OS_FP_STORAGE_SIZE / sizeof(INT32U)]1; (4)

void OSFPInit (void)
{
INT8U err;
fHif OS_TASK_STAT_EN
0S_TCB *ptch;

void *pblk;
ffendif
OSFPPartPtr = O0SMemCreate(&0SFPPart[0][0], (5)

0S_NTASKS_FP,
OS_FP_STORAGE_SIZE,
&err);

##f OS_TASK_STAT_EN && 0S_TASK_CREATE_EXT_EN

ptch = OSTCBPrioTb1[OS_STAT_PRIO]; (6)

ptch->0STCBOpt |= OS_TASK_OPT_SAVE_FP; (7)

pb1k = 0SMemGet (OSFPPartPtr, &err); (8)

if (pblk != (void *)0) { (9)
ptch->0STCBEXtPtr = pblk; (10)
0SFPSave(pblk); (11)

}

ffendif

}

L15.4(1) Although not actually part of 0SFPInit(), | defined this constant that is used to determine
how many storage buffers are needed to save FPU register values. In this case, | decided to
have as many buffers as | have tasks plus one for the statistic task as described below.

L15.4(2) The 80x86 FPU requires 108 bytes of storage. | decided to allocate 128 bytes for future
expansion. If you are tight on memory, you could save 20 bytes per task by setting this value
to 108.

L15.4(3)

L15.4(4)

L15.4(5)

L15.4(6)

L15.4(7)
L15.4(8)

L15.4(9)

0S cpU_c.c 387

We are using auC/OS-I1 memory partition for the storage of al the FPU contexts. 0SFPPartPtr
is a pointer to the partition created for this purpose. Because 0SFPPartPtr is declared
static, your application does not know it exists.

0SFPPart[][] isthe actua partition that holds the storage for al of the FPU registers of al
the tasks. Asyou can probably tell, you need to have at least

(OS_MAX_TASKS + 1) * 128

bytes of RAM (i.e., data space) for this partition. Because 0SFPPart[][] isdeclared static,
your application does not know it exists.

0SFPInit() tells uC/OS-11 about this partition. You might recall that 0SMemCreate() breaks
the partition into memory blocks (each of 128 bytes) and links these blocksin asingly linked
list. If an FPU storage block is needed, we simply need to call 0SMemGet () (discussed in
0STaskCreateHook()).

| decided to change the attributes of 0S_TaskStat () to alow it to perform floating-point math.
You might wonder why | do thisbecause 0S_TaskStat () doesnot perform any floating-point
operations. | did this because you might decide to extend the functionality of 0S_TaskStat()
through 0STaskStatHook() and possibly perform floating-point calculations. OSFPInit()
finds the pointer to the statistic task’s 0S_TCB.

The .0STCBOpt flag is set indicating that 0S_TaskStat() is atask that needs to save and
restore floating-point registers because UC/OS-I1 doesn’t set this option by default.

| get astorage buffer that holds the contents of the floating-point registersfor 0S_TaskStat()
when 0S_TaskStat () isswitched out.

It is always prudent to check for an invalid pointer.

L15.4(10) The pointer to the FPU storage areaiis saved in the 0S_TCB extension pointer, .0STCBEXtPtr.

This process allows the context-switch code to know where floating-point registers are saved.

L15.4(11) The function 0SFPSave() (see 0S_CPU_A.ASM) is called to store the current contents of the

FPU registers at the location to which pb1k points. It doesn't really matter what the FPU reg-
isters contain when we do this. The important thing to realize is that the FPU registers con-
tain valid values, whatever they are. 0SFPSave() is discussed in Section 15.05.05,
“OSFPSave()”.

You should be careful that your code doesn’'t generate any floating-point exceptions (e.g., divide by
zero) because uC/OS-11 will not do anything about them. Run-time exceptions can, however, be avoided
by adding range-testing code to your application. In fact, you should make it a practice to check for pos-
sible divide by zero and the like.

388 Chapter 15: 80x86 Port

150403 OSTaskCreateHook()

Listing 15.5 shows the code for 0STaskCreateHook (). Recall that 0STaskCreateHook() is called by
0S_TCBInit() [whichinturniscalled by 0STaskCreate() or 0STaskCreateExt()].

Listing15.5 0S_CPU_C.C, 0STaskCreateHook().

void 0STaskCreateHook (OS_TCB *ptcb)

{

INT8U err;
void *pblk;
if (ptcb->0STCBOpt & OS_TASK_OPT_SAVE_FP) { (1)
pblk = 0SMemGet (OSFPPartPtr, &err); (2)
if (pblk != (void *)0) { (3)
ptchb->0STCBExtPtr = pblk; (4)
OSFPSave(pblk); (5)
}
}
}
L15.5(1) If you create atask that performs floating-point calculations, you must set the 0S_TASK_0PT_

L15.5(2)

L15.5(3)
L15.5(4)
L15.5(5)

SAVE_FP bitinopt argument of 0STaskCreateExt (). Thisoptiontells0STaskCreateHook()
that the task uses the FPU, and thus we need to save and restore the values of these registers
during a context switch into or out of thistask.

Because we are creating a task that uses the FPU, we need to allocate storage for the FPU
registers.

Again, it'sagood ideato validate the pointer.

The pointer to the storage areais saved in the 0S_TCB of the task being created.

Again, the function 0SFPSave () (see 0S_CPU_A.ASM) iscdled to store the current contents of
the FPU registers at the location to which pb1k points. It doesn't really matter what the FPU reg-
isters contain when we do this. The important thing to realize is that the FPU registers contain
valid vaues, whatever they are. 0SFPSave () isdiscussed in Section 15.05.05, “OSFPSave()”.

Figure 15.3 shows the relationship between some of the data structures after 0STaskCreateHook()
has executed.

0S cpU_c.c 389

Figure15.3 Initialized stack and FPU register storage.

Low Memory

— > DS = Current DS
ES = 0x4444
D

0x3333

Sl = 0x2222
BP = 0Ox1111

SP = 0x0000
BX = 0xBBBB
DX = 0xDDDD
X = 0x000C
AX = OXAAAA Integer
OFF task Registers
oS _TCB SEG t ask

PSW = 0x0202

. OSTCBStkPtr @ OFF task
. OSTCBExtPtr @

SEG task

OFF pdat a

SEG pdat a

Task Stack

High Memory

Memory Block

from
L 5 /_ OSFPPart[][]

FPU

128 bytes Registers

390 Chapter 15: 80x86 Port

150404 0STaskDelHook()

You might recall that 0STaskDelHook() is called by 0STaskDel() to extend the functionality of
0STaskDel (). Because we allocated a memory block to hold the contents of the floating-point registers
when the task was created, we need to deall ocate the block when the task is deleted. Listing 15.6 shows
how 0STaskDeTHook () accomplishesthis action.

Listing15.6 0S_CPU_C.C, 0STaskDelHook ().

void 0STaskDelHook (OS_TCB *ptchb)
{

if (ptcb->0STCBOpt & OS_TASK OPT_SAVE FP) { (1)
if (ptcb->0STCBEXxtPtr != (void *)0) { (2)
O0SMemPut (OSFPPartPtr, ptcb->0STCBEXtPtr); (3)
}
}
}
L15.6(2)

L15.6(2) We first need to confirm that we allocated a memory block that was used for floating-point
context storage.

L15.6(3) Thememory block is returned to its proper memory partition.

150405 0STaskSwHook()

0STaskSwHook () is used to extend the functionality of the context-switch code. You might recall that
0STaskSwHook () is called by 0SStartHighRdy(), the task-level context-switch function 0SCtxSw(),
and the | SR context-switch function 0SIntCtxSw(). Listing 15.7 shows how 0STaskSwHook () isimple-
mented.

Listing15.7 0S_CPU_C.C, 0STaskSwHook ().

void O0STaskSwHook (void)
{

INT8U err;
void *pblk;
if (OSRunning = TRUE) { (1)
if (OSTCBCur->0STCBOpt & OS_TASK_OPT_SAVE_FP) { (2)
pblk = OSTCBCur->0STCBEXtPtr;
if (pblk != (void *)0) { (3)

0SFPSave(pblk); (4)

0S cpU_c.c 391

Listing15.7 0S_CPU_C.C, 0STaskSwHook (). (Continued)

if (OSTCBHighRdy->0STCBOpt & OS_TASK_OPT_SAVE_FP) { (5)
pblk = OSTCBHighRdy->0STCBExtPtr;

if (pblk != (void *)0) { (6)

OSFPRestore(pblk); (7)

}

L15.7(1)

L15.7(2)

L15.7(3)
L15.7(4)

L15.7(5)

L15.7(6)

L15.7(7)

When 0SStartHighRdy () calls 0STaskSwHook (), it is trying to restore the contents of the
floating-point registers of the highest priority task. When 0SStartHighRdy() is called,
OSRunning is FALSE indicating that we haven't started multitasking yet, and thus
0STaskSwHook () must not save the floating-point registers.

If 0STaskSwHook () is called by either 0SCtxSw() or 0SIntCtxSw(), then we are switching
out a task (i.e., suspending a lower priority task), and thus we check to see if this task was
created with the floating-point option.

Just to be sure, we also check the contents of the .0STCBExtPtr to ensure that the contents
do not contain a NULL pointer; it shouldn't.

As usual, we call 0SFPSave() to save the current contents of the floating-point registers to
the memory block allocated for that purpose.

We then check to see if the task to be switched in (i.e., the higher priority task) was created
with the floating-point option. In other words, the function checks whether you told
0STaskCreateExt() that thistask will be doing floating-point operations.

Just to be sure, we also check the contents of the .0STCBExtPtr to ensure that the contents
do not contain a NULL pointer.

The function 0SFPRestore() (see 0S_CPU_A.ASM) is called to restore the current contents of
the FPU registers from the location to which pblk points. 0SFPRe<Code>store() is dis-
cussed in Section 15.05.06, “OSFPRestore()”.

1504.06 0STaskIdleHook()
0S_CPU_C.C doesn't do anything in this function.

Listing15.8 0S_CPU_C.C, 0STaskIdleHook().

void OSTaskIdleHook (void)

{
}

392 Chapter 15: 80x86 Port

150407 OSTaskStatHook()

0S_CPU_C.C doesn’t do anything in this function. See Example 3 in Chapter 1 for an example on what
you can do with 0STaskStatHook ().

Listing15.9 0S_CPU_C.C, 0STaskStatHook().

void OSTaskStatHook (void)
{
}

150408 0STimeTickHook()
0S_CPU_C.C doesn’t do anything in this function.

Listing 15.10 0S_CPU_C.C, 0STimeTickHook().

void O0STimeTickHook (void)
{
}

150409 0SInitHookBegin()
0S_CPU_C.C doesn't do anything in this function.

Listing 15.11 0S_CPU_C.C, 0SInitHookBegin().

void 0SInitHookBegin (void)
{
}

15.04.10 0SInitHookEnd()

0SInitHookEnd() is called just before 0SInit() returns, which means that 0SInit() initialized
HC/OS-11's memory-partition services (which to use this port you should have set 0S_MEM_EN to 1 in
0S_CFG.H). 0SInitHook() simply calls 0SFPInit() (see Section 15.04.02, “OSFPInit()") which is
responsible for setting up the memory partition reserved to hold the contents of floating-point registers
for each task. The codefor 0SInitHookEnd() isshownin Listing 15.12.

Listing 15.12 0S_CPU_C.C, 0SInitHookEnd().

void O0SInitHookEnd (void)
{
OSFPINnit();

0S_CPU_A.ASM 393

150411 OSTCBInitHook()
0S_CPU_C.C doesn't do anything in this function.

Listing 15.13 0S_CPU_C.C, OSTCBInitHook().

void OSTCBInitHook (void)
{
}

15.05 0S_CPU_A.ASM

A pC/OS-1 port requires that you write four assembly-language functions:

0SStartHighRdy ()

0SCtxSw()

0SIntCtxSw()

0STickISR()
This port addstwo functionscalled 0SFPSave () and 0SFPRestore (), whicharefoundin 0S_CPU_A.ASM.
These functions are responsible for saving and restoring the contents of floating-point registers during a
context switch, respectively.

150501 O0SStartHighRdy()

This function is called by 0SStart () to start the highest priority task ready to run. It isidentical to the
0SStartHighRdy () presented in Chapter 14 (see Section 14.05.01, “0SStartHighRdy ()"). The code
isshown again in Listing 15.14 for your convenience.

Listing 15.14 0SStartHighRdy().
0SStartHighRdy PROC FAR

MOV AX, SEG _OSTCBHighRdy
MOV DS, AX

CALL FAR PTR _0STaskSwHook

MOV AL, 1
MOV BYTE PTR DS:_OSRunning, AL

LES BX, DWORD PTR DS:_OSTCBHighRdy
MOV SS, ES:[BX+2]
MOV SP, ES:[BX+0]

394 Chapter 15: 80x86 Port

Listing 15.14 0SStartHighRdy (). (Continued)

POP DS
POP ES
POPA
IRET

_0SStartHighRdy ENDP

15.05.02 0SCtxSw()

A task-level context switch is accomplished on the 80x86 processor by executing a software-interrupt
instruction. The ISR must vector to 0SCtxSw(). The sequence of events that leads uC/OS-11 to vector to
0SCtxSw() begins when the current task calls a service provided by pC/OS-11, which causes a higher
priority task to be ready to run. At the end of the service call, uC/OS-I1 calls the function 0S_Sched(),
which concludes that the current task is no longer the most important task to run. 0S_Sched() loads the
address of the 0S_TCB of the highest priority task into 0STCBHighRdy and then executes the soft-
ware-interrupt instruction by invoking the macro 0S_TASK_SW(). Note that the variable 0STCBCur
already contains a pointer to the current task’s 0S_TCB. The code for 0SCtxSw(), which isidentical to
the one presented in Chapter 14, is shown in Listing 15.15. 0SCtxSw() is discussed again because of
the added complexity of the floating-point context switch.

Listing 15.15 0SCtxSw().

_0SCtxSw PROC FAR (1)
PUSHA (2)
PUSH ES
PUSH DS

MOV AX, SEG _OSTCBCur
MOV DS, AX

LES BX, DWORD PTR DS:_OSTCBCur (3)
MOV ES:[BX+2], SS
MOV ES:[BX+0], SP

CALL FAR PTR _0STaskSwHook (4)

MOV AX, WORD PTR DS:_OSTCBHighRdy+2 (5)
MOV DX, WORD PTR DS:_OSTCBHighRdy

MOV WORD PTR DS:_OSTCBCur+2, AX

MOV WORD PTR DS:_OSTCBCur, DX

0S_CPU_A.ASM 395

Listing 15.15 0SCtxSw(). (Continued)
MOV AL, BYTE PTR DS:_OSPrioHighRdy (6)
MOV BYTE PTR DS:_OSPrioCur, AL

LES BX, DWORD PTR DS:_OSTCBHighRdy (7)
MOV SS, ES:[BX+2]
MOV SP, ES:[BX]

POP DS (8)
POP ES

POPA

IRET (9)

_0SCtxSw ENDP

Figure 15.4 shows the stack frames, as well as the FPU storage areas of the task being suspended
and the task being resumed.

Figure15.4 80x86 stack frames and FPU storage during a
task-level context switch.

osTCBOUr 0s _TCB OSTCBH ghRly | 0s _TCB
. OSTCBSt kPt 1 - v - OSTCBSt kPt T
NE) (6,
. OSTCBExt Pt r 80x86 CPU . OSTCBExt Pt r
.. (Real-Mode) -
r
AX
Low Memory B Low Memory
CX
D
Stack Growth % Stack Growth
="
_— DS —-—) . s —
E & E
PUSHA i I —— (N S PP 05
(2) PusHES = 5 (2] (8) 2 PP ES (7)
PUSH DS o o POPA
Iv), Iv),
CX CX
0S_TASK_SW) CFF task OFF fask
(INT 0x80) EG task EG task IRET (8)
PSW PSW
(1) 4 FPU
."/ '\
High Memory (4) (9 High Memory
csTCROUr-> CSTCREXtPLr | I P~ osTcaH ghRdy-> OSTCBExtPtr
FPU FPU

Storage Storage

396 Chapter 15: 80x86 Port

F15.4(1)

L15.15(1) On the 80x86 processor, the software-interrupt instruction forces the SW register to be
pushed onto the current task’s stack, followed by the return address (segment and then offset)
of the task that executed the INT instruction [i.e., the task that invoked 0S_TASK_SW()].

F15.4(2)
L15.15(2) The remaining CPU registers of the task to suspend are saved onto the current task’s stack.
F15.4(3)

L15.15(3) The pointer to the new stack frame is saved into the task’s 0S_TCB. This pointer is composed
of the stack segment (SS register) and the stack pointer (SP register). The 0S_TCB in
pC/OSHI is organized such that the stack pointer is placed at the beginning of the 0S_TCB
structure to make it easier to save and restore the stack pointer using assembly language.

F15.4(4)
F15.4(5)

L15.15(4) The task-switch hook 0STaskSwHook () is then called. Note that when 0STaskSwHook() is
called, 0STCBCur points to the current task’s 0S_TCB, while 0STCBHighRdy points to the new
task’'s 0S_TCB. You can thus access each task’'s 0S_TCB from 0STaskSwHook().
0STaskSwHook () first saves the current contents of the FPU registers into the storage area
allocated to the current task. This storage is pointed to by the . 0STCBExtPtr field of the cur-
rent task’s 0S_TCB. The FPU registers are then loaded with the values stored in the new task’s
storage area. Again, the .0STCBExtPtr field of the new task points to the storage area of the
floating-point registers. Of course, storage and retrieval is contingent on the . 0STCBExtPtr
of each task being non-NULL. However, it is quite possible for the new task to not require
floating-point and thus not have any storage area for it. In this case, 0STaskSwHook () does
not change the contents of the FPU.

L15.15(5) Upon returning from 0STaskSwHook (), 0STCBHighRdy is copied to OSTCBCur because the
new task is now also the current task.

L15.15(6) Also, 0SPrioHighRdy iscopied to 0SPrioCur for the same reason.
F15.4(6)

L15.15(7) At this point, 0SCtxSw() loads the processor’s registers with the new task’s context. This
action is done by retrieving the SS and SP registers from the new task’s 0S_TCB.

F15.4(7)
L15.15(8) Theremaining CPU registers are pulled from the new task’s stack.
F15.4(8)

L15.15(9) An IRET instruction is executed in order to load the new task’s program counter and status
word. After thisinstruction, the processor resumes execution of the new task.

Note that interrupts are disabled during 0SCtxSw() and also during execution of 0STaskSwHook ().

15.05.03 0SIntCtxSw()

0SIntCtxSw() is called by 0SIntExit() to perform a context switch from an ISR. Because
0SIntCtxSw() iscalled from an ISR, it is assumed that all the processor’s integer registers are already
properly saved onto the interrupted task’s stack.

0S_CPU_A.ASM 397

The code is shown in Listing 15.16 and is identical to the 0SIntCtxSw() presented in Chapter 14.

The floating-point registers are handled by 0STaskSwHook (). Figure 15.5 shows the context-switch pro-
cessfrom 0SIntCtxSw()’ s point of view.

Figure155 80x86 stack frames and FPU storage during an
interrupt-level context switch.

osTcBOUr 0s .TCB OSTCBH ghRdy 0s _TCB
. OSTCBSt kPt 1 - v.. P OSTCBSt kPt r
e .. Saved by ISR \\
.\\ (0 (4 "”, \l
80x86 CPU e
. OSTCBEX ., - . OSTCBEX
OSTCBEX Pt r “.. (Real-Mode) .- OSTCBExt Pt r
r 3
AX
Low Memory BX Low Memory
CX
D
Stack Growth % Stack Growth
="
—_— s e 1] A DS —
ES ES
D (1) [o 1] (5) ™ Dl
L ——p A ‘ PP DS
2 K o] (6) 2 PP ES (5
saved by ISR B B POPA
(1 & &
OFF task OFF task
IRET (6)
PSW P EPU - PSW
High Memory (27 3 High Memory
CSTCBQUr- > CSTCBEXtPtr | » "~ csTcaH ghRdy-> OSTCBEXt Ptr
FPU FPU
Storage Storage

Asin Chapter 14, |et’s assume that the processor receives an interrupt. Let's also suppose that inter-

rupts are enabled. The processor completes the current instruction and initiates an interrupt-handling
procedure.

F15.5(1) The 80x86 automatically pushes the processor’'s SW register, followed by the return address
of the interrupted task, onto the stack. The CPU then vectors to the proper ISR. pC/OS-1
requires that your 1SR begin by saving the rest of the processor’s integer registers. After the
registers are saved, UC/OS-11 requires that you also save the contents of the stack pointer in
the task’s 0S_TCB.

Your ISR then needs either to call 0SIntEnter() or to increment the global variable 0SIntNesting
by one. At this point, we can assume that the task is suspended and that we could, if needed, switchto a
different task.

The ISR can now start servicing the interrupting device and possibly make a higher priority task
ready. This action occursif the ISR sends a message to atask by calling 0SFTagPost (), 0SMboxPost (),
0SMboxPostOpt (), 0SQPostFront(), 0SQPost(), or 0SQPostOpt (). A higher priority task can also be
resumed if the ISR calls 0STaskResume(), 0STimeTick(), or 0STimeD1yResume().

15

398 Chapter 15: 80x86 Port

Assume that a higher priority task is made ready to run by the ISR. uC/OS-11 requires that an ISR
calls 0SIntExit() when it has finished servicing the interrupting device. 0SIntExit() basicaly tells
MC/OS-1I that it's time to return to task-level code if al nested interrupts have completed. In other
words, when 0SIntNesting is decremented to O by 0SIntExit(), 0SIntExit() returns to task-level
code.

When 0SIntExit() executes, it notices that the interrupted task is no longer the task that needs to
run because a higher priority task is now ready. In this case, the pointer 0STCBH1i ghRdy is made to point
to the new task’s 0S_TCB, and 0SIntExit() calls0SIntCtxSw() to perform the context switch.

Listing 15.16 0SIntCtxSw().
_0SIntCtxSw PROC FAR

s

CALL FAR PTR _0STaskSwHook (1)

MOV AX, SEG _OSTCBCur
MOV DS, AX

MOV AX, WORD PTR DS:_OSTCBHighRdy+2 (2)
MOV DX, WORD PTR DS:_OSTCBHighRdy

MOV WORD PTR DS:_OSTCBCur+2, AX

MOV WORD PTR DS:_OSTCBCur, DX

MOV AL, BYTE PTR DS:_OSPrioHighRdy (3)
MOV BYTE PTR DS:_OSPrioCur, AL

LES BX, DWORD PTR DS:_OSTCBHighRdy (4)
MOV SS, ES:[BX+2]
MOV SP, ES:[BX]

POP DS (5)
POP ES

POPA

IRET (6)

_0SIntCtxSw ENDP

F15.5(2)
F15.5(3)

L15.16(1) The first thing O0SIntCtxSw() does is call 0STaskSwHook(). Note that when
0STaskSwHook () iscdled, 0STCBCur pointsto the current task’'s0S_TCB, while 0STCBHighRdy
points to the new task’s 0S_TCB. You can thus access each task’'s 0S_TCB from

0S_CPU_A.ASM 399

0STaskSwHook (). Aspreviously discussed, 0STaskSwHook () first saves the current contents
of the FPU registersinto the storage area alocated to the current task. This storage is pointed
to by the .0STCBExtPtr field of the current task’s 0S_TCB. The FPU registers are then loaded
with the values stored in the new task’s storage area. Again, the .0STCBExtPtr field of the
new task points to the storage area of the floating-point registers.

L15.16(2) Upon returning from 0STaskSwHook (), OSTCBHighRdy is copied to 0STCBCur because the
new task is now also the current task.

L15.16(3) 0SPrioHighRdy isalso copied to OSPrioCur for the same reason.
F15.5(4)

L15.16(4) At this point, 0SCtxSw() loads the processor’s registers with the new task’s context. This
action is done by retrieving the SS and SP registers from the new task’s 0S_TCB.

F15.5(5)
L15.16(5) The remaining CPU registers are pulled from the stack.
F15.5(6)

L15.16(6) An IRET instruction is executed in order to load the new task’s program counter and status
word. After thisinstruction, the processor resumes execution of the new task.

Note that interrupts are disabled during 0SIntCtxSw() and also during execution of
0STaskSwHook ().

15.05.04 0STickISR()

As mentioned in Section 15.03.05, “0S_CPU.H, Tick Rate’, the tick rate of an RTOS should be set
between 10 and 100Hz. On the PC, however, the ticker occurs every 54.93ms (18.20648Hz) and is
obtained by a hardware timer that interrupts the CPU. Recall that | reprogrammed the tick rate to 200Hz
because it was a multiple of 18.20648Hz. The ticker on the PC is assigned to vector 0x08, but pC/OS-11
redefined it so that it vectors to 0STickISR() instead. Because of this change, the PC's tick handler is
saved [see PC.C, PC_DOSSaveReturn()] in vector 129 (0x81). To satisfy DOS, however, the PC's han-
dier is caled every 54.93ms. 0STickISR() for this port is identical to the 0STickISR() presented in
Section 14.05.04, “0ST1ickISR()”, and thus there is no need to repeat the description here. | did, how-
ever, include the code in Listing 15.17 for your convenience.

Listing 15.17 0STickISR().
_O0STickISR PROC FAR

PUSHA
PUSH ES
PUSH DS

MOV AX, SEG(_0SIntNesting)
MOV DS, AX
INC BYTE PTR DS:_0SIntNesting

CMP BYTE PTR DS:_0OSIntNesting, 1

400 Chapter 15: 80x86 Port

Listing 15.17 0STickISR(). (Continued)

JNE SHORT _OSTickISR1

MOV AX, SEG(_OSTCBCur)

MOV DS, AX

LES BX, DWORD PTR DS:_OSTCBCur
MOV ES:[BX+2], SS

MOV ES:[BX+0], SP

s

_OSTickISRL:
MOV AX, SEG(_OSTickDOSCtr)
MOV DS, AX
DEC BYTE PTR DS:_0STickDOSCtr
CMP BYTE PTR DS:_0STickDOSCtr, O
JNE SHORT _OSTickISR2
MOV BYTE PTR DS:_0STickDOSCtr, 11
INT 081H
JMP SHORT _OSTickISR3
_0STickISRZ:
MOV AL, 20H
MOV DX, 20H
ouT DX, AL
_0OSTickISR3:

CALL FAR PTR _OSTimeTick

CALL ~ FAR PTR _OSIntExit

POP DS
POP ES
POPA
IRET

s

_0STickISR ENDP

15.05.05 OSFPSave()

0SFPSave() is not normally part of a uC/OS-1I port. OSFPSave() basically takes the contents of the
floating-point registers and saves them at the address passed to 0SFPSave (). 0SFPSave() iscalled from
C but is written in assembly language because the function must execute an FPU instruction that is not

0S_CPU_A.ASM 401

available from C. 0SFPSave() is called by the C functions 0SFPInit(), 0STaskCreateHook(), and
0STaskSwHook () asfollows

0SFPSave((void *pblTk);

where pb1k is the address of a storage area large enough to hold the FPU context and must be at least

108 bytes. Listing 15.18 shows the code for 0SFPSave ().

Listing 15.18 0SFPSave().

_0SFPSave PROC
PUSH
MOV
PUSH
PUSH
LES
FSAVE
POP
POP
POP

RET

_0SFPSave ENDP

FAR

BP
BP
ES
BX

BX,

ES

BX
ES
BP

,SP

DWORD PTR [BP+6]

:[BX]

(1)

(2)

(3)

(4)

(5)

L15.18(1) 0SFPSave() saves integer registers onto the current task’s stack because they are needed by

this function.

L15.18(2) The pointer passed to 0SFPSave () asan argument isloaded into ES: BX.
L15.18(3) The FPU instruction FSAVE is executed. Thisinstruction saves the whole context of the FPU

(108 bytes worth) at the address found in ES : BX.
L15.18(4) The temporary registers are retrieved from the stack.

L15.18(5) 0SFPSave() returnstoits caller.

15.05.06 OSFPRestore()

0SFPRestore() isaso not normally part of a uC/OS-11 port. 0SFPRestore() basicaly loads the FPU
registers with the contents of a memory buffer pointed to by the address passed to 0SFPRestore().

0SFPRestore() iscaled from C but iswritten in assembly language because the function must execute

402 Chapter 15: 80x86 Port
an FPU instruction that is not available from C. 0SFPRestore() isonly called by 0STaskSwHook () as
follows

OSFPRestore(void *pblk);

where pb1k is the address of a storage area large enough to hold the FPU context and must be at least
108 bytes. Listing 15.19 shows the code for 0SFPRestore().

Listing 15.19 0SFPRestore().
_OSFPRestore PROC FAR

PUSH BP (1)
MOV BP,SP

PUSH ES

PUSH BX

LES BX, DWORD PTR [BP+6] (2)
FRSTOR ES:[BX] (3)
POP BX (4)
POP ES

POP BP

RET (5)

_0OSFPRestore ENDP

L15.19(1) OSFPRestore() savesinteger registers onto the current task’s stack because they are needed
by this function.

L15.19(2) The pointer passed to 0SFPRestore() asan argument isloaded into £S:BX.

L15.19(3) The FPU instruction FRSTOR is executed. Thisinstruction loads the FPU with the contents of
the memory location pointed to by ES:BX.

L15.19(4) The temporary registers are retrieved from the stack.
L15.19(5) 0SFPRestore() returnstoitscaller.

15.06 Memory Usage

The only code that has changed in this chapter from the code provided in Chapter 14 is0S_CPU_A.ASM,
0S_CPU_C.C, and 0S_CPU.H. Thesefilesadd only an additional 164bytes of code space (ROM).

Memory Usage 403

You must include the code for 0STaskCreateExt () (set 0S_TASK_CREATE_EXT to 1in 0S_CFG.H) and
the memory-management services (set 0S_MEM_EN to 1 in 0S_CFG.H) because this port does not work
without them.

With respect to data space, this port requires a memory buffer of 128 bytes (although we only need
108 bytes) for each task that performs floating-point operations.

Note: The spreadsheet for this port is found on the companion CD; see:
\SOFTWARENUCOS-TI\NIx86L-FP\BC45\DOC\80x86L-FP-ROM-RAM. XLS

You need Microsoft Excel for Office 2000 (or higher) to use thisfile. The spreadsheet allows you
to do what-if scenarios based on the options you select. You can change the configuration values
(in red) and see how they affect uC/OS-11's ROM and RAM usage on the 80x86. For the 22?_EN
values, you must use either O or 1.

Aswith Chapter 14, | set up the Borland compiler to generate the fastest code. The number of bytes
shown are not meant to be accurate but are simply provided to give you a relative idea of how much
code space each of the uC/OS-11 group of services requires.

The spreadsheet also shows you the difference in code size based on the value of 0S_ARG_CHK_EN in
your 0S_CFG.H. You don't need to change the value of 0S_ARG_CHK_EN to see the difference.

The Data column is not as straightforward. Notice that the stacks for both the idle task and the statis-
tics task have been set to 1,024 bytes (1KB) each. Based on your own requirements, these numbers
might be higher or lower. As a minimum, pC/OS-11 requires about 3,500 bytes of RAM for uC/OS-l|
internal data structures if you configure the maximum number of tasks (62 application tasks). | added
an entry that specifies the number of tasks that can do floating-point operations. Remember that each
such task requires a buffer of 128 bytes. One buffer is always allocated because | changed the statistic
task to allow floating-point operations.

If you use an 80x86 processor, you will most likely not be too restricted with memory, and thus
HC/OS-1 will most likely not be the largest user of memory.

404 Chapter 15: 80x86 Port

Chapter 16

LC/OS-|| Reference Manual

This chapter provides a reference to uC/OS-I1 services. Each of the user-accessible kernel services is
presented in alphabetical order. The following information is provided for each of the services:

» A brief description

» Thefunction prototype

» Thefilename of the source code

* Thedefine constant needed to enable the code for the service
» A description of the arguments passed to the function

* A description of the returned value(s)

» Specific notes and warnings on using the service

* One or two examples of how to use the function

405

406 Chapter 16: pC/OS || Reference Manual

OS_ENTER_CRITICALC()
OS_EXIT_CRITICAL()

Chapter File Called from Code enabled by
3 0S_CPU.H Task or ISR N/A

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() are macros used to disable and enable, respectively,
the processor’s interrupts.

Arguments

none

Returned Values
none

Notes/Warnings

1. These macros must be used in pairs.

2. If OS_CRITICAL_METHOD isset to 3, your code is assumed to have allocated local storage for a vari-
able of type 0S_CPU_SR, whichiscalled cpu_sr, asfollows

JHif OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
0S_CPU_SR cpu_sr;
#endif
Example

void TaskX(void *pdata)

{

fFif OS_CRITICAL_METHOD = 3
0S_CPU_SR cpu_sr;

frendi f

for (;;) {
OS_ENTER_CRITICAL(); /* Disable interrupts */

. /* Access critical code */
OS_EXIT_CRITICAL(); /* Enable interrupts 7/

0SFlagAccept() 407

OSFlagAccept()

OS_FLAGS 0SFlagAccept(OS_FLAG_GRP *pgrp,
OS_FLAGS flags,
INT8U wait_type,
INT8U *err);

Chapter File Called from Code enabled by
9 0S_FLAG.C Task OS_FLAG_EN && OS_FLAG_ACCEPT_EN

0SFlagAccept () allowsyou to check the status of a combination of bitsto be either set or cleared in an
event flag group. Your application can check for any hit to be set/cleared or all bits to be set/cleared.
This function behaves exactly as 0SFl1agPend() does, except that the caller does NOT block if the
desired event flags are not present.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when
the event flag group is created [see 0SF1agCreate()].

flags isabit pattern indicating which bit(s) (i.e., flags) you wish to check. The bits you want

are specified by setting the corresponding bitsin f1ags.
wait_type specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared.
You can specify the following arguments:

0S_FLAG_WAIT_CLR_ALL You check all bitsin f1ags to be clear (0)
0S_FLAG_WAIT_CLR_ANY You check any hit in flags to be clear (0)
OS_FLAG_WAIT_SET_ALL You check all bitsin f1ags to be set (1)
OS_FLAG_WAIT_SET_ANY You check any bit in flags to be set (1)

You can add 0S_FLAG_CONSUME if you want the event flag(s) to be
consumed by the call. For example, to wait for any flag in agroup and
then clear the flags that are present, set wait_type to

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

err apointer to an error code and can be any of the following:
0S_NO_ERR No error
OS_ERR_EVENT_TYPE You are not pointing to an event flag group
0S_FLAG_ERR_WAIT_TYPE You didn’t specify aproper wait_type argument.
0S_FLAG_INVALID_PGRP You passed a NULL pointer instead of the event flag
handle.
0S_FLAG_ERR_NOT_RDY The desired flags for which you are waiting are not
available.
Returned Values

The state of the flagsin the event flag group.

408 Chapter 16: pC/OS || Reference Manual

Notes/Warnings

1. Theevent flag group must be created before it is used.
2. Thisfunction does not block if the desired flags are not present.

Example

jidefine ENGINE_OIL_PRES_OK 0x01
jtdefine ENGINE_OIL_TEMP_OK 0x02
fidefine ENGINE_START 0x04

0S_FLAG_GRP *EngineStatus;

void Task (void *pdata)
{
INT8U err;
O0S_FLAGS value;

pdata = pdata;
for (;;) f
value = OSFlagAccept(EngineStatus,
ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK,
O0S_FLAG_WAIT_SET_ALL,
derr);
switch (err) f{
case 0OS_NO_ERR:
/* Desired flags are available */
break;

case OS_FLAG_ERR_NOT_RDY:
/* The desired flags are NOT available */
break;

0SFlagCreate() 409

OSFTagCreate()
0S_FLAG_GRP *0SFTagCreate(0OS_FLAGS flags, INT8U *err);
Chapter File Called from Code enabled by
9 0S_FLAG.C Task or startup code OS_FLAG_EN

0SFlagCreate() isused to create and initialize an event flag group.

Arguments
flags contains the initial value to store in the event flag group.
err isapointer to avariable that is used to hold an error code. The error code can be one of
the following:
0S_NO_ERR if the call is successful and the event flag group has
been created.
0S_ERR_CREATE_ISR if you attempt to create an event flag group from an
ISR.
0S_FLAG_GRP_DEPLETED if no more event flag groups are available. You need to
increase the value of 0S_MAX_FLAGS in 0S_CFG.H.
Returned Values

A pointer to the event flag group if a free event flag group is available. If no event flag group is avail-
able, 0SFT1agCreate() returnsaNULL pointer.

Notes/Warnings
1. Event flag groups must be created by this function before they can be used by the other services.

Example
OS_FLAG_GRP *EngineStatus;

void main (void)
{
INT8U err;

0SInit(); /* Initialize pC/0S-I1 */

/* Create a flag group containing the engine’s status */
EngineStatus = 0SFlagCreate(0x00, &err);

0SStart(); /* Start Multitasking */

410 Chapter 16: pC/OS || Reference Manual

OSFlagDel ()

OS_FLAG_GRP *0SF1agDel(OS_FLAG_GRP *pgrp, INT8U opt, INT8U *err);

Chapter

File Called from Code enabled by

9

0S_FLAG.C Task O0S_FLAG_EN and OS_FLAG_DEL_EN

0SF1agDel () isused to delete an event flag group. This function is dangerous to use because multiple
tasks could be relying on the presence of the event flag group. You should always use this function with
great care. Generally speaking, before you delete an event flag group, you must first delete all the tasks
that access the event flag group.

Arguments
pgrp is a pointer to the event flag group. This pointer is returned to your application when
the event flag group is created [see 0SFTagCreate()].
opt specifies whether you want to delete the event flag group only if there are no pending
tasks (0S_DEL_NO_PEND) or whether you always want to delete the event flag group
regardless of whether tasks are pending or not (0S_DEL_ALWAYS). Inthis case, all pend-
ing task are readied.
err isapointer to avariable that is used to hold an error code. The error code can be one of
the following:
0S_NO_ERR if the call is successful and the event flag group has
been deleted.
0S_ERR_DEL_ISR if you attempt to delete an event flag group from an
ISR.
0S_FLAG_INVALID_PGRP if you passaNULL pointer in pgrp.
OS_ERR_EVENT_TYPE if pgrp isnot pointing to an event flag group.
0S_ERR_INVALID_OPT if you do not specify one of the two options mentioned
inthe opt argument.
0S_ERR_TASK_WAITING if one or more task are waiting on the event flag group
and you specify 0S_DEL_NO_PEND.
Returned Values

A NULL pointer if the event flag group is deleted or pgrp if the event flag group is not deleted. Inthe
latter case, you need to examine the error code to determine the reason for the error.

0SFlagbel() 411

Notes/Warnings

1. You should usethis call with care because other tasks might expect the presence of the event flag
group.

2. Thiscall can potentially disable interrupts for along time. The interrupt-disable timeis directly
proportiona to the number of tasks waiting on the event flag group.

Example

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *pdata)
{
INT8U err;
0S_FLAG_GRP *pgrp;

pdata = pdata;
while (1) {

pgrp = 0SFlagDel(EngineStatusFlags, OS_DEL_ALWAYS, &err)
if (pgrp = (0S_FLAG_GRP *)0) {
/* The event flag group was deleted */

412 Chapter 16: pC/OS I Reference Manual

OSFTagPend()

0S_FLAGS OSFlagPend(OS_FLAG_GRP *pgrp,
OS_FLAGS flags,
INT8U wait_type,
INTI16U timeout,

INT8U *err);

Chapter

File

Called from Code enabled by

9

0S_FLAG.C

Task only 0S_FLAG_EN

0SFlagPend() isused to have atask wait for a combination of conditions (i.e., events or bits) to be set
(or cleared) in an event flag group. You application can wait for any condition to be set or cleared or for
all conditionsto be set or cleared. If the events that the calling task desires are not available, then the
calling task is blocked until the desired conditions are satisfied or the specified timeout expires.

Arguments
parp

flags

wait_type

err

is a pointer to the event flag group. This pointer is returned to your application when
the event flag group is created [see 0SF1agCreate()].

isabit pattern indicating which bit(s) (i.e., flags) you wish to check. The bits you want
are specified by setting the corresponding bitsin f1ags.

specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared.
You can specify the following arguments:

OS_FLAG_WAIT_CLR_ALL
OS_FLAG_WAIT_CLR_ANY
OS_FLAG_WAIT_SET_ALL
OS_FLAG_WAIT_SET_ANY

You check all bitsin f1ags to be clear (0)
You check any bit in f1ags to be clear (0)
You check all bitsin f1ags to be set (1)
You check any bit in flags to be set (1)

You can also specify whether the flags are consumed by adding 0S_FLAG_CONSUME to
thewait_type. For example, to wait for any flag in a group and then clear the flags
that satisfy the condition, set wait_type to

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME
is apointer to an error code and can be:

0S_NO_ERR
O0S_ERR_PEND_ISR

O0S_FLAG_INVALID_PGRP

O0S_ERR_EVENT_TYPE
O0S_TIMEOUT

OS_FLAG_ERR_WAIT_TYPE

No error.

You try to call 0SF1agPend from an ISR, which is not
allowed.

You pass a NULL pointer instead of the event flag
handle.

You are not pointing to an event flag group.

Theflags are not available within the specified amount
of time.

You don't specify aproper wait_type argument.

0SFlagPend() 413

Returned Value

The value of the flagsin the event flag group after they are consumed (if 0S_FLAG_CONSUME is specified)
or the state of the flags just before 0SF1agPend() returns. 0SF1agPend() returns O if atimeout occurs.

Notes/Warnings
1. Theevent flag group must be created beforeit’s used.

Example

jidefine ENGINE_OIL_PRES OK 0x01
jidefine ENGINE OIL TEMP 0K 0x02
jtdefine ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *pdata)
{
INT8U err;
0S_FLAGS value;

pdata = pdata;
for (;;5) f
value = 0SFlagPend(EngineStatus,
ENGINE_OTL_PRES_OK + ENGINE_OIL_TEMP_OK,
O0S_FLAG_WATT_SET_ALL + OS_FLAG_CONSUME,
10,
derr);
switch (err) {
case 0OS_NO_ERR:
/* Desired flags are available */
break;

case OS_TIMEQUT:
/* The desired flags were NOT available before 10 ticks occurred */
break;

414 Chapter 16: pC/OS|I Reference Manual

OSFTagPost()

OS_FLAGS OSFlagPost(OS_FLAG_GRP *pgrp,
OS_FLAGS flags,

INT8U opt,
INT8U *err);
Chapter File Called from Code enabled by
9 0S_FLAG.C Task or ISR OS_FLAG_EN

You set or clear event flag bits by calling 0SFlagPost (). The bits set or cleared are specified in a bit
mask. 0SFlagPost () readies each task that hasits desired bits satisfied by this call. You can set or clear

bits that are already set or cleared.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when

the event flag group is created [see 0SFTagCreate()].

flags specifieswhich bits you want set or cleared. If opt iSOS_FLAG_SET, each bitthat issetin
f1ags setsthe corresponding bit in the event flag group. For exampleto set bits 0, 4, and 5,
you set flags to 0x31 (note, bit O is the least significant bit). If opt is 0S_FLAG_CLR,
each bit that is set in flags will clear s the corresponding bit in the event flag group. For
exampleto clear bits 0, 4, and 5, you specify fl1ags as 0x31 (note, bit 0 isthe least sig-

nificant bit).
opt indicates whether the flags are set (0S_FLAG_SET) or cleared (0S_FLAG_CLR).
err isapointer to an error code and can be:

0S_NO_ERR The call is successful.

