5/6/2014 1

The NTFS File System

1. Introduction

Purpose

This chapter explains briefly the NTFS implementation, the file system of the operating system Windows 2000 and presents the main API
Win32 functions related to file management.

Objectives
The chapter has the following main objectives:
1. understanding the NTFS file system;
2. understanding the types of files and the access rights from NTFS;
3. understanding the NTFS functions which work with files;
4. understanding the creation process of alternate data streams files.

General presentation

The NTFS (NT File System) is a file system especially developed for Windows NT and upgraded for Windows 2000. NTFS4 is
used for Windows NT, while the file system of Windows 2000 is NTFS5. Windows XP Microsoft uses a slightly upgraded version of
NTFSS.

The main features of this file system are the following:
e it uses disk addresses on 64 bits and can support partitions up to 2% bytes;
e Unicode characters can be included in the name of the files;
o it allows file names composed of up to 255 characters, including blanks and dots;
o it allows general indexation of the files;
o it offers the possibility of managing dynamically the sectors
e because of the POSIX compatibility, it allows hard-links creation, it is case sensitive when it comes to file names and it
stores time related information regarding files;
o it allows using alternate data streams files.

2. The NTFS Disk Structure

When formatting a partition (volume) which has a NTFS file system, some system files are created. The most important is the Master
File Table (MFT), which stores information about all the files and directories from the NTFS partition.

The first bit of information on a NTFS partition is the Boot Sector, which is the 0 sector of the partition and stores a program (code)
used for booting the system. Other information needed by the booting program (e.g.: information needed to access the partition) can
be stored in the sectors 1 up to 16, reserved for this purpose. Figure 1 presents a NTFS partition at the end of the format operation.

The first file on a NTFS partition is the MFT file. Every file stored on a NTFS partition has at least one entry in the MFT; this is also
true for the MFT file. All the information about a file (name, dimension, time related information, access rights, effective data) is kept in
the MFT or in an area found outside the MFT, which also keeps entries for the MFT. The file attributes are stored in the MFT if their
size allows for them to be kept in the MFT entries; if not, they are stored in auxiliary areas of the HDD outside the MFT file, but
associated to the file’s entry in the MFT.

Boot
Sector

MIaster File Table Filez atea

http://os.obs.utcluj.ro/OS/Lab/04.NTFS.html 110

5/6/2014

Figure 1.

Figure 1. The structure of a NTFS partition

The table below presents all the attribute types defined by the NTFS file system. These are used internally by the NTFS; the user has
no direct access to the attributes and is not allowed to define new types. This list is expandable, meaning that in the future new file
attributes will be defined.

Table 1. Types of file attributes in NTFS
Attribute type Description

Standarq [ncludes information related to time and number of links.

information

Attribute Lists |Lists the locations of all attribute records that do not fit in the MFT record.

File Name IA repeatable attribute for both short and long file names. The long file names
can have up to 255 Unicode characters. The short file names are of 8.3 format.
The additional names of the hard links needed by the POSIX can be included as
additional file name attributes.

Security , . .

. Stores the file’s owner and the users which have the right to access the file.

Descriptor

Data Stores the file’s data. The NTFS allows multiple data attributes per file. Usually,
every file has one unnamed data attribute. A file can also have one or more
named data attributes, each having a particular syntax.

Object ID IA unique file identifier on the partition, used by the distributed link tracking
service. Not all the files have this attribute.

Logged Tool [Similar to a data stream, although the operations are recorded in the log file of]

Stream INTFS, just like NTFS metadata changes. This is used by EFS.

Reparse Point |Used for volume mount points. It is also used by IFS (Installable File System)
filter drivers to mark certain files as special to that driver.

Index Root [Used to implement folders and other indexes.

ill(llcf:ation lUsed to implement folders and other indexes.

Bitmap Used to implement folders and other indexes (for very large directories).

Volume . Used only in the $Volume file system. Contains the volume version.

Information

IVolume Name |Used only in the $Volume file system. Contains the volume label.

The metadata files are the data structures used by NTFS for accessing and managing files. This file system is based on the principle
everything is a file. That is why the volume descriptor, the booting information, the records of the ..defecte...sectors etc. are all stored

in files.

