
5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 1/14

10,588,526 members (59,388 online)

 Sign in

home quick answers discussions features community

help
Search for articles, questions, tips

Articles » Desktop Development » Files and Folders » File System

Article

Browse Code

Bugs / Suggestions

Stats

Revisions (7)

Alternatives

Comments (51)

View this article's
Workspace

Fork this Workspace

Connect using Git

Share

About Article

A C++ library to help in
parsing an NTFS volume,
file record and attributes.

Type Article

Licence GPL3

First Posted 15 May 2010

Views 46,538

Downloads 4,895

Bookmarked 80 times

C++ Windows Design

Advanced

Next

Rate this:

An NTFS Parser Lib
By cyb70289, 30 May 2010

Download source code - 21.7 KB

Download demo - 134 KB

Introduction

This is a library to help in parsing an NTFS volume, as well as file records and attributes. The readers are

assumed to have deep knowledge about NTFS and C++ programming.

I will not introduce NTFS concepts here as the introduction will be either a big animal or nothing at all.

Search the best document about NTFS here.

Being an OS fan, I was shameful to have very little knowledge about the file system. Every time I read an

OS related book, I was at a loss in the chapter "File System". The contents were either too concise for a

deep understanding, or too tedious to keep reading. So I decided to write some short codes to find out

what was going on in my hard disk. I picked NTFS as it's the file system in my box, and almost everyone

says it's a good design, at least not a bad one.

At first, it was quite painful as there was very little documentation available. Microsoft didn't make its so

called "New Technology File System" public. Only pieces of information could be found over the web. After

studying the collected documents for some days, the cloud over my head scattered gradually. After some

successful testing, I thought it was okay to write a library to facilitate NTFS parsing, also to deepen my

knowledge.

Windows NT tries to construct an object oriented Operating System. At the very beginning, I hesitated in

choosing whether to use C++ classes or traditional C procedures to fulfill the task. As an important part of

the OS, it should be efficient and compact, as well as have scalability and manageability. The OS kernel

must be written in C. But I'm writing a user land library, and after studying NTFS data structures

thoroughly and carefully, I decided to use C++ classes to encapsulate them.

NTFS is an advanced journaling file system which fits the needs from home PCs to data servers. I haven't

implemented all of its features. The following parts are not supported yet:

1. Journaling

2. Security

3. Encryption and compression

4. Some other advanced features

Demo projects

1. ntfsundel

Its purpose is to search and recover deleted files.

It seems a hard job, but it took me less than an hour to implement it by using this library, and much time

was wasted on adjusting the dialog interface. Of course, this is rather a simple test program than a

 4.94 (29 votes)

articles

http://www.codeproject.com/
http://workspaces.codeproject.com/
https://www.codeproject.com/script/Membership/LogOn.aspx?rp=%2fArticles%2f81456%2fAn-NTFS-Parser-Lib
http://www.codeproject.com/
http://www.codeproject.com/script/Answers/List.aspx?tab=active
http://www.codeproject.com/script/Forums/List.aspx
http://www.codeproject.com/Feature/
http://www.codeproject.com/Lounge.aspx
http://www.codeproject.com/KB/FAQs/
http://www.codeproject.com/script/Content/SiteMap.aspx
http://www.codeproject.com/Chapters/1/Desktop-Development.aspx
http://www.codeproject.com/KB/files/
http://www.codeproject.com/KB/files/#File+System
https://developer.cisco.com/site/devnet/events/devnet-at-cisco-live/
http://www.codeproject.com/script/Articles/ViewDownloads.aspx?aid=81456
http://www.codeproject.com/script/Articles/ViewTasks.aspx?aid=81456
http://www.codeproject.com/script/Articles/Statistics.aspx?aid=81456
http://www.codeproject.com/script/Articles/ListVersions.aspx?aid=81456
http://www.codeproject.com/script/Articles/ListAlternatives.aspx?aid=81456
http://www.codeproject.com/Articles/81456/WebControls/#_comments
https://workspaces.codeproject.com/cyb70289/an-ntfs-parser-lib
https://workspaces.codeproject.com/cyb70289/an-ntfs-parser-lib
https://workspaces.codeproject.com/cyb70289/an-ntfs-parser-lib/fork
http://www.codeproject.com/script/Articles/ViewDownloads.aspx?aid=81456
http://www.codeproject.com/script/Articles/Types.aspx?#Article
http://www.opensource.org/licenses/gpl-3.0.html
http://www.codeproject.com/Tags/C--plus----plus--
http://www.codeproject.com/Tags/Windows
http://www.codeproject.com/Tags/Design
http://www.codeproject.com/Tags/Advanced
http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib?display=Print
http://www.codeproject.com/script/common/TellFriend.aspx?obtid=2&obid=81456
http://www.codeproject.com/script/Articles/PrevNextLookup.aspx?aid=81456&at=1&secId=17
http://www.codeproject.com/script/Membership/View.aspx?mid=215158
http://www.codeproject.com/KB/files/NTFSParseLib/NTFSLib.zip
http://www.codeproject.com/KB/files/NTFSParseLib/NTFSDemo.zip
http://www.linux-ntfs.org/doku.php
http://www.codeproject.com/script/Articles/Latest.aspx

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 2/14

Top News

Wireless charger can power

40 mobile phones at once

from 15 feet away

Get the Insider News free each
morning.

