5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

TZWorks LLC

Home Tools Products Downloads About
Windows $SMFT and NTFS Metadata Extractor Tool (ntfswalk)

ntfswalk is a command line a tool that traverses a specified NTFS volume reading all MFT entries and
pulling predefined statistics as it runs.

Originally the NTFS engine was designed as a widget for other applications to help pull data out from
targeted categories of files on NTFS partitions. After successfully using the functionality in other tools, it
was determined that the utility in making a standalone tool would be helpful in debugging and
understanding the internals of any NTFS volume. This new tool, coined ntfswalk, is named after its
ability to walk an entire NTFS volume and output each MFT entry it encounters.

Designed to work with live NTFS partitions, there is also functionality for traversing NTFS images
created with the 'dd’ utility (as well as some versions of VMWare VMDK files). There are options to filter
on file extension, timestamp range, binary signature, partial filenames and directory contents. For the
files found, one can list the summary metadata, extract the header bytes, or extract the entire file
contents into a designated directory. Since the engine is Windows API agnostic, there are compiled
versions for Windows, Linux and Mac OS X.

If targeting a volume mounted on a live Windows system, one needs to be run ntfswalk with
administrator privileges.

How to Use ntfswalk

ntfswalk has a number of command line switches, and for the occasional user, it can be confusing
which options can be used together and which cannot. Below is a screenshot of the menu options that
are displayed when running the tool without any arguments.

https://tzworks.net/prototype_page.php?proto_id=12 117

https://tzworks.net/index.html
https://tzworks.net/prototypes.php
https://tzworks.net/store/product_page.php
https://tzworks.net/download_links.php
https://tzworks.net/about.html

5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

B Administraton Command Prompt
wer: @585 C L £ Ce) TiWorks LLC

s with =% are | with a commercial lice

To help understand the various options, one can break the architecture into four main areas: (a) source of the
data, (b) filter that can be applied, (c) extraction options, and (d) output format.

ntfswalk flow Deleted|f1] Default
Extension(s) [f2] . '
Time range 3] Headerinfo[e1] csv [r1]

SMFT extracted file [s1] : "Bl clusterinfo [e2] Body file [r2]

orvetésimgl 2 el

volume [dd image] [3]
Drive [live system] [s4]

-

Log2timeline [r3]

v ¥ h
* ..
F 1 &

Volume [live systerm] [55] Binary signature[f6] , Hashfile [ra) -
ViWare monolithic disk [s6] Directories [f7] : hnrmal.data [e3] File vice stdout [r5]
Unallecclusters [f3] Data w/ slack [e4] Misc options
All clusters [f9] [r6, r7, r8, r9, ..]

Starting with the first area, this identifies which data sources ntfswalk can handle for input. Various
input types include: (i) an extracted $MFT file, (ii) a 'dd' image of a drive or volume, (iii) a drive or
volume currently in use on a live system, or (iv) a VMWare single volume disk.

The second area shown above is filtering. This defines what files (or MFT entries) are analyzed and
displayed to the user. One can filter on deleted files/folders, extensions, partial names, and binary

https://tzworks.net/prototype_page.php?proto_id=12 217

Windows $MFT and NTFS Metadata Extractor Tool

signatures. For binary signatures, currently ntfswalk allows one to find: registry hives, event logs,
SQLite3 databases, or portable executable files. Also in this area one can choose to analyze all
unallocated clusters instead of the normal allocated clusters, or to pull files from a specified directory.

The third area in the diagram are the extraction options. Whatever option is chosen, at a minimum,
ntfswalk will produce a results file. This results file will contain much of the metadata one needs for
forensic analysis. For more detailed analysis, one can add extra data to the results, including: (a) the
bytes in the header for each file or (b) the cluster run information. To physically extract the contents of
the file, one can specify an archive directory as well as whether to include slack data or not. If one does
extract the file data, ntfswalk will compute the MD5 hash of the file and annotate this data to the results
file as well.

The fourth area allows one to select how one wishes to see the results. As mentioned above, even if
one only wishes to extract data to a directory, there will be a results file that logs all the files passing the
filter tests. The default output is plain text, which by itself, has reasonable formatting when viewed in
notepad and word wrap is turned off. The other formats are geared for spreadsheet analysis or other
post processing tools. Typically, any data containing numbers is defaulted as hexadecimal; however,
there is an option to transform the output into base10 notation, if desired. As an add-on to ntfswalk, is
the ability to generate a hashset type results file.

The Command Line options for the above

The syntax for each of the options that correlate to the above ntfswalk flow diagram is shown in the
figure below. The figure also identifies which options can be used in combination with others. Therefore,
one can select: (a) one source of input, (b) none or any combination of filters, (c) none or one extraction
option and (d) one type of format for the output resullts.

