5/7/2014 What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

The Old New Thing

What the various registry data types mean is different from
how they are handled

5 Feb 2009 10:00 AM 55

Although you can tag your registry data with any of a variety of types, such as
REG_DWORD or REG_BINARY or REG_EXPAND_SZ. What do these mean, really?

Well, that depends on what you mean by mean, specifically, who is doing the interpreting.

At the bottom, the data stored in the registry are opaque chunks of data. The registry itself
doesn't care if you lie and write two bytes of data to something you tagged as

REG_DWORD. (Try it!) The type is just another user-defined piece of metadata. The registry
dutifully remembers the two bytes you stored, and when the next person comes by asking for
the data, those two bytes come out, along with the type REG_DWORD. Garbage in, garbage
out. The registry doesn't care that what you wrote doesn't many any sense any more than
the NTFS file system driver doesn't care that you wrote an invalid XML document to the file
confi g.xml. Its job is just to remember what you wrote and produce it later upon
request.

There is one place where the registry does pay attention to the type, and that's when you
use one of the types that involve strings. If you use the RegQueryVvalueA function to
read data which is tagged with one of the string types (such as REG_SZ), then the registry
code will read the raw data from its database, and then call WideCharToMultiByte to
convert it to ANSI. But that's the extent of its assistance.

Just as the registry doesn't care whether you really wrote four bytes when you claimed to be
writing a REG_DWORD, is also doesn't care whether the various string types actually are of
the form they claim to be. If you forget to include the null terminator in your byte count
when you write the data to the registry, then the null terminator will not be stored to the
registry, and the next person to read from it will not read back a null terminator.

This simplicity in design pushes the responsibility onto the code that uses the registry. If you
read a registry value and the data is tagged with the REG_EXPAND_SZ type, then it's up
to you to expand it if that's what you want to do. The REG_EXPAND_SZ value is just part
of the secret handshake between the code that wrote the data and the code that is reading
it, a secret handshake which is well-understood by convention. After all, if
RegQueryvalueEx automatically expanded the value, then how could you read the
original unexpanded value?

Windows Vista added a new function RegGetValue which tries to take care of most of the
cumbersome parts of reading registry values. You can tell it what data types you are
expecting (and it will fail if the data is of an incompatible type), and it coerces the data to
match its putative type. For example, it auto-expands REG_EXPAND_SZ data, and if a blob
of registry data marked REG_SZ is missing a null terminator, RegGetVvalue will add one
for you. Better late than never.

Blog - Comment List MSDN TechNet
Comments

John
http://blog s.msdn.comvb/oldnewthing /archive/2009/02/05/9397154.aspx

mn7

http://blogs.msdn.com/b/oldnewthing/
http://blogs.msdn.com/oldnewthing/archive/2008/01/18/7145021.aspx#7152056
http://blogs.msdn.com/b/oldnewthing/rsscomments.aspx?WeblogPostID=9397154

5/7/2014 What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

5 Feb 2009 10:10 AM
-,

This is the main thing about the registry I have never liked. It seems like the only point
of having a type associated with the value is so that things like RegEdit can work.
Generally you are reading from and writing to a specific registry value for which you
know the type beforehand.

Andrew

@ 5 Feb 2009 10:14 AM
#

@John

But what about areas like the Registry Editor, where it uses that type to show a different
editor?

SmartyPants
@ 5 Feb 2009 11:15 AM
#

Its comforting to know you can still create hidden reg keys using internal NT api's and
regedit (atleast on WS 2003) cant open them.

quarterlife

@& 5 Feb 2009 11:22 AM
#

"The registry doesn't care that what you wrote doesn't many any sense any more than
the NTFS file system"

That doesn't make any sense at all (which is funny considering what you were trying to
say)

SmartyPants
@& 5 Feb 2009 11:29 AM
#

@quarterlife

No, it makes sense. Are you a non-native speaker?

Mark Sowul

@& 5 Feb 2009 11:36 AM
3

http:/blog s.msdn.com/b/oldnewthing /archive/2009/02/05/9397 154.aspx 217

5/7/2014

.

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs
No, it doesn't make sense, because it says "many" instead of "make."

[Holy cow, I read it twice and didn't see the typo until you pointed it out. -Raymond]

Koro

5 Feb 2009 12:12 PM
#

So that's what RegGetValue does!