The files which store the metadata information of the NTFS are described in the table below:

Table 2. Metadata Stored in the Master File Table

File Name | MFT Record Purpose of the File

SMFT 0 IMFT

SMFTmirr 1 File stored at the logical center of the disk. It is a duplicate image of]
the first 16 records of the MFT.

SLogFile 2 Log file record.

SVolume 3 Contains information about the volume: volume label, volume
version etc.

SAttrDef 4 The standard file attributes on the volume.

$. 5 The root directory.

SBitmap 6 The bitmap of the volume’s unallocated space.

SBoot 7 The boot sector (bootable volume).

SBadClus 8 The list of bad clusters.

$Secure 9 Security descriptor for all the files.

SUpcase File — a table which stores the equivalence between lowercase|
characters and Unicode uppercase characters which are found in|
the file names on the volume. This file is necessary because the|
NTFS file names are memorized in Unicode, which has 65.00
distinct characters and it is not easy to search the equivalent for aj

http://os.obs.utcluj.ro/OS/Lab/04.NTF S.html

2/10

5/6/2014 1

10 lowercase or an uppercase.
$Quota 11 The file in which the access rights of the users with respect to the
disk space are recorded (it is functional only starting with NTFS5).

3. NTFS file types and access rights

In NTFS we can identify the following file types:
. system files: the files presented in the table above; they contain information (metadata) which is used only by the
operating system.

Alternate Data Streams (ADS) files: files which besides the main data set also contain other distinct sets of data. All
these data sets are represented by attributes of Data type. Chapter 5 describes how to create and use these auxiliary data
sets.

o compressed files: NTFS can compress and uncompress files on-the-fly (when writing or reading data on or from them).

This mechanism is not seen by the applications which use such files.

o encrypted files: EFS (Encrypted File System) offers support for storing encrypted files on a NTFS volume. Encryption is
transparent to the user who encrypted the file. The other users cannot access these files.

sparse files: files which do not store the information into a contiguous area; the written areas alternate with big, not written
areas (spars). NTFS allows setting a special attribute for this file in order to indicate for the I/O system to allocate area on
the disk only for the written areas of the file

files of type “hard-link”: files especially introduced by NTFSS5. These files allow for a file to be accessed through more paths,
without duplicating the effective data. If we delete a file which has more than one link, the data will not be deleted from the disk
until all links are destroyed. A hard-link file can be created by using the function CreateHardLink or the command "fsutil
hardlink create"(in Windows XP).

In NTFS, the access rights are managed through In ceea ce priveste drepturile de acces, in NTFS ele sunt gestionate prin access
control lists (ACL). These lists contain information regarding the access rights of every user or group of users with respect to a file.
The access rights are called permissions.

NTFS defines 6 main permissions called special permissions. The table below describes these permissions and explains their effect
upon files and directories.

Table 3. NTFS permissions

Permission Character Allowed Access for Allowed Access for
Files Directories
Read R Read file content Read directory content
Write W Modify file content Modify directory content (create
files or subdirectories)
Execute X Execute program Traverse subdirectories
Delete D Delete file Delete directory
Change P Change access rights | Change access rights for
Permissions for file directory
Take Ownership 0] Change owner Change owner

In order to allow for more "fine-tuned" control over different kinds of access, starting with Windows 2000 some groups of permissions
were introduced; they are called permission components. Each of them groups one or more special permissions:

e Traverse Folder / Execute File: X

e List Folder / Read Data: R

http://os.obs.utcluj.ro/OS/Lab/04.NTFS.html 3/10

5/6/2014

Read Attributes: R + X

Read Extended Attributes: R
Create Files / Write Data: W
Create Folders / Append Data: W
Write Attributes: W

Write Extended Attributes: W
Delete Subfolders and Files: D
Delete: D

Read Permissions: R + W + X
Change Permissions: P

Take Ownership: O

By using the graphic interface to set access rights, we can come across other groups of permissions.

