5/7/2014 Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

The Old New Thing

Why does my asynchronous I/0 complete synchronously?

23 Sep 2011 7:00 AM 36

A customer was creating a large file and found that, even though the file was opened with
FILE_FLAG_OVERLAPPED and the WriteFile call was being made with an
OVERLAPPED structure, the I/O was nevertheless completing synchronously.

Knowledge Base article 156932 covers some cases in which asynchronous I/O will be
converted to synchronous I/O. And in this case, it was scenario humber three in that
document.

The reason the customer's asynchronous writes were completing synchronously is that all of
the writes were to the end of the file. It so happens that in the current implementation of
NTFS, writes which extend the length of the file always complete synchronously. (More
specifically, writes which extend the valid data length are forced synchronous.)

We saw last time that merely calling SetEndOTFile to pre-extend the file to the final size
doesn't help, because that updates the file size but not the valid data length. To avoid
synchronous behavior, you need to make sure your writes do not extend the valid data
length. The suggestions provided in yesterday's article apply here as well.

Blog - Comment List MSDN TechNet
Comments

David Walker
&5 23 Sep 2011 8:18 AM
#

The fact that I/O to compressed partitions are completed synchronously is one of the
reasons that data files which contain SQL databases should not be on compressed
partitions. SQL server really, really wants its I/O to be asynchronous. And the
performance of SQL server with fully synchronous I/O would likely be poor.

In the old days, before compressed SQL backups, I tried to write a SQL backup to a
compressed partition. It didn't work (delayed I/0 failed).

Dave
&5 23 Sep 2011 9:02 AM
#
From that KB article: "... because the pool of worker threads is limited (currently three on

a 16MB system) ..."

Ah, 16MB systems, now those were the days! Wait, no they weren't.

http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 117

http://blogs.msdn.com/b/oldnewthing/
http://support.microsoft.com/kb/156932
http://blogs.msdn.com/b/oldnewthing/archive/2011/09/22/10215053.aspx
http://blogs.msdn.com/b/oldnewthing/rsscomments.aspx?WeblogPostID=10215586

5/7/2014 Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

Gabe
&5 23 Sep 2011 10:16 AM
#

Does anybody know why these operations are not completed asynchronously?

Leo Davidson

&' 23 Sep 2011 10:18 AM
#

So if you open a new, empty file and use async I/O to write data into it, all of that will
become synchronous?

Async I/O seems so caveat-ridden, and almost impossible to get every possibility handled
correctly (from previous posts on the subject), that I'm more and more convinced it's
usually better to just spawn a thread (or pool) and use sync I/0O.

Of course, that doesn't apply to every situation (and most situations don't need async at
all), but I'd rather have slightly higher overheads and correct code than incorrect code.

Simon Farnsworth

&5 23 Sep 2011 10:48 AM
#

@Gabe:

I can make some educated guesses. For compression and encryption, I would guess that
the filesystem driver is simply unable to handle more than one outstanding request at a
time for any one file, so going asynchronous has high costs (locking issues) and no
benefits. Similar reasoning applies to extending a file, plus the additional factor that the
intended consumers of async I/O typically don't extend files.

Data in cache is similarly obvious - giving you a mapping to the data in cache
immediately is cheaper than handling the async completion - why pay a performance
penalty when the point of async is to speed things up?

Finally, the data not in cache makes sense if you see async as a way to issue multiple
requests to the hardware (which can normally handle multiple requests in parallel with a
performance boost - SCSI TCQ, SATA NCQ, RAID arrays etc). No point going async if
you're not getting the parallelism - Windows might as well block you as spawn a new
thread that gets immediately blocked anyway.

Simon Farnsworth

& | 23 Sep 2011 10:52 AM
#

@Leo Davidson:

It looks like Windows async I/0O is meant to let you take advantage of hardware
parallelism, not to act as a true async mechanism. A SCSI TCQ device can potentially

http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 217

5/7/2014

7&}

.

Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

handle millions of simultaneous outstanding requests (e.g. a FC-AL attached RAID array
with terabytes of cache RAM and petabytes of spinning disk). Async I/O lets you issue
multiple I/0O requests from one thread, as long as the software can extract parallelism
from them (i.e. convert them into multiple requests to hardware); as soon as it has to
sequence things, it goes synchronous, as there's no benefit to multiple outstanding
requests if they must be handled one at a time.

jas88
23 Sep 2011 1:03 PM

#

@Leo Davidson: That's the scenario I had in mind: I can easily imagine a developer
getting bitten by this, using overlapped IO to log activity thinking this will minimize the
performance impact of log writes, when in fact every write will be converted to a
synchronous one. I suspect it will actually only happen on writes which cross a cluster
boundary, in reality (NTFS will be zero-filling each cluster as you start writing into it;
overlapped writes within a cluster already in use won't have that issue). For that matter,
storing your log files compressed seems an "obvious" improvement many system
administrators might well make - then wonder why their server application is much less
responsive, since it has suddenly had all its logging operations converted into
synchronous ones - and the developer had carefully worked around that issue by slotting
in occasional SetFileValidData calls to amortize the file expansion by using 1 or 10 Mb
chunks and reduce file fragmentation at the same time.