Related Videos

Related Articles

CNTFS - A simple lib for
managing NTFS permissions
and audit settings.

Fast Mathematical Expressions
Parser

Another C# Legacy HTML
Parser Using Tag Processing

An extensible math expression
parser with plug-ins

muParserSSE

Plugin System – an alternative
to GetProcAddress and
interfaces

Undelete a file in NTFS

Embed Python in MFC Dialog

XP style Explorer Bar
(Win32/MFC)

HTML Parser C++ (Demo
Project)

Spart, a parser generator
framework 100% C#

A Cross-platform Parser of the
Dynamic Disks Structure

SIP Stack (1 of 3)

Parsing Expression Grammar
Support for C# 3.0 Part 1 - PEG
Lib and Parser Generator

Writing UDFs for Firebird
Embedded SQL Server

Yet Another Email Client (LINQ
to IMAP)

Aggressive Optimizations for
Visual C++

REG file parser using the Boost
Spirit Parser Framework

Tool for Converting VC++2005

commercial product. I didn't check if the freed clusters had been modified by another file (it's one reason

why commercial tools take such a long time when analyzing a big volume).

2. ntfsdump

Dump the first 16K of a file. As this library reads data directly from disk sectors, we can bypass the OS

protection and peek normally inaccessible files, such as those located in "Windows\System32\config".

3. ntfsdir

List sub files and directories.

http://gigaom.com/2014/04/21/wireless-charger-can-power-40-mobile-phones-at-once-from-15-feet-away/
http://www.codeproject.com/Feature/Insider/
http://codeproject.tv/video/6941760/video_2_in_introduction_to_xml_syntax
http://codeproject.tv/video/5069613/toast_in_android
http://codeproject.tv/video/6918583/what_is_tpl_task_parallel_library_and_how_does_it_differ_from_threading
http://www.codeproject.com/Articles/3904/CNTFS-A-simple-lib-for-managing-NTFS-permissions-a
http://www.codeproject.com/Articles/7773/Fast-Mathematical-Expressions-Parser
http://www.codeproject.com/Articles/23842/Another-C-Legacy-HTML-Parser-Using-Tag-Processing
http://www.codeproject.com/Articles/7335/An-extensible-math-expression-parser-with-plug-ins
http://www.codeproject.com/Articles/94368/muParserSSE
http://www.codeproject.com/Articles/17697/Plugin-System-an-alternative-to-GetProcAddress-and
http://www.codeproject.com/Articles/9293/Undelete-a-file-in-NTFS
http://www.codeproject.com/Articles/31798/Embed-Python-in-MFC-Dialog
http://www.codeproject.com/Articles/6229/XP-style-Explorer-Bar-Win-MFC
http://www.codeproject.com/Articles/663186/HTML-Parser-Cplusplus-Demo-Project
http://www.codeproject.com/Articles/5676/Spart-a-parser-generator-framework-C
http://www.codeproject.com/Articles/761066/A-Cross-platform-Parser-of-the-Dynamic-Disks-Struc
http://www.codeproject.com/Tips/443155/SIP-Stack-of
http://www.codeproject.com/Articles/29713/Parsing-Expression-Grammar-Support-for-C-Part
http://www.codeproject.com/Articles/43200/Writing-UDFs-for-Firebird-Embedded-SQL-Server
http://www.codeproject.com/Articles/158549/Yet-Another-Email-Client-LINQ-to-IMAP
http://www.codeproject.com/Articles/253/Aggressive-Optimizations-for-Visual-C
http://www.codeproject.com/Articles/37747/REG-file-parser-using-the-Boost-Spirit-Parser-Fram
http://www.codeproject.com/Articles/28908/Tool-for-Converting-VC-Project-to-Linux-Makef

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 3/14

Project to Linux Makefile

vmime.NET - Smtp, Pop3, Imap
Library (for C++ and .NET)

Related Research

Fine-Tuning the Engines of SMB
Growth: 4 strategies for growing

your business

Custom API Management for
the Enterprise: Learn how to

build a successful API strategy
[Webinar]

Insider Secrets on API Security
From Experts at Securosis

[Webinar]

How to Secure Your Software
for the Mobile Apps Market

4. ntfsattr

List attributes of a file or a directory.