OS_FLAG_INVALID_PGRP
OS_ERR_EVENT_TYPE
OS_FLAG_INVALID_OPT

Returned Value
The new value of the event flags.

Notes/Warnings

You pass a NULL pointer.

You are not pointing to an event flag group.

You specify an invalid option.

1. Event flag groups must be created before they are used.

2. Theexecution time of thisfunction depends on the number of taskswaiting on the event flag group.

However, the execution time is deterministic.
3. Theamount of timeinterrupts are disabled a so depends on the number of tasks waiting on the

event flag group.

0SFlagPost() 415

Example

jidefine ENGINE_OIL PRES 0K 0x01
jidefine ENGINE_OIL_TEMP_OK 0x02
Jfdefine ENGINE_START 0x04

OS_FLAG_GRP *EngineStatusFlags;

void TaskX (void *pdata)
{
INT8U err;

pdata = pdata;
for (5;5) f

err = OSFlagPost(EngineStatusFlags, ENGINE_START, OS_FLAG_SET, &err);

416 Chapter 16: pC/OS || Reference Manual

OSFlagQuery()
OS_FLAGS 0SFlagQuery(0S_FLAG_GRP *pgrp, INT8U *err);
Chapter File Called from Code enabled by
9 0S_FLAG.C Task or ISR 0S_FLAG_EN && OS_FLAG_QUERY_EN

0SFlagQuery() is used to obtain the current value of the event flagsin agroup. At thistime, thisfunc-
tion does not return the list of tasks waiting for the event flag group.

Arguments
pgrp is a pointer to the event flag group. This pointer is returned to your application when
the event flag group is created [see 0SF1agCreate()].
err isapointer to an error code and can be:
0S_NO_ERR The call is successful.
OS_FLAG_INVALID_PGRP You pass aNULL pointer.
0S_ERR_EVENT_TYPE You are not pointing to an event flag groups.
Returned Value

The state of the flagsin the event flag group.

Notes/Warnings

1. Theevent flag group to query must be created.
2. You can cdl thisfunction from an ISR.

Example
OS_FLAG_GRP *EngineStatusFlags;

void Task (void *pdata)
{
0S_FLAGS flags;
INT8U err;

pdata = pdata;
for (5;5) f

flags = 0SFlagQuery(EngineStatusFlags, &err);

osinit() 417

0SInit()
void 0SInit(void);
Chapter File Called from Code enabled by
3 0S_CORE.C Startup code only N/A

0SInit() initializes uC/OS-11 and must be called prior to calling 0SStart (), which actualy starts mul-
titasking.

Arguments

none

Returned Values

none

Notes/Warnings
1. 0SInit() must becaled before 0SStart().

Example

void main (void)
{

0SInit(); /* Initialize uC/0S-IT */

0SStart(); /* Start Multitasking */

418 Chapter 16: pC/OS || Reference Manual

0SIntEnter()

void OSIntEnter(void);

Chapter File Called from Code enabled by
3 0S_CORE.C ISR only N/A

0SIntEnter() notifies puC/OS-11 that an I SR is being processed, which allows pC/OS-1 to keep track of
interrupt nesting. 0SIntEnter() isused in conjunction with 0STntExit().

Arguments
none

Returned Values
none

Notes/Warnings

1. Thisfunction must not be called by task-level code.

2. You canincrement the interrupt-nesting counter (0SIntNesting) directly inyour ISR to avoid the
overhead of the function call/return. It's safeto increment 0SIntNesting in your ISR because
interrupts are assumed to be disabled when 0SIntNesting needsto be incremented.

3. You are dlowed to nest interrupts up to 255 levels deep.

Example 1
(Intel 80x86, real mode, large model)

Use 0SIntEnter() for backward compatibility with pC/OS.

ISRx PROC FAR

PUSHA ; Save interrupted task's context
PUSH ES

PUSH DS

CALL FAR PTR _OSIntEnter ; Notify pC/0S-II of start of ISR
POP DS ; Restore processor registers

POP ES

POPA

IRET ; Return from interrupt

ISRx ENDP

0SIntEnter() 419

Example 2
(Intel 80x86, real mode, large model)

ISRx PROC FAR

PUSHA ; Save interrupted task's context
PUSH ES
PUSH DS

MOV AX, SEG(_OSIntNesting) ; Reload DS
MOV DS, AX

INC BYTE PTR _OSIntNesting ; Notify uC/0S-II of start of ISR

POP DS ; Restore processor registers

POP ES
POPA
IRET ; Return from interrupt

ISRx ENDP

420 Chapter 16: pC/OS || Reference Manual

OSIntExit()

void OSIntExit(void);

Chapter File Called from Code enabled by
3 0S_CORE.C ISR only N/A

0SIntExit() notifies uC/OS 1 that an ISR is complete, which alows pC/OS-I1 to keep track of inter-
rupt nesting. 0SIntExit() isused in conjunction with 0SIntEnter(). When the last nested interrupt
completes, 0SIntExit() determinesif ahigher priority task isready to run, in which case, the interrupt
returns to the higher priority task instead of the interrupted task.

Arguments
none

Returned Value

none

Notes/Warnings

1. Thisfunction must not be called by task-level code. Also, if you decided to increment
0SIntNesting, you still need to call 0SIntExit().

Example
(Intel 80x86, real mode, large model)

ISRx PROC FAR

PUSHA ; Save processor registers
PUSH ES
PUSH DS

CALL FAR PTR _O0SIntExit ; Notify uC/0S-II of end of ISR

POP DS ; Restore processor registers
POP ES

POPA

IRET ; Return to interrupted task

ISRx ENDP

0SMboxAccept () 421

OSMboxAccept()

void *OSMboxAccept(OS_EVENT *pevent);

Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S_MBOX_EN && 0S_MBOX_ACCEPT_EN

0SMboxAccept() alows you to see if a message is available from the desired mailbox. Unlike
0SMboxPend (), 0SMboxAccept () does not suspend the caling task if a message is not available. In
other words, 0SMboxAccept () is non-blocking. If a message is available, the message is returned to
your application, and the content of the mailbox is cleared. This call istypicaly used by 1SRs because
an ISR is not allowed to wait for a message at a mailbox.

Arguments

pevent is apointer to the mailbox from which the message is received. This pointer is returned
to your application when the mailbox is created [see 0SMboxCreate()].

Returned Value
A pointer to the message if one isavailable; NULL if the mailbox does not contain a message.

Notes/Warnings
1. Mailboxes must be created before they are used.

Example
OS_EVENT *CommMbox ;

void Task (void *pdata)
{

void *msg;

pdata = pdata;
for (;;) {
msg = 0SMboxAccept(CommMbox); /* Check mailbox for a message */
if (msg != (void *)0) {
/* Message received, process */

} else {
/* Message not received, do .. */
/* .. something else */

422 Chapter 16: pC/OS|I Reference Manual

OSMboxCreate()
OS_EVENT *0OSMboxCreate(void *msg);
Chapter File Called from Code enabled by
10 0S_MBOX.C Task or startup code 0S_MBOX_EN

O0SMboxCreate() creates and initializes a mailbox. A mailbox alows tasks or ISRs to send a
pointer-sized variable (message) to one or more tasks.

Arguments

msg is used to initialize the contents of the mailbox. The mailbox is empty when msg isa
NULL pointer. The mailbox initially contains a message when msg is non-NULL.

Returned Value

A pointer to the event control block allocated to the mailbox. If no event control block is available,
0SMboxCreate() returnsaNULL pointer.

Notes/Warnings
1. Mailboxes must be created before they are used.

Example
OS_EVENT *CommMbox ;

void main (void)
{

0SInit(); /* Initialize uC/0S-1I */

CommMbox = 0SMboxCreate((void *)0); /* Create COMM mailbox */
0SStart(); /* Start Multitasking */

0SMboxDel() 423

0SMboxDe1 ()

OS_EVENT *0SMboxDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

Chapter File Called from Code enabled by

10 0S_MBOX.C Task 0S_MBOX_EN and 0S_MBOX_DEL_EN

0SMboxDe () is used to delete a message mailbox. This function is dangerous to use because multiple
tasks could attempt to access a deleted mailbox. You should always use this function with great care.
Generally speaking, before you delete a mailbox, you must first delete all the tasks that can access the
mailbox.

Arguments

pevent is a pointer to the mailbox. This pointer is returned to your application when the mail-
box is created [see 0SMboxCreate()].

opt specifies whether you want to delete the mailbox only if there are no pending tasks

(OS_DEL_NO_PEND) or whether you aways want to delete the mailbox regardless of
whether tasks are pending or not (0S_DEL_ALWAYS). In this case, all pending task are

readied.
err isapointer to avariable that is used to hold an error code. The error code can be one of
the following:
0S_NO_ERR if the call is successful and the mailbox has been
deleted.
0OS_ERR_DEL_ISR if you attempt to delete the mailbox from an ISR.
0S_ERR_INVALID_OPT if you don’t specify one of the two options mentioned
inthe opt argument.
0S_ERR_TASK_WAITING One or more tasks is waiting on the mailbox.
OS_ERR_EVENT_TYPE if pevent isnot pointing to a mailbox.
0S_ERR_PEVENT_NULL if no more 0S_EVENT structures are available.
Returned Value

A NULL pointer if the mailbox is deleted or pevent if the mailbox is not deleted. In the latter case, you
need to examine the error code to determine the reason.

Notes/Warnings

1. You should usethiscall with care because other tasks might expect the presence of the mailbox.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends
on the number of tasks that are waiting on the mailbox.

3. 0SMboxAccept() callersdo not know that the mailbox has been deleted.

424 Chapter 16: pC/OS|I Reference Manual

Example
O0S_EVENT *DispMbox;

void Task (void *pdata)
{
INT8U err;

pdata = pdata;
while (1) {

DispMbox = 0SMboxDel (DispMbox, OS_DEL_ALWAYS, &err);
if (DispMbox = (OS_EVENT *)0) {
/* Mailbox has been deleted */

0SMboxPend() 425

0SMboxPend ()

void *0SMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

Chapter File Called from Code enabled by
10 0S_MBOX.C Task only 0S_MBOX_EN

0SMboxPend () is used when atask expects to receive a message. The message is sent to the task either
by an ISR or by another task. The message received is a pointer-sized variable, and its useis application
specific. If amessage is present in the mailbox when 0SMboxPend () is called, the message is retrieved,
the mailbox is emptied, and the retrieved message is returned to the caller. If no message is present in
the mailbox, 0SMboxPend () suspends the current task until either a message is received or a user-speci-
fied timeout expires. If amessage is sent to the mailbox and multiple tasks are waiting for the message,
UC/OS-11 resumes the highest priority task waiting to run. A pended task that has been suspended with
0STaskSuspend() can receive a message. However, the task remains suspended until it is resumed by
calling 0STaskResume ().

Arguments

pevent is apointer to the mailbox from which the message is received. This pointer is returned
to your application when the mailbox is created [see 0SMboxCreate()].

timeout allows the task to resume execution if a message is not received from the mailbox

within the specified number of clock ticks. A timeout value of O indicates that the task
wants to wait forever for the message. The maximum timeout is 65,535 clock ticks. The
timeout value is not synchronized with the clock tick. The timeout count begins decre-
menting on the next clock tick, which could potentially occur immediately.

err isapointer to avariable that holds an error code. 0SMboxPend () sets *err to one of the
following:
0S_NO_ERR if amessage is received.
0S_TIMEOUT if amessage is not received within the specified
timeout period.
0S_ERR_EVENT_TYPE if pevent isnot pointing to a mailbox.
0S_ERR_PEND_ISR if you call this function from an ISR and pC/OS-1|

suspendsit. In general, you should not call
0SMboxPend () from an ISR, but uC/OS-11 checks for
this situation anyway.

O0S_ERR_PEVENT_NULL if pevent isaNULL pointer.

Returned Value

0SMboxPend () returns the message sent by either atask or an ISR, and *err isset to 0S_NO_ERR. If a
message is not received within the specified timeout period, the returned messageisa NULL pointer, and
*errissetto 0S_TIMEOUT.

426 Chapter 16: pC/OS|| Reference Manual

Notes/Warnings

1. Mailboxes must be created before they are used.
2. You should not call 0SMboxPend() from an ISR.

Example

OS_EVENT *CommMbox ;

void CommTask(void *pdata)

{

INT8U err;
void *msg;

pdata = pdata;
for (;3) |

msg = 0SMboxPend(CommMbox, 10, &err);
if (err = 0S_NO_ERR) {
/* Code for received message

b else |

*/

/* Code for message not received within timeout */

0SMboxPost() 427

OSMboxPost ()

INT8U OSMboxPost(0S_EVENT *pevent, void *msg);

Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S_MBOX_EN && 0S_MBOX_POST_EN

0SMboxPost () sends a message to atask through a mailbox. A message is a pointer-sized variable and,
its use is application specific. If amessageis aready in the mailbox, an error code is returned indicating
that the mailbox is full. 0SMboxPost () then immediately returns to its caller, and the message is not
placed in the mailbox. If any task iswaiting for a message at the mailbox, the highest priority task wait-
ing receives the message. If the task waiting for the message has a higher priority than the task sending
the message, the higher priority task isresumed, and the task sending the message is suspended. In other
words, a context switch occurs.

Arguments
pevent isapointer to the mailbox into which the message is deposited. This pointer is returned
to your application when the mailbox is created [see 0SMboxCreate()].
msg is the actual message sent to the task. msg is a pointer-sized variable and is application
specific. You must never post aNULL pointer because this pointer indicates that the mail-
box is empty.
Returned Value
0SMboxPost () returns one of these error codes:
0S_NO_ERR if the message is deposited in the mailbox.
0S_MBOX_FULL if the mailbox already contains a message.
OS_ERR_EVENT_TYPE if pevent isnot pointing to a mailbox.
OS_ERR_PEVENT_NULL if pevent isapointer to NULL.
0S_ERR_POST_NULL_PTR if you are attempting to post aNULL pointer. By
convention a NULL pointer is not supposed to point to
anything.

Notes/Warnings

1. Mailboxes must be created before they are used.
2. You must never post aNULL pointer because this pointer indicates that the mailbox is empty.

428 Chapter 16: pC/OS || Reference Manual

Example

OS_EVENT *CommMbox ;
INT8U CommRxBuf[100];

void CommTaskRx (void *pdata)
{

INT8U err;

pdata = pdata;

for (;3) |

err = OSMboxPost(CommMbox, (void *)&CommRxBuf[0]);

0SMboxPostopt() 429

OSMboxPostOpt()

INT8U OSMboxPostOpt(0S_EVENT *pevent, void *msg, INT8U opt);

Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S_MBOX_FEN and 0S_MBOX_POST_OPT_EN

0SMboxPostOpt () worksjust like 0SMboxPost () except that it allows you to post a message to multi-
pletasks. In other words, 0SMboxPost0Opt () allowsthe message posted to be broadcast to all tasks wait-
ing on the mailbox. 0SMboxPost0Opt() can actualy replace 0SMboxPost () because it can emulate
0SMboxPost ().

0SMboxPost0Opt () is used to send a message to a task through a mailbox. A message is a
pointer-sized variable, and its use is application specific. If amessageis already in the mailbox, an
error code is returned indicating that the mailbox is full. 0SMboxPostOpt () then immediately
returns to its caller, and the message is not placed in the mailbox. If any task is waiting for a mes-
sage at the mailbox, 0SMboxPostOpt () allowsyou either to post the message to the highest prior-
ity task waiting at the mailbox (opt set to 0S_POST_OPT_NONE) or to all tasks waiting at the
mailbox (opt issetto 0S_POST_OPT_BROADCAST). In either case, scheduling occurs and, if any of
the tasks that receives the message have a higher priority than the task that is posting the message,
then the higher priority task is resumed, and the sending task is suspended. In other words, a con-
text switch occurs.

Arguments

pevent is a pointer to the mailbox. This pointer is returned to your application when the mail-
box is created [see 0SMboxCreate()].

msg is the actual message sent to the task(s). msg is a pointer-sized variable and is applica

tion specific. You must never post a NULL pointer because this pointer indicates that the
mailbox is empty.

opt specifies whether you want to send the message to the highest priority task waiting at
the mailbox (when opt is set to 0S_POST_OPT_NONE) or to all tasks waiting at the mail-
box (when opt isset to 0S_POST_OPT_BROADCAST).

Returned Value
err isapointer to avariable that is used to hold an error code. The error code can be one of
the following:
0S_NO_ERR if the call is successful and the message has been sent.
0S_MBOX_FULL if the mailbox already contains a message. You can
only send one message at atime to amailbox, and thus
the message must be consumed before you are allowed
to send another one.
0S_ERR_EVENT_TYPE if pevent isnot pointing to a mailbox.
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.
0S_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer. By

convention, a NULL pointer is not supposed to point to
anything.

430 Chapter 16: pC/OS || Reference Manual

Notes/Warnings

1. Mailboxes must be created before they are used.

2. You must never post a NULL pointer to amailbox because this pointer indicates that the mailbox is
empty.

3. If you need to use this function and want to reduce code space, you can disable code generation of
0SMboxPost () because 0SMboxPostOpt () can emulate 0SMboxPost ().

4. The execution time of 0SMboxPostOpt () depends on the number of tasks waiting on the mailbox if
you set opt to 0S_POST_OPT_BROADCAST.

Example

OS_EVENT *CommMbox ;
INT8U CommRxBuf[1007;

void CommRxTask (void *pdata)
{
INT8U err;

pdata = pdata;
for (;;) {

err = 0SMboxPostOpt(CommMbox, (void *)&CommRxBuf[0], OS_POST_OPT_BROADCAST);

0SMboxQuery() 431

OSMboxQuery ()

INT8U OSMboxQuery(0S_EVENT *pevent, 0S_MBOX_DATA *pdata);

Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S_MBOX_EN && 0S_MBOX_QUERY_EN

0SMboxQuery () obtains information about a message mailbox. Your application must allocate an
0S_MBOX_DATA data structure, which is used to receive data from the event control block of the message
mailbox. 0SMboxQuery () alows you to determine whether any tasks are waiting for a message at the
mailbox and how many tasks are waiting (by counting the number of 1sin the .0SEventTb1[] field).
You can & so examine the current contents of the mailbox. Note that the size of .0SEventTb1[] isestab-
lished by the ftdefine constant 0S_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments
pevent is a pointer to the mailbox. This pointer is returned to your application when the mail-
box is created [see 0SMboxCreate()].

pdata is a pointer to a data structure of type 0S_MBOX_DATA, which contains the following
fields:

void *0SMsg; /* Copy of the message stored in the mailbox */
INT8U OSEventTbl1[OS_EVENT_TBL_SIZE]; /* Copy of the mailbox wait Tist */
INT8U OSEventGrp;

Returned Value

0SMboxQuery () returns one of these error codes:
0S_NO_ERR if the call is successful.
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.
OS_ERR_EVENT_TYPE if you don’t pass a pointer to a message mailbox.

Notes/Warnings
1. Message mailboxes must be created before they are used.

432 Chapter 16: uC/OS-11 Reference Manual

Example

0SMemCreate() 433

OSMemCreate()
0S_MEM *0SMemCreate(void *addr, INT32U nblks, INT32U blksize, INT8U *err);
Chapter File Called from Code enabled by
12 0S_MEM.C Task or startup code 0S_MEM_EN

0SMemCreate() createsand initializesamemory partition. A memory partition contains a user-specified
number of fixed-size memory blocks. Your application can obtain one of these memory blocks and,
when done, release the block back to the partition.

Arguments
addr is the address of the start of a memory area that is used to create fixed-size memory
blocks. Memory partitions can be created either using static arrays or malloc() during
startup.
nb1ks contains the number of memory blocks available from the specified partition. You must
specify at least two memory blocks per partition.
blksize specifies the size (in bytes) of each memory block within a partition. A memory block
must be large enough to hold at least a pointer.
err isapointer to avariable that holds an error code. 0SMemCreate() sets*err to:
0S_NO_ERR if the memory partition is created successfully
0S_MEM_INVALID_ADDR if you are specifying an invalid address (i.e., addr isa
NULL pointer)
0S_MEM_INVALID_PART if afree memory partition is not available
0S_MEM_INVALID_BLKS if you don’'t specify at least two memory blocks per
partition
0S_MEM_INVALID_SIZE if you don't specify ablock size that can contain at
least a pointer variable
Returned Value

0SMemCreate() returns a pointer to the created memory-partition control block if one isavailable. If no
memory-partition control block is available, 0SMemCreate () returnsa NULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

434 Chapter 16: uC/OS || Reference Manual

Example

0S_MEM *CommMem;
INT8U CommBuf[16]1[1281;

void main (void)
{
INT8U err;

0SInit(); /* Initialize uC/0S-1I 7/
CommMem = OSMemCreate(&CommBuf[0][0], 16, 128, &err);

0SStart(); /* Start Multitasking */

0SMemGet() 435

OSMemGet ()

void *0SMemGet (0S_MEM *pmem, INT8U *err);

Chapter File Called from Code enabled by
12 0S_MEM.C Task or ISR 0S_MEM_EN

0SMemGet obtains a memory block from a memory partition. It is assumed that your application knows
the size of each memory block obtained. Also, your application must return the memory block [using
0SMemPut ()] when it no longer needs it. You can call 0SMemGet () more than once until all memory
blocks are all ocated.

Arguments
pmem is a pointer to the memory-partition control block that is returned to your application
from the 0SMemCreate() call.
err is a pointer to a variable that holds an error code. 0SMemGet () sets *err to one of the
following:
0S_NO_ERR if amemory block is available and returned to your
application.
0S_MEM_NO_FREE_BLKS if the memory partition doesn’'t contain any more
memory blocksto alocate.
O0S_MEM_INVALID_PMEM if pmemisaNULL pointer.
Returned Value

0SMemGet () returns a pointer to the allocated memory block if oneis available. If no memory block is
available from the memory partition, 0SMemGet () returnsaNULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

436 Chapter 16: pC/OS| Reference Manual

Example

0SMemPut () 437

OSMemPut ()
INT8U OSMemPut (0S_MEM *pmem, void *pblk);
Chapter File Called from Code enabled by
12 0S_MEM.C Task or ISR 0S_MEM_EN

0SMemPut () returns a memory block to a memory partition. It is assumed that you return the memory
block to the appropriate memory partition.

Arguments
pmem is a pointer to the memory-partition control block that is returned to your application
from the 0SMemCreate() call.
pb1k isapointer to the memory block to be returned to the memory partition.
Returned Value
0SMemPut () returns one of the following error codes:
0S_NO_ERR if amemory block is available and returned to your
application.
0S_MEM_FULL if the memory partition can not accept more memory
blocks. This code is surely an indication that
something is wrong because you are returning more
memory blocks than you obtained using 0SMemGet ().
0S_MEM_INVALID_PMEM if pmemisaNULL pointer.
0S_MEM_INVALID_PBLK if pblk isaNULL pointer.

Notes/Warnings

1. Memory partitions must be created before they are used.
2. You must return amemory block to the proper memory partition.

438 Chapter 16: pC/OS|| Reference Manual

Example

0SMemQuery () 439

0SMemQuery ()

INT8U OSMemQuery(0S_MEM *pmem, OS_MEM_DATA *pdata);

Chapter File Called from Code enabled by
12 0S_MEM.C Task or ISR 0S_MEM_EN && OS_MEM_QUERY_EN

0SMemQuery () obtains information about a memory partition. Basicaly, this function returns the
same information found in the 0S_MEM data structure but in a new data structure called 0S_MEM_DATA.
0S_MEM_DATA also contains an additional field that indicates the number of memory blocksin use.

Arguments
pmem is a pointer to the memory-partition control block that is returned to your application
from the 0SMemCreate() call.
pdata isapointer to a data structure of type 0S_MEM_DATA, which contains the following fields
void *0SAddr; /* Points to beginning address of the memory partition */
void *0SFreelist; /* Points to beginning of the free 1ist of memory blocks */
INT32U O0SB1kSize; /* Size (in bytes) of each memory block 27
INT32U OSNBTks; /* Total number of blocks in the partition Y
INT32U OSNFree; /* Number of memory blocks free)
INT32U OSNUsed; /* Number of memory blocks used 27
Returned Value
0SMemQuery () returns one of the following error codes:
0S_NO_ERR if amemory block is available and returned to your
application.
0S_MEM_INVALID_PMEM if pmemisaNULL pointer.
0S_MEM_INVALID_PDATA if pdata isaNULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

440 Chapter 16: uC/OS-1| Reference Manual

Example

0SMutexAccept() 441

OSMutexAccept()

INT8U OSMutexAccept(OS_EVENT *pevent, INT8U *err);

Chapter File Called from Code enabled by
8 0S_MUTEX.C Task 0S_MUTEX_EN

0SMutexAccept() alows you to check to see if a resource is available. Unlike 0SMutexPend(),
0SMutexAccept () does not suspend the calling task if the resource is not available. In other words,
OSMutexAccept () isnon-blocking.

Arguments
pevent isapointer to the mutex that guards the resource. This pointer is returned to your appli-
cation when the mutex is created [see 0SMutexCreate()].
err isapointer to avariable used to hold an error code. 0SMutexAccept () sets*err to one
of the following:
0S_NO_ERR if the call is successful.
0S_ERR_EVENT_TYPE if pevent isnot pointing to a mutex.
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.
0S_ERR_PEND_ISR if you call 0SMutexAccept () froman ISR.
Returned Value

If the mutex is available, 0SMutexAccept() returns 1. If the mutex is owned by another task,
O0SMutexAccept () returnsO.

Notes/Warnings

1. Mutexes must be created before they are used.

2. Thisfunction must not be called by an ISR.

3. If you acquire the mutex through 0SMutexAccept (), you must call 0SMutexPost () to release the
mutex when you are done with the resource.

442 Chapter 16: uC/OS-1| Reference Manual

Example

OSMutexCreate() 443

OSMutexCreate()

OS_EVENT *0SMutexCreate(INT8U prio, INT8U *err);

Chapter File Called from Code enabled by
8 0S_MUTEX.C Task or startup code OS_MUTEX_EN

0SMutexCreate() isused to create and initialize amutex. A mutex is used to gain exclusive accessto a
resource.

Arguments

prio is the priority inheritance priority (PIP) that is used when a high priority task attempts
to acquire the mutex that is owned by alow priority task. In this case, the priority of the
low priority task is raised to the PIP until the resourceis released.

err isapointer to avariable that is used to hold an error code. The error code can be one of
the following:
0S_NO_ERR if the call is successful and the mutex has been created.
OS_ERR_CREATE_ISR if you attempt to create a mutex from an ISR.
0S_PRIO_EXIST if atask at the specified priority inheritance priority

already exists.

0S_ERR_PEVENT_NULL if no more 0S_EVENT structures are available.
0S_PRIO_INVALID if you specify a priority with a higher number than

0S_LOWEST_PRIO.

Returned Value

A pointer to the event control block allocated to the mutex. If no event control block is available,
0SMutexCreate() returnsaNULL pointer.

Notes/Warnings

1. Mutexes must be created before they are used.

2. You must make sure that prio has ahigher priority than any of the tasks that use the mutex to
access the resource. For example, if three tasks of priority 20, 25, and 30 are going to use the
mutex, then prio must be a number lower than 20. In addition, there must not already be atask
created at the specified priority.

444 Chapter 16: uC/OS|| Reference Manual

Example
0S_EVENT *DispMutex;

void main (void)

{

INT8U err;
0SInit(); /* Initialize uC/0S-11 7/
DispMutex = OSMutexCreate(20, &err); /* Create Display Mutex 7/

0SStart(); /* Start Multitasking */

0SMutexDel () 445

OSMutexDel ()

OS_EVENT *0SMutexDel(QS_EVENT *pevent, INT8U opt, INT8U *err);

Chapter File Called from Code enabled by
8 0S_MUTEX.C Task 0S_MUTEX_EN and 0S_MUTEX_DEL_EN

0SMutexDel () isused to delete amutex. This function is dangerous to use because multiple tasks could
attempt to access a deleted mutex. You should always use this function with great care. Generally speak-
ing, before you delete a mutex, you must first delete all the tasks that can access the mutex.

Arguments

pevent isapointer to the mutex. This pointer is returned to your application when the mutex is
created [see OSMutexCreate()].

opt specifies whether you want to delete the mutex only if there are no pending tasks

(OS_DEL_NO_PEND) or whether you always want to delete the mutex regardiess of
whether tasks are pending or not (0S_DEL_ALWAYS). In this case, al pending task are

readied.
err isapointer to avariable that is used to hold an error code. The error code can be one of
the following:
0S_NO_ERR if the call is successful and the mutex has been deleted.
OS_ERR_DEL_ISR if you attempt to delete a mutex from an ISR.
0S_ERR_INVALID_OPT if you don’t specify one of the two options mentioned
inthe opt argument.
0S_ERR_TASK_WAITING if one or more task are waiting on the mutex and you
specify 0S_DEL_NO_PEND.
OS_ERR_EVENT_TYPE if pevent isnot pointing to a mutex.
0S_ERR_PEVENT_NULL if no more 0S_EVENT structures are available.
Returned Value

A NULL pointer if the mutex isdeleted or pevent if the mutex is not deleted. In the latter case, you need
to examine the error code to determine the reason.

Notes/Warnings
1. You should usethis call with care because other tasks might expect the presence of the mutex.

446 Chapter 16: pC/OS|I Reference Manual

Example

0SMutexPend() 447

OSMutexPend()
void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);
Chapter File Called from Code enabled by
8 0S_MUTEX.C Task only OS_MUTEX_EN

0SMutexPend() is used when a task desires to get exclusive access to a resource. |If a task calls
0SMutexPend() and the mutex is available, then 0SMutexPend() gives the mutex to the caler and
returns to its caller. Note that nothing is actually given to the caller except for the fact that if err is set
to 0S_NO_ERR, the caller can assume that it owns the mutex. However, if the mutex is aready owned by
another task, 0SMutexPend () places the calling task in the wait list for the mutex. The task thus waits
until the task that owns the mutex rel eases the mutex and thus the resource or until the specified timeout
expires. If the mutex is signaled before the timeout expires, UC/OS-11 resumes the highest priority task
that is waiting for the mutex. Note that if the mutex is owned by a lower priority task, then
0SMutexPend() raises the priority of the task that owns the mutex to the PIP, as specified when you
created the mutex [see 0SMutexCreate()].

Arguments

pevent isapointer to the mutex. This pointer is returned to your application when the mutex is
created [see OSMutexCreate()].

timeout is used to allow the task to resume execution if the mutex isnot signaled (i.e., posted to)

within the specified number of clock ticks. A timeout value of O indicates that the task
desiresto wait forever for the mutex. The maximum timeout is 65,535 clock ticks. The
timeout value is not synchronized with the clock tick. The timeout count starts being
decremented on the next clock tick, which could potentially occur immediately.

err isapointer to avariable that is used to hold an error code. 0SMutexPend() sets*err to
one of the following:
0S_NO_ERR if the call is successful and the mutex is available.
0S_TIMEOUT if the mutex is not available within the specified
timeout.
0S_ERR_EVENT_TYPE if you don’t pass a pointer to amutex to
0SMutexPend().
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.
0S_ERR_PEND_ISR if you attempt to acquire the mutex from an ISR.
Returned Value

none

448 Chapter 16: pC/OS || Reference Manual

Notes/Warnings
1. Mutexes must be created before they are used.

2. You should not suspend the task that owns the mutex, have the mutex owner wait on any other
MUC/OS-11 objects (i.e., semaphore, mailbox, or queue), and delay the task that owns the mutex. In
other words, your code should hurry up and release the resource as quickly as possible.

Example
0S_EVENT *DispMutex;

void DispTask (void *pdata)
{
INT8U err;

pdata = pdata;
for (;;) f

OSMutexPend(DispMutex, 0, &err);
/* The only way this task continues is if .. */
/* .. the mutex is available or signaled! 27

0SMutexPost() 449

OSMutexPost ()
INT8U OSMutexPost(OS_EVENT *pevent);
Chapter File Called from Code enabled by
8 0S_MUTEX.C Task OS_MUTEX_EN

A mutex is signaled (i.e., released) by calling 0SMutexPost(). You cal this function only if you
acquire the mutex by first calling either 0SMutexAccept () or 0SMutexPend (). If the priority of the task
that owns the mutex has been raised when a higher priority task attempts to acquire the mutex, the orig-
inal task priority of the task is restored. If one or more tasks are waiting for the mutex, the mutex is
given to the highest priority task waiting on the mutex. The scheduler is then called to determine if the
awakened task is now the highest priority task ready to run, and if so, acontext switch isdoneto run the
readied task. If no task iswaiting for the mutex, the mutex value is smply set to available (0xFF).

Arguments
pevent isapointer to the mutex. This pointer is returned to your application when the mutex is
created [see OSMutexCreate()].
Returned Value
0SMutexPost () returns one of these error codes:
0S_NO_ERR if the call is successful and the mutex is released.
0S_ERR_EVENT_TYPE if you don’t pass a pointer to amutex to
0SMutexPost ().
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.
0S_ERR_POST_ISR if you attempt to call 0SMutexPost() froman ISR.

0S_ERR_NOT_MUTEX_OWNER if the task posting (i.e., signaling the mutex) doesn’t
actually own the mutex.

Notes/Warnings

1. Mutexes must be created before they are used.
2. You cannot call this function from an ISR.

450 Chapter 16: pC/OS|I Reference Manual

Example

0SMutexQuery() 451

OSMutexQuery ()
INT8U OSMutexQuery(0OS_EVENT *pevent, OS_MUTEX_DATA *pdata);
Chapter File Called from Code enabled by
8 0S_MUTEX.C Task OS_MUTEX_EN && OS_MUTEX_QUERY_EN

0SMutexQuery () is used to obtain run-time information about a mutex. Your application must alocate
an 0S_MUTEX_DATA data structure that is used to receive data from the event control block of the mutex.
0SMutexQuery () alowsyou to determine whether any task is waiting on the mutex, how many tasks are
waiting (by counting the number of 1s) in the .0SEventTb1[] field, obtain the PIP, and determine
whether the mutex is available (1) or not (0). Note that the size of .0SEventTb1[] is established by the
ftdefine constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments
pevent isapointer to the mutex. This pointer is returned to your application when the mutex is
created [see OSMutexCreate()].
pdata is a pointer to a data structure of type 0S_MUTEX_DATA, which contains the following
fields
INT8U OSMutexPIP; /* The PIP of the mutex Y
INT8U 0SOwnerPrio; /* The priority of the mutex owner &/
INT8U 0SValue; /* The current mutex value, 1 means available, */
/* 0 means unavailable &/
INT8U OSEventGrp; /* Copy of the mutex wait list &/

INT8U OSEventTbT[OS_EVENT_TBL_SIZE];

Returned Value
0SMutexQuery () returns one of these error codes:
0S_NO_ERR if the call is successful.
OS_ERR_EVENT_TYPE if you don't pass a pointer to a mutex to
0SMutexQuery ().
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.
0S_ERR_QUERY_ISR if you attempt to call 0SMutexQuery () from an ISR.

Notes/Warnings

1. Mutexes must be created before they are used.
2. You cannot call thisfunction from an ISR.

452 Chapter 16: pC/OS|| Reference Manual

Example

In this example, we check the contents of the mutex to determine the highest priority task that is waiting
for it.

OS_EVENT *DispMutex;

void Task (void *pdata)
{
0S_MUTEX_DATA mutex_data;

INT8U err;

INT8U highest; /* Highest priority task waiting on mutex */
INT8U X

INT8U Y

pdata = pdata;
for (;;) f

err = OSMutexQuery(DispMutex, &mutex_data);
if (err = 0S_NO_ERR) {
if (mutex_data.0SEventGrp != 0x00) f{
y = 0SUnMapTbl1[mutex_data.0SEventGrp];
X 0SUnMapTb1[mutex_data.0SEventTb1[y1];
highest = (y << 3) + Xx;

0SQAccept() 453

0SQAccept()

void *0SQAccept(OS_EVENT *pevent);

Chapter File Called from Code enabled by
11 0S_Q.C Task or ISR 0S_Q_EN

0SQAccept () checksto seeif amessage is available in the desired message queue. Unlike 0SQPend (),
0SQAccept () does not suspend the calling task if a message is not available. In other words,
0SQAccept () isnon-blocking. If amessage is available, it is extracted from the queue and returned to
your application. Thiscall istypically used by ISRs because an ISR is not allowed to wait for messages
at a queue.

Arguments

pevent is a pointer to the message queue from which the message is received. This pointer is

returned to your application when the message queue is created [see 0SQCreate()].

Returned Value
A pointer to the message if one isavailable; NULL if the message queue does not contain a message.

Notes/Warnings
1. Message queues must be created before they are used.

Example
0S_EVENT *CommQ;

void Task (void *pdata)
{

void *msg;

pdata = pdata;
for (;;) {
msg = 0SQAccept(CommQ); /* Check queue for a message */
if (msg != (void *)0) {
/* Message received, process */

} else {
/* Message not received, do .. */
/* .. something else)

454 Chapter 16: pC/OS|I Reference Manual

0SQCreate()

OS_EVENT *0SQCreate(void **start, INT8U size);

Chapter File Called from Code enabled by
11 0S_Q.C Task or startup code 0S_Q_EN

0SQCreate() creates a message queue. A message queue alows tasks or ISRs to send pointer-sized
variables (messages) to one or more tasks. The meaning of the messages sent are application specific.

Arguments

start is the base address of the message storage area. A message storage area is declared as
an array of pointersto voids.

size isthe size (in number of entries) of the message storage area.
Returned Value

0SQCreate() returns a pointer to the event control block allocated to the queue. If no event control
block isavailable, 0SQCreate() returnsaNULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

Example

OS_EVENT *CommQ;
void *CommMsg[107;

void main (void)
{
0SInit(); /* Initialize _C/0S-11 */

CommQ = 0SQCreate(&CommMsg[0], 10); /* Create COMM Q)

0SStart(); /* Start Multitasking */

0sqoel () 455

0SQDel ()

OS_EVENT *0SQDel(0S_EVENT *pevent, INT8U opt, INT8U *err);

Chapter File Called from Code enabled by
11 0S_Q.C Task 0S_Q_FNand 0S_Q_DFL_EN

0SQDe1 () isused to delete amessage queue. This function is dangerous to use because multiple tasks
could attempt to access a deleted queue. You should always use this function with great care. Generally
speaking, before you delete a queue, you must first delete all the tasks that can access the queue.

Arguments

pevent isapointer to the queue. This pointer is returned to your application when the queueis
created [see 0SQCreate()].

opt specifies whether you want to delete the queue only if there are no pending tasks

(OS_DEL_NO_PEND) or whether you aways want to delete the queue regardiess of
whether tasks are pending or not (0S_DEL_ALWAYS). In this case, all pending task are

readied.
err isapointer to avariable that is used to hold an error code. The error code can be one of
the following:
0S_NO_ERR if the call is successful and the queue has been del eted.
0S_ERR_DEL_ISR if you attempt to delete the queue from an ISR.
OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned
in the opt argument.
0S_ERR_TASK_WAITING if one or more tasks are waiting for messages at the
message queue.
OS_ERR_EVENT_TYPE if pevent isnot pointing to a queue.
OS_ERR_PEVENT_NULL if no more 0S_EVENT structures are available.
Returned Value

A NULL pointer if the queueis deleted or pevent if the queueisnot deleted. Inthe latter case, you need
to examine the error code to determine the reason.

Notes/Warnings

1. You should use this call with care because other tasks might expect the presence of the queue.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends
on the number of tasks that are waiting on the queue.

456 Chapter 16: pC/OS|I Reference Manual

Example

0SQFTush() 457

0SQFTush()

INT8U *0SQFTush(OS_EVENT *pevent);

Chapter File Called from Code enabled by
11 0S_Q.C Task or ISR 0S_Q_EN && 0S_Q_FLUSH_EN

0SQFTush() empties the contents of the message queue and eliminates all the messages sent to the
gueue. This function takes the same amount of time to execute regardless of whether tasks are waiting
on the queue (and thus no messages are present) or the queue contains one or More Messages.

Arguments
pevent is a pointer to the message queue. This pointer is returned to your application when the
message queueis created [see 0SQCreate()].
Returned Value
0SQFTush() returns one of the following codes:
0S_NO_ERR if the message queueis flushed.
0S_ERR_EVENT_TYPE if you attempt to flush an object other than a message
queue.
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

Example
0S_EVENT *CommQ;

void main (void)
{
INT8U err;

0SInit(); /* Initialize puC/0S-I1 */

err = 0SQFTush(CommQ) ;

0SStart(); /* Start Multitasking =

458 Chapter 16: pC/OS || Reference Manual

0SQPend ()

void *0SQPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

Chapter File Called from Code enabled by
11 0S_Q.C Task only 0S_Q_EN

0SQPend() is used when a task wants to receive messages from a queue. The messages are sent to the
task either by an ISR or by another task. The messages received are pointer-sized variables, and their
use is application specific. If at least one message is present at the queue when 0SQPend () is called, the
message is retrieved and returned to the caller. If no message is present at the queue, 0SQPend() sus-
pends the current task until either amessage is received or a user-specified timeout expires. If amessage
is sent to the queue and multiple tasks are waiting for such a message, then uC/OS-I1 resumes the high-
est priority task that is waiting. A pended task that has been suspended with 0STaskSuspend() can
receive amessage. However, the task remains suspended until it isresumed by calling 0STaskResume ().

Arguments

pevent isapointer to the queue from which the messages are received. This pointer is returned
to your application when the queue is created [see 0SQCreate()].

timeout allows the task to resume execution if a message is not received from the mailbox

within the specified number of clock ticks. A timeout value of O indicates that the task
wants to wait forever for the message. The maximum timeout is 65,535 clock ticks. The
timeout value is not synchronized with the clock tick. The timeout count starts decre-
menting on the next clock tick, which could potentially occur immediately.

err is a pointer to avariable used to hold an error code. 0SQPend() sets *err to one of the
following:
0S_NO_ERR if amessage is received.
0S_TIMEOUT if amessage is not received within the specified

timeout.

0S_ERR_EVENT_TYPE if pevent isnot pointing to a message queue.
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.
OS_ERR_PEND_ISR if you call thisfunction from an ISR and uC/OS-Il has

to suspend it. In general, you should not call
0SQPend() from an ISR. pC/OS-11 checks for this
situation anyway.

Returned Value

0SQPend () returns a message sent by either atask or an ISR, and *err isset to 0S_NO_ERR. If atimeout
occurs, 0SQPend () returnsa NULL pointer and sets *err to 0S_TIMEOUT.

