5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

Click Here to Install Silverlight

’
- ;‘ de n Search Microsoft.com

MSDN Home | Developer Centers | Library | Downloads | Code Center | Subscriptions | MSDN Worldwide

Search for MSDN Home > MSJ] > September 1999

MSDN Magazine ¥ | |Go
Advanced Search

MSJ Home
September 1999

Search
Source Code

Back Issues

Subscribe
Reader Services

Write to Us

MSDN Magazine
MIND Archive

Magazine Newsgroup

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

September 1999

W BRI YR

Keeping an Eye on Your
NTFS Drives: the Windows
2000 Change Journal
Explained

Jeffrey Cooperstein and Jeffrey Richter

The Windows 2000 Change Journal is a
database that contains a list of every
change made to the files or directories
on an NTFS 5.0 volume. Each volume
has its own Change Journal database
that contains records reflecting the
changes occurring to that volume's files
and directories.

This article assumes you're familiar with Windows NT, Platform
SDK

Code for this article: Changelournal.exe (4KB)

Jeffrey Cooperstein is an author, trainer, and Windows
programming consultant. He can be reached at
http://www.cooperstein.com. Jeffrey Richter wrote
Advanced Windows, Third Edition (Microsoft Press,
1997) and Windows 95: A Developer's Guide (M&T
Books, 1995). Jeff is a consultant and teaches Win32
programming courses (http://www.solsem.com). He
can be reached at http://www.JeffreyRichter.com.

Windows 2000 is packed with new and exciting
technologies, and the Change Journal is one of them.
The Change Journal is going to open up a whole new
world of features in future Windows-based applications,
and it will provide the opportunity for dramatic
performance improvements in many of today's
applications. Everything from enterprise-class
applications to your personal virus scanner will make
use of the Change Journal.

We will explain the technology, its implementation,
and introduce the API used to access the Change
Journal. Our sample application will get you started with
examining the features of the Change Journal. In a

future article, we'll cover all the subtleties of
programming the Change Journal and provide a full-
fledged Change Journal sample that can be used as a
template for your own application.

In simple terms, the Change Journal is a database that

~Aantaine A liek AF Aavianms ~rlhanAa rmaAda FA Fha filac Ar

115

http://go.microsoft.com/fwlink/?LinkID=92799
http://www.microsoft.com/worldwide
http://www.microsoft.com/en/us/sitemap.aspx
http://msdn.microsoft.com/
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/default.aspx
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/developercenters/
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/library/default.asp
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/downloads/
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/code/
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/subscriptions/
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/worldwide.aspx
http://search.microsoft.com/search/search.aspx?View=msdn&st=a
http://www.microsoft.com/msj/default.aspx
http://www.microsoft.com/msj/0999/default.aspx
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/msdnmag/find/default.aspx
http://www.microsoft.com/msj/code.aspx
http://www.microsoft.com/msj/backissues.aspx
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/msdnmag/Subscribe.aspx
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/msdnmag/service.aspx
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/msdnmag/write.aspx
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/msdnmag/default.aspx
http://www.microsoft.com/mind/default.asp
http://msdn.microsoft.com/newsgroups/topic.aspx?url=/msdn-files/028/201/133/topic.xml
http://www.microsoft.com/msj/0999/journal/isapi/gomsdn.asp?TARGET=/
http://www.microsoft.com/msj/
http://www.microsoft.com/msj/0999/default.aspx
http://www.microsoft.com/msj/0999/default.aspx
http://www.microsoft.com/msj/default.asp
http://download.microsoft.com/download/0/6/7/0678184e-905e-4783-9511-d4dca1f492b4/ChangeJournal.exe
http://www.cooperstein.com/
http://www.solsem.com/
http://www.jeffreyrichter.com/

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

LulLiLanio a 1oL vi CVCIY LIIGIIHC 11IgUT LU LIIT 11HTD VI
directories on an NTFS 5.0 volume. When any file or
directory is written to, NTFS guarantees that a record
will be added to the Change Journal. Each volume has
its own Change Journal database that contains records
reflecting the changes occurring to that volume's files
and directories. If you have more than one NTFS
volume, each one will have its own journal. Of course,
FAT volumes do not maintain a Change Journal.

The Change Journal is fairly easy to use. The Change
Journal will be used most often by services, but there is
nothing to prevent normal applications from reading it.
It is accessed though documented functions, making it
available to any application running on Windows 2000.

Any number of applications or services can have
simultaneous access to this information. A backup
service can read the journal to find out what files need
to be backed up. At the same time, a security program
might be watching to make sure no one tampers with
the files in the system directory. On Windows NT 4.0,
these tasks were accomplished with functions like
FindFirstChangeNotification and
ReadDirectoryChangesW. Anyone who has attempted to
use these functions knows how limited they can be.
The Change Journal provides a new level of detailed
information for applications that need to monitor
changes on an NTFS volume.