I was still wondering from the last time.

Anonymous Coward

5 Feb 2009 12:19 PM
#

Since NTFS is a file system, and the registry is like a filesystem, will the Windows team
ever merge the two into one that performs well for both kinds of data? So that the
registry hyves can then be simply folders in your profile that you can browse to, make
shortcuts to keys, open them in Notepad, &c?

ton

5 Feb 2009 1:04 PM
#

Raymond, I'm curious are you familiar with the history behind why the registry was
designed as a hierarchical database instead of a relational database?

Mark
5 Feb 2009 2:31 PM
#

ton: why would you ever need more than one way to get a setting, or to retrieve a large
subset according to a common property? The decision between HKCU and HKLM is taken
wrongly enough of the time already.

And how would you design it? A large proportion of settings in the registry are optional.
You'd either end up with 3 tables, or so many that it would effectively be a filesystem.
That comes with enormous memory and maintenance difficulties, not to mention the
likelihood of unimplemented classes (thinking WMI here).

I'm not trying to bash your idea here - I'm interested in whether you have some existing
system in mind.

ton

http://blog s.msdn.com/b/oldnewthing/archive/2009/02/05/9397154.aspx

317

5/7/2014

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

5 Feb 2009 3:26 PM
#

@Mark it's not really about having multiple ways to retrieve a setting. It's that relational
databases have proven to be a better storage model over the years than hierarchical
database systems have. That's what the registry really is; a hierarchical database that
stores configuration settings for how the windows operating system and installed
applications will behave.

A common problem is that programs and sometimes people will corrupt the registry by
deleting a setting or supplying a nonsense value. If the registry had been designed as a
relational database instead then deletions that destabilize the system could be prevented
thru referential integrity and value constraints. It just would have made for a more stable
system overall as opposed to what Microsoft has to support with the registry now.
However, I fully acknowledge that it is much too late to change this now because of
backwards compatibility issues and its also why I only asked Raymond about the history.

Bryan
5 Feb 2009 5:29 PM

#

I don't understand how the registry being a relational database would protect against
someone corrupting the registry by deleting a setting or supply a nonsense value.

As far as I'm aware, the major advantage of a relational database is the fact that you
can model more relationships than can be modeled in a hierarchical database. I don't
understand how that modeling technique (which would've been more expensive right?)
would prevent misuse of the registry.

Cooney

5 Feb 2009 5:50 PM
#

> Since NTFS is a file system, and the registry is like a filesystem, will the Windows team
ever merge the two into one that performs well for both kinds of data? So that the
registry hyves can then be simply folders in your profile that you can browse to, make
shortcuts to keys, open them in Notepad, &c?

I doubt it; reg data is far more granular than FS data, so different rules are required to
make each perform well.

ton

5 Feb 2009 6:04 PM
#

@Bryan

An application would have a table or group of tables in relational style registry. A group
of settings would be a row. A single setting would be a column. Is it starting to become
clearer now how SQL like statements could now be used to constrain what gets deleted

http://blog s.msdn.comvb/oldnewthing /archive/2009/02/05/9397154.aspx

417

5/7/2014

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs
and added? How good is your understanding of SQL and DBMS?

Bryan
5 Feb 2009 8:35 PM

#

That makes some level of sense, but the prospect of enforcing constraints seems like it
defeats the whole prospect of the registry being lightweight. I would only say I know
only basic RDBMS knowledge, but I know table data can be heavy (com structured
storage being a case-in-point).

agrirmSmadcaf

5 Feb 2009 8:39 PM
#

dgdfgds fgf gdsf gssd f gfsd df dsfdgdfgds fgf gdsf gssd f gfsd df dgdfgds fgf gdsf gssd f
gfsd df

ton

5 Feb 2009 9:00 PM
#

@Bryan

You must understand the registry is storing data that determines whether or not your
computer can boot! Instead of being lightweight the registry needs to be robust and
durable.

Anonymous Coward

5 Feb 2009 9:44 PM
#

>I doubt it; reg data is far more granular than FS data, so different rules are required to
make each perform well.

But there is no reason the merged filesystem couldn't contain both rulesets. In fact, it
already does in a sense, since the hives are already saved in regular files in the
filesystem.