0sQPend() 459

Notes/Warnings

1. Queues must be created before they are used.
2. You should not call 0SQPend() from an ISR.

Example
0S_EVENT *CommQ;

void CommTask(void *data)
{

INT8U err;

void *msg;

pdata = pdata;
for (;3) |

msg = 0SQPend(CommQ, 100, &err);
if (err == 0S_NO_ERR) {
/* Message received within 100 ticks! =)

b else |

/* Message not received, must have timed out */

460 Chapter 16: pC/OS || Reference Manual

0SQPost ()

INT8U 0SQPost(OS_EVENT *pevent, void *msg);

Chapter File Called from Code enabled by
11 0S_Q.C Task or ISR 0S_Q_EN && 0S_Q_POST_EN

0SQPost () sends a message to atask through a queue. A message is a pointer-sized variable, and its use
is application specific. If the message queue is full, an error code is returned to the caller. In this case,
0SQPost () immediately returns to its caller, and the message is not placed in the queue. If any task is
waiting for a message at the queue, the highest priority task receives the message. If the task waiting for
the message has a higher priority than the task sending the message, the higher priority task resumes,
and the task sending the message is suspended; that is, a context switch occurs. Message queues are
first-in first-out (FIFO), which means that the first message sent is the first message received.

Arguments

pevent isapointer to the queue into which the message is deposited. This pointer is returned to
your application when the queue is created [see 0SQCreate()].

msg is the actual message sent to the task. msg is a pointer-sized variable and is application
specific. You must never post a NULL pointer.

Returned Value

0SQPost () returns one of these error codes:
0S_NO_ERR if the message is deposited in the queue.
0S_Q_FULL if the queueis already full.
OS_ERR_EVENT_TYPE if pevent isnot pointing to a message queue.
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.
0S_ERR_POST_NULL_PTR if you are posting a NULL pointer. By convention, a

NULL pointer is not supposed to point to anything valid.

Notes/Warnings
1. Queues must be created before they are used.
2. You must never post a NULL pointer.

Example

OS_EVENT *CommQ;
INT8U CommRxBuf[100];

void CommTaskRx (void *pdata)
{
INT8U err;

pdata = pdata;
for (;3) |

err = 0SQPost(CommQ, (void *)&CommRxBuf[0]);

switch (err) {
case OS_NO_ERR:

/* Message was deposited into queue
break;

case 0S_Q_FULL:
/* Queue is full

Break;

*/

*/

0SQPost()

461

462 Chapter 16: pC/OS|I Reference Manual

0SQPostFront()
INT8U 0SQPostFront(0S_EVENT *pevent, void *msg);
Chapter File Called from Code enabled by
1 0S_Q.C Task or ISR 0S_Q_EN && 0S_Q_POST_FRONT_EN

0SQPostFront() sends a message to atask through a queue. 0SQPostFront () behaves very much like
0SQPost(), except that the message is inserted at the front of the queue. This means that
0SQPostFront() makes the message queue behave like a last-in first-out (LIFO) queue instead of a
first-in first-out (FIFO) queue. The message is a pointer-sized variable, and its use is application
specific. If the message queue is full, an error code is returned to the caller. 0SQPostFront()
immediately returnsto its caller, and the message is not placed in the queue. If any tasks are waiting for
a message at the queue, the highest priority task receives the message. If the task waiting for the
message has a higher priority than the task sending the message, the higher priority task is resumed, and
the task sending the message is suspended; that is, a context switch occurs.

Arguments

pevent isapointer to the queue into which the message is deposited. This pointer is returned to
your application when the queue is created [see 0SQCreate()].

msg is the actual message sent to the task. msg is a pointer-sized variable and is application
specific. You must never post a NULL pointer.

Returned Value

0SQPostFront() returns one of these error codes:
0S_NO_ERR if the message is deposited in the queue.
0S_Q_FULL if the queueis already full.
OS_ERR_EVENT_TYPE if pevent isnot pointing to a message queue.
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.
0S_ERR_POST_NULL_PTR if you are posting a NULL pointer. By convention, a

NULL pointer is not supposed to point to anything valid.

Notes/Warnings
1. Queues must be created before they are used.
2. You must never post a NULL pointer.

0SQPostFront() 463

Example

OS_EVENT *CommQ;
INT8U CommRxBuf[100];

void CommTaskRx (void *pdata)

{
INT8U err;

pdata = pdata;
for (53) |

err = 0SQPostFront(CommQ, (void *)&CommRxBuf[01);

switch (err) {
case OS_NO_ERR:

/* Message was deposited into queue =Y
break;

case 0S_Q_FULL:
/* Queue is full */
break;

464 Chapter 16: pC/OS || Reference Manual

0SQPostOpt()

INT8U 0SQPostOpt(OS_EVENT *pevent, void *msg, INT8U opt);

Chapter File Called from Code enabled by
11 0S_Q.C Task or ISR 0S_Q_EN && 0S_Q_POST_OPT_EN

0SQPost0pt () isused to send a message to a task through a queue. A message is a pointer-sized vari-
able, and its useis application specific. |f the message queueisfull, an error codeis returned indicating
that the queue is full. 0SQPostOpt() then immediately returns to its caler, and the message is not
placed in the queue. If any task is waiting for a message at the queue, 0SQPost0pt () alows you to
either post the message to the highest priority task waiting at the queue (opt set to 0S_POST_0PT_NONE)
or to all tasks waiting at the queue (opt is set to 0S_POST_OPT_BROADCAST). In either case, scheduling
occurs, and, if any of the tasks that receive the message have a higher priority than the task that is post-
ing the message, then the higher priority task is resumed, and the sending task is suspended. In other
words, a context switch occurs.

0SQPostOpt () emulates both 0SQPost () and 0SQPostFront() and also allows you to post a mes-
sage to multipletasks. In other words, it allows the message posted to be broadcast to all tasks waiting
on the queue. 0SQPostOpt() can actually replace 0SQPost () and 0SQPostFront() because you spec-
ify the mode of operation via an option argument, opt. Doing this allows you to reduce the amount of
code space needed by uC/OS-II.

Arguments

pevent isapointer to the queue. This pointer is returned to your application when the queueis
created [see 0SQCreate()].

msg is the actual message sent to the task(s). msg is a pointer-sized variable, and what msg
pointsto is application specific. You must never post a NULL pointer.

opt determines the type of POST performed:
0S_POST_OPT_NONE POST to asingle waiting task [identical to 0SQPost()].
0S_POST_OPT_BROADCAST POST to all tasks waiting on the queue.
0S_POST_OPT_FRONT POST as LIFO [simulates 0SQPostFront()].
Below isalist of all the possible combination of these flags:
0S_POST_OPT_NONE isidentical to 0SQPost()
0S_POST_OPT_FRONT isidentical to 0SQPostFront()
0S_POST_OPT_BROADCAST isidentical to 0SQPost () but broadcasts msg to all

waiting tasks
0S_POST_OPT_FRONT + 0S_POST_OPT_BROADCAST

isidentical to 0SQPostFront() except that broadcasts
msg to all waiting tasks.

0SQPostOpt() 465

Returned Value

err isapointer to avariable that is used to hold an error code. The error code can be one of
the following:
0S_NO_ERR if the call is successful and the message has been sent.
0S_Q_FULL if the queue can no longer accept messages because it

isfull.

OS_ERR_EVENT_TYPE if pevent isnot pointing to a mailbox.
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.
0S_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer.

Notes/Warnings
1. Queues must be created before they are used.
2. Youmust never post aNULL pointer to aqueue.

3. If you need to use this function and want to reduce code space, you can disable code generation of
0SQPost() (set 0S_Q_POST_ENtoQin 0S_CFG.H) and 0SQPostFront() (set 0S_Q_POST_FRONT_EN
to 0in 0S_CFG.H) because 0SQPostOpt () can emulate these two functions.

4. The execution time of 0SQPostOpt () depends on the number of tasks waiting on the queue if you
set opt to 0S_POST_OPT_BROADCAST.
Example

OS_EVENT *CommQ;
INT8U CommRxBuf[100];

void CommRxTask (void *pdata)

{
INT8U err;

pdata = pdata;
for () |

err = 0SQPostOpt(CommQ, (void *)&CommRxBuf[0], OS_POST_OPT_BROADCAST);

466 Chapter 16: pC/OS || Reference Manual

0SQQuery (

)

INT8U 0SQQuery(OS_EVENT *pevent, 0S_Q_DATA *pdata);

Chapter

File

Called from

Code enabled by

11

05_Q.C

Task or ISR

0S_Q_EN && OS_QUERY_EN

0SQQuery () obtains information about a message queue. Your application must alocate an 0S_Q_DATA
data structure used to receive data from the event control block of the message queue. 0SQQuery ()
allows you to determine whether any tasks are waiting for messages at the queue, how many tasks are
waiting (by counting the number of 1sin the .0SEventTb1[] field), how many messages are in the
gueue, and what the message queue sizeis. 0SQQuery () also obtains the next message that is returned
if the queueis not empty. Notethat thesizeof .0SEventTb1[] isestablished by thejfdefine constant

OS_EVENT_TBL_SIZE (see uC0S_II.H).

Arguments
pevent is a pointer to the message queue. This pointer is returned to your application when the
gueue is created [see 0SQCreate()].
pdata isapointer to adata structure of type 0S_Q_DATA, which contains the following fields
void *0SMsg; /* Next message if one available =
INT16U OSNMsgs; /* Number of messages in the queue =)
INT16U 0SQSize; /* Size of the message queue =/

INT8U OSEventTbT[OS_EVENT_TBL_SIZE];

INT8U 0SEventGrp;

Returned Value

0SQQuery () returns one of these error codes:

0S_NO_

OS_ERR_EVENT_TYPE
O0S_ERR_PEVENT_NULL

Notes/Warnings

1. Message queues must be created before they are used.

ERR

/* Message queue wait list */

if the call is successful.
if you don’t pass a pointer to a message queue.
if pevent isaNULL pointer.

Example
0S_EVENT *CommQ;

void Task (void *pdata)
{
0S_Q_DATA qdata;
INT8U err;

pdata = pdata;
for (;3) {

err = 0SQQuery(CommQ, &qgdata);
if (err = 0S_NO_ERR) {
/* 'gqdata' can be examined! */

0SQQuery ()

467

468 Chapter 16: pC/OS || Reference Manual

0SSchedLock()

void 0SSchedlLock(void);

Chapter File Called from Code enabled by
3 0S_CORE.C Task or ISR 0S_SCHED_LOCK_EN

0SSchedLock () prevents task rescheduling until its counterpart, 0SSchedUnTlock(), is called. The task
that calls 0SSchedlLock () keeps control of the CPU even though other higher priority tasks are ready to
run. However, interrupts are still recognized and serviced (assuming interrupts are enabled).
0SSchedlLock() and 0SSchedUnlock() must be used in pairs. pC/OS-I1 allows 0SSchedlock() to be
nested up to 255 levels deep. Scheduling is enabled when an equal number of 0SSchedUnlock() calls
have been made.

Arguments
none

Returned Value
none
Notes/Warnings

1. After caling 0SSchedlock (), your application must not make system calls that suspend execution
of the current task; that is, your application cannot call 0STimeD1y (), 0STimeD1yHMSM(),
0SFlagPend(), 0SSemPend(), 0SMutexPend(), 0SMboxPend (), or 0SQPend (). Because the
scheduler islocked out, no other task is allowed to run, and your system will lock up.

Example

void TaskX (void *pdata)
{
pdata = pdata;
for (;;) f
0SSchedlLock(); /* Prevent other tasks to run &7

/* Code protected from context switch */

0SSchedUnTock() ; /* Enable other tasks to run =/

0SSchedUnlock() 469

0SSchedUnTock()

void 0SSchedUnlock(void);

Chapter File Called from Code enabled by
3 0S_CORE.C Task or ISR 0S_SCHED_LOCK_EN

0SSchedUnTock () re-enables task scheduling whenever it is paired with 0SSchedlLock ().

Arguments
none

Returned Value
none

Notes/Warnings

1. After caling 0SSchedlock (), your application must not make system calls that suspend execution
of the current task; that is, your application cannot call 0STimeD1y (), 0STimeD1yHMSM(),
0SFlagPend(), 0SSemPend(), 0SMutexPend(), 0SMboxPend(), or 0SQPend (). Because the sched-
uler islocked out, no other task is allowed to run, and your system will lock up.

Example
void TaskX (void *pdata)

{
pdata = pdata;
for (;;) f
0SSchedlLock(); /* Prevent other tasks to run &

/* Code protected from context switch */

0SSchedUnTock() ; /* Enable other tasks to run)

470 Chapter 16: pC/OS|I Reference Manual

0SSemAccept ()

INT16U 0SSemAccept(OS_EVENT *pevent);

Chapter File Called from Code enabled by
7 0S_SEM.C Task or ISR 0S_SEM_EN && 0S_SEM_ACCEPT_EN

0SSemAccept () checksto seeif aresource is available or an event has occurred. Unlike 0SSemPend (),

0SSemAccept () does not suspend the calling task if the resource is not available. In other words,

0SSemAccept () isnon-blocking. Use 0SSemAccept () from an ISR to obtain the semaphore.

Arguments

pevent is a pointer to the semaphore that guards the resource. This pointer is returned to your
application when the semaphore is created [see 0SSemCreate ()].

Returned Value

When 0SSemAccept () iscalled and the semaphore value is greater than O, the semaphore valueis decre-
mented, and the value of the semaphore before the decrement is returned to your application. If the
semaphore value is 0 when 0SSemAccept () is called, the resource is not available, and O is returned to
your application.

Notes/Warnings
1. Semaphores must be created before they are used.

Example
OS_EVENT *DispSem;

void Task (void *pdata)
{
INT16U value;

pdata = pdata;
for (;;) {
value = 0SSemAccept(DispSem); /* Check resource availability */
if (value > 0) {
/* Resource available, process */

0SSemCreate() 471

0SSemCreate()
OS_EVENT *0SSemCreate(INT16U value);
Chapter File Called from Code enabled by
7 0S_SEM.C Task or startup code 0S_SEM_EN

0SSemCreate() creates and initializes a semaphore. A semaphore

» dlowsatask to synchronize with either an ISR or atask (you initialize the semaphore to 0),

e gainsexclusive access to aresource (you initialize the semaphore to a value greater than 0), and
» signalsthe occurrence of an event (you initialize the semaphore to 0).

Arguments

value is the initial value of the semaphore and can be between 0 and 65,535. A value of 0
indicates that aresource is not available or an event has not occurred.

Returned Value

0SSemCreate() returns a pointer to the event control block allocated to the semaphore. If no event con-
trol block isavailable, 0SSemCreate() returnsaNULL pointer.

Notes/Warnings
1. Semaphores must be created before they are used.

Example

OS_EVENT *DispSem

void main (void)
{

0SInit(); /* Initialize pC/0S-11 =/
DispSem = 0SSemCreate(1); /* Create Display Semaphore)

0SStart(); /* Start Multitasking 7

472 Chapter 16: pC/OS|I Reference Manual

0SSemDel ()

OS_EVENT *0SSemDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

Chapter File Called from Code enabled by
7 0S_SEM.C Task 0S_SEM_EN and 0S_SEM_DEL_EN

0SSemDel () is used to delete a semaphore. This function is dangerous to use because multiple tasks
could attempt to access a deleted semaphore. You should always use this function with great care. Gen-
eraly speaking, before you delete a semaphore, you must first delete all the tasks that can access the
semaphore.

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the
semaphore is created [see 0SSemCreate()].

opt specifies whether you want to delete the semaphore only if there are no pending tasks

(OS_DEL_NO_PEND) or whether you always want to delete the semaphore regardless of
whether tasks are pending or not (0S_DEL_ALWAYS). In this case, all pending task are

readied.
err isapointer to avariable that is used to hold an error code. The error code can be one of
the following:
0S_NO_ERR if the call is successful and the semaphore has been
deleted.
OS_ERR_DEL_ISR if you attempt to del ete the semaphore from an ISR.
0S_ERR_INVALID_OPT if you don’t specify one of the two options mentioned
inthe opt argument.
0S_ERR_TASK_WAITING if one or more tasks are waiting on the semaphore.
OS_ERR_EVENT_TYPE if pevent isnot pointing to a semaphore.
0S_ERR_PEVENT_NULL if no more 0S_EVENT structures are available.
Returned Value

A NULL pointer if the semaphore is deleted or pevent if the semaphore is not deleted. In the latter case,
you need to examine the error code to determine the reason.

Notes/Warnings

1. You should use this call with care because other tasks might expect the presence of the semaphore.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends
on the number of tasks that are waiting on the semaphore.

0SSembel() 473

Example
OS_EVENT *DispSem;

void Task (void *pdata)

{
INT8U err;

pdata = pdata;
while (1) {

DispSem = 0SSemDel (DispSem, OS_DEL_ALWAYS, &err);
if (DispSem = (OS_EVENT *)0) {
/* Semaphore has been deleted */

474 Chapter 16: uC/OS|| Reference Manual

0SSemPend ()

void 0SSemPend(QS_EVENT *pevent, INT16U timeout, INT8U *err);

Chapter

File

Called from

Code enabled by

7

0S_SEM.C

Task only

OS_SEM_EN

0SSemPend() is used when a task wants exclusive access to a resource, needs to synchronize its
activities with an ISR or atask, or iswaiting until an event occurs. If atask calls 0SSemPend() and the
value of the semaphore is greater than 0, 0SSemPend() decrements the semaphore and returns to its
caller. However, if the value of the semaphore is 0, 0SSemPend () places the calling task in the waiting
list for the semaphore. The task waits until a task or an ISR signals the semaphore or the specified
timeout expires. If the semaphore is signaled before the timeout expires, uC/OS-11 resumes the highest
priority task waiting for the semaphore. A pended task that has been suspended with 0STaskSuspend()
can obtain the semaphore. However, the task remains suspended until it is resumed by calling

0STaskResume().

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the

semaphore is created [see 0SSemCreate()].

timeout allows the task to resume execution if a message is not received from the mailbox
within the specified number of clock ticks. A timeout value of O indicates that the task
waits forever for the message. The maximum timeout is 65,535 clock ticks. The timeout
value is not synchronized with the clock tick. The timeout count begins decrementing

on the next clock tick, which could potentially occur immediately.

err is a pointer to a variable used to hold an error code. 0SSemPend () sets *err to one of
the following:
0S_NO_ERR if the semaphore is available.

0S_TIMEOUT

O0S_ERR_EVENT_TYPE
O0S_ERR_PEND_ISR

O0S_ERR_PEVENT_NULL

Returned Value
none

if the semaphore is not signaled within the specified

timeout.

if pevent isnot pointing to a semaphore.

if you called this function from an ISR and pC/OS-11
has to suspend it. You should not call 0SSemPend ()
from an ISR. uC/OS-11 checks for this situation.

if pevent isaNULL pointer.

0SSemPend() 475

Notes/Warnings
1. Semaphores must be created before they are used.

Example
OS_EVENT *DispSem;

void DispTask (void *pdata)
{
INT8U err;

pdata = pdata;
for (;;) {

0SSemPend(DispSem, 0, &err);
/* The only way this task continues is if .. */
/* .. the semaphore is signaled! K/

476 Chapter 16: pC/OS || Reference Manual

0SSemPost ()

INT8U 0SSemPost(OS_EVENT *pevent);

Chapter File Called from Code enabled by
7 0S_SEM.C Task or ISR 0S_SEM_EN

A semaphoreissignaled by calling 0SSemPost (). If the semaphore value is 0 or more, it isincremented,
and 0SSemPost() returns to its caler. If tasks are waiting for the semaphore to be signaled,
0SSemPost () removes the highest priority task pending for the semaphore from the waiting list and
makes this task ready to run. The scheduler is then called to determine if the awakened task is now the
highest priority task ready to run.

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the
semaphore is created [see 0SSemCreate()].

Returned Value

0SSemPost () returns one of these error codes:
0S_NO_ERR if the semaphore is signaled successfully.
0S_SEM_OVF if the semaphore count overflows.
OS_ERR_EVENT_TYPE if pevent isnot pointing to a semaphore.
OS_ERR_PEVENT_NULL if pevent isaNULL pointer.

Notes/Warnings
1. Semaphores must be created before they are used.

Example
OS_EVENT *DispSem;

void TaskX (void *pdata)

{
INT8U err;

pdata = pdata;
for (53) |

err = 0SSemPost(DispSem);

switch (err) {
case OS_NO_ERR:

/* Semaphore signaled =/
break;

case OS_SEM_OVF:

/* Semaphore has overflowed */
break;

0SSemPost()

477

478 Chapter 16: pC/OS || Reference Manual

0SSemQuery ()

INT8U 0SSemQuery(0S_EVENT *pevent, 0S_SEM_DATA *pdata);

Chapter File Called from Code enabled by
7 0S_SEM.C Task or ISR 0S_SEM_EN && 0S_SEM_QUERY_EN

0SSemQuery () obtains information about a semaphore. Your application must allocate an 0S_SEM_DATA
data structure used to receive data from the event control block of the semaphore. 0SSemQuery () allows
you to determine whether any tasks are waiting on the semaphore and how many tasks are waiting (by
counting the number of 1sinthe .0SEventTb1[] field) and obtains the semaphore count. Note that the
sizeof .0SEventTb1[] isestablished by the Jidefine constant 0S_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the
semaphore is created [see 0SSemCreate()].

pdata isapointer to a data structure of type 0S_SEM_DATA, which contains the following fields

INT16U 0SCnt; /* Current semaphore count */
INT8U OSEventTb1[OS_EVENT_TBL_SIZE]; /* Semaphore wait list */
INT8U OSEventGrp;

Returned Value

0SSemQuery () returns one of these error codes:
0S_NO_ERR if the call is successful.
0S_ERR_EVENT_TYPE if you don’t pass a pointer to a semaphore.
0S_ERR_PEVENT_NULL if pevent isisaNULL pointer.

Notes/Warnings
1. Semaphores must be created before they are used.

0SSemQuery() 479

Example

In this example, the contents of the semaphore is checked to determine the highest priority task waiting
at the time the function call was made.

OS_EVENT *DispSem;

void Task (void *pdata)
{
0S_SEM_DATA sem data;

INT8U err;

INT8U highest; /* Highest priority task waiting on sem. */
INT8U X;

INT8U Y

pdata = pdata;
for (;3) |

err = 0SSemQuery(DispSem, &sem_data);
if (err = 0S_NO_ERR) {
if (sem_data.0SEventGrp != 0x00) {
y = 0SUnMapTbl1[sem_data.0SEventGrp];
X 0SUnMapTh1[sem _data.0SEventTh1[y1];
highest = (y << 3) + Xx;

480 Chapter 16: pC/OS || Reference Manual

0SStart()

void 0SStart(void);

Chapter File Called from Code enabled by
3 0S_CORE.C Startup code only N/A

0SStart() starts multitasking under uC/OS-I1. Thisfunction istypically called from your startup code
but after you call 0SInit().

Arguments
none

Returned Value
none

Notes/Warnings

1. 0SInit() must becalled prior to calling 0SStart(). 0SStart() should only be called once by
your application code. If you do call 0SStart () morethan once, it does not do anything on the sec-
ond and subsequent calls.

Example

void main (void)

{

/* User Code 7
0SInit(); /* Initialize uC/0S-11 */
/* User Code 7
0SStart(); /* Start Multitasking */

/* Any code here should NEVER be executed! */

0sStatInit() 481

0SStatInit()

void 0SStatInit(void);

Chapter File Called from Code enabled by

3 0S_CORE.C Startup code only OS_TASK_STAT_EN &&
OS_TASK_CREATE_EXT_EN

0SStatInit() determines the maximum value that a 32-bit counter can reach when no other task is
executing. This function must be called when only one task is created in your application and when
multitasking has started; that is, this function must be called from the first and, only, task created.

Arguments
none

Returned Value
none

Notes/Warnings
none

Example
void FirstAndOnlyTask (void *pdata)

{
0SStatInit(); /* Compute CPU capacity with no task running */

O0STaskCreate(..); /* Create the other tasks &7/
0STaskCreate(..);

for (;;) {

482 Chapter 16: pC/OS|I Reference Manual

0STaskChangePrio()
INT8U 0STaskChangePrio(INT8U oldprio, INT8U newprio);
Chapter File Called from Code enabled by
4 0S_TASK.C Task only 0S_TASK_CHANGE_PRIO_EN

0STaskChangePrio() changesthe priority of atask.

Arguments
oldprio isthe priority number of the task to change.
newprio isthe new task’s priority.
Returned Value
0STaskChangePrio() returns one of the following error codes:
0S_NO_ERR if the task’s priority is changed.
0S_PRIO_INVALID if either the old priority or the new priority is equal to
or exceeds 0S_LOWEST_PRIO.
0S_PRIO_EXIST if newprio aready exists.
0S_PRIO_ERR if no task with the specified old priority exists (i.e., the

task specified by o1dprio does not exist).

Notes/Warnings

1. Thedesired priority must not already have been assigned; otherwise, an error code is returned.
Also, 0STaskChangePrio() verifies that the task to change exists.

Example

void TaskX (void *data)
{
INT8U err;

for (;;) f

err = 0STaskChangePrio(10, 15);

0STaskCreate() 483

OSTaskCreate()

INT8U 0STaskCreate(void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT8U prio);

Chapter File Called from Code enabled by
4 0S_TASK.C Task or startup code OS_TASK_CREATE_EN

OSTaskCreate() creates atask so it can be managed by pC/OS-11. Tasks can be created either prior to
the start of multitasking or by arunning task. A task cannot be created by an ISR. A task must be written
as an infinite loop, as shown below, and must not return.

0STaskCreate() is used for backward compatibility with pC/OS and when the added features of
0STaskCreateExt () are not needed.

Depending on how the stack frame is built, your task has interrupts either enabled or disabled. You
need to check with the processor-specific code for details.

void Task (void *pdata)
{

. /* Do something with 'pdata' =/
for (;;) { /* Task body, always an infinite loop. &7/
/* Must call one of the following services:)
1% OSMboxPend () =/
/% OSFlagPend())
/= 0SMutexPend() 7/
A 0SQPend () &/
/= 0SSemPend () &/
/% 0STimeDly () 7/
A 0STimeD1yHMSM() =/
/% 0STaskSuspend() (Suspend self) &/

f% 0STaskDel () (Delete self))

484 Chapter 16: uC/OS || Reference Manual

Arguments

task
pdata

ptos

prio

isapointer to the task’s code.

is a pointer to an optional data area used to pass parameters to the task when it is cre-
ated. Where thetask is concerned, it thinksit isinvoked and passes the argument pdata.
pdata can be used to pass arguments to the task created. For example, you can create a
generic task that handles an asynchronous serial port. pdata can be used to pass this
task information about the serial port it has to manage: the port address, the baud rate,
the number of bits, the parity, and more.

is a pointer to the task’s top-of-stack. The stack is used to store local variables, func-
tion parameters, return addresses, and CPU registers during an interrupt. The size of
the stack is determined by the task’s requirements and the anticipated interrupt nest-
ing. Determining the size of the stack involves knowing how many bytes are required
for storage of local variables for the task itself and all nested functions, as well as
requirements for interrupts (accounting for nesting). If the configuration constant
0S_STK_GROWTH is set to 1, the stack is assumed to grow downward (i.e., from high to
low memory). ptos thus needs to point to the highest valid memory location on the
stack. If 0S_STK_GROWTH is set to 0, the stack is assumed to grow in the opposite direc-
tion (i.e., from low to high memory).

is the task priority. A unique priority number must be assigned to each task, and the
lower the number, the higher the priority (i.e., the task importance).

Returned Value
0STaskCreate() returns one of the following error codes:

0S_NO_ERR if the function is successful.

0S_PRIO_EXIST if the requested priority already exists.
OS_PRIO_INVALID if prioishigher than 0S_LOWEST_PRIO.
0S_NO_MORE_TCB if UC/OS-II doesn’'t have any more 0S_TCBsto assign.

Notes/Warnings

1. Thestack for the task must be declared with the 0S_STK type.

2. A task must alwaysinvoke one of the services provided by pC/OS-11 to wait for time to expire, sus-
pend the task, or wait for an event to occur (wait on amailbox, queue, or semaphore). This alows
other tasksto gain control of the CPU.

3. You should not use task priorities0, 1, 2, 3, 0S_LOWEST_PRI0-3, 0S_LOWEST_PRIO-2,
0S_LOWEST_PRIO-1, and OS_LOWEST_PRIO because they are reserved for use by pC/OS-11. This
leaves you with up to 56 application tasks.

0STaskCreate() 485

Example 1

This example shows that the argument that Task1() receivesis not used, so the pointer pdata is set to
NULL. Note that | assume the stack grows from high to low memory because | pass the address of the
highest valid memory location of the stack Task1Stk[]. If the stack grows in the opposite direction for
the processor you are using, pass &Task1Stk[0] asthe task’s top-of -stack.

Assigning pdata to itself is used to prevent compilers from issuing a warning about the fact that
pdata isnot being used. In other words, if | had not added this line, some compilers would have com-
plained about “WARNING - variable pdata not used.

0S_STK TasklStk[10241;

void main (void)

{

INT8U err;
0SInit(); /* Initialize pC/0S-T11 w5
0STaskCreate(Taskl,
(void *)0,
&Task1Stk[1023],
25) ¢
0SStart(); /* Start Multitasking */

void Taskl (void *pdata)
{

pdata = pdata; /* Prevent compiler warning =/
for (53) |
/* Task code */
}
}
Example 2

You can create a generic task that can be instantiated more than once. For example, atask that handles a
seria port could be passed the address of a data structure that characterizes the specific port (i.e., port
address and baud rate). Note that each task has its own stack space and its own (different) priority. In
this example, | arbitrarily decided that COM1 is the most important port of the two. 16

486 Chapter 16: pC/OS || Reference Manual

0S_STK *Comm1Stk[10247;
COMM_DATA CommlData; T

/*

0S_STK *Comm2Stk[102417;
COMM_DATA CommzData; /*

/*

void main (void)

{

INT8U err;

0SInit(); /%

/*
0STaskCreate(CommTask,

(void *)&CommlData,

&Comm1Stk[1023],
25);
/*
0STaskCreate(CommTask,

(void *)&CommzData,

&Comm2Stk[1023],
26);

Data structure containing COMM port

Specific data for channel 1

Data structure containing COMM port

Specific data for channel 2

Initialize pC/0S-II

Create task to manage COM1

Create task to manage COM2

0SStart();

void CommTask (void *pdata)

{
for (;;) {

/* Start Multitasking

/* Generic communication task

/* Task code

*/
*/

*/
*/

*/

=)

*/

*/

*/

*/

0STaskCreateExt() 487

0STaskCreateExt()

INT8U OSTaskCreateExt(void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT8U prio,
INT16U 1id,
0S_STK *pbos,
INT32U stk_size,
void *pext,
INT16U opt);

Chapter File Called from Code enabled by
4 0S_TASK.C Task or startup code N/A

0STaskCreateExt () creates atask to be managed by pC/OS-I1. This function serves the same purpose
as 0STaskCreate(), except that it alows you to specify additional information about your task to
MC/OS-1. Tasks can be created either prior to the start of multitasking or by a running task. A task can-
not be created by an ISR. A task must be written as an infinite loop, as shown below, and must not
return. Depending on how the stack frame is built, your task has interrupts either enabled or disabled.
You need to check with the processor-specific code for details. Note that the first four arguments are
exactly the same as the ones for 0STaskCreate (). This was done to simplify the migration to this new
and more powerful function. It ishighly recommended that you use 0STaskCreateExt () instead of the
older 0STaskCreate() function because it's much more flexible.

void Task (void *pdata)
{

. /* Do something with 'pdata’ =/
for (;;) { /* Task body, always an infinite loop. */
/* Must call one of the following services: =/
/= O0SMboxPend () 7/
/% 0SFTagPend() 7
/= OSMutexPend() &/
/% 0SQPend() 7/
1% 0SSemPend () =/
A 0STimeDly () &/
/% 0STimeD1yHMSM() 7/
1% 0STaskSuspend() (Suspend self) =/

A 0STaskDel () (Delete self))

488 Chapter 16: pC/OS || Reference Manual

Arguments

task
pdata

ptos

prio

id

pbos

stk_size

pext

isapointer to the task’s code.

isapointer to an optional data area, which is used to pass parametersto the task when it
is created. Where the task is concerned, it thinks it is invoked and passes the argument
pdata. pdata can be used to pass arguments to the task created. For example, you can
create a generic task that handles an asynchronous serial port. pdata can be used to
pass this task information about the seria port it has to manage: the port address, the
baud rate, the number of bits, the parity, and more.

isapointer to the task’s top-of -stack. The stack is used to store local variables, function
parameters, return addresses, and CPU registers during an interrupt.

The size of this stack is determined by the task’s requirements and the anticipated
interrupt nesting. Determining the size of the stack involves knowing how many bytes
are required for storage of local variables for the task itself and all nested functions, as
well as requirements for interrupts (accounting for nesting).

If the configuration constant 0S_STK_GROWTH is set to 1, the stack is assumed to
grow downward (i.e., from high to low memory). ptos thus needs to point to the high-
est valid memory location on the stack. If 0S_STK_GROWTH is set to 0, the stack is
assumed to grow in the opposite direction (i.e., from low to high memory).

is the task priority. A unique priority number must be assigned to each task: the lower
the number, the higher the priority (i.e., the importance) of the task.

is the task’s ID number. At thistime, the ID is not currently used in any other function
and has ssimply been added in 0STaskCreateExt () for future expansion. You should set
id to the same value as the task’s priority.

is a pointer to the task’s bottom-of-stack. If the configuration constant 0S_STK_GROWTH
is set to 1, the stack is assumed to grow downward (i.e., from high to low memory);
thus, pbos must point to the lowest valid stack location. If 0S_STK_GROWTH is set to 0,
the stack is assumed to grow in the opposite direction (i.e., from low to high memory);
thus, pbos must point to the highest valid stack location. pbos is used by the
stack-checking function 0STaskStkChk ().

specifies the size of the task’s stack in number of elements. If 0S_STK is set to INT8U,
then stk_size corresponds to the number of bytes available on the stack. If 0S_STK is
set to INT16U, then stk_size contains the number of 16-bit entries available on the
stack. Finally, if 0S_STKisset to INT32U, then stk_size contains the number of 32-bit
entries available on the stack.

is a pointer to a user-supplied memory location (typically a data structure) used as a
TCB extension. For example, this user memory can hold the contents of floating-point
registers during a context switch, the time each task takes to execute, the number of
times the task is switched in, and so on.

0STaskCreateExt() 489

opt contains task-specific options. The lower 8 bits are reserved by uC/OS-I1, but you can
use the upper 8 hits for application-specific options. Each option consists of one or
more bits. The option is selected when the bit(s) is set. The current version of uC/OS-l1
supports the following options:

0S_TASK_OPT_STK_CHK specifies whether stack checking is allowed for the
task.

0S_TASK_OPT_STK_CLR specifies whether the stack needs to be cleared.

OS_TASK_OPT_SAVE_FP specifies whether floating-point registers are saved.

This option isonly valid if your processor has
floating-point hardware and the processor-specific
code saves the floating-point registers.

Refer to uCOS_I1.H for other options.

Returned Value

0STaskCreateExt () returns one of the following error codes:
0S_NO_ERR if the function is successful.
0S_PRIO_EXIST if the requested priority aready exists.
OS_PRIO_INVALID if prioishigher than 0S_LOWEST_PRIO.
0S_NO_MORE_TCB if UC/OS-II doesn’'t have any more 0S_TCBs to assign.

Notes/Warnings

1. The stack must be declared with the 0S_STK type.

2. A task must alwaysinvoke one of the services provided by pC/OS-11 to wait for time to expire, sus-
pend the task, or wait an event to occur (wait on amailbox, queue, or semaphore). This allows other
tasks to gain control of the CPU.

3. You should not use task priorities 0, 1, 2, 3, 0S_LOWEST_PRIO-3, 0S_LOWEST_PRIO-2,
0S_LOWEST_PRIO-1, and OS_LOWEST_PRIO because they are reserved for use by uC/OS-11. This
leaves you with up to 56 application tasks.

490 Chapter 16: pC/OS || Reference Manual

Example 1

EL(D) Thetask control block is extended using a user-defined data structure called 0S_TASK_USER_DATA,
which in this case contains the name of the task aswell as other fields.

E1(2) Thetask nameisinitialized with the standard library function strcpy ().

E1(4) Note that stack checking has been enabled for this task, so you are allowed to cal
0STaskStkChk().

EL(3) Also, assume here that the stack grows downward on the processor used (i.e., 0S_STK_GROWTH
isset to 1; TOS stands for top-of-stack and BOS stands for bottom-of -stack).

typedef struct { /* User defined data structure */ (1)
char 0STaskName[20];
INT16U O0STaskCtr;
INT16U O0STaskExecTime;
INT32U O0STaskTotExecTime;
} OS_TASK_USER_DATA;

0S_STK TaskStk[10247;
TASK_USER_DATA TaskUserData;

void main (void)
{

INT8U err;
0SInit(); /* Initialize pC/0S-I1I*/
strcpy(TaskUserData.TaskName, "MyTaskName"); /* Name of task */ (2)
err = 0STaskCreateExt(Task,
(void *)0,
&TaskStk[1023], /* Stack grows down (T0S) */ (3)
10,
&TaskStk[O], /* Stack grows down (BOS) */ (3)
1024,
(void *)&TaskUserData, /* TCB Extension*/
OS_TASK_OPT_STK_CHK) ; /* Stack checking enabled */ (4)

0SStart(); /* Start Multitasking*/

void Task(void *pdata)
{
pdata = pdata;
for (;;) f

0STaskCreateExt()

/* Avoid compiler warning*/

/* Task code*/

491

492 Chapter 16: pC/OS|| Reference Manual

Example 2

E2(1) Now create a task, but this time on a processor for which the stack grows upward. The Intel
MCS-51 is an example of such a processor. In this case, 0S_STK_GROWTH isset to 0.

E2(2) Note that stack checking has been enabled for this task so you are alowed to cal
0STaskStkChk() (TOS stands for top-of-stack and BOS stands for bottom-of-stack).

0S_STK *TaskStk[1024];

void main (void)
{
INT8U err;

0SInit(); /* Initialize uC/0S-I1 */

err = 0STaskCreateExt(Task,

(void *)0,

&TaskStk[0], /* Stack grows up (T0S) */ (1)

10,

10,

&TaskStk[10237, /* Stack grows up (BOS) */ (1)

1024,

(void *)0,

0S_TASK_OPT_STK_CHK) ; /* Stack checking enabled */ (2)
0SStart(); /* Start Multitasking w5

void Task (void *pdata)
{
pdata = pdata; /* Avoid compiler warning */
for (53) |
/* Task code &/

0STaskDel() 493

0STaskDel ()

INT8U 0STaskDel(INT8U prio);

Chapter File Called from Code enabled by
4 0S_TASK.C Task only 0S_TASK_DEL_EN

0STaskDel() deletesatask by specifying the priority number of the task to delete. The calling task can
be deleted by specifying its own priority number or 0S_PRIO_SELF (if the task doesn’t know its own pri-
ority number). The deleted task is returned to the dormant state. The deleted task can be re-created by
calling either 0STaskCreate() or 0STaskCreateExt () to make the task active again.

Arguments
prio is the priority number of the task to delete. You can delete the calling task by passing
0S_PRIO_SELF, in which case the next highest priority task is executed.
Returned Value
0STaskDel () returns one of the following error codes:
0S_NO_ERR if the task doesn’t delete itself.
0S_TASK_DEL_IDLE if you try to delete the idle task, which is of courseis
not allowed.
OS_TASK_DEL_ERR if the task to delete does not exist.
0S_PRIO_INVALID if you specify atask priority higher than
0S_LOWEST_PRIO.
0S_TASK_DEL_ISR if you try to delete atask from an ISR.

Notes/Warnings
1. 0STaskDel() verifiesthat you are not attempting to delete the uC/OS-11 idle task.

2. You must be careful when you delete atask that owns resources. Instead, consider using
0STaskDelReq() as asafer approach.

494 Chapter 16: pC/OS|| Reference Manual

Example

0STaskDelReq() 495

0STaskDelReq()
INT8U 0STaskDelReq(INT8U prio);
Chapter File Called from Code enabled by
4 0S_TASK.C Task only 0S_TASK_DEL_EN

0STaskDeTReq() requests that a task delete itself. Basically, use 0STaskDelReq() when you need to
delete atask that can potentially own resources (e.g., the task might own a semaphore). In this case, you
don’'t want to delete the task until the resourceis released. The requesting task calls 0STaskDelReq() to
indicate that the task needs to be deleted. Deletion of the task is, however, deferred to the task being
deleted. In other words, the task is actually deleted when it regains control of the CPU. For example,
suppose Task 10 needs to be deleted. The task wanting to delete this task (example Task 5) calls
0STaskDeTReq(10). When Task 10 executes, it calls 0STaskDe1Req(0S_PRIO_SELF) and monitors the
return value. If the return valueis 0S_TASK_DEL_REQ, then Task 10 is asked to delete itself. At this point,
Task 10 calls 0STaskDe1 (0S_PRIO_SELF). Task 5 knows whether Task 10 has been deleted by calling
0STaskDeTReq(10) and checking the return code. If the return codeis 0S_TASK_NOT_EXIST, then Task 5
knows that Task 10 has been deleted. Task 5 might have to check periodically until 0S_TASK_NOT_EXIST
isreturned.

Arguments
prio isthetask’s priority number of the task to delete. If you specify 0S_PRIO_SELF, you are
asking whether another task wants the current task to be deleted.
Returned Value
0STaskDelReq() returns one of the following error codes:
0S_NO_ERR if the task deletion has been registered.
OS_TASK_NOT_EXIST if the task does not exist. The requesting task can
monitor this return code to see if the task is actually
deleted.
OS_TASK_DEL_IDLE if you ask to delete the idle task (which is obviously
not allowed).
0S_PRIO_INVALID if you specify atask priority higher than
0S_LOWEST_PRIO or do not specify 0S_PRIO_SELF.
0S_TASK_DEL_REQ if atask (possibly another task) requests that the
running task be deleted.

Notes/Warnings
1. 0STaskDelReq() verifiesthat you are not attempting to delete the uC/OS-11 idle task.

496 Chapter 16: pC/OS|| Reference Manual

Example
void TaskThatDeletes (void *pdata) /* My priority is 5)
{
INT8U err;
for (53) |
err = 0STaskDeTReq(10); /* Request task #10 to delete itself */

if (err = 0S_NO_ERR) {
while (err != OS_TASK_NOT_EXIST) {
err = 0STaskDelReq(10);

0STimeDly(1); /* Wait for task to be deleted B/
}
/* Task #f10 has been deleted &
}
}
}
void TaskToBeDeleted (void *pdata) /* My priority is 10 Y/

{

pdata = pdata;

for (;35) |
0STimeD1y(1);
if (0STaskDelReq(OS_PRIO_SELF) == OS_TASK_DEL_REQ) {
/* Release any owned resources; B/
/* De-allocate any dynamic memory;)

0STaskDel(OS_PRIO_SELF);

0STaskQuery() 497

0STaskQuery()

INT8U 0STaskQuery(INT8U prio, OS_TCB *pdata);

Chapter File Called from Code enabled by

4 0S_TASK.C Task or ISR N/A

0STaskQuery () obtainsinformation about atask. Your application must allocate an 0S_TCB data struc-
ture to receive a snapshot of the desired task’s control block. Your copy contains every field in the 0S_TCB
structure. You should be careful when accessing the contents of the 0S_TCB structure, especially
0STCBNext and 0STCBPrev, because they point to the next and previous 0S_TCBsin the chain of created
tasks, respectively. You could use this function to provide a debugger kernel awareness.