4. API calls for the NTFS file system

All the resources (files, processes) of the operating systems based on Windows NT are identified by handlers. A handler is a token
which allows us to identify the access of a program with respect to a resource. It is similar to the file descriptors used in Unix. Hereby,
when a file is created or opened such a handler is returned; by using this handler the file can be accessed for reading and writing
operations.

The CreateFile function

The function is used for creating a new file or for opening an existing file. The syntax of the function is the following:

HANDLE CreateFile(

LPCTSTR IpFileName,

DWORD dwDesiredAccess,

DWORD dwShareMode,

LPSECURITY_ ATTRIBUTES IpSecurityAttributes,
DWORD dwCreationDisposition,

DWORD dwFlagsAndAttributes,

HANDLE hTemplateFile) ;

Parameters:

http://os.obs.utcluj.ro/OS/Lab/04.NTF S.html

IpFileName — pointer to a null-terminated string that specifies the name of the file to be created or opened
dwDesiredAccess — the type of access to the file. An application can obtain read, write, read/write or query devices access

right. The most important values of'this parameter are:

0 — device query access to the file.

GENERIC READ - read access to the file. Data can be read from the file and the file pointer can be moved. It is
combined with GENERIC WRITE for read-write access.

GENERIC WRITE — write access to the file. Data can be written to the file and the file pointer can be moved.

DELETE — the right to delete the file.

READ CONTROL — the right to read information from the security descriptor of the file.

WRITE_OWNER - the right to change the owner in the security descriptor of the file.

SYNCHRONIZE — the right to use the file for synchronization. In this way a thread can wait until the file is in the marked
(marcatd) state.

GENERIC EXECUTE — execution right.

GENERIC_ALL — read, write and execution right.

dwShareMode — specifies the way in which the file can be shared among more users. If dwShareMode is 0 and CreateFile is

successful, the file cannot be shared and cannot be opened again until the handler has not been closed. In order to share
the file among more users, one of the following combinations of values can be used:

FILE SHARE DELETE — the next opening operations on the file will succeed only if the deleting right is requested.

FILE SHARE READ - the next opening operations on the file will succeed only if the reading right is requested.
FILE SHARE WRITE — the next opening operations on the file will succeed only if the writing right is requested.

4/10

5/6/2014 1

IpSecurityAttributes — pointer to a structure SECURITY ATTRIBUTES, which determines if the handler can be inherited by
the children processes. Ifthe attribute [pSecurityAttributes is NULL, then the handler cannot be inherited.

dwCreationDisposition — specifies the action which will be undergone by the existing or new created file. It needs to take one
of'the following values:
CREATE NEW - creates a new file. The function fails if the file already exists.
CREATE ALWAYS - creates a new file. If the file already exists, the function overwrites the file, deletes the existing
attributes and combines the file attributes and the flags specified by dwFlagsAndAttributes with
FILE ATTRIBUTE ARCHIVE.
OPEN_EXISTING — opens a file. The function fails if the file does not exist.
OPEN_ALWAYS - opens the file if it exists. If the file does not exist, the function creates the file as if the
dwCreationDisposition had the value CREATE NEW.
TRUNCATE _EXISTING — opens the file. Once opened, the file is truncated such that its size equals O bytes. The
process which called the function has to open the file with at least GENERIC WRITE access. The function fails if the file
does not exist.

dwFlagsAndAttributes — specifies the attributes and the flags of the file. A file can have the following attributes: archive,
encrypted, hidden, normal, not content indexed, offline, read-only, system, temporary. A file can have the following
flags: write through, overlapped, no buffering, random access, sequential scan, delete on close, backup semantics,
POSIX semantics, open reparse point, open no recall.

hTemplateFile — specifies a handler with GENERIC_READ access to a template file. The template file provides the attributes for
the file being created.

If the function is successful it returns a value which is the handler used to access the file. If the function fails, the returned value
INVALID HANDLE VALUE. In order to obtain more detailed error information GetLastError needs to be called.

The DeleteFile function
The function deletes an existing file and has the following syntax:

BOOL DeleteFile(
LPCTSTR IpFileName) ; // the name of the file

If the function succeeds it returns a non-zero value. If the function fails, it returns 0.