The virtual memory system faced the same issue, but addressed it by pre-zeroing a pool
of pages in the background for later use. Presumably it's the need for metadata updates
(volume allocation bitmap changes, journaling and MFT record changes) which made the
NTFS developers make write-extends synchronous - ironic in a way, since the extra time
taken would make that particular operation an obvious candidate for asynchronous
operation. With such a limited pool of threads, though, like the 3 mentioned, writes would
sometimes tie up those precious resources for a while as the disk buffer is flushed (to
ensure on-disk consistency with the journal).

Alex Grigoriev

23 Sep 2011 3:19 PM
#

There is a good reason for serialization of these operations.

1. All metadata modifications are serialized. File expansion needs metadata modification.
While the file zeroing goes forward, all other IO to that area need to be held, too.

2. Creating new isle in a sparse file also needs metadata modification.

3. Compressed file writes need to be serialized because they produce unknown amount of
hard data and need filesystem modifications.

Gabe
23 Sep 2011 3:40 PM
#

http://blog s.msdn.com/b/oldnewthing/archive/2011/09/23/10215586.aspx?Redirected=true

317

http://blogs.msdn.com/342075/ProfileUrlRedirect.ashx
http://blogs.msdn.com/342075/ProfileUrlRedirect.ashx

5/7/2014

Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

Why would the need to serialize the operations mean that they have to be synchronous?
I don't see the difference between a single thread with multiple simultaneous outstanding
async operations and multiple threads with simultaneous sync operations.

waleri

24 Sep 2011 12:32 AM
#

What will happen with completion port whern async I/0 is converted to sync?

Simon Farnsworth

24 Sep 2011 3:49 AM
#

@Gabe:

Been thinking about this overnight (yes, I'm dull). If you see the async operations as a
way to cheaply exploit command queueing, it makes sense. When the OS can convert an
operation directly into a disk request, all it needs do is remember "when this I/O request
completes on the disk, signal this completion"; it has to have something like that
internally anyway to permit it to block one thread, execute another, and resume the first
thread once its I/O has completed.

Adding asynchronous handling of serialized requests means adding fresh complexity - you
need to spawn a thread, and ensure that the thread you've spawned simply runs the
request synchronously and then signals the completion. However, you've now moved
away from your "cheap method to exploit hardware parallelism"; you're paying the costs
of spawning and destroying a thread for operations. Far easier to just not bother - if you
wanted true asynchronous behaviour, you'd spawn threads anyway; without this async
I/0 interface, there's no way to say "if the hardware lets me issue parallel requests, I
want to be asynchronous; if I'd only be exploiting software parallelism, I want to free up
resources for CPU-bound processing".

M
24 Sep 2011 8:27 AM
#

There is only a problem (from a developer POV) if operations that take a significant
amount of time are performed synchronously when you wanted them to be performed
asynchronously. A cache write that immediately completes is fine. There is no parallelism
to exploit because the operation takes no time; you can simply go on and do whatever
you intended to do while the I/O was underway. But a disk operation that completes in
milliseconds is an eternity to unexpectedly block, especially if you intended to do
something non-1/0 related inbetween. This is not usually a problem because
asynchronous I/0 is usually mixed with yet more asynchronous I/0, not calculations that
have nothing to do with keeping I/0O flowing, which are handled by other threads.

As Simon points out, although the OS could jump through hoops to make sure an async
operation is always async, this doesn't pay off. Making an inherently synchronous
operation asynchronous requires overhead (although not as dire as creating and

http://blog s.msdn.com/b/oldnewthing/archive/2011/09/23/10215586.aspx?Redirected=true

417

5/7/2014 Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

destroying threads -- you can maintain a thread pool for it). It's intended to save
resources, not to support a particular programming model. It's up to the programmers to
exploit it meaningfully. If necessary, you can always layer forced asynchronous
completion over synchronous operations yourself with use of the thread pool -- but since
you can't reliably predict when synchronous processing will kick in, this means all
operations will have to go through an extra layer. It's better to write your code in such a
way that it's still correct in every way (especially with regards to timing and
responsiveness) even if all I/O were synchronous, and treat asynchronous I/O as a good
optimization.

