5/7/2014 Kernel Stack Overflows - Ntdebugging Blog - Site Home - MSDN Blogs

Kernel Stack Overflows

ntdebug 1 Feb 2008 12:53 PM 5

Hello, this is Omer, and today I would like to talk about a common error that we see in a lot of cases reported to us by customers. It involves drivers taking too much space on
the kernel stack that results in a kernel stack overflow, which will then crash the system with one of the following bugchecks:

1. STOP O0x7F: UNEXPECTED_KERNEL_MODE _TRAP with Parameter 1 set to EXCEPTION_DOUBLE_FAULT, which is caused by running off the end of a kernel stack.

2. STOP Ox1E: KMODE_EXCEPTION_NOT_HANDLED, Ox7E: SYSTEM_THREAD_EXCEPTION_NOT_HANDLED, or Ox8E: KERNEL_MODE_EXCEPTION_NOT_HANDLED, with an
exception code of STATUS_ACCESS_VIOLATION, which indicates a memory access violation.

3. STOP 0x2B: PANIC_STACK SWITCH, which usually occurs when a kernel-mode driver uses too much stack space.
Kernel Stack Overview

Each thread in the system is allocated with a kernel mode stack. Code running on any kernel-mode thread (whether it is a system thread or a thread created by a driver) uses that
thread's kernel-mode stack unless the code is a DPC, in which case it uses the processor's DPC stack on certain platforms. Stack grows negatively. This means that the beginning
(bottom) of the stack has a higher address than the end (top) of the stack. For example, let's stay the beginning of your stack is 0x80f1000 and this is where your stack pointer
(ESP) is pointing. If you push a DWORD value onto the stack, its address would be 0x80f0ffc. The next DWORD value would be stored at 0x80f0ff8 and so on up to the limit (top)
of the allocated stack. The top of the stack is bordered by a guard-page to detect overruns.

The size of the kernel-mode stack varies among different hardware platforms. For example:
- On x86-based platforms, the kernel-mode stack is 12K.

- On x64-based platforms, the kernel-mode stack is 24K. (x64-based platforms include systems with processors using the AMD64 architecture and processors using the Intel
EM64T architecture).

- On Itanium-based platforms, the kernel-mode stack is 32K with a 32K backing store. (If the processor runs out of registers from its register file, it uses the backing store to hold
the contents of registers until the allocating function returns. This doesn't affect stack allocations directly, but the operating system uses more registers on Itanium-based
platforms than on other platforms, which makes relatively more stack available to drivers.)

The stack sizes listed above are hard limits that are imposed by the system, and all drivers need to use space conservatively so that they can coexist.
Exception Overview

So, now that we have discussed the kernel stack, let's dive into how the double fault actually happens.

When we reach the top of the stack, one more push instruction is going to cause an exception. This could be either a simple push instruction, or something along the lines of a
call instruction which also pushes the return address onto the stack, etc.

The push instruction is going to cause the first exception. This will cause the exception handler to kick in, which will then try to allocate the trap frame and other variables on the
stack. This causes the second exception.

This time around, the operating system takes advantage a special x86 structure called the Task State Segment(TSS). The OS stores the state of the registers in the TSS and then
stops. The TSS can be accessed via an entry in the global descriptor table, and can be used to debug the memory dump that is created.

The Usual Suspects

Rogue drivers are usually guilty of one or more of the following design flaws:

1. Using the stack liberally. Instead of passing large amounts of data on the stack, driver writers should design functions to accept pointers to data structures. These data
structures should be allocated out of system space memory(paged or non-paged pool). If you need to pass large number of parameters from one function to another, then
group the parameters into a structure and then pass a pointer to that structure.

2. Calling functions recursively. Heavily nested or recursive functions that are passing large amounts of data on the stack will use too much space and will overflow. Try to

http:/blog s.msdn.com/b/ntdebug ging/archive/2008/02/01/ker nel-stack-overflows.aspx 1/6

http://blogs.msdn.com/60842/ProfileUrlRedirect.ashx

5/7/2014 Kernel Stack Overflows - Ntdebugging Blog - Site Home - MSDN Blogs

design drivers that use a minimal number of recursive calls and nested functions.
Since the size of the stack is much smaller on x86 machines, you will run into these problems with x86 machines more frequently than any other platform.
For a more detailed description, please visit

http://www.microsoft.com/whdc/Driver/tips/KMstack.mspx.