The Change Journal can also reduce the need for
applications to walk the entire hard drive (full rescans).
Many utilities rely on full rescans to occasionally gather
up-to-date information. Now an application can do a full
rescan just once and then rely on the Change Journal
to tell it exactly what files or directories have changed
and when.

Implementation Details

The Change Journal is actually a special file on an
NTFS volume. The system hides this file so that you
cannot view it using familiar tools like the Explorer and
the CMD shell. Whenever the file system makes a
change to a file or directory, it appends a record to the
journal. The record identifies the file name, the time of
the change, and what type of change occurred. The
actual data that changed is not kept in the journal, so
don't get your hopes up about being able to roll back
changes—this keeps the size of the journal as small as
possible.

The Change Journal is initially an empty file on the disk
volume. As changes occur to the volume, records are
appended to the end of this file. Each record is
assigned a 64-bit identifier called an Update Sequence

Number (USN). When Microsoft was first developing the
Change Journal, it was internally called the USN Journal.
That's why the structures and defines in the winioctl.h
header file refer to the Change Journal as the USN
Journal. When a record is added to the journal, it is
assigned a USN. USNs are generated in increasing
order, so that you can compare USNs to find out the
order of events (lower USNs are older events). USNs
are not contiguous, so it's possible that the first USN
record might be 0 and the second USN record might be
128.

2/15

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

The Change Journal always writes new records to the
end of the file, so the implementors chose to use the
file offset of a record as its USN. This makes querying
the journal fast since the system can simply seek the
desired record using the USN. Since records include a
file name they vary in length, so you'll notice varying
distances between USNs of adjacent records. A typical
record might be 100 bytes long. For performance, the
system writes to the journal in 4KB blocks that contain
groups of 30 or 40 records (as defined by
USN_PAGE_SIZE in winioctl.h). The system will not
allow a single record to span the boundaries of a page,
so you'll sometimes see a gap in USNs where empty
space was used to pad the end of a block.

On an NTFS volume, file and directory information is
stored in the Master File Table (MFT). Each record in
the MFT describes a file or directory's name, location,
size, attributes, and more. With NTFS 5.0, each file's
MFT entry records the Last USN generated for that file.
This is also true for directories. As records are
appended to the Change Journal, the file system
updates the MFT's Last USN value for the changed file
or directory. In our next article, we'll show how this
information is useful with a technique that can quickly
scan the MFT for all files that changed over a range of
time.

If the journal file gets too big (as defined by the
MaximumSize parameter), the system will purge the
oldest records at the start of the file. Traditionally,
truncating data at the start of a file requires lots of file
I/O0. The end of the file must be copied to a new
location, which is a time-consuming task. Fortunately,
NTFS 5.0 supports sparse files, a mechanism that
allows unneeded portions of a file to be deleted while
retaining the logical offsets of the remaining data. The
Change Journal is a sparse file, allowing the purging of
records without any performance penalty. In addition,
remaining records can still be quickly located using the
USN since they remain at the same logical offset. For
more information on sparse files see the article "A File
System for the 21st Century: Previewing the Windows
NT 5.0 File System" by Jeffrey Richter and Luis Felipe
Cabrera in the November 1998 issue of MSJ.

A Change Journal can be disabled on a given volume,
preventing the system from logging file and directory
changes. By default, an NTFS volume will have its

Change Journal disabled. Some application must
explicitly activate the journal. Also note that any
application can activate or disable the volume's journal
at any time. An application must be able to gracefully
handle the situation when a journal is disabled while the
first application is still using the journal. We'll describe
how applications can handle this in a future article.
When an application disables the Change Journal for a
volume, the system will also purge any existing records
to prevent recovery of the information. This prevents
applications from inadvertently reading unreliable
records. The journal will only contain records as long as
the journal is continuously active.

In the current implementation of the Change Journal,
the journal file on disk is actually deleted when the
Change Journal is disabled. A new journal file is created

thAa mnAavd FimmAa ~nn Annlicakian ArbkiuiabAans FhAa ChanAana

3/15

http://www.microsoft.com/msj/1198/ntfs/ntfs.htm

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999
LIIT TICTAL LIS adll appleaclivil acuivailcs Liic wiialiyc

Journal. Although applications should not care about
this implementation detalil, it is why the terms "creating"
and "deleting" the journal are used in the Platform SDK.
We prefer to think of a Change Journal as being active
or disabled since it describes the Change Journal as a
service provided by the system. Terms such as "create"
and "delete" are useful when trying to understand the
implementation of the Change Journal as a file on disk.
We've found that thinking about the Change Journal as
active or disabled helps in understanding how it is used
by applications.