Arguments

prio is the priority of the task from which you wish to obtain data. You can obtain informa-
tion about the calling task by specifying 0S_PRIO_SELF.

pdata is a pointer to a structure of type 0S_TCB, which contains a copy of the task’s control
block.

Returned Value

0STaskQuery () returns one of these error codes:
0S_NO_ERR if the call is successful.
0S_PRIO_ERR if you try to obtain information from an invalid task.
0S_PRIO_INVALID if you specify apriority higher than 0S_LOWEST_PRIO.

Notes/Warnings

1. Thefieldsin thetask control block depend on the following configuration options (see 0S_CFG. H) :
o OS_TASK_CREATE_EN
« 0S_Q_EN
« OS_FLAG_EN
« 0S_MBOX_EN
o OS_SEM_EN
* (OS_TASK_DEL_EN

498 Chapter 16: pC/OS || Reference Manual

Example

void Task (void *pdata)
{
0S_TCB task_data;
INT8U err;
void *pext;
INT8U status;

pdata = pdata;
for (;;) |

err = 0STaskQuery(0S_PRIO_SELF, &task_data);

if (err = 0S_NO_ERR) {

pext
status = task_data.0STCBStat;

task_data.O0STCBExtPtr; /* Get TCB extension pointer

/* Get task status

*/
=)

0STaskResume() 499

0STaskResume()
INT8U 0STaskResume(INT8U prio);
Chapter File Called from Code enabled by
4 0S_TASK.C Task only O0S_TASK_SUSPEND_EN

0STaskResume() resumes a task suspended through the 0STaskSuspend() function. In fact,
0STaskResume () isthe only function that can unsuspend a suspended task.

Arguments
prio

Returned Value

specifies the priority of the task to resume.

0STaskResume () returns one of the these error codes:

0S_NO_ERR
O0S_TASK_RESUME_PRIO
OS_TASK_NOT_SUSPENDED
O0S_PRIO_INVALID

Notes/Warnings
none

Example

void TaskX (void *pdata)

{
INT8U err;

for (;;) {

err = 0STaskResume(10);
if (err = 0S_NO_ERR) {

if the call is successful.

if the task you are attempting to resume does not exist.
if the task to resume has not been suspended.

if prioishigher or equal to 0S_LOWEST_PRIO.

/* Resume task with priority 10 =/

/* Task was resumed)

500 Chapter 16: pC/OS| Reference Manual

0STaskStkChk()

INT8U 0STaskStkChk(INT8U prio, OS_STK_DATA *pdata);

Chapter File Called from Code enabled by
4 0S_TASK.C Task code 0S_TASK_CREATE_EXT

0STaskStkChk() determines atask’s stack statistics. Specifically, it computes the amount of free stack
space, as well as the amount of stack space used by the specified task. This function requires that the
task be created with 0STaskCreateExt () and that you specify 0S_TASK_OPT_STK_CHK in the opt argu-
ment.

Stack sizing is done by walking from the bottom of the stack and counting the number of 0 entries
on the stack until a nonzero value is found. Of course, this assumes that the stack is cleared when the
task is created. For that purpose, you need to set 0S_TASK_0PT_STK_CLR to 1 as an option when you cre-
ate the task. You could set 0S_TASK_OPT_STK_CLR to O if your startup code clears all RAM and you
never delete your tasks. This reduces the execution time of 0STaskCreateExt ().

Arguments
prio is the priority of the task about which you want to obtain stack information. You can
check the stack of the calling task by passing 0S_PRIO_SELF.
pdata isapointer to avariable of type 0S_STK_DATA, which contains the following fields:
INT32U OSFree; /* Number of bytes free on the stack)
INT32U 0OSUsed; /* Number of bytes used on the stack)
Returned Value
0STaskStkChk() returns one of the these error codes:
0S_NO_ERR if you specify valid arguments and the call is
successful.
0S_PRIO_INVALID if you specify atask priority higher than
0S_LOWEST_PRIO or you don't specify 0S_PRIO_SELF.
OS_TASK_NOT_EXIST if the specified task does not exist.
0S_TASK_OPT_ERR if you do not specify 0S_TASK_0PT_STK_CHK when the

task was created by 0STaskCreateExt() orif you
create the task by using 0STaskCreate().

0STaskStkchk() 501

Notes/Warnings
1. Execution time of thistask depends on the size of the task’s stack and is thus nondeterministic.

2. Your application can determine the total task stack space (in number of bytes) by adding the two
fields .0SFree and .0SUsed of the 0S_STK_DATA data structure.

3. Technically, thisfunction can be called by an I SR, but because of the possibly long execution time,
itisnot advisable.

Example

void Task (void *pdata)

{
0S_STK_DATA stk_data;
INT32U stk_size;

for (;;) {

err = 0STaskStkChk(10, &stk_data);
if (err = 0S_NO_ERR) {
stk_size = stk_data.0SFree + stk_data.0SUsed;

502 Chapter 16: pC/OS-| Reference Manual

0STaskSuspend()

INT8U 0STaskSuspend(INT8U prio);

Chapter File Called from Code enabled by
4 0S_TASK.C Task only 0S_TASK_SUSPEND_EN

0STaskSuspend() suspends (or blocks) execution of atask unconditionally. The calling task can be sus-
pended by specifying its own priority number or 0S_PRIO_SELF if the task doesn’t know its own priority
number. In this case, another task needs to resume the suspended task. If the current task is suspended,
rescheduling occurs, and uC/OS-1I runs the next highest priority task ready to run. The only way to
resume a suspended task isto call 0STaskResume().

Task suspension is additive, which means that if the task being suspended is delayed until n ticks
expire, the task is resumed only when both the time expires and the suspension is removed. Also, if the
suspended task is waiting for a semaphore and the semaphore is signaled, the task is removed from the
semaphore-wait list (if it is the highest priority task waiting for the semaphore), but execution is not
resumed until the suspension is removed.

Arguments

prio specifies the priority of the task to suspend. You can suspend the calling task by passing
0S_PRIO_SELF, in which case, the next highest priority task is executed.

Returned Value
0STaskSuspend() returns one of the these error codes:

0S_NO_ERR if the call is successful.

0S_TASK_SUSPEND_IDLE if you attempt to suspend the uC/OS-11 idle task, which
is not allowed.

0S_PRIO_INVALID if you specify apriority higher than the maximum

allowed (i.e., you specify apriority of
0S_LOWEST_PRIO or more) or you don’'t specify
0S_PRIQ_SELF.

0S_TASK_SUSPEND_PRIO if the task you are attempting to suspend does not exist.
Notes/Warnings

1. 0STaskSuspend() and 0STaskResume() must be usedin pairs.
2. A suspended task can only be resumed by 0STaskResume().

0STaskSuspend() 503

Example

void TaskX (void *pdata)
{
INT8U err;

for (;;) {

err = 0STaskSuspend(0S_PRIO_SELF); /* Suspend current task =/
/* Execution continues when ANOTHER task .. 7/
/* .. explicitly resumes this task. =Y

504 Chapter 16: pC/OS-| Reference Manual

OSTimeDly()

void OSTimeD1y(INT1eU ticks);

Chapter File Called from Code enabled by
5 0S_TIME.C Task only N/A

0STimeD1y() alows atask to delay itself for an integral number of clock ticks. Rescheduling always
occurs when the number of clock ticksis greater than zero. Valid delays range from one to 65,535 ticks.
A delay of 0 meansthat thetask is not delayed, and 0STimeD1y () returnsimmediately to the caller. The
actual delay time depends on thetick rate (see 0S_TICKS_PER_SEC in the configuration file 0S_CFG. H).
Arguments

ticks isthe number of clock ticks to delay the current task.

Returned Value
none

Notes/Warnings

1. Notethat calling this function with avalue of 0 resultsin no delay, and the function returnsimme-
diately to the caller.

2. Toensurethat atask delays for the specified number of ticks, you should consider using adelay
value that is one tick higher. For example, to delay atask for at least 10 ticks, you should specify a
value of 11.

Example

void TaskX (void *pdata)
{
for (;3) {

0STimeD1y(10); /* Delay task for 10 clock ticks */

0STimeD1yHMSM() 505

OSTimeD1yHMSM()

void OSTimeDTyHMSM (INT8U hours, INT8U minutes, INT8U seconds, INT8U milli);

Chapter File Called from Code enabled by
5 0S_TIME.C Task only N/A

0STimeD1yHMSM() alows atask to delay itself for a user-specified amount of time specified in hours,
minutes, seconds, and milliseconds. This format is more convenient and natural than ticks. Reschedul-
ing always occurs when at least one of the parameters is nonzero.

Arguments

hours isthe number of hoursthe task is delayed. The valid range of valuesis 0 to 255.
minutes is the number of minutes the task is delayed. The valid range of valuesis 0 to 59.
seconds is the number of seconds the task is delayed. The valid range of valuesis 0 to 59.

milli is the number of milliseconds the task is delayed. The valid range of valuesis 0 to 999.

Note that the resolution of this argument isin multiples of the tick rate. For instance, if
thetick rateis set to 100Hz, adelay of 4msresultsin no delay. The delay is rounded to
the nearest tick. Thus, adelay of 15ms actually resultsin adelay of 20ms.

Returned Value
0STimeD1yHMSM() returns one of the these error codes:
0S_NO_ERR if you specify valid arguments and the call is

successful.
OS_TIME_INVALID_MINUTES if the minutesargument is greater than 59.
OS_TIME_INVALID_SECONDS if the secondsargument is greater than 59.
OS_TIME_INVALID_MILLI if the milliseconds argument is greater than 999.
0S_TIME_ZERO_DLY if al four arguments are 0.

Notes/Warnings

1. Notethat 0STimeD1yHMSM(0,0,0,0) (i.e., hours, minutes, seconds, milliseconds) resultsin no
delay, and the function returns to the caller. Also, if the total delay time islonger than 65,535 clock
ticks, you cannot abort the delay and resume the task by calling 0STimeD1yResume ().

506 Chapter 16: pC/OS| Reference Manual

Example

void TaskX (void *pdata)
{
for (;;) {

0STimeDI1yHMSM(0O, O, 1, 0); /* Delay task for 1 second */

0STimeDlyResume() 507

0STimeDT1yResume()
INT8U 0STimeDlyResume(INT8U prio);
Chapter File Called from Code enabled by
5 0S_TIME.C Task only N/A

0STimeD1yResume() resumes a task that has been delayed through a call to either 0STimeD1y() or
0STimeD1yHMSM().

Arguments

prio specifies the priority of the task to resume.

Returned Value

0STimeD1yResume() returns one of the these error codes:
0S_NO_ERR if the call is successful.
0S_PRIO_INVALID if you specify atask priority greater than

0S_LOWEST_PRIO.

0S_TIME_NOT_DLY if the task is not waiting for time to expire.
OS_TASK_NOT_EXIST if the task has not been created.

Notes/Warnings
1. Notethat you must not call thisfunction to resume atask that is waiting for an event with timeout.
This situation makes the task ook like atimeout occurred (unless you desire this effect).

2. You cannot resume atask that has called 0STimeD1yHMSM() with a combined time that exceeds
65,535 clock ticks. In other words, if the clock tick runs at 100Hz, you cannot resume a delayed
task that called 0STimeD1yHMSM(0, 10, 55, 350) or higher.

(10 minutes * 60 + (55 + 0.35) seconds) * 100 ticks/second

Example

void TaskX (void *pdata)
{
INT8U err;

pdata = pdata;
for (;;) f

err = 0STimeDlyResume(10); /* Resume task with priority 10 */
if (err = 0S_NO_ERR) {
/* Task was resumed 27

508 Chapter 16: pC/OS| Reference Manual

0STimeGet ()

INT32U 0STimeGet(void);

Chapter File Called from Code enabled by

5 OS_TIME.C Task or ISR N/A

0STimeGet () obtains the current value of the system clock. The system clock is a 32-bit counter that
counts the number of clock ticks since power was applied or since the system clock was last set.

Arguments
none
Returned Value

The current system clock value (in number of ticks).

Notes/Warnings
none

Example

void TaskX (void *pdata)
{
INT32U clk;

for (;;) f

clk = 0STimeGet(); /* Get current value of system clock */

0STimeSet() 509

0STimeSet ()

void OSTimeSet(INT32U ticks);

Chapter File Called from Code enabled by
5 0S_TIME.C Task or ISR N/A

0STimeSet () sets the system clock. The system clock is a 32-bit counter that counts the number of
clock ticks since power was applied or since the system clock was last set.

Arguments
ticks isthe desired value for the system clock, in ticks.
Returned Value

none

Notes/Warnings
none

Example

void TaskX (void *pdata)
{
for (;35) |

0STimeSet(0OL); /* Reset the system clock */

510 Chapter 16: pC/OS1 Reference Manual

OSTimeTick()

void 0STimeTick(void);

Chapter

File

Called from

Code enabled by

5

0S_TIME.C

Task or ISR

N/A

0STimeTick() processesaclock tick. uC/OS-11 checks al tasksto seeif they are either waiting for time
to expire [because they called 0STimeD1y () or 0STimeD1yHMSM()] or waiting for events to occur until

they timeout.

Arguments
none

Returned Value
none

Notes/Warnings

1. Theexecutiontime of 0STimeTick() isdirectly proportional to the number of tasks created in an

application. 0STimeTick() can be called by either an ISR or atask. If called by atask, the task pri-

ority should be very high (i.e., have alow priority number) because this function is responsible for
updating delays and timeouts.

0STimeTick() 511

Example
(Intel 80x86, real mode, large model)
_0STickISR PROC FAR

PUSHA ; Save processor context
PUSH ES

PUSH DS

MOV AX, SEG(_OSIntNesting) ; Reload DS

MOV DS, AX

INC BYTE PTR DS:_0SIntNesting ; Notify uC/0S-II of ISR

CMP BYTE PTR DS:_0SIntNesting, 1 ; if (OSIntNesting = 1)
JNE SHORT _OSTickISR1

MOV AX, SEG(_OSTCBCur) ; Reload DS
MOV DS, AX
LES BX, DWORD PTR DS:_0STCBCur 3 0STCBCur->0STCBStkPtr = SS:SP

MoV ES:[BX+2], SS 3
MOV ES:[BX+0]1, SP ;
CALL FAR PTR _OSTimeTick ; Process clock tick
; User Code to clear interrupt

CALL FAR PTR _OSIntExit ; Notify _C/0S-II of end of ISR

POP DS ; Restore processor registers
POP ES

POPA

IRET ; Return to interrupted task

_0STickISR ENDP

512 Chapter 16: pC/OS1 Reference Manual

OSVersion()

INT16U OSVersion(void);

Chapter File Called from Code enabled by

3 0S_CORE.C Task or ISR N/A

0SVersion() obtainsthe current version of pC/OS-I1.

Arguments
none

Returned Value
The version is returned as x.yy multiplied by 100. For example, v2.52 isreturned as 252.

Notes/Warnings
none

Example

void TaskX (void *pdata)
{
INT16U os_version;

for (;;) |

os_version = 0SVersion(); /* Obtain pC/0S-II's version */

Chapter 17

LC/OS-11 Configuration Manual

This chapter provides a description of the configurable elements of uC/OS-I1. Because uC/OS-1 is pro-
vided in source form, configuration is done through a number of #fdefine constants, which are found in
0S_CFG.H and should exist for each project/product that you develop. In other words, configuration is
done via conditional compilation.

This section describes each of the ffdefine constantsin 0S_CFG. H.

17.00 Miscellaneous

0S_ARG_CHK_EN

0S_ARG_CHK_EN indicates whether you want most of pC/OS-I1 functions to perform argument check-
ing. When set to 1, uC/OS-11 will ensure that pointers passed to functions are non-NULL, that argu-
ments passed are within allowable range and more. 0S_ARG_CHK_EN was added to reduce the amount
of code space and processing time required by uC/OS-1I. Set 0S_ARG_CHK_EN to 0 if you must
reduce code space to a minimum. In general, you should always enable argument checking and thus
set 0S_ARG_CHK_EN to 1.

0S_CPU_HOOKS_EN

0S_CPU_HOOKS_EN indicates whether 0S_CPU_C.C declares the hook function (when set to 1) or not
(when set to 0). Recall that uC/OS-11 expects the presence of nine functions that can be defined either in
the port (i.e., in 0S_CPU_C.C) or by the application code. These functions are

0SInitHookBegin() 0STaskStatHook()
0SInitHookEnd() 0STaskSwHook ()

0STaskCreateHook() 0STCBInitHook()
0STaskDeTHook() 0STimeTickHook()

0STaskIdleHook()

513

514 Chapter 17: pC/OS-1 Configuration Manual

OS_LOWEST_PRIO

0S_LOWEST_PRIO specifies the lowest task priority (i.e., highest number) that you intend to use in your
application and is provided to reduce the amount of RAM needed by pC/OS-l1l. Remember that
MC/OS-1 priorities can go from O (highest priority) to a maximum of 63 (lowest possible priority). Set-
ting OS_LOWEST_PRIO to avalue less than 63 means that your application cannot create tasks with a pri-
ority number higher than 0S_LOWEST_PRIO. In fact, puC/OS-1I reserves priorities 0S_LOWEST_PRIO and
O0S_LOWEST_PRIO-1 foritself; 0S_LOWEST_PRIOQ isreserved for theidletask, 0S_TaskIdle(), and
0S_LOWEST_PRIO-1 isreserved for the statistic task, 0S_TaskStat (). The priorities of your application
tasks can thus take a value between 0 and 0S_LOWEST_PRIO-2 (inclusive). The lowest task priority spec-
ified by 0S_LOWEST_PRIO isindependent of 0S_MAX_TASKS. For example, you can set 0S_MAX_TASKS to
10 and 0S_LOWEST_PRIO to 32 and have up to 10 application tasks, each of which can have atask prior-
ity value between 0 and 30 (inclusive). Note that each task must still have a different priority value. You
must always set 0S_LOWEST_PRIO0 to avalue greater than the number of application tasksin your system.
For example, if you set 0S_MAX_TASKS to 20 and 0S_LOWEST_PRIO to 10, you can not create more than
eight application tasks (O, ... , 7). You are simply wasting RAM.

OS_MAX_EVENTS

0S_MAX_EVENTS specifies the maximum number of event control blocks that can be allocated. An event
control block is needed for every message mailbox, message queue, mutual exclusion semaphore, or
semaphore object. For example, if you have 10 mailboxes, five queues, four mutexes, and three sema-
phores, you must set 0S_MAX_EVENTS to at least 22. 0S_MAX_EVENTS must be greater than 0. See also
0S_MBOX_EN, 0S_Q_EN, 0S_MUTEX_EN, and 0S_SEM_EN.

0S_MAX_FLAGS

0S_MAX_FLAGS specifies the maximum number of event flags that you need in your application.
0S_MAX_FLAGS must be greater than 0. To use event-flag services, you also need to set 0S_FLAG_EN to 1.

OS_MAX_MEM_PART

0S_MAX_MEM_PART specifies the maximum number of memory partitions that can be managed by the
memory-partition manager found in 0S_MEM. C. To use a memory partition, however, you aso need to
set 0S_MEM_EN to 1. If you intend to use memory partitions, 0S_MAX_MEM_PART must be greater than 0.
In other words, you are allowed to only have one memory partition.

0S_MAX_QS

0S_MAX_QS specifies the maximum number of message queues that your application can create. To use
message-queue services, you also need to set 0S_Q_EN to 1. 0S_MAX_QS must be greater than 0. In other
words, you are allowed to only have one message queue.

0S_MAX_TASKS

0S_MAX_TASKS specifies the maximum number of application tasks that can exist in your application.
Note that 0S_MAX_TASKS cannot be greater than 62 because UC/OS-11 currently reserves two tasks for
itself (see 0S_N_SYS_TASKS in uCOS_IT.H). If you set 0S_MAX_TASKS to the exact number of tasksin
your system, you need to make sure that you revise this value when you add additional tasks. Con-
versely, if you make 0S_MAX_TASKS much higher than your current task requirements (for future

Miscellaneous 515

expansion), you are wasting valuable RAM. If RAM is not a problem for your product, you should set
0S_MAX_TASKS to 62.

OS_TASK_IDLE_STK_SIZE

0S_TASK_IDLE_STK_SIZE specifies the size of the uC/OS-I1 idle-task stack. The size is specified not in
bytes but in number of elements. Thisis because a stack is declared to be of type 0S_STK. The size of the
idle-task stack depends on the processor you are using and the deepest anticipated interrupt-nesting
level. Very little is being done in the idle task, but you should alow at least enough space to store al
processor registers on the stack and enough storage to handle all nested interrupts.

OS_TASK_STAT_EN

0S_TASK_STAT_EN specifies whether or not you can enable the uC/OS-1I statistic task, aswell asitsini-
tialization function. When set to 1, the statistic task 0S_TaskStat () and the statistic-task-initialization
function are enabled. 0S_TaskStat () computes the CPU usage of your application. When enabled, it
executes every second and computes the 8-bit variable 0SCPUUsage, which provides the percentage of
CPU use of your application. 0S_TaskStat() calls 0STaskStatHook() every time it executes so that
you can add your own statistics as needed. See 0S_CORE . C for details on the statistic task. The priority
of 0S_TaskStat() isalwayssetto 0S_LOWEST_PRIO-1.

The globa variables 0SCPUUsage, 0SIdleCtrMax, 0SIdleCtrRun, 0STaskStatStk[], and
0SStatRdy are not declared when 0S_TASK_STAT_EN is set to 0, which reduces the amount of RAM
needed by UC/OS-1 if you don't intend to use the statistic task. 0SId1eCtrRun contains a snapshot of
0SIdleCtr just before 0SIdleCtr is cleared to zero every second. 0SIdleCtrRun is not used by
MUC/OS-1 for any other purpose. However, you can read and display 0SId1eCtrRun if needed.

OS_TASK_STAT_STK_SIZE

0S_TASK_STAT_STK_SIZE specifies the size of the uC/OS-11 statistic-task stack. The sizeis specified not
in bytes but in number of elements. Thisis because a stack is declared as being of type 0S_STK. The size
of the statistic-task stack depends on the processor you are using and the maximum of the following
actions:

» The stack growth associated with performing 32-bit arithmetic (subtraction and division)

» The stack growth associated with calling 0STimeD1y ()

» The stack growth associated with calling 0STaskStatHook()

» The deepest anticipated interrupt-nesting level

If you want to run stack checking on thistask and determine its actual stack requirements, you must

enable code generation for 0STaskCreateExt () by setting OS_TASK_CREATE_EXT_EN to 1. Again, the
priority of 0S_TaskStat() isalwaysset to 0S_LOWEST_PRIO-1.

0S_SHED_LOCK_EN

This constant enables (when set to 1) or disables (when set to 0) code generation for the two functions
0SShedLock() and 0SShedUnTock().

516 Chapter 17: pC/OS-1 Configuration Manual

O0S_TICKS_PER_SEC

0S_TICKS_PER_SEC specifies the rate at which you call 0STimeTick(). It isup to your initialization
code to ensure that 0STimeTick() is invoked at this rate. This constant is used by 0SStatInit(),
0S_TaskStat(), and 0STimeD1yHMSM().

17.01 Event Flags

0S_FLAG_EN

0S_FLAG_EN enables (when set to 1) or disables (when set to 0) code generation of all the event-flag ser-
vices and data structures, which reduces the amount of code and data space needed when your applica-
tion does not require the use of event flags. When 0S_FLAG_EN is set to O, you do not need to enable or
disable any of the other jfdefine constantsin this section.

0S_FLAG_WAIT_CLR_EN

0S_FLAG_WAIT_CLR_EN enables (when set to 1) or disables (when set to 0) the code generation used to
wait for event flags to be 0 instead of 1. Generally, you want to wait for event flags to be set. However,
you might also want to wait for event flags to be clear, and thus you need to enable this option.

0S_FLAG_ACCEPT_EN
0S_FLAG_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSF1agAccept().

O0S_FLAG_DEL_EN
0S_FLAG_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SFTagDel ().

0S_FLAG_QUERY_EN
0S_FLAG_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion 0SFT1agQuery ().

17.02 Message Mailboxes

0S_MBOX_EN

This constant enables (when set to 1) or disables (when set to 0) the code generation of all
message-mailbox services and data structures, which reduces the amount of code space needed when
your application does not require the use of message mailboxes. When 0S_MBOX_EN is set to 0, you do
not need to enable or disable any of the other {#fdefine constantsin this section.

0S_MBOX_ACCEPT_EN

This constant enables (when set to 1) or disables (when set to 0) the code generation of the function
0SMboxAccept ().

Memory Management 517

0S_MBOX_DEL_EN

This constant enables (when set to 1) or disables (when set to 0) the code generation of the function
0SMboxDel ().

0S_MBOX_POST_EN

0S_MBOX_POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion 0SMboxPost (). You can disable code generation for this function if you decide to use the more
powerful function 0SMboxPostOpt () instead.

0S_MBOX_POST_OPT_EN

0S_MBOX_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function 0SMboxPost0Opt (). You can disable code generation for this function if you do not need the
additional functionality provided by 0SMboxPostOpt (). 0SMboxPost () generates |ess code.

0S_MBOX_QUERY_EN
0S_MBOX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion 0SMboxQuery ().

17.03 Memory Management

OS_MEM_EN

0S_MEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the uC/OS-11 parti-
tion-memory manager and its associated data structures. This feature reduces the amount of code and
data space needed when your application does not require the use of memory partitions.

0S_MEM_QUERY_EN
0S_MEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion 0SMemQuery ().

17.04 Mutual Exclusion Semaphores

OS_MUTEX_EN

0S_MUTEX_EN enables (when set to 1) or disables (when set to 0) the code generation of all
mutual -exclusion-semaphore services and data structures, which reduces the amount of code and data
space needed when your application does not require the use of mutexes. When 0S_MUTEX_EN isset to O,
you do not need to enable or disable any of the other {fdefine constantsin this section.

OS_MUTEX_ACCEPT_EN
0S_MUTEX_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function 0SMutexAccept ().

518 Chapter 17: pC/OS-1 Configuration Manual

OS_MUTEX_DEL_EN
0S_MUTEX_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSMutexDel ().

OS_MUTEX_QUERY_EN
0S_MUTEX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSMutexQuery ().

17.05 Message Queues

0S_Q_EN

0S_Q_EN enables (when set to 1) or disables (when set to 0) the code generation of all message-queue
services and data structures, which reduces the amount of code space needed when your application
does not require the use of message queues. When 0S_Q_EN is set to 0, you do not need to enable or dis-
able any of the other ffdefine constants in this section. Note that if 0S_Q_EN is set to 0, the ffdefine
constant 0S_MAX_QS isirrelevant.

0S_Q _ACCEPT_EN
0S_Q_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQAccept().

0S_Q_DEL_EN
0S_Q_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQDel ().

0S_Q_FLUSH_EN
0S_Q_FLUSH_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQFTush().

0S_Q_POST_EN

0S_Q_POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQPost (). You can disable code generation for this function if you decide to use the more powerful
function 0SQPostOpt () instead.

0S_Q_POST_FRONT_EN

0S_Q_POST_FRONT_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function 0SQPostFront(). You can disable code generation for this function if you decide to use the
more powerful function 0SQPost0Opt () instead.

0S_Q_POST_OPT_EN

0S_Q_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion 0SQPostOpt (). You can disable code generation for this function if you do not need the additional
functionality provided by 0SQPostOpt (). 0SQPost () generatesless code.

Semaphores 519

0S_Q_QUERY_EN
0S_Q_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQQuery ().

17.06 Semaphores

0S_SEM_EN

0S_SEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the uC/OS-11 sema-
phore manager and its associated data structures, which reduces the amount of code and data space
needed when your application does not require the use of semaphores. When 0S_SEM_EN isset to 0, you
do not need to enable or disable any of the other jfdefine constantsin this section.

0S_SEM_ACCEPT_EN
0S_SEM_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion 0SSemAccept ().

OS_SEM_DEL_EN
0S_SEM_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SSemDel ().

0S_SEM_QUERY_EN
0S_SEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion 0SSemQuery ().

17.07 Task Management

0S_TASK_CHANGE_PRIO_EN

0S_TASK_CHANGE_PRIO_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function 0STaskChangePrio(). If your application never changes task priorities after they are assigned,
you can reduce the amount of code space used by pC/OS-11 by setting 0S_TASK_CHANGE_PRIO_EN to O.

0S_TASK_CREATE_EN

0S_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of the
0STaskCreate() function. Enabling this function makes pC/OS-1I backward compatible with the
MC/OS task-creation function. If your application always uses 0STaskCreateExt() (recommended),
you can reduce the amount of code space used by uC/OS-11 by setting 0S_TASK_CREATE_EN to O. Note
that you must set at least 0S_TASK_CREATE_EN or OS_TASK_CREATE_EXT_EN to 1. If you wish, you can
use both.

O0S_TASK_CREATE_EXT_EN
0S_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion 0STaskCreateExt (), which is the extended, more powerful version of the two task-creation func-

520 Chapter 17: pC/OS-1 Configuration Manual

tions. If your application never uses 0STaskCreateExt(), you can reduce the amount of code space
used by uC/OS-11 by setting 0S_TASK_CREATE_EXT_EN to 0. Note that you need the extended task-create
function to use the stack-checking function 0STaskStkChk ().

OS_TASK_DEL_EN

0S_TASK_DEL_EN enables (when set to 1) or disables (when set to 0) code generation of the function
0STaskDel (), which deletes tasks. If your application never uses this function, you can reduce the
amount of code space used by uC/OS-11 by setting 0S_TASK_DEL_EN to 0.

0S_TASK_SUSPEND_EN

0S_TASK_SUSPEND_EN enables (when set to 1) or disables (when set to 0) code generation of the func-
tions 0STaskSuspend() and 0STaskResume(), which alows you to explicitly suspend and resume
tasks, respectively. If your application never uses these functions, you can reduce the amount of code
space used by UC/OS-I1 by setting 0S_TASK_SUSPEND_EN to 0.

OS_TASK_QUERY_EN

0S_TASK_QUERY_EN enables (when set to 1) or disables (when set to 0) code generation of the function
0STaskQuery (). If your application never uses this function, you can reduce the amount of code space
used by uC/OS-11 by setting 0S_TASK_QUERY_EN to 0.

17.08 Time Management

OS_TIME_DLY_ _HMSM_EN

OS_TIME_DLY_HMSM_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function 0STimeD1yHMSM(), which isused to delay atask for a specified number of hours, minutes, sec-
onds, and milliseconds.

OS_TIME_DLY RESUME_EN
0S_TIME_DLY_RESUME_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function 0STimeD1yResume().

OS_TIME_GET_SET_EN

0S_TIME_GET_SET_EN enables (when set to 1) or disables (when set to 0) the code and data generation
of the functions 0STimeGet() and 0STimeSet(). If you don’t need to use the 32-bit tick counter
0STime, then you can save yourself 4 bytes of data space and code space by not having the code for
these functions generated by the compiler.

17.09 Function Summary

Table 17.1 lists each uC/OS-I1 function by type (Service), indicates which variables enable the code
(Set to 1), and lists other configuration constants that affect the function (Other Constants).

Of course, 0S_CFG.H must beincluded when uC/OS-11 is built, in order for the desired configuration
to take effect.

Function Summary 521

Table17.1 pC/OS-1 functions and #define configuration
constants.

Service Settol Other Constants

Miscellaneous

0SInit() N/A 0S_MAX_EVENTS

0SSchedlLock()
0SSchedUnlock()
0SStart()
0SStatInit()

0SVersion()
Interrupt Management
0SIntEnter()
0SIntExit()

Event Flags
0SFTagAccept()
O0SFlagCreate()
0SFlagDel()
0SFlagPend()
0SFlagPost()
0SFTagQuery()
Message M ailboxes
0SMboxAccept ()
0SMboxCreate()
0SMboxDeT ()
0SMboxPend()
0SMboxPost ()
0SMboxPost0Opt()
O0SMboxQuery ()

Memory Partition Management

O0SMemCreate()
0SMemGet ()
0SMemPut ()
0SMemQuery ()

0S_SCHED_LOCK_EN
0S_SCHED_LOCK_EN
N/A

OS_TASK_STAT_EN &&
OS_TASK_CREATE_EXT_EN

N/A

N/A
N/A

0S_FLAG_EN
OS_FLAG_EN
OS_FLAG_EN
0S_FLAG_EN
O0S_FLAG_EN
O0S_FLAG_EN

0S_MBOX_EN
0S_MBOX_EN
0S_MBOX_EN
0S_MBOX_EN
0S_MBOX_EN
0S_MBOX_EN
0S_MBOX_EN

0S_MEM_EN
0S_MEM_EN
0S_MEM_EN
0S_MEM_EN

0S_Q_EN and 0S_MAX_QS
OS_MEM_EN
OS_TASK_IDLE_STK_SIZE
OS_TASK_STAT_EN
OS_TASK_STAT_STK_SIZE

N/A
N/A
N/A
OS_TICKS_PER_SEC

N/A

N/A
N/A

0S_FLAG_ACCEPT_EN
0S_MAX_FLAGS
OS_FLAG_DEL_EN
OS_FLAG_WAIT_CLR_EN
N/A
OS_FLAG_QUERY_EN

0S_MBOX_ACCEPT_EN
OS_MAX_EVENTS
0S_MBOX_DEL_EN

N/A
0S_MBOX_POST_EN
0S_MBOX_POST_OPT_EN
0S_MBOX_QUERY_EN

0S_MAX_MEM_PART
N/A
N/A
0S_MEM_QUERY_EN

522 Chapter 17: pC/OS-1 Configuration Manual

Table 17.1 HMC/OS-1 functions and #fdefine configuration
constants. (Continued)

Service Settol Other Constants

M utex M anagement

0SMutexAccept () 0S_MUTEX_EN 0S_MUTEX_ACCEPT_EN

OSMutexCreate() 0S_MUTEX_EN 0S_MAX_EVENTS

0SMutexDel () 0S_MUTEX_EN 0S_MUTEX_DEL_EN

0SMutexPend () 0S_MUTEX_EN N/A

0SMutexPost () 0S_MUTEX_EN N/A

0SMutexQuery () 0S_MUTEX_EN 0S_MUTEX_QUERY_EN

M essage Queues

0SQAccept() 0S_Q_EN 0S_Q_ACCEPT_EN

0SQCreate() 0S_Q_EN 0S_MAX_EVENTS

0S_MAX_QS

0SQDe1() 0S_Q_EN 0S_Q_DEL_EN

0SQFTush() 0S_Q_EN 0S_Q_FLUSH_EN

0SQPend() 0S_Q_EN N/A

0SQPost() 0S_Q_EN 0S_Q_POST_EN

0SQPostFront() 0S_Q_EN 0S_Q_POST_FRONT_EN

0SQPostOpt () 0S_Q_EN 0S_Q_POST_OPT_EN

0SQQuery () 0S_Q_EN 0S_Q_QUERY_EN

Semaphore M anagement

0SSemAccept () 0S_SEM_EN 0S_SEM_ACCEPT_EN

0SSemCreate() OS_SEM_EN 0S_MAX_EVENTS

0SSemDe1 () 0S_SEM_EN 0S_SEM_DEL_EN

0SSemPend () 0S_SEM_EN N/A

0SSemPost () 0S_SEM_EN N/A

0SSemQuery () 0S_SEM_EN 0S_SEM_QUERY_EN

Task Management
0STaskChangePrio()
0STaskCreate()
0STaskCreateExt()

0STaskDel ()
0STaskDelReq()
0STaskResume()
0STaskStkChk()
0STaskSuspend()
0STaskQuery()

O0S_TASK_CHANGE_PRIO_EN
OS_TASK_CREATE_EN
OS_TASK_CREATE_EXT_EN

OS_TASK_DEL_EN
OS_TASK_DEL_EN
OS_TASK_SUSPEND_EN
OS_TASK_CREATE_EXT_EN
OS_TASK_SUSPEND_EN
OS_TASK_QUERY_EN

O0S_LOWEST_PRIO
0S_MAX_TASKS

0S_MAX_TASKS
OS_TASK_STK_CLR

0S_MAX_TASKS
O0S_MAX_TASKS
0S_MAX_TASKS
0S_MAX_TASKS
O0S_MAX_TASKS
0S_MAX_TASKS

Function Summary 523

Table17.1 pC/OS-1 functions and #define configuration
constants. (Continued)

Service Settol Other Constants

Time Management

0STimeD1y() N/A N/A

0STimeD1yHMSM()
0STimeDlyResume()
0STimeGet ()
0STimeSet()
0STimeTick()
User-Defined Functions
0STaskCreateHook ()
0STaskDeTHook()
0STaskStatHook()
0STaskSwHook ()
0STimeTickHook()

OS_TIME_DLY_HMSM_EN
OS_TIME_DLY_RESUME_EN
OS_TIME_GET_SET_EN
OS_TIME_GET_SET_EN
N/A

0S_CPU_HOOKS_EN
0S_CPU_HOOKS_EN
0S_CPU_HOOKS_EN
0S_CPU_HOOKS_EN
0S_CPU_HOOKS_EN

OS_TICKS_PER_SEC
0S_MAX_TASKS
N/A

N/A

N/A

N/A
N/A
N/A
N/A
N/A

524 Chapter 17: pC/OS-1 Configuration Manual

Chapter 18

PC Services

The code in this book was tested on a PC. It was convenient to create a number of services (i.e., func-
tions) to access some of the capabilities of a PC. These services are invoked from the test code and are
encapsulated in afile called PC. C. The functions provided in this chapter could be of some use to you,
because industrial PCs are so popular as embedded systems platforms. These services assume that you
are running under DOS or a DOS box under Microsoft Windows 95, 98, NT, or 2000. You should note
that under these environments, you have an emulated DOS (i.e., avirtual x86 session) and not an actual
one. The behavior of some functions might be altered because of this.

The files PC.C and PC.H are found in the \SOFTWARE\BLOCKS\PC\BC45 directory. These functions
encapsulate services that are available on a PC. Encapsulation allows you to easily adapt the code to a
different compiler. PC. C basically contains three types of services. character-based display, €l apsed-time
measurement, and miscellaneous. All functions start with the prefix PC_.

18.00 Character-Based Display

PC.C provides services to display ASCII (and special) characters on a PC's VGA display. In normal
mode (i.e., character mode), a PC’s display can hold up to 2,000 characters organized as 25 rows (i.e.,
Y) by 80 columns (i.e., X), as shown in Figure 18.1. Please disregard the aspect ratio of the figure. The
actual aspect ratio of amonitor is generally 4 x 3. Video memory on a PC is memory mapped and, on a
VGA monitor, video memory starts at absolute memory location 0x000B8000 (or using segment:offset
notation, B800:0000).

525

526 Chapter 18: PC Services

Figure18.1 80 x 25 characterson a VGA monitor.

B800:0000

B800:0002
> X
v [/ » i @ 0 o
m m m m m m m

=7

L, Character

BO BO

57 Attribute

Each displayable character requires two bytes to display. The first byte (lowest memory location) is
the character that you want to display, while the second byte (next memory location) is an attribute that
determines the foreground/background-color combination of the character. The foreground color is
specified in the lower four bits of the attribute, while the background color appears in bits four to six.
Finally, the most significant bit determines whether the character blinks (when 1) or not (when 0). The
character and attribute bytes are shown in Figure 18.2.

Character-Based Display 527

Figure18.2 Character and attribute bytes on a VGA monitor.

1st Byte 2nd Byte
(Mem + 0) (Mem + 1)

Background Color
Character to display

B7|B6| B5| B4| B3| B2 B1| BO B7|B6| B5| B4| B3| B2 B1| BO
~— 7

Foreground Color

. ~ (Character Color)
Blink

0 = no blink
1 = blink

Table 18.1 shows the possible colors that can be obtained from the PC’'sVGA character mode.

Table 18.1 Attribute byte values.

Blink (B7)

Blink? {fdefine Hex
No 0x00
Yes DISP_BLINK 0x80
Background Color (B6 B5 B4)

Color {fdefine Hex
Black DISP_BGND_BLACK 0x00
Blue DISP_BGND_BLUE 0x10
Green DISP_BGND_GREEN 0x20
Cyan DISP_BGND_CYAN 0x30
Red DISP_BGND_RED 0x40
Purple DISP_BGND_PURPLE 0x50
Brown DISP_BGND_BROWN 0x60

Light Gray DISP_BGND_LIGHT_GRAY 0x70

528 Chapter 18: PC Services

Table 18.1 Attribute byte values. (Continued)

Blink (B7)

Foreground Color (B3 B2 B1 B0O)

Color ftdefine Hex
Black DISP_FGND_BLACK 0x00
Blue DISP_FGND_BLUE 0x01
Green DISP_FGND_GREEN 0x02
Cyan DISP_FGND_CYAN 0x03
Red DISP_FGND_RED 0x04
Purple DISP_FGND_PURPLE 0x05
Brown DISP_FGND_BROWN 0x06
Light Gray DISP_FGND_LIGHT_GRAY 0x07
Dark Gray DISP_FGND_DARK_GRAY 0x08
Light Blue DISP_FGND_LIGHT_BLUE 0x09
Light Green DISP_FGND_LIGHT_GREEN 0x0A
Light Cyna DISP_FGND_LIGHT_CYAN 0x0B
Light Red DISP_FGND_LIGHT_RED 0x0C
Light Purple DISP_FGND_LIGHT_PURPLE 0x0D
Yellow DISP_FGND_YELLOW]
White DISP_FGND_WHITE 0xOF

You should note that you can only have eight possible background colors but a choice of 16 fore-
ground colors. PC.H contains #defines that allow you to select the proper combination of foreground
and background colors. These ffdefinesare shown in Table 18.1. For example, to obtain a non-blinking
white character on a black background, you simply add DISP_FGND_WHITE and DISP_BGND_BLACK
(FGND means foreground, and BGND is background). This value corresponds to a hexadecimal value of
0x07, which happens to be the default video attribute of a displayable character on a PC. You should
note that because DISP_BGND_BLACK has avalue of 0x00, you don’t actually need to specify it, and thus
the attribute for the same white character could just as well have been specified as DISP_FGND_WHITE.
You should usethe ftdefine constantsinstead of the hexadecimal values to make your code more read-
able.

The display functions in PC.C are used to write ASCII (and special) characters anywhere on the
screen using X and Y coordinates. The coordinate system of the display is shown in Figure 18.1. You
should note that position 0,0 is located at the upper-left corner — as opposed to the bottom left-corner
as you might expect, which makes the computation of the location of each character to display easier to
determine. The addressin video memory for any character on the screen is given by

Address of Character = 0x000B8000 + Y * 160 + X * 2
The address of the attribute byte is at the next memory location or

Address of Attribute = 0x000B8000 + Y * 160 + X * 2 + 1

The display functions provided in PC.C perform direct writes to video RAM even though BIOS ser-
vices in most PCs can do the same thing but in a portable fashion. | chose to write directly to video

Saving and Restoring DOS s Context 529

memory for performance reasons.

PC.C contains the following five functions, which are further described in the interface section of

this chapter.

