5/7/2014 ISearch to the Rescue! - Ntdebugging Blog - Site Home - MSDN Blogs

ISearch to the Rescue!

ntdebug 13 Apr 2009 1:19 PM §
My name is Trey Nash and | am an Escalation Engineer on the Core OS team. My experience is as a software developer, and therefore, my blog posts tend to
be slanted in the direction of helping developers during the feature development, testing, and the support phases.
Windbg is definitely a feature-rich debugger. Sometimes, reading the debugger help during idle time can provide some great insight into the capabilities of
the debugger. However, the debugger help comes up short when you ask questions such as, “command huh-huh sure is cool, but when would | ever want to do
that?!?” Besides, if you're caught reading the windbg help in your spare time, you may be on the receiving end of some ridicule form those in your social circle.
In this post, | would like to speak a bit about the Isearch command, among others, and when you would want to use it. Additionally, I'll be demonstrating some
related techniques germane to when you would use Isearch in the first place.
Not long ago, | was working with a dump from a machine that was hung and it was my job to find out why. After applying many of the techniques in our hang
dump blog post, | discovered that there was a thread in particular that was stuck, which | show below:
0: kd> !thread fe016330
THREAD fe016330 Cid 0004.02e0 Teb: 00000000 Win32Thread: 00000000 WAIT: (Unknown) KernelMode Non-Alertable

fcfla698 SynchronizationEvent

fe0l63a8 NotificationTimer
IRP List:

£cb47650: (0006,01d8) Flags: 00000404 Mdl: 00000000
Not impersonating

DeviceMap e18008e8

Owning Process fe790648 Image: System
Attached Process N/A Image: N/A

Wait Start TickCount 75337682 Ticks: 145 (0:00:00:02.265)
Context Switch Count 31848752

UserTime 00:00:00.000

KernelTime 00:25:38.000

Start Address Treyresearch (0xf45629e0)

Stack Init £50e1000 Current £50e05e8 Base £50el1000 Limit £50de000 Call O

Priority 15 BasePriority 15 PriorityDecrement 0

ChildEBP RetAddr Args to Child

£50e0600 e€103d5bl fe016330 fe0163d8 00000000 nt!KiSwapContext+0x26 (FPO: [Uses EBP] [0,0,4])
£50e062c e103df9%e fe016330 £d0321£f8 00000000 nt!KiSwapThread+0x2e5 (FPO: [0,7,0])

£50e0674 el101e05b fcfla698 0000001b 00000000 nt!KeWaitForSingleObject+0x346 (FPO: [5,13,4])
£50e06b0 el02e00a e3fafeel £50e0900 00000000 nt!ExpWaitForResource+0xd5 (FPO: [0,5,4])

£50e06d0 £5a988cb 00000001 £50e08e4 nt!ExAcquireResourceExclusivelLite+0x8d (FPO: [2,3,0])
£50e06e0 f5ad8lc4 £50e0900 e3fafé6e0 00000001 Ntfs!NtfsAcquirePagingResourceExclusive+0x20 (FPO: [3,0,0])
£50e08e4 £5adB8909 £50e0900 fcb47650 fdcc3020 Ntfs!NtfsCommonCleanup+0x193 (FPO: [SEH])

£50e0a54 1040153 fe00d718 fcb47650 fcb47650 Ntfs!NtfsFsdCleanup+Oxcf (FPO: [SEH])

£50e0a68 f5b4£fd28 fddbc818 fe6dla28 00000000 nt!IofCallDriver+0x45 (FPO: [0,0,4])

£50e0a94 1040153 fdcc3020 fcb47650 fcb47650 fltmgr!FltpDispatch+0x152 (FPO: [2,6,0])

f50e0aa8 f5b4fb25 fddeOcbO fcb47650 fdd8dcl8 nt!IofCallDriver+0x45 (FPO: [0,0,4])

f50e0acc f5b4fcf5 f50elaec fddeOcbO0 00000000 fltmgr!FltplLegacyProcessingAfterPreCallbacksCompleted+0x20b (FPO: [3,4,4])
£50e0b04 €1040153 fddeOcb0 fcb47650 fcb47650 fltmgr!FltpDispatch+0x11f (FPO: [2,6,0])

£50e0b18 ell2ecOa £dfd9bd8 £fe774730 £dfd9bf0 nt!IofCallDriver+0x45 (FPO: [0,0,4])

£50e0b48 ell2b6af fe790648 f£ddeOcbO 00010003 nt!IopCloseFile+0x2ae (FPO: [5,7,0])

£50e0b78 e112b852 £fe790648 00000001 fe774730 nt!ObpDecrementHandleCount+0xcc (FPO: [4,2,4])
£f50e0bal ell1l2b776 e1802e48 fdfd9bf0 00006e54 nt!ObpCloseHandleTableEntry+0x131 (FPO: [5,1,0])
£50e0bed ell2b7cl 00006e54 00000000 £50e0c00 nt!ObpCloseHandle+0x82 (FPO: [2,7,4])

£f50e0bf4 e1033bdf 00006e54 f50el0cfc e103b00c nt!NtClose+0xlb (FPO: [1,0,0])

£50e0bf4 el103b00c 00006e54 f50e0cfc el03b00c nt!KiFastCallEntry+0xfc (FPO: [0,0] TrapFrame @ £50e0c00)
£50e0c70 £4562119 00006e54 00030000 00000068 nt!ZwClose+0x11l (FPO: [1,0,0])

WARNING: Stack unwind information not available. Following frames may be wrong.