Change Journals are assigned a unique 64-bit Journal
ID (not to be confused with a USN number). The
system will change a journal's ID when there is a
chance that file or directory changes were not logged
in the journal. For example, if a volume's journal is
disabled, then activated, the Journal ID will be
changed. As long as the Journal ID does not change,
applications can be assured that the Change Journal
has recorded every file and directory change. Even if
the systemis rebooted, the Journal ID will typically not
need to change. In other words, if the Journal ID does
not change after a reboot, the system has recorded all
file and directory changes throughout the shutdown
and boot sequence. Observant developers may discover
that Journal IDs are actually standard 64-bit UTC time
stamps generated from the system time. Applications
should not derive any meaning from this (and remember,
Microsoft may change how Journal IDs are generated
before Windows 2000 ships).

Windows NT 4.0 Service Pack 4 provides limited
access to NTFS 5.0 volumes. Unfortunately, the
Change Journal cannot be accessed and changes to the
volume will not be recorded. On dual boot systems, a
boot to Windows NT 4.0 will cause all Journal IDs to be
changed when Windows 2000 is restarted. Again, this
allows applications running on Windows 2000 to know
that they may have missed some file or directory
changes.

Usage

All features of the Change Journal are accessed via
the DeviceloControl function.

BOOL DeviceIoControl (

HANDLE hDevice, // handle to device/file/
// directory

DWORD dwIoControlCode, // control code of operation
// to perform

LPVOID lpInBuffer, // pointer to buffer of
// input data

DWORD nInBufferSize, // size, in bytes, of input
// buffer

LPVOID lpOutBuffer, // pointer to buffer for
// output data

DWORD nOutBufferSize, // size, in bytes, of output
// buffer

LPDWORD lpBytesReturned, // receives number of bytes
// written to lpOutBuffer
LPOVERLAPPED lpOverlapped// for asynchronous
// operation

The first parameter is a handle to a file, directory, or

Aaoviira nhtainad hyv ~allina CraataFila NavicaTAaCAantrnl ic

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx 4/15

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

USVILE ULLUIISU Uy LUy vl SULST 1S, LSV IV SIUMUIIL UT 1D
a common method used to pass device-specific
requests to the driver managing hDevice. The
parameter dwloControlCode specifies what operation to
perform and defines the structure of input/output
buffers. If CreateFile is called with
FILE_FLAG_OVERLAPPED, DeviceloControl will operate
asynchronously in the same way as ReadFile/WriteFile.
The NTFS driver manages the Change Journal. To
communicate with a volume about its Change Journal,
call DeviceloControl with a handle to the volume. Call
CreateFile as shown to get a volume's handle:

// Get a handle to access the Change Journal on the
// 'C' volume
HANDLE hcj = CreateFile ("\\\\.\\C:", GENERIC READ,
FILE SHARE READ | FILE SHARE WRITE,
NULL, OPEN EXISTING, 0, NULL);

Access to this volume handle is restricted to the
system and members of the Administrators group, so
typical users will not be able to run Change Journal
applications. This means that these applications will
most likely be services or utilities run by administrators.

The control codes that are supported for Change
Journals are documented in the Platform SDK. They can
be located in the index, but are not listed directly in the
documentation for DeviceloControl. The best way to
locate the documentation is to search for "Change
Journal."

Change Journal Statistics

An application can query a volume for Change Journal
statistics by calling DeviceloControl and passing the
FSCTL_QUERY_USN_JOURNAL code. If DeviceloControl

returns TRUE, the USN_JOURNAL_DATA structure shown
in Figure 1 is filled in. If DeviceloControl returns FALSE,
GetLastError may return one of the codes shown in
Figure 2.

Change Journal Records

Let's take a closer look at the information stored in a
single Change Journal record.

Applications deal with records using the USN_RECORD
structure. This is not the on-disk structure of a record,
but it contains all of the information that is available
from a single record.

// Version 2.0 USN_RECORD structure
typedef struct {

DWORD RecordLength;

WORD MajorVersion;

WORD MinorVersion;
DWORDLONG FileReferenceNumber;
DWORDLONG ParentFileReferenceNumber;
USN Usn;

LARGE INTEGER TimeStamp;

DWORD Reason;

DWORD Sourcelnfo;

DWORD SecurityId;

DWORD FileAttributes;

WORD FileNameLength;

WORD FileNameOffset;
WCHAR FileName[1l];

} USN_RECORD, *PUSN_RECORD;

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx 5/15

javascript:OpenUrl('journaltextfigs.htm#fig1');
javascript:OpenUrl('journaltextfigs.htm#fig2');

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

Applications will never have to fill in this structure.
Instead, the system populates an output buffer with
USN_ RECORDs when an application reads from the
journal.

RecordLength is the total length of the record, in
bytes, including the file name. Multiple records will be
provided in an output buffer, so RecordLength should be
used to calculate the location of the next record.