18.01 Saving and Restoring DOS's Context

The current DOS environment is saved by calling PC_D0SSaveReturn() (seeListing 18.1) and is called

PC_DispChar() To display a single ASCII character anywhere on the
screen

PC_DispClrCol() To clear asingle column

PC_DispClrRow() To clear asingle row (or line)

PC_DispClrScr() To clear the screen

PC_DispStr() To display an ASCI|I string anywhere on the screen

by main() to:
1. Set up uC/OS-I1's context switch vector,
2. Set up thetick ISR vector,

3. Save DOS's context so that we can return to DOS when we need to terminate execution of a

MUC/OS-11 based application.

A lot happensin PC_DOSSaveReturn() soyou might need to look at the codein Listing 18.1 to follow

along.

Listing 18.1 Saving the DOS environment.
void PC_D0OSSaveReturn (void)

{

PC_ExitFlag = FALSE;
0STickDOSCtr = 1
PC_TickISR = PC_VectGet(VECT_TICK);

OS_ENTER_CRITICAL();
PC_VectSet (VECT_DOS_CHAIN, PC_TickISR);
OS_EXIT_CRITICAL();

setjmp(PC_JumpBuf) ;

(1)
(2)
(3)

(4)

(5)

530 Chapter 18: PC Services

Listing 18.1 Saving the DOS environment. (Continued)
if (PC_ExitFlag = TRUE) {

}

L18.1(1)
L18.1(2)
L18.1(3)
L18.1(4)

L18.1(5)

L18.2(1)
L18.2(2)

L18.1(5)
L18.1(6)

L18.1(7)
L18.1(8)
L18.1(9)

OS_ENTER_CRITICALC();

PC_SetTickRate(18); (6)
PC_VectSet (VECT_TICK, PC_TickISR); (7)
OS_EXIT_CRITICAL();

PC_DispClrScr(DISP_FGND_WHITE + DISP_BGND_BLACK); (8)
exit(0); (9)

PC_D0SSaveReturn() startsby setting theflag PC_ExitFlagto FALSE, indicating that we are
not returning to DOS.

Then, PC_D0SSaveReturn() initializes 0STickDOSCtr to 1 because this variable is decre-
mented in 0STickISR(). A vaue of 0 causes this value to wrap around to 255 when decre-
mented by 0STickISR().

PC_D0SSaveReturn() then saves DOS's tick handler in afree vector-table entry so it can be
called by pC/OS-11'stick handler (thisis called chaining the vectors).

Next, PC_DOSSaveReturn() cals setjmp(), which captures the state of the processor (i.e.,
the contents of all important registers) in a structure called PC_JumpBuf. Capturing the pro-
cessor's context allows us to return to PC_DOSSaveReturn() (from anywhere) and execute
the code immediately following the call to setjmp(). Because PC_ExitFlag was initialized
to FALSE [seeL18.1(1)], PC_D0OSSaveReturn() skipsthe codein the i f statement and returns
to the caller [i.e., main()].

When you want to return to DOS, al you have to do is call PC_DOSReturn() (see Listing
18.2), which sets PC_ExitFlag to TRUE and executesa Tongjmp().

Thisaction bringsthe processor back in PC_D0SSaveReturn() [just after thecdl to set jmp ()].

This time, however, PC_ExitFlag is TRUE, and the code following the if statement is exe-
cuted.

PC_DOSSaveReturn() changes the tick rate back to 18.2Hz, restores the PC’s tick-1SR han-
dler, clears the screen, and returns to the DOS prompt through the exit (0) function.

Elapsed-Time Measurement 531

Listing 18.2 Setting up to return to DOS.

void PC_DOSReturn (void)

{
PC_ExitFlag = TRUE; (1)
Tongjmp(PC_JdumpBuf, 1); (2)

18.02 Elapsed-Time Measurement

The elapsed-time-measurement functions are used to determine how much time a function takes to exe-
cute. Time measurement is performed by using the PC’'s 82C54 timer #2. You make time measurement
by wrapping the code to measure by the two functions PC_ElapsedStart() and PC_ElapsedStop().
However, before you can use these two functions, you need to call the function PC_ElapsedInit().
PC_ElapsedInit() basically computesthe overhead associated with the other two functions. Thisway,
the execution time (in microseconds) returned by PC_ElapsedStop() consists exclusively of the code
you are measuring. Note that none of these functions are reentrant, and thus you must be careful that
you do not invoke them from multiple tasks at the same time.

18.03 Miscellaneous

PC_GetDateTime() isafunction that obtains the PC's current date and time and formats this informa-
tioninto an ASCII string. Theformat is

“YYYY-MM-DD HH:MM:SS”

and you need at least 21 characters (including the NULL character) to hold this string. You should note
that there are two spaces between the date and the time, which explains why you need 21 characters
instead of 20. PC_GetDateTime() uses the Borland C/C++ library functions gettime() and
getdate(), which should have their equivalents on other DOS compilers.

PC_GetKey () isafunction that checks to see if a key has been pressed and, if so, obtains that key,
and returns it to the caller. PC_GetKey() uses the Borland C/C++ library functions kbhit() and
getch(), which again have their equivalents on other DOS compilers.

PC_SetTickRate() alows you to change the tick rate for pC/OS-11 by specifying the desired fre-
guency. Under DOS, atick occurs 18.20648 times per second, or every 54.925 ms. This is because the
82C54 chip used didn’t get its counter initialized and the default value of 65,535 takes effect. Had the
chip been initialized with a divide by 59,659, the tick rate would have been a very nice 20.000HZ! |
decided to change the tick rate to something more exciting and thus decided to use about 200Hz (actu-
ally 199.9966). The code found in 0S_CPU_A.ASM calls the DOS-tick handler one time out of 11. This
action is done to ensure that some of the housekeeping needed in DOS is maintained. You would not
need to do thisif you were to set the tick rate to 20Hz. Before returning to DOS, PC_SetTickRate() is
called by specifying 18 as the desired frequency. PC_SetTickRate() knows that you actually mean
18.2Hz and correctly sets the 82C54.

Thelast twofunctionsin PC . C areused to get and set aninterrupt vector. PC_VectGet () and PC_VectSet ()
should be compiler-independent as long as the compiler support the macros MK_FP () (make far pointer),
FP_OFF () (get the offset portion of afar pointer), and FP_SEG() (get the segment of afar pointer).

532 Chapter 18: PC Services

18.04 I nterface Functions

The following section provides a reference section for the PC services.

Interface Functions 533

PC_DispChar()

void PC_DispChar(INT8U x, INT8U y, INT8U c, INT8U color)

PC_DispChar() alowsyou to display asingle ASCII (or special) character anywhere on the display.

Arguments

xandy specifies the coordinates (col, row) where the character will appear. Rows (i.e.,
lines) are numbered from 0 to DISP_MAX_Y - 1, and columns are numbered from O
to DISP_MAX_X - 1 (see PC.C).

C is the character to display. You can specify any ASCII or special characters if ¢ has a
value higher than 128.

color specifies the contents of the attribute byte and thus the color combination of the character
to be displayed. You can add one DISP_FGND_??? (see PC.H) and one DISP_BGND_???
(see PC.H) to obtain the desired color combination.

Returned Values

none

Notes/Warnings

none

Example

void Task (void *pdata)
{

for (;;) f

PC_DispChar(0, 0, “$’, DISP_FGND_WHITE);

534 Chapter 18: PC Services

PC_DispCirCol()

void PC_DispClrCol(INT8U x, INT8U color)

PC_DispClrCol() alowsyou to clear the contents of acolumn (all 25 characters).

Arguments

X specifies which column cleared. Columns are numbered from O to DISP_MAX_X - 1
(see PC.C).

color specifies the contents of the attribute byte. Because the character used to clear a column
isthe space character (i.e., '), only the background color appears. You can thus specify
any of the DISP_BGND_??? colors.

Returned Values

none

Notes/Warnings

none

Example

void Task (void *pdata)
{

for (;;) |

PC_DispClrCol(0, DISP_BGND_BLACK);

Interface Functions 535

PC_DispClrRow()

void PC_DispClrRow(INT8U y, INT8U color)

PC_DispClrRow() alowsyou to clear the contents of arow (all 80 characters).

Arguments

y specifieswhich row (i.e., line) iscleared. Rows are numbered from 0to DISP_MAX_Y -
1 (seePC.C).

color specifies the contents of the attribute byte. Because the character used to clear arow is

the space character (i.e., ' "), only the background color appears. You can thus specify
any of the DISP_BGND_??? colors.

Returned Values

none

Notes/Warnings
none

Example

void Task (void *pdata)
{

for (;;) |

PC_DispClrRow(10, DISP_BGND_BLACK);

536 Chapter 18: PC Services

PC_DispClrScr()

void PC_DispClrScr(INT8U color)

PC_DispClrScr() alowsyou to clear the entire display.

Arguments

color specifies the contents of the attribute byte. Because the character used to clear the
screen is the space character (i.e., ' "), only the background color appears. You can thus
specify any of the DISP_BGND_??7? colors.

Returned Values
none

Notes/Warnings
1. Youshould use DISP_FGND_WHITE instead of DISP_BGND_BLACK because you don’t want to leave the

attribute field with black on black.
Example

void Task (void *pdata)
{

PC_DispClrScr(DISP_FGND_WHITE);
for (;;) {

Interface Functions 537

PC_DispStr()

void PC_DispStr(INT8U x, INT8U y, INT8U *s, INT8U color)

PC_DispStr() alowsyouto display an ASCII string. Infact, you could display an array containing any
of 255 characters, aslong as the array itself is NULL terminated.

Arguments

xandy specifies the coordinates (col, row) where the first character will appear. Rows (i.e.,
lines) are numbered from O to DISP_MAX_Y - 1, and columns are numbered from O to
DISP_MAX_X - 1 (seePC.C).

s is a pointer to the array of characters to display. The array must be NULL terminated.
Note that you can display any characters from 0x01 to OxFF.
color specifies the contents of the attribute byte and thus the color combination of the characters

to be displayed. You can add one DISP_FGND_??7 (see PC.H) and one DISP_BGND_???
(see PC. H) to obtain the desired color combination.

Returned Values
none

Notes/Warnings
1. All the characters of the string or array are displayed with the same color attributes.

Example #1

The code below displays the current value of a global variable called Temperature. The color used
depends on whether the temperature is below 100 (white), below 200 (yellow), or exceeds 200 (blinking
white on ared background).

FP32 Temperature;

void Task (void *pdata)
{
char s[207;

PC_DispStr(0, 0, “Temperature:”, DISP_FGND_YELLOW + DISP_BGND_BLUE);
for (;;) |
sprintf(s, “%6.1f”, Temperature);
if (Temperature < 100.0) f{
color = DISP_FGND_WHITE;
} else if (Temperature < 200.0) {
color = DISP_FGND_YELLOW;
} else {

538 Chapter 18: PC Services

color = DISP_FGND_WHITE + DISP_BGND_RED + DISP_BLINK;
}
PC_DispStr(13, 0, s, color);

}

Example #2

The code below displays a square box 10 characters wide by seven characters high in the center of the
screen.

INT8U Box[7]1[11] = {

{OxDA, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, OxBF, 0x00
0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00
0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00
0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00
0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00
0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00
0xCO, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xD9, 0x00

void Task (void *pdata)
{
INT8U 1i;

for (i =0; i < 7; i++) {

PC_DispStr(35, i + 9, Box[i], DISP_FGND_WHITE);
}
for (;3) f

Interface Functions 539

PC_DOSReturn()

void PC_DOSReturn(void)

PC_DOSReturn() alows your application to return to DOS. It is assumed that you have previously
called PC_D0OSSaveReturn() to save the processor’s important registers in order to properly return to

DOS. See Chapter 1 for adescription of how to use this function.

Arguments

none

Returned Values

none

Notes/Warnings
1. You must have called PC_DOSSaveReturn() prior to calling PC_DOSReturn().

Example

void Task (void *pdata)

{
INT16U key;

for (;;) f

if (PC_GetKey(&key) == TRUE) {
if (key = 0x1B) {
PC_DOSReturn(); /* Return to DOS */

540 Chapter 18: PC Services

PC_DOSSaveReturn()

void PC_DOSSaveReturn(void)

PC_D0SSaveReturn() alows your application to save the processor’s important registers in order to
properly return to DOS before you actually start multitasking with pC/OS-I1. You normally call this
function frommain(), as shown in the example code.

Arguments
none

Returned Values
none

Notes/Warnings

1. You must cal thisfunction prior to setting uC/OS-11's context-switch vector as shown with exam-
ple.

Example

void main (void)

{
0SInit(); /* Initialize uC/0S-11I =/
PC_DOSSaveReturn(); /* Save DOS’s environment =)
PC_VectSet(uCOS, 0SCtxSw); /* uC/0S-II's context switch vector */
0STaskCreate(..);

0SStart(); /* Start multitasking */

Interface Functions 541

PC_ETapsedInit()

void PC_ElapsedInit(void)

PC_ElapsedInit() isinvoked to compute the overhead associated with the PC_ElapsedStart() and 18
PC_ElapsedStop() calls. This alows PC_ETapsedStop() to return the execution time (in microsec-
onds) of the code you are trying to measure.

Arguments
none

Returned Values

none
Notes/Warnings
1. Youmust call thisfunction prior to calling either PC_ETapsedStart() or PC_ElapsedStop().

Example

void main (void)

{
0SInit(); /* Initialize uC/0S-11 =/

PC_ETapsedInit(); /* Compute overhead of elapse meas. */

0SStart(); /* Start multitasking */

542 Chapter 18: PC Services

PC_ETapsedStart()

void PC_ETlapsedStart(void)

PC_ElapsedStart() isused in conjunction with PC_ETapsedStop() to measure the execution time of
some of your application code.

Arguments
none

Returned Values
none

Notes/Warnings

1. Youmust call PC_ETapsedInit() beforeyou use either PC_ElapsedStart() or
PC_ETapsedStop().

2. Thisfunction is non-reentrant and cannot be called by multiple tasks without proper protection
mechanisms (i.e., semaphores, locking the scheduler, etc.).

3. The execution time of your code must be less than 54.93ms in order for the elapsed-time-measure-
ment functions to work properly.

Example

void main (void)
{
0SInit(); /* Initialize uC/0S-11I =/

PC_ElapsedStart(); /* Compute overhead of elapse meas. */

0SStart(); /* Start multitasking */

Interface Functions 543

Example

void Task (void *pdata)
{
INT16U time_us;

for (;;) {

PC_ElapsedStart();
/* Code you want to measure the execution time */
time_us = PC_ETaspedStop();

544 Chapter 18: PC Services

PC_ElapsedStop()

INT16U PC_ETapsedStop(void)

PC_ElapsedStop() isused in conjunction with PC_ElapsedStart() to measure the execution time of
some of your application code.

Arguments

none

Returned Values

The execution time of your code that was wrapped between PC_ETapsedStart () and PC_ElapsedStop()
isreturned in microseconds.

Notes/Warnings

1. Youmust call PC_ETapsedInit() beforeyou use either PC_ElapsedStart() or
PC_ETapsedStop().

2. Thisfunction is non-reentrant and cannot be called by multiple tasks without proper protection
mechanisms (i.e., semaphores, locking the scheduler, etc.).

3. The execution time of your code must be less than 54.93ms in order for the elapsed-time-measure-
ment functions to work properly.

Example
See PC_FlapsedStart(), page 542.

Interface Functions 545

PC_GetDateTime()

void PC_GetDateTime(char *s)

PC_GetDateTime() isused to obtain the current date and time from the PC's real-time clock chip and
return this information in an ASCI| string that can hold at least 21 characters.
Arguments

s is a pointer to the storage area where the ASCII string will be deposited. The format of
the ASCII string is

"YYYY-MM-DD HH:MM:SS"
and requires 21 bytes of storage (note that there are two spaces between the date and the
time).

Returned Values

none

Notes/Warnings
none

Example

void Task (void *pdata)

{
char s[807;

for (;;) {

PC_GetDateTime(&s[0]);
PC_DispStr(0, 24, s, DISP_FGND_WHITE);

546 Chapter 18: PC Services

PC_GetKey()

BOOLEAN PC_GetDateTime(INT16S *key)

PC_GetKey () isused to seeif akey has been pressed on the PC's keyboard, and if so, obtain the value of
the key pressed. You normally invoke this function every so often (i.e., poll the keyboard) to seeif akey
has been pressed. Note that the PC actually obtains key presses through an ISR and buffers key presses.
Up to 10 keys are buffered by the PC.

Arguments

key is apointer to where the key value will be stored. If no key has been pressed, the value
contains 0x0000.

Returned Values
TRUE is akey has been pressed, and FALSE otherwise.

Notes/Warnings

none

Example

void Task (void *pdata)
{
INT16S key;
BOOLEAN avail;

for (;;) {

avail = PC_GetKey(&key);
if (avail = TRUE) f{
/* Process key pressed */

Interface Functions 547

PC_SetTickRate()

void PC_SetTickRate(INT16U freq)

PC_SetTickRate() is used to change the PC's tick rate from the standard 18.20648Hz to something
faster. A tick rate of 200Hz isamultiple of 18.20648Hz (the multipleis 11).

Arguments

freq isthe desired frequency of the ticker.

Returned Values

none

Notes/Warnings
1. You can only make the ticker faster than 18.20648Hz.
2. The higher the frequency, the more overhead you impose on the CPU.

Example

void Task (void *pdata)
{

OS_ENTER_CRITICAL();

PC_VectSet(0x08, OSTickISR);

PC_SetTickRate(400); /* Reprogram PC’s tick rate to 400 Hz */
OS_EXIT_CRITICAL();

for (;;) {

548 Chapter 18: PC Services

PC_VectGet()

void *PC_VectGet(INT8U vect)

PC_VectGet() is used to obtain the address of the interrupt handler specified by the interrupt-vector
number. An 80x86 processor supports up to 256 interrupt/exception handlers.

Arguments
vect is the interrupt-vector number, a number between 0 and 255.

Returned Values
The address of the current interrupt/exception handler for the specified interrupt-vector number.

Notes/Warnings

1. Vector number O corresponds to the reset handler.

2. Itisassumed that the 80x86 code is compiled using the large model option and thus all pointers
returned are far pointers.

3. Itisassumed that the 80x86 is running in real mode.

Example
void Task (void *pdata)

{
void (*p_tick_isr)(void);

p_tick_isr = PC_VectGet(0x08); /* Get tick handler address */

for (;;) {

Interface Functions 549

PC_VectSet()

void PC_VectSet(INT8U vect, void *(pisr)(void))

PC_VectSet() isused to set the contents of an interrupt-vector-table location. An 80x86 processor sup-
ports up to 256 interrupt/exception handlers.

Arguments

vect is the interrupt-vector number, a number between 0 and 255.
pisr is the address of the interrupt/exception handler.

Returned Values

none

Notes/Warnings

1. You should be careful when setting interrupt vectors. Some interrupt vectors are used by the operat-
ing system (DOS and/or uC/OS-I1).

2. Itisassumed that the 80x86 code is compiled using the large model option and thus all pointers
returned are far pointers..

Example

void InterruptHandler (void)
{
}

void Task (void *pdata)
{

PC_VectSet(64, InterruptHandler);

for (;;) {

550 Chapter 18: PC Services

18.05 Bibliography

Chappell, Geoff
DOSInternals
Reading, Massachusetts
Addison-Wesley, 1994
ISBN 0-201-60835-9

Tischer, Michael
PC Internals, System Programming 5t Edition
Grand Rapids, Michigan
Abacus, 1995
ISBN 1-55755-282-7

Villani, Pat
FreeDOSKernel
Lawrence, Kansas
CMP Books, 1996
ISBN 0-87930-436-7

Appendix A

C Coding Conventions

Conventions should be established early in a project. These conventions are necessary to maintain con-
sistency throughout the project. Adopting conventions increases productivity and simplifies project
maintenance.

Many ways exist to code a program in C (or any other language). The style you useisjust as good as
any other, aslong as you strive to attain the following goals:

* Portability
» Consistency
* Neathess

» Easy maintenance

» Easy understanding

e Simplicity

Whichever style you use, | emphasize that it should be adopted consistently throughout all your
projects. | further suggest that a single style be adopted by all team membersin alarge project. To this
end, | recommend that a C programming style document be formalized for your organization. Adopting
acommon coding style reduces code maintenance headaches and costs. Adopting acommon style helps
avoid code rewrites. This section describes the C programming style | use. The main emphasis on the
programming style presented here is to make the source code easy to follow and maintain.

| don't like to limit the width of my C source code to 80 characters. My limitation is actually how
many characters can be printed on an 8.5" by 11" page, using an 8-point, fixed-width font. With an
8-point font, you can accommodate up to 132 characters and have enough room on the left of the page
for holes for insertion in athree-ring binder. Allowing 132 characters per line prevents having to inter-
leave source code with comments.

551

552 Appendix A: C Coding Conventions

A.1 Header

The header of a C source file is shown below. Your company name and address can be on the first few
lines, followed by atitle describing the contents of thefile. A copyright noticeisincluded to give warn-
ing of the proprietary nature of the software.

/*

3 Company Name

* Address

*

& (c) Copyright 20xx, Company Name, City, State
& A1l Rights Reserved

*

*

* Filename

* Programmer(s):
* Description

=)
/*$PAGE*/

The name of thefileis supplied and is followed by the name of the programmer(s). The name of the
programmer who created the file is given first. The last item in the header is a description of the con-
tents of thefile.

| like to dictate when page breaks occur in my listings if my code doesn’t fit on a printed page. In
fact, | like to find alogical spot such as after acomment block if both the comment block and the actual
code don't fit on one page. For historical reasons, | insert the special comment /*$PAGE*/ followed by
a form feed character (0x0C). | like to use the /*$PAGE*/ because it tells the reader where the page
break occurs.

A.2 IncludeFiles

The header files needed for your project immediately follow the revision history section. You can either
list only the header files required for the module or combine header filesin asingle header fileas| doin
afilecalled INCLUDES.H. | liketo usean INCLUDES.H header file because it prevents you from having to
remember which header file goes with which source file, especially when new modules are added. The
only inconvenience isthat it takes longer to compile each file.

/*

* INCLUDE FILES

*/

Naming Identifiers 553

j#include "INCLUDES.H"

/*$PAGE*/

A.3 Naming ldentifiers

C compilers, which conform to the ANSI C standard (most C compilers do by now), alow up to 32
characters for identifier names. Identifiers are variables, structure/union members, functions, macros,
fidefines, and so on. Descriptive identifiers can be formulated using this 32-character feature and use
acronyms, abbreviations, and mnemonics (see Section Section A.4 , "Acronyms, Abbreviations, and
Mnemonics"). Identifier names should reflect the use of the element. | like to use a hierarchical method
when creating an identifier. For instance, the function 0SSemPend () indicates that it is part of the oper-
ating system (0S), it is a semaphore (Sem), and the operation being performed is to wait (Pend) for the
semaphore. This method allows me to group all functions related to semaphores together. You should
notice that some of the functionsin pC/OS-11 start with 0S_ instead of 0S. Thisis done to show you that
the 0S_ functions are internal to uC/OS-11 even, though they are global functions.

Variable names should be declared on separate lines rather than combining them on a single line.
Separate lines make it easy to provide a descriptive comment for each variable.

| use the file name as a prefix for variables that are either local (static) or global to the file. This
process makesit clear that the variables are being used locally and globally. For example, local and glo-
bal variables of afile named KEY . C are declared asfollows

static INT16U KeyCharCnt; /* Number of keys pressed Y
static char KeyInBuf[100]; /* Storage buffer to hold chars */

char KeyInChar; /* Character typed Y
/*$PAGE*/

Uppercase characters are used to separate words in an identifier. | prefer to use this technique rather
than making use of the underscore character (_) because underscores do not add meaning to names and
also use up character spaces.

Global variables (external to the file) can use any name, as long as they contain a mixture of upper-
case and lowercase characters and are prefixed with the module/file name (i.e., all global keyboard—
related variable names are prefixed with the word Key).

Formal arguments to a function and local variables within a function are declared in lowercase. The
lowercase makes it obvious that such variables are local to a function; global variables contain a mixture
of upper and lowercase characters. To make variables readable, you can use the underscore character (_).

Within functions, certain variable names can be reserved to always have the same meaning. Some
examples are given below, but others can be used as long as consistency is maintained.

i,J, andk for loop counters
pl, p2, ...pn for pointers
¢, cl, ...cn for characters

S, sl, ...sn for strings

554 Appendix A: C Coding Conventions

ix,iy,and iz for intermediate integer variables

fx, fy,and fz for intermediate floating-point variables
To summarize, use
formal parametersin afunction declaration should only contain lowercase characters.
auto variable names should only contain lowercase characters.

static variables and functions should use the file/module name (or a portion of it) as a prefix and
should use of upper/lowercase characters.

extern variables and functions should use the file/module name (or a portion of it) as a prefix and
should use of upper/lowercase characters.

A.4 Acronyms, Abbreviations, and Mnemonics

When creating names for variables and functions (identifiers), use acronyms (e.g., 0S, ISR, and TCB),
abbreviations (e.g., buf & doc), and mnemonics (e.g., c1r, and cmp). The use of acronyms, abbrevia-
tions, and mnemonics allows an identifier to be descriptive while requiring fewer characters. Unfortu-
nately, if acronyms, abbreviations, and mnemonics are not used consistently, they can add confusion.
To ensure consistency, | have opted to create alist of acronyms, abbreviations, and mnemonicsthat | use
in al my projects. The same acronym, abbreviation, or mnemonic is used throughout, after it is
assigned. | call thislist the Acronym, Abbreviation, and Mnemonic Dictionary, and the list for uC/OS-11
isshown in Table A.1. As| need more acronyms, abbreviations, or mnemonics, | simply add them to
thelist.

TableA.1 Acronyms, abbreviations, and mnemonicsused in

this book.
Acronym, Abbreviation, or .
Mnemonic Meaning
Addr Address
B1k Block
Chk Check
Clr Clear
Cnt Count
CPU Central Processing Unit
Ctr Counter
Ctx Context
Cur Current
Del Delete

D1y Delay

Acronyms, Abbreviations, and Mnemonics

TableA.1 Acronyms, abbreviations, and mnemonicsused in
this book. (Continued)

Acronym, Abbreviation, or

Mnemonic Meaning

Err Error

Ext Extension

Fp Floating Point
Grp Group

HMSM Hours Minutes Seconds Milliseconds
ID Identifier

Init Initialize

Int Interrupt

ISR Interrupt Service Routine
Max Maximum

Mbox Mailbox

Mem Memory

Msg Message

N Number of

Opt Option

0S Operating System
Ovf Overflow

Prio Priority

Ptr Pointer

Q Queue

Rdy Ready

Req Request

Sched Scheduler

Sem Semaphore

Stat Status or Statistic
Stk Stack

Sw Switch

555

556 Appendix A: C Coding Conventions

TableA.1 Acronyms, abbreviations, and mnemonicsused in
this book. (Continued)

Acronym, Abbreviation, or

Mnemonic Meaning

Sys System

Tbl Table

TCB Task Control Block
TO Timeout

There might be instances where one list for all products doesn’t make sense. For instance, if you are
an engineering firm working on a project for different clients and the products that you develop are
totally unrelated, then a different list for each project is more appropriate. The vocabulary for the farm-
ing industry is not the same as the vocabulary for the defense industry. | use the rule that if all products
are similar, they use the same dictionary.

A common dictionary to a project team also increases the team’s productivity. It is important that
consistency be maintained throughout a project, irrespective of theindividual programmer(s). After buf
has been agreed to mean buffer it should be used by all project membersinstead of having some individ-
uals use buffer and others use bfr. To further this concept, you should always use buf even if your
identifier can accommodate the full name; stick to buf even if you can fully write the word buffer.

A.5 Comments

| find it very difficult to mentally separate code from comments when code and comments are inter-
leaved. Because of this, | never interleave code with comments. Comments are written to the right of
the actual C code. When large comments are necessary, they are written in the function description
header.

Comments are lined up as shown in the following example. The comment terminators (* /) do not
need to be lined up, but for neatness | prefer to do so. It is not necessary to have one comment per line
because a comment can apply to afew lines.

/*

* atoi()

* Description : Function to convert string 's' to an integer.

* Arguments : ASCIT string to convert to integer.
& (A11 characters in the string must be decimal digits (0..9))
* Returns : String converted to an 'int'

Y

fdefines 557

int atoi (char *s)
{

int n; /* Partial result of conversion Y
n=20; /* Initialize result Y
while (*s >= '0' && *s <= '9' && *s) { /* For all valid characters and not end of string */
m= 10 * m <+ *g = "0"3 /* Convert char to int and add to partial result */
SR /* Position on next character to convert &
}
return (n); /* Return the result of the converted string &/
}
/*$PAGE*/

A.6 jfdefines

Header files (. H) and C source files (. C) might require that constants and macros be defined. Constants
and macros are always written in uppercase with the underscore character used to separate words. Note
that hexadecimal numbers are always written with alowercase x and all uppercase letters for hexadeci-
mal A through F. Also, you should note that the contant names are al lined up, as well as their values.

/%
* CONSTANTS & MACROS
*/

fdefine KEY_FF 0XOF

fdefine KEY_CR 0x0D

jfdefine KEY_BUF_FULL() (KeyNRd > 0)

/*$PAGE*/

A.7 Data Types

C alowsyou to create new data types using the typedef keyword. | declare all data types using upper-
case characters and follow the same rule used for constants and macros. Because of the context in which
constants, macros, and data types are used, confusion between the elements does not occur. Because
different microprocessors have different word lengths, | like to declare the following data types (assum-
ing Borland C++ v4.51)

558 Appendix A: C Coding Conventions

/*

& DATA TYPES

Y

typedef unsigned char BOOLEAN; /* Boolean Y
typedef unsigned char INT8U; /* 8 bit unsigned Y
typedef char INT8S; /* 8 bit signed &7
typedef unsigned int INT16U; /* 16 bit unsigned &7
typedef int INT16S; /* 16 bit signed =
typedef unsigned long INT32U; /* 32 bit unsigned 7
typedef Tlong INT32S; /* 32 bit signed 5
typedef float FIPs /* Floating Point Y
/*$PAGE*/

Using these fidefines, you always know the size of each datatype.

A.8 Local Variables

Some source modules require that local variables be available. These variables are only needed for the
source file (file scope) and should be hidden from the other modules. Hiding these variables is accom-
plished in C by using the static keyword. Variables can either be listed in aphabetical order or in
functional order.

/*

* LOCAL VARIABLES

*/

static char KeyBuf[1007];
static INT16S KeyNRd;

/*$PAGE*/

Function Prototypes 559

A.9 Function Prototypes
This section contains the prototypes (or calling conventions) used by the functions declared in the file.

The order in which functions are prototyped should be the order in which the functions are declared in
thefile. Thisorder allows you to quickly locate the position of afunction when thefileis printed.

-
* FUNCTION PROTOTYPES

=)

void KeyClrBuf(void);
static BOOLEAN KeyChkStat(void);
static INT16S KeyGetCnt(int ch);

/*$PAGE*/

Also note that the static keyword, the returned data type, and the function names are all aligned.

A.10 Function Declarations

As much as possible, there should only be one function per page when code listings are printed on a
printer. A comment block should precede each function. All comment blocks should look as shown
below. A description of the function should be given and include as much information as necessary. |f
the combination of the comment block and the source code extends past a printed page, a page break
should be forced (preferably between the end of the comment block and the start of the function). This
break allows the function to be on a page by itself and prevents having a page break in the middle of the
function. If the function itself is longer than a printed page, then it should be broken by a page break
comment (/*$PAGE*/) in alogical location (i.e., at the end of an if statement, instead of in the middle
of one).

More than one small function can be declared on a single page. They should all, however, contain
the comment block describing the function. The beginning of a function should start at least two lines
after the end of the previous function.

/*

* CLEAR KEYBOARD BUFFER

* Description : Flush keyboard buffer

* Arguments : none
* Returns : none
* Notes : none

*/

560 Appendix A: C Coding Conventions

void KeyClrBuf (void)
{

}
/*$PAGE*/

Functions that are only used within the file should be declared static to hide them from other func-
tionsin different files.

By convention, | always call all invocations of the function without a space between the function
name and the open parenthesis of the argument list. Because of this, | place a space between the name
of the function and the opening parenthesis of the argument list in the function declaration, as shown
above. Thisway | can quickly find the function definition using a grep utility.

Function names should make use of the file name as a prefix. This prefix makes it easy to locate
function declarationsin medium to large projects. It also makesit very easy to know where these func-
tions are declared. For example, al functions in a file named KEY.C and functions in a file named
VIDEO.C could be declared as follows

KEY.C
KeyGetChar()
KeyGetLine()
KeyGetFnctKey()
VIDEQ.C
VideoGetAttr
VideoPutChar
VideoPutStr(
VideoSetAttr()

O
O
)
(

It's not necessary to use the whole file/module name as a prefix. For example, a file called
KEYBOARD.C could have functions starting with Key instead of Keyboard. It is also preferable to use
uppercase characters to separate words in a function name instead of using underscores. Again,
underscores don’t add meaning to names, and they use up character spaces. As mentioned previously,
formal parameters and local variables should be in lowercase, which makes it clear that such variables
have a scope limited to the function.

Each local variable name must be declared on its own line, which allows the programmer to com-
ment each one as needed. Local variables are indented four spaces. The statements for the function are
separated from the local variables by three spaces. Declarations of local variables should be physically
separated from the statements because they are different.

A.11 Indentation

Indentation is important to show the flow of the function. The question is, how many spaces are needed
for indentation? One spaceis obviously not enough, while eight spacesistoo much. The compromisel
use is four spaces. | also never use tabs, because various printers interpret tabs differently; your code

Indentation 561

might not look as you want. Avoiding tabs does not mean that you can’t use the Tab key on your key-
board. A good editor gives you the option to replace tabs with spaces (in this case, 4 spaces).

A space follows the keywords i f, for, while, and do. The keyword e1se has the privilege of hav-
ing one before and one after it if curly bracesare used. | write if (condition) onitsown line and the
statement(s) to execute on the next following line(s) as follows

if (x < 0)
z = 25;

if (y > 2) |
z = 10;
x = 100;

instead of the following method

if (x < 0) z=25;
if (y > 2) {z =10; x = 100; pt++;}

There are two reasons for this method. The first isthat | like to keep the decision portion separate
from the execution statement(s). The second reason is consistency with the method | use for while,
for, and do statements.

switch statements are treated as any other conditional statement. Note that the case statements are
lined up with the case label. The important point hereisthat switch statements must be easy to follow.
cases should also be separated from one another.

if (x > 0) {
y = 10;
z = b;

}

if (z < LIM) {
X =y + z;
z = 10;

} else {
X=y -z

562 Appendix A: C Coding Conventions

Satements and Expressions 563

A.12 Statementsand Expressions

All statements and expressions should be made to fit on asingle source line. | never use more than one
assignment per line, such as

X=y=z=1
Even though this version is correct in C, when the variable names get more complicated, the intent

might not be as obvious.
The following operators are written with no space around them:

> Structure-pointer operator p->m
Structure-member operator s.m
[] Array subscripting ali]

Parentheses after function names have no space(s) before them. A space should be introduced after
each commato separate each actual argument in afunction. Expressions within parentheses are written
with no space after the opening parenthesis and no space before the closing parenthesis. Commas and
semicolons should have one space after them.

strncat(t, s, n);
for (i =0; 1 < n; i+)

The unary operators are written with no space between them and their operands:
'p =1y ++i --J (Tong)m 1 &x sizeof (k)

The binary operators are preceded and followed by one or more spaces, asis the ternary operator:
cl = c? X +y i+=2 n>07?n: -n;

Thekeywords if,while, for, switch, and return are followed by one space.
For assignments, numbers are lined up in columns, as if you were to add them. The equal signs are
also lined up.

X = 100.567;
temp = 12.700;
varb = 0.768;
variable = 12;

storage = &array[0];

564 Appendix A: C Coding Conventions

A.13 Structures and Unions

Structures are typedef, where allows a single name to represent the structure. The structure type is
declared using all uppercase characters with underscore characters used to separate words.

typedef struct Tine { /* Structure that defines a LINE)
int LineStartX; /* 'X'" & 'Y' starting coordinate =
int LineStartY;
int LineEndX; /* 'X" & 'Y' ending coordinate &7
int LineEndY;
int LineColor; /* Color of line to draw G
} LINE;
typedef struct point { /* Structure that defines a POINT =Y
int PointPosX; /* 'X' & 'Y' coordinate of point &/
int PointPosY;
int PointColor; /* Color of point =Y
} POINT;

Structure members start with the same prefix (as shown in the examples above). Member names
should start with the name of the structure type (or a portion of it), which makes it clear when pointers
are used to reference members of a structure, such as

p->LineColor; /* We know that 'p' is a pointer to LINE */

A.14 Bibliography

Babich, WayneA.
Software Configuration Management
Reading, M assachusetts
Addison-Wesley Publishing Company, 1986
ISBN 0-201-10161-0

Long, David W. and Christopher P. Duff
A Survey of Processes Used in the Development of Firmware for a
Multiprocessor Embedded System
Hewlett-Packard Journal, October 1993, p.59-65

McConnell, Steve
Code Complete
Redmond, Washington
Microsoft Press, 1993
ISBN 1-55615-484-4

Merant, Inc.
PVCS Version Manager
735 SW 158t Avenue
Beaverton, OR 97006
(503) 645-1150

Merant, Inc.
PVCS Configuration Builder
735 SW 158t Avenue
Beaverton, OR 97006
(503) 645-1150

Bibliography 565

566 Appendix A: C Coding Conventions

Appendix B

Licensing Policy for uC/OS- |

Even though pC/OS-11 is provided in source form, uC/OS-11 is not freeware nor is it Open Source software.

B.1 Colleges and Universities

MC/OS-11 source and object code can be freely distributed (to students) by accredited colleges and uni-
versities without requiring a license, as long as no commercial application is involved. In other words,
no licensing isrequired if uC/OS-11 isused for educational use. Colleges and universities should register
their courses by sending a class syllabus and providing a Web link so the class can be added to the
Micripum Web site. Please send this information to:

Universities@Micrium.com

B.2 Commercial Use

You must obtain an Object Code Distribution License to embed pC/OS-11 in acommercia product. This
is alicense to put uC/OS-11 in a product that is sold with the intent to make a profit. A license fee is
required for such situations, and you need to contact Micripm, Inc., (see below) for pricing.

You must obtain a Source Code Distribution License to distribute pC/OS-I1 source code. Again,
thereisafee for such alicense, and you need to contact Micripm, Inc., for pricing.

Licensing@Micrium.com

or

Micrium, Inc.

949 Crestview Circle
Weston, FL 33327-1848
U.SA.

1-954-217-2036 (Phone)
1-954-217-2037 (Fax)
http://www.Micrium.com

567

568

Appendix C

LC/OS-11 Quick Reference

This appendix provides a summary of the services provided by pC/OS-1, assuming that you enabled

everything (I didn't want to clutter this reference with conditional compilation statements). Of course,

some of the services might not be included in your application, depending on the contents of 0S_CFG.H.
The services are listed in the same order as they appear in the chapters:

» Miscellaneous (Kernel Structure)

* Task Management

» Time Management

» Semaphore Management

» Mutual Exclusion Semaphore Management
* Event Flag Management

* Message Mailbox Management

* Message Queue Management

e Memory Management

| also included a Task Assignment Worksheet, which allows you to plan your application by listing
your application tasks.

569

570 Appendix C: pC/OS1 Quick Reference

Miscellaneous

(Chapter 3)
Function Prototypes

void 0SInit(void);
void 0SIntEnter(void);
void 0SIntExit(void);
void 0SSchedlLock(void);
void 0SSchedUnTock(void);
void 0SStart(void);
void 0SStatlnit(void);
INT16U 0SVersion(void);

M acros

OS_ENTER_CRITICAL()
OS_EXIT_CRITICAL()

Global Variables

INT8S 0SCPUUsage
INT8U 0SIntNesting
INT8U OSLockNesting
BOOLEAN OSRunning
INT8U 0STaskCtr
0S_TCB *0STCBCur
0S_TCB *0OSTCBHighRdy
INT8U 0STaskCtr

/]
//
/!
/]
//
/!
/]
//

CPU usage in percent (%)

Interrupt nesting level (0..255)
0SSchedlLock() nesting level.

Flag indicating multitasking running
Number of tasks created

Pointer to current task’s TCB

Pointer to highest priority task’s TCB
Number of tasks created

Task Management 571

Task Management

(Chapter 4)

Function Prototypes
INT8U 0STaskChangePrio(INT8U oldprio, INT8U newprio);
INT8U O0STaskCreate(void (*task)(void *pd),

void *pdata,
0S_STK *ptos,
INT8U prio);

INT8U O0STaskCreateExt(void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT8U prio,
INT16U 1id,
0S_STK *pbos,
INT32U stk_size,
void *pext,
INT16U opt);

INT8U 0STaskDel (INT8U prio);

INT8U 0STaskDelReq(INT8U prio);

INT8U 0STaskResume(INT8U prio);

INT8U 0STaskSuspend(INT8U prio);

INT8U 0STaskStkChk(INT8U prio, OS_STK DATA *pdata);
INT8U 0STaskQuery(INT8U prio, OS_TCB *pdata);

OSTaskCreateExt() opt Argument

OS_TASK_OPT_STK_CHK // Enable stack checking for the task
0S_TASK_OPT_STK_CLR // Clear the stack when the task is create
OS_TASK_OPT_SAVE_FP // Save Floating-Point registers

0STaskDelReq() Return Values

0S_NO_ERR // The request has been registered
0S_TASK_NOT_EXIST // The task has been deleted
OS_TASK_DEL_IDLE // Can’t delete the Idle task!