Mark
5 Feb 2009 9:59 PM
#

ton: it seems there's two changes with your suggestion, viz.

http://blog s.msdn.com/b/oldnewthing/archive/2009/02/05/9397154.aspx

517

5/7/2014

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

1) The isolation of program data, which is currently done through cooperation of
programs and permissions on individual keys. Would you allow programs to access each
other's tables? If so, how do you make sure they don't do that accidentally?

An alternative is to have different tables for each class of data (Paths, Dwords,
Uninstalllnfos), but you'd then need huge indexes, and a sensible way for adding new
classes.

2) The formation of settings into rows and columns. I don't think this will help at all:
nearly all registry data is individual settings, and doesn't fit into a grid at all.

How good is your understanding of SQL and DBMS? Good enough to know that forgetting
the WHERE clause in a DELETE is about as easy as stomping someone else's registry key.
I also feel that the benefits of RDBMS only emerge with indexing and normalisation.

Perhaps if the Windows 3.1 OLE registry had been designed to use tables (like MSIs) it
would be more efficient now. But your average program just wants to store window
sizes or the last 5 opened documents: the registry was doomed as soon as someone
decided to store config in it.

As for why that happened, my guess (which may or may not be as good as Raymond's) is
that it was economy. Imagine someone in the NT team looking around for some way to
manage the rapid proliferation of .ini files - a hierarchical database that was already
coded would have been too tempting not to use. (For some context, see the History
part of http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt and bear in mind
developers were used to GetPrivateProfileString, etc.)

Mark
5 Feb 2009 10:08 PM

#

Anonymous Coward: the trouble isn't in the granularity below the filesystem layer, but
above. How would Windows tell a program that it can open a value like a text file, but
can't get its last modified date? Or that cmd's current directory is longer than
MAX_PATH characters long? Better to let programs treat them separately, since they'll
have to anyway.

ton

5 Feb 2009 10:56 PM
#

@Mark
You are over complicating my brilliant design :-)

1)All access to the database,isolation, and "accidents" can be controlled by only allowing
each program to have permissions to its own database and tables.
(e.g.GRANT,REVOKE, DENY)

2)Even if there is only one column in the table it's still better than using a hierarchical
design especially when it comes to critical data. Also, most programs I've seen usually
have *multiple* settings for each program if they are non trivial which is almost always
for most commercial programs that software vendors sell. SQL and RDMS are fully

http://blog s.msdn.comvb/oldnewthing /archive/2009/02/05/9397154.aspx

6/17

http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt

5/7/2014 What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs
capable of fulfilling all requirements you brought up.

http://en.wikipedia.org/wiki/SQL#Data control

http://en.wikipedia.org/wiki/DBMS#DBMS Features and capabilities

Read both links carefully and you'll start to see the possibilities.

Anonymous Coward

& 5 Feb 2009 11:36 PM
#

It is already perfectly possible to create paths longer than MAX_PATH so while merging
might increase the chance of hitting that, it doesn't really create a problem that doesn't
already exist. The correct solution would be to remove the whole MAX_PATH restriction.
This would probably require moving over to a new API, and saying ‘no sorry you can't’ to
ancient applications. We already do that by the way when an application using the ANSI
API tries to open v—>—/k &R E%.mp3 for example. Similar applies to the time, ACL's or
lack thereof, and so on. For old applications using the old API everything will appear as it
was as long as they access the registry through the registry functions, but for migrated
applications like the shell things would be much simpler because you'd have one API for
doing one thing, and as I said it would enable a lot of new features. Features which we
should have been able to take for granted, given that the registry is a file system. And
even unmigrated applications would benefit most of the time, seeing as when I
concatenated the most ridiculously long keyname I could find (somewhere in the
Windows part of the registry) with the place where ntuser.dat is now, I only got about
half of MAX_PATH.

Dave

& ' 6 Feb 2009 5:02 AM
#

>That makes some level of sense, but the prospect of enforcing constraints seems like it
defeats

>the whole prospect of the registry being lightweight.

Exactly. As the current registry shows it was perfectly possible to make it a bloated
mass of cruft without having to resort to implementing constraints.

A Crazy Person

&5 ' 6 Feb 2009 6:55 AM
#

Wow!