£50e0cfc £456229f £50e0d34 £50e0d2c £4577£f50 Treyresearch+0x11119

£50e0d38 £45626f9 fe016330 f£c825368 00000000 Treyresearch+0x1129f

£50e0d70 f45629%ae £1ed8000 00002000 00000000 Treyresearch+0x116£f9

£50e0d90 f4562ba3 £fc825318 fde59p38 00000003 Treyresearch+0xll9ae

f50e0dac 1120833 £4577e20 00000000 00000000 Treyresearch+0Oxllba3

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/04/13/bang-search-to-the-rescue.aspx 1/8

http://blogs.msdn.com/60842/ProfileUrlRedirect.ashx
http://www.treynash.net/
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://msdn.microsoft.com/en-us/library/cc267080.aspx
http://msdn.microsoft.com/en-us/library/cc267080.aspx
http://blogs.msdn.com/ntdebugging/archive/2008/09/12/red-alert-my-server-is-hung-what-do-i-do.aspx

5/7/2014

£f50e0ddc el03fe9f £45629e0 £4577e20 00000000 nt!PspSystemThreadStartup+0x2e
00000000 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

ISearch to the Rescue! - Ntdebugging Blog - Site Home - MSDN Blogs

(FPO: [SEH])

Note:

Eagle-eye readers may have noticed that the debugger states every frame in the above thread uses frame pointer optimization (FPO). This is
a bug in version 6.11.0001.402 of the debugger.

I have highlighted the interesting bits above. It seems that this thread is some sort of worker thread, probably created by the Treyresearch driver. Itis doing

some work that includes closing a particular file. In the process of closing the file, NTFS wants to acquire the paging resource for this particular file, and that is
where this thread gets stuck.
What is the paging resource? Many file systems have a per-file lock that one acquires when performing paging 1/0 such that other destabilizing activity cannot

occur at the same time as a paging operation. The paging resource for the file is this lock.

To further illustrate the paging resource, let’s check out the file in question. One handy things that you can do is follow the stack down to where you see the
most recent call to nt!lofCallDriver. You can see in the MSDN documentation that loCallDriver accepts two parameters, a DEVICE_OBJECT* and an IRP*.
However, nt!lofCallDriver is a fastcall function, so you cannot find its parameters on the stack. But since you know that nt!lofCallDriver is calling a driver
dispatch routine, and since driver dispatch routines have the same prototype as loCallDriver, you can easily find the IRP in question which | have highlighted in

the NtfsINtfsFsdCleanup frame of the thread’s stack above and dumped out below:

0: kd>

Irp is active with 10 stacks 10 is current
No System Buffer:
flg cl Device

'irp fcb47650

No Mdl:
cmd
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
>[12, 0]

0

0 00000000

Args:
0 00000000

Args:
0 00000000

Args:
0 00000000

Args:
0 00000000

Args:
0 00000000

Args:
0 00000000

Args:
0 00000000

Args:
0 00000000

Args:
0 fe00d718

(= 0xfcb47804)

Thread fe016330: Irp stack trace.

File Completion-Context
00000000 00000000-00000000

00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000
fdfd9bf0 00000000-00000000

\FileSystem\Ntfs

Args:

00000000 00000000 00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

And from the IRP above, we can find the real file that the thread above is trying to acquire the paging lock for:
Ifileobj fdfd9bfo

0: kd>

\Program Files\Treyresearch\Treyresearch.data

Device Object:

Oxfe6da738

Vpb: 0xfe791818
Read Write Delete SharedRead SharedWrite SharedDelete

Access:

Flags:

0x43062
Synchronous IO
Sequential Only
Cache Supported
Modified
Size Changed
Handle Created

\Driver\Ftdisk

File Object is currently busy and has 0 waiters.

FsContext:

Cache Data:

Oxe3faf7a8
Private Cache Map: Oxfccfl
CurrentByteOffset: 6400164

Section Object Pointers:

Shared Cache Map:

Vacb:

fe77bd80
Your data is at: cbe8016

FsContext2: 0Oxe3faf8f0
fal

fc956£f3c

4

fccflec8 File Offset: 6400164

The file object contains two fields named FsContext and FsContext2 shown above. These fields are for the file system to store file system specific
information. Most file systems would store the paging resource in these context fields somewhere. For example, NTFS uses FsContext to hold the stream
control block (SCB) and you can surmise that somewhere down in the SCB is where NTFS stores the paging resource. (It's actually more complicated than that,
but that’s good enough for sake of this discussion)

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/04/13/bang-search-to-the-rescue.aspx