The CloseHandle function
The function closes an open file handle.

BOOL CloseHandle (
HANDLE hObject) ; //the object’s handler

If the function succeeds it returns a non-zero value. If the function fails, it returns 0.

The ReadFile function

The ReadFile function reads data from a file, starting at the position indicated by the file pointer. After the read operation has been
completed, the file pointer is adjusted by the number of bytes actually read, unless the file handler is created with the overlapped
attribute. If the file’s handler is created for overlapped 1/O, the application has to adjust the file pointer’s position after the read
operation.

BOOL ReadFile (
HANDLE hFile, // the file’s handler
LPVOID IpBuffer, // data buffer
DWORD nNumberOfBytesToRead, // nr of bytes to be read
LPDWORD IpNumberOfBytesRead, // nr of bytes read
LPOVERLAPPED IpOverlapped); // overlapped buffer

Parameters:

http://os.obs.utcluj.ro/OS/Lab/04.NTFS.html 5110

5/6/2014 1

hFile — handler to the file to be read. The file’s handler had to be created with the GENERIC READ access to the file.

IpBuffer — pointer to the buffer which receives the data read from the file.

nNumberOfBytesToRead — the number of bytes which have to read from the file.

IpNumberOfBytesToRead — pointer to the variable which receives the number of read bytes.

IpOverlapped — pointer to an OVERLAPPED structure. This structure Aceasta structurd is required if hFile was created with
FILE FLAG_OVERLAPPED.

The function returns if the number of bytes requested has been read or if an error occurred. If the function succeeds the returned value
is non-zero.

The WriteFile function

This function writes data to a file and is designed for both synchronous and asynchronous operations. The function begins writing data
to the file at the position indicated by the file pointer. After the write operation has been completed, the file pointer is adjusted by the
number of bytes actually written, except when the file is opened with FILE FLAG_OVERLAPPED.

BOOL WriteFile (

HANDLE hFile, // the file’s handler
LPCVOID IpBuffer, // data buffer

DWORD nNumberOfBytesToWrite, // nr of bytes to be written
LPDWORD IpNumberOfBytesWritten, // nr of bytes written
LPOVERLAPPED IpOverlapped) ; // overlapped buffer

The parameters have a similar meaning to the parameters of the ReadFile function.

If the function succeeds the returned value is non-zero. If the function fails, the returned value is 0.

The SetFilePointer function

The function moves the pointer of an opened file.

DWORD SetFilePointer (
HANDLE hFile,
LONG 1DistanceToMove,
PLONG IpDistanceToMoveHigh,
DWORD dwMoveMethod) ;

Parameters:

hFile — handler to the file whose pointer is going to be moved. The file’s handler had to be created with one or both of the
following access types to a file: GENERIC READ or/and GENERIC WRITE.

[DistanceToMove — the least significant 32 bits of the signed value which specifies the number of bytes with which the pointer
will be adjusted.

IpDistanceToMoveHigh — pointer to the most significant 32 bits of the distance expressed in a signed value on 64 bits. If the

most significant 32 bits are not needed, this pointer has to be set to NULL.

dwMoveMethod — the pointer’s starting point. This parameter can have one of the following values:
FILE BEGIN - the starting point is 0, i.e. the beginning of the file.
FILE CURRENT - the starting point is the current value of the file’s pointer.
FILE END - the starting point is the current EOF (end of file).

If the function SetFile Pointer is successful and lpDistanceToMoveHigh is NULL, the returned value is the least significant double-
word DWORD of the file’s new pointer. If lpDistanceToMoveHigh is not NULL, then the function returns the least significant
double-word DWORD ofthe file’s new pointer; it also stores the most significant double-word DWORD of the file’s new pointer in
the value LONG to which the parameter points to. If the function fails and [pDistanceToMoveHigh is NULL, the returned value is
INVALID SET FILE POINTER.