Source code

1. Source files

The source contains five .h files. I prefer coding directly in include files when programming C++ because it

eases the deployment a lot, and looks cool too. Just include the .h file and everything is done, without the

need to add .cpp files to the project. The library is part of your own source, and an unreferenced library

source code is silently discarded by the compiler. Of course, it will be difficult to implement a large system

this way, when classes reference each other. I don't know how Microsoft ATL achieves this goal.

1. NTFS.h

http://www.codeproject.com/Articles/28908/Tool-for-Converting-VC-Project-to-Linux-Makef
http://www.codeproject.com/Articles/719490/vmime-NET-Smtp-Pop-Imap-Library-for-Cplusplus-and
http://www.codeproject.com/ResearchLibrary/27/Fine-Tuning-the-Engines-of-SMB-Growth-strategies-f
http://www.codeproject.com/ResearchLibrary/29/Custom-API-Management-for-the-Enterprise-Learn-how
http://www.codeproject.com/ResearchLibrary/28/Insider-Secrets-on-API-Security-From-Experts-at-Se
http://www.codeproject.com/ResearchLibrary/30/How-to-Secure-Your-Software-for-the-Mobile-Apps-Ma

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 4/14

Include this file in your source. No other includes are needed.

2. NTFS_DataType.h

NTFS common data structures and data type definitions. No classes, only structures.

3. NTFS_Common.h

NTFS data structures and data type definitions specific to this library. And a single list implementation

CSList to help in managing objects of the same type.

4. NTFS_FileRecord.h

NTFS volume and file record classes definition and implementation.

5. NTFS_Attribute.h

NTFS attributes classes and helper classes definition and implementation.

2. Coding

Having been an embedded system designer for about ten years, I am accustomed to limited system

resources and digging the full capacity of hardware (think about implementing an IP stack on an 8 bit CPU

running at 2MIPS with only 256 bytes of RAM). On a PC nowadays, RAM and CPU speed are not

problems anymore, but I still keep the habit of writing compact code which runs as efficient and fast as

possible.

To achieve this goal, many data buffers are shared between different objects in this library. To fulfill the

different tasks, playing tricks with a pointer is a must, though dangerous. C++ helps us in memory

management by introducing a constructor and a destructor, as well as a copy constructor, but that's not

enough. Otherwise, there won't be the so called "Smart Pointer" which is just a C++ style trick about a

pointer (of course, if you are not "smart" enough, it will lead to "smart" errors that are hard to discover).

I am trying to make this library more useful than a simple test. The source code and demo projects are

developed in VC6.0 SP6, and can also be compiled in VC10.0. The binaries are tested in Windows XP SP3

and Windows7. I have put many tracing messages which will be shown in the Output window of Visual

Studio to help debugging. The library is Unicode compatible, and can be compiled into ANSI or Unicode

binaries. Define _UNICODE to make a Unicode build. Just like an NT kernel, NTFS uses Unicode to store file

names. So a Unicode build will run faster than an ANSI one. All passed or returned pointers and references

which should not be modified by the target are decorated as "const". The compiler will warn us if we try

to modify these buffers or objects (but I offend my own rule time and time by typecasting them to non-

constant pointers). And I have added validation code to prevent bad parameters and incorrect data. You

cannot be too careful when handling disk volumes.

This library reads disk sectors frequently. So I will maintain some buffers to fasten data access. Though the

OS has already helped us with the disk cache, a user land buffer will be a plus.

As it directly accesses the disk sectors, you must have administrator privileges to run the demo projects. In

Windows7, only getting administrator privilege is not enough; an elevated privilege is required. You should

be the user "Administrator" or get the elevated privilege to successfully open a volume. This library

accesses the disk in read-only mode; it should be safe and will not harm your disk volume. Use it at your

own risk.

NTFS volume and file record classes

1. CNTFSVolume

This class encapsulates a single NTFS volume.

1. CNTFSVolume(_TCHAR volume)

volume is the volume name;, e.g.: 'C', 'D'. This is the only constructor. It does the following:

a. Opens the volume in read-only mode, and gets a handle to directly access the disk's physical

sectors.

b. Reads BPB, does some verification, and stores the needed information.

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 5/14

c. Parses NTFS metafile $Volume, reads and verifies the NTFS version.

d. Parses the NTFS metafile $MFT, gets its $DATA attribute to locate other file records in a

fragmented $MFT. NTFS tries to keep the file records continuous by reserving some buffer

after $MFT. But in my eight years old Notebook, $MFT is fragmented into three parts in the

system volume.

2. BOOL IsVolumeOK() const

User should call this function immediately after the constructor to verify everything is OK. If this

function returns FALSE, no other processing should be done.

3. ULONGLONG GetRecordsCount() const

Returns the count of file records in this volume. It's not the sum of all the current files and

directories, as deleted files may still occupy record slots.