Gabe
@9 | 26 Sep 2011 5:52 AM
#

In the case of writing to a compressed file I can understand not spawning a new thread
to perform compression. But once the data has been compressed, why not make the
actual writing of the data asynchronous? At that point the CPU work has been completed
and all that's left is the I/0. Does that 1/0 still need to be done synchronously?

Confused Developer

@& 26 Sep 2011 2:08 PM
#

So then what is the right way to handle overlapped I/0O to files on NTFS to ensure that
your limited I/0O threads are never blocked waiting for platters?

If the operating system itself had done the right thing and implemented serializing under
the hood (while preserving async interface/behavior) it would have resulted in less error
prone software and less need for each developer to reinvent the wheel.

This is the first time I've become aware of this and I can imagine there must be a lot of
code out there that expects Windows to always complete I/0O calls asynchronously if
they will not complete immediately. All that code will probably cause unintended
blocking/performance problems if used against compressed volumes.

I think this is a bad implementation decision on the part of MSFT.

@ cheong00
A 26 Sep 2011 6:46 PM
#

@Confused Developer: Why do you think it is so important? I don't think it's right to store
frequently updating files in compressed folder. If they do, the performance penalty is
expected (even though it is greater than absolute minimum).

Think about it, since Windows does not support CPU quota, if your little program
continuously throwing "little write to large compressed file" to kernal I/O process, it would
have been easy to create some form of DOS attack. (Remember NTFS compression is not
in chunked format, so even altering 1 byte might require to decompress large part or
even the whole file, alter the byte, and compress it back. It could be a quite expensive

http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 517

http://blogs.msdn.com/28047/ProfileUrlRedirect.ashx
http://blogs.msdn.com/28047/ProfileUrlRedirect.ashx

5/7/2014

Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs
task.)

Crescens2k

26 Sep 2011 9:18 PM
#

Confused Developer:

The biggest issue is that with NTFS compression, you can't guarantee that one IO
operation will really result in one IO operation.

NTFS uses a form of LZ compression, and that means it does the compression in chunks
of data. From what I read somewhere, it implements it so that it takes a few clusters (I
think it is 16 clusters), compresses it and then stores it compressed in those cluster
leaving the gap between the end of the compressed data and the next chunk as sparse.
So it could turn out like

uncompressed
| data....|data....|data....|
compressed
|cdata.. |cd.. |cdata |

Where the spaces are sparse and just not in use. For reads this means two things. If you
just want to read part of the file, you have to read the entire chunk to get the data you
want. If the data you want spans two chunks, then you need two seperate
read/decompress operations to do what you want. This is different to the uncompressed
file since if you only want to read 2 bytes then it would only have to read a sector off of
the disk, and if what you wanted spanned two sectors, you could read both in a single
operation. (This is ignoring some hard disk hardware limitations though, but they just
confuse things).

For writes this gets worse, since if you wanted to update only a couple of bytes, then
you would need to read the entire data chunk, decompress, update, compress and then
write. If the data spans more than one chunk then it needs to do this for each chunk
affected.

So yes, while making this kind of operation may seem like a performance hit, allowing
compressed file operations to be async doesn't fix anything. Async works because
Windows just exploits what is available, but for operations like compressed file
operations, everything changes drastically. It is no longer the case of filling out a buffer
and queuing it up in the IO manager, it becomes an entire thread of work. Windows is
bloated enough as it is, do you want even more. You could also run into other errors
because compressed file I0 is much slower than regular I0, so you could end up running
out of memory because the queue got too long or something. So all you managed to do
is displace the problems.

I am also curious as to how allowing async compressed file operations would make code
less error prone. A normal async file write could be

if(!WriteFile(/*parameters*/)) //returns nonzero if completed immediately

{
if(GetLastError() != ERROR_IO_PENDING)

http://blog s.msdn.com/b/oldnewthing/archive/2011/09/23/10215586.aspx?Redirected=true

6/17

5/7/2014

Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

//i personally use a switch here, adding cases
//only for errors that need special attention, but
//usually leaving everything go to default

//an error like insufficient disk space occured

//handle these cases

¥

Because any other error can occur and get returned via the WriteFile return value, you
can't skip the check (even though people do seem to assume that file IO can't fail), so
regardless you will be checking the return. So by an operation being async instead just
means that the function will return an error an you have to look for it, or if it isn't async
then it means the function will block and return success. So how does this make
anything less error prone? Nothing would have changed from your regular async file
handling.