Debugging Kernel Stack Overflows
Full kernel dumps are usually enough to find the offending driver. The most common bugcheck code that appears in these dumps is UNEXPECTED_KERNEL_MODE_TRAP (0x7f),
with the first argument being EXCEPTION_DOUBLE_FAULT (0x8).
When you get this dump, the first command that you should run is /analyze-v.
0: kd> lanalyze -v
sk ok ok ok 3 ok 3 oK 3k ok ok 3k ok ok ok 3 ok 3k ok 3k ok sk oK ok K ok ok 3 oK 3 ok 3k oK 3k ok sk ok ok 3 ok ok 3 ok 3k ok sk ok ok ok ok ok 3 ok 3 ok 3k ok sk oK sk ok ok ok ok 3 ok 3 ok 3k oK sk ok sk ok ok
* Bugcheck Analysis *
sk ok ok ok 3 ok 3k ok 3k ok ok ok ok ok 3 ok 3k ok 3k ok ok oK ok K ok o ok 3 ok 3 ok 3k oK 3k ok sk ok ok 3 ok 3 ok 3 ok 3k ok sk ok ok 3 ok ok 3 ok 3 ok sk ok sk ok ok ok ok ok 3 ok 3 ok 3k oK sk ok sk ok ok
UNEXPECTED_KERNEL_MODE_TRAP (7f)
This means a trap occurred in kernel mode, and it's a trap of a kind that the kernel isn't allowed to have/catch (bound trap) or that
is always instant death (double fault). The first number in the bugcheck params is the number of the trap (8 = double fault, etc)
Consult an Intel x86 family manual to learn more about what these traps are. Here is a *portion* of those codes:
If kv shows a taskGate
use .tss on the part before the colon, then kv.
Else if kv shows a trapframe
use .trap on that value
Else
.trap on the appropriate frame will show where the trap was taken(on x86, this will be the ebp that goes with the procedure KiTrap)
Endif
kb will then show the corrected stack.
Arguments:
Argl: 00000008, EXCEPTION_DOUBLE_FAULT
Arg2: 80042000
Arg3: 00000000
Arg4d: 00000000
Debugging Details:
BUGCHECK_STR: ox7f_8
TSS: 00000028 -- (.tss Ox28)
eax=87b90328 ebx=87b90328 ecx=8aa3d8cO edx=87b90328 esi=b8cb7138 edi=8084266a
eip=f7159c53 esp=b8cb7000 ebp=b8cb7010 iopl=0 nv up ei pl nz na po nc
CS=0008 s5=0010 ds=0023 es=0023 fs=0030 gs=0000 ef1=00010202
Ntfs!NtfsInitializeIrpContext+0Oxc:
£7159¢53 57 push edi
Resetting default scope
DEFAULT_BUCKET_ID: DRIVER_FAULT
PROCESS_NAME: System
CURRENT_IRQL: 1
TRAP_FRAME: b8cb8620 -- (.trap Oxffffffffb8ch8620)

ErrCode = 00000000

eax=c1587000 ebx ecx f edx esi=87dca350 edi=00000000
eip=8093837b esp=b8cb8694 ebp=b8cb86d0 iopl=0 nv up ei ng nz ac po cy
CS=0008 s5=0010 ds=0023 es=0023 fs=0030 gs=0000 ef1=00010293
nt!CcMapData+0x8c:

8093837b 8a10 mov dl,byte ptr [eax] ds:0023:c1587000=??

http:/blog s.msdn.com/b/ntdebug ging/archive/2008/02/01/ker nel-stack-overflows.aspx

2/6

http://www.microsoft.com/whdc/Driver/tips/KMstack.mspx

5/7/2014

Let's follow the instructions that the debugger is giving us. Since the debugger gave us a .tss command, lets run that. After that, run a /thread to get the thread summary:

We are looking for the kernel stack limits(above in red). For this particular stack we see that the stack starts at b8cba000, and ends at b8cb7000. If you look at the ESP register in
the .tss output above, you will see that we have reached the stack limit. The current instruction being attempted is a push which overflows the stack and causes the bugcheck.