Source command line options [select only one of these] Extract command line options [select none or one]

[s1]
[s2]
[53]
[s4]
[s5]
[s6]

[f1]
[f2]
[f3]
[fa]

[f5]
[f&]
[f7]

[f&]
[fa]

-mftfile<extracted SMFT file>

-image <drive dd image> -offset <vol offset>
-image <volume dd image=>

-drivenum <# drive> -offset <vol offset>
-partition <drive letter>

-vmdk <diskl> [-vmdk <disk2>..]

Filter command line options [select none or any combo]

-filter_deleted_files | -filter_deleted files_all
-filter_ext “file extl | file ext2] .."
-filter_start_time<date> [-filter_stop_time <date>|
-filter_mame“namel | name2 | ..."
-filter_inode “inodel | inode2 | ..~

-mftstart <inode> [-mftrange <# inodes>]
-filter_sig [mz | hive | evt | sglite | Ink]
-filter_dir “dirl | dir2 | .."

-filter_dir_inode “inodel | iInode2 | ... *
-filter_unalloc_clusters

-filter_all_clusters

[e1] -action_include header .. extracts first 32 bytes
[e2] -action_include clusterinfo

[e3] -action_copy_files <dir to store>

[e4] -action_copy files<dirtostore> -raw

Results command line options [select none orrl, r2 or r3]

default .. Text based stdout w/ pipe delimiter
[rl] -csv .. Normal csv output
[r2] -bodyfile .. Noextractionoptionsallowed w/ thisoption
[r3] -csvi2t .. Noextraction options allowed w/ this option

[r4] -hashfile [md5 | shal] .. Extract hashes of target files
---can be used in conjunctionw/ one of the above outputs ---
[r5] -out <filename>

[r6] -baselD - output numbers inbase 10 [hex isdefault]
[r7] -hide_dos fntimes ..don"toutput dos8.3 filename times
[r8] -dateformat "mm/dd/yyyy”

[r9] -timeformat “hh:mm:ssxs”

- others..,

Understanding the Output

Lets say you wanted to search all the names in a live volume that contained the string "wordpad.exe"
and store the output into CSV format. That way you could double click on the resulting CSV file and
Excel could easily open the file. The syntax would be the following for scanning the 'c' partition and
redirecting the output to some results file:

ntfswalk -partition c¢ -filter name "wordpad.exe" -csv > results.csv

https://tzworks.net/prototype_page.php?proto_id=12

37

5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

When examining the results.csv file, one would see prefetch, mui and exe entries all containing the
string wordpad.exe. Since the prefetch entry has a name longer then the DOS 8.3 length, the normal
windows system would have a set of timestamps for the long filename as well as a set of timestamps
for the 8.3 version of the filename. Many of these timestamps are duplications, and thus, by using the
compressed mach timestamp notation, one can show all the pertinent data without taking too much
room, as is highlighted below. Also highlighted, are entries where there are multiple parent directories
for one MFT entry (in this case, there are 2 parents for wordpad.exe). This means that wordpad.exe as
a single MFT entry, has two hard links to separate directories.

cmdline: ntfswalk -pamition "¢ filter_name '_I-’\lﬂ"ﬂpﬂnﬂ exe” L5y

= =
Search on the string “wordpad.exe”™ & Uses compressed timestamp notation | T indows-wordpad resc
DRODOOEYSY UROOOUOES ™ nirE mdl Lrisraoil am;l axtracts ,a".. tirmzstampva!ues wi i owS-veord pad res o
C0000CH59 nD000cDc3 file muwi 1/26/2011 | [rect\y indows-wordpad.ress
DxD0OZLOME hDOOLESCE file pf [1/20/2012 035810879 sima.bl; fnmach]; fnB.3{mack] | -DIFDT4LE.pf
Cu000TEOMd 000164t file pt 13012 13:30:20.155 sif el 1] E-DIFDT41L pf
CoDOC3IERA2 OxO000B4Y2 file ewe 11/20/2010 121757838 sim) fadm.] multingots (2] 1] P A e e s S o0 i e ward pad
(0038802 000082 file ewe 7/30/2011 18:3554.233 sifack]; fnla.b) muiltireots [2]
CxDOCIERAD file exe T7/30/2011 1B:39-17.316 fnd c) multiraots (2] LR Arcessariet wordpad ex
CuD00RE842 2 file ewe 7302011 184538702 sic) _ maultirgots 1] T\Prol Accessoriesiwordpad t-r