PUSN_RECORD pNext;
pNext = (PUSN_RECORD) (((PBYTE) pRecord) +
pRecord->RecordLength) ;

Major Version and MinorVersion

It is easy to ignore the importance of version
checking, but even easier to make a careless error that
will infuriate users. Anyone who installed software on
Windows NT 4.0 and received the message "Requires
Windows NT 3.5 or greater" will testify to the disasters
caused by the misuse of the GetVersion function!
GetVersionEx was added to help clarify the versioning
mess for developers, but even that was not enough.
Windows 2000 has added VerifyVersionInfo to provide
an even safer method for what should be a simple
procedure.

For the sake of this article, we don't really care about
what version of Windows is running, but the Change
Journal has its own version control. There aren't any
fancy functions to help you out, so it's all the more
important that you take the time to understand this
information. (We only mention VerifyVersionInfo as a
public service announcement. If you want more
information, see the current Platform SDK
documentation.)

The initial release of Windows 2000 is expected to use
version 2.0 Change Journal records (MajorVersion is 2,
MinorVersion is 0). As we are writing this article, the
Platform SDK contains only the version 2.0 definition of
the USN_RECORD structure (defined in winioctl.h). Your
application is responsible for knowing the version of the
structure that was used at compile time. Winioctl.h
does not currently provide any defined constants that
have this information, so the best bet is to look in this
header file for comments. For safety, it is a good idea
to create your own compile-time constants and perform
a runtime check to verify that newer structure
definitions were not inadvertently included.

#include <winioctl.h>

#define CJ_MAJOR VERSION EXPECTED 2

#define CJ MINOR VERSION_EXPECTED 0

#define CJ_SIZEOF_USN_RECORD EXPECTED 64

void RunTimeSanityCheck() {

if (sizeof (USN_RECORD) !=

CJ SIZEOF USN RECORD EXPECTED) {
// YIKES! Someone probably updated winioctl.h
// or changed the default structure packing.
// BAny code placed here will run if we are
// compiling with a different size USN_RECORD
// than when we wrote this module. We'd better
// take a look at it!

6/15

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

At runtime, applications examine the MajorVersion and
MinorVersion of journal records to determine
compatibility with the information. If a change in
MajorVersion is detected, the USN_RECORD structure
has changed dramatically and the only members you
can still use are Record- Length, MajorVersion, and
MinorVersion. Unfortunately, the system does not
provide any ability to negotiate a compatible version at
runtime. In other words, if the system fills an output
buffer with records using a different MajorVersion than
expected, the information cannot be used at all!
Change Journal records with a MajorVersion of 1 existed
on earlier betas of Windows 2000, but they are no
longer supported.

If a change in the MinorVersion is detected, new
members have been added after the penultimate
member of the older structure. Applications can assume
that USN_ RECORD structure members are valid up to
the penultimate member of the older version. For
example, consider the hypothetical version 2.3
USN_RECORD structure shown in Figure 3. If an
application is compiled with today's version 2.0
USN_RECORD, it can still examine a memory buffer filled

with the hypothetical version 2.3 USN_RECORD. It can
reference all the members up to and including the
FileNameOffset member. (We'll discuss the proper way
to access FileName later.) On the other hand, imagine
an application is compiled using version 2.3
USN_RECORD. If an output buffer has version 2.1
records, the version 2.3 USN_RECORD structure can still
be used for members up to and including the Extralnfol
member (the penultimate member of version 2.1).

Even though the record version information is provided
in every record, an application only has to check it
once each time it is started. The version number will
not vary between volumes on the same physical
machine, and will only change during a system reboot
after a service pack is installed with new Change
Journal software.

Does this sound like a lot of work? Maybe, but
consider the consequences if you incorrectly read a
buffer provided by the system. Since most likely your
software will be running as a service, an access
violation will bring down the service! Fortunately, only
version 2.0 structures currently exist.

FileNamelLength, FileNameOffset,
and FileName

A journal record describes a change to a particular file
or directory on the volume. For convenience, "full path
of a record" refers to the full path of the file or
directory whose change is described by the record. The
full path of a record is not stored in the record itself.
To save space, the file or directory's name is stored
without path information. Three members of
USN_RECORD provide access to this name (see Figure
4).