4. DWORD GetSectorSize() const

Size of disk's physical sector in bytes. Normally 512. Get from BPB.

5. DWORD GetFileRecordSize() const

Size of a single file record in bytes. Normally 1024. Get from BPB.

6. DWORD GetIndexBlockSize() const

Size of an index block in bytes. Normally 4096. Get from BPB.

7. ULONGLONG GetMFTAddr() const

Relative start address of the $MFT metafile. Get from BPB.

8. BOOL InstallAttrRawCB(DWORD attrType, ATTR_RAW_CALLBACK cb)

attrType: Attribute type.

cb: Callback function.

Return value: TRUE on success. FALSE when attrType is not a valid attribute type.

Installs a volume scope callback function to be called once a specific attribute is found. Can be used

to peek the raw attribute stream before it's being processed.

9. void ClearAttrRawCB()

Removes all volume scope callback functions.

2. CFileRecord

Parses a single file record. It's the most important class. NTFS treats almost everything as files, even the

boot sector.

1. CFileRecord(const CNTFSVolume *volume)

volume represents which volume this file record belongs to.

2. BOOL ParseFileRecord(ULONGLONG fileRef)

fileRef is the dile reference of the file to be parsed.

Return value: TRUE on success. Otherwise FALSE. When this function fails, no further processing

should be done.

This function reads the file record from the disk, then verifies and patches the update sequence

numbers. The user can parse as many files as possible one by one. The previously parsed data will

be freed.

3. BOOL ParseAttrs()

Parse selected attributes (chosen by the SetAttrMask() routine) of a file record. It is the biggest

and most time consuming routine in the lib. All selected attributes are parsed into the

corresponding C++ objects and inserted into a separate list by their type.

4. BOOL InstallAttrRawCB(DWORD attrType, ATTR_RAW_CALLBACK cb)

attrType: Attribute type.

cb: Callback function.

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 6/14

Return value: TRUE on success. FALSE when attrType is not valid.

Installs a file record scope callback function to be called once a specific attribute is found. Can be

used to peek the raw attribute stream before it's being processed.

When ParseAttrs() finds an attribute, it will first lookup in CFileRecord to find the installed

callback function and calls it. If nothing is found, it will continue searching the callback functions

installed in the CNTFSVolume object this file record belongs to.

5. void ClearAttrRawCB()

Removes all file record scope callback functions.

6. void SetAttrMask(DWORD mask)

mask has the attributes to parse. Defined in NTFS_Common.h as MASK_???.

User can pick the attributes to parse and discard the unwanted ones to save time and RAM. For

example, you needn't waste time parsing the $DATA attribute if you only want to get the file's size

and timestamp. $STANDARD_INFORMATION and $ATTRIBUTE_LIST will always be parsed whether

they are picked or not, but unwanted attributes in $ATTRIBUTE_LIST will be discarded.

This function should be called before ParseAttrs().

7. void TraverseAttrs(ATTRS_CALLBACK attrCallBack, void *context)

attrCallBack: User defined callback function

context: context to pass to the callback function

This routine traverses all the parsed attributes of a file record and synchronously calls the user

defined callback function, and provides user the parsed C++ object of the attribute.

This routine should be called after ParseAttrs().

8. const CAttrBase* FindFirstAttr(DWORD attrType) const

Find the first attribute with type "attrType" contained in this file record. If no attribute of

"attrType" is found, NULL is returned. Once called, the internal index moves to the first element.

This routine should be called after ParseAttrs().

9. const CAttrBase* FindNextAttr(DWORD attrType) const

Find the next attribute with type "attrType" contained in this file record. If no more attribute of

"attrType" is found, NULL is returned. Once called, the internal index is moved to next.

This routine should be called after FindFirstAttr().

 Collapse | Copy Code

CAttrBase *ab = FindFirstAttr(ATTR_TYPE_FILENAME)
while (ab)
{
 // process ab here
 ab = FindNextAttr(ATTR_TYPE_FILENAME);
}

The MFC CFileFind class is really a bad design and error prone. So I didn't follow its style.

10. int GetFileName(_TCHAR *buf, DWORD bufLen) const

buf: Name buffer to hold the returned file name.

bufLen: Name buffer size in characters (not bytes!)

Return value:

> 0: Name length in characters.

= 0: This file is unnamed.

< 0: Buffer size is less than the file name size, the negative value is the wanted buffer size. For

example, a return value of -20 means you need a buffer with its size at least 20 characters.

A single file record may have several file names ($FILE_NAME attribute). The first Win32 name will

be returned.

11. ULONGLONG GetFileSize() const

Get the file size in bytes. Get from the $FILE_NAME attribute.

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 7/14

12. void GetFileTime(FILETIME *writeTm, FILETIME *createTm = NULL, FILETIME

*accessTm = NULL) const

Get file last alteration time, creation time, and last access time. The time is already converted to the

time zone set in the system. Get from the $STANDARD_INFORMATION attribute.

