
5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

https://tzworks.net/prototype_page.php?proto_id=12 1/7

TZWorks LLC

Windows $MFT and NTFS Metadata Extractor Tool (ntfswalk)

ntfswalk is a command line a tool that traverses a specified NTFS volume reading all MFT entries and

pulling predefined statistics as it runs.

Originally the NTFS engine was designed as a widget for other applications to help pull data out from
targeted categories of files on NTFS partitions. After successfully using the functionality in other tools, it
was determined that the utility in making a standalone tool would be helpful in debugging and
understanding the internals of any NTFS volume. This new tool, coined ntfswalk, is named after its
ability to walk an entire NTFS volume and output each MFT entry it encounters.

Designed to work with live NTFS partitions, there is also functionality for traversing NTFS images
created with the 'dd' utility (as well as some versions of VMWare VMDK files). There are options to filter
on file extension, timestamp range, binary signature, partial filenames and directory contents. For the
files found, one can list the summary metadata, extract the header bytes, or extract the entire file
contents into a designated directory. Since the engine is Windows API agnostic, there are compiled
versions for Windows, Linux and Mac OS X.

If targeting a volume mounted on a live Windows system, one needs to be run ntfswalk with

administrator privileges.

How to Use ntfswalk

ntfswalk has a number of command line switches, and for the occasional user, it can be confusing

which options can be used together and which cannot. Below is a screenshot of the menu options that
are displayed when running the tool without any arguments.

Home Tools Products Downloads About

https://tzworks.net/index.html
https://tzworks.net/prototypes.php
https://tzworks.net/store/product_page.php
https://tzworks.net/download_links.php
https://tzworks.net/about.html

5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

https://tzworks.net/prototype_page.php?proto_id=12 2/7

To help understand the various options, one can break the architecture into four main areas: (a) source of the
data, (b) filter that can be applied, (c) extraction options, and (d) output format.

Starting with the first area, this identifies which data sources ntfswalk can handle for input. Various

input types include: (i) an extracted $MFT file, (ii) a 'dd' image of a drive or volume, (iii) a drive or
volume currently in use on a live system, or (iv) a VMWare single volume disk.

The second area shown above is filtering. This defines what files (or MFT entries) are analyzed and
displayed to the user. One can filter on deleted files/folders, extensions, partial names, and binary

5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

https://tzworks.net/prototype_page.php?proto_id=12 3/7

signatures. For binary signatures, currently ntfswalk allows one to find: registry hives, event logs,

SQLite3 databases, or portable executable files. Also in this area one can choose to analyze all

unallocated clusters instead of the normal allocated clusters, or to pull files from a specified directory.

The third area in the diagram are the extraction options. Whatever option is chosen, at a minimum,
ntfswalk will produce a results file. This results file will contain much of the metadata one needs for

forensic analysis. For more detailed analysis, one can add extra data to the results, including: (a) the
bytes in the header for each file or (b) the cluster run information. To physically extract the contents of
the file, one can specify an archive directory as well as whether to include slack data or not. If one does
extract the file data, ntfswalk will compute the MD5 hash of the file and annotate this data to the results

file as well.

The fourth area allows one to select how one wishes to see the results. As mentioned above, even if
one only wishes to extract data to a directory, there will be a results file that logs all the files passing the
filter tests. The default output is plain text, which by itself, has reasonable formatting when viewed in
notepad and word wrap is turned off. The other formats are geared for spreadsheet analysis or other
post processing tools. Typically, any data containing numbers is defaulted as hexadecimal; however,
there is an option to transform the output into base10 notation, if desired. As an add-on to ntfswalk, is

the ability to generate a hashset type results file.

The Command Line options for the above

The syntax for each of the options that correlate to the above ntfswalk flow diagram is shown in the

figure below. The figure also identifies which options can be used in combination with others. Therefore,
one can select: (a) one source of input, (b) none or any combination of filters, (c) none or one extraction
option and (d) one type of format for the output results.

Understanding the Output

Lets say you wanted to search all the names in a live volume that contained the string "wordpad.exe"
and store the output into CSV format. That way you could double click on the resulting CSV file and
Excel could easily open the file. The syntax would be the following for scanning the 'c' partition and
redirecting the output to some results file:

 ntfswalk -partition c -filter_name "wordpad.exe" -csv > results.csv

5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

https://tzworks.net/prototype_page.php?proto_id=12 4/7

When examining the results.csv file, one would see prefetch, mui and exe entries all containing the

string wordpad.exe. Since the prefetch entry has a name longer then the DOS 8.3 length, the normal
windows system would have a set of timestamps for the long filename as well as a set of timestamps
for the 8.3 version of the filename. Many of these timestamps are duplications, and thus, by using the

compressed macb timestamp notation, one can show all the pertinent data without taking too much
room, as is highlighted below. Also highlighted, are entries where there are multiple parent directories

for one MFT entry (in this case, there are 2 parents for wordpad.exe). This means that wordpad.exe as
a single MFT entry, has two hard links to separate directories.