2/8

http://msdn.microsoft.com/en-us/library/2kxx5t2c(VS.71).aspx
http://msdn.microsoft.com/en-us/library/aa490633.aspx
http://msdn.microsoft.com/en-us/library/aa491677.aspx
http://msdn.microsoft.com/en-us/library/aa491631.aspx
http://msdn.microsoft.com/en-us/library/6xa169sk(VS.80).aspx
http://msdn.microsoft.com/en-us/library/aa906961.aspx
http://msdn.microsoft.com/en-us/library/aa906961.aspx

5/7/2014

Now, let’s take a look at the paging resource itself. You can see from the documentation of ExAcquireResourceExclusivelite, the first parameter is an
ERESOURCE and | have highlighted it in our thread stack above. Given that, we can use the !locks command to get a better idea of what’s going on:

0: kd> !locks

Resource @ Oxf
Contention
NumberOfSh
NumberOfEx

Threads:

THREAD fe
£c825
Not imper
DeviceMap
Owning Pr
Attached
Wait Star
Context S
UserTime
KernelTim
Start Add

ISearch to the Rescue! - Ntdebugging Blog - Site Home - MSDN Blogs

-V

d0321£8 Shared 1 owning threads
Count = 2
aredWaiters = 1
clusiveWaiters = 1
—07<*>

77fle0 Cid 0004.0064 Teb: 00000000 Win32Thread: 00000000 WAIT:

320 NotificationEvent
sonating
e18008e8
ocess fe790648 Image: System
Process fced2d8s8 Image: store.exe
t TickCount 75281842 Ticks: 55985 (0:00:14:34.765)
witch Count 4440231
00:00:00.000
e 00:01:51.171
ress nt!MiMappedPageWriter (0xel01962c)

Stack Init £6137000 Current f6l366ac Base f6137000 Limit £6134000 Call O

Priority
ChildEBP
f61366c4
£61366£0
£6136738
WARNING: Stack
£6136760
£6136788
f61367e4
£613684c
£6136898
£61368c4
£613692c
£6136940
£6136950
£6136980
£61369b8
£61369cc
f6136al8
£6136ab0
£6136b24
£6136b44
£6136b54
£6136c64
£6136¢cf8
£6136d24
£6136d40
£6136d54
£6136d68
fe6l36dac
f6136ddc
00000000

fe78eb40-01

THREAD fe
fcea3
fe78e

Not imper

DeviceMap

Owning Pr

Attached

Wait Star

Context S

UserTime

KernelTim

Start Add

17 BasePriority 8 PriorityDecrement 0

RetAddr

e103d5b1l nt!KiSwapContext+0x26 (FPO: [Uses EBP]
el103df9e nt!KiSwapThread+0x2e5 (FPO: [0,7,01])

[0,0,41)

£4562e28 nt!KeWaitForSingleObject+0x346 (FPO: [5,13,4])

unwind information not available. Following frames may be wrong.

£4563229 Treyresearch+0x1le28

£4559d8f Treyresearch+0x12229

£4570b95 Treyresearch+0x8d8f

£4570e39 Treyresearch+0x1fb95

£4570f4b Treyresearch+0x1fe39

f5b4cb73 Treyresearch+0x1ff4b

f5bdefc2 fltmgr!FltpPerformPostCallbacks+0x1lc5

(FPO: [1,17,4])

f5p4f4fl fltmgr!FltpProcessIoCompletion+0x10 (FPO: [1,0,0])

f5p4£fb83 fltmgr!FltpPassThroughCompletion+0x89

(FPO: [3,0,4])

(Unknown)

f5b4fcf5 fltmgr!FltpLegacyProcessingAfterPreCallbacksCompleted+0x269 (FPO:
e1040153 fltmgr!FltpDispatch+0x11f (FPO: [2,6,0])

£452b2f8 nt!IofCallDriver+0x45 (FPO: [0,0,4])

£452b6d3 exifs!NtSystemWrite+0x1ff (FPO: [Non-Fpo])
f452aeld exifs!IfsInternalWrite+0xla0 (FPO: [Non-Fpo])
£4549e02 exifs!MRxIfsWrite+0x333 (FPO: [Non-Fpo])

f4541a8e exifs!RxLowIoSubmit+0x180 (FPO: [Uses
f45427ed exifs!RxLowIoWriteShell+0x2e (FPO: [1,

EBP] [2,2,4])
0,11)

£f452fbe3 exifs!RxCommonWrite+0xccl (FPO: [Non-Fpol)

£453dffd exifs!RxFsdCommonDispatch+0x2c4 (FPO:

[Non-Fpo]

£452439%9a exifs!RxFsdDispatch+0x93 (FPO: [Non-Fpo])
e1040153 exifs!MRxIfsFsdDispatch+0x6c (FPO: [Non-Fpol)

el0lc5b4 nt!IofCallDriver+0x45 (FPO: [0,0,4])
€101971d nt!IoAsynchronousPageWrite+0xd0 (FPO:

[8,0,41)

1120833 nt!MiMappedPageWriter+0x1l2e (FPO: [1,4,0])
el103fe9f nt!PspSystemThreadStartup+0x2e (FPO: [SEH])

00000000 nt!KiThreadStartup+0x16

78eb40 Cid 0004.001c Teb: 00000000 Win32Thread: 00000000 WAIT:

890 Semaphore Limit Ox7fffffff
bb8 NotificationTimer

sonating
e18008e8
ocess fe790648 Image: System
Process N/A Image: N/A
t TickCount 75337718 Ticks: 109 (0:00:00:01.703)
witch Count 3480314
00:00:00.000
e 00:01:35.875
ress nt!ExpWorkerThread (0xel02da4b)

Stack Init £60ef000 Current f60eebf(0 Base f60ef000 Limit £60ec000 Call O

Priority
ChildEBP
f60eec08
f60eec34
f60eecTc
f60eecb8
f60eecd8
f60eece8
f60eed04
f60eed40
£60eed80
f60eedac
f60eeddc
00000000

Threads W

14 BasePriority 13 PriorityDecrement 1

RetAddr

e103d5bl nt!KiSwapContext+0x26 (FPO: [Uses EBP]
el103df9e nt!KiSwapThread+0x2e5 (FPO: [0,7,01])

[0,0,41)

el101e05b nt!KeWaitForSingleObject+0x346 (FPO: [5,13,4])

el1024ba8 nt!ExpWaitForResource+0xd5 (FPO: [0,5,

4])

£5a98915 nt!ExAcquireResourceSharedLite+0xf5 (FPO: [2,3,4])

f5ael98a Ntfs!NtfsAcquirePagingResourceShared+0x20 (FPO: [3,0,0])

e1044997 Ntfs!NtfsAcquireScbForLazyWrite+0x7a (FPO: [2,0,0])

el104328e nt!CcWriteBehind+0x27 (FPO: [0,8,4])
e102db08 nt!CcWorkerThread+0xl15a (FPO: [SEH])
e1120833 nt!ExpWorkerThread+0Oxeb (FPO: [1,5,0])

el03fe9f nt!PspSystemThreadStartup+0x2e (FPO: [SEH])

00000000 nt!KiThreadStartup+0x16

aiting On Exclusive Access:

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/04/13/bang-search-to-the-rescue.aspx

(Unknown)

KernelMode Non-Alertable

[3,4,4])

KernelMode Non-Alertable

3/8

http://msdn.microsoft.com/en-us/library/aa489849.aspx
http://msdn.microsoft.com/en-us/library/aa490224.aspx
http://msdn.microsoft.com/en-us/library/cc267001.aspx

5/7/2014 ISearch to the Rescue! - Ntdebugging Blog - Site Home - MSDN Blogs
£e016330

Now this is some juicy output. | used the —v option to also expand some of the threads related to this lock. The owner thread is the one with the asterisk (*)
next to it and you can see from the expanded thread listing and based on the fact that the function at the bottom of the stack is nt!MiMappedPageWriter, that
the thread in question is the mapped page writer. This thread is a system thread that periodically sweeps through a list of dirty pages flushing them out to
disk. Interestingly, the mapped page writer has acquired the ERESOURCE seven times. That is shown by the -07 next to the owner thread in the above output.
The second thread is waiting for shared access and it is a system file cache thread. And finally, the third thread is our initial hung thread that is waiting on
exclusive access.

As a sanity check, let’s make sure that the ERESOURCE and the file in question are related. Previously, | stated that in the NTFS file system the FsContext field

of the file object contains an SCB. Let’s pass that pointer to !pool and get some more information about it:
0: kd> !pool Oxe3faf7a8 2
Pool page e3faf7a8 region is Paged pool
*e3faf6d8 size: 330 previous size: 20 (Allocated) *Ntff
Pooltag Ntff : FCB DATA, Binary : ntfs.sys
Now, we can use the search command (s), to search the pool memory above and see if our ERESOURCE is in there. If so, that would satisfy our sanity check:
0: kd> s -d e3faf6d8 L 330/4 £d0321f8
e3faf72c £d0321f8 0c9013aa 01c9969b 42002£46 . !.......... F/.B
e3faf7b4 £d0321£8 06410000 00000000 06400164 .!....A..... d.e

Now that we are satisfied that we have matched up the ERESOURCE with the file that owns it, let’s move on. At first glance of the mapped writer thread, it
looks like the offending entity is exifs. After all, it’s the most interesting component on the mapped page writer stack. But don’t be fooled. What you see in
the mapped page writer stack is a snapshot of what it was doing when the dump was taken, and that’s not necessarily the work that caused things to go bad in
the first place. Even though exifs is a file system, it is not NTFS. And we know an NTFS file’s paging resource is locked. Keep in mind that the mapped page
writer is processing a list. So the items on the list that have caused the contention may have long been taken off the list and processed.