0S_PRIO_INVALID // Invalid priority

572 Appendix C: pC/OS1 Quick Reference

0STaskStkChk() Data Structure

typedef struct {

INT32U OSFree; // # of free bytes on the stack
INT32U O0SUsed; // # of bytes used on the stack
} OS_STK_DATA;

0STaskQuery() Data Structure

typedef struct os_tcb {

0S_STK *0STCBStkPtr; // Stack Pointer

void *0STCBEXtPtr; // TCB extension pointer

0S_STK *0QSTCBStkBottom; // Ptr to bottom of stack

INT32U 0STCBStkSize; // Size of task stack (ffelements)
INT16U 0STCBOpt; // Task options

INT16U 0STCBId; // Task ID (0..65535)

struct os_tchb *0OSTCBNext; // Pointer to next TCB

struct os_tcb *0STCBPrev; // Pointer to previous TCB

OS_EVENT *0STCBEventPtr; // Pointer to ECB

void *0STCBMsg; // Message received

OS_FLAG_NODE *OSTCBFTagNode; // Pointer to event flag node
0S_FLAGS OSTCBFlagsRdy; // Event flags that made task ready
INT16U 0STCBD1y; // Nbr ticks to delay task or, timeout
INT8U 0STCBStat; // Task status

INT8U OSTCBPrio; // Task priority (0 = highest)

INT8U OSTCBX;

INT8U OSTCBY;

INT8U OSTCBBitX;

INT8U OSTCBBitY;

BOOLEAN 0STCBDelReq; // Flag to tell task to delete itself

} 0S_TCB;

Time Management 573

Time Management

(Chapter 5)
Function Prototypes

void 0STimeDly(INT16U ticks);

INT8U 0STimeD1yHMSM(INT8U hours,
INT8U minutes,
INT8U seconds,
INT16U milli);

INT8U 0STimeDlyResume(INT8U prio);
INT32U 0STimeGet(void);
void O0STimeSet (INT32U ticks);

void 0STimeTick(void);

574 Appendix C: pC/OS1 Quick Reference

Semaphore Management
(Chapter 7)
ool () Y coserrend()
-
ISR CSSenPost () N N OSSemAccept () ISR

Function Prototypes

INT16U 0SSemAccept (OS_EVENT *pevent);
OS_EVENT *0SSemCreate(INT16U cnt);

OS_EVENT *0SSemDel (OS_EVENT *pevent, INT8U opt, INT8U *err);

void 0SSemPend (0S_EVENT *pevent, INT16U timeout, INT8U *err);
INT8U 0SSemPost (0S_EVENT *pevent);
INT8U 0SSemQuery (0OS_EVENT *pevent, OS_SEM DATA *pdata);

0SSemDel () opt Argument

OS_DEL_NO_PEND // Delete only if no task pending
OS_DEL_ALWAYS // Always delete

0SSemQuery ()Data Structure

typedef struct {
INT16U 0SCnt; // Semaphore count
INT8U OSEventTbl1[OS_EVENT_TBL_SIZE]; // Wait Tist
INT8U OSEventGrp;

} OS_SEM_DATA;

Mutual Exclusion Semaphore Management 575

Mutual Exclusion Semaphore Management

(Chapter 8)

OsMut exCr eat e() OsMut exPend()
osMut exDel () OsMut exAccept ()

OSMut exPost () I osMut exQuer y()
T

Function Prototypes

INT8U 0SMutexAccept (OS_EVENT *pevent, INT8U *err);

OS_EVENT *0SMutexCreate(INT8U prio, INT8U *err);

OS_EVENT *0SMutexDel (OS_EVENT *pevent, INT8U opt, INT8U *err);

void 0SMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);
INT8U OSMutexPost (OS_EVENT *pevent);
INT8U O0SMutexQuery (OS_EVENT *pevent, OS_MUTEX_DATA *pdata);

OSMutexDel () opt Argument

OS_DEL_NO_PEND // Delete only if no task pending
O0S_DEL_ALWAYS // Always delete

OSMutexQuery () Data Structure

typedef struct {
INT8U OSEventTbl1[OS_EVENT_TBL_SIZE]; // Wait List
INT8U OSEventGrp;

INT8U 0SValue; // Mutex value
/] (O=used, l=available)
INT8U 0SQwnerPrio; // Mutex owner's task priority
INT8U OSMutexPIP; // Priority Inheritance Priority or
/] OxFF if no owner

} OS_MUTEX_DATA;

576 Appendix C: pC/OS1 Quick Reference

Event Flag Management

OSFl agCr eat e() OSFl agAccept ()
COSFl agDel () GOSFl agPend()
OSFl agPost () w

/Event Flag GrouN
EEl

Function Prototypes

(Chapter 9)

0S_FLAGS OSFT1agAccept (0OS_FLAG_GRP *pgrp,
0S_FLAGS flags,
INT8U wait_type,
INT8U RERDE

OS_FLAG_GRP *0SFlagCreate(0S_FLAGS flags,
INT8U *err);

0S_FLAG_GRP *OSFlagDel (0S_FLAG_GRP *pgrp,

INT8U opt,
INT8U *err);
0S_FLAGS O0SF1agPend(0S_FLAG_GRP *pgrp,
0S_FLAGS flags,
INT8U wait_type,
INT16U timeout,
INT8U *err);
0S_FLAGS O0SFTagPost(0S_FLAG_GRP *pgrp,
0S_FLAGS flags,
INT8U operation,
INT8U Xerr)l;
0S_FLAGS O0SFlagQuery(OS_FLAG_GRP *pgrp,
INT8U Xerr)l;

OSFlagDel () opt Argument

O0S_DEL_NO_PEND // Delete only if no task pending
OS_DEL_ALWAYS // Always delete

Message Mailbox Management

Message Mailbox Management
(Chapter 10)

OSMboxCr eat e()

OSMWboxDel () OsSMboxAccept ()
OSMboxPost () X GsMboxPend()
OSMboxPost Opt () OSMboxQuery()
ISR OSMboxPost () Mal'bOX ISR

OSMboxPost Opt ()

Message

Function Prototypes

void *0SMboxAccept (OS_EVENT *pevent);
OS_EVENT *0SMboxCreate(void *msg);

OS_EVENT *0SMboxDel (OS_EVENT *pevent, INT8U opt, INT8U *err);

void *0SMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);
INT8U 0SMboxPost (0S_EVENT *pevent, void *msg);

INT8U OSMboxPostOpt (OS_EVENT *pevent, void *msg, INT8U opt);
INT8U 0SMboxQuery (OS_EVENT *pevent, 0S_MBOX_DATA *pdata);

OSMboxDel () opt Argument

O0S_DEL_NO_PEND // Delete only if no task pending
OS_DEL_ALWAYS // Always delete

OSMboxPostOpt () opt Argument

0S_POST_OPT_NONE // POST to a single waiting task
// (Identical to OSMboxPost())
0S_POST_OPT_BROADCAST // POST to ALL waiting on mailbox

S77

578 Appendix C: pC/OS1 Quick Reference

0SMboxQuery () Data Structure

typedef struct {
void *0SMsg; // Pointer to message in mailbox
INT8U OSEventTb1[OS_EVENT_TBL_SIZE]; // Waiting List
INT8U OSEventGrp;

} OS_MBOX_DATA;

Message Queue Management

Message Queue Management
(Chapter 11)

OSQCr eat e()

OsQbel ()

OSQFI ush()

OSQPost ()

OSQPost Front () OBQAccept ()
0SQPost Opt () 05QPend()

\NW}V“V

o

/ W‘
OSQPost ()

OSQPost Front ()
OSQPost Opt ()
Message
Function Prototypes
void *0SQAccept (OS_EVENT *pevent);

OS_EVENT *0SQCreate(void **start, INT16U size);

OS_EVENT *0SQDel (OS_EVENT *pevent, INT8U opt, INT8U *err);

INT8U 0SQFTush(OS_EVENT *pevent);

void *0SQPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);
INT8U 0SQPost(0S_EVENT *pevent, void *msg);

INT8U 0SQPostFront (OS_EVENT *pevent, void *msg);

INT8U 0SQPostOpt (OS_EVENT *pevent, void *msg, INT8U opt);
INT8U 0SQQuery (0S_EVENT *pevent, 0S_Q_DATA *pdata);

0SQDel () opt Argument

O0S_DEL_NO_PEND // Delete only if no task pending
O0S_DEL_ALWAYS // Always delete
0S_POST_OPT_FRONT // Simulate 0SQPostFront()

579

580 Appendix C: pC/OS1 Quick Reference

0SQPostOpt() opt Argument

0S_POST_OPT_NONE // POST to a single waiting task
// (Identical to OSMboxPost())
0S_POST_OPT_BROADCAST // POST to ALL waiting on mailbox

0SQQuery () Data Structure

typedef struct {

void *0SMsg; // Pointer to next message
INT16U OSNMsgs ; // # messages in queue
INT16U 0SQSize; // Size of message queue
INT8U O0SEventTb1[OS_EVENT_TBL_SIZE]; // Waiting List

INT8U 0SEventGrp;

} 0S_Q_DATA;

Memory Management
Memory Management
(Chapter 12)
Function Prototypes
0S_MEM *0SMemCreate(void *addr,
INT32U nblks,
INT32U blksize,
INT8BU *err);
void *0SMemGet (0S_MEM *pmem, INT8U *err);
INT8U OSMemPut (OS_MEM *pmem, void *pblk);
INT8U 0SMemQuery (0S_MEM *pmem, OS_MEM_DATA *pdata);
0SMemQuery () Data Structure
typedef struct {
void *0SAddr; // Ptr to start of memory partition
void *0SFreelist; // Ptr to start free list of memory blocks
INT32U O0SB1kSize; // Size (in bytes) of each memory block
INT32U OSNBTks; // # blocks in the Partition
INT32U OSNFree; /] # free blocks
INT32U O0SNUsed; // 4 blocks used

} OS_MEM_DATA;

581

582 Appendix C: pC/OS11 Quick Reference

HC/OS-II, The Real-Time Kernel

Task Assignment Worksheet

Priority

Task Name

Stack Size
(Bytes)

Description

Mutex PIP?

OIN[O(O|A_[W|N(F|O

pPC/OS-II Idle Task

N/A

Appendix D

o utility

TO isaDOS utility that allows you to go to a directory without typing
CD path
or
CD ..\path
TO is probably the DOS utility | use most because it allows me to move between directories very

quickly. At the DOS prompt, simply type T0 followed by the name you associated with a directory, then
press the Enter key

TO name
where nane is a name you associated with a path. The names and paths are placed in an ASCII file
called T0.TBL, which resides in the root directory of the current drive. T0 scans T0.TBL for the name
you specified on the command line. If the name exists in T0.TBL, the directory is changed to the path
specified with the name. If the nameisnot found in T0. TBL, the message Invalid NAME isdisplayed.

The DOS executable is in \SOFTWARENTO\EXE\TO. EXE, an example of the names and paths is in
\SOFTWARE\TO\EXE\TO.TBL, and the source codeisin \SOFTWARE\TO\SOURCE\TO.C.

An exampleof T0.TBL and itsformat is shown in Listing D.1. Note that the name must be separated
from the path by acomma.

ListingD.1 Exampleof T70. TBL.

A, .. \SOURCE
. .\SOURCE
, ..\D0OC

. ALST
..\OBJ

, ..\PROD
.. \WORK

= U O — o O

583

584 Appendix D: T0Utility

ListingD.1 Exampleof T0. TBL. (Continued)

EXIL, \SOFTWARE\UCOS-TI\EX1_x86L\BC45\TEST (1)
EX2L, \SOFTWARE\UCOS-IT\EXZ2_x86L\BCA5\TEST

EX3L, \SOFTWARE\UCOS-TT\EX3_x86L\BC4A5\TEST

Ix86L, \SOFTWARE\UCOS-TI\Ix86L\BC45

10, \SOFTWARE\TO\SOURCE

uCos-1II, \SOFTWARE\uCOS-II\SOURCE

You can add an entry to T0O. TBL by typing the path associated with a name on the command line, as
follows

TO name path

TO appends this new entry to the end of TO.TBL, which avoids having to use a text editor to add a new
entry. If you type
TO EXIL

T0 changes the directory to \SOFTWARE\uCOS-T1\EX1_x86L\BCA5\TEST [LD.1(1)].

T0.TBL can be aslong as needed, but each name must be unique. Note that two names can be associ-
ated with the same directory. If you add entriesin TO. TBL using atext editor, all entries must be entered
in uppercase. When you invoke T0 at the DOS prompt, the name you specify is converted to uppercase
before the program searches through the table. T0 searches T0.TBL linearly from the first entry to the
last. For faster response, you might want to place your most frequently used directories at the beginning
of the file, although this action might not be necessary with today’s fast computers.

Appendix E

Bibliography

Allworth, Steve T. 1981. Introduction To Real-Time Software Design. New York: Springer-Verlag. ISBN E
0-387-91175-8.

Bal Sathe, Dhananjay. 1988. Fast Algorithm Determines Priority. EDN (India), September, p. 237.

Comer, Douglas. 1984.0Operating System Design, The XINU Approach. Englewood Cliffs, New Jersey:
Prentice-Hall. ISBN 0-13-637539-1.

Deitel, Harvey M. and Michael S. Kogan. 1992. The Design Of OS2. Reading, Massachusetts:
Addison-Wesley. ISBN 0-201-54889-5.

Ganssle, Jack G. 1992. The Art of Programming Embedded Systems. San Diego: Academic Press. ISBN
0-122-748808.

Gareau, Jean L. 1998. Embedded x86 Programming: Protected Mode. Embedded Systems
Programming, April, p. 80-93.

Halang, Wolfgang A. and Alexander D. Stoyenko. 1991. Constructing Predictable Real Time Systems.
Norwell, Massachusetts: Kluwer Academic Publishers Group. ISBN 0-7923-9202-7.

Hunter & Ready. 1986. VRTX Technical Tips. Palo Alto, Cdifornia: Hunter & Ready.
Hunter & Ready. 1983. Dijkstra Semaphores, Application Note. Palo Alto, California: Hunter & Ready.
Hunter & Ready. 1986. VRTX and Event Flags. Palo Alto, California: Hunter & Ready.

Intel Corporation. 1986. iAPX 86/88, 186/188 User’'s Manual: Programmer’s Reference. Santa Clara,
Cdlifornia: Intel Corporation.

Kernighan, Brian W. and Dennis M. Ritchie. 1988. The C Programming Language, 2nd edition.
Englewood Cliffs, New Jersey: Prentice Hall. ISBN 0-13-110362-8.

585

586 Appendix E: Bibliography

Klein, Mark H., Thomas Ralya, Bill Pollak, Ray Harbour Obenza, and Michael Gonzlez. 1993. A Prac-
tioner’s Handbook for Real-Time Analysis. Guide to Rate Monotonic Analysis for Real-Time Sys-
tems. Norwell, Massachusetts: Kluwer Academic Publishers Group. ISBN 0-7923-9361-9.

Laplante, Phillip A. 1992. Real-Time Systems Design and Analysis, An Engineer’'s Handbook.
Piscataway, New Jersey: |EEE Computer Society Press. ISBN 0-780-334000.

Lehoczky, John, Lui Sha, and Ye Ding. 1989. The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior. In: Proceedings of the |IEEE Real-Time Systems
Symposium., Los Alamitos, California. Piscataway, New Jersey: |EEE Computer Society, p. 166—
171

Madnick, E. Stuart and John J. Donovan. 1974. Operating Systems. New York: McGraw-Hill. ISBN
0-07-039455-5.

Ripps, David L. 1989. An Implementation Guide To Real-Time Programming. Englewood Cliffs, New
Jersey: Yourdon Press. ISBN 0-13-451873-X.

Savitzky, Stephen R. 1985. Real-Time Microprocessor Systems. New York: Van Nostrand Reinhold.
ISBN 0-442-28048-3.

Wood, Mike and Tom Barrett. 1990. A Real-Time Primer. Embedded Systems Programming, February,
p. 20-28.

Appendix F

Companion CD

This book includes a companion CD and contains a self-extracting executable called uC0Sv252. EXE.
Because so much room isleft on the CD, | decided to also include al the files so that you can browse the
CD without having to install anything on your computer.

It is assumed that you have a Microsoft Windows 95, 98, NT, 2000, or X P computer system, running
on an 80x86, and Pentium-class, or AMD, processor. You should have at |least 10MB of free disk space
toinstall uC/OS-11 and its source files on your system.

Insert the companion CD into your CD-ROM drive, and execute the file uC0SV252.EXE, which
should be found on the root directory of the CD. The splash screen, shown in Figure F.1, isdisplayed in
the center of your screen.

FigureF.1 uCosSV252. EXE splash screen.

winaip o Extractar T
MicroCfO5-11

The Real-Time kernel
Wz2.52

Micripnn, Inc.

949 Crestview Circle
‘Weston, FL 33327
(954) 217-2036
(954) 217-2037 Fax

it Micrium . com

When you click OK, uC0SV252. EXE displays the screen shown in Figure F.2. Here you are asked to
specify the folder (i.e., directory) where you want to install al the files for pC/OS-11. The default is to
place the source tree on to your C: \ drive. You can specify other locations.

After making your selection (or if you accept the default location), press the Unzip button. After the
file is unzipped, the message shown in Figure F.3 is displayed.

587

588 Appendix F: Companion CD

FigureF.2 Specify which folder.

WinZip Self-Extractor - uCOSY252.exe x|

Tounzip all files in uCO5Y252 exe to the specified lnzi
folder prezs the Unzip buttor.

Fun WinZip |
Unzip to folder:

Im Browse... | Close

¥ Ovenrite files without prampting About |
¥ “hen done urzipping open: notepad ™
elp |

FigureF.3 Files unzipped message.

WinZip Self-Extrac x|

53 filefs) unzipped successfully

Press the OK button. Microsoft Notepad opens and shows you the contents of the README . TXT file,
as shown in Figure F.4. From the File menu, choose close when you are done reading thisfile.

FigureF.4 README.TXT.

-l x|

File Edit Format Help

| uC/05-11, The real-Time Kernel -
companion CD

version 2.52
READ ME FILE
T R R T T R R R R R R R R R R R R TR T R T

R RH R H R R RN RN RHWRRRN TABLE OF COMNTEMNTS 8 5 0 b b v e b w000 000 8 0OW R B0 R RHOW
T T R R YR R R gy

1) Reporting problems
2) software Upgrades
3) Release Motes

/S PAGER /S
T R R T T R R R R R R R R R R R R TR T R T

W H R H R HHH RN HH N R HWHHN QEPORTING PROBLEMS W 8 8 58 BB 8 W BB W R B R B
T E T T T R R T A R TR T I T I R ey

Ny ou find a problem (i.e. bug) in uc/05-1I, do not hesitate to report
the problem to either:

1) Through the INTERMET:
My INTERMET address is: Jean. Labrosse@Micrium. com
2) By writing to me at:

micrium, Inc. -

Kl 2

Filesand Directories 589

F.1 Filesand Directories

After the files are installed, your destination hard disk should contain the directories (folders) shown
below. In fact, the CD also contains these folders and files.

\SOFTWARE — The main directory from the root where all uC/OS-11-related files are placed.

\SOFTWARE\TO — This directory contains the files for the TO utility (see Appendix D). The sourcefileis
T0.C, found in the \SOFTWARE\TO\SOURCE directory. The DOS executable file (TO.EXE) isin
the \SOFTWARE\TO\EXE directory. Note that TO requires a file called T0.TBL, which must
reside on your root directory. An example of T0.TBL isalso found in the \SOFTWARENTO\EXE
directory. You need to move T0. TBL to the root directory to use T0. EXE.

\SOFTWARE\BLOCKS — The main directory where all building blocks are located. With uC/OS-I1, |
include a building block that handles PC-related functions used by the example code. The
sourcefilesare PC.C and PC. H, found in the \SOFTWARE\BLOCKS\PC\BC45 directory.

\SOFTWARE\uCOS-II — The main directory where all pC/OS-1I files are located.
\SOFTWARE\uCO0S-II\DOC — Thisdirectory contains documentation files. Specifically, you will find:

README.TXT — Thisfileisthe README file for this release. When you first install uC/OS-11, you
should see the contents of thisfile.

RevV252.PDF — Thisfile contains the release notes for this release. You will need Adobe Acrobat
Reader to view thisfile.

NewV252.PDF — This file contains the list of changes to uC/OS-II since the initial release of
UC/OSHI (i.e., v2.00). Again, you will need to use Adobe Acrobat Reader.

QuickRefChartV252-Color.PDF — Thisfile contains a quick reference chart for all the services
provided by uC/OS-11. Again, you need to use Adobe Acrobat Reader. After the docu-
ment is printed, you can either laminate it full size or fold the page in half and have a
more compact reference chart.

TaskAssignmentWorksheet.PDF

TaskAssignmentWorksheet.XLS — These files allow you to list and organize your tasks. Again,
you need to use Adobe Acrobat Reader. The . XLS fileis a Microsoft Excel spreadsheet
and can be used to create documentation for your application.

\SOFTWARE\UCOS-II\EX1_x86L\BC45 — This directory contains the source code for Example #1 (see
Chapter 1), which is intended to run under DOS (or a DOS window under Microsoft Win-
dows). The BC45 directory means that these files assume you have the Borland C/C++ com-
piler v4.5x. Of course, you could modify these files to use a different compiler if needed. You
should find additional sub-directories under the BC45 directory. Each of the following direc-
tories contains four files as described below.

\SOURCE — INCLUDES.H— Thisfileisthe master include file used by pC/OS-11 and the test code.

0S_CFG.H— Thisfileisthe uC/OS-11 configuration file, which specifies which services you
want to enable, how many tasks your application can have, and more.

590 Appendix F: Companion CD

TEST.C — Thisfileisthetest code for Example #1.

TEST. LNK— Thisfileisthe Turbo Assembler linker-command file and specifies which object
filesand libraries are used to make the final executable, TEST. EXE.

\TEST — MAKETEST.BAT isa DOS batch file that you need to execute to build the code for Exam-
ple #1. MAKETEST.BAT assumes that you have the Borland MAKE utility present on your C:
drive and in the C:\BC45\BIN directory. If your compiler is located in a different directory,
you need to edit MAKETEST . BAT accordingly.

TEST.MAK — Thisfile is a makefile that allows you to build the DOS executable TEST . EXE.
TEST.MAK contains all the compiler, assembler, and linker commands to build TEST . EXE.

TEST.EXE — Thisfile isthe DOS executable for Example #1 that | built using my tools. You
can execute this file in a DOS window under Microsoft Windows 95, 98, ME, NT, 2000, or
XP,

TEST.MAP — Thisfileisthe linker MAP file.

\SOFTWARE\uUCOS-II\EX2_x86L\BC45 — This directory contains the source code for Example #2 (see
Chapter 1), which is intended to run under DOS (or a DOS window under Microsoft Win-
dows). Thisdirectory islaid out exactly the same as EX1_x86L described previously. In other
words, it contains files with identical names except that their contents are different.

\SOFTWARE\UCOS-II\EX3_x86L\BC45 — This directory contains the source code for Example #3 (see
Chapter 1), which is intended to run under DOS (or a DOS window under Microsoft Win-
dows). Thisdirectory islaid out exactly the same as EX1_x86L described previously. In other
words, it contains files with identical names except that their contents are different.

\SOFTWARE\UCOS-II\EX4_x86L.FP\BC45 — This directory contains the source code for Example #4
(see Chapter 1), which is intended to run under DOS (or a DOS window under Microsoft
Windows). This directory is laid out exactly the same as EX1_x86L described previoudly. In
other words, it contains files with identical names except that their contents are different.

\SOFTWARE\uCOS-II\Ix86L\BC45 — This directory contains the source code for the processor-depen-
dent code (also known as the port) of uC/OS-11 for an 80x86 processor running in real-mode
and compiled for the large model using the Borland C/C++ v4.5x compiler. This port also
contains code to allow you to reentrantly use the floating-point emulation library provided
with the Borland tools.

0S_CPU_A.ASM— Thisfile contains the assembly language functions for the port. Specifically, this
file contains 0SStartHighRdy (), 0SCtxSw(), 0SIntCtxSw(), and OSTickISR().

0S_CPU_C.C — Thisfile contains the C functions for the port.
0S_CPU.H— Thisfile contains the C header for the port.

\SOFTWARE\UCOS-II\Ix86L-FP\BC45 — This directory contains the source code for the proces-
sor-dependent code (also known as the port) of pC/OS-11 for an 80x86 processor running in
real-mode and compiled for the large model using the Borland C/C++ v4.5x compiler. This
port aso makes use of the 80x86 processors that are equipped with a floating-point unit
(FPU). In other words, tasks are able to use the FPU, and pC/OS-Il saves the FPU registers
during a context switch.

Filesand Directories 591

0S_CPU_A.ASM— Thisfile contains the assembly language functions for the port. Specifically, this
file contains 0SStartHighRdy (), 0SCtxSw(), 0SIntCtxSw(), and OSTickISR().

0S_CPU_C.C — Thisfile contains the C functions for the port.
0S_CPU.H— Thisfile contains the C header for the port.

\SOFTWARE\uCOS-IT\SOURCE — This directory contains the source code for the processor-independent
portion of uC/OS-11. This code is fully portable to other processor architectures. This direc-
tory contains the following files:

0S_CORE.C 0S_FLAG.C
0S_MBOX.C 0S_MEM.C
0S_MUTEX.C 0s_0Q.C
0S_SEM.C 0S_TASK.C
0S_TIME.C uCoS_II.C

uCOS_II.H

592 Appendix F: Companion CD

| ndex

Symbols L0STCB Next 143
.0STCBD1y 142, 146, 151, 163, 173, 321
.0SCnt 176

_0SEventCnt 155, 184, 190, 193, 195, 231, 242 gglgg?iﬁg d?;’zfgl’ 396, 399
(0SEventGrp 154—155, 157158, 162, 167, 174, o1 Canent 142

;gg, 193, 197, 231, 230-240, 243, 260, 264, (1 Cnproy 149143
L0SEventPtr 154, 167, 176, 190, 249 gglgggi‘;; tlr%;l“z
.0SEventType 154, 176, 242, 253 ’

MC/OSH
.0SMemAddr .274 architecture 288
.0SMemB1kSize 274 CDROM
.OSMemFreelList 274 See Appendix F

.0SMemNB1ks 274
.0SMemNFree 274
.0SMsg 243, 268

configuration 513
datatypes 292—293

o s development tools 289—290
.OSMUteXP ey directory structure 290
.OSMutexqu 197 getting started

. utexValue See Chapter 1
.0SNMsgs 268, 270 idletask 119

-05QEnd 250-251 initialization 111, 113—114
.0SQEntries 250251, 258, 266 installation 1

.ggoén Zgg(_)fgél 258, 262, 267 licensing v, oo
.0SQ0ut)) £02, See Appendix B

.0SQPtr 250
.0SQS1ize 250—251, 268, 270
.0SQStart 250251

memory usage 370—375, 402—403
port directories 290

593

594 Index

porting xxi, 310—321, 616
See Chapter 13
80x86 337

See Chapter 14
See Chapter 15
quick reference
See Appendix C

stack 299

starting 114

upgrade 116

variables 111

version 116

web site xxvi

A

abbreviations 554

AckMbox 19

acronyms 554

ANSI xvii

application programming interface (API) 127

architecture 74, 288

argument checking 280

asm() 295

assembly-language xvii—xviii, xxi—xxii, 103,
287, 289—290, 305, 309, 315, 318, 339, 357,
365, 377, 382, 393, 396

attribute byte values 527

B

Babich, Wayne A. 564
background 70, 72
bilateral rendezvous 58
binary semaphore xvi, xxv, 4, 53
BIOS 529
book layout and flow xxiv
BOOLEAN 289
bottom-of-stack (BOS) 126
buffer 556
management 55—56
pool 55
BufRel () 5556
BufReq() 5556

@

compiler xvii, xxii, 6, 9-10, 20, 30, 103,
123, 288—290, 300, 309, 311, 337,
347, 378
data types 292—293
flags 34
options 339, 379
data types 292
function 299
header files 312
language xvii—xviii
source 103
C_FLAGS 34
CD ROM
See Appendix F
chaining 6
characters 525527
clock tick 19, 68, 108, 145146, 150—151, 319
interrupt 321
code portability 125
coding conventions
See Appendix A
jidefines 557
abbreviations 554—556
acronyms 554—556
comments 556
data types 557558
function declarations 559-560
function prototypes 559
header 552
include files 552—553
indentation 560—562
local variables 558
mnemonics 554—556
naming identifiers 553—554
statements and expressions 563
structures and unions 564
CommSendCmd() 54
conjunctive synchronization 59
constants 111, 119
configuration 521
context switch xv, xxiii, xxv, 34, 8, 20, 39, 41,
92, 94-95, 100, 107, 120, 305, 337, 344, 350,
359, 361—362, 364, 369, 394—395, 397—398,
401
counter 8
pseudocode 96

Index 595

cooperative multitasking 40 eenable_int() 294
core services 74 else 68
cos() 33 event
cosine 31 asynchronous 36
counting semaphore xvi, 56 control blocks
CPU register 287 See ECB
cpu_sr 167, 231, 253 flag xv—xvi, xxiii, xxv, 59, 131, 151, 199,
creating atask 120 516
critical section of code xxiii, 37, 73—74 SeeChapter 9
CLEAR 59
clearing events 215224

D constants 199
deadlock 57 creating 203—204
deadly embrace deleting 204—207

See deadlock internals 200—202
debuggers 315, 317 intervals 200
delay resolution 147 looking for events 224—227
development tools 289, 339, 377—380 management 576
Dijkstra, Edgser 52 query 227
disable_int() 294 services 200
disable_interrupt() 77, 296 SET 59
digjunctive synchronization 59 Setting events 215224
dispatcher WAIT 59

See scheduler waiting for 207214
display pool 113

character-based 525 exclusion

initialization 15 mutual 49
DispTaskStat() 30 exclusive access 37
DlyResume() 150 execute 36—37
DORMANT state 37 delayed 47

doubly linked list 214, 219

Duff, Christopher P. 564

dummy function 132 F

dynamic priorities 45 Federal Aviation Administration (FAA) xv, Xxxiii
FIFO 53, 251, 259, 261—263, 265—266
file structure 75

E First In First Out
ECB xv, 138, 151, 153—155, 159161, 163— See FIFO
164, 167, 172, 176, 184, 187, 191, 193, 195, flags 380
234, 240, 242, 244, 249, 253, 255—256, 260, event 59
270 Floating-Point Unit
See Chapter 6 See FPU
and tasks 156—157 foreground 70, 72
data structure 154 FP32 289
free 159 FP64 289
initializing 160 FPE 349

wait list 157, 159

596 Index

FPU 8, 13, 31, 388
emulation
See Chapter 14
hardware
See Chapter 15
registers 387—388
storage 397
fragmentation 124, 273
free() 124, 273
FRSTOR 402
functions
non-reentrant 40, 43—44
reentrant 43

G

get_processor_psw() 77
global variable 60
Go/No Go testing 316—318

H

hardware stack 287
heap 124
high memory 119, 123-126

IDE 311
identifiers 554
idletask xxiv, 2, 45, 2122, 29, 31, 119, 135,
140, 142
if 68
INCLUDES.H 34, 291, 311312, 341, 380—383
infiniteloop 8, 117
inheritance 47
initial top-of-stack (TOS) 127
initialization
display 15
instruction
return from interrupt 64
INT16S 289
INT16U 289, 293
INT32S 289
INT32U 289, 293

INT8S 289
INT8U 289
Intel
80186 70
8086 70
80x86 xv, xxi, 74, 132, 287, 297, 300, 337,
377, 616
data sizes 375
port
See Chapters 14 and 15
processors 337
Pentium 1
interface functions 532—549
interrupt xxiii—xxiv, 37, 50-51, 62—63, 93, 95,
103, 105, 309, 362
clock tick 68, 321
code 70
CPU 348
disable xxii, 6, 50, 56, 60, 132, 287, 290,
293, 295, 343, 348, 361, 399
enable 50, 56, 104, 107, 122, 131—132, 287,
290, 293, 295, 309, 319, 348
handler 94
hardware 93
instruction 359, 396
latency 51, 62, 64—67, 72, 131132
level 36
nesting 63, 71, 107, 398
nonmaskable 66—68
periodic 145
recovery 64—67, 72
response 63—67, 72
return from 106, 305, 359
serviceroutine
See ISR
servicing 105
software 93, 359, 394
stack 70
status 66
tick 108, 111, 147, 307—308, 321, 344—345,
364
vector 319, 321
vector table
See VT
intertask communication 60

ISR xxiv, 15, 22, 37, 41, 43, 51, 53, 5758, 60,
64, 66—68, 70, 73—74, 80, 98, 103—107, 110,
118, 131132, 145, 147, 153—154, 165, 175—
176, 189, 199, 203, 206, 210, 224, 229—-230,
234, 236, 239, 241, 245, 248, 261, 265—266,
280, 284, 308—309, 311, 319, 321, 348, 359,
362, 364—366, 368—369, 382, 394, 396—398

beginning 106
leaving 106
nesting 104
processing time 66
return from interrupt 41
RUNNING state 80
task synchronization 57
tick 108—109

IVT 366, 368

J

jitter 68

K
kernel xvii—xix, xxii, 4, 6, 37, 3941, 4748,
51-52, 5758, 63—64, 68, 70, 145, 293
event flags 59
multitasking xxi, 3, 52, 70
non-preemptive 64—65, 72
object xxiv—xxv, 153, 231
operations 310
preemptive 4, 64, 72, 289
rea-time xxii, 71, 343
scheduling 45
services 72
structure 569
testing 310

L

latency

interrupt

Seeinterrupt latency

LEDs 316, 318, 321
licensing uC/OS-11 567
LIFO 251, 261263, 265
logical AND 59
logical OR 59

Index 597

Long, David W. 564
low memory 119, 123—126

M

mailboxes xv—xvi, xxiii, xxv, 15, 22, 60, 131,
138, 151, 154, 159, 167, 204, 516517, 569
See Chapter 10
as abinary semaphore 244—245
constants 229
creating 111, 230232
deleting 232—235
getting a message (non-blocking) 241—242
instead of 0STimeD1y () 245
management 577578
queue 60
sending a message 238—241
status of 242—244
waiting for a message 235—237
main() 12, 99, 181, 315, 317-318, 364
malloc() 123—124, 273
McConnell, Steve 564
memcpy () 143, 352
memory
allocate 278
block 273, 278—280
returing 280, 282
waiting for 285—286
blocks 279
buffers 132
control blocks 274
deallocate 278
management 517, 581
See Chapter 12
obtaining 279—280
partition xxiii, 273, 275, 278—280, 283, 285
obtaining status of 282
status 282—283
using 283—284
requirements 70
usage 370375, 402—403
Memory Management Unit
See MMU
Merant, Inc. 565
message mailbox
See mailboxes
message queues
See queues

598 Index

Micrium, Inc. 567
MicroC/OS
See uC/OSHI
MMU 301
mnemonics 554
Motorola
68000 51, 70
68020 70, 104
68HC11 100, 107, 290, 297, 300, 321
ISRs 108
multitasking xxi, xxiii, 1-5, 37, 39, 52, 70—71,
73, 97, 100, 108, 118, 120, 231, 311, 364
cooperative 40
non-preemptive 40
preemptive xxi, 40, 289
starting 114
mutex Xv—xvi, xxiii, xxv, 48, 131, 151, 155,
159, 182, 204, 517, 569
See Chapter 8
and tasks 182
blocking 188—191
constants 182
creating 183—185
deleting 185—187
example 182
management 575
non-blocking 194—195
obtaining the status 195
signaling 191—193
status 195—198
mutual exclusion 37, 49, 52
mutual exclusion semaphore
See mutex

N

nondeterministic 36
nonmaskable interrupt (NM1) 66
non-preemptive 40
non-reentrant 40

non-reentrant function 44

O

open source xvii, 567
0OS 76, 111, 213, 239, 360, 520

0S_ARG_CHK_EN 119, 128, 167, 172, 174, 176,
178, 190, 193, 195, 197, 206, 210, 217, 227,
232, 239240, 242, 244, 255, 258, 264, 266—
267, 270, 280, 370, 403, 513

0S_CFG.H 27, 29, 73, 79, 88, 99, 111, 113, 118—
119, 125, 128, 142, 145, 148, 159, 165, 168,
176, 182, 184—185, 195, 199—200, 202, 204,
218, 227, 229230, 232, 236, 239—240, 242,
247, 249, 253, 255, 258, 260, 264, 266—267,
275, 280, 311—-312, 315316, 318, 321, 369,
377, 384, 386, 392, 403, 513, 520, 569

0S_CORE.C 88, 90, 99, 111, 120, 156, 515

0S_CPU.H 6, 74, 76—77, 120, 123—126, 289—
291, 294, 340—345, 380—383, 402

0S_CPU_A.ASM 114, 289—290, 304, 309—310,
340, 344, 357—369, 380, 383, 387—388, 391,
393402

0S_CPU_C.C 27, 119, 122, 289—290, 297, 302,
307, 309, 316—317, 340, 345—357, 380, 383,
385—393, 402, 513

0S_CPU_EXT 341

0S_CPU_GLOBALS 341

0S_CPU_HOOKS_EN 27, 302, 384, 513

0S_CPU_SR 289, 296, 342, 381

0S_CRITICAL_METHOD 76, 167, 231, 253, 289,
293, 342, 381

==176, 294
==276, 294
==377, 295

0S_DEL_ALWAYS 187, 206—207, 234, 255—256,
574577, 579

0S_DEL_NO_PEND 187, 206, 234, 255—256, 574—
577, 579

0S_Dummy () 132

OS_ENTER_CRITICAL() 6—7, 50, 74—77, 289,
293—296, 343—344, 382, 406, 570

OS_ERR_TASK_WAITING 234, 256

0S_EVENT 23, 113, 154, 176, 178, 184, 190, 197,
242, 244, 249

OS_EVENT_TYPE_FLAG 204

OS_EVENT_TYPE_MBOX 154, 231

OS_EVENT_TYPE_MUTEX 154, 184

OS_EVENT_TYPE_Q 154, 253

OS_EVENT_TYPE_SEM 154, 167

0S_EventTaskRdy() 160-161, 163, 174, 193,
239, 241, 260, 264

0S_EventTaskWait() 163, 173, 191, 237, 259

0S_EventTO() 160, 164, 173, 191, 237, 259

0S_EventWait() 160
0S_EventWaitListInit() 160, 167, 231
OS_EXIT_CRITICAL() 7,50, 74—77, 132, 289,
293—296, 343—344, 382, 406, 570
0S_FLAG_ACCEPT_EN 199, 516
0S_FLAG_CLR 217
0S_FLAG_CONSUME 210
0S_FLAG_DEL_EN 199, 516
0S_FLAG_EN 111, 199, 514, 516
0S_FLAG_GRP 200, 203, 576
0S_FLAG_NODE 200—202, 212—213, 218—223
0S_FLAG_QUERY_EN 199, 516
0S_FLAG_SET 217
0S_FLAG_WAIT_CLR_EN 211, 218, 516
OS_FLAG_WAIT_SET_ALL 211
OS_FLAG_WAIT_SET_AND 211
OS_FLAG_WATIT_SET_ANY 211
0S_FLAG_WAIT_SET_OR 211
0S_FlagBlock() 211—213
0S_FLAGS 199—200, 202, 576
0S_FlagTaskRdy() 207, 218
0S_FlagUnlink() 219, 221
0S_LOWEST_PRIO 79, 88, 98—99, 111, 118119,
122, 131, 140, 155, 162—163, 318—319, 321,
514-515
0S_LOWEST_PRIO-1 79
0S_LOWEST_PRIO-2 79
0S_LOWEST_PRIO-2 79
0S_LOWEST_PRIO-3 79
0S_MAX_EVENTS 113, 159, 230, 514
0S_MAX_FLAGS 113, 204, 514
0S_MAX_MEM_PART 113, 275, 377, 514
0S_MAX_QS 113, 247, 249, 514, 518
0S_MAX_TASKS 88, 111, 113, 514
0S_MBOX_ACCEPT_EN 229, 516
0S_MBOX_DATA 242—244, 578
0S_MBOX_DEL_EN 229, 232, 517
0S_MBOX_EN 229, 244, 514, 516
0S_MBOX_POST_EN 229, 517
0S_MBOX_POST_OPT_EN 229, 517
0S_MBOX_QUERY_EN 229, 517
0S_MEM 113, 283
0S_MEM.C 514
0S_MEM_DATA 282—283
0S_MEM_EN 275, 386, 392, 403, 517
0S_MEM_QUERY_EN 517
0S_MemInit() 275
OS_MUTEX_ACCEPT_EN 517

Index 599

OS_MUTEX_AVAILABLE 190

0S_MUTEX_DATA 197—198

OS_MUTEX_DEL_EN 185, 518

O0S_MUTEX_EN 182, 514, 517

0S_MUTEX_QUERY_EN 518

0S_N_SYS_TASKS 514

0S_NO_ERR 133, 571

0S_POST_OPT_BROADCAST 241, 264, 577, 580

0S_POST_OPT_FRONT 265, 579

0S_POST_OPT_NONE 577, 580

0S_PRIO_EXIST 119, 122

0S_PRIO_INVALID 571

0S_PRIO_SELF 128, 131, 135, 137, 140, 142

0S_Q 113, 249

0S_Q.C 249

0S_Q_ACCEPT_EN 247, 518

0S_Q_DATA 270

0S_Q_DEL_EN 247, 253, 518

0S_Q_EN 514, 518

0S_Q_FLUSH_EN 247, 518

0S_Q_POST_EN 247, 518

0S_Q_POST_FRONT_EN 247, 518

0S_Q_POST_OPT_EN 247, 518

0S_Q_QUERY_EN 247, 519

0S_Sched() 107, 173—174, 191, 193, 237, 239,
241, 259, 261, 265, 306, 318, 359, 394

0S_SCHED_LOCK_EN 73

0S_SEM_ACCEPT_EN 519

0S_SEM_DATA 176, 178

0S_SEM_DEL_EN 168, 519

0S_SEM_EN 165, 244, 271, 514, 519

0S_SEM_QUERY_EN 519

0S_STACK_GROWTH 120

OS_STAT_MUTEX 191

0S_STAT_RDY 131

OS_STAT_SEM 173

OS_STAT_SUSPEND 131, 140, 142

0S_STK 5, 123, 126, 289, 352, 515, 571

0S_STK_DATA 17, 126128, 572

0S_STK_GROWTH 123—126, 289, 296—297, 382

0S_Task Idle() 514

0S_TASK.C 117, 120

0S_TASK_CHANGE_PRIO_EN 519

OS_TASK_CREATE_EN 519

OS_TASK_CREATE_EXT 125, 403

OS_TASK_CREATE_EXT_EN 111, 377, 515, 519

OS_TASK_DEL_EN 213, 520

OS_TASK_DEL_IDLE 571

600 Index

0S_TASK_DEL_REQ 134

OS_TASK_IDLE_STK_SIZE 515

OS_TASK_NOT_EXIST 133, 135, 571

0S_TASK_OPT_SAVE_FP 33, 121, 377, 388, 571

0S_TASK_OPT_STK_CHK 10, 120, 122, 125, 128,
571

0S_TASK_OPT_STK_CLR 10, 120, 122, 125, 571

0S_TASK_QUERY_EN 520

OS_TASK_STAT_EN 29, 99, 111, 315, 515

0S_TASK_STAT_STK_SIZE 515

0S_TASK_SUSPEND_EN 520

0S_TASK_SW() 92—93, 107, 297, 306, 344, 359,
382, 394, 396

0S_TaskIdle() 80,98, 100—101, 113, 315316,
318, 348

0S_TaskStat() 99, 101-103, 111, 113, 348,
387, 514

0S_TCB 81, 90, 95, 104—105, 110, 113, 119—
120, 123, 126, 131133, 135, 138, 140, 142,
200, 219, 301, 305—308, 348—349, 359—363,
365, 368, 387—388, 394, 396—399