13. void TraverseSubEntries(SUBENTRY_CALLBACK seCallBack) const

Traverse all the subentries located in a file record (a directory file) and synchronously call the user

defined callback function, and provide user all the subentries encapsulated by the CIndexEntry

class. Useful in enumerating sub files and directories. $INDEX_ROOT and $INEX_ALLOCATION

attributes must have been parsed already (see SetAttrMask()).

14. const BOOL FindSubEntry(const _TCHAR *fileName, CIndexEntry &ieFound) const

fileName: Sub file name to find

ieFound: CIndexEntry object found

Return value: TRUE when found, otherwise FALSE.

It is used to find a sub file or directory. $INDEX_ROOT and $INEX_ALLOCATION attributes must

have been parsed already (see SetAttrMask()).

15. const CAttrBase* FindStream(_TCHAR *name = NULL)

name is the file data stream name. NULL for unnamed stream.

Find the specific data stream by name. NTFS files may have several data streams ($DATA attribute).

File content is always located in an unnamed stream. The $DATA attribute must have been parsed

already (see SetAttrMask()).

16. BOOL IsDeleted() const

Check if this file record is deleted.

17. BOOL IsDirectory() const

Check if this file record is a directory.

18. BOOL IsReadOnly() const

Check if it's a read-only file. Get from the $STANDARD_INFORMATION attribute.

19. BOOL IsHidden() const

Check if it's a hidden file. Get from the $STANDARD_INFORMATION attribute.

20. BOOL IsSystem() const

Check if it's a system file. Get from the $STANDARD_INFORMATION attribute.

21. BOOL IsCompressed() const

Check if it's a compressed file. Get from the $STANDARD_INFORMATION attribute.

22. BOOL IsEncrypted() const

Check if it's an encrypted file. Get from the $STANDARD_INFORMATION attribute.

23. BOOL IsSparse() const

Check if it's a sparse file. Get from the $STANDARD_INFORMATION attribute.

NTFS attributes classes

 Collapse | Copy Code

Attributes Class

$STANDARD_INFORMATION CAttr_StdInfo
$ATTRIBUTE_LIST CAttr_AttrList<TYPE_RESIENT>
$FILE_NAME CAttr_FileName
$VOLUME_NAME CAttr_VolName
$VOLUME_INFORMATION CAttr_VolInfo
$DATA CAttr_Data<TYPE_RESIDENT>
$INDEX_ROOT CAttr_IndexRoot
$INDEX_ALLOCATION CAttr_IndexAlloc
$BITMAP CAttr_Bitmap<TYPE_RESIENT>

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 8/14

NTFS attributes are classified into resident (CAttrResident) and nonresident (CAttrNonResident).

Resident and nonresident attributes share a common header (CAttrBase). All attribute classes are derived

from CAttrResident or CAttrNonResident, which are derived from CAttrBase. Some attributes, such

as $DATA and $ATTRIBUTE_LIST can be resident or nonresident; these classes use a template parameter

as their base class.

1. CAttrBase

Base class of all the attribute classes.

1. CAttrBase(const ATTR_HEADER_COMMON *ahc, const CFileRecord *fr)

ahc: Points to the attribute header buffer.

fr: The file record which owns this attribute.

2. virtual __inline ULONGLONG GetDataSize(ULONGLONG *allocSize = NULL) const =

0

allocSize is the allocated size of the data in bytes. Just leave this parameter blank if you don't

want it.

Return value: Actual size of the data in bytes.

Get size of this attribute's data in bytes. It's declared as a pure virtual function. The derived classes

CAttrResident and CAttrNonResident will actually implement this function. Thanks to

polymorphism introduced by C++, with this function and the following function ReadData(),

resident and non-resident attributes can access their data in the same interface, though they divert

so much.

3. virtual BOOL ReadData(const ULONGLONG &offset, void *bufv, DWORD bufLen,

DWORD *actural) const = 0

offset: Start address of the read pointer relative to beginning in bytes.

bufv: User provided buffer to receive the data.

bufLen: User provided buffer size in bytes.

actural: The actual size of data read. Sorry for the misspelling. I got it right now when

Microsoft Word tells me, but I'm too lazy to find and replace all the errors in my source code.

I suggest Microsoft add spell checking in Visual Studio to help us non-English speaking guys,

he he.

Return value: TRUE on success, otherwise FALSE.

Read attribute data into a buffer.

4. Other exported routines:
 Collapse | Copy Code

__inline const ATTR_HEADER_COMMON* GetAttrHeader() const
__inline DWORD GetAttrType() const
__inline DWORD GetAttrTotalSize() const
__inline BOOL IsNonResident() const
__inline WORD GetAttrFlags() const
int GetAttrName(char *buf, DWORD bufLen) const
int GetAttrName(wchar_t *buf, DWORD bufLen) const

Get attribute name. The return value obeys the same rule as CFileRecord::GetFileName()

 Collapse | Copy Code

__inline BOOL IsUnNamed() const

Check if this attribute is unnamed.