So what do you do? Unfortunately, the badness happened some time ago. We don’t have a stack to look at to show who did this and when. But what we can
do is perform a search of memory to see if there are any references to the ERESOURCE elsewhere in memory. If we find some hits, maybe they will shed some
more light on what is going on. So, let’s go ahead and do that:

0: kd> !search £d0321f8

Searching PFNs in range 0000000B - 0Q0DFFF9 for [FFFFFFFFFD0321F8 - FFFFFFFFFD0321F8]

Pfn Offset Hit Va Pte
00007AB7 000004E8 FD0321F8 FCAB74E8 CO3F2ADC

fcab74e0+0x8 : Ntfr -- ERESOURCE
00007CDF 00000950 FD0321F8 FCCDF950 CO3F337C

fccdf938+0x18 : NpFc -- CCB, client control block - Process: £dd70248
0000803A 0000022C FDO3A1F8 FD03A22C CO3F40ES8

£d03a220+0xc : Vad -- Mm virtual address descriptors
0000977F 0000003C FD0321F8 FE77F03C CO3F9DFC

fe77£000+0x3c : MmWe -- Work entries for writing out modified filesystem pages.
0000977F 00000514 FD0321F8 FE77F514 CO3F9DFC

fe77£4d8+0x3c : MmWe -- Work entries for writing out modified filesystem pages.
0000977F 000005BC FD0321F8 FE77F5BC CO3F9DFC

fe77£580+0x3c : MmWe -- Work entries for writing out modified filesystem pages.
0000977F 00000904 FD0321F8 FE77F904 CO3F9DFC

fe77£8c8+0x3c : MmWe -- Work entries for writing out modified filesystem pages.
0000977F 00000BA4 FD0321F8 FE77FBA4 CO3F9DFC

fe77£fb68+0x3c : MmWe -- Work entries for writing out modified filesystem pages.
0000978A 00000324 FD0321F8 FE78A324 CO3F9E28

fe78a2e8+0x3c : MmWe -- Work entries for writing out modified filesystem pages.
0000978A 0000051C FD0321F8 FE78A51C CO3F9E28

fe78a4e0+0x3c : MmWe -- Work entries for writing out modified filesystem pages.
00060B7B 0000072C FD0321F8 E3FAF72C CO38FEBC

e3faf6d8+0x54 : Ntff -- FCB_DATA
00060B7B 000007B4 FD0321F8 E3FAF7B4 CO038FEBC

e3faf6d8+0xdc : Ntff -- FCB_DATA
000D9653 00000638 FD0321F8 F50E0638 C03D4380
000D9653 00000694 FD0321F8 F50E0694 C03D4380
000D9653 000006D8 FD0321F8 F50E06D8 C03D4380
000DE415 0000054C F50321F8 F503254C C03D40C8
000ODFBF4 00000C40 FD0321F8 F60EEC40 CO3D83BS8
000ODFBF4 00000C9C FD0321F8 F60EEC9C CO3D83BS8
000ODFBF4 00000CEO FD0321F8 F60EECEO CO3D83BS8
Search done.

One thing to note is that there are some hits that are not exactly what we were looking for. That’s because !search also looks for values that are one bit off
from what you requested. Check out the help for how you can adjust this behavior. Also, !search performs some extra work along the way. If it notices that
the virtual address found is in the pool, it displays information about that pool entry.

Do you spot the curiosity? Remember that the ERESOURCE had been acquired seven times. Correspondingly, there are seven hits in the Isearch list with the
MmWe tag! And not surprisingly, the description of that tag pulled from pooltag.txt file in the triage directory where the debugger is installed reveals that
these are paging work entries. Now we’re on to something.

Note: Incidentally, if you want to determine where a virtual address in the list above resides, you can always pass it to laddress. The addresses at the
end of the !seach output are often addresses on some thread’s stack. If you pass those addresses to Ithread, it is smart enough to find the thread that
is associated with that stack and display it for you.

“OK, but how do | find the real culprit?”, you then say. Well, you have to continue to dig with what you have. Unfortunately, the contents of the pool entries
with MmWe tags are not documented, although, we definitely know what they are. Let’s take a look at one of them using !pool:
0: kd> !pool FE7T7F03C
Pool page fe77f03c region is Nonpaged pool
*fe77f000 size: a8 previous size: 0 (Allocated) *MmWe
Pooltag MmWe : Work entries for writing out modified filesystem pages., Binary : nt!mm

Now, we see where the pool entry starts and how big the entry is. So, let’s take a look at the contents of the memory:

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/04/13/bang-search-to-the-rescue.aspx 4/8

http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/MemMgt.docx
http://msdn.microsoft.com/en-us/library/cc266747.aspx
http://msdn.microsoft.com/en-us/library/cc267080.aspx
http://msdn.microsoft.com/en-us/library/cc267080.aspx
http://msdn.microsoft.com/en-us/library/cc267080.aspx
http://msdn.microsoft.com/en-us/library/cc266913.aspx
http://msdn.microsoft.com/en-us/library/cc267082.aspx
http://msdn.microsoft.com/en-us/library/cc267069.aspx