Here's the proper method to copy the name from a
USN_RECORD to another buffer so that you'll have a
zero-terminated string to work with:

7115

javascript:OpenUrl('journaltextfigs.htm#fig3');
javascript:OpenUrl('journaltextfigs.htm#fig4');

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

WCHAR szName [MAX PATH];

CopyMemory (szName,
((PBYTE) pRecord) + pRecord->FileNameOffset,
pRecord->FileNameLength) ;

// Let's zero-terminate it

szName [pRecord->FileNameLength/sizeof (WCHAR)] = 0;

FileReferenceNumber and
ParentFileReferenceNumber

The file or directory name is pretty useless without
knowing what directory it was found in.
ParentFileReferenceNumber specifies this directory. A
File Reference Number (FRN) is a 64-bit ID that uniquely
identifies any file or directory on an NTFS volume.
Here's what we want to do to find the full path of the
record (assuming szName already contains the file or
directory name of the record):

TCHAR szFullPath[MAX PATH];

// Fill in the path of the parent directory

PathFromParentFRN (pRecord->ParentFileReferenceNumber,
szFullPath) ;

// Bppend name to path using the Win32 function PathAppend
PathAppend (szFullPath, szName);

Unfortunately, the function PathFromParentFRN does
not exist. In fact, there is no currently exposed API
that directly converts a FRN to a full path. A large
portion of our next article will be devoted to doing just
this.

You may now be wondering about the
FileReferenceNumber member. If we could convert this
FRN to a full path, it would be the full path of the
record we are trying to find (and we would never need
to discuss FileNameOffset, FileNamelLength, or
ParentFileReferenceNumber). It turns out that finding
the full path from a directory FRN is much easier than
finding the full path from a file FRN. The
FileReferenceNumber may be either a file or directory
FRN (depending on whether the record describes a
change to a file or directory), but the
ParentFileReferenceNumber will always be a directory
FRN. Because of this, the easiest way to find the full
path of a record is to examine the
ParentFileReferenceNumber and append the name using
the FileNameOffset and FileNamelLength members.

Usn, TimeStamp, and Reason

As you might guess, the Usn member tells you the
USN of the record. TimeStamp is a standard UTC time
stamp of this record, in 64-bit format. The Reason
member tells you what sorts of changes have occurred
to the file or directory. Figure 5 shows the types of
changes (reason codes) that generate entries in the
Change Journal. The Reason member may have one or
more of the reason codes set. To interpret this
member, let's go over how the system decides to write
a record to the journal.

The system keeps track of a Reason variable for every
open file. When the system first opens a file, it sets the
Reason variable to zero. No record is added to the

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx 8/15

javascript:OpenUrl('journaltextfigs.htm#fig5');

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

journal when a file is opened, even if it is opened with
write access. If a change actually does occur, the
system checks whether the reason code is already
marked in the Reason variable. If this is a new reason
code, the code bit is set in the Reason variable and a
record is added to the Change Journal (the Reason
variable is copied to the Reason member of the record).
It is possible for more than one application to be
modifying a file or directory, and the Reason variable
will accumulate the reason codes for all changes to the
file. The Reason variable continues to accumulate the
list of change reason bits until all handles to the file are
closed. At that point, a final record is added to the

Change Journal with the accumulated reason codes and
the USN_REA-SON_CLOSE code. Figure 6 illustrates
this process.

It is possible to tell the system to clear the Reason
variable of an open file using the FSCTL_WRITE_USN_
CLOSE_RECORD code. The DeviceloControl function is
called using the handle of an open file (not the volume
handle as with other journal functions), and a close
record will be generated for that file immediately.

DWORD cb;

USN usn;

// Force a close record for

// the open file specified

// by 'hFile'

DeviceIoControl (hFile, FSCTL WRITE_USN_CLOSE RECORD,
NULL, 0, &usn, sizeof(usn), &cb, NULL);

There is no input buffer, and the output buffer will be
filled with sizeof(USN) bytes of data representing the
USN of the generated close record. When this is done,
the system immediately writes a record to the journal
with the accumulated reason codes and the
USN_REASON_CLOSE code, but it does not actually
close the file. The Reason variable is reset to zero, and
it will start accumulating changes all over again. If the
Reason variable is zero when
FSCTL_WRITE_USN_CLOSE_RECORD is used, it will still
generate a journal record; this means you will see a
record with only the USN_REASON_CLOSE code.

The only reason code that does not follow the
previous rules is the USN_REASON_RENAME_OLD_NAME
code. When a file is renamed, two records are added to
the journal. First, the
USN_REASON_RENAME_OLD_NAME code is added to the
Reason variable, and a record is created. The members
FileNameOffset and FileNamelLength will specify the
original name, and ParentFileReferenceNumber will
specify the original directory. (Moving a file or directory
to another location on the same volume is considered a
rename.)

Next, the USN_REASON_RENAME_OLD_NAME flag is
removed from the Reason variable and replaced with
USN_REASON_RENAME_NEW_NAME. A second record is
generated with the new file name and new
ParentFileReferenceNumber. Up through the next close
record for the file or directory, the Reason member will
continue to have the
USN_REASON_RENAME_NEW_NAME code, but not the
USN_REASON_RENAME_OLD_NAME code. The

FileReferenceNiimher nf a file or directorv will not

9/15

javascript:OpenUrl('journaltextfigs.htm#fig6');

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

R LT L el 2 PR

change if it is renamed or moved to another location on
the same volume.