CD003ER A * Handles MFT entry with multiple directories M:L:ﬁf ﬂ %
_ (an MFT entry w/ multiple parent MFT entries) " oftwindews-wordpad_31

exe T/30/2011 18:45E8702 sid.c) Dots | i faoft-windows-wordpad_31 ‘

file exe 11/00/2010 132535073 sifm_] fadm._] F ELofies\wordpad exe

file ewe 7/30/2011 18:37:03.219 sifab]:fnfab) multingots (2] ssodies\wordpad exe

file exe 7302011 18:3909.235% fnd.c) multingos (2] F cries\wordpad. exe

file ewe 73072011 184537485 szifc) multinoots (2] Prg sries\wordpad. exe

file exe 1170073010 13:35:35073 sifm_]:fnfm.] muiltincots [2]

file exe 7/30/2011 1B:37:03.219 sifab];fnlab) multinoots (2]

file exe 7/30/2011 18:35:06848 fnd.c)

45

Other data that can be extracted from ntfswalk include cluster information. By using the option [-

action_include_clusterinfo], one can view all the cluster information available for each attribute that
contains data. Below is an example:

ntfwalk -partition c -action include clusterinfo -csv > results.csv

The figure shows a snapshot of a sample output. After trimming out some of the rows/cols, one can see
the data type, filename and the location where the data resides. For those datasets that are easily
parsed, such as the volume information or object identifier, ntfswalk shows the interpreted data. For
other entries, the cluster information is shown, if applicable.

https://tzworks.net/prototype_page.php?proto_id=12 477

5/6/2014

5 LLC
include_clusterinfo -csw

data type

Windows $MFT and NTFS Metadata Extractor Tool

pathand fil automatically

vol name
vol info

unnamed data
indx root
bitmap

indx alloc
logged stream
obj id

ﬂ id [root\SvVolume
security descr [root]\SattrDef

unnamed data
unnamed data
security descr

unnamed data
indx alloc
indx alloc
bitmap
bitmap

ads

Some data is parsed

-

[root]\Svotome
[root]\Svelume

LiLFLL

ver: 3:1 (WinXP)
0fcd0a74-012-4669-2e06-b5bEITTDE9d1

[root]\SattrDef
[root]\. 520
[root]\.:5130
[root]\.:5130
[root]\.:STHF_DATA
[root]\.
[root]\58itmap
[root]\SBoot

Other data is just
identified by location

[root]\5Secure:550H
[root]\SSecura:5sil
[root]\SSecure:550H
[rootl\SSecure:5si
[rootl\SSecure:3505

[root]\SSecura:550H

T
OD00ead33d

<data in MFT entry>

<data in MFT entry>

OoeDO000 G2 - D 00000470

<data in MFT entry>
d5dedb70-3546-11e1-8b5a-005056000008

OO0k => (oDO0bHTd

0000000000 - 0x00000001

<data in MFT entry>

0x00000000 - 0x0338a6fe [sparse]

null

000133010 -> 0x00138023; 000127194 -> 0x0012737
00011 f4c -> 0x0011df63; 0x001bebés -> Oxd01bebéd
<data in MFT entry>

<data in MFT entry>

0001 7a7e8 - 0001 7aS88; Ox00175632; 0uD01604de;
OoD01583b; OuDD1604de -> 0x001604dd; 0xDO167116
<data in MFT entry>

As a third example, if one wishes to extract cluster data associated with a MFT entry, one can use the [-
action_copy _files <directory to store extracted files>]. The syntax below shows we want to enumerate
only those deleted files that have an extension of Ink. As part of the copy, we tell ntfswalk to copy each
of the clusters associated with these resulting files to a dump directory. The syntax of the command is:

ntfwalk -partition ¢ -filter deleted files -filter ext "lnk" \
—action copy files c:\dump\deleted.lnk -csv > results.csv

The first figure shows each MFT entry and the associated path/name of the extracted file. The second
figure shows the output of the extracted files. The syntax of the extracted file uses <last modify
date>_<md5 hash>_<filename w/ extension>_<data type>.bin

cmidline: ntfswalk -partition "c” -

mift entry
Ox0001ff3a

type ext
del Ink

“chdumpldeleted.Ink™ -csv

S VVweare\ Wiiware Workstation.ink

extracted file path/file
chdumpldeleted.ink)2011_09_11_1241 riestation. Ink_unnamses