5/7/2014 ISearch to the Rescue! - Ntdebugging Blog - Site Home - MSDN Blogs

0: kd> dps fe77f000 L a8/@$ptrsize
£fe77£000 0al50000
fe77£004 65576d4d
fe77£008 fe78a4e8
fe77f00c el0b3af0 nt!MmMappedPageWriterList
fe77£010 06140000
fe77£014 00000000
fe77£018 06150000
fe77£01c 00000000
fe77£020 £cc20788
fe77£024 00000000
fe77£028 el0b3f20 nt!MmMappedFileHeader
fe77£02c 00000000
fe77£030 00000000
fe77£034 £dfd9bf0
fe77£038 f£fdc6£f008
fe77£03c £d0321£8
£fe77£040 00000000
fe77£044 00000000
fe77£048 00000000
fe77£04c 0002005c
fe77£050 00000000
fe77£054 £1d20000
fe77£058 00000000
fe77£05c 00010000
fe77£060 00000000
fe77£064 0007036¢
fe77£068 000cb59d
fe77f06c 000a97fe
fe77£070 0000d7ef
fe77£074 00021c90
fe77£078 0005débl
fe77£07c 000a5642
£fe77£080 0004d5c3
fe77£084 000ae354
fe77£088 00038249
fe77£08c 00050%ea
fe77£090 0009c915
fe77£094 00018dd6
fe77£098 000b94d7
fe77£09¢c 0006cab58
fe77£0a0 00091e29
fe77f0a4 00000000

| used the dps command so that it would check to see if any of the values matched to any known symbols. As you can see, there are a couple of symbols in
there. Notice that | divided the size of the block by the pseudo register Sptrsize as well. The symbols that dps found validate that this block of memory is
associated with the mapped page writer.

You may also ask yourself, “are any of these values pointers to other pool blocks?” If you wanted to know that, you could iterate over each one of them
passing them to !pool or !laddress. That sounds tedious to do manually. But thankfully, the debugger has some nice command tokens such as .foreach that
make this a breeze. If you want to pass each of the above values to !pool, you can perform the following in the debugger:

.foreach /pS 1 /ps 1 (value { dp /c 1 fe77f000 L a8/@Sptrsize }) { .if(value != 0) {.printf "**** gp ****\n" S{value}; !pool
S{value} 0x2} }

The address highlighted above is the address of the pool block revealed by the previous !pool command. a8 is the size of the block in bytes and since dp lists
the memory in units of pointer size, | divide a8 by Sptrsize.

I won’t show the full output here, because it’s rather verbose. But | have duplicated the output from the dps command above with added pool tags next to
items that are pool entries:

0: kd> dps fe77f000 L a8/@Sptrsize

fe77£000 0al50000

fe77f004 65576d4d

fe77£008 fe78a4de8 Pooltag MmWe : Work entries for writing out modified filesystem pages., Binary : nt!mm
fe77£00c el0b3af0 nt!MmMappedPageWriterList

fe77£f010 06140000

fe77£014 00000000

fe77£018 06150000

fe77£01c 00000000

fe77£020 £fcc20788 Pooltag Irp : Io, IRP packets

fe77£024 00000000

fe77£028 el0b3f20 nt!MmMappedFileHeader

fe77£02c 00000000

fe77£030 00000000

fe77£034 f£dfd9bfo0 Pooltag File : File objects

fe77£038 f£fdc6£f008 Pooltag MmCa : Mm control areas for mapped files, Binary : nt!mm

fe77£03c £d0321f8 Pooltag Ntfr : ERESOURCE, Binary : ntfs.sys

fe77£040 00000000

fe77£044 00000000

fe77£048 00000000

fe77f04c 0002005c

<snip>

Sure enough, the file object above is identical to the file we identified earlier on as the one that the worker thread was attempting to close a handle to. Also,

you can see that our ERESOURCE is in there as well. And even more, now we have an IRP that may reveal even more information. Let’s see:
0: kd> !irp fcc20788 1

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/04/13/bang-search-to-the-rescue.aspx 5/8

http://msdn.microsoft.com/en-us/library/cc266706.aspx
http://msdn.microsoft.com/en-us/library/cc266544.aspx
http://msdn.microsoft.com/en-us/library/cc266569.aspx

5/7/2014

Irp is active with 10 stacks 12 is current
Mdl=fe77£f048: No System Buffer: Thread £d089e6c: Irp is completed.

ISearch to the Rescue! - Ntdebugging Blog - Site Home - MSDN Blogs

Flags = 00000003
ThreadListEntry.Flink = £cc20798
ThreadListEntry.Blink = £cc20798
IoStatus.Status = 00000000
IoStatus.Information = 00010000

RequestorMod
Cancel = 00
CancelIrgl =

e

= 00000000

0

ApcEnvironment = 00
UserIosb = fe77f018

UserEvent =

0

0000000

(= 00000000)

Overlay.AsynchronousParameters.UserApcRoutine = e101c95b
Overlay.AsynchronousParameters.UserApcContext = fe77£008
Overlay.AllocationSize = 00000000 - 00000000
CancelRoutine = 00000000

UserBuffer =

00000000

&Tail.Overlay.DeviceQueueEntry = fcc207c8
Tail.Overlay.
.AuxiliaryBuffer = e101lcb86

Tail.Overlay

Tail.Overlay.
Tail.Overlay.