But async IO is really there to allow you to cheaply exploit what is available in hardware.
If that isn't possible because it requires multiple operations then Windows wont do it. If
you look at some other operations which are never async then this should be apparent.
There is a major difference between adding to a queue in the IO manager and having to

create a thread to possibly do multiple file operations and all of the related work after all.

pattern

26 Sep 2011 11:49 PM
#

How about this pattern?
SetLastError(0);
WriteFile(/*Params*/);
switch(GetLastError){

default: // All the myriad other error codes... Maybe single out some for special
processing

FatalAppExit(0,"Bang!");
abort();
case 0: PostQueuedCompletionStatus(/*params*/) or QueueUserAPC(/*params*/)

case ERROR_IO_PENDING:
b

http://blog s.msdn.com/b/oldnewthing/archive/2011/09/23/10215586.aspx?Redirected=true

77

5/7/2014

Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

cheong00
26 Sep 2011 11:52 PM

#

@Crescens2k: Ah... you're right. NTFS compress file into compression unit hence it's
chunked. I must have mixed it up with something else.

Deduplicator

27 Sep 2011 12:14 AM
#

Crescens2k:"But async IO is really there to allow you to cheaply exploit what is available
in hardware. If that isn't possible because it requires multiple operations then Windows
wont do it. If you look at some other operations which are never async then this should
be apparent. There is a major difference between adding to a queue in the IO manager
and having to create a thread to possibly do multiple file operations and all of the related
work after all."

@~ : Does not look like Windows would have to create any new threads for that work. It
could all be done on only one thread per core, possibly inheriting the priority of the
highest outstanding request.

Aside from that, it is often NOT used to exploit hardware parallelization, but to make the
Server/GUI/whatever responsive, and that is quite more difficult if you cannot know if
Windows forces you synchronous, instead of serializing behind the scenes and out of
your thread in kernel-land.

Next: One has to beware unintended deep recursion when requests return immediately
and are acted upon by invoking the handler.

chaong00: "Think about it, since Windows does not support CPU quota, if your little
program continuously throwing 'little write to large compressed file' to kernal I/O process,
it would have been easy to create some form of DOS attack"

@~ : Well, so all the work has to be debited from the originators ledger? That should be
done anyway!

JM: "There is only a problem (from a developer POV) if operations that take a significant
amount of time are performed synchronously when you wanted them to be performed
asynchronously. [...] This is not usually a problem because asynchronous I/0 is usually
mixed with yet more asynchronous I/O, not calculations that have nothing to do with
keeping I/0 flowing, which are handled by other threads.

As Simon points out, although the OS could jump through hoops to make sure an async
operation is always async, this doesn't pay off. Making an inherently synchronous
operation asynchronous requires overhead (although not as dire as creating and
destroying threads -- you can maintain a thread pool for it). It's intended to save
resources, not to support a particular programming model. It's up to the programmers to
exploit it meaningfully. If necessary, you can always layer forced asynchronous
completion over synchronous operations yourself with use of the thread pool -- but since
you can't reliably predict when synchronous processing will kick in, this means all
operations will have to go through an extra layer. It's better to write your code in such a
way that it's still correct in every way (especially with regards to timing and
responsiveness) even if all I/O were synchronous, and treat asynchronous I/O as a good
optimization."

http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 8/17

http://blogs.msdn.com/28047/ProfileUrlRedirect.ashx
http://blogs.msdn.com/28047/ProfileUrlRedirect.ashx

5/7/2014

e

Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

@~ : There are often two or more different limiting factors, so there is a problem, even if
all is ordered asynchronously: e.g. File IO, Remote File IO 1..N, Vanilla Networking,
Calculating, GUI, ...

And the programmer might not (be able to) know, what all is involved.

And its nice that you celebrate working around the quagmire which should not be there
as prudent even in the absence of said hazard.

Simon Farnsworth

27 Sep 2011 1:05 AM
#

@Deduplicator:

Look at it this way; if you use synchronous I/O and threads, you never block (what you
want for responsiveness). If you want to use synchronous I/O and threads to exploit the
inherent parallelism in a big RAID array (say a nice EMC SAN), you need tens of
thousands of threads, which literally exist just to issue an I/O asynchronously to the
main thread.

Async I/0 lets you get at a middle ground that's otherwise unavailable - the statement
you make by using async I/0 is "if there is hardware parallelism available, let me at it;
otherwise, I'm happy going synchronous". Remember, it's designed for services like SQL
Server; the pattern it's best at is "lots of I/O so that I can process for a bit, then back
to lots of I/O". It's just that it issues all the I/0 in parallel where possible, getting you a
free speed-up as compared to synchronous I/0.