2. CAttrResident

Base class of all resident attribute classes.

Implements the virtual functions GetDataSize() and ReadData() specific to resident attributes.

3. CAttrNonResident

Base class of all non-resident attribute classes. Implements the virtual functions GetDataSize() and

ReadData() specific to non-resident attributes. It's much more complicated than CAttrResident's

implementation, as it should parse data runs and build a list to hold the information. I don't think the

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 9/14

NTFS data run is a good design, because the saved disk space cannot compensate for the wasted parsing

time.

4. CAttr_StdInfo

Implements the $STANDARD_INFORMATION attribute. Derived from CAttrResident. Exported functions:

 Collapse | Copy Code

void GetFileTime(FILETIME *writeTm,
 FILETIME *createTm = NULL, FILETIME *accessTm = NULL) const
__inline DWORD GetFilePermission() const
__inline BOOL IsReadOnly() const
__inline BOOL IsHidden() const
__inline BOOL IsSystem() const
__inline BOOL IsCompressed() const
__inline BOOL IsEncrypted() const
__inline BOOL IsSparse() const

5. CAttr_FileName

Implements the $FILE_NAME attribute. Derived from CAttrResident and the CFileName helper class.

All useful functions are located in the CFileName base class which will be introduced later. File permissions

and times located in a $FILE_NAME attribute will only be updated when the file name is changed, so

related functions derived from CFileName are declared again as "private" in CAttr_FileName to

prevent user from getting the wrong information. $STANDARD_INFORMATION and index entry keep the

updated file permission and timestamp.

6. CAttr_VolInfo

Implements the $VOLUME_INFORMATION attribute. Derived from CAttrResident. Exported functions:

 Collapse | Copy Code

__inline WORD GetVersion()

Returns the NTFS volume version. High byte holds the major version, low byte the minor. In Windows XP

and Windows7, the NTFS version is 3.1, Windows 2000 is 3.0, and Windows NT 1.2. NTFS volumes with

version less than 3.0 is not supported by this library.

7. CAttr_VolName

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 10/14

Implements the $VOLUME_NAME attribute. Derived from CAttrResident.

Exported functions:

 Collapse | Copy Code

__inline int GetName(wchar_t *buf, DWORD len) const
__inline int GetName(char *buf, DWORD len) const

Get the Unicode or ANSI volume name. The return value obeys the same rule as

CFileRecord::GetFileName().

8. CAttr_Data

Implements the $DATA attribute. Derived from a template class which is CAttrResident or

CAttrNonResident.

GetDataSize() and ReadData() are derived from the template base class. We only need these two

functions when handling the $DATA attribute.

9. CAttr_IndexRoot

Implements the $INDEX_ROOT attribute. Derived from the CAttrResident and CIndexEntryList

helper classes. All useful functions are located in the CIndexEntry object held in CIndexEntryList

which will be introduced later.

10. CAttr_IndexAlloc

Implements the $INDEX_ALLOCATION attribute. Derived from CAttrNonResident.

11. CAttr_Bitmap

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 11/14

Implements the $BITMAP attribute. Derive from a template class which is CAttrResident or

CAttrNonResident.

12. CAttr_AttrList

Implements the $ATTRIBUTE_LIST attribute. Derive from a template class which is CAttrResident or

CAttrNonResident.

This is the most complicated attribute to process because it deals with a file record and all other attributes.

But the implementation is concise, and the code is short.

User needn't care about this attribute; all parsed sub attributes will be inserted into the parent file record's

attribute list, just as they are directly contained in the same file record.

Helper classes

1. CFileName

This class helps CAttr_FileName and CIndexEntry to process file name related information.

Exported functions:

 Collapse | Copy Code

int Compare(const wchar_t *fn) const
int Compare(const char *fn) const

Compare the file name with the input string. Return 0 if they match, negative if the file name is smaller

than the input string, and positive otherwise. This routine is used to search a specific file in the B+ tree

constructed by the index root and index allocation.

 Collapse | Copy Code

__inline ULONGLONG GetFileSize() const
__inline DWORD GetFilePermission() const
__inline BOOL IsReadOnly() const
__inline BOOL IsHidden() const
__inline BOOL IsSystem() const
__inline BOOL IsDirectory() const
__inline BOOL IsCompressed() const
__inline BOOL IsEncrypted() const
__inline BOOL IsSparse() const
int GetFileName(char *buf, DWORD bufLen) const
int GetFileName(wchar_t *buf, DWORD bufLen) const

Get the Unicode or ANSI file name. The return value obeys the same rule as CFileRecord::

GetFileName().

