5/7/2014 CSI Debugging - Uncovering the cause of a Server Hang - Ntdebugging Blog - Site Home - MSDN Blogs

CSI Debugging - Uncovering the cause of a Server Hang

ntdebug 20 Aug 2009 3:19 PM Z

My name is Nischay Anikar from the Escalation Engineer team in Global Escalation Services. In today’s post I'll present a weird problem | worked through with a
client. When we started to work on the problem, we found the following:

« Ping to the box worked.

« Keyboard was responding.

« Shares on the system were accessible remotely.

« Could not Remote Desktop into the box.

« Existing sessions were responsive to some extent — no new processes were getting created.

« No new processes/application could be launched. Sometimes application would get launched but after waiting for a long time.

« Remote computer management would work, but not all snap-ins would work. (Event logs showed up, but disk management did not respond).

At this time, perfmon was collected and nothing in it indicated any kind of resource contention. This was certainly not the case of any process/thread pegging
the CPU. The above observations told us this was not a hard hang, as the system was responsive at DPC level. Rather system was even responding to certain
extent at passive level — remember, shares were accessible. SMB requests are processed basically by the worker threads created by SRV.SYS.

Remote management snap-ins and remote registry responsiveness showed that RPC was working fine. However some snap-ins like disk management were
behaving inconsistently.

This is the stage at which we had the Kernel dump of the system and we started our normal analysis trying to find the root of the problem.

From the dump there were no blocked threads on locks (ERESOURCE, !locks), no memory pressure (perfmon confirmed it too - lvm 1), no CPUs stuck in
spinlocks, no DPCs pending(!dpcs), no ready threads pending to execute(!ready), and no alarming LPC wait chain among threads leading to system hang. These
are some of the common causes that could lead to system hang. None of these were seen in the dump.

Then | said, enough of running behind the debugger commands to look for known problems, they didn’t yield me anything useful up front. When the dump was
given we were told that they attempted to launch notepad from explorer (Start->Run->Notepad) which never launched. If we start chasing from this point we
are likely going to hit the root of the problem or at least get some leads. With this in mind, when we dumped out the explorer threads we saw one of the

threads that was indeed trying to launch notepad (there was one more in the same state but trying to launch some other application).
THREAD 892ef4a@ Cid @d2c.@ea8 Teb: 7ffd8000 Win32Thread: e108e6c® WAIT: (Unknown) KernelMode Non-Alertable

f573bc2c NotificationEvent

892ef518 NotificationTimer
Not impersonating

DeviceMap e12bf190

Owning Process 892027f0 Image: explorer.exe
Wait Start TickCount 40848 Ticks: 8313 (0©:00:02:09.890)
Context Switch Count 284 LargeStack

UserTime 00:00:00.000

KernelTime 00:00:00.078

Win32 Start Address ntdll!RtlpWorkerThread (@x7c839f2b)

Start Address kernel32!BaseThreadStartThunk (©x77e617ec)

Stack Init f573c000 Current f573bb8c Base f573c000 Limit 5736000 Call @

Priority 14 BasePriority 8 PriorityDecrement @

ChildEBP RetAddr Args to Child

f573bbad 8082ffd7 892ef4a@ 892ef548 00OOO100 nt!KiSwapContext+0x25 (FPO: [Uses EBP] [0,0,4])

f573bbbc 808287d4 895c6548 80a560c6 00000000 nt!KiSwapThread+0x83 (FPO: [Non-Fpo])

f573bco0 80810135 f573bc2c ©0P0OPOO 0PORVRRO nt!KeWaitForSingleObject+0x2e® (FPO: [Non-Fpo])

f573bc48 80842608 ©05c6548 0000B000 00V nt!CcWaitForUninitializeCacheMap+@xa5 (FPO: [Non-Fpo])
f573bcde 8091f8e7 f573bd20 000fOO1f 00000 nt!MmCreateSection+@xlfc (FPO: [Non-Fpo])

f573bd40 80883938 ©190d51c 000fGO1f 000V nt!NtCreateSection+0x12f (FPO: [Non-Fpo])

£573bd40@ 7c82860c ©190d51c 000f001f 0OAOOVOO nt!KiFastCallEntry+0xf8 (FPO: [0,0] TrapFrame @ f573bd64)
0190d174 7c826ed9 77e6cc9a 0190d51c 00OFOO1f ntdll!KiFastSystemCallRet (FPO: [0,0,0])

0190d178 77e6cc9a ©190d51c ©00feO1f 00000000 ntdll!NtCreateSection+dxc (FPO: [7,0,0])

0190d994 77e424b0 00000000 001394f4 0013725c kernel32!CreateProcessInternalW+0x99c (FPO: [Non-Fpo])
0190d9cc 7c916750 ©01394f4 ©013725c 0000V kernel32!CreateProcessW+0x2c (FPO: [Non-Fpo])

0190e450 7c916b45 00030064 0000V 00139904 SHELL32!_SHCreateProcess+0x387 (FPO: [Non-Fpo])