Thread = £d089e6c

ListEntry.Flink = 00000000
ListEntry.Blink = 00000000

Pending has been returned

Tail.Overlay.CurrentStackLocation = 00000000
Tail.Overlay.OriginalFileObject = 00000000

Tail.Apc = 0030

0012

Tail.CompletionKey = 00300

cmd flg c
[0, 0] 0

[0, 0] 0

\Driver\Disk

\Driver\PartMgr

\Driver\Ftdisk

1 Device
0 00000000

Args:
0 00000000

Args:
0 00000000

Args:
0 00000000

Args:
0 fe755ab8

Args:
0 fe709df8

Args:
0 febda738

Args:
0 fe6d69c8

012
File Completion-Context
00000000 00000000-00000000

00000000 00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000 00000000
00000000 00000000-00000000

00000000 00000000 00000000 00000000
00000000 f£5ceB857e-fe709df8

PartMgr!PmIoCompletion

00000000 00000000 00000000 0000000c
00000000 f5cl6558-fe6da7£0

00000000 00000000 00000000 0000000c
00000000 £5bc0638-fe6d6a80

00000000 00000000 00000000 0000000c
00000000 £5d0af28-00000000

\Driver\VolSnap vsp

\

Args:
0 fe6d66c0O
Driver\VSP
Args:
0 fe00d718

00000000 00000000 00000000 0000000c
00000000 f5a9351c-fde38cd0

Ntfs!NtfsSingleAsyncCompletionRoutine

00000000 00000000 00000000 0000000c
00000000 00000000-00000000

\FileSystem\Ntfs

What is apparent from looking at this IRP is that it is flagged as completed. Moreover, the information in the loStatus fields looks to be relevant as well. But

Args:

00000000 00000000 00000000 00000000

ftdisk!FtpRefCountCompletionRoutine

volsnap!VspRefCountCompletionRoutine

after studying the situation a little deeper, it appeared that the completion routine had never been fired. We can find out more about the completion routine by
dumping out the Tail.Apc portion of the IRP as shown below:
0: kd> dt nt! IRP fcc20788 Tail.Apc.

+0x040 Tail
+0x000 Ap
+0x000
+0x001
+0x002
+0x003
+0x004
+0x008
+0x00c
+0x014
+0x018
+0x01c
+0x020
+0x024
+0x028
+0x02¢c
+0x02d
+0x02e

Recall from the rules of IRP processing on Windows that IRPS like these have their completion routines called within the thread context that initiated the

(o]

Type
SpareBytel
Size
SpareBytel
SpareLong0
Thread
ApcListEnt
KernelRout
RundownRou
NormalRout
NormalCont

0x1i2 '!'
I
0x30 '0"'
0 "
0
Oxfe77fle0 _KTHREAD
ry : _LIST_ENTRY [Oxfcde8ce4 - 0xfd089eé6bc
ine : 0xelOlcb86 void nt!IopCompletePageWrite+0
tine : (null)
ine : (null)

ext : (null)

SystemArgumentl : (null)
SystemArgument2 : (null)

ApcStateln
ApcMode
Inserted

dex : 0 "'
0 '
ox1l "'

1/0. As you can see above, that thread is the same thread that is running nt!MiMappedPageWriter. Moreover, the Inserted flag is set above, which means that

the APC has been placed in the APC queue for the thread. Deductive reasoning would imply that if the completion routine has not run, then the APC has not
been delivered. And the APC will not be delivered if normal kernel mode APCs are disabled at the moment. So, let’s check on that by looking in the

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/04/13/bang-search-to-the-rescue.aspx

6/8

http://www.osronline.com/article.cfm?id=75

5/7/2014 ISearch to the Rescue! - Ntdebugging Blog - Site Home - MSDN Blogs

nt!KTHREAD structure:
0: kd> dt nt! KTHREAD Oxfe77fle0 KernelApcDisable
+0x070 KernelApcDisable :

Sure enough, kernel APCs are disabled for this thread at the moment. How can that be? Well, there are several ways to disable normal kernel APC delivery and
it often involves either directly or indirectly entering a critical or guarded region. Critical regions are entered directly via KeEnterCriticalRegion and guarded
regions are entered via KeEnterGuardedRegion. However, there are several means of indirectly entering critical regions including FsRtlEnterFileSystem.
Additionally, holding a mutex object automatically places the holder in a critical region.

Therefore, the root cause in this case was that the file system drivers appear to have put the thread into a state where it cannot receive APCs and, therefore,
1/0 initiated on that thread could not be completed. The APCs build up in the queue so that they can be delivered when kernel APC delivery is re-enabled.
Incidentally, the documentation for FsRtlEnterFileSystem states that file system filter drivers should never disable normal kernel APCs across calls to
loCallDriver.

Conclusion
Many times, when it looks like you are hitting up against a brick wall in determining what went wrong in a dump, you can get a lot further than you initially

expect with a little bit of intuition and the right tools. Of course, this intuition will grow as you become more and more familiar with the Windows operating
system internals, or whatever platform you work on. Using Isearch to search physical memory in the dump file can help find references (a.k.a pointers) to
objects in hard to find places. Additionally, pool tag information along with the helpful text in the pooltag.txt file displayed by Ipool goes a long way when it
comes to figuring out what a particular pool block is used for. Armed with all of these tools, you can always get farther than one may initially expect.