 Collapse | Copy Code

__inline BOOL HasName() const

Check if it contains a file name or is unnamed.

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 12/14

cyb70289

China

From Shanghai, China

 Collapse | Copy Code

__inline BOOL IsWin32Name() const

File names which cannot fit into the DOS 8.3 format will have a DOS alias name. For example, the Win32

name "C:\Program files" will have a DOS compatible file name "C:\Progra~1". Use this function to check if

it contains a legal Win32 name.

 Collapse | Copy Code

void GetFileTime(FILETIME *writeTm, FILETIME *createTm = NULL,
 FILETIME *accessTm = NULL) const

2. CIndexEntry

This class encapsulates a single index entry of the file name. It is derived from CFileName, and all

CFileName exported functions can be used directly.

Exported functions:

 Collapse | Copy Code

__inline ULONGLONG GetFileReference() const

Get the file reference of this index entry.

 Collapse | Copy Code

__inline BOOL IsSubNodePtr() const

Check if the index entry points to sub nodes. These entries link different index blocks into a B+ tree.

 Collapse | Copy Code

__inline ULONGLONG GetSubNodeVCN() const

Use this function to locate the sub-node index block.

3. CIndexBlock

This class helps in parsing a single index block into a list of CIndexEntry.

License

This article, along with any associated source code and files, is licensed under The GNU General Public

License (GPLv3)

About the Author

Article Top

Comments and Discussions

http://www.codeproject.com/Members/cyb70289
http://www.opensource.org/licenses/gpl-3.0.html

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 13/14

Permalink | Advertise | Privacy | Mobile
Web02 | 2.8.140505.1 | Last Updated 30 May 2010

Article Copyright 2010 by cyb70289
Everything else Copyright © CodeProject, 1999-2014

Layout: fixed | fluid

Search this forum Go

You must Sign In to use this message board.

Profile popups Spacing Relaxed Noise Medium Layout Normal Per page 25 Update

First Prev Next

Jameswilliam 22-Apr-14 1:43

oksmartmaster 21-Apr-14 17:14

Member 10251888 19-Sep-13 23:25

marszhou 18-Jul-13 20:58

reneeculver 6-Feb-13 12:12

mimsdev 28-Dec-12 4:25

justdownloads 19-Dec-12 8:57

JoHung 2-Dec-12 22:52

gndnet 8-Nov-12 3:27

PeterB78 9-Jul-12 4:54

yanghuic 8-Jul-12 23:19

siqiao 19-Jun-12 15:39

viki1987 17-May-12 21:53

dxFrety 6-Jul-11 14:31

nhchmg 27-Jun-11 20:14

hjaiuyg 7-Feb-11 22:59

AGNUcius 11-Feb-11 7:01

Epoque 12-Jan-11 8:04

cyb70289 14-Jan-11 0:47

fjb2080 26-Oct-10 22:00

cyb70289 27-Oct-10 1:39

Sadistic-X 15-Aug-10 5:52

cyb70289 15-Aug-10 18:41

Sadistic-X 16-Aug-10 2:07

cyb70289 16-Aug-10 16:29

Last Visit: 31-Dec-99 18:00 Last Update: 6-May-14 7:29 Refresh 1 2 3 Next »

 General News Suggestion Question Bug Answer Joke Rant Admin

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.

How to work with the bitmap

great articles with severe bugs

Whether thread safety is taken into account?

怎样快速扫描$MFT

This is good for learning

My vote of 5

My vote of 5

How about one $MFT entry with one attribute list

$20 and inside this attribute has two DATA ($80)

which locate in different $MFT entry

My vote of 5

What about NTFS version 3.1?

My vote of 5

My vote for 5

Set filesize to 0

My vote of 5

2TB Virtual disk

Licence [modified]