0190ed4a4 7c¢91617b 00136008 0190e4c4 7c915a76 SHELL32!CShellExecute::_DoExecCommand+@xb4 (FPO: [Non-Fpo])
0190e4b@ 7c915a76 0OOEEOO1 00000009 00136008 SHELL32!CShellExecute::_TryInvokeApplication+@x49 (FPO: [Non-Fpo])
0190e4c4 7c91599f 00OOOOOO 00000009 ©190e500 SHELL32!CShellExecute::ExecuteNormal+@xbl (FPO: [Non-Fpo])
0190e4d8 7c915933 0190e500 00000000 00009 SHELL32!ShellExecuteNormal+0x3@ (FPO: [Non-Fpo])

0190e4f4 7c9a3416 ©190e500 0000OO3Cc 04000b00 SHELL32!ShellExecuteExW+0x8d (FPO: [Non-Fpo])

0190e954 7c9e3f92 00030064 ©190e988 01901828 SHELL32!ShellExecCmdLine+0x143 (FPO: [Non-Fpo])

0190ee20 7c9e4517 ©190eea8 7c9e43f6 0190ee5c SHELL32!CRunDlg::0KPushed+0x179 (FPO: [Non-Fpo])

0190ee30 7739b6e3 000400b4 00000111 ©OOOAVO1 SHELL32!RunDlgProc+0x121 (FPO: [Non-Fpo])

0190ee5c 77395f82 7c9e43f6 000400b4 00000111 USER32!InternalCallWinProc+0x28

0190eed8 77395e22 00095fb4 7c9e43f6 000400b4 USER32!UserCallDlgProcCheckWow+0x147 (FPO: [Non-Fpo])
0190ef20 77395ffa 00000000 00000111 00ROVl USER32!DefDlgProcWorker+0xa8 (FPO: [Non-Fpo])

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/08/20/the-story-of-a-hung-box.aspx 1/5

http://blogs.msdn.com/60842/ProfileUrlRedirect.ashx

5/7/2014 CSI Debugging - Uncovering the cause of a Server Hang - Ntdebugging Blog - Site Home - MSDN Blogs

0190ef3c 7739b6e3 000400b4 00000111 ©OOOOVOL USER32!DefDlgProcW+0x22 (FPO: [Non-Fpo])

0190ef68 7739b874 77395fd8 000400b4 00000111 USER32!InternalCallWinProc+0x28

0190efe@ 7739bfce ©0095fb4 77395fd8 000400b4 USER32!UserCallWinProcCheckWow+0x151 (FPO: [Non-Fpo])
0190010 7739bf74 77395fd8 ©00400b4 00000111 USER32!CallWindowProcAorW+0x98 (FPO: [Non-Fpo])
0190030 77431848 77395fd8 000400b4 00000111 USER32!CallWindowProcW+exlb (FPO: [Non-Fpo])

0190f@4c 77431b9b 000400b4 00000111 00EEEVO1 comctl32!CallOriginalWndProc+@xla (FPO: [Non-Fpo])
0190f0a8 77431d5d ©01060a8 000400b4 00000111 comctl32!CallNextSubclassProc+0x3c (FPO: [Non-Fpo])
0190f@cc 75ed2f80 000400b4 00000111 00001 comctl32!DefSubclassProc+0x46 (FPO: [Non-Fpo])
0190f0f0 77431b9b 000400b4 00000111 000001 BROWSEUI!CAutoComplete::s_ParentWndProc+@xec (FPO: [Non-Fpo])
0190f14c 77431dcO 001060a8 000400b4 00000111 comctl32!CallNextSubclassProc+0x3c (FPO: [Non-Fpo])
0190120 7739b6e3 ©00400b4 00000111 00001 comctl32!MasterSubclassProc+0x54 (FPO: [Non-Fpo])
0190flcc 7739b874 77431d6c 000400b4 00000111 USER32!InternalCallWinProc+0x28

0190244 7739c2d3 00095fb4 77431d6C ©@B400b4 USER32!UserCallWinProcCheckWow+0x151 (FPO: [Non-Fpo])
0190280 7739c337 004f8a78 004f5df@ ©OOOVVOL USER32!SendMessageWorker+@x4bd (FPO: [Non-Fpo])
0190220 77386cea 000400b4 00000111 00001 USER32!SendMessageW+0x7f (FPO: [Non-Fpo])

0190f2d0 77396199 0©00400b4 ©0503dc8 00030064 USER32!IsDialogMessageW+0x41lc (FPO: [Non-Fpo])
0190f30c 7738965e 0©00400b4 00030064 00000001 USER32!DialogBox2+0x144 (FPO: [Non-Fpo])

This is the first parameter to CreateProcess, and this thread coincided with the notepad launch from explorer.

kd> du 001394f4
001394f4 "C:\WINDOWS\system32\notepad.exe"

This thread has been waiting longer than 2 minutes. Looking at what this thread is doing, we see that it’s waiting for a Cache Map to be uninitialized (tear
down of the existing references on this cache map) as part of creating the Image section during process creation.
Examining the state of threads in the whole box, you see there are a few more threads in different processes that are waiting on the CreateProcess while

creating an Image section and waiting to un-initialize the cache map.