Think, for example, about a small RAID-1 array with 2 disks in it; that array is guaranteed
to be able to handle two simultaneous reads without conflict, as it has two spindles; a
RAID-10 with 4 disks may be able to handle two reads and two writes (depending on disk
locations) simultaneously. Bigger arrays with more spindles can handle more IOPs in
parallel. Async I/0 lets you say "please issue lots of I/0 if possible; I'll handle collating it
back together later".

Deduplicator

27 Sep 2011 2:21 AM
#

@Simon:

So you are saying, it's nice you have to go needlessly multithreaded and accept all the
gotchas involved, even though everything could be easily done using guaranteed user-
level async calls?

Damn anyone who uses async as it reads (and works most of the time) to the pit of
spuriously non-responsive and subtly broken code? (ie: the WinXP-Explorer Guys and
anyone else who uses the Shell-Namespace [GetOpenFileName anyone?])

Simon Farnsworth

27 Sep 2011 3:21 AM

http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 917

5/7/2014 Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

#
@Deduplicator

The only way to implement "guaranteed user-level async calls" is to go multithreaded and
accept all the gotchas involved. Whether the OS provides this as a standard library, or
whether you implement it yourself, the problems are exactly the same.

As a result, you could write yourself a library that spawns off a small humber of threads
that just do I/O, working on a queue of requests from the main thread, and queueing
responses back to the main thread. This would be identical to what you're asking for.

However, if the async I/0 interface becomes that library, you have two problems to fix:

1. Older code that uses async I/O may not be expecting it to suddenly make your
process multithreaded, and could therefore be caught out by the gotchas you mention.

2. There is now no way for a process to request I/O to be done asynchronously if and
only if the hardware can handle the parallelism for you - any async I/O request that
can't be parallelised in hardware converts to a thread handling the request, so you can't
use the async I/O facility to issue parallel I/O, blocking whenever you're reached the
hardware parallelism limit for this system.

In short, why do you want to take away a useful facility for no gain to anyone?

Deduplicator

&9 | 27 Sep 2011 3:42 PM
#

The only way to implement "guaranteed user-level async calls" in user-mode on top of
maybe async and/or explicit sync calls is certainly going multithreaded. But that's not
what I asked for. What I asked was why there is nho way to have really async calls
without going multithreaded. I haven't seen an answer, which doesn't say go
multithreaded or tough luck, that's the way it is, therefore it's good.

Also, its extremely counter-intuitive that non-blocking methods block for minutes or even
longer.

[We've seen earlier that it's possible for async calls to complete synchronously, even
if everything supports asynchronous I/0O, so you have to be ready for it one way or
another. (And if you avoid using overlapped writes to extend files, that avoids the
worst case.) -Raymond]

Gabe
@9 | 27 Sep 2011 9:47 PM
#

The problem isn't when your async call completes synchronously (as that happens all the
time anyway, so it has to be something you expect), it's when you make async I/O calls
on your UI thread because you expect async I/O not to block. The fact that async calls
can actually block means that you can't keep your UI responsive simply by making all
your I/O async; you have to make sure you never do any I/O on your UI thread. There
being no async CreateFile should be the tip-off for this, but still many people don't know

http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 1017

5/7/2014

Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs
this.

Simon Farnsworth

28 Sep 2011 6:03 AM

#

@Deuplicator:

So, very roughly (as I'm not a Microsoft developer), the reasoning works as follows:

Async I/O avoids the need for threads by exploiting the hardware's queueing. When you
call a synchronous I/0 call that could complete async, the following happens:

1) The kerel does the work needed to know what commands it needs to send to
hardware

2) It flags your thread as "blocked, waiting for I/O" for scheduling purposes
3) It creates a completion that tells the scheduler to unblock your thread

4) It issues the commands (blocking here for as long as it takes for there to be space in
the hardware queue) with the completion set up ready to be run by the interrupt handler

5) It enters the scheduler, which finds something to run.
You recover control when the I/O completes.

If you used an async call instead, the completion created in step 3 changes from "tell
the scheduler to unblock this thread and reschedule" to "mark this OVERLAPPED as
completed and flag this thread as having a completion to handle when it calls back in to
find one". As a result, step 5 allows the scheduler to decide to continue running your
thread. Remember that because the completion is called by an interrupt handler, it can't
do much - it can write flags, and it can kick the scheduler, and that's about it - it can't
start a new thread, it can't do complex work, and it can't rearrange your thread's
execution to suddenly drop into kernel code unexpectedly.

For calls that go synchronous even when issued via the async I/O mechanism, the kernel
has work to do after the hardware completes. The process then looks like:

1) The kernel does the work needed to know what commands it needs to send to
hardware

2) It flags your thread as "blocked, waiting for I/O" for scheduling purposes
3) It creates a completion that tells the scheduler to unblock your thread

4) It issues the commands (blocking here for as long as it takes for there to be space in
the hardware queue) with the completion set up ready to be run by the interrupt handler

5) It enters the scheduler, which runs another thread.