Happy debugging everyone!
"The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company,
organization, product, domain name, email address, logo, person, places, or events is intended or should be inferred."

Share this post : [M ™ g® 20 4% IF £ %
Comments
zhzhtst

[13 Apr 2009 10:26 PM

Great! A very good post. Thank you.

Michael G
[14 Apr 2009 8:28 PM

> Eagle-eye readers may have noticed that the debugger states every frame in the above thread uses frame pointer optimization (FPO). This is a bug in version
6.11.0001.402 of the debugger.

Is that bug fixed in .404? The release notes don't mention the difference between .404 and .402.

DIV class=commentowner>[It doesn't appear to be yet. Thanks, Trey.]</DIV>

OODIDEA.NET
[14 Apr 2009 8:40 PM

Web 15 Essential Checks Before Launching Your Website High Performance Web Pages — Real World Examples

gOODIDEA
[15 Apr 2009 2:18 AM

Web 15EssentialChecksBeforeLaunchingYourWebsite

HighPerformanceWebPages

Gabe
[8 May 2009 2:48 PM

ffileobj seems to be available if | manually load kdexts.dll | thought it would be a very useful extension after seeing this post. However, when | run it seems that | am
missing nt symbols in order to use it.

| do have pdb symbols loaded for almost everything (i.e. doing an 'Im' shows (pdb symbols) for nt and almost everything else) so | don't think its an issue of not having the
public symbols loaded.

Am | missing something else?

Gabe
[8 May 2009 2:56 PM

Nevermind my last comment. | am debugging a 2K target and noticed that that extension in unavailable for 2k

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/04/13/bang-search-to-the-rescue.aspx 7/8

http://msdn.microsoft.com/en-us/library/aa490178.aspx
http://msdn.microsoft.com/en-us/library/ms801955.aspx
http://msdn.microsoft.com/en-us/library/ms801643.aspx
http://msdn.microsoft.com/en-us/library/ms795143.aspx
http://msdn.microsoft.com/en-us/library/aa490236.aspx
http://msdn.microsoft.com/en-us/library/cc267080.aspx
http://msdn.microsoft.com/en-us/library/cc267069.aspx
http://social.microsoft.com/en-us/action/create/s/E/?url=http://blogs.msdn.com/ntdebugging/archive/2009/04/13/bang-search-to-the-rescue.aspx&ttl=!Search%20to%20the%20Rescue!
http://social.msdn.microsoft.com/en-us/action/create/s/E/?url=http://blogs.msdn.com/ntdebugging/archive/2009/04/13/bang-search-to-the-rescue.aspx&ttl=!Search%20to%20the%20Rescue!
http://social.technet.microsoft.com/en-us/action/create/s/E/?url=http://blogs.msdn.com/ntdebugging/archive/2009/04/13/bang-search-to-the-rescue.aspx&ttl=!Search%20to%20the%20Rescue!
http://del.icio.us/post?url=http://blogs.msdn.com/ntdebugging/archive/2009/04/13/bang-search-to-the-rescue.aspx&;title=!Search%20to%20the%20Rescue!
http://de.lirio.us/bookmarks/sbmtool?action=add&address=http://blogs.msdn.com/ntdebugging/archive/2009/04/13/bang-search-to-the-rescue.aspx&title=!Search%20to%20the%20Rescue!
http://digg.com/submit?phase=2&url=http://blogs.msdn.com/ntdebugging/archive/2009/04/13/bang-search-to-the-rescue.aspx&title=!Search%20to%20the%20Rescue!
http://www.dotnetkicks.com/kick/?url=http://blogs.msdn.com/ntdebugging/archive/2009/04/13/bang-search-to-the-rescue.aspx&title=!Search%20to%20the%20Rescue!
http://www.facebook.com/sharer.php?u=http://blogs.msdn.com/ntdebugging/archive/2009/04/13/bang-search-to-the-rescue.aspx&t=!Search%20to%20the%20Rescue!
https://favorites.live.com/quickadd.aspx?marklet=1&mkt=en-us&url=http://blogs.msdn.com/ntdebugging/archive/2009/04/13/bang-search-to-the-rescue.aspx&title=!Search%20to%20the%20Rescue!
http://myweb.yahoo.com/myresults/bookmarklet?u=http://blogs.msdn.com/ntdebugging/archive/2009/04/13/bang-search-to-the-rescue.aspx&t=!Search%20to%20the%20Rescue!
http://blogs.msdn.com/b/ntdebugging/rsscomments.aspx?WeblogPostID=9547079
http://blogs.msdn.com/71059/ProfileUrlRedirect.ashx
http://blogs.msdn.com/71059/ProfileUrlRedirect.ashx
http://weblogs.asp.net/yuanjian/archive/2009/04/14/interesting-finds-2009-04-10-04-15.aspx
http://www.cnblogs.com/gOODiDEA/archive/2009/04/15/1436430.html

5/7/2014 ISearch to the Rescue! - Ntdebugging Blog - Site Home - MSDN Blogs

http://blog s.msdn.com/b/ntdebug ging/archive/2009/04/13/bang-search-to-the-rescue.aspx 8/8