kd> !thread 891910a8

THREAD 891910a8 Cid 0180.0184 Teb: 7ffdfee@ Win32Thread: e1442bb8 WAIT: (Unknown) KernelMode Non-Alertable
féd44c2c NotificationEvent
89191120 NotificationTimer

IRP List:
89410298: (0006,0094) Flags: 00000800 Mdl: 0000000

Impersonation token: e105d028 (Level Impersonation)

DeviceMap el2bf19e

Owning Process 89138708 Image: winlogon.exe
Wait Start TickCount 48380 Ticks: 781 (0©:00:00:12.203)
Context Switch Count 1617 LargeStack

UserTime 00:00:00.156

KernelTime 00:00:00.468

Start Address winlogon!__ report_gsfailure (0x0103elb@)

Stack Init f6d45000 Current f6d44b8c Base f6d45000 Limit f6d40000 Call @

Priority 15 BasePriority 15 PriorityDecrement @

ChildEBP RetAddr Args to Child

f6d44bad 8082ffd7 891910a8 89191150 0000100 nt!KiSwapContext+0x25 (FPO: [Uses EBP] [0,0,4])
f6d44bbc 808287d4 896b20e8 80a560c6 ©OOVOVRO nt!KiSwapThread+0x83 (FPO: [Non-Fpo])

f6d44c00 80810135 f6d44c2c 00OOOROO PRORVARO nt!KeWaitForSingleObject+0x2e@ (FPO: [Non-Fpol)
f6d44c48 80842608 ©06b20e8 0000BOOO 00VPRVVV nt!CcWaitForUninitializeCacheMap+@xa5 (FPO: [Non-Fpo])
f6d44cdo 8091f8e7 f6d44d20 000fEO1f 0000000 nt!MmCreateSection+@xlfc (FPO: [Non-Fpo])

f6d44d40 80883938 00O6eedc 00OFEOLf 000VOOVO nt!NtCreateSection+0x12f (FPO: [Non-Fpo])

f6d44d40 7c82860c ©PO6eedc 00OTOOLf 000OOOVO nt!KiFastCallEntry+0xf8 (FPO: [0,0] TrapFrame @ f6d44d64)
0006eb34 7c826ed9 77e6cc9a POO6eedc 00OFOOLf ntdll!KiFastSystemCallRet (FPO: [0,0,0])

0006eb38 77e6cc9a 0PR6eedc 0OOTOR1f ©ROROORO ntdll!NtCreateSection+oxc (FPO: [7,0,0])

00061354 7dlec670 ©000O818 00OOBOVV 0VV6Tadc kernel32!CreateProcessInternalW+0x99c (FPO: [Non-Fpo])
00061320 75842db7 00000818 ©V0VBROV BVV6fadc ADVAPI32!CreateProcessAsUserW+0x108 (FPO: [Non-Fpo])
00067424 75842f3a 0008C260 0006f8d4 ©OO8c208 MSGINA!ExecApplication+@x8e (FPO: [Non-Fpo])

00067884 0103be76 0008c208 0VO6T8d4 00710000 MSGINA!WlxStartApplication+@xbb (FPO: [Non-Fpo])
000618a8 0©1036d59 ©PO7a868 ©VO6T8d4 00008001 winlogon!StartApplication+@x4@ (FPO: [Non-Fpo])
0006faf8 ©1036fa4 00072868 000VBOO1 ©0V7a868 winlogon!HandleLoggedOn+0x203 (FPO: [Non-Fpo])
0006fb14 0103b24d PA50020 0AGAG659 PBABBR1 winlogon!LoggedonDlgProc+@x8b (FPO: [Non-Fpo])
0006Tb38 7739b6e3 00050020 00000659 ©AAAAAO1 winlogon!RootDlgProc+@x6e (FPO: [Non-Fpo])

0006Tb64 7739582 0©103bldf 00050020 00000659 USER32!InternalCallWinProc+0x28

0006Tbed 77395e22 0008fcad 0103bldf 00050020 USER32!UserCallDlgProcCheckWow+0x147 (FPO: [Non-Fpo])
0006fc28 77395ffa 2] 59 USER32!DefDlgProcWorker+@xa8 (FPO: [Non-Fpo])
0006fc44 7739b6e3 00050020 ©00OOB659 0001 USER32!DefD1gProcW+0x22 (FPO: [Non-Fpo])

0006fCc70 7739b874 77395fd8 00050020 0©00VV659 USER32!InternalCallWinProc+0x28

0006fce8 7739ba92 00@8fcad 77395fd8 ©@@50020 USER32!UserCallWinProcCheckWow+0x151 (FPO: [Non-Fpo])
0006Fd50 7739bade 0PR6fda® 00000000 PPR6Td84 USER32!DispatchMessageWorker+0x327 (FPO: [Non-Fpo])
0006fd60 77395d78 0PR6Fda® 00000000 VR4f2cde USER32!DispatchMessageW+Oxf (FPO: [Non-Fpo])

0006Td84 77396199 00050020 004f2cdO 000V USER32!IsDialogMessageW+0x56b (FPO: [Non-Fpo])
0006TdcO 7738965e 00050020 000OOO0O 000VPV10 USER32!DialogBox2+0x144 (FPO: [Non-Fpo])