6) When the I/O completes, the kernel does the clean-up work it needs to do to handle
this 1/0.

7) It finally returns control to your thread.

Note that there is no way for the kernel to do work on your process's behalf without

http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 1117

5/7/2014 Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

either requiring you to cope with the fallout of multiple threads (as it would potentially
create a thread for you at step 3, which would be unblocked when the I/O completes so
that it can execute step 6 and then signal completion to your thread), or blocking you
until it's completed the work it needs to do. Given that the point of async I/0 is to get
you parallelism without threads, it can't create a thread, so the only remaining option is
to block you.

Joe

@& | 28 Sep 2011 7:52 AM
#

"We've seen earlier that it's possible for async calls to complete synchronously, even if
everything supports asynchronous I/O, so you have to be ready for it one way or
another."

That some calls on a overlapped handle can already be completed on return from that
call does not imply that "conversions" from async to sync mode do occur. I would only
take this as a sign that (for example) all the data requested by a ReadFile call is already
present in the buffer cache of the OS and therefore the call can do his work without any
wait.

Saying now here that the semantics of API calls in regards of blocking can change on the
fly due to inadequate implementation of some detail at some I/O layer deep below this
API call (you really cannot know such implementations details as an application
programmer) looks flawed.

[But if you think about it, the two types of synchronous behavior are identical. They
just have different performance characteristics. The I/O manager calls the handler's
"StartAsync" function and the handler returns "Done. Oh, and by the way, it's also
finished." The deal is that the "Oh, and by the way it's also finished" could be because
"Oh, the answer was so easy to calculate I just did it since it was less work than
setting up a full async I/O". Or it could be because "Oh, it's too hard for me to set up
the async I/0 for this, so I'll just do all the work inside my StartAsync function and
say 'finished'." -Raymond]

Simon Farnsworth

@9 | 28 Sep 2011 8:46 AM
#

@Joe:

The MSDN docs already say that conversions from async to sync can occur, and point
you to a Knowledge Base article that details exactly when they occur for specific OSes
(i.e. what the implementation details are). Async I/O as documented on MSDN is strictly
a performance boost, not a guarantee of non-blocking.

If you're using an API call based on what you would like it to be, not what it's
documented to be, well, you're going to get burnt sooner or later.

Deduplicator

http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 12117

5/7/2014

e

Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

28 Sep 2011 10:29 AM
#

@Simon (long post): Ever heard about kernel-mode APCs? There's your way to schedule
work after the pure IO is done, without creating new threads, and especially user-mode
threads.

@Simon+Gabe: The fact that async is not guaranteed is no reason it should not be or
could not be!

@raymond: you don't seriously propose that compression/decompression,
encrypting/decrypting or extending a file or some such operation is so complex, it has to
be handled on the kernel-mode part of the exact same user-mode thread, and
additionally no part of it (the writing part for example) can actually be handed of to the
I0-Subsystem to do its thing without supervision by the blocked thread hovering
impatiently in the background? And arguing that behavior is the same, whether you
instantly get the go ahead or have to wait the year is a bit strange.

Simon (short post): It's always the case that you have to program/design to the spec
and test your contraptions as thorouly as possible, but that's neither adequate excuse
for designing an api to make shooting off your own foot more likely by introducing
unexpected behavior in corner-cases, nor for elliding an api which does "The Right
Thing'TM, by being non-blocking with asynchronous notifications.

Actually, there are These Ways for I0:

1 Blocking Synchronous (Old-Fashioned, Easiest)

2 Non-Blocking Synchronous (Poll or Select) (Poll would burn cycles needlessly)

3 Non-Blocking Asynchronous (Done immediately and/or asynchronous notification)

Windows Currently implements 1 and 2, NOT 3, but (roulette 1 or 3) which looks and
sometimes feels like 3, until it bites you in the ass hard, meaning you have to go
multithreaded.

Does someone have anything to add to the overview of I0-methodologies, or a
correction?

[Not sure what you're asking me to say. Do you want me to say "The file system
guys are lazy bums"? -Raymond]

Deduplicator

28 Sep 2011 12:00 PM
#

@Raymond: Well, it's a start to accept that the current state of affairs is a bit
suboptimal, as it forces everyone wanting a responsive Ul/other Channel into taking out
the big multithreading-sledgehammer.