0S_TCBInit() 85, 88, 120, 123, 128, 301

O0S_TICKS_PER_SEC 6, 25, 148—149, 321, 369,
516

0S_TICKS_PER_SECOND 149

0S_TIME.C 145

O0S_TIME_DLY_HMSM_EN 145, 520

0S_TIME_DLY_RESUME_EN 145, 520

OS_TIME_GET_SET_EN 145, 520

0SCPURestoreSR() 344

0SCPUUsage 99, 103, 515, 570

0SCtxSw() 95, 289, 297, 306, 317—322, 359,
361, 363, 391, 394, 396, 399

0SCtxSwCtr 8

OSEventWaitListInit() 184

0SFTagAccept() 199, 224, 407, 516, 576

0SFlagCreate() 199, 203—204, 210, 217, 409,
576

0SFTagDel () 199, 204, 206—207, 410, 516, 576

0SFlagFlags 200

0SF1agNodeFlagGrp 202

0SFlagNodeFlags 202

0SFTlagNodeNext 201

0SFlagNodePrev 201

0SFTlagNodeTCB 201

0SFlagNodeWaitType 202

0SFlagPend 207

0SFTagPend() 80, 97, 199, 201—202, 210—212,

221, 224, 412, 576

0SFlagPost() 105, 199, 207, 215, 217-218,
362, 397, 414, 576

0SFlagQuery() 199, 227, 416, 516, 576

0SF1agType 200

0SFlagWaitList 200

O0SFPInit() 385—387, 392, 401

OSFPPartPtr 387

0SFPRestore() 391, 393, 401402

OSFPSave() 383, 387—388, 391, 400401

0SIdleCtr 98, 100—101, 103, 515

0SIdleCtrMax 101, 103, 515

0SIdleCtrRun 103, 515

0SInit() 4, 100, 108, 111113, 119, 122, 159,
275, 286, 297, 307, 315, 357, 364, 392, 417,
521, 570

0SInitHookBegin() 289, 297, 304, 323, 356,
383, 392, 513

0SInitHookEnd() 289, 298, 304, 324, 357,
383—384, 392, 513

0SIntCtxSw() 107, 289, 309, 319321, 325,
362—363, 366, 390—391, 396—399

0SIntEnter() 104—107, 308, 362, 365, 368,
397, 418, 521, 570

0SIntExit() 64, 104—107, 175, 239, 261, 297,
309, 321, 362, 366, 369, 396, 398, 420, 521,
570

0SIntExity 107

0SIntNesting 104—105, 107, 308, 362, 365,
368, 397—398, 570

0SLockNesting 96—97, 105, 107, 132, 570

0SMboxAccept () 229, 231, 236, 241242, 421,
521, 577

0SMboxCreate() 160, 229—232, 236, 422, 521,
577

0SMboxDeT () 230—232, 234—235, 423, 521, 577

0SMboxPend() 19, 80, 97, 229—231, 235—237,
244, 425, 521, 577

0SMboxPost () 105, 229—231, 237, 239, 244,
362, 397, 427, 517-518, 521, 577

0SMboxPost0Opt () 229-231, 238241, 362, 397,
429, 517518, 521, 577

0SMboxQuery () 229-231, 242, 244, 431, 521,
577578

OSMemCreate() 276—279, 433, 521, 581

O0SMemFreelist 275

0SMemGet () 277, 279, 285—286, 435, 521, 581

0SMemPut () 277, 280—281, 437, 521, 581

0SMemQuery () 277, 282—283, 439, 517, 521,
581

OSMutexAccept () 182, 184, 194195, 441, 517,
522, 575

O0SMutexCreate() 160, 181—184, 190, 193, 197,
443, 522, 575

0SMutexDel () 182, 184—185, 187, 445, 518,
522, 575

0SMutexPend() 80, 97, 181—182, 184, 188—191,
193, 447, 522, 575

O0SMutexPost () 182, 184, 191, 193, 449, 522,
575

O0SMutexQuery () 182, 184, 195, 197, 451, 518,
522, 575

0SPrioCur 115, 361, 363, 396, 399

0SPrioHighRdy 115, 361, 363, 396, 399

0SQAccept () 247—248, 258, 265—266, 453, 518,
522, 579

0SQCreate() 160, 247, 249, 251—-253, 454, 522,
579

0SQDel () 247—248, 253—256, 455, 518, 522,
579

0SQFTush() 247—248, 267—268, 457, 518, 522,
579

0SQPend() 80, 97, 247—248, 256—259, 262,
271, 458, 522, 579

0SQPost () 106, 247—248, 251, 259262, 271,
362, 397, 460, 518, 522, 579

0SQPostFront() 106, 247—248, 250, 261—262,
362, 397, 462, 518, 522, 579

0SQPostOpt() 247—248, 250251, 262, 265,
362, 397, 464, 518, 522, 579580

0SQQuery () 247—248, 268—270, 466, 519, 522,
579580

0SRdyGrp 88, 90, 113, 154

0SRdyTb1 90

0SRunning 115, 120, 123, 305, 570

0SSchedLock() 73, 96—97, 468, 521, 570

0SSchedUnlock() 52, 73, 96—98, 469, 521, 570

0SSemAccept () 165—167, 172, 175176, 470,
519, 522, 574

0SSemCreate() 4, 160, 165—168, 172, 174, 176,
471, 522, 574

0SSemDel () 165168, 472, 519, 522, 574

0SSemPend() 9, 53, 80, 97, 165—167, 171173,
200, 286, 474, 522, 574

0SSemPost () 9, 53, 106, 165—167, 173—175,
476, 522, 574

Index 601

0SSemQuery () 165—167, 176, 178, 478, 519,
522, 574

0SStart() 5, 79, 97, 99-100, 108, 114—115,
120, 123, 151, 286, 305—307, 315, 357, 364,
393, 480, 521, 570

0SStartHighRdy () 114—115, 289, 305—310,
315316, 318—319, 321, 326, 357—359, 390—
391, 393

0SStat Init() 99

0SStatlInit() 7, 99-101, 103, 481, 516, 521,
570

0SStatRdy 101, 103, 515

0STask StkInit 347

0STaskChangePrio() 79, 136—138, 482, 519,
522, 571

0STaskCreate() 4, 6, 13, 79, 100, 118—120,
124, 134, 298, 300301, 346, 349, 351, 353,
357, 384, 388, 483, 519, 522, 571

0STaskCreateExt() 10, 13—15, 20, 23, 29, 33,
79, 100, 118126, 128, 134, 298, 300301,
346, 348—349, 351, 353, 357, 377, 384, 388,
391, 487, 515, 519, 522, 571

0STaskCreateHook() 289, 297, 301, 327, 355,
383—384, 387—388, 401, 513, 523

0STaskCtr 115, 120, 123, 570

0STaskDel() 79, 129, 131—132, 134, 390, 493,
520, 522, 571

0STaskDeTHook () 132, 289, 297, 302, 328, 355,
383—384, 390, 513, 523

0STaskDeTReq() 132—135, 495, 522, 571

0STaskIdle() 99, 111, 297

0STaskIdleHook() 98, 289, 297, 303, 316—317,
329, 356, 383, 391, 513

0STaskQuery() 142—143, 497, 520, 522, 571—
572

0STaskResume() 131, 139, 141142, 362, 499,
520, 522, 571

0STaskStat() 29, 297, 515516

0STaskStatHook() 20, 29, 103, 289, 297, 302,
330, 356, 383, 392, 513, 515, 523

0STaskStkChk() 10, 13, 16—17, 125—128, 352,
500, 520, 522, 571572

0STaskStkInit() 119-120, 122—123, 289,
297—301, 305306, 308, 315—317, 331, 346—
348, 383—385

0STaskStkInit_FPE_x86() 13—15, 348—353

0STaskSuspend() 97—98, 110, 139140, 142,
502, 520, 522, 571

602 Index

0STaskSwHook () 20, 28—29, 289, 297, 302, 305,
307, 310, 333, 355, 358—361, 363, 383—384,
390391, 396, 398—399, 401—402, 513, 523

0STCBBitX 572

0STCBBitY 572

0STCBCur 29, 93—95, 115, 306, 360—361, 363,
394, 396, 398—399, 570

0STCBDelReq 572

0STCBD1y 110, 572

0STCBEventPtr 138, 572

0STCBExtPtr 301, 572

0STCBFlagNode 572

0STCBFlagsRdy 572

0STCBHighRdy 29, 93, 95, 115, 305, 361—363,
394, 396, 398—399, 570

0STCBId 572

0STCBInitHook() 289, 298, 303, 334, 357, 383,
393, 513

0STCBList 110, 113, 132

0STCBMsg 572

0STCBNext 572

0STCBOpt 572

OSTCBPrev 572

0STCBPrio 572

0STCBStat 142, 572

0STCBStkBottom 572

0STCBStkPtr 94—95, 572

0STCBStkSize 572

0STCBX 572

0STCBY 572

0STickDOSCtr 365, 383

0STickISR() 111, 289, 307, 319, 321, 335,
364—369, 399

0STime 151

0STimeDly() 9, 16, 25, 75, 80, 97, 145—149,
245246, 270, 294, 318—319, 370, 504, 515,
523, 573

0STimeD1yHMSM() 8, 16, 80, 97, 145, 148—150,
505, 516, 520, 523, 573

0STimeDlyResume() 145—146, 148, 150-151,
362, 507, 520, 523, 573

0STimeGet () 145, 151, 508, 520, 523, 573

0STimeSet () 145, 151, 509, 520, 523, 573

0STimeTick() xxii, 80, 108—110, 145—146,
163, 173, 191, 237, 259, 309, 321, 362, 366,
369, 510, 516, 523, 573

0STimeTickHook() 110, 289, 297, 303, 336,

356, 383, 392, 513, 523
OSVersion() 116, 512, 521, 570

P
partition

using 283—284
partitions 275276, 279—280, 285
PC services

See Chapter 18
PC.C 399
PC_DispChar() 533
PC_DispClrCol() 534
PC_DispClrRow() 535
PC_DispClrScr() 536
PC_DispStr() 6, 537
PC_DOSReturn() 5, 8, 539
PC_DOSSaveReturn() 4, 6, 364, 399, 540
PC_ETlapsedInit() 13, 541
PC_ElapsedStart() 13, 16, 29, 542
PC_ElapsedStop() 13, 16, 28, 544
PC_GetDateTime() 20, 545
PC_GetKey() 8, 546
PC_SetTickRate() 6, 369, 547
PC_VectGet() 548
PC_VectSet() 4, 6, 364, 549
Pinault, Nicolas 310
PIP 179, 181, 184, 190, 193, 197
porting 74

See Chapter 13

testing 310321

to Intel 80X86

See Chapter 14
See Chapter 15

preemptive multitasking xviii, Xxxi—xxii
prio 88
priority 45, 47, 49

assigning 48

dynamic 45

hard 48

inheritance 47

interrupt controller 365

inversion 4547

static 45

task 45, 48
priority inheritance priority

See PIP

processor 36
context 64
flags 342
independent code 287
specific code 287
startus word
See PSW
pseudocode 50, 107, 306, 365, 368
pseudo-register 348, 352
psp 119, 123
PSW 76—77, 9495, 293, 295—296
restoring 77
saving 77

Q

guantums 45
gueues xv—xvi, xxiii, xxv, 22, 26, 131, 138, 151,
154, 159, 204, 518519, 569

See Chapter 11
and data structures 249
as counting semaphores 271272
constants 247
creating 251—253
deleting 253—256
flushing 267—268
getting messages 265—266
management 579580
reading analog inputs 270
sending a message 259, 261265
status 268—270
waiting for messages 256—259

R

rate monotonic scheduling (RMS) 48
READY 37
ready list xxiv, 88—89, 132, 138
removing 90
ready to run 4142, 44, 64
real-timexvii—xviii, xxi—xxii, 35, 37, 39, 48—49,
71
deadlines 49
kerngl 71
summary of types 71—72

Index 603

Real-Time Operating System (RTOS) 71
development 71
maintenance 71
preemptive 71

reentrant xxiii, 43, 289, 345
code 339, 377
function 43—44

register xxv, 93, 305, 337, 347, 359, 396
code segment 339
CPU xxii, 93, 95, 104, 106—107, 287, 305,

308—309, 396
floating point 120, 384
genera purpose 94
processor 287, 300
saving values 93
stack segment 339

rendezvous 58

requirements
hard 48
soft 48

resource 37
shared 37

response 36

return
code 120, 123
from interrupt 41

royalties 71

RS-232C 54-55

RTCA DO-178B xv, xxiii

RTOS 364, 399

RUNNING 37

run-time 154

S
safety critical systems xv, xxiii
scheduler 40, 120, 132, 138, 140, 142
disabling 51-52
enabling 51-52
locking 51, 96
round-robin 45
task 90
time dlicing 45
unlocking 51, 96—97

604 Index

semaphore xv, Xxiii, xxv, 4, 9, 52-58, 71, 131— requirement 70
132, 138, 151, 154155, 159, 165, 172, 176— size xxii, 10, 12, 14, 125, 129
178, 204, 285, 519, 569 space 4, 10, 123, 126, 128
ACCEPT operation 62 static 123
binary xvi, xxv, 4, 52—53 task 123, 396
buffer management 55 usage 10, 71
constants 165 state transition 79
counting xvi, 52, 56 static priorities 45
CREATE operation statistic task 45, 22, 29
See semaphore INITIALIZE operation initializing 99—101
creating 166—168 status
deleting 168—171 registers 342
encapsulating 54 word 348
getting (non-blocking) 175—176 stk_size 120
hiding 54 strcpy () 23, 43
INITIALIZE operation 52 swap() 4344
management 165—178, 574 switch 68
See Chapter 7 synchronization 57
mutual exclusion 517 conjunctive 59
See mutex disunctive 59
PEND operation 62 system time 151
See semaphore WAIT operation obtaining 151
POST operation 62 setting 151
See semaphore S GNAL operation
SIGNAL operation 52
signaling 173 T
status 176—178 task 2, 21, 37, 39, 41, 4546, 48, 5253, 57, 60,
WAIT operation 52 73, 78, 124
waiting on 171-173 application 114
services 73 change priority 118
set_processor_psw() 77 communication 60
shared resource 37, 48, 52 context 94
silicon software 71 control block
sin() 33 Seealso 0S_TCB
sine 31 creating xxiv, 99, 118, 120-123, 126
sizeof() 352 delay 69
source code Xvii—xviii, Xxi—xxii delaying 68—69, 146, 148—150
stack xxii, 122, 347 deleting xxiv, 79, 118, 129, 131—-133
checking 15, 125—128 getting information 142—143
fragmentation 124 high priority 44, 110
frame 310, 358—359, 361, 364, 384, 395, identifier 14
397 idle xxiv, 2, 45, 2122, 29, 31, 98, 119,
growth 17, 119, 123, 127, 344 135, 140, 142
hardware 287 information 118
information 128 interuppted 132
initialization 299, 389 low-priority 44
normalization 353 making ready to run 88

pointer xxii, 127, 310, 362

Index 605

management xxiii, 117—143, 519, 569, 571— tick

572 DOS 6
mutex 182 initialization 108
priority xxiv, 3, 45, 48—49, 58, 64, 69, 80, interrupt 111, 321
106, 122, 126 ISR 108
changing 136—139 rate 6, 383
ready list 89—900 See also clock tick
removing 90 time
ready to run 113 constants 145
response 43, 72 critical work 110
resuming xxiv, 95, 118, 141-142, 150—151 delay 108
scheduling xxiv, 73 management xxiii, 145, 520, 569, 573
stack 12—13, 16, 104, 119, 123, 359, 396 See Chapter 5
states 79 measurement
ISR RUNNING 80 elapsed 531
TASK DORMANT 79 dlicing 45
TASK READY 79 source 108
TASK RUNNING 80 timeout 108, 154
TASK WAITING 80 timing diagram 68
static 140 TO utility 583—584
statistics 4-5, 22, 29, 98—99, 102 TRAP 306
suspending xxiv, 118, 138—141 TxMbox 19
switch 39 type definitions 292
synchronization 58
waiting 58
TASK DORMANT 79 U
TASK READY 79 uC0S_IT.H 88, 120, 126—127, 154—155, 176,
TASK RUNNING 80 242,514
TASK WAITING 80 unilateral rendezvous 57-58

TASK_STK_SIZE 12
TASK_USER_DATA 22

TaskC1k() 20, 26 Vv
tasks_waiting 187 variables
TaskStart() 4-8, 13—14, 23-25, 32, 99101 local 107
TaskStartCreateTasks() 7, 15, 25, 32—33 vector 4
TaskStartDisp() 8 CPU 105
TaskStartDispInit() 6—7, 15 VECTORS.C 311

TCB xxiv, 20, 23, 29, 81, 190—191, 193, 201, VGA monitors 526—527
213, 237, 259
TEST.C 311, 314, 316-318

TEST.LNK 34 W
TEST.MAK 34 wait list 156
teﬁ_—and-set 51 WAITING 37
testing web site

Go/No Go 316318 PC/OS- | xxvi
TestTask() 318-319, 321 Borland 1
threshold 284 Micrium 567

while 79

606 Index

Z

Zilog Z-80 132, 297

Embedded: <o

THE ONLY AUDITED MAGAZINE DEDICATED TO EMBEDDED DESIGN

Embedded Systems Programming

Embeddeasystems

information to the embedded Hoo Fi'tEI‘S

industry for over 13 years. Our
subscribers enjoy high-quality,

practical articles on microcon-

troller, embedded microprocessor, ' .)c++ on Low-End Micros
! Working with Watchdog

DSP and SoC-based development i i . Timers

month after month.

Internet Appliance Design
g Embedding SMTP
_User Interfage Anpoyances

The industry magazine since 1988.

CMP

United Business Media

Your embedded reference library!

Embedaedsystems

M I N G

CD-ROM Library 7.0

The Embedded Systems Programming CD-ROM Library Release 7.0
contains columns, features, news items, editorials, and source code
from the 1988 premiere issue through the December 2001 issue. This
time-saver contains a powerful text search engine and is a must-have
for veteran readers and for those new to Embedded Systems
Programming, the preeminent source of embedded development for
more than 13 years.

Features Include:

¢ Columns, features, and source code from the
premier 1988 issue through the December 2001 issue

® More than 800 articles—columns and features
¢ A powerful text search engine

¢ The entire 2002 Buyer’s Guide—more than
1,500 products covered in detail

e Code you can copy directly into your designs

e Windows, Unix, Linux, and Mac compatibility

¢ Past and present author biographies

e Links to updated information on www.embedded.com

$89.95 new

2 ways to order:

online
www.embedded.com

phone

(800) 444-4881 U.S./Canada
(785) 841-1631 other countries

www.embedded.com

United Business Media

Get the resource that delivers

PRACTICAL, RELIABLE, and USEFUL C/C++

programming information

PRACTICAL

C/C++ Users Journal
translates advanced
theory into

working

code month-after-month.
Each article discusses
issues of concern to
professional C/C++
programmers.

The only source
that devotes

12 issues a year
to C/C++ topics

like:

RELIABLE

C/C++ Users Journal is
always there, delivering
feature after feature filled
with advanced, useful
information you need. Each
issue brings you regular
columns written by some of
the most widely recognized
experts in the field.

e Algorithms
e Debugging
e Graphics

e Windows — . == USEFUL
; M e LTI C/C++ Users Journal

o "Eﬂ
- Titig brings you tools and

e Object-Oriented Pacing g m:u

Programming techniques you can use
now — tools that will
e Embedded make you more
Systems productive and make

your programs more

o Software Tools ;
reliable and useful.

o And More

1 'f | Special 8ﬂky
Book E%Eg ur
Buyer

Discount

E/ e Users Journal”

Advanced Solutions for C/C++ Programmers

P.0. Box 52582 www.cuj.com/sub
Boulder, CO 80322-2582 Discount key code: 2CAQ

(Orders outside the U.S. must prepay. Canada/Mexico: 1 year - $46. Outside North America: $65 U.S. Funds)

Why Do Serious Embedded
Developers Read Dr. Dobb’s Journal?

e
Dl‘ DO s Microcontrollers &
Cordic Methods

Short

'CTTN TESTIN _ Message [rFiF
Py & DEBU Services l'ﬂﬂ

Analysis D

3 — | Analytical

An Embeddable Computing

HTTP Server

Real-Time Debugging
& Wireless

Packetable
Security

« Unbiased coverage of ALL PLATFORMS and
Using [ALL LANGUAGES - embedded and native
Windows NT [o
Embedded

XML for snmn

Instrument |
Control and |8
Monitoring ="

+ Evaluations of language
implementations

Automated

; * In-depth articles Module Design
4 Streaming

Guidelines for Real-
Time Systems

Real-Time
Simulation

Protocol » Emerging and

advanced technologies

+ 360-degree perspectives of issues facing
today's serious programmer

I)
Wireless ””“‘% + Stimulating columns
WEB

Networking &
Berkeley DB SEnvas

Balancing Network

LEERIELITEY, - Hardware, software,
Synthesis & & where they meet!
Embedded Apps

! Load with Priority
Queues

ActiveX Controls -ﬁh_DBBE_%T;W
o r— [0 for Embedded l“lmﬂm
Tamnone s o mSTmB“TEn Visual Basic [ttt 8 oo 0s

Embedded :
Systems zgiuﬂ! Programming Memory Leak
Mobile Phones s Detection

‘Simplyin Distribated Dsveiopnent

In each issue, serious developers depend on Dr. Dobb's Journal for an environment that is relevant,
exciting and helpful to their jobs of creating unique and powerful software programs.

If your job demands a knowledge of emerging or advanced software technologies and tools, regardless
of language or platform, embedded or native, you need to add Dr. Dobb’s Journal to your toolbox.

To subscribe online using your

special embedded rate, go to: ST
www.ddj.com/sub/ DrDobbge==
and type code: 2DCK [J 0 U R N A I |

CMP

United Business Media

Embedded Systems

Embdded Sytems

Firmware Firmware Demystified
Demystified

v Uredersiand suverzal
Al

by Ed Sutter

Explore firmware development from cold-
boot to network-boot. Investigate CPU-to-
periphera interfaces. Write a powerful CLI,
- flash drivers, a flash file system, and a TFTP
sl Client/server. The CD-ROM includes a cross-
compilation toolset for 21 processors and
source for an extensible firmware development
platform. CD-ROM included, 366pp,
ISBN 1-57820-099-7, $49.95

Embedded Systems Design
A Step-by-Step Guide

by Arnold S. Berger A—Etep-hir-ﬁ;p
Develop embedded systems from the ::il.'gnm;““"wm"
ground up! This primer teaches the N s
specialized aspects of writing software in —

this environment that are not covered in

standard coursework for software AEHOLD & BERGER

devel opersand electrical engineers. Ittraces
the software and hardware methodologies
and the integration of the two disciplines.
236pp, ISBN 1-57820-073-3, $34.95

Find CMP Books in your local bookstore.

Order direct 800-500-6875 e-mail: books@cmp.com C M PBOOkS

fax 408-848-5784 www.cmpbooks.com

TCPI/IP Lean

Web Servers for Embedded Systems TCP/IP LEAH

Second Edition SEOBKD EBITIM
Wab Servers for

Embesdded 5_\541.-:-

by Jeremy Bentham

+ Untiernlarel e b

Implement dynamic Web programming "’*"ﬁ"’"’"‘

techniques with this hands-on guide to
TCP/IP networking. You get source code
and fully-functional utilities for a simple
TCP/IP stack that's efficient to use in
embedded applications. This edition shows
the Web server porting to the PIC16F877 chip
as well as over an ethernet connection.
Includes a demonstration port running on Microchip’s PICDEM.net
demonstration board. CD-ROM included, 559pp, ISBN 1-57820-108-X,
$59.95

:Jr-_- my hnlh-

Practical Practical Statecharts
Statecharts B

in ++ An Introduction to Quantum Programming

v gy Ty W e R

by Miro Samek

B nthe spirit of eXtreme programming, the
author’s quantum programming is a light-
weight method that allows programmers to
quickly hand-code working, real-time systems
in C and C++ directly from UML statecharts.
You get a cookbook with step-by-step in-
structions and complete source code to the
state-oriented framework. CD-ROM included,

265pp, ISBN 1-57820-110-1, $44.95

Hird Sauiak, Fh |}

Find CMP Books in your local bookstore.

Order direct 800-500-6875 e-mail: books@cmp.com C M PBOOkS

fax 408-848-5784 www.cmpbooks.com

Embedded Systems Building Blocks
Second Edition = _ . "
Ehedded Systems

by Jean J. Labrosse wmﬂﬂi
: S
et Editinn,

Complete and Ready-to-Use :

e B —
Complete - B
and Ready-to-Use § A\

Modules in C " JEAN 1. PA"{:[pisE s

You get microcontroller theory and functional code
modules that can be used to create basic embedded
system functions. Hands-on exercises that employ the real -
time system modules provided by the author demonstrate
the key concepts unique to embedded systems and real -
time kernels. This second edition features a new chapter
on PC Services and uses the updated MicroC/OS- 1.

Hardcover, CD-ROM included, 611pp,
ISBN 0-87930-604-1, $69.95

Find CMP Books in your local bookstore.

Order direct 800-500-6875 e-mail: books@cmp.com C M PBOOkS

fax 408-848-5784 www.cmpbooks.com

What's on the CD-ROM?

The companion CD-ROM for MicroC/OS 11, Second Edition, contains all the source code for uC/OS-I1
and ports for the Intel 80x86 processor running in real mode and for the large model. The code was
developed and executed on a PC running Microsoft Windows 2000, therefore it is assumed that you
have a Microsoft Windows 95, 98, NT, 2000, or XP computer system, running on an 80x86, and Pen-
tium-class, or AMD, processor. You should have at least 10MB of free disk spaceto install uC/OS-11 and
its source files on your system. Examples run in a DOS-compatible box under these environments.
Development was done using the Borland International C/C++ compiler v4.51. Although pC/OS-11 was
developed and tested on a PC, uC/OS-I1 was actually targeted for embedded systems and can be ported
easily to many different processor architectures.

The CD-ROM contains a self-extracting executable called uC0SV252.EXE as well as all files so that
you can browse the CD without having to install anything on your computer.

For moreinformation on installation or specific filesand directories on the CD,
see Appendix F.

	MicroC/OS-II
	The Real-Time Kernel
	Second Edition
	Jean J. Labrosse
	CMP Books Lawrence, Kansas 66046

	CMP Books CMP Media LLC 1601 West 23rd Street, Suite 200 Lawrence, Kansas 66046 USA www.cmpbooks.com
	To my loving and caring wife, Manon, and to our two lovely children, James and Sabrina.
	Table of Contents
	Preface xv
	Introduction xxi
	Chapter 1 Getting Started with µC/OS-II 1
	Chapter 2 Real-time Systems Concepts 35
	Chapter 3 Kernel Structure 73
	Chapter 4 Task Management 117
	Chapter 5 Time Management 145
	Chapter 6 Event Control Blocks 153
	Chapter 7 Semaphore Management 165
	Chapter 8 Mutual Exclusion Semaphores 179
	Chapter 9 Event Flag Management 199
	Chapter 10 Message Mailbox Management 229
	Chapter 11 Message Queue Management 247
	Chapter 12 Memory Management 273
	Chapter 13 Porting µC/OS-II 287
	Chapter 14 80x86 Port 337
	Real Mode, Large Model with Emulated Floating-Point Support

	Chapter 15 80x86 Port 377
	Real Mode, Large Model with Hardware Floating-Point Support

	Chapter 16 µC/OS-II Reference Manual 405
	Chapter 17 µC/OS-II Configuration Manual 513
	Chapter 18 PC Services 525

	Appendix A C Coding Conventions 551
	Appendix B Licensing Policy for µC/OS-II 567
	Appendix C µC/OS-II Quick Reference 569
	Appendix D TO Utility 583
	Appendix E Bibliography 585
	Appendix F Companion CD 587
	Index 593
	What’s on the CD-ROM? 614
	Preface
	Meets the Requirements of Safety-Critical Systems
	What’s New in this Edition?
	More Chapters
	Removed Chapters
	Removed Code Listings
	Additional Services
	More Examples
	New Structure

	µC/OS-II Goals
	Intended Audience
	What You Need to Use µC/OS-II
	The µC/OS Story
	Acknowledgments

	Introduction
	µC/OS-II Features
	Source Code
	Portable
	ROMable
	Scalable
	Preemptive
	Multitasking
	Deterministic
	Task Stacks
	Services
	Interrupt Management
	Robust and Reliable

	Figures, Listings, and Tables
	Chapter Contents
	Chapter 1, Getting Started with µC/OS-II
	Chapter 2, Real-time Systems Concepts
	Chapter 3, Kernel Structure
	Figure I.1 Book layout and flow.

	Chapter 4, Task Management
	Chapter 5, Time Management
	Chapter 6, Event Control Blocks
	Chapter 7, Semaphore Management
	Chapter 8, Mutual Exclusion Semaphores
	Chapter 9, Event Flag Management
	Chapter 10, Message Mailbox Management
	Chapter 11, Message Queue Management
	Chapter 12, Memory Management
	Chapter 13, Porting µC/OS-II
	Chapter 14, 80x86 Port Real Mode, Large Model with Emulated Floating-Point Support
	Chapter 15, 80x86 Port Real Mode, Large Model with Hardware Floating-Point Support
	Chapter 16, µC/OS-II Reference Manual
	Chapter 17, µC/OS-II Configuration Manual
	Chapter 18, PC Services
	Appendix A, C Coding Conventions
	Appendix B, Licensing Policy for µC/OS-II
	Appendix C, µC/OS-II Quick Reference
	Appendix D, TO Utility
	Appendix E, Bibliography
	Appendix F, Companion CD

	µC/OS-II Web Site

	Chapter 1
	Getting Started with µC/OS-II
	1.00 Installing µC/OS-II
	1.01 Example #1
	Figure 1.1 Example #1 running in a DOS window.
	Listing 1.1 Example #1, TEST.C.�
	Listing 1.2 Example #1, TEST.C, main().�
	Listing 1.3 Example #1, TEST.C, TaskStart().�
	Figure 1.2 Initialization of the display byTaskStartDispInit().

	Listing 1.4 Example #1, TEST.C, TaskStartCreateTasks().�
	Listing 1.5 Example #1, TEST.C, Task().�

	1.02 Example #2
	Figure 1.3 Example #2 running in a DOS window.
	Listing 1.6 Example #2, TEST.C.�
	Listing 1.7 Example #2, TEST.C, main().�
	Listing 1.8 Example #2, TEST.C, TaskStart().�
	Figure 1.4 Initialization of the display byTaskStartDispInit().

	Listing 1.9 Example #2, TEST.C, Task1().�
	Listing 1.10 Example #2, TEST.C, Task2() and Task3().�
	Listing 1.11 Example #2, TEST.C, Task4() and Task5().�
	Listing 1.12 Example #2, TEST.C, TaskClk().�

	1.03 Example #3
	Figure 1.5 Example #3 running in a DOS window.
	Listing 1.13 Example #3, TEST.C.�
	Listing 1.14 Example #3, TEST.C, main().�
	Listing 1.15 Example #3, TEST.C, TaskStart().�
	Listing 1.16 Example #3, TEST.C, Task1() through Task4().�
	Listing 1.17 µC/OS-II’s hooks.�
	Listing 1.18 Example #3, TEST.C, empty hook functions.�
	Listing 1.19 The task switch hook, OSTaskSwHook().
	Listing 1.20 The statistic task hook, OSTaskStatHook().�

	1.04 Example #4
	Figure 1.6 Example #4 running in a DOS window.
	Listing 1.21 Example #4, TEST.C, TaskStartCreateTasks().
	Listing 1.22 Example #4, TEST.C, Task().�

	Chapter 2
	Real-time Systems Concepts
	2.00 Foreground/Background Systems
	Figure 2.1 Foreground/background systems.

	2.01 Critical Sections of Code
	2.02 Resources
	2.03 Shared Resources
	2.04 Multitasking
	2.05 Tasks
	Figure 2.2 Multiple tasks.
	Figure 2.3 Task states.

	2.06 Context Switches (or Task Switches)
	2.07 Kernels
	2.08 Schedulers
	2.09 Non-Preemptive Kernels
	Figure 2.4 Non-preemptive kernel.

	2.10 Preemptive Kernels
	Figure 2.5 Preemptive kernel.

	2.11 Reentrant Functions
	Listing 2.1 Reentrant function.
	Listing 2.2 Non-reentrant function.�
	Figure 2.6 Non-reentrant function.

	2.12 Round-Robin Scheduling
	2.13 Task Priorities
	2.14 Static Priorities
	2.15 Dynamic Priorities
	2.16 Priority Inversions
	Figure 2.7 Priority inversion problem.
	Figure 2.8 Kernel that supports priority inheritance.

	2.17 Assigning Task Priorities
	[2.1]
	Figure 2.9 Assigning task priorities based on task execution rate.

	2.18 Mutual Exclusion
	Table 2.1 Allowable CPU use based on number of tasks.
	2.18.01 Disabling and Enabling Interrupts

	Listing 2.3 Disabling and enabling interrupts.
	Listing 2.4 Using µC/OS-II macros to disable and enable interrupts.
	2.18.02 Test-and-Set Operations

	Listing 2.5 Using test-and-set to access a resource.
	2.18.03 Disabling and Enabling the Scheduler

	Listing 2.6 Accessing shared data by disabling and enabling scheduling.
	2.18.04 Semaphores

	Listing 2.7 Accessing shared data by obtaining a semaphore.�
	Figure 2.10 Using a semaphore to get permission to access a printer.

	Listing 2.8 Encapsulating a semaphore.
	Figure 2.11 Hiding a semaphore from tasks.

	Listing 2.9 Buffer management using a semaphore.�
	Figure 2.12 Using a counting semaphore.

	2.19 Deadlock (or Deadly Embrace)
	2.20 Synchronization
	Figure 2.13 Synchronizing tasks and ISRs.
	Figure 2.14 Tasks synchronizing their activities.
	Listing 2.10 Bilateral rendezvous.�

	2.21 Event Flags
	Figure 2.15 Disjunctive and conjunctive synchronization.

	2.22 Intertask Communication
	Figure 2.16 Event flags.

	2.23 Message Mailboxes
	Figure 2.17 Message mailbox.

	2.24 Message Queues
	Figure 2.18 Message queue.

	2.25 Interrupts
	2.26 Interrupt Latency
	[2.2] Maximum amount of time interrupts are disabled + Time to start executing the first instruct...
	Figure 2.19 Interrupt nesting.

	2.27 Interrupt Response
	[2.3] Interrupt latency + Time to save the CPU’s context
	[2.4] Interrupt latency + Time to save the CPU’s context
	[2.5] Interrupt latency + Time to save the CPU’s context + Execution time of the kernel ISR entry...

	2.28 Interrupt Recovery
	[2.6] Time to restore the CPU’s context + Time to execute the return from interrupt instruction
	[2.7] Time to restore the CPU’s context + Time to execute the return from interrupt instruction
	[2.8] Time to determine if a higher priority task is ready + Time to restore the CPU’s context of...

	2.29 Interrupt Latency, Response, and Recovery
	Figure 2.20 Interrupt latency, response, and recovery (foreground/background).
	Figure 2.21 Interrupt latency, response, and recovery (non-preemptive kernel).
	Figure 2.22 Interrupt latency, response, and recovery (preemptive kernel).

	2.30 ISR Processing Time
	2.31 Nonmaskable Interrupts
	[2.9] Interrupt Latency = Time to execute longest instruction + Time to start executing the NMI ISR
	[2.10] Interrupt Response = Interrupt latency + Time to save the CPU’s context
	[2.11] Interrupt Recovery = Time to restore the CPU’s context + Time to execute the return from i...
	Figure 2.23 Disabling nonmaskable interrupts.
	Figure 2.24 Signaling a task from a nonmaskable interrupt.

	2.32 Clock Tick
	Figure 2.25 Delaying a task for one tick (Case 1).
	Figure 2.26 Delaying a task for one tick (Case 2).
	Figure 2.27 Delaying a task for one tick (Case 3).

	2.33 Memory Requirements
	[2.12] Application code size + Kernel code size
	[2.13] Application code requirements + Data space (i.e., RAM) needed by the kernel itself + SUM(t...
	[2.14] Application code requirements + Data space (i.e., RAM) needed by the kernel + SUM(task sta...

	2.34 Advantages and Disadvantages of Real-Time Kernels
	2.35 Real-Time Systems Summary
	Table 2.2 Real-time systems summary.�

	Chapter 3
	Kernel Structure
	Table 3.1 Core services configuration constants in OS_CFG.H.�
	3.00 Critical Sections, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()
	Figure 3.1 µC/OS-II file structure.
	OS_CRITICAL_METHOD == 1
	OS_CRITICAL_METHOD == 2
	OS_CRITICAL_METHOD == 3
	Listing 3.1 Saving and restoring the PSW.�

	3.01 Tasks
	Listing 3.2 A task is an infinite loop.�
	Listing 3.3 A task that deletes itself when done.

	3.02 Task States
	Figure 3.2 Task states.

	3.03 Task Control Blocks (OS_TCB)
	Listing 3.4 The µC/OS-II task control block.�
	Listing 3.5 Calculating OS_TCB members.
	Figure 3.3 List of free OS_TCBs.

	Listing 3.6 OS_TCBInit().�

	3.04 Ready List
	Listing 3.7 Making a task ready to run.�
	Figure 3.4 The µC/OS-II ready list.

	Table 3.2 Contents of OSMapTbl[].
	Listing 3.8 Removing a task from the ready list.
	Listing 3.9 Finding the highest priority task ready to run.

	3.05 Task Scheduling
	Figure 3.5 Finding the highest priority task ready to run.
	Listing 3.10 Task scheduler.�

	3.06 Task Level Context Switch, OS_TASK_SW()
	Figure 3.6 µC/OS-II structures when OS_TASK_SW() is called.
	Figure 3.7 Saving the current task’s context.
	Figure 3.8 Resuming the current task.
	Listing 3.11 Context-switch pseudocode.

	3.07 Locking and Unlocking the Scheduler
	Listing 3.12 Locking the scheduler.
	Listing 3.13 Unlocking the scheduler.�

	3.08 Idle Task
	Listing 3.14 The µC/OS-II idle task.

	3.09 Statistics Task
	Listing 3.15 Initializing the statistic task.�
	Figure 3.9 Statistic task initialization.

	Listing 3.16 Initializing the statistic task.�
	Listing 3.17 Statistics task.�
	[3.1]
	[3.2]
	[3.3]

	3.10 Interrupts Under µC/OS-II
	Listing 3.18 ISRs under µC/OS-II.
	Figure 3.10 Servicing an interrupt.

	Listing 3.19 Notify µC/OS-II about beginning an ISR.
	Listing 3.20 Notify µC/OS-II about leaving an ISR.�
	Listing 3.21 ISRs on a Motorola 68HC11.

	3.11 Clock Tick
	Listing 3.22 Incorrect way to start the ticker.
	Listing 3.23 Pseudocode for tick ISR.�
	Listing 3.24 Service a tick, OSTimeTick().�
	Listing 3.25 Service a tick, TickTask().
	Listing 3.26 Service a tick, OSTickISR().

	3.12 µC/OS-II Initialization
	Figure 3.11 Variables and data structures after calling OSInit().
	Figure 3.12 Free pools.

	3.13 Starting µC/OS-II
	Listing 3.27 Initializing and starting µC/OS-II.�
	Listing 3.28 Starting multitasking.
	Figure 3.13 Variables and data structures after calling OSStart().

	3.14 Obtaining the Current µC/OS-II Version
	Listing 3.29 Getting the current µC/OS-II version.

	Chapter 4
	Task Management
	4.00 Creating a Task, OSTaskCreate()
	Listing 4.1 OSTaskCreate().�

	4.01 Creating a Task, OSTaskCreateExt()
	Listing 4.2 OSTaskCreateExt().�

	4.02 Task Stacks
	Listing 4.3 Static stack.
	Listing 4.4 Static stack.
	Listing 4.5 Using malloc() to allocate stack space for a task.
	Figure 4.1 Fragmentation.

	Listing 4.6 Stack grows from low to high memory.
	Listing 4.7 Stack grows from high to low memory.
	Listing 4.8 Supporting stacks that grow in either direction.

	4.03 Stack Checking, OSTaskStkChk()
	Figure 4.2 Stack checking.
	Listing 4.9 Stack-checking function.�

	4.04 Deleting a Task, OSTaskDel()
	Listing 4.10 Task delete.�

	4.05 Requesting to Delete a Task, OSTaskDelReq()
	Listing 4.11 Requester code requesting a task to delete itself.
	Listing 4.12 Task requesting to delete itself.�
	Listing 4.13 OSTaskDelReq().�

	4.06 Changing a Task’s Priority,OSTaskChangePrio()
	Listing 4.14 OSTaskChangePrio().�

	4.07 Suspending a Task, OSTaskSuspend()
	Listing 4.15 OSTaskSuspend().�

	4.08 Resuming a Task, OSTaskResume()
	Listing 4.16 OSTaskResume().�

	4.09 Getting Information about a Task, OSTaskQuery()
	Listing 4.17 Obtaining information about a task.�
	Listing 4.18 OSTaskQuery().�

	Chapter 5
	Time Management
	Table 5.1 Time management configuration constants in OS_CFG.H.
	5.00 Delaying a Task, OSTimeDly()
	Listing 5.1 OSTimeDly().�
	Figure 5.1 Delay resolution.

	5.01 Delaying a Task, OSTimeDlyHMSM()
	Listing 5.2 OSTimeDlyHMSM().�

	5.02 Resuming a Delayed Task,OSTimeDlyResume()
	Listing 5.3 Resuming a delayed task.�

	5.03 System Time, OSTimeGet() and OSTimeSet()
	Listing 5.4 Obtaining and setting the system time.�

	Chapter 6
	Event Control Blocks
	Figure 6.1 Use of event control blocks.
	Listing 6.1 Event control block data structure.
	.OSEventType
	.OSEventPtr
	.OSEventTbl[] and .OSEventGrp
	.OSEventCnt
	Figure 6.2 Event Control Block (ECB).
	Figure 6.3 Wait list for task waiting for an event to occur.

	6.00 Placing a Task in the ECB Wait List
	Listing 6.2 Making a task wait for an event.
	Table 6.1 Content of OSMapTbl[].

	6.01 Removing a Task from an ECB Wait List
	Listing 6.3 Removing a task from a wait list.

	6.02 Finding the Highest Priority Task Waiting on an ECB
	Listing 6.4 Finding the highest priority task waiting for the event.
	Listing 6.5 OSUnMapTbl[].
	Figure 6.4 Example of ECB wait list.

	6.03 List of Free ECBs
	Figure 6.5 List of free ECBs.

	6.04 Initializing an ECB, OS_EventWaitListInit()
	Listing 6.6 Initializing the wait list.�

	6.05 Making a Task Ready, OS_EventTaskRdy()
	Listing 6.7 Making a task ready to run.�

	6.06 Making a Task Wait for an Event, OS_EventTaskWait()
	Listing 6.8 Making a task wait on an ECB.�

	6.07 Making a Task Ready Because of a Timeout, OS_EventTO()
	Listing 6.9 Making a task ready because of a timeout.

	Chapter 7
	Semaphore Management
	Table 7.1 Semaphore configuration constants in OS_CFG.H.
	Figure 7.1 Relationships between tasks, ISRs, and a semaphore.

	7.00 Creating a Semaphore, OSSemCreate()
	Listing 7.1 Creating a semaphore.�
	Figure 7.2 ECB just before OSSemCreate() returns.

	7.01 Deleting a Semaphore, OSSemDel()
	Listing 7.2 Deleting a semaphore.�

	7.02 Waiting on a Semaphore (Blocking), OSSemPend()
	Listing 7.3 Waiting on a semaphore.�

	7.03 Signaling a Semaphore, OSSemPost()
	Listing 7.4 Signaling a semaphore.�

	7.04 Getting a Semaphore Without Waiting (Non-blocking), OSSemAccept()
	Listing 7.5 Getting a semaphore without waiting.

	7.05 Obtaining the Status of a Semaphore, OSSemQuery()
	Listing 7.6 Obtaining the status of a semaphore.�

	Chapter 8
	Mutual Exclusion Semaphores
	Listing 8.1 Mutex use example.�
	Table 8.1 Mutex configuration constants in OS_CFG.H.
	Figure 8.1 Relationship between tasks and a mutex.