Now that we have determined we do have a stack overflow, let's find out what caused this, and who the offending driver is.

The first thing that I do is dump the stack. You might need to increase the number of frames displayed to see the whole stack.

http:/blog s.msdn.com/b/ntdebug ging/archive/2008/02/01/ker nel-stack-overflows.aspx

Kernel Stack Overflows - Ntdebugging Blog - Site Home - MSDN Blogs

Resetting default scope

LAST_CONTROL_TRANSFER: from 7158867 to f7159c53

0: kd> .tss ox28

eax=87b90328 ebx=87b90328 ecx=8aa3d8cO edx=87b90328 esi=b8cb7138 edi=8084266a
eip=f7159¢c53 esp=b8cb7000 ebp=b8cb7010 iopl=0 nv up ei pl nz na po nc

CS=0008 s55=0010 ds=0023 es=0023 fs=0030 gs=0000 ef1=00010202

Ntfs!INtfsInitializeIrpContext+0xc:
£7159¢53 57 push edi

0: kd> !thread

THREAD 87dca350 Cid 0420.0990 Teb: 7ffdfeee Win32Thread: efdbe430 RUNNING on processor ©

IRP List:

89cba088: (0006,01fc) Flags: 00000404 Mdl: 00000000
Not impersonating

DeviceMap e10008d8

Owning Process 8ab8e238 Image: System

Wait Start TickCount 7260638 Ticks: @

Context Switch Count 17 LargeStack

UserTime 00:00:00.000

KernelTime 00:00:00.015

Start Address 0x4a6810ea

Stack Init b8cbal@@ Current b8cb7c64 Base b8cbavdo Limit b8cb7000 Call ©

Priority 14 BasePriority 13 PriorityDecrement 0

0: kd> kb

*** Stack trace for last set context - .thread/.cxr resets it

ChildEBP RetAddr

b8cb7010 7158867 Ntfs!NtfsInitializeIrpContext+@xc
b8cb71bc 8083f9cO Ntfs!NtfsFsdRead+0xb7

b8cb71d@ f7212c53 nt!IofCallDriver+0x45

b8cb71f8 8083f9c@ fltmgr!FltpDispatch+ox6f

b8cb7206c ba547bcc nt!IofCallDriver+0x45

WARNING: Stack unwind information not available. Following frames may be wrong.

b8cb7214 8083f9cO tmpreflt!TmpAddRdr+0x7b8
b8cb7228 baded8be nt!IofCallDriver+0x45
b8cb7430 ba4e0@9d3 DRIVER_A+0x28be

b8cb7450 b85fa306 DRIVER_A+0x29d3

b8cb763c b85fa50d DRIVER_B+0x8306

b8cb765c 8082f0d7 DRIVER_B+0x850d

b8cb7674 80821175 nt!IoPageRead+0x109
b8cb76f8 80849cd5 nt!MiDispatchFault+0xd2a
b8cb7754 80837d0a nt!MmAccessFault+0Ox64a
b8cb7754 8093837b nt!KiTrap@E+0xdc
b8cb781c f718cPac nt!CcMapData+0x8c
b8cb783c f718c6e6 Ntfs!NtfsMapStream+0x4db
b8cb78b0 718c045 Ntfs!NtfsReadMftRecord+0x86

b8cb78e8 f718cof4 Ntfs!NtfsReadFileRecord+0x7a

3/6

5/7/2014
b8cb7920

b8cb7a30
b8cb7bfc
b8cb7dd8
b8cb7ec4
b8cb8070
b8cb8084
b8cb8oac
b8cb8oco
b8cb80c8
b8cb8edc
b8cb82e4
b8cb8304
b8cb84f0
b8cb8510
b8cb8528
b8cb85ac
b8cb8608
b8cb8608
b8cb86d0
b8cb86f0
b8cb8720
b8cb8894
b8cb8990
b8cb8b98
b8cb8de8
b8cb8dlc
b8cb8d44
b8cb8d58
b8cb8d80
b8cb8d90
b8cb8das
b8cb8fac
b8cb8fcc
b8cb91b8
b8cb91d8
b8cb9208
b8cb9238
b8cb9260
b8cb92a4
b8cb92b4
b8cb92b4
b8cb9330
b8cb9608
b8cb9660
b8cb96co
b8cb991c
b8cb9afo
b8cb9obac