Suppose you rename and move the file
D:\dirl1\before.txt to D:\dir2\after.txt with the
command:

move D:\dirl\before.txt D:\dir2\after.txt

You'll see the following three records in the journal:

FileNameOffset/ Parent FRN Reason

Length points to

before.txt D:\dirl Rename Old Name
after.txt D:\dir2 Rename New Name
after.txt D:\dir2 Rename New Name | Close

What happens if you rename a directory that has
hundreds of files and subdirectories? Say you rename
D:\Program Files to D:\Pfiles. The system will only
generate the following three records:

FileNameOffset/ Parent FRN Reason

Length points to

Program Files D:\ Rename Old Name

Pfiles D:\ Rename New Name

Pfiles D:\ Rename New Name | Close

There is no need to create records for all the child
files or directories since this information can be inferred
by following the ParentFileReferenceNumber. For just
this reason, you'll find that maintaining a database of
files and directories is easier if entries are stored as a
name and parent ID. The main drawback occurs when
you try to monitor a specific file; you need to monitor
all of its parent directories up to the root directory on
the volume or you might miss a move or rename.

When a directory is deleted, you do not have to worry
about inferring what child files or directories are
affected. The system will not allow a directory to be
deleted if it has any children. If you delete a whole tree
in Explorer, you'll see delete records for all the children
before the delete record for any directory.

It is important to understand that the Change Journal
does not provide a superset of the Change Notification
functionality provided through functions like
FindFirstChangeNotification or ReadDirectoryChangesW.
The Change Journal is designed to report all explicit
actions on files or directories. Not all side effects are
reported in the journal. For example, if an application
calls the SetFileTime function, the Change Journal will
report a Basic Information Change. However, if an
application writes to a file, the Change Journal reports
only the Data Overwrite (the explicit action), but not
the time stamp change (the side effect). In a similar
scenario, when a file or directory is created, the
change to the parent directory's time stamp is not
reported in the Change Journal. The Change Notification
APIs, on the other hand, are designed to report all
changes that they are aware of, even if it is the side
effect of some other action.

Sourcelnfo, Securityld, and

10/15

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

FileAttributes

If the SourceIlnfo member is not zero, it will specify a
reason that the file is changing (as opposed to the
Reason member, which indicates the reason, or type of
change, that caused a record to be generated). The
distinction between Reason and Sourcelnfo is subtle.
Consider the statement, "The virus checker removed a
macro virus from your document." The virus checker
probably opened the file and then overwrote the
infected portion. This generates a record with the
USN_REASON_DATA_OVERWRITE code. The record
exists because of a Data Overwrite (Reason), but this
was done to Remove a Virus (Sourcelnfo). An
application can use this information to decide what to
do about a file or directory change. If the virus program
is trusted to leave the document contents intact, the
change can probably be ignored.

This information does not come from the system. It is
provided by the application that opened the file. (The
discussion of FSCTL_MARK_HANDLE in our next article
will explain how an application provides this
information). Currently, there are only three flags
supported (see Figure 7).

Securityld is an identifier that the system uses to
identify the security descriptor of a file. It is used along
with the FSCTL_SECURITY_ID_CHECK device I/O control
code.

FileAttributes is the same value that would be
returned by calling GetFileAttributes for the file or
directory. It is useful to have this information because
you can easily determine if a USN_RECORD refers to a
file or directory by looking for the
FILE_ATTRIBUTE_DIRECTORY flag.

Reading from the Change Journal

We're finally ready to read records from the journal.
First, we need two things: the volume handle and a
valid USN_JOURNAL_DATA structure retrieved by using
the FSCTL_QUERY_USN_JOURNAL code. Let's say these
are in the following variables:

HANDLE hcij;
USN_JOURNAL DATA ujd;

To read some records, we call DeviceloControl with
the FSCTL_READ_USN_JOURNAL code. The input buffer
must point to the following structure:

typedef struct {
USN StartUsn;
DWORD ReasonMask;
DWORD ReturnOnlyOnClose;
DWORDLONG Timeout;
DWORDLONG BytesToWaitFor;
DWORDLONG UsnJournallID;
} READ USN JOURNAL DATA, *PREAD USN JOURNAL DATA;

Set StartUsn to the USN of the first record you want to
read. It must be either zero, the USN of an existing
record in the journal, or the USN of the next record

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx 11/15

javascript:OpenUrl('journaltextfigs.htm#fig7');

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

that will be written to the journal. If StartUsn is zero,
the system will start reading from the first record
available. If StartUsn is the USN of an existing record,
the system will start reading at that location. If it's the
USN of the next record that will be written (such as
ujd.NextUsn), the system waits for more data to appear
in the journal, as specified by the
Timeout/BytesToWaitFor members we'll describe later.