	8.00 Creating a Mutex, OSMutexCreate()
	Listing 8.2 Creating a mutex.�
	Figure 8.2 ECB just before OSMutexCreate() returns.

	8.01 Deleting a Mutex, OSMutexDel()
	Listing 8.3 Deleting a mutex.�

	8.02 Waiting on a Mutex (Blocking), OSMutexPend()
	Listing 8.4 Waiting for a mutex.�

	8.03 Signaling a Mutex, OSMutexPost()
	Listing 8.5 Signaling a mutex.�

	8.04 Getting a Mutex without Waiting (Non-blocking), OSMutexAccept()
	Listing 8.6 Getting a mutex without waiting.�

	8.05 Obtaining the Status of a Mutex, OSMutexQuery()
	Listing 8.7 Obtaining the status of a mutex.�

	Chapter 9
	Event Flag Management
	Table 9.1 Event flag configuration constants in OS_CFG.H.
	Figure 9.1 µC/OS-II event flag services.

	9.00 Event Flag Internals
	Listing 9.1 Event flag group data structure.
	Figure 9.2 Relationship between event flag group, event flag nodes, and TCBs.

	Listing 9.2 Event flag group node data structure.

	9.01 Creating an Event Flag Group, OSFlagCreate()
	Listing 9.3 Creating an event flag group.
	Figure 9.3 Event flag group just before OSFlagCreate() returns.

	9.02 Deleting an Event Flag Group, OSFlagDel()
	Listing 9.4 Deleting an event flag group.�

	9.03 Waiting for Event(s) of an Event Flag Group, OSFlagPend()
	Listing 9.5 Waiting for event(s) of an event flag group.�
	1. wait for all bits specified to be set in the event flag group,
	2. wait for any bit specified to be set in the event flag group,
	3. wait for all bits specified to be cleared in the event flag group,
	4. wait for any bit specified to be cleared in the event flag group.

	Listing 9.6 Adding a task to the event flag group wait list.
	Figure 9.4 Adding the current task to the wait list of the event flag group.

	9.04 Setting or Clearing Event(s) in an Event Flag Group, OSFlagPost()
	Listing 9.7 Setting or clearing bits (i.e., events) in an event flag group.�
	1. all of the bits specified in the PEND call to be set.
	2. any of the bits specified in the PEND call to be set.
	3. all of the bits specified in the PEND call to be cleared.
	4. any of the bits specified in the PEND call to be cleared.

	Listing 9.8 Make a waiting task ready to run.�
	Listing 9.9 Unlinking an OS_FLAG_NODE.�
	Figure 9.5 Removing an OS_FLAG_NODE from the wait list.
	Figure 9.6 Removing an OS_FLAG_NODE from the wait list, Case A.
	Figure 9.7 Removing an OS_FLAG_NODE from the wait list, Case B.
	Figure 9.8 Removing an OS_FLAG_NODE from the wait list, Case C.
	Figure 9.9 Removing an OS_FLAG_NODE from the wait list, Case D.

	9.05 Looking for Event(s) of an Event Flag Group, OSFlagAccept()
	1. OSFlagAccept() can be called from an ISR, unlike some of the other calls.
	2. If the conditions are not met, the call does not block and simply returns an error code that t...
	Listing 9.10 Looking for event flags without waiting.�

	9.06 Querying an Event Flag Group, OSFlagQuery()
	Listing 9.11 Obtaining the current flags of an event flag group.

	Chapter 10
	Message Mailbox Management
	Table 10.1 Mailbox configuration constants in OS_CFG.H.
	Figure 10.1 Relationships between tasks, ISRs, and a message mailbox.

	10.00 Creating a Mailbox, OSMboxCreate()
	Listing 10.1 Creating a mailbox.�
	Figure 10.2 ECB just before OSMboxCreate() returns.

	10.01 Deleting a Mailbox, OSMboxDel()
	Listing 10.2 Deleting a mailbox.�

	10.02 Waiting for a Message at a Mailbox, OSMboxPend()
	Listing 10.3 Waiting for a message at a mailbox (blocking), OSMboxPend().�

	10.03 Sending a Message to a Mailbox, OSMboxPost()
	Listing 10.4 Posting a message to a mailbox, OSMboxPost().�

	10.04 Sending a Message to a Mailbox, OSMboxPostOpt()
	Listing 10.5 Posting a message to a mailbox, OSMboxPostOpt().�

	10.05 Getting a Message without Waiting (Non-blocking), OSMboxAccept()
	Listing 10.6 Getting a message without waiting.�

	10.06 Obtaining the Status of a Mailbox, OSMboxQuery()
	Listing 10.7 Obtaining the status of a mailbox.�

	10.07 Using a Mailbox as a Binary Semaphore
	Listing 10.8 Using a mailbox as a binary semaphore.�

	10.08 Using a Mailbox Instead of OSTimeDly()
	Listing 10.9 Using a mailbox as a time delay.�

	Chapter 11
	Message Queue Management
	Table 11.1 Message queue configuration constants in OS_CFG.H.
	Figure 11.1 Relationships between tasks, ISRs, and a message queue.
	Figure 11.2 Data structures used in a message queue.
	Figure 11.3 List of free queue control blocks.
	Figure 11.4 A message queue as a circular buffer of pointers.

	11.00 Creating a Message Queue, OSQCreate()
	Listing 11.1 Creating a message queue.�

	11.01 Deleting a Message Queue, OSQDel()
	Listing 11.2 Deleting a message queue.�

	11.02 Waiting for a Message at a Queue (Blocking), OSQPend()
	Listing 11.3 Waiting for a message to arrive at a queue.�

	11.03 Sending a Message to a Queue (FIFO), OSQPost()
	Listing 11.4 Depositing a message in a queue (FIFO), OSQPost().�

	11.04 Sending a Message to a Queue (LIFO), OSQPostFront()
	Listing 11.5 Depositing a message in a queue (LIFO), OSQPostFront().�

	11.05 Sending a Message to a Queue (FIFO or LIFO), OSQPostOpt()
	Listing 11.6 Depositing a message in a queue (Broadcast, FIFO, or LIFO), OSQPostOpt().�

	11.06 Getting a Message Without Waiting, OSQAccept()
	Listing 11.7 Getting a message without waiting (non-blocking), OSQAccept().�

	11.07 Flushing a Queue, OSQFlush()
	Listing 11.8 Flushing the contents of a queue.�

	11.08 Obtaining the Status of a Queue, OSQQuery()
	Listing 11.9 Obtaining the status of a queue.�

	11.09 Using a Message Queue When Reading Analog Inputs
	Figure 11.5 Reading analog inputs.

	11.10 Using a Queue as a Counting Semaphore
	Listing 11.10 Using a queue as a counting semaphore.�

	Chapter 12
	Memory Management
	Table 12.1 Memory management configuration constants in OS_CFG.H.
	12.00 Memory Control Blocks
	Listing 12.1 Memory control block data structure.
	Figure 12.1 Memory partition.
	Figure 12.2 Multiple memory partitions.
	Figure 12.3 List of free memory control blocks.

	12.01 Creating a Partition, OSMemCreate()
	Listing 12.2 Creating a memory partition.
	Listing 12.3 OSMemCreate()�.
	Figure 12.4 Memory partition created by OSMemCreate().

	12.02 Obtaining a Memory Block, OSMemGet()
	Listing 12.4 OSMemGet().�

	12.03 Returning a Memory Block, OSMemPut()
	Listing 12.5 OSMemPut().�

	12.04 Obtaining Status of a Memory Partition, OSMemQuery()
	Listing 12.6 Data structure used to obtain status from a partition.�
	Listing 12.7 OSMemQuery().

	12.05 Using Memory Partitions
	Figure 12.5 Using dynamic memory allocation.
	Listing 12.8 Scanning analog inputs and reporting errors.�

	12.06 Waiting for Memory Blocks from a Partition
	Listing 12.9 Waiting for memory blocks from a partition.�

	Chapter 13
	Porting µC/OS-II
	1. The processor has a C compiler that generates reentrant code.
	2. The processor supports interrupts and can provide an interrupt that occurs at regular interval...
	3. Interrupts can be disabled and enabled from C.
	4. The processor supports a hardware stack that can accommodate a fair amount of data (possibly m...
	5. The processor has instructions to load and store the stack pointer and other CPU registers, ei...
	Figure 13.1 µC/OS-II hardware/software architecture.
	Table 13.1 Port summary.�
	13.00 Development Tools
	13.01 Directories and Files
	Table 13.2 Examples of port directories.�

	13.02 INCLUDES.H
	13.03 OS_CPU.H
	Listing 13.1 OS_CPU.H.�
	13.03.01 Compiler-Specific Data Types
	13.03.02 OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()

	Listing 13.2 Use of critical section.�
	OS_CRITICAL_METHOD == 1

	Listing 13.3 Critical method #1.
	OS_CRITICAL_METHOD == 2

	Listing 13.4 Critical method #2.
	OS_CRITICAL_METHOD == 3

	Listing 13.5 Saving and restoring the PSW.�
	Listing 13.6 Critical method #3.
	13.03.03 OS_STK_GROWTH
	13.03.04 OS_TASK_SW()

	Listing 13.7 Critical method #3.

	13.04 OS_CPU_C.C
	13.04.01 OSTaskStkInit()
	Listing 13.8 Pseudocode for OSTaskStkInit().�
	Listing 13.9 Function prototypes.�
	Figure 13.2 Stack-frame initialization with pdata passed to the stack.

	Listing 13.10 Task code.
	Figure 13.3 Stack frame initialization with pdata passed in register.
	13.04.02 OSTaskCreateHook()
	13.04.03 OSTaskDelHook()
	13.04.04 OSTaskSwHook()
	13.04.05 OSTaskStatHook()
	13.04.06 OSTimeTickHook()
	13.04.07 OSTCBInitHook()
	13.04.08 OSTaskIdleHook()

	Listing 13.11 Use of OSTaskIdleHook().
	13.04.09 OSInitHookBegin()
	13.04.10 OSInitHookEnd()

	13.05 OS_CPU_A.ASM
	13.05.01 OSStartHighRdy()
	Listing 13.12 Pseudocode for OSStartHighRdy().
	13.05.02 OSCtxSw()

	Listing 13.13 Pseudocode for OSCtxSw().�
	13.05.03 OSTickISR()

	Listing 13.14 Incorrect place to start the tick interrupt.
	Listing 13.15 Pseudocode for tick ISR.
	13.05.04 OSIntCtxSw()

	Listing 13.16 Pseudocode for OSIntCtxSw() for v2.51 and higher.�
	Listing 13.17 Pseudocode for OSIntCtxSw() prior to v2.51.

	13.06 Testing a Port
	13.06.01 Ensure that the Code Compiles, Assembles, and Links
	Table 13.3 Files needed to test a port.
	Listing 13.18 Typical INCLUDES.H.
	Listing 13.19 OS_CFG.H that enables all µC/OS-II features.�
	Listing 13.20 Minimal TEST.C for step #1.
	13.06.02 Verify OSTaskStkInit() and OSStartHighRdy()
	Testing with a Source Level Debugger

	Listing 13.21 OSStart().�
	Go/No Go Testing

	Listing 13.22 Modifying main() in TEST.C.
	Listing 13.23 Modifying OSTaskIdleHook() in OS_CPU_C.C.
	13.06.03 Verify OSCtxSw()
	Testing with a Source-Level Debugger

	Listing 13.24 Testing OSCtxSw() using a debugger.
	Go/No Go Testing

	Listing 13.25 Testing OSCtxSw() using an LED.�
	13.06.04 Verify OSIntCtxSw() and OSTickISR()

	Listing 13.26 Testing OSIntCtxSw() and OSTickISR().�

	OSCtxSw()
	OS_CPU_A.ASM
	OS_TASK_SW()
	Always needed
	1. Interrupts are disabled when this function is called.
	2. Some compilers allow you to create software interrupts (or TRAPS) directly in C, and thus you ...

	OSInitHookBegin()
	OS_CPU_C.C
	OSInit()
	OS_CPU_HOOKS_EN == 1

	OSInitHookEnd()
	OS_CPU_C.C
	OSInit()
	OS_CPU_HOOKS_EN == 1

	OSIntCtxSw()
	OS_CPU_A.ASM
	OSIntExit()
	Always needed
	1. Interrupts are disabled when this function is called.

	OSStartHighRdy()
	OS_CPU_A.ASM
	OSStart()
	Always needed
	1. Interrupts are disabled when this function is called.

	OSTaskCreateHook()
	OS_CPU_C.C
	OSTaskCreate() and OSTaskCreateExt()
	OS_CPU_HOOKS_EN == 1
	1. Interrupts are enabled when this function is called. You, therefore, might need to call OS_ENT...

	OSTaskDelHook()
	OS_CPU_C.C
	OSTaskDel()
	OS_CPU_HOOKS_EN == 1
	1. Interrupts are disabled when this function is called. You, therefore, should keep the code in ...

	OSTaskIdleHook()
	OS_CPU_C.C
	OS_TaskIdle()
	OS_CPU_HOOKS_EN == 1
	1. OSTaskIdleHook() is called with interrupts enabled.

	OSTaskStatHook()
	OS_CPU_C.C
	OS_TaskStat()
	OS_CPU_HOOKS_EN == 1
	1. The statistic task starts executing about five seconds after calling OSStart(). Note that this...

	OSTaskStkInit()
	OS_CPU_C.C
	OSTaskCreate() or OSTaskCreateExt()
	Always needed
	1. Interrupts are enabled when this function is called.

	OSTaskSwHook()
	OS_CPU_C.C
	OSCtxSw() and OSIntCtxSw()
	OS_CPU_HOOKS_EN == 1
	1. Interrupts are disabled when this function is called. You, therefore, should keep the code in ...

	OSTCBInitHook()
	OS_CPU_C.C
	OS_TCBInit()
	OS_CPU_HOOKS_EN == 1
	1. Interrupts are enabled when this function is called. You, therefore, might need to call OS_ENT...

	OSTickISR()
	OS_CPU_A.ASM
	Tick Interrupt
	Always needed
	1. The interrupting device that causes the call to OSTickISR() should generally be set up to gene...
	2. Some compilers allow you to create ISRs directly in C, and thus you could place this function ...

	OSTimeTickHook()
	OS_CPU_C.C
	OSTimeTick()
	OS_CPU_HOOKS_EN == 1
	1. OSTimeTick() is generally called by an ISR, so the execution time of the tick ISR is increased...

	Chapter 14
	80x86 Port
	Real Mode, Large Model with Emulated Floating-Point Support
	Figure 14.1 80x86 real-mode register model.
	Figure 14.2 Addressing with a segment and an offset register.

	14.00 Development Tools
	Table 14.1 Compiler options used to compile port and examples.�
	Table 14.2 Assembler options used to assemble .ASM files.

	14.01 Directories and Files
	14.02 INCLUDES.H
	Listing 14.1 INCLUDES.H.

	14.03 OS_CPU.H
	Listing 14.2 OS_CPU.H.�
	14.03.01 OS_CPU.H, Data Types
	14.03.02 OS_CPU.H, OS_ENTER_CRITICAL(), and OS_EXIT_CRITICAL()
	Listing 14.2 OS_CPU.H (Continued)
	14.03.03 OS_CPU.H, Stack Growth

	Listing 14.2 OS_CPU.H (Continued)
	14.03.04 OS_CPU.H, OS_TASK_SW()

	Listing 14.2 OS_CPU.H (Continued)
	14.03.05 OS_CPU.H, Tick Rate
	1. 200Hz happens to be almost exactly 11 times faster than 18.20648Hz. The port needs to chain in...
	2. It’s useful to have a 5.00ms-time resolution for time delays and timeouts. If you are running ...
	3. Even if it’s possible to change the tick rate on a PC to be exactly 20Hz or even 100Hz, it wou...

	Listing 14.2 OS_CPU.H (Continued)
	14.03.06 OS_CPU.H, Floating-Point Emulation

	Listing 14.2 OS_CPU.H (Continued)

	14.04 OS_CPU_C.C
	14.04.01 OSTaskStkInit()
	Figure 14.3 Stack frame initialization with pdata passed on the stack.

	Listing 14.3 OS_CPU_C.C, OSTaskStkInit().�
	14.04.02 OSTaskStkInit_FPE_x86()
	Figure 14.4 Borland floating-point emulation stack.
	Figure 14.5 Borland floating-point emulation stack.

	Listing 14.4 OS_CPU_C.C, OSTaskStkInit_FPE_x86().�
	Figure 14.6 Stack normalization by OSTaskStkInit_FPE_x86().

	Listing 14.5 OS_CPU_C.C, using OSTaskStkInit_FPE_x86().�
	14.04.03 OSTaskCreateHook()

	Listing 14.6 OS_CPU_C.C, OSTaskCreateHook().
	14.04.04 OSTaskDelHook()

	Listing 14.7 OS_CPU_C.C, OSTaskDelHook().
	14.04.05 OSTaskSwHook()

	Listing 14.8 OS_CPU_C.C, OSTaskSwHook().
	14.04.06 OSTaskIdleHook()

	Listing 14.9 OS_CPU_C.C, OSTaskIdleHook().
	14.04.07 OSTaskStatHook()

	Listing 14.10 OS_CPU_C.C, OSTaskStatHook().
	14.04.08 OSTimeTickHook()

	Listing 14.11 OS_CPU_C.C, OSTimeTickHook().
	14.04.09 OSInitHookBegin()

	Listing 14.12 OS_CPU_C.C, OSInitHookBegin().
	14.04.10 OSInitHookEnd()

	Listing 14.13 OS_CPU_C.C, OSInitHookEnd().
	14.04.11 OSTCBInitHook()

	Listing 14.14 OS_CPU_C.C, OSTCBInitHook().

	14.05 OS_CPU_A.ASM
	14.05.01 OSStartHighRdy()
	Listing 14.15 OSStartHighRdy().�
	Figure 14.7 80x86 stack frame when task is created.
	14.05.02 OSCtxSw()

	Listing 14.16 OSCtxSw().�
	Figure 14.8 80x86 stack frames during a task-level context switch.
	14.05.03 OSIntCtxSw()

	Listing 14.17 OSIntCtxSw().�
	Figure 14.9 80x86 stack frames during an interrupt-level context switch.
	14.05.04 OSTickISR()

	Listing 14.18 Pseudocode for OSTickISR().
	Figure 14.10 The PC interrupt-vector table (IVT).

	Listing 14.19 OSTickISR().�
	Listing 14.20 Pseudocode for 18.2Hz OSTickISR().
	Listing 14.21 18.2Hz version of OSTickISR().�

	14.06 Memory Usage
	Table 14.3 Maximum µC/OS-II configuration.�

	Value in
	OS_ CFG.H
	DATA
	(bytes)
	CODE (bytes)
	OS_ARG_CHK_EN == 0
	CODE (bytes)
	OS_ARG_CHK_EN == 1
	Delta CODE
	(bytes)
	Delta CODE
	(%)
	10
	164
	2
	14
	2
	44
	2
	52
	62
	2,880
	63
	264
	512
	1,024
	1
	10
	351
	351
	512
	1,024
	1
	1
	2,177
	2,493
	316
	1
	2,174
	2,539
	82
	1
	108
	1
	41
	1
	95
	1
	39
	1
	958
	1,185
	55
	1
	23
	1
	49
	1
	36
	1
	39
	1
	25
	1
	689
	838
	123
	1
	26
	1
	1,596
	1,792
	83
	1
	39
	1
	47
	1
	27
	1
	1,917
	2,206
	45
	1
	23
	1
	49
	1
	25
	1
	40
	1
	40
	1
	40
	1
	27
	1
	707
	864
	62
	1
	21
	1
	49
	1
	25
	1
	444
	466
	22
	1
	185
	196
	11
	1
	441
	467
	26
	1
	527
	578
	51
	1
	264
	300
	36
	1
	87
	103
	16
	1
	248
	248
	1
	122
	132
	10
	1
	59
	59
	1
	102
	102
	47
	0
	0
	Table 14.4 Minimum µC/OS-II configuration.�

	Value in
	OS_ CFG.H
	DATA
	(bytes)
	CODE (bytes)
	OS_ARG_CHK_EN == 0
	CODE (bytes)
	OS_ARG_CHK_EN == 1
	Delta CODE
	(bytes)
	Delta CODE
	(%)
	10
	2
	2
	2
	16
	360
	20
	87
	512
	1,024
	0
	512
	1
	1
	2,177
	2,493
	316
	0
	1
	1
	1
	1
	0
	1
	1
	1
	1
	1
	0
	1
	0
	1
	1
	1
	0
	1
	1
	1
	1
	1
	1
	1
	0
	1
	1
	1
	0
	1
	185
	196
	11
	0
	0
	0
	0
	0
	0
	0
	0
	37
	0
	0
	Table 14.5 80x86 data sizes.

	2
	1
	1
	1
	2
	4
	2
	2
	4

	Chapter 15
	80x86 Port
	Real Mode, Large Model with Hardware Floating-Point Support
	15.00 Development Tools
	Figure 15.1 80x86 real-mode register model.
	Table 15.1 Compiler options used to compile port and examples.�
	Table 15.2 Assembler options used to assemble .ASM files.

	15.01 Directories and Files
	15.02 INCLUDES.H
	Listing 15.1 INCLUDES.H.

	15.03 OS_CPU.H
	Listing 15.2 OS_CPU.H.�
	15.03.01 OS_CPU.H, Data Types
	15.03.02 OS_CPU.H, OS_ENTER_CRITICAL(), and OS_EXIT_CRITICAL()
	Listing 15.2 OS_CPU.H. (Continued)
	15.03.03 OS_CPU.H, Stack Growth

	Listing 15.2 OS_CPU.H. (Continued)
	15.03.04 OS_CPU.H, OS_TASK_SW()

	Listing 15.2 OS_CPU.H. (Continued)
	15.03.05 OS_CPU.H, Tick Rate

	Listing 15.2 OS_CPU.H. (Continued)
	15.03.06 OS_CPU.H, Floating-Point Functions

	Listing 15.2 OS_CPU.H. (Continued)

	15.04 OS_CPU_C.C
	15.04.01 OSTaskStkInit()
	Figure 15.2 Stack frame initialization with pdata passed on the stack.

	Listing 15.3 OS_CPU_C.C, OSTaskStkInit().�
	15.04.02 OSFPInit()

	Listing 15.4 OS_CPU_C.C, OSFPInit().�
	15.04.03 OSTaskCreateHook()

	Listing 15.5 OS_CPU_C.C, OSTaskCreateHook().
	Figure 15.3 Initialized stack and FPU register storage.
	15.04.04 OSTaskDelHook()

	Listing 15.6 OS_CPU_C.C, OSTaskDelHook().
	15.04.05 OSTaskSwHook()

	Listing 15.7 OS_CPU_C.C, OSTaskSwHook().�
	15.04.06 OSTaskIdleHook()

	Listing 15.8 OS_CPU_C.C, OSTaskIdleHook().
	15.04.07 OSTaskStatHook()

	Listing 15.9 OS_CPU_C.C, OSTaskStatHook().
	15.04.08 OSTimeTickHook()

	Listing 15.10 OS_CPU_C.C, OSTimeTickHook().
	15.04.09 OSInitHookBegin()

	Listing 15.11 OS_CPU_C.C, OSInitHookBegin().
	15.04.10 OSInitHookEnd()

	Listing 15.12 OS_CPU_C.C, OSInitHookEnd().
	15.04.11 OSTCBInitHook()

	Listing 15.13 OS_CPU_C.C, OSTCBInitHook().

	15.05 OS_CPU_A.ASM
	15.05.01 OSStartHighRdy()
	Listing 15.14 OSStartHighRdy().�
	15.05.02 OSCtxSw()

	Listing 15.15 OSCtxSw().�
	Figure 15.4 80x86 stack frames and FPU storage during a task-level context switch.
	15.05.03 OSIntCtxSw()
	Figure 15.5 80x86 stack frames and FPU storage during an interrupt-level context switch.

	Listing 15.16 OSIntCtxSw().�
	15.05.04 OSTickISR()

	Listing 15.17 OSTickISR().�
	15.05.05 OSFPSave()

	Listing 15.18 OSFPSave().
	15.05.06 OSFPRestore()

	Listing 15.19 OSFPRestore().

	15.06 Memory Usage

	Chapter 16
	µC/OS-II Reference Manual
	OS_ENTER_CRITICAL()
	OS_EXIT_CRITICAL()
	3
	OS_CPU.H
	Task or ISR
	N/A
	1. These macros must be used in pairs.
	2. If OS_CRITICAL_METHOD is set to 3, your code is assumed to have allocated local storage for a ...

	OSFlagAccept()
	9
	OS_FLAG.C
	Task

	OS_FLAG_EN && OS_FLAG_ACCEPT_EN
	1. The event flag group must be created before it is used.
	2. This function does not block if the desired flags are not present.

	OSFlagCreate()
	9
	OS_FLAG.C
	Task or startup code

	OS_FLAG_EN
	1. Event flag groups must be created by this function before they can be used by the other services.

	OSFlagDel()
	9
	OS_FLAG.C
	Task
	OS_FLAG_EN and OS_FLAG_DEL_EN
	1. You should use this call with care because other tasks might expect the presence of the event ...
	2. This call can potentially disable interrupts for a long time. The interrupt-disable time is di...

	OSFlagPend()
	9
	OS_FLAG.C
	Task only

	OS_FLAG_EN
	1. The event flag group must be created before it’s used.

	OSFlagPost()
	9
	OS_FLAG.C
	Task or ISR

	OS_FLAG_EN
	1. Event flag groups must be created before they are used.
	2. The execution time of this function depends on the number of tasks waiting on the event flag g...
	3. The amount of time interrupts are disabled also depends on the number of tasks waiting on the ...

	OSFlagQuery()
	9
	OS_FLAG.C
	Task or ISR

	OS_FLAG_EN && OS_FLAG_QUERY_EN
	1. The event flag group to query must be created.
	2. You can call this function from an ISR.

	OSInit()
	3
	OS_CORE.C
	Startup code only
	N/A
	1. OSInit() must be called before OSStart().

	OSIntEnter()
	3
	OS_CORE.C
	ISR only
	N/A
	1. This function must not be called by task-level code.
	2. You can increment the interrupt-nesting counter (OSIntNesting) directly in your ISR to avoid t...
	3. You are allowed to nest interrupts up to 255 levels deep.

	OSIntExit()
	3
	OS_CORE.C
	ISR only
	N/A
	1. This function must not be called by task-level code. Also, if you decided to increment OSIntNe...

	OSMboxAccept()
	10
	OS_MBOX.C
	Task or ISR

	OS_MBOX_EN && OS_MBOX_ACCEPT_EN
	1. Mailboxes must be created before they are used.

	OSMboxCreate()
	10
	OS_MBOX.C
	Task or startup code

	OS_MBOX_EN
	1. Mailboxes must be created before they are used.

	OSMboxDel()
	10
	OS_MBOX.C
	Task
	OS_MBOX_EN and OS_MBOX_DEL_EN
	1. You should use this call with care because other tasks might expect the presence of the mailbox.
	2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depe...
	3. OSMboxAccept() callers do not know that the mailbox has been deleted.

	OSMboxPend()
	10
	OS_MBOX.C
	Task only

	OS_MBOX_EN
	1. Mailboxes must be created before they are used.
	2. You should not call OSMboxPend() from an ISR.

	OSMboxPost()
	10
	OS_MBOX.C
	Task or ISR

	OS_MBOX_EN && OS_MBOX_POST_EN
	1. Mailboxes must be created before they are used.
	2. You must never post a NULL pointer because this pointer indicates that the mailbox is empty.

	OSMboxPostOpt()
	10
	OS_MBOX.C
	Task or ISR
	OS_MBOX_EN and OS_MBOX_POST_OPT_EN
	1. Mailboxes must be created before they are used.
	2. You must never post a NULL pointer to a mailbox because this pointer indicates that the mailbo...
	3. If you need to use this function and want to reduce code space, you can disable code generatio...
	4. The execution time of OSMboxPostOpt() depends on the number of tasks waiting on the mailbox if...

	OSMboxQuery()
	10
	OS_MBOX.C
	Task or ISR

	OS_MBOX_EN && OS_MBOX_QUERY_EN
	1. Message mailboxes must be created before they are used.

	OSMemCreate()
	12
	OS_MEM.C
	Task or startup code

	OS_MEM_EN
	1. Memory partitions must be created before they are used.

	OSMemGet()
	12
	OS_MEM.C
	Task or ISR

	OS_MEM_EN
	1. Memory partitions must be created before they are used.

	OSMemPut()
	12
	OS_MEM.C
	Task or ISR

	OS_MEM_EN
	1. Memory partitions must be created before they are used.
	2. You must return a memory block to the proper memory partition.

	OSMemQuery()
	12
	OS_MEM.C
	Task or ISR

	OS_MEM_EN && OS_MEM_QUERY_EN
	1. Memory partitions must be created before they are used.

	OSMutexAccept()
	8
	OS_MUTEX.C
	Task

	OS_MUTEX_EN
	1. Mutexes must be created before they are used.
	2. This function must not be called by an ISR.
	3. If you acquire the mutex through OSMutexAccept(), you must call OSMutexPost() to release the m...

	OSMutexCreate()
	8
	OS_MUTEX.C
	Task or startup code

	OS_MUTEX_EN
	1. Mutexes must be created before they are used.
	2. You must make sure that prio has a higher priority than any of the tasks that use the mutex to...

	OSMutexDel()
	8
	OS_MUTEX.C
	Task
	OS_MUTEX_EN and OS_MUTEX_DEL_EN
	1. You should use this call with care because other tasks might expect the presence of the mutex.

	OSMutexPend()
	8
	OS_MUTEX.C
	Task only

	OS_MUTEX_EN
	1. Mutexes must be created before they are used.
	2. You should not suspend the task that owns the mutex, have the mutex owner wait on any other µC...

	OSMutexPost()
	8
	OS_MUTEX.C
	Task

	OS_MUTEX_EN
	1. Mutexes must be created before they are used.
	2. You cannot call this function from an ISR.

	OSMutexQuery()
	8
	OS_MUTEX.C
	Task

	OS_MUTEX_EN && OS_MUTEX_QUERY_EN
	1. Mutexes must be created before they are used.
	2. You cannot call this function from an ISR.

	OSQAccept()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN
	1. Message queues must be created before they are used.

	OSQCreate()
	11
	OS_Q.C
	Task or startup code

	OS_Q_EN
	1. Queues must be created before they are used.

	OSQDel()
	11
	OS_Q.C
	Task
	OS_Q_EN and OS_Q_DEL_EN
	1. You should use this call with care because other tasks might expect the presence of the queue.
	2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depe...

	OSQFlush()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN && OS_Q_FLUSH_EN
	1. Queues must be created before they are used.

	OSQPend()
	11
	OS_Q.C
	Task only

	OS_Q_EN
	1. Queues must be created before they are used.
	2. You should not call OSQPend() from an ISR.

	OSQPost()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN && OS_Q_POST_EN
	1. Queues must be created before they are used.
	2. You must never post a NULL pointer.

	OSQPostFront()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN && OS_Q_POST_FRONT_EN
	1. Queues must be created before they are used.
	2. You must never post a NULL pointer.

	OSQPostOpt()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN && OS_Q_POST_OPT_EN
	1. Queues must be created before they are used.
	2. You must never post a NULL pointer to a queue.
	3. If you need to use this function and want to reduce code space, you can disable code generatio...
	4. The execution time of OSQPostOpt() depends on the number of tasks waiting on the queue if you ...

	OSQQuery()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN && OS_QUERY_EN
	1. Message queues must be created before they are used.

	OSSchedLock()
	3
	OS_CORE.C
	Task or ISR

	OS_SCHED_LOCK_EN
	1. After calling OSSchedLock(), your application must not make system calls that suspend executio...

	OSSchedUnlock()
	3
	OS_CORE.C
	Task or ISR

	OS_SCHED_LOCK_EN
	1. After calling OSSchedLock(), your application must not make system calls that suspend executio...

	OSSemAccept()
	7
	OS_SEM.C
	Task or ISR

	OS_SEM_EN && OS_SEM_ACCEPT_EN
	1. Semaphores must be created before they are used.

	OSSemCreate()
	7
	OS_SEM.C
	Task or startup code

	OS_SEM_EN
	1. Semaphores must be created before they are used.

	OSSemDel()
	7
	OS_SEM.C
	Task
	OS_SEM_EN and OS_SEM_DEL_EN
	1. You should use this call with care because other tasks might expect the presence of the semaph...
	2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depe...

	OSSemPend()
	7
	OS_SEM.C
	Task only

	OS_SEM_EN
	1. Semaphores must be created before they are used.

	OSSemPost()
	7
	OS_SEM.C
	Task or ISR

	OS_SEM_EN
	1. Semaphores must be created before they are used.

	OSSemQuery()
	7
	OS_SEM.C
	Task or ISR

	OS_SEM_EN && OS_SEM_QUERY_EN
	1. Semaphores must be created before they are used.

	OSStart()
	3
	OS_CORE.C
	Startup code only
	N/A
	1. OSInit() must be called prior to calling OSStart(). OSStart() should only be called once by yo...

	OSStatInit()
	3
	OS_CORE.C
	Startup code only

	OS_TASK_STAT_EN && OS_TASK_CREATE_EXT_EN

	OSTaskChangePrio()
	4
	OS_TASK.C
	Task only

	OS_TASK_CHANGE_PRIO_EN
	1. The desired priority must not already have been assigned; otherwise, an error code is returned...

	OSTaskCreate()
	4
	OS_TASK.C
	Task or startup code

	OS_TASK_CREATE_EN
	1. The stack for the task must be declared with the OS_STK type.
	2. A task must always invoke one of the services provided by µC/OS-II to wait for time to expire,...
	3. You should not use task priorities 0, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2, OS_LOWEST_P...

	OSTaskCreateExt()
	4
	OS_TASK.C
	Task or startup code
	N/A
	1. The stack must be declared with the OS_STK type.
	2. A task must always invoke one of the services provided by µC/OS-II to wait for time to expire,...
	3. You should not use task priorities 0, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2, OS_LOWEST_P...

	OSTaskDel()
	4
	OS_TASK.C
	Task only

	OS_TASK_DEL_EN
	1. OSTaskDel() verifies that you are not attempting to delete the µC/OS-II idle task.
	2. You must be careful when you delete a task that owns resources. Instead, consider using OSTask...

	OSTaskDelReq()
	4
	OS_TASK.C
	Task only

	OS_TASK_DEL_EN
	1. OSTaskDelReq() verifies that you are not attempting to delete the µC/OS-II idle task.

	OSTaskQuery()
	4
	OS_TASK.C
	Task or ISR
	N/A
	1. The fields in the task control block depend on the following configuration options (see OS_CFG...

	OSTaskResume()
	4
	OS_TASK.C
	Task only

	OS_TASK_SUSPEND_EN

	OSTaskStkChk()
	4
	OS_TASK.C
	Task code

	OS_TASK_CREATE_EXT
	1. Execution time of this task depends on the size of the task’s stack and is thus nondeterministic.
	2. Your application can determine the total task stack space (in number of bytes) by adding the t...
	3. Technically, this function can be called by an ISR, but because of the possibly long execution...

	OSTaskSuspend()
	4
	OS_TASK.C
	Task only

	OS_TASK_SUSPEND_EN
	1. OSTaskSuspend() and OSTaskResume() must be used in pairs.
	2. A suspended task can only be resumed by OSTaskResume().

	OSTimeDly()
	5
	OS_TIME.C
	Task only
	N/A
	1. Note that calling this function with a value of 0 results in no delay, and the function return...
	2. To ensure that a task delays for the specified number of ticks, you should consider using a de...

	OSTimeDlyHMSM()
	5
	OS_TIME.C
	Task only
	N/A
	1. Note that OSTimeDlyHMSM(0,0,0,0) (i.e., hours, minutes, seconds, milliseconds) results in no d...

	OSTimeDlyResume()
	5
	OS_TIME.C
	Task only
	N/A
	1. Note that you must not call this function to resume a task that is waiting for an event with t...
	2. You cannot resume a task that has called OSTimeDlyHMSM() with a combined time that exceeds 65,...

	OSTimeGet()
	5
	OS_TIME.C
	Task or ISR
	N/A

	OSTimeSet()
	5
	OS_TIME.C
	Task or ISR
	N/A

	OSTimeTick()
	5
	OS_TIME.C
	Task or ISR
	N/A
	1. The execution time of OSTimeTick() is directly proportional to the number of tasks created in ...

	OSVersion()
	3
	OS_CORE.C
	Task or ISR
	N/A

	Chapter 17
	µC/OS-II Configuration Manual
	17.00 Miscellaneous
	OS_ARG_CHK_EN
	OS_CPU_HOOKS_EN
	OS_LOWEST_PRIO
	OS_MAX_EVENTS
	OS_MAX_FLAGS
	OS_MAX_MEM_PART
	OS_MAX_QS
	OS_MAX_TASKS
	OS_TASK_IDLE_STK_SIZE
	OS_TASK_STAT_EN
	OS_TASK_STAT_STK_SIZE
	OS_SHED_LOCK_EN
	OS_TICKS_PER_SEC
	17.01 Event Flags
	OS_FLAG_EN
	OS_FLAG_WAIT_CLR_EN
	OS_FLAG_ACCEPT_EN
	OS_FLAG_DEL_EN
	OS_FLAG_QUERY_EN

	17.02 Message Mailboxes
	OS_MBOX_EN
	OS_MBOX_ACCEPT_EN
	OS_MBOX_DEL_EN
	OS_MBOX_POST_EN
	OS_MBOX_POST_OPT_EN
	OS_MBOX_QUERY_EN

	17.03 Memory Management
	OS_MEM_EN
	OS_MEM_QUERY_EN

	17.04 Mutual Exclusion Semaphores
	OS_MUTEX_EN
	OS_MUTEX_ACCEPT_EN
	OS_MUTEX_DEL_EN
	OS_MUTEX_QUERY_EN

	17.05 Message Queues
	OS_Q_EN
	OS_Q_ACCEPT_EN
	OS_Q_DEL_EN
	OS_Q_FLUSH_EN
	OS_Q_POST_EN
	OS_Q_POST_FRONT_EN
	OS_Q_POST_OPT_EN
	OS_Q_QUERY_EN

	17.06 Semaphores
	OS_SEM_EN
	OS_SEM_ACCEPT_EN
	OS_SEM_DEL_EN
	OS_SEM_QUERY_EN

	17.07 Task Management
	OS_TASK_CHANGE_PRIO_EN
	OS_TASK_CREATE_EN
	OS_TASK_CREATE_EXT_EN
	OS_TASK_DEL_EN
	OS_TASK_SUSPEND_EN
	OS_TASK_QUERY_EN

	17.08 Time Management
	OS_TIME_DLY_HMSM_EN
	OS_TIME_DLY_RESUME_EN
	OS_TIME_GET_SET_EN

	17.09 Function Summary
	Table 17.1 µC/OS-II functions and #define configuration constants.�

	Chapter 18
	PC Services
	18.00 Character-Based Display
	Figure 18.1 80 x 25 characters on a VGA monitor.
	Figure 18.2 Character and attribute bytes on a VGA monitor.
	Table 18.1 Attribute byte values.�

	18.01 Saving and Restoring DOS’s Context
	1. Set up µC/OS-II’s context switch vector,
	2. Set up the tick ISR vector,
	3. Save DOS’s context so that we can return to DOS when we need to terminate execution of a µC/OS...
	Listing 18.1 Saving the DOS environment.�
	Listing 18.2 Setting up to return to DOS.

	18.02 Elapsed-Time Measurement
	18.03 Miscellaneous
	18.04 Interface Functions

	PC_DispChar()
	PC_DispClrCol()
	PC_DispClrRow()
	PC_DispClrScr()
	1. You should use DISP_FGND_WHITE instead of DISP_BGND_BLACK because you don’t want to leave the ...

	PC_DispStr()
	1. All the characters of the string or array are displayed with the same color attributes.

	PC_DOSReturn()
	1. You must have called PC_DOSSaveReturn() prior to calling PC_DOSReturn().

	PC_DOSSaveReturn()
	1. You must call this function prior to setting µC/OS-II’s context-switch vector as shown with ex...

	PC_ElapsedInit()
	1. You must call this function prior to calling either PC_ElapsedStart() or PC_ElapsedStop().

	PC_ElapsedStart()
	1. You must call PC_ElapsedInit() before you use either PC_ElapsedStart() or PC_ElapsedStop().
	2. This function is non-reentrant and cannot be called by multiple tasks without proper protectio...
	3. The execution time of your code must be less than 54.93ms in order for the elapsed-time-measur...

	PC_ElapsedStop()
	1. You must call PC_ElapsedInit() before you use either PC_ElapsedStart() or PC_ElapsedStop().
	2. This function is non-reentrant and cannot be called by multiple tasks without proper protectio...
	3. The execution time of your code must be less than 54.93ms in order for the elapsed-time-measur...

	PC_GetDateTime()
	PC_GetKey()
	PC_SetTickRate()
	1. You can only make the ticker faster than 18.20648Hz.
	2. The higher the frequency, the more overhead you impose on the CPU.

	PC_VectGet()
	1. Vector number 0 corresponds to the reset handler.
	2. It is assumed that the 80x86 code is compiled using the large model option and thus all pointe...
	3. It is assumed that the 80x86 is running in real mode.

	PC_VectSet()
	1. You should be careful when setting interrupt vectors. Some interrupt vectors are used by the o...
	2. It is assumed that the 80x86 code is compiled using the large model option and thus all pointe...
	18.05 Bibliography

	Appendix A
	C Coding Conventions
	A.1� Header
	A.2� Include Files
	A.3� Naming Identifiers
	A.4� Acronyms, Abbreviations, and Mnemonics
	Table A.1 Acronyms, abbreviations, and mnemonics used in this book.�

	A.5� Comments
	A.6� #defines
	A.7� Data Types
	A.8� Local Variables
	A.9� Function Prototypes
	A.10� Function Declarations
	A.11� Indentation
	A.12� Statements and Expressions
	A.13� Structures and Unions
	A.14� Bibliography

	Appendix B
	Licensing Policy for µC/OS-II
	B.1� Colleges and Universities
	B.2� Commercial Use

	Appendix C
	µC/OS-II Quick Reference
	Miscellaneous
	Task Management
	Time Management
	Semaphore Management
	Mutual Exclusion Semaphore Management
	Event Flag Management
	Message Mailbox Management
	Message Queue Management
	Memory Management

	Appendix D
	TO Utility
	Listing D.1 Example of TO.TBL.�

	Appendix E
	Bibliography

	Appendix F
	Companion CD
	Figure F.1 uCOSV252.EXE splash screen.
	Figure F.2 Specify which folder.
	Figure F.3 Files unzipped message.
	Figure F.4 README.TXT.
	F.1� Files and Directories
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	What’s on the CD-ROM?
	For more information on installation or specific files and directories on the CD, see Appendix F.