0006fde8 77389620 01000000 ©107cbc8 00000000 USER32!InternalDialogBox+0xde (FPO: [Non-Fpo])
0006fe08 77389668 01000000 0107cbc8 0PEAAAOO USER32!DialogBoxIndirectParamAorW+0x37 (FPO: [Non-Fpo])
0006fe2c 0103deda 01000000 00000578 OOAAAARO USER32!DialogBoxParamW+@x3f (FPO: [Non-Fpo])

0006fe50 0102d838 01000000 00000578 ©AAAAVVO winlogon!Fusion_DialogBoxParam+@x24 (FPO: [Non-Fpo])
0006fe8c 0103b6e0 00072868 01000000 00578 winlogon!TimeoutDialogBoxParam+0x28 (FPO: [Non-Fpo])
0006Tec4 0103746e 00072868 01000000 000VB578 winlogon!WlxDialogBoxParam+0x80 (FPO: [Non-Fpo])
0006feed 01038042 00072868 77e62f9d 77e42014 winlogon!BlockWaitForUserAction+@x3a (FPO: [Non-Fpo])
00061108 ©1031b33 00072868 ffffffff 00000004 winlogon!MainLoop+0x42d (FPO: [Non-Fpo])

0006150 0103e33b 00072868 0POPOAOO 08724e4 winlogon!WUNotify+@x515 (FPO: [Non-Fpo])

0006Fff4 00000000 7ffd7000 000000c8 ©OAOA1cS winlogon!__report_gsfailure+0x267 (FPO: [Non-Fpo])

i

kd> !thread 88alc3a@

THREAD 88alc3a@ Cid 01b0.072c Teb: 7ff9dee® Win32Thread: 00000000 WAIT: (Unknown) KernelMode Non-Alertable
f5ea7c2c NotificationEvent
88alc418 NotificationTimer

Not impersonating

DeviceMap 1000128

Owning Process 8911fd88 Image: services.exe
Wait Start TickCount 32679 Ticks: 16482 (0:00:04:17.531)
Context Switch Count 2043

UserTime 00:00:00.015

KernelTime 00:00:00.140

Win32 Start Address 0x0000ald5

LPC Server thread working on message Id ald5

Start Address kernel32!BaseThreadStartThunk (@x77e617ec)

Stack Init f5ea8000 Current fS5ea7b8c Base f5ea8000 Limit f5ea5000 Call @

Priority 10 BasePriority 9 PriorityDecrement @

ChildEBP RetAddr Args to Child

f5ea7bad 8082ffd7 88alc3a@ 88alc448 0POOO100 nt!KiSwapContext+0x25 (FPO: [Uses EBP] [0,0,4])
fS5ea7bbc 808287d4 895c83f0 80a560c6 ©0OVORLO nt!KiSwapThread+0x83 (FPO: [Non-Fpo])

f5ea7c00 80810135 fSea7c2c ©0POOPOO PPOVVARO nt!KeWaitForSingleObject+0x2e@ (FPO: [Non-Fpo])
f5ea7c48 80842608 ©05c83f0 00000000 00V nt!CcWaitForUninitializeCacheMap+@xa5 (FPO: [Non-Fpo])
f5ea7cdo 8091f8e7 f5ea7d20 000fBO1f ©00VOVVO nt!MmCreateSection+@xlfc (FPO: [Non-Fpo])

f5ea7d40 80883938 0359270 000f001f 0PAAAVVO nt!NtCreateSection+0x12f (FPO: [Non-Fpo])

f5ea7d4@ 7c82860c 0359270 000f001f ©OOOOVOO nt!KiFastCallEntry+0xf8 (FPO: [0,0] TrapFrame @ fSea7d64)
0359eec8 7c826ed9 77e6cc9a 0359270 000f001f ntdll!KiFastSystemCallRet (FPO: [0,0,0])

©359eecc 77e6cc9a 03591270 000TO01f 000R0ARO ntdll!NtCreateSection+oxc (FPO: [7,0,0])

0359f6e8 77e424b0 00000000 000VBOVO 00Pb5100 kernel32!CreateProcessInternalW+0x99c (FPO: [Non-Fpo])
0359720 ©100928b ©000PO00 ©POb5100 00OV kernel32!CreateProcessW+0x2c (FPO: [Non-Fpo])

0359f80c ©1008a4c ©064a8b0 05100 0359f844 services!ScLogonAndStartImage+0x28b (FPO: [Non-Fpo])
0359f84c ©10069b1 ©064a8b0 00OOBOVO 00RO services!ScStartService+@xlc6 (FPO: [Non-Fpo])

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/08/20/the-story-of-a-hung-box.aspx

2/5

http://msdn.microsoft.com/en-us/library/ms682425(VS.85).aspx

5/7/2014 CSI Debugging - Uncovering the cause of a Server Hang - Ntdebugging Blog - Site Home - MSDN Blogs

0359f87c ©1005e57 ©064a8b0 ©00VBOOO 00ROV services!ScStartMarkedServices+0x9c (FPO: [Non-Fpo])