Armed with this information, can I now hide extra configuration information in the bytes
after a DWORD value, storing a whole pile of hidden settings, masquerading as a zero
DWORD value in the UI?

(ducks)

http:/blog s.msdn.com/b/oldnewthing /archive/2009/02/05/9397 154.aspx 7nm7

http://en.wikipedia.org/wiki/SQL#Data_control
http://en.wikipedia.org/wiki/DBMS#DBMS_Features_and_capabilities

5/7/2014

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

Anonymous

6 Feb 2009 8:37 AM
#

And, unfortunately, we will not be able to actually use RegGetValue for several years
more, since there are still a lot of people who use XP or earlier systems.

I recently heard from a developer from another company that they cannot use a more
recent version of their chosen development environment, which creates programs that
require newer API functions, because several of their clients are still on Windows 9x.

DrkMatter
6 Feb 2009 9:09 AM

#

"All access to the database,isolation, and "accidents" can be controlled by only allowing
each program to have permissions to its own database and tables."

Except that this does not only involve a change to the registry, but to the whole Win32
security model which, as far as I know, has no concept whatsoever of application
identity. Security constraints are always applied on a per user basis.

Thom
6 Feb 2009 9:13 AM

#

@ton

What is the mechanism by which you grant each program it's own permissions? How do
you protect against collisions, impersonations, etc.? What about "suites" where several
programs work together and share registry data? What about all the registry data that is
written by programs but largely used by windows itself (or other programs... interface
stuff,etc.)?

Anonymous Coward

6 Feb 2009 10:18 AM

#

>not be able to actually use RegGetValue for several years
Can't you just use RegGetValue from Wine?

http://source.winehq.org/git/wine.qit/?f=dlls/advapi32/reqgistry.c:hb=HEAD

A cursory glance seems to indicate that it's implemented in terms of other API's so you
can add it in a helper DLL if you need it.

>each program it's own permissions

http://blog s.msdn.com/b/oldnewthing/archive/2009/02/05/9397154.aspx

8/17

http://source.winehq.org/git/wine.git/?f=dlls/advapi32/registry.c;hb=HEAD

5/7/2014

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

And that isn't even what you really want... you really want different instances of
programs to possibly have different sets of permissions too. I think the only way to solve
that problem would be to make Windows (or Linux depending on what's easier to do)
more object oriented, eventually turning the old Win32 and POSIX API's into an emulation
layer.

Bryan
6 Feb 2009 10:35 AM

#

I entirely disagree with the Registry being robust and durable. No, the last thing we
need is another slow mechanism that makes it difficult and unhelpful to store information.

Further, all that permissions work would be a bear. I don't really feel like having to
develop or use a registry management library just for storing application data.

In the end, your solution seems overcomplicated and restrictive. Windows can certainly
boot without all of the registry data intact as well as long as it can load the hives
themselves.

ton

6 Feb 2009 10:54 AM
#

@DrkMatter

Remember basic object-oriented design. The registry would have application identity
knowledge and enforce security access to the registry the win32 security model would
go unchanged.

@Thom

The registry would grant permissions to each installed program. The registry could store
a sha-256 hash to verify application identity. In the suite case it would simply be a
collection of tables for each component in the suite. The last case only changes in one
way because of a move to the relational model from a hierarchical model, and that is the
way the data is accessed. What I have presented is pretty simple; if you are willing to
completely forget about backwards compatibility :-)

Thom
6 Feb 2009 11:39 AM

#

@ton

But the question becomes how would the registry know when and to which program to
grant permissions. The hash would have to be updated each and every time the
application was updated, else all settings would be lost. What if I have 2,3,4 or 5
versions of a program on my computer for some reason? All have different hashes, what
data is shared and what isn't, and who decides?

http://blog s.msdn.comvb/oldnewthing /archive/2009/02/05/9397154.aspx

97

5/7/2014

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

In these instances do you ask the user and trust their answer? Do you decide when a
program is installed or updated? Do you let the program tell you, which only works for
things it currently knows of like updates or new add-ons, or lets some malware fool you?

Same for the suite of applications, who tells you what is part of the suite? The user?
The application(s) - which may not be installed all at once but separately over time?
What if some are updated and others aren't? What about third party add ons, especially
competitive ones that a program might wish to block?