Re: Licence

Index allocation

Re: Index allocation

how to process bitmap, thanks

Re: how to process bitmap, thanks

TraverseSubEntries bug

Re: TraverseSubEntries bug

Re: TraverseSubEntries bug

Re: TraverseSubEntries bug

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib
http://developermedia.com/
http://www.codeproject.com/info/privacy.aspx
http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib?display=Mobile
mailto:webmaster@codeproject.com
http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib?PageFlow=FixedWidth
http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib?PageFlow=Fluid
https://www.codeproject.com/script/Membership/LogOn.aspx?rp=%2fArticles%2f81456%2fAn-NTFS-Parser-Lib%3ffid%3d1572260%26df%3d90%26mpp%3d25%26noise%3d3%26prof%3dFalse%26sort%3dPosition%26view%3dNormal%26spc%3dRelaxed
http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib?fid=1572260&df=90&mpp=25&noise=3&prof=False&sort=Position&view=Normal&spc=Relaxed&fr=26#xx0xx
http://www.codeproject.com/script/Membership/View.aspx?mid=10264682
http://www.codeproject.com/script/Membership/View.aspx?mid=2904761
http://www.codeproject.com/script/Membership/View.aspx?mid=10251888
http://www.codeproject.com/script/Membership/View.aspx?mid=7718094
http://www.codeproject.com/script/Membership/View.aspx?mid=3685046
http://www.codeproject.com/script/Membership/View.aspx?mid=1865766
http://www.codeproject.com/script/Membership/View.aspx?mid=6780471
http://www.codeproject.com/script/Membership/View.aspx?mid=8663113
http://www.codeproject.com/script/Membership/View.aspx?mid=2821204
http://www.codeproject.com/script/Membership/View.aspx?mid=9229774
http://www.codeproject.com/script/Membership/View.aspx?mid=8714049
http://www.codeproject.com/script/Membership/View.aspx?mid=786791
http://www.codeproject.com/script/Membership/View.aspx?mid=7280263
http://www.codeproject.com/script/Membership/View.aspx?mid=6821417
http://www.codeproject.com/script/Membership/View.aspx?mid=2908636
http://www.codeproject.com/script/Membership/View.aspx?mid=7653061
http://www.codeproject.com/script/Membership/View.aspx?mid=5112426
http://www.codeproject.com/script/Membership/View.aspx?mid=3400545
http://www.codeproject.com/script/Membership/View.aspx?mid=215158
http://www.codeproject.com/script/Membership/View.aspx?mid=7187467
http://www.codeproject.com/script/Membership/View.aspx?mid=215158
http://www.codeproject.com/script/Membership/View.aspx?mid=5405294
http://www.codeproject.com/script/Membership/View.aspx?mid=215158
http://www.codeproject.com/script/Membership/View.aspx?mid=5405294
http://www.codeproject.com/script/Membership/View.aspx?mid=215158
http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib?fid=1572260&df=90&mpp=25&noise=3&prof=False&sort=Position&view=Normal&spc=Relaxed
http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib?fid=1572260&df=90&mpp=25&noise=3&prof=False&sort=Position&view=Normal&spc=Relaxed&fr=26#xx0xx
http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib?fid=1572260&df=90&mpp=25&noise=3&prof=False&sort=Position&view=Normal&spc=Relaxed&fr=51#xx0xx
http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib?fid=1572260&df=90&mpp=25&noise=3&prof=False&sort=Position&view=Normal&spc=Relaxed&fr=26#xx0xx
http://www.codeproject.com/Messages/4804758/How-to-work-with-the-bitmap.aspx
http://www.codeproject.com/Messages/4804539/great-articles-with-severe-bugs.aspx
http://www.codeproject.com/Messages/4663797/Whether-thread-safety-is-taken-into-account.aspx
http://www.codeproject.com/Messages/4616022/MFT.aspx
http://www.codeproject.com/Messages/4489810/This-is-good-for-learning.aspx
http://www.codeproject.com/Messages/4460888/My-vote-of.aspx
http://www.codeproject.com/Messages/4456394/My-vote-of.aspx
http://www.codeproject.com/Messages/4442115/How-about-one-MFT-entry-with-one-attribute-list-an.aspx
http://www.codeproject.com/Messages/4422773/My-vote-of.aspx
http://www.codeproject.com/Messages/4304277/What-about-NTFS-version.aspx
http://www.codeproject.com/Messages/4303919/My-vote-of.aspx
http://www.codeproject.com/Messages/4285954/My-vote-for.aspx
http://www.codeproject.com/Messages/4254818/Set-filesize-to.aspx
http://www.codeproject.com/Messages/3950197/My-vote-of.aspx
http://www.codeproject.com/Messages/3940146/TB-Virtual-disk.aspx
http://www.codeproject.com/Messages/3761823/Licence-modified.aspx
http://www.codeproject.com/Messages/3766839/Re-Licence.aspx
http://www.codeproject.com/Messages/3731292/Index-allocation.aspx
http://www.codeproject.com/Messages/3733860/Re-Index-allocation.aspx
http://www.codeproject.com/Messages/3647787/how-to-process-bitmap-thanks.aspx
http://www.codeproject.com/Messages/3648112/Re-how-to-process-bitmap-thanks.aspx
http://www.codeproject.com/Messages/3565880/TraverseSubEntries-bug.aspx
http://www.codeproject.com/Messages/3566096/Re-TraverseSubEntries-bug.aspx
http://www.codeproject.com/Messages/3566445/Re-TraverseSubEntries-bug.aspx
http://www.codeproject.com/Messages/3567156/Re-TraverseSubEntries-bug.aspx

5/6/2014 An NTFS Parser Lib - CodeProject

http://www.codeproject.com/Articles/81456/An-NTFS-Parser-Lib 14/14

Terms of Use

http://www.codeproject.com/info/TermsOfUse.aspx