0359f8b4 01005e€0 0064a8b0 00OVBOOO 0VVORVVV services!ScStartServiceAndDependencies+0x1fl (FPO: [Non-Fpo])
0359f8d8 77c80193 00020180 0VOVOOVO 0VVORRVV services!RStartServiceW+0x8c (FPO: [Non-Fpo])

0359818 77ce33el ©1005e78 ©359fae@ 00000003 RPCRT4!Invoke+0x30

0359fcf8 77ce35c4 00000000 ©00OBOOO BVabed9c RPCRT4!NdrStubCall2+e0x299 (FPO: [Non-Fpo])

0359fd14 77c7ff7a @@@abe9c 000a06d0 @BGabeSc RPCRT4!NdrServerCall2+0x19 (FPO: [Non-Fpo])

0359fd48 77c8042d ©10024ef ©00abe9c ©359fdec RPCRT4!DispatchToStubInCNoAvrf+0x38 (FPO: [Non-Fpo])

0359fd9c 77c80353 00000013 000000V 0101c148 RPCRT4!RPC_INTERFACE: :DispatchToStubWorker+0x11f (FPO: [Non-Fpo])
0359fdc@ 77c811dc ©@Pabe9c ©00OOOOO 0101c148 RPCRT4!RPC_INTERFACE: :DispatchToStub+@xa3 (FPO: [Non-Fpo])
0359fdfc 77c812f0 ©00abc30 ©009ff0O8 000d5c58 RPCRT4!LRPC_SCALL: :DealWithRequestMessage+@x42c (FPO: [Non-Fpo])
0359fe20 77c88678 ©009ff40 ©359fe38 000abc30 RPCRT4!LRPC_ADDRESS: :DealWithLRPCRequest+0x127 (FPO: [Non-Fpo])
0359ff84 77c88792 ©359ffac 77c8872d 0009ff08 RPCRT4!LRPC_ADDRESS: :ReceivelLotsaCalls+0x43@ (FPO: [Non-Fpo])
0359ff8c 77c8872d 00@9ffO8 00000000 OOAAOVOO RPCRT4!RecvLotsaCallsWrapper+dxd (FPO: [Non-Fpo])

0359ffac 77c7b110 ©@@9e2b8 ©359ffec 77e6482f RPCRT4!BaseCachedThreadRoutine+0x9d (FPO: [Non-Fpo])

0359ffb8 77e6482f 000d4d78 00000O00 000V RPCRT4!ThreadStartRoutine+0x1lb (FPO: [Non-Fpo])

0359ffec 00000 77c7bOf5 000d4d78 0000000 kernel32!BaseThreadStart+0x34 (FPO: [Non-Fpo])

These threads stuck in Cache Manager while attempting to launch a process, can potentially lead to the symptoms that were described to us. Let’s try to prove
it.
While we will not go into the details of Cache Manager mechanics (Refer to Cache Manager, Chapter 11 in Windows Internals), a quick note on how these
threads will be unblocked is needed for the sake of this problem. When image sections are created if there is any existing shared cache map associated, we
wait for any references on the shared cache map for this image section to drop to zero. The thread waiting on the cache map to be un-initialized will get
signaled when the reference drops to zero on the shared cache map. The code that signals the un-initialization executes in the context of Cache Manager
Worker and is queued onto a System Worker thread. Looking at so many threads, all waiting for Cache Manager Worker thread to signal the cleanup of the
section, it appears that either-

« The Cache Manager Worker kicked off but never reached a point to signal these blocked threads.

« Cache Manager Worker has not had a chance to run yet.

The Cache Manager globals below indicate the maximum number of CC worker that can be active or queued at any time, and current active count. The counts
below indicate we are already at the peak. The “nt!ccNumberactiveworkerThreads” counter indicates the number of threads that already have work to do, but not

necessarily currently executing Cache manager worker.

kd> x nt!CcNumberActiveWorkerThreads

80896144 nt!CcNumberActiveWorkerThreads = <no type information>

kd> dd 80896144 11

80896144 00000008 <<This indicates the work items queued that will/or have engaged worker
kd> x nt!CcNumberWorkerThreads

80896140 nt!CcNumberWorkerThreads = <no type information>

kd> dd 80896140 11

80896140 00000008 <<This is the counter for Max Cc worker threads
kd> x nt!CcWorkerThread

8081211e nt!CcWorkerThread = <no type information>

So what are these work queue items that are being executed?

If the first condition is true then we should find these worker (nt!CcWorkerThread) executing on top of a system worker thread. Yes we did search the stacks of
all the threads in the dump, but we weren’t fortunate enough to find any System Worker Threads executing the Cache Manager Worker.

Only other possibility is these Cache Manager Worker threads never got a chance to run, likely system has no System Worker Threads idle enough to pick these
Cache Manager work. So how do we prove/disprove this? (We could have started dumping out the System Worker Queues and its associated threads) We take

a quicker approach - lexqueue. This command displays information and state of system worker queue and work items queued in each of its worker queue.