Even tossing out backwards compatibility it grows very complex very quickly, so much so
that it becomes an unworkable solution. I wish it didn't.

DrkMatter
6 Feb 2009 11:50 AM
#

@ton

Even if you disregard the concerns about determining application identity, which Thom
explained, there is still the question of ressource ownership. The registry and the data it
contains belong to the user, not the application. Much like how the files that make up an
application's executable data also belongs to the user. If the user wants to delete those
files, or replace them with others, it is his choice: much like it is the user's choice to
overwrite or delete any registry configuration for any application.

Anonymous

6 Feb 2009 12:29 PM
#

@Anonymous Coward:
> Can't you just use RegGetValue from Wine?

Only if your code's license is LGPL-compatible. I suppose you could create a LGPL-
licensed helper DLL and use it in your application, however. You would then only have to
redistribute the DLL's source code together with your application.

But you still would be reimplementing RegGetValue instead of simply using it.

ton

6 Feb 2009 12:46 PM
#

>Even if you disregard the concerns about determining application identity, which Thom
explained, there is still the question of ressource ownership.

Both of your objections about application identity stem from a lack of understanding of
how hash algorithms work. If there is a different version of the same program then it
would create a different hash value. It's just that simple. As for resource ownership the
user can override the constraints if they want but they should be ready to deal with the

http:/blog s.msdn.com/b/oldnewthing /archive/2009/02/05/9397 154.aspx 1017

5/7/2014

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

consequences and they would be prompted with such information. You can't save
everyone from winning the Darwin award.

I have only proposed a change from a hierarchical model to a relational one for data
storage for the registry. ALL THE OTHER CAPABILITIES OF THE REGISTRY ARE
COMPLETELY UNAFFECTED BY HOW IT ACTUALLY STORES DATA.

It just adds additional benefits and tools that a hierarchical system can't provide. geez...

Bryan
6 Feb 2009 12:58 PM

#

"Both of your objections about application identity stem from a lack of understanding of
how hash algorithms work. If there is a different version of the same program then it
would create a different hash value."

That's the point: sometimes, we don't want it to, other times we do. The application
I'm working on has 4 different versions that can be installed at the same time for
feature-related reasons. In addition, each of those versions has 1 - 3 minor versions
that have to share registry data with the other versions; however, must also be
independently identified as minor versions.

Users aren't going to care about the above situation. UAC will look like a walk in the park
compared to trying to help a user understand how to deal with the above scenario.

Your system also adds additional complexity, management requirements, and critical
design issues that a hierarchical system doesn't have.

night
6 Feb 2009 1:22 PM
#

@Coward

> Since NTFS is a file system, and the registry is like a filesystem, will the Windows team
ever merge the two into one that performs well for both kinds of data?

Yes, I would favor that, too, having lost data due to corrution of Outlook Express
databases and OLE structured storage many times in the past. Keep things simple and
have everything in a single, reliable, transparent storage system. Modern file systems
should be strong enough for that.

Thom
6 Feb 2009 1:36 PM
#

@ton

Sorry ton, but I think the lack of understanding is on your part. All those hash values
have to be associated with data in the registry and it is *impossible* for the OS, the

http:/blog s.msdn.com/b/oldnewthing /archive/2009/02/05/9397 154.aspx 1117

5/7/2014

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

software, or the user to give a definitive answer to what data should be associated with
what hashes and available to what programs.

The OS has no way of knowing what program(s) should or should not be able to read or
write particular data aside from the original hashed executable that wrote it. Allow all -
in other words you've just tagged every bit of data with the hash of the executable that
wrote it - then what have you gained but a lot of overhead to tell you who (originally?,
last? journalled?) wrote the data. Deny all others but that one hashed executable, then
you limit or break everything but that exact one. You can't do *anything* based on
those hashes without breaking something, so why bother with them to begin with.

You can't rely on allowing the original executable to tell the OS what programs can read
or write the data because the original executable only knows about (at best) programs
that currently exist, and probably only those that are already installed. It has no
knowledge of future updates or expansions to itself, updates to suite programs, new
add-ons (including third parties), new OS components, etc.

You can't rely on the user to tell you or even aid you, because even the most technically
savy user has no idea what data is being written/read, when, and why.