Since there is no way to know if the record identified
by StartUsn will match the filter criteria (see our
discussion of ReasonMask/ReturnOnlyOnClose), the
output buffer may not contain that specific record.
Applications must examine the Usn member of returned
USN_ RECORD structures to find out the USNs of the
records actually returned.

Since the system writes to the journal in 4KB blocks
(USN_PAGE_SIZE), all 4KB aligned values from
ujd.FirstUsn to ujd.NextUsn are guaranteed to be the
USN of a record in the journal. Therefore, these are
valid values for StartUsn. Other than that, the only way
to get a valid value for StartUsn is through Change
Journal APIs that return USNs.

ReasonMask and ReturnOnlyOnClose

The system will only return journal records that have
at least one of the reason codes specified by
ReasonMask. In other words, you can filter the amount
of information you need to process by specifying only
the reason codes you care about. Records that do not
contain the specified codes are not returned in the
output buffer.

The system uses the following logic to determine
whether to return a record:

// This function will return

// TRUE if it meets the filter

// criteria specified by the

// ReasonMask member of the

// READ USN JOURNAL DATA structure

BOOL ReturnRecord (PREAD USN_JOURNAL DATA prujd,
PUSN_RECORD precord) {

if ((prujd->ReasonMask & precord->Reason) != 0)
return TRUE; // The user wants this record
return FALSE; // Skip it
}

ReturnOnlyOnClose is another member that allows you
to filter which records will be put in the output buffer.
If this value is nonzero, only records with the
USN_REASON_ CLOSE code will be returned. This works
in tandem with the ReasonMask member (both
conditions must be satisfied). To retrieve just the close
records, set ReasonMask to reason codes of interest,
and ReturnOnlyOnClose to 1. The system will return just

close records, and only close records with one or more
of the reason codes specified by ReasonMask. The
ReturnRecord function really looks like Figure 8.

Timeout and BytesToWaitFor
Timeout is a value for use with the BytesToWaitFor

member. It does not guarantee that DeviceloControl will

ratiirn aftar the cenarified timaniit hiit rather it

12/15

javascript:OpenUrl('journaltextfigs.htm#fig8');

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

Tl U LeT LG DL IS LT RCV ML UL T e I

specifies how often the system should check whether
requested data is available. This member is not like
other conventional Win32" timeout parameters that use
milliseconds. Instead, this member uses the same
resolution as the Win32 FILETIME structure (100-
nanosecond intervals—one second has ten million
intervals). A value of zero specifies no timeout (or
infinite). A fixed timeout is specified using negative
values (even though this is an unsigned variable). For
example, a timeout of 25 seconds can be expressed as
(DWORDLONG)(-2500000000). The Timeout member is
ignored if DeviceloControl is called with an
asynchronous request.

Don't confuse the BytesToWaitFor member with the
output buffer size or the count of bytes returned by
DeviceloControl. If this member is set to zero, the
function will return immediately, even if it found no
matching records in the journal. If this member is
nonzero, the system will not return until it has found at
least one record to return. BytesToWaitFor specifies
how often the system will recheck the journal to see
whether any matching records have been created. For
example, if you specify 16384, the system will only
examine the journal for new records after a new 16KB
block of raw data has been added. This prevents a
process from using too many resources when many
records are being added. If the Timeout and
BytesToWaitFor members are both nonzero, the system
also checks records if the timeout period expires before
the journal has grown by the specified number of bytes.

If BytesToWaitFor is nonzero, but records are found
that match the user's request, the DeviceloControl
function will return immediately; that is, the
BytesToWaitFor and TimeOut members only have an
effect when there are not any existing records that
fulfill the ReasonMask/ReturnOnlyOnClose requirements.

UsnJournallD

The UsnJournalID should be set to ujd.UsnJournalID. If
the Journal ID of the active journal has been changed
by the system, the call to DeviceloControl will fail. This
protects applications from reading journal records if
there is a chance that some data is missing.

The purpose of FSCTL_READ_USN_JOURNAL is to fill
the output buffer with an array of zero or more records
that match the criteria specified by ReasonMask and
ReturnOnClose. There is no way to know how many

matching records will be found, so the system will just
fill your output buffer with as many as possible. The
function's behavior depends on the number of records
found, the size of the output buffer, and the
BytesToWaitFor and Timeout members. The output
buffer specified by IpOutBuffer and nOutBufferSize must
be at least sizeof(USN) bytes long, and aligned on a
32-bit boundary; otherwise DeviceloControl will fail. If
DeviceloControl succeeds, IpOutBuffer will be filled in
with a USN in the first sizeof(USN) bytes, followed by
an array of zero or more records. See Figure 9 for the
layout of the output buffer from the call

DeviceIOControl (hcj, FSCTL READ USN JOURNAL, &InBuf,

13/15

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

sizeof (InBuf), pOut, cbOut, &cbReturned, NULL);

The USN returned at the start of the buffer is the USN
of the next record following the last record returned.
This is used to walk journal records without knowing
exactly how much space is required. Use this USN as
StartUsn on the next call to DeviceloControl with the
FSCTL_READ_USN_ JOURNAL code. Figure 10 shows
how to get all the data between two USNs, as well as
how to walk the records in the output buffer.