Let’s dump out the state of the System Worker Queue/Threads.

kd> !exqueue
Dumping ExWorkerQueue: 808A76C0

#kk* Cpitical WorkQueue(current = © maximum = 1)

THREAD 898f9b40 Cid 0004.0010 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f98d0 Cid 0004.0014 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 89818020 Cid 0004.0018 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f8db@ Cid 0004.001c Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f8b40 Cid 0004.0020 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f88d0 Cid 0004.0024 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8988660 Cid 0004.0028 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f83f0 Cid 0004.002c Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 89817020 Cid 0004.0030 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f7db@ Cid 0004.0034 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 89652868 Cid 0004.0ed0 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 895faa4@ Cid 0004.0ed4 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 891fb9b8 Cid 0004.0ed8 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 89129db@ Cid 0004.0edc Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 892c4780 Cid 0004.0ee@ Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8961b6a@ Cid 0004.0ee4 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 89172730 Cid 0004.0ee8 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 88a31b10 Cid 0004.0eec Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 895eacb@ Cid 0004.0ef@ Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 891d7dbe Cid 0004.0ef8 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 89667b08 Cid 0004.0f14 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 89202490 Cid 0004.0f48 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 892f3cb® Cid 0004.0fa8 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8962bdbo Cid 0004.0fbo Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 89661350 Cid 0004.0fb8 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8918adbe Cid 0004.0fbc Teb: 00000000 Win32Thread: 00000000 WAIT

<Pending Work Items list for this queue>

PENDING: WorkerRoutine nt!CcWorkerThread (808121le) Parameter 898f51e@

PENDING: WorkerRoutine nt!CcWorkerThread (808121le) Parameter 8989670

PENDING: WorkerRoutine nt!IopProcessWorkItem (808e419a) Parameter 89118648
PENDING: WorkerRoutine nt!CcWorkerThread (808121le) Parameter 898fald8

PENDING: WorkerRoutine Ntfs!NtfsCheckpointAllVolumes (f7135a57) Parameter 00000000
PENDING: WorkerRoutine srv!SrvResourceAllocThread (f5edfa28) Parameter 00000000
PENDING: WorkerRoutine nt!IopProcessWorkItem (808e419a) Parameter 8930800
PENDING: WorkerRoutine nt!ObpProcessRemoveObjectQueue (8092b70e) Parameter 00000000
PENDING: WorkerRoutine srv!SrvResourceThread (f5ee026d) Parameter 00000000
PENDING: WorkerRoutine netbt!NTExecuteWorker (f67cdbc2) Parameter f67eb6bc
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 89191008
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 8965dle8
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 895edea®@
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 892b8be8
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 895elle8
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 89607210
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 896634a8
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 8915dce@
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 89221110
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 89222968
PENDING: WorkerRoutine nt!CcWorkerThread (808121le) Parameter 898f7278

PENDING: WorkerRoutine nt!CcWorkerThread (808121le) Parameter 8998cd38

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/08/20/the-story-of-a-hung-box.aspx 3/5

5/7/2014 CSI Debugging - Uncovering the cause of a Server Hang - Ntdebugging Blog - Site Home - MSDN Blogs

PENDING: WorkerRoutine nt!CcWorkerThread (808121le) Parameter 89819688

PENDING: WorkerRoutine nt!CcWorkerThread (808121le) Parameter 89818298

PENDING: WorkerRoutine nt!CcWorkerThread (808121le) Parameter 8998c©30

PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 891fe578
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 891817c@
PENDING: WorkerRoutine Ntfs!NtfsCheckUsnTimeOut (f71489b8) Parameter 00000000
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 89648fde
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 89207618
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 895fc7de
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 89268950
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 8921e008
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 88acbe98
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 89685e98
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 8921ae6@
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 896521a0
PENDING: WorkerRoutine termdd!_IcaDelayedWorker (f767d29a) Parameter 8920ab68

*¥%% pelayed WorkQueue(current = @ maximum = 1)

THREAD 898f7b40 Cid 0004.0038 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f78d0 Cid 0004.003c Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f7660 Cid 0004.0040 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f73f@ Cid 0004.0044 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 89816020 Cid 0004.0048 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f6db@ Cid 0004.004c Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 898f6b40 Cid 0004.0050 Teb: 00000000 Win32Thread: 00000000 WAIT

**%* HyperCritical WorkQueue(current = @ maximum = 1)
THREAD 898f68d0 Cid 0004.0054 Teb: 00000000 Win32Thread: 00000000 WAIT

This command examines the state of the System Work queue and associated System Worker threads. It’s telling us that there are three set of queues prioritized
as hyper-Critical, Critical and Delayed-Worker queues. While Delayed-worker and Hyper-Critical queues are empty, the Critical Worker queue has enough
pending items to keep it busy. This is not good. On an ideal case we expect all the work to be processed immediately and almost no work pending in the queue.
Before we move on, let’s take a step back and see why we came here. We were chasing down the cache manager workers and we came here to find if there is
any Cache Manager work pending in the worker queue to be picked up. Indeed yes, we can see all of the 8 (“nt!CcNumberActiveWorkerThreads”) still pending.
This answers the puzzle as far as threads that were blocked at Cache Manager’s shared cache map un-initialization. And “!exqueue” did come to our rescue
here.

It's always like this! You get an answer to one question, but at the same time the next question is readied for you, i.e. why are these work items still pending
and not being processed?