Any change in OS components, OS features, installed software, etc., can require that
those relations be changed *if they are actually used for anything* - but there is NO
way for the OS, the original software, the user, or even the new software to determine
how to do so with any accuracy.

Markus

6 Feb 2009 1:52 PM
#

ton. relational model offer only additional problems as means of access control. relational
model offer only overhead as diff means of storage only.

Anonymous Coward

6 Feb 2009 6:21 PM
#

>corruption of Outlook Express databases and OLE structured storage

Yes, what's with all these subfilesystems in the first place? They just make things more
difficult for the end user (editing a CHM file is significantly more involved than editing a
folder of HTML files) and tend to be implemented badly. CHM is a case in point, someone
once remarked that it looked like it was cooked up by an intern.

>could create a LGPL-licensed helper DLL

That was what I said yes. On Vista you could simply not install the DLL and use the
system provided function, if you're desperate to shave a few kB of your working set. But
if you're that desperate you shouldn't be running Vista.

The whole hashes idea sounds bonkers to me. It's fragile, probably more annoying than
UAC, provides less security than the current system could provide, and worse, it sounds
complicated. Which means that most people will not bother. It cannot properly
differentiate between different instances of the same program without doing trickery,

http://blog s.msdn.comvb/oldnewthing /archive/2009/02/05/9397154.aspx

12117

5/7/2014 What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

and it requires a lot of configuring that sounds like it would be hard to do dynamically. All
in all, it sounds complex, contrived, fragile, and non-intuitive.

I'd prefer an object-oriented approach. Take things like Java or .NET as examples. If you
pass an object to a function, you can call methods on its interfaces. Now imagine that
you can port that concept... like an application would be the function that you could
pass objects to. Over the past decades we've come a long way in understanding object-
oriented design, we now know a lot about it, how to reason about it, and I think applying
that knowledge to operating system design and security would be a very fruitful
endeavour.

The Imp
&5 | 7 Feb 2009 6:24 AM

#

@ton

A good reason for not designing (or redesigning) the registry as a relational database, is
that traditionally, they are designed such that getting multiple chunks of data at once is
as simple as getting single chunks. But with the registry, it's generally implicit that you're
going to be asking for solitary chunks of data only. Hmm. Well, I guess that's less true
than it used to be... And the fact that the original design of the registry never expected
to have very much of anything in it, and certainly not almost every setting for every
program on the system.

Why do you assume that you cannot add referential integrity checks on a hierarchical (or
spatial or otherwise non-relational) database?

@Anonymous Coward

NTFS and the registry cannot be merged as you suggest (however good that idea might
otherwise be). They both support the same ACL system, but there is no guarantee that
the filesystem where the registry settings will live, will be an NTFS filesystem. If it isn't,
there will be NO way to enforce ACLs on registry entries. I do love the idea, though.

Anonymous Coward

&5 | 7 Feb 2009 7:50 AM
#

>no guarantee ... will be an NTFS filesystem

But in the case that it is, it could be merged. And if it isn't... well, we're using a
subfilesystem already, so we might as well make this subfilesystem (in the case that say
ntsuser.dat is saved on a FAT volume) this NTFS/registry merger. It'd be pretty much like
working with an image file. I think it could be done, but then, I'm an optimist.

ethO
&5 | 8 Feb 2009 12:53 PM
#

> They both support the same ACL system, but there is no guarantee that the filesystem
http:/blog s.msdn.com/b/oldnewthing /archive/2009/02/05/9397 154.aspx 13/17

5/7/2014

e

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

where the registry settings will live, will be an NTFS filesystem. If it isn't, there will be NO
way to enforce ACLs on registry entries.

Registry ACL permissions are not the same as NTFS ACL permissions.
They're both ACLs but not interchangeable.

Remember, as far as the NTFS filesystem is concerned, the separate Hives are just like
any other file.

And Registry ACLs are available on FAT32 systems as well.