And I actually don't think they are lazy bums, even if their decision for what they
implemented might only make sense from the provider-side, eg. making their lives easier,
without making all that much sense from the user-side or even the resource-side, as it
doesn't allow reaping all the benefits, without using kernel-managed user-mode multi-
threading as a massive clunky workaround.

http://blog s.msdn.com/b/oldnewthing/archive/2011/09/23/10215586.aspx?Redirected=true

13117

5/7/2014 Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs
BTW: Did you find a fourth I0-Method? (Not Memmap, please. That would be 1)

[I tend to write about practical programming, which means "The goal is to solve a
problem. Arguing over whether something was a good idea doesn't help you solve
your problem (at least not until time travel is perfected)." -Raymond]

Simon Farnsworth

&9 29 Sep 2011 1:11 AM
#

@Deduplicator:

I'm sorry; I thought this was "The Old New Thing", Raymond Chen's blog on how things
actually are, and why they're imperfect. I didn't realise I'd stumbled into the "redesign
Windows to remove its warts" blog.

I therefore assumed that you'd understood that this sort of post is about why something
that looks odd now got into that state, and were interested in understanding what sort
of historical reasoning would lead Microsoft's engineers to designing an async I/0O
interface with the specific warts it has, as against some form of "perfect" async I/O
interface.

Having implemented such an interface on an embedded system, I sympathise with the
warts the Windows async I/0 interface has - they've done something simple to
implement, that's usable by the intended target audience (server writers), and has one
predictable gotcha, as against a myriad of slightly different weird side-effects of things
not going to plan

Deduplicator

@& 29 Sep 2011 2:37 AM
#

Yes, this is certainly the old new thing.

But it isn't only about why things came to be as they are and how they really work, but
also how to hack around the limitations without quite violating the spec, and sometimes
a bit about different alternatives (implemented/in progress/perhaps in the
future/discarded) or completely unrelated topics.

That said, this weird side-effect could probably be removed without breaking anything,
and I hope it will (some day, some way).

Even though time-travel would be nice, it's not really needed here...

Ben

@9 | 29 Sep 2011 7:45 AM
#

@Simon Farnsworth: "has one predictable gotcha"

As far as I understand this all, Windows does not follow a predictable, well-documented
http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 14/17

5/7/2014 Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

concept for supporting asynch I/0O by "overlapped". I don't get why you seem to be
happy with behavior that you cannot rely on. How do you write your server software,
when the asynch behavior can be different on any machine, depending on the disk driver,
filesystem provider, filter drivers or the versions of some system DLL you have never
heard of?

Someone may want to use your software on exFAT or some other non-NTFS filesystem.
If this does not support asynch at all ("converting" everything to sync I/0), your
software can hopefully still run without errors, but maybe unusable slow.

Sure, complaining here about this does not change anything, but I take this also as a
opportunity to discuss concepts of programming or APIs.

Simon Farnsworth

@ | 29 Sep 2011 12:08 PM
#

@Ben:

Writing the server software is not hard, precisely because there is only one gotcha;
make sure it is correct if all the async calls turn out synchronous, and make sure it is
also correct if they all turn out async. If they all turn out synchronous, you've not
gained the performance boost async I/0O is supposed to give you. If they all turn out
async, you have.

If you need asynchronous behaviour for correctness, you use threading primitives to get
you asynchronous behaviour. The OVERLAPPED async I/O API lets you exploit hardware
parallelism cheaply, if (and only if) that parallelism is easy for the OS to expose.

Remember that big I/O systems are capable of huge I/O parallelism; I've not dealt with a
really big one, but a small EMC SAN will happily permit you to have 60,000 I/O operations
outstanding at once, while a cheap SATA disk will only allow you 30-odd operations at
once (and IDE disks only let you have one operation outstanding at a time). The point of
the async I/O API is to let you write code that scales trivially from 1 operation at a time
to 60,000 operations at a time, depending on the hardware the user puts it on.

I'm not sure why "unusable slow" applies specifically to this API, either - a user could
choose to run your software on a machine without enough RAM for you, so that it's
paging all the time, or in a VM with a tiny timeslice allocated to it, so it has next to no
CPU time available. You use async I/O so that if the customer puts your software on a
beefy setup, they get high performance, without you having to cope with scaling
between 2 threads (one for I/O, one for compute) and 60,000 threads (60 for compute,
59,940 for I/0).

Deduplicator

&9 | 29 Sep 2011 12:53 PM
#

@Simon:

Well, if any client allways runs into blocking behavior, your thread-number will go through
the roof, meaning you measure your performance by thread-switches/Second, the actual
I/O-performance the hardware allows is completely beside the point. Real asynchronous

http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 15117

5/7/2014

Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs
apis provided by kernel-land would avoid that easily.