For this we need a little bit of background on how System Worker Threads work. Several system components and drivers may need to execute the code at
PASSIVE LEVEL and in a thread context. For this they could always create new threads and use them to execute the code they want. Other option is to rely on
the pre-created threads by the system called “System worker Threads” and get relieved from the burden of thread management itself. Based on the priority of
the work, work is queued to any of the three queues (Critical, Hyper-Critical, and Delayed-Worker). By default there will be certain number of worker threads
(Refer to Chapter 3, System Mechanisms - System Worker Threads — in Windows Internals) created for each of these queues and they will wait on the
respective queues for any new work to come in, pick the work and get back to wait on the queue after the completion of the work.

At a certain point it could so happen that all these pre-created threads would be executing some work, and may get blocked on another work item to complete.
But as there are no idle worker threads to pick up this work, it would sit in the pending queue, resulting in blockage of all the work to be done by these set of
system worker threads.

The Operating System tries to address this kind of a problem to some extent by running deadlock detection algorithm in a timely manner. When this code runs
and the system sees that the pending work items are increasing (that is to say that no work items are being picked up, or work is coming in a higher rate than
the existing number of threads could handle), it may decide to create additional worker threads to help with the pending work items load. These threads are
special worker threads called “Dynamic Worker Threads”. These threads exist as long as there is enough work to be done. However they terminate on being
idle for a certain amount of time, so the system doesn’t tie up resources for unused worker threads. Even if these dynamic worker threads get blocked, the
system cannot keep creating the additional dynamic worker threads forever, as this will lead to the system filling up with worker threads and all getting
blocked.

The sole intention of Dynamic worker threads is to try to help any immediate additional load or help system recover from deadlock among existing worker
threads. However a couple of dynamic threads should suffice this need if it’s indeed a transient state. But if this is not a transient state and there is a real
software problem then System should have to stop creating these dynamic threads at some point. This will eventually lead to hung Worker threads with work
items getting just queued.

This dynamic thread count is limited to 16 for the Critical worker queue, and System will not create any more as soon we reach this limit.

(Refer to Chapter 3, System Mechanisms - System Worker Threads — in Windows Internals and/or Documentation in DDK/WDK).

With this knowledge on System Worker threads, the next step ahead is to determine what the existing Worker threads in the Critical Worker queue are doing
which is preventing them from picking up our work items. Below is one of those threads, waiting on a Notification event as part of processing the work from
WorkerDrv.SYS. Checking what every single thread in the Critical Worker queue is doing, we see they all are waiting in WorkerDrv.SYS driver (All these threads

may not be occupied by the same driver always, but could be a similar deadlock among different drivers).
kd> !thread 898f9b4e
THREAD 898f9b40 Cid 0004.0010 Teb: 00000000 Win32Thread: 00000000 WAIT: (Unknown) KernelMode Alertable
f78aed5c NotificationEvent
Not impersonating

DeviceMap 1000128

Owning Process 898fa648 Image: System

Wait Start TickCount 28506 Ticks: 20655 (0:00:05:22.734)
Context Switch Count 2

UserTime 00:00:00.000

KernelTime 00:00:00.000

Start Address nt!ExpWorkerThread (0x8087acfe)

Stack Init f78af@@@ Current f78aecc4 Base f78af00@ Limit f78aceee Call @

Priority 13 BasePriority 13 PriorityDecrement @

ChildEBP RetAddr Args to Child

f78aecdc 8082ffd7 898f9b40 898f9be8 00000400 nt!KiSwapContext+0x25 (FPO: [Uses EBP] [0,0,4])
f78aecf4 808287d4 891leacd0 000OOOOO 895b3268 nt!KiSwapThread+0x83 (FPO: [Non-Fpo])

f78aed38 f77b30@fe f78aed5c ©000OO0O 00VORROV nt!KeWaitForSingleObject+@x2e@ (FPO: [Non-Fpo])
WARNING: Stack unwind information not available. Following frames may be wrong.

f78aed6c 808e4lad 88a80c08 f78ced5c 808a76c@ WorkerDrv+ox4ofe

f78aed80 8087ade9 895b3268 00000000 898f9b40 nt!IopProcessWorkItem+0x13 (FPO: [Non-Fpo])
f78aedac 8094184 895b3268 00000000 ©OEAVVVO nt!ExpWorkerThread+@xeb (FPO: [Non-Fpo])
f78aeddc 80887f7a 8087acfe 00000O0O 00VOBROV nt!PspSystemThreadStartup+0x2e (FPO: [Non-Fpo])
nt!KiThreadStartup+0ex16

And yes, we know who the culprit is. This Driver has utilized all of the default System Critical Worker threads and the additional Dynamic threads for this queue.
kd> x nt!ExWorkerQueue
808a76c0 nt!ExWorkerQueue = <no type information>

kd> dt nt!_EX_WORK_QUEUE 808a76cO .
+0x000 WorkerQueue
+0x000 Header : _DISPATCHER_HEADER
+0x010 EntryListHead : _LIST_ENTRY [0x898f51e@ - ©x8920ab70]<<---Pending (QueueDepthLastPass)

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/08/20/the-story-of-a-hung-box.aspx 4/5

5/7/2014 CSI Debugging - Uncovering the cause of a Server Hang - Ntdebugging Blog - Site Home - MSDN Blogs