The GetFileAttributes function
This function retrieves a set of FAT file system attributes for a specified file or directory.

http://os.obs.utcluj.ro/OS/Lab/04.NTFS.html 6/10

5/6/2014 1

DWORD GetFileAttributes(
LPCTSTR IpFileName) ; // the name of the directory/file

If the function is successful, the returned value will contain the attributes of the specified file or directory. The attributes can be one or
more of the values presented in paragraph 2.2.1. completed with sparse directories or files.

The LockFile function

The function locks an area of an opened file in order to ensure mutual exclusion. Locking the area ensures the fact that other processes
cannot access it.

The syntax of the LockFile function is presented below:

BOOL LockFile (
HANDLE hrFile,
DWORD dwFileOffsetLow,
DWORD dwFileOffsetHigh,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh) ;

Parameters:

hFile — handler to the file whose region is going to be locked. The name of the file had to be created with at least one of the following
access types to the file: GENERIC READ or/and GENERIC WRITE.

dwFileOffsetLow — specifies the least significant word of the starting byte offset where the lock should begin.

dwFileOffsetHigh — specifies the most significant word of the starting byte offSet where the lock should begin.
nNumberOfBytesToLockLow — specifies the least significant word of the length of the byte range to be locked.
nNumberOfBytesToLockHigh — specifies the most significant word of the length of the byte range to be locked.

If the function succeeds the returned value is non-zero. If the function fails, the returned value is 0.

The UnlockFile function
The function unlocks an area of an opened file. The syntax of this function is similar to the one ofthe LockFile function.

The CreateDirectory function

This function creates a new directory. If the existing file system allows security options for directories and files, the fnction will apply a
security descriptor specified for the new directory.

BOOL CreateDirectory (
LPCTSTR IpPathName, // the name of the directory
LPSECURITY_ATTRIBUTES IpSecurityAttributes);

If the function succeeds the returned value is non-zero. If the function fails, the returned value is 0.

The RemoveDirectory function
The function deletes an existing empty directory.

BOOL RemoveDirectory (
LPCTSTR IpPathName) ; // the name of the directory

If the function succeeds the returned value is non-zero. If the function fails, the returned value is 0.

The FindFirstFile function

The function searches a directory for a file whose name matches the specified filename. FindFirstFile examines subdirectory names as
well as filenames.

http://os.obs.utcluj.ro/OS/Lab/04.NTFS.html 7110

5/6/2014 1
HANDLE FindFirstFile (

LPCTSTR IpFileName, // the name of the file
LPWIN32_FIND DATA IpFindFileData); // data buffer which //stores information about the found
file

If the function is successful, the returned value is a search handle used by calls such as FindNextFile or FindClose. If the function
fails, the returned value is INVALID HANDLE VALUE.

The FindNextFile function
This function continues a file search from a previous call to the FindFirstFile function.

BOOL FindNextFile (
HANDLE hFindFile, // search handle
LPWIN32_FIND DATA IpFindFileData); // data buffer
If the function succeeds the returned value is non-zero. If the function fails, the returned value is 0.

The MovecFile function

This function moves an existing file or directory, including its copies.
BOOL MoveFile (

LPCTSTR IpExistingFileName, // the old name of the file
LPCTSTR IpNewFileName) ; // the new name of the file

If the function succeeds the returned value is non-zero. Ifthe function fails, the returned value is 0.

The SetCurrentDirectory function

The function changes the current directory of the current process.

BOOL SetCurrentDirectory (
LPCTSTR IpPathName) ; // the name of the new directory

If the function succeeds the returned value is non-zero. If the function fails, the returned value is 0.

5. Files with alternate data streams

As it has already been mentioned, the NTFS system allows us to associate more data attributes (i.e. data streams) to a file. Every file
has one main unnamed data stream associated to it. If necessary, other alternative named data streams can be associated to the file.
This ensures for some file data to be accessed as a distinct unit. For example, a graphical application can store the thumbnail for a
bitmap image into a different stream included in the NTFS file which stores the image. The alternate data streams have different sizes
than the main file, but they have the same permissions.