Much worse, if only part of the requests potentially performed by a client during his
session grab and strangle a thread, that would trivially lead to a really-hard-to-find
denial-of-service for the service, if not the whole machine. Not only that nobody could
connect anymore, but all clients not having entailed their own private thread yet will be
starved to death. And those who aren't starved will move slower than any snails I've
ever seen. This sudden freezing due to explosion of resource demand could also be
trivially avoided using kernel-provided asynchronous apis.

Next, using the software on your pocket-calculator is a strawman if I ever heard one.
And where does it say that asynchronous requests are always directly moved to
dedicated hardware? Software-managed queues are always used to establish or extend
queueing of requests, especially I0.

Simon Farnsworth

30 Sep 2011 4:30 AM
#

@Deduplicator:

Why exactly would my thread number go through the roof? Imagine a trivial fully async
implementation based around two threads and two queues; thread 1 puts requests into
one queue, and picks up completions from another queue at a time to suit it. Thread two
picks up requests from one queue, executes them, and puts completions into the second
gueue. Voila, you have non-blocking asynchronous I/O, with only one request
outstanding in hardware at a time. If you want more requests in hardware, replace
thread 2 with a constrained size pool of worker threads.

The OVERLAPPED API is still useful; it lets you give each thread in your pool a multiplier
effect on beefy enough systems - you are still guaranteed that each thread can queue
one request into the OS, but if some requests complete asynchronously, you get more
than one request queued by each thread. In turn, this means that a tiny thread pool
can, under the right conditions, queue millions of requests into hardware that's capable
of handling it; compare that to trying to run millions of threads.

Moving the complexity into the kernel doesn't change anything - a kernel async API
would provide you with a hidden thread pool behaving in the same way as the
implementation I've described. And you can implement it as a library you take with you
from project to project - if it was a common requirement, it might even become a library
supplied with the Platform SDK.

And the "pocket calculator" strawman is from the "OVERLAPPED is useless" side of the
argument - the claim made was that the async I/O API was useless because I could find

hardware on which it was always synchronous, and thus would be unusably slow because

the application would only be fast enough if the I/O was asynchronous. However, I can
make the same argument about any other constrained resource, and I have examples of
applications which successfully use this API to gain performance (Microsoft SQL Server),
so clearly the API is usable.

I'm also unable to understand your "denial of service" rant - if the async I/O API opens
up a denial of service to all users of the API, please explain how I'd use it on SQL Server.
If not, it seems to be "if people write buggy code that assumes unlimited resources,
things go wrong". That would still apply even if all async I/O operations were guaranteed
to be async.

http://blog s.msdn.com/b/oldnewthing/archive/2011/09/23/10215586.aspx?Redirected=true

16/17

5/7/2014 Why does my asynchronous /O complete synchronously? - The Old New Thing - Site Home - MSDN Blogs

You're also ignoring one more part of the async I/O API - it's permissible for it to block
for minutes, then return an asynchronous completion, depending on the resources
available on the machine. If that's unacceptable, you need a second thread of execution,
and it makes it simpler for if you have to ask for that thread explicitly, rather than
having the kernel do some magic multithreading dance underneath you so that you have
two threads, but you think you only have one.

Joe

&5 ' 30 Sep 2011 6:35 AM
#

"Moving the complexity into the kernel doesn't change anything - a kernel async API
would provide you with a hidden thread pool."

First, it's already within the kernel. In the end, it has to serialize even heavy access to
functionality and/or resources between different threads/processes, and therefore needs
to use queues (explicit, or implicit via Wait functions) to collect and serve all the
outstanding concurrent I/O requests to one resource. (Site note: There are different
blocking needs which you cannot all reduce to "hardware parallism": compare "write disk
block" to "rename file" to "accept TCP connection").

How it serves this queued-up requests, via worker threads or via interrupt handling or
events or mutexes or what else, is really not important for the high-level APIs, like
ReadFile/WriteFile/SetEndOfFile and so on.

Second, it would be much easier to use "overlapped", if there would be no weird corner
cases, and if every issued overlapped operation would be completed only asynchronous
(the completition ports are very handy). It should save you from coding for both cases,
the sync and the async completition. It would be much easier if each and every
overlapped call be non-blocking: The request is queued up to the kernel, your thread
continue, and the result of the operation is signalled later on.

In the end, why code this complexity go into every application (which will get this wrong
most of the time)? The overlapped concept should be implemented in the kernel in a
coherent way, without special cases and without a strange mix of sync and async
completition.

http:/blog s.msdn.com/b/oldnewthing /archive/2011/09/23/10215586.aspx?Redirected=true 17117