b8cb9ocf4

£7155c3c
f715746a
7157655
£715575e
£71588de
8083f9c0
£7212c53
8083f9c0
ba547bcc
8083f9c0
bade08be
ba4e09d3
b85fa306
b85fas5ed
8082f0d7
8082175
80849cd5
80837d0a
8093837b
f718coac
f718ef1b
f7186aa7
7187042
7186059
7186302
8083f9c0
£7212c53
8083f9c0
ba54809a
ba54de1d
8083f9c0
ba4e08be
ba4e09d3
b85fa306
b85fas50d
80937175
8092add4
8092af7a
8092ae9%e
8092aee9
80834d3f
8083cofc
bf835765
bf8aa2dd
bf826b45
bf82784a
bfobcb67
bfobcb16
bfobboe8

bf9obag4s

Kernel Stack Overflows - Ntdebugging Blog - Site Home - MSDN Blogs

Ntfs!NtfsLookupInFileRecord+0x37
Ntfs!NtfsLookupAllocation+oxdd
Ntfs!INtfsPrepareBuffers+0x25d
Ntfs!NtfsNonCachedIo+oxlee
Ntfs!INtfsCommonRead+0xaf5
Ntfs!INtfsFsdRead+0x113
nt!IofCallDriver+0x45
fltmgr!FltpDispatch+ox6f
nt!IofCallDriver+0x45

tmpreflt! TmpAddRdr+0x7b8
nt!IofCallDriver+0x45
DRIVER_A+0x28be

DRIVER_A+0x29d3

DRIVER_B+0x8306

DRIVER_B+0x850d

nt!IoPageRead+0x109
nt!MiDispatchFault+0xd2a
nt!MmAccessFault+0x64a
nt!KiTrap@E+0xdc

nt!CcMapData+0x8c
Ntfs!NtfsMapStream+0x4b
Ntfs!ReadIndexBuffer+ox8f
Ntfs!NtfsUpdateFileNameInIndex+0x62
Ntfs!NtfsUpdateDuplicateInfo+0x2bo
Ntfs!NtfsCommonCleanup+0x1e82
Ntfs!NtfsFsdCleanup+oxcf
nt!IofCallDriver+0x45
fltmgr!FltpDispatch+ox6f
nt!IofCallDriver+0x45

tmpreflt! TmpQueryFullName+0x454
tmpreflt! TmpQueryFullName+0x53d7
nt!IofCallDriver+0x45
DRIVER_A+0x28be

DRIVER_A+0x29d3

DRIVER_B+0x8306

DRIVER_B+0x850d
nt!IopCloseFile+0x2ae
nt!ObpDecrementHandleCount+0x10a
nt!0ObpCloseHandleTableEntry+0x131
nt!0ObpCloseHandle+0x82
nt!NtClose+@xlb
nt!KiFastCallEntry+0xfc
nt!ZwClose+0x11
win32k!bCreateSection+0x2ad
win32k!EngMapFontFileFDInternal+oxc6
win32k!PUBLIC_PFTOBJ: :bLoadFonts+0x17f
win32k!PUBLIC_PFTOBJ: :bLoadAFont+0x77
win32k!bInitOneStockFontInternal+ox42
win32k!bInitOneStockFont+0x3f

win32k!bInitStockFontsInternal+0x12a

http:/blog s.msdn.com/b/ntdebug ging/archive/2008/02/01/ker nel-stack-overflows.aspx

4/6

5/7/2014

The next step is to calculate how much space each frame is taking up. This can be done by walking the stack manually. Just subtract the subsequent EBP from the current EBP for

Kernel Stack Overflows - Ntdebugging Blog - Site Home - MSDN Blogs
b8cb9cfc bf8246ad win32k!bInitStockFonts+0xa

b8cb9d48 bf8242d5 win32k!InitializeGreCSRSS+0x149
b8cb9d50 80834d3f win32k!NtUserInitialize+0@x66
b8cb9d50 7c82ed54 nt!KiFastCallEntry+oxfc

0015fdbo 00000000 Ox7c82ed54

each frame and add up the space used by all the modules.