An alternate data stream can be easily created from the command line. In order to create the main data stream we can type:
echo “The main data stream of the file” > Data
In this way, we have created the file with the name Data. An alternative data stream with the name 4DS will be added:

echo “Alternate data stream” > Data:ADS

We can notice that the data stream added by typing the command above does not appear among the files listed in the directory. The
alternate data stream does not enlarge the size of the main file. In order to read the content of the main data stream and of the alternate
data stream we execute the commands:

more < Data
more < Data:ADS

http://os.obs.utcluj.ro/OS/Lab/04.NTFS.html 8/10

5/6/2014 1

In order to open an alternate data stream in Notepad, the name of the stream needs to have an extension, for example:
Data:ADS?2.txt. The stream can be edited with the command: "notepad Data:ADS2.txt".

The alternate data streams can also store binary data, ie. executable files. They can be executed with the command: "start

.\Data:fis.exe".

The Windows system uses alternate data streams when it specifies supplementary data for a file through Properties->Summary. The
streams offer viruses a good way of hiding, because they cannot be seen in the files list and they do not modify the dimension or the
time stamp of the main file. Windows does not offer programs for detecting alternate data streams

6. Examples

1. Copying a file using the API functions of Windows 2000

#include <windows.h>
#include <stdio.h>
#define BUF_SIZE 10

void main () {

HANDLE inhandle, outhandle;
char buffer[BUF SIZE];

int count;

DWORD ocnt;

/* Open the input and the output file */
inhandle = CreateFile(“data”, GENERIC READ, 0, NULL, OPEN EXISTING, 0, NULL);
outhandle = CreateFile (“newf”, GENERIC WRITE, 0, NULL, CREATE ALWAYS, FILE ATTRIBUTE NORMAL, NULL);

/* Copy the file */
do {

s = ReadFile(inhandle, buffer, BUF SIZE, &count, NULL);

if (s && count > 0) WriteFile (outhandle, buffer, count, &ocnt, NULL);
} while (s>0 && count>0);

/* Close the files */
CloseHandle (inhandle) ;
CloseHandle (outhandle) ;

2. Find the .txt files from the current directory and set the attributes as read-only.

#include <windows.h>
#include <stdio.h>

WIN32 FIND DATA FileData;
HANDLE hSearch;

DWORD dwAttrs;

BOOL fFinished = FALSE;

void main () {

// Search .TXT files in the current directory
hSearch = FindFirstFile ("*.txt", &FileData);
if (hSearch == INVALID HANDLE VALUE)
{

printf ("No .TXT files found.");

return;

http://os.obs.utcluj.ro/OS/Lab/04.NTFS.html 910

5/6/2014

// For each file change the attribute in read-only if it is //not already set as read-only
while (!fFinished)

o ® =N

AW DD =N

1

dwAttrs = GetFileAttributes (FileData.cFileName) ;

if (! (dwAttrs & FILE ATTRIBUTE READONLY))
{
SetFileAttributes (FileData.cFileName,
dwAttrs | FILE ATTRIBUTE READONLY) ;
}

if (!FindNextFile (hSearch, &FileData))

{
if (GetLastError() == ERROR NO MORE FILES)
{

printf ("No more .TXT files. Search completed.");

fFinished = TRUE;
}

else

{
printf ("Couldn't find next file.");
return;

}

// close the search handle
FindClose (hSearch) ;

. Problems
How can we find the size of a file by using the function SetFilePointer ?

Using the API functions presented in this chapter, write a C program which lists in reverse order the lines of a file.

Write a program which reads and writes the characters 0, 20, 40... from a previously created file.

Write a program which lists all the files from a given directory.
Write a program which eliminates the byte number 0, 5, 10, 15, ... from a file. Observation: do not use a temporary file.
Write a program which demonstrates the way of using the hard link type files.

Create a file text and associate to it an alternate data stream which should contain the program solitaire (sol.exe).

http://os.obs.utcluj.ro/OS/Lab/04.NTF S.html

Write a program which after being launched in the background N times writes into a file the ID of the current process. None of the
programs are able to continue their execution while all the processes have not written their unique ID in the file. In the end, every
process prints the ID of the next process.

Write a program which allows writing strings of characters (taken from the standard input) into a file, starting with a given position.
The call of the program has the following format: rw poz fis.

10/10