A Next USN .
USN_RECORD FileNameOifset
RecordLength
Flle name FlleNameLength
oL
é g USN_RECORD FileNameOtfset R
% Flle naima leNamelLength]
USN_RECORD FileNameOffset
RecordLength
File name leMameLength

v

Figure 9 Output Buffer Data

The code in Figure 10 should be used to read records
that are known to exist in the journal. The usnStart and
usnEnd parameters should be between or equal to the
values StartUsn and NextUsn determined by
FSCTL_QUERY_ USN_JOURNAL.

The Sample Application

The sample application CIDump uses everything we've
discussed so far to dump the contents of the Change
Journal. Since each volume may have its own Change
Journal, CJDump just uses the current drive letter when
picking a volume to examine. CJDump is a console

application, and all the work is done in the main
function.

The first thing that CIJDump will do is print the
information returned by using the
FSCTL_QUERY_USN_JOURNAL code. CIDump will then
read all available records from the Change Journal and
print the USN, the reason code, and the file name of
each record. C]JDump can be easily modified to show
other members of the USN_RECORD structure, or you
can look at them in the debugger.

Since you'll want to look at a volume that has an
active Change Journal, use a machine that has the
Indexing service started. This service lets you perform
full text searches across all the documents on your
hard drives. It uses the Change Journal on NTFS
volumes to monitor when documents are created,
deleted, or moved. The Indexing service is available on
both Windows 2000 Professional and Windows 2000

Server. For more information, see the Windows 2000
heln files.

14/15

javascript:OpenUrl('journaltextfigs.htm#fig10');
javascript:OpenUrl('journaltextfigs.htm#fig10');

5/7/2014 Keeping an Eye onYour NTFS Drives:the Windows 2000 Change Journal Explained-- MSJ, September 1999

B N

What's Coming Up

In our next article, we'll build a fully functional Change
Journal application. We'll cover the correct
programmatic ways to activate or disable the Change
Journal, how to receive notification of journal changes,
and how to use the information in journal records to
maintain an accurate database of the files and
directories on disk. In addition, we'll show how an
application can persist information to disk when it is
shut down and use the Change Journal to find out
what's changed the next time it is launched. We'll also
show how to convert file reference numbers to full
paths by using the Change Journal itself to maintain a
database of all the directories on a volume.

As you can see, the Change Journal provides a
powerful new capability for applications to monitor
changes to an NTFS volume without resorting to the
costly process of full rescans. Applications such as
virus checkers, search engines, and backup software
can obviously benefit from this information. Perhaps the
Change Journal will encourage the development of new
classes of applications that we haven't even
considered. We hope that this information is useful to

you as you come up with your own killer app.
L

For related information see:

For related information see the NTFS File System page at
http://msdn.microsoft.com/library/sdkdoc/winbase/fsys_538t.htm.
Also check http://msdn.microsoft.com for daily updates on
developer programs, resources and events.

From the September 1999 issue of Microsoft Systems
Journal. Get it at your local newsstand, or better yet,

subscribe.

© 1999 Microsoft Corporation. All rights reserved.
Terms of Use Privacy Policy.

Manage Your Profile | Legal | Contact us | MSDN Flash Newsletter

© 2014 Microsoft Corporation. All rights reserved. Contact Us | Terms of Use | Trademarks |

Privacy Statement

http:/Amww.microsoft.comymsj/0999/journal/journal .aspx

15/15

http://www.microsoft.com/isapi/gomsdn.asp?target=/library/sdkdoc/winbase/fsys_538t.htm
http://www.microsoft.com/isapi/gomsdn.asp?target=/
http://www.microsoft.com/msj/default.asp
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/msdnmag/subscribe.asp
http://www.microsoft.com/info/cpyright.htm
http://www.microsoft.com/info/privacy.htm
http://go.microsoft.com/?linkid=317027
http://www.microsoft.com/legal/
http://go.microsoft.com/?linkid=2028439
http://www.microsoft.com/isapi/gomsdn.asp?TARGET=/flash/
http://support.microsoft.com/contactus/?ws=mscom
http://go.microsoft.com/?linkid=4412892
http://go.microsoft.com/?linkid=4412893
http://go.microsoft.com/?linkid=4412894