+0x018 CurrentCount]
+0x01c MaximumCount 1
+0x020 ThreadlListHead : _LIST_ENTRY [©x898f9c48 - 0x8918aeb8]<<---Threads attached to this queue
+0x028 DynamicThreadCount : OX10 <<-=---=-------mmmo oo Count of additional threads created as per deadlock detection

+0x02c WorkItemsProcessed : 0x10f3

+0x030 WorkItemsProcessedlLastPass : 0x10f3

+0x034 QueueDepthLastPass : 0x26 <<Count of pending work items
+0x038 Info :

+0x000 QueueDisabled : 0yo

+0x000 MakeThreadsAsNecessary : Oyl

+0x000 WaitMode : oyo

+0x000 WorkerCount HC) 11010 (@xla)

4
+0x000 QueueWorkerInfo : 210

Looking at the pending work items we know what kind of impact this deadlock could have on the system. Any operation that is dependent on this set of worker
threads will surely be impacted, and over a period of time you expect the system to crawl and slowly could possibly reach a dead end with components having
direct/indirect dependency on this component of the system. We see Termdd, NTFS, and Cache manager work items in the pending queue which explains RDP
not working, new processes not getting launched and so on.

Closure:

At the point when we know this driver has consumed all the Critical Worker threads, the quickest way to get the system up and running is to disable this driver.
And | could work on fixing our WorkerDrv.SYS so that this driver understands the importance of System Worker threads and doesn’t flood the worker queue with

work items that will block for a long time or with work items that are dependent on other work items, leading to this situation.
To summarize, we started with a problem description of crawling/almost hung system (a few components were indeed responding). We found why application
launch was being blocked, which lead us to cache manager threads. Chasing down cache manager threads, we ended up with System Worker Threads. Then to

my driver WorkerDrv.SYS which never understood the importance of System Worker threads, and used them too freely.

Hope you enjoyed reading this post and could use some of it in case you encounter a problem of a similar kind.

Share this post : M TV g8 [l 27 4% IF £ %2

Comments

Marc Sherman
[21 Aug 2009 10:38 AM

Reminds me of having to be careful not to use all the threads in the CLR threadpool. Same problem.

Thank you, very informative.

asf
[21 Aug 2009 12:03 PM

love this stuff, keep up the good work

http:/blog s.msdn.com/b/ntdebug ging/archive/2009/08/20/the-story-of-a-hung-box.aspx

5/5

http://social.msdn.microsoft.com/en-us/action/create/s/E/?url=http://blogs.msdn.com/ntdebugging/archive/2009/08/21/the-story-of-a-hung-box.aspx&ttl=CSI%20Debugging%20-%20Uncovering%20the%20cause%20of%20a%20Server%20Hang
http://social.technet.microsoft.com/en-us/action/create/s/E/?url=http://blogs.msdn.com/ntdebugging/archive/2009/08/21/the-story-of-a-hung-box.aspx&ttl=CSI%20Debugging%20-%20Uncovering%20the%20cause%20of%20a%20Server%20Hang
http://del.icio.us/post?url=http://blogs.msdn.com/ntdebugging/archive/2009/08/21/the-story-of-a-hung-box.aspx&;title=CSI%20Debugging%20-%20Uncovering%20the%20cause%20of%20a%20Server%20Hang
http://de.lirio.us/bookmarks/sbmtool?action=add&address=http://blogs.msdn.com/ntdebugging/archive/2009/08/21/the-story-of-a-hung-box.aspx&title=CSI%20Debugging%20-%20Uncovering%20the%20cause%20of%20a%20Server%20Hang
http://digg.com/submit?phase=2&url=http://blogs.msdn.com/ntdebugging/archive/2009/08/21/the-story-of-a-hung-box.aspx&title=CSI%20Debugging%20-%20Uncovering%20the%20cause%20of%20a%20Server%20Hang
http://www.dotnetkicks.com/kick/?url=http://blogs.msdn.com/ntdebugging/archive/2009/08/21/the-story-of-a-hung-box.aspx&title=CSI%20Debugging%20-%20Uncovering%20the%20cause%20of%20a%20Server%20Hang
http://www.facebook.com/sharer.php?u=http://blogs.msdn.com/ntdebugging/archive/2009/08/21/the-story-of-a-hung-box.aspx&t=CSI%20Debugging%20-%20Uncovering%20the%20cause%20of%20a%20Server%20Hang
https://favorites.live.com/quickadd.aspx?marklet=1&mkt=en-us&url=http://blogs.msdn.com/ntdebugging/archive/2009/08/21/the-story-of-a-hung-box.aspx&title=CSI%20Debugging%20-%20Uncovering%20the%20cause%20of%20a%20Server%20Hang
http://myweb.yahoo.com/myresults/bookmarklet?u=http://blogs.msdn.com/ntdebugging/archive/2009/08/21/the-story-of-a-hung-box.aspx&t=CSI%20Debugging%20-%20Uncovering%20the%20cause%20of%20a%20Server%20Hang
http://blogs.msdn.com/b/ntdebugging/rsscomments.aspx?WeblogPostID=9877462