It would be easy to blame NTFS since it is the top stack consumer, but look closer. Even though NTFS is using the most of space in our example, this is due to both DRIVER_A
and DRIVER_B making repeated calls into NTFS to access data. Alone, it is likely that neither driver would have caused a problem, but both drivers combined resulted in a
bugcheck. Conscientious driver writing and efficient stack usage would have prevented this problem. Both drivers need to optimize the number of calls they make to NTFS.

Module Stack Usage Percentage
Ntfs 4152 36%

DRIVER_A 1572 14%

win32k 2592 22%

DRIVER B 1656 14%

tmpreflt 72 1%

fltmgr 120 1%

nt 1420 12%

Further reading

http://www.microsoft.com/whdc/driver/kernel/mem-mgmt.mspx
http://www.microsoft.com/whdc/Driver/tips/KMstack.mspx
http://support.microsoft.com/kb/186775

For more information on Task State Segments, please see the Intel and AMD Processor manuals.

Comments

.

Dominik Rappaport
1 Feb 2008 8:16 PM

Again a very interesting article with much background information. Keep on blogging. :-)

Skywing
2 Feb 2008 11:52 AM

Use 'kf and the debugger will count stack variable usage per frame for you (see http://www.nynaeve.net/?p=60 for an example).

Domnet uk
21 Mar 2008 8:33 PM

This article helped me sort out a tricky problem; just a bit of homebrew code messing with my hardware. Keep up the great work guys.

Steve Liu
12 Nov 2008 3:38 AM

This help me a lot on driver stack using, great article.

Sean
6 Apr 2014 10:02 PM

Nice article!
But | am kind of lost in how to calculate the space each frame is taking up.

Can someone explain and take tmprefit as an example?

[Run the command "kcf'. On the left hand side is a column of numbers representing the size of each frame. Add up the numbers next to the module to determine how

much it is using.
In the below example clusdisk is using 0x318 bytes (0x310+0x8) and fitmgr is using 0x120 bytes (0x90+0x90).

8: kd> kcf
Memory Call Site
nt!KiSwapContext
140 nt!KiCommitThreadWait
90 nt!KeWaitForSingleObject
a0 ntl!loReportTargetDeviceChange

http:/blog s.msdn.com/b/ntdebug ging/archive/2008/02/01/ker nel-stack-overflows.aspx

5/6

http://www.microsoft.com/whdc/driver/kernel/mem-mgmt.mspx
http://www.microsoft.com/whdc/Driver/tips/KMstack.mspx
http://support.microsoft.com/kb/186775
http://blogs.msdn.com/b/ntdebugging/rsscomments.aspx?WeblogPostID=7378486
http://www.rappaport.at/
http://blogs.msdn.com/4711/ProfileUrlRedirect.ashx
http://blogs.msdn.com/4711/ProfileUrlRedirect.ashx
http://www.nynaeve.net/?p=60
http://www.karoo.domnet.net/

5/7/2014 Kernel Stack Overflows - Ntdebugging Blog - Site Home - MSDN Blogs

70 nt!FsRtINotifyVolumeEwventEx
30 nt!FsRtINotifyVolumeEwvent
60 Ntfs!NtfsLockVolume
dO NtfsINtfsUserFsRequest
40 Ntfs!NtfsCommonFileSystemControl
b0 NtfsINtfsFsdFileSystemControl
90 fitmgr!FltpLegacyProcessingAfterPreCallbacks Completed
90 fitmgr!FltpFsControl
60 nt!lopXxxControlFile
130 nt!NtFsControlFile
70 nt!KiSystemSeniceCopyEnd
208 nt!KiSeniceLinkage
8 ClusDisk!ClusDskpOfflineVolume
310 ClusDisk!ClusDskpHaltProcessignWorker
70 ntllopProcessWorkltem
30 nt!ExpWorkerThread
90 nt!PspSystemThreadStartup
40 nt!KxStartSystemThread

http:/blog s.msdn.com/b/ntdebug ging/archive/2008/02/01/ker nel-stack-overflows.aspx

6/6