Anonymous Coward

8 Feb 2009 3:05 PM
#

The registry and NTFS permissions are not entirely identical, but the basic ACL
architecture appears to be the same. They could certainly be merged. On FAT32
however you only have the DOS attributes, no ACLs. So to make it work there you either
need subfilesystem trickery (which we're already doing) or you would need to store the
required additional meta-data in files in the filesystem, which you hide from the API.

steveg

8 Feb 2009 5:40 PM
#

My guess the Registry is not an RDMS is because it would've made Win3.x/95 run even
slower (I think the Registry came first on 3.x). Theoretically a bespoke registry
implementation would be faster than a more generic RDMS.

I do, however, like the sounds of making the Registry visible in the file system -- ala
/proc on linux (for those who don't know most anything can show up in /proc as,
apparently, a file even though they're not really... eg /proc/cpu might be a text file that
contains info about your cpu).

grep "malware" /proc/registry/HKCU | delreg

Miral
8 Feb 2009 7:38 PM
#

@A Crazy Person:

That's the first thing that occurred to me as well. I wonder how regedit displays such
things?

Anonymous Coward

8 Feb 2009 7:55 PM

http://blog s.msdn.com/b/oldnewthing/archive/2009/02/05/9397154.aspx

14117

5/7/2014

What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

#

@Miral: there's only one way to find out...

Stefan Kanthak
9 Feb 2009 2:55 PM
#

@steveg

<http://www.codeplex.com/RegNamespace>

<http://www.regxplor.com/>

And don't forget to see the REALLY old sample code on MSDN too!

Anonymous Coward

9 Feb 2009 11:58 PM
#

It's certainly cool that things like that are possible, after all, that's why ZIP files don't
suck anymore, but given that shell namespace extensions are not visible in the actual
filesystem, these things unfortunately certainly have their limitations, as is also apparent
when you're working with ZIP files.

ceapseAcank

10 Feb 2009 7:59 AM
#

dgdfgds fgf gdsf gssd f gfsd df dsfdgdfgds fgf gdsf gssd f gfsd df dgdfgds fgf gdsf gssd f
gfsd df

Stefan Kanthak
10 Feb 2009 1:12 PM
#

@Anonymous Coward

Nobody keeps you from implementing ZIP or registry access as extension to the Windows
filesystem: junctions exist!

Anonymous Coward

10 Feb 2009 7:08 PM
#

>junctions exist

http://blog s.msdn.com/b/oldnewthing/archive/2009/02/05/9397154.aspx

15117

http://www.codeplex.com/RegNamespace%3E
http://www.regxplor.com/%3E

5/7/2014 What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs
Then why didn't Microsoft implement ZIP folders that way? I suspect that junctions don't
do what you say they do. Certainly all information that turns up in a web search
suggests that what you say is impossible. If you didn't pull it out of your arse, please
point me to some example code demonstrating the possibility.

Stefan Kanthak
& 11 Feb 2009 10:27 AM
#

Forgive me that my suggestion is above your mental capabilities! Junctions are an
instantiation of the more general "reparse points". If you dont understand their
possibilities then choose another way to implement the desired functionality, for example
file system filter drivers. THINK!

Stefan Kanthak
& ' 11 Feb 2009 10:28 AM
#

Forgive me that my suggestion goes beyond your mental capabilities! Junctions are an
instantiation of the more general "reparse points". If you dont understand their
possibilities then choose another way to implement the desired functionality, for example
file system filter drivers. THINK!

eth0
& 11 Feb 2009 4:25 PM
#

> On FAT32 however you only have the DOS attributes, no ACLs.
So: Registry and NTFS permissions are not AT ALL identical.
They're both ACLs, that's it.

Just like you are a mammal and a possum is.

But you're no possum - at least I hope not for your sake ;)

Anonymous Coward

& ' 11 Feb 2009 5:24 PM
#

>THINK

In the meantime I've read up on junction points, and they can't be used the way you say
they can. In other words, I don't see much evidence that you're doing what you tell me
to do: thinking. If you aren't lying, provide links and example code.

>not AT ALL identical

http:/blog s.msdn.com/b/oldnewthing /archive/2009/02/05/9397 154.aspx 16/17

5/7/2014 What the various registry data types mean is different from how they are handled - The Old New Thing - Site Home - MSDN Blogs

They are sufficiently homologous and a common API could certainly be written. The old
API's would simply show the best fit of what's actually there in terms of the new API.

http:/blog s.msdn.com/b/oldnewthing /archive/2009/02/05/9397 154.aspx 17117