Other data that can be extracted from ntfswalk include cluster information. By using the option [-

action_include_clusterinfo], one can view all the cluster information available for each attribute that
contains data. Below is an example:

 ntfwalk -partition c -action_include_clusterinfo -csv > results.csv

The figure shows a snapshot of a sample output. After trimming out some of the rows/cols, one can see
the data type, filename and the location where the data resides. For those datasets that are easily
parsed, such as the volume information or object identifier, ntfswalk shows the interpreted data. For

other entries, the cluster information is shown, if applicable.

5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

https://tzworks.net/prototype_page.php?proto_id=12 5/7

As a third example, if one wishes to extract cluster data associated with a MFT entry, one can use the [-

action_copy_files <directory to store extracted files>]. The syntax below shows we want to enumerate

only those deleted files that have an extension of lnk. As part of the copy, we tell ntfswalk to copy each

of the clusters associated with these resulting files to a dump directory. The syntax of the command is:

 ntfwalk -partition c -filter_deleted_files -filter_ext "lnk" \
 -action_copy_files c:\dump\deleted.lnk -csv > results.csv

The first figure shows each MFT entry and the associated path/name of the extracted file. The second
figure shows the output of the extracted files. The syntax of the extracted file uses <last modify
date>_<md5 hash>_<filename w/ extension>_<data type>.bin

5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

https://tzworks.net/prototype_page.php?proto_id=12 6/7

Copying files during the session

Extracting files is a common need, especially when gathering critical data from an incident response

request. By using the -action_copy_files <root directory> [-raw] [-skip_sparse_clusters] one can direct

the files copied to a root directory, but also indicate whether you want file slack (-raw option) or to skip

sparse clusters (-skip_sparse_clusters option).

During the copy operation, various subdirectories within the root directory will be created automatically
to store the extracted files. The subdirectories are based on: (a) derived user account, (b) whether the
file was deleted or not, and (c) what filter caused the file to be passed. Below is a directory hierarchy
that was created based on the ntfswalk command:

 ntfswalk -partition c -filter_ext ".gif | .jpg | .lnk" \
 -filter_name "index.dat | destinations ms" \
 -action_copy_files 2013_06_12_1817_02_981

Generating Hashsets on Target File types

There are a number of excellent tools available on the Internet that perform hashing and creating hash
sets. While ntfswalk was not originally designed to generate hash sets, it does have the ability to hash
any desired target file. The main difference between ntfswalk's approach to that of a normal hash tool,

is ntfswalk accesses the file contents of the file at the cluster level directly, whereas many other
hashing tools do not. This becomes more important when considering your target machine may be

5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

https://tzworks.net/prototype_page.php?proto_id=12 7/7

infected with malware, and whether the actual file contents that are viewed have been masked by
malicious software.

Using the switch -hashfile [md5 | sha1] will invoke the hashset option. The hashing routine will only
target files with data and only the 'unnamed' data streams vice any alternate data streams. Filtering on
executable type files is a good way to generate a hashset on any exe, dynamic link library or driver file.
Below is an example of running the option on a Linux box targeting a 'dd' image of a NTFS volume:

In the example above, ntfswalk scanned the contents of every file to see whether it was an executable
(independent of what the extension was) or not. If it determined that a PE (or 16 bit version of a exe/dll)
signature was present, it computed the MD5 hash of the contents. As you can imagine, this process
takes some time depending on the size of the volume you are analyzing.

For more information

If you would like more information about ntfswalk, contact us via email.

Downloads

32-bit Version 64-bit Version

Windows: ntfswalk32.v.0.51.win.zip ntfswalk64.v.0.51.win.zip md5/sha1

Linux: ntfswalk32.v.0.51.lin.tar.gz ntfswalk64.v.0.51.lin.tar.gz md5/sha1

Mac OS X: ntfswalk.v.0.51.osx.tar.gz ntfswalk.v.0.51.osx.tar.gz md5/sha1

*32bit apps can run in a 64bit l inux distribution if "ia32-libs" (and dependencies) are present.

Terms of Use | Disclaimer | Contact
© 2014 TZWorks Limited Liability Company

mailto:info@tzworks.net
javascript:win_test('download.php?proto_id=12& vers=win& typ=32')
javascript:win_test('download.php?proto_id=12& vers=win& typ=64')
javascript:hash_win('http://www.tzworks.net/prototypes/ntfswalk/ntfswalk.v.0.51.win.hash.txt')
javascript:win_test('download.php?proto_id=12& vers=lin& typ=32')
javascript:win_test('download.php?proto_id=12& vers=lin& typ=64')
javascript:hash_win('http://www.tzworks.net/prototypes/ntfswalk/ntfswalk.v.0.51.linux.hash.txt')
javascript:win_test('download.php?proto_id=12& vers=mac& typ=32')
javascript:win_test('download.php?proto_id=12& vers=mac& typ=64')
javascript:hash_win('http://www.tzworks.net/prototypes/ntfswalk/ntfswalk.v.0.51.osx.hash.txt')
javascript:win_dis('terms.html')
javascript:win_dis('terms.html')
mailto:info@tzworks.net