Ox0001ff5c del
del

del

del
del
del
del
del
del
del

Ink
Ink
Ink
Ink
Ink
Ink
Ink
Ink
Ink
Ink

~splorer\Quick Launch\User Pinned\Taske
explorer\Quick Launch\\Whware Workstatic
et ExplorerQuick Launch\Viware Work
o Recentintfsdir.ink
\Recent\sec_event.cov.Ink
ent\out.csv.LNK
L Recent\dims.based.on.old docs.gif.Ink
JRecentiout |2).csv.Ink
 CRecentilayout.xis.Ink
s\Recent\houses.xls.Ink

https://tzworks.net/prototype_page.php?proto_id=12

chdumpldeletedink)\2011_09_11_1241% rkstation.Ink_unna
::‘l.ﬁump‘n.dereled.ln'kmu_w_l1_1342_39 «station.Ink_wnna
chdumpldeleted.Ink\2011_09_11_1242 3 station.Ink_unna
c\dumpldeleted.ink)2012 01_18 1853 *narmed_data.bin
chdumpldeleted.Ink\2012_01_15_1548 5L wv.Ink_unnamed_data
chdumpldeleted.ink)2012_01_18 1817 | _unnamed_data.bin
chdump\deleted.Ink\2012_01_06_2127 n.old.docs.gif.Ink_u
chdumpideleted.ink\20012_01_14 1315 4 k_unnamed_data.bi
chdump\deleted.Ink\2012_01_06_2324_5, ._unnamed_data.bin
::‘I.dump\dereled.lnkmlz_m_cﬁ_ilzi_j —unnamed_data.bi

CLLICTIE LE L an A ol W0 L LM

57

Windows $MFT and NTFS Metadata Extractor Tool

(C:) » dump » deleted.Ink - Search deleted.ink

Share with - Burn Mew folder == o« [e

Mame

@ 2011 09 11 1241 38 787 beac2dd22e3243429b5811a77f76c0ba_VMware_Workstation.Ink_unnamed_data.bin

@ 2011 09 11 1241 38 797 _de77075a19bf098321e629c5062f0cad_Viware_Workstation.Ink_unnamed_data.bin

@ 2011 09 11 1242 31 113 c0bl44£762aeb8b989045d65f0310c5f_ VMware_Workstation.nk_unnamed_data.bin

@ 201109 11 1242 31 115 62302ccechT eedleccl d067d2 chabehe_VMAware_Workstation.Ink_unnamed_data.bin

@ 2011 09 11 1242 31 116 35e1 dbead28f28e9ed84451f5babbl 74 _Vidware_Workstation.Ink_unnamed_data.bin

@ 2011 12 24 1403 _35 007 _97774e74855099c3950460ac3f4453c5_2011 12 24 1402 47 498 _results.csv.LMEK_unnamed_data.
@ 2011 12 24 1403 35 026_320=19c8768841bETE61c330ecfdcd2_ 2011 12 24 1402 47 498_results.czv.Ink_unnamed_data.b
@ 2012 01_03_1909_57 062 058297 cd8e1911d27d3dff0835f08f82_dbgint.h.Ink_unnamed_data.bin

@ 2012 _01_03_2008_14 048 _55f5a92e5393a7be5581a2887bb777eb_README. html.Ink_unnamed_data.bin

(a8 2012_01_03_2122_02_636_c41b785dd84b570939fb3 28 2] 2ef_globals.h.Ink_unnamed_data.bin

Copying files during the session

Extracting files is a common need, especially when gathering critical data from an incident response
request. By using the -action_copy_files <root directory> [-rawj [-skip_sparse_clusters] one can direct
the files copied to a root directory, but also indicate whether you want file slack (-rawoption) or to skip
sparse clusters (-skip_sparse_clusters option).

During the copy operation, various subdirectories within the root directory will be created automatically
to store the extracted files. The subdirectories are based on: (a) derived user account, (b) whether the
file was deleted or not, and (c) what filter caused the file to be passed. Below is a directory hierarchy
that was created based on the ntfswalk command:

ntfswalk -partition ¢ -filter ext ".gif | .jpg | .lnk" \
-filter name "index.dat | destinations ms" \
—action copy files 2013 06 12 1817 02 981

Root Directory

deleted-mft

=——rwwr v et O Mae

i GAf.SC b R0 A00507 31§37 cf3_Run
Subdirectories for Deleted or Valid files 316060320293 Help

4421452d21447473450_Control Panel

Administrator <—y

Subdirectory for Login Account

b614463catl663

. destinations-ms
. gif
. index.dat

irg

TRl 2009_07_14_0453_47_131_9a79cOel ad63ed2¢793253657¢

Some of the LNK
files that passed

B9 2009 07 14 0453 47 167 eldfbefSeldcd cbl3felBacl93 dmrramrrmroo
1348416ddf382b_Magnify

Subdirectories for filter that passed file

Ink

TEm 2009 07 _I3_ A 5T_32 919 _sea9 22 beraaaraso005a21934671 0ce_On-5creen Keyboard

LT

TYTTTLTICT

Generating Hashsets on Target File types

There are a number of excellent tools available on the Internet that perform hashing and creating hash
sets. While ntfswalk was not originally designed to generate hash sets, it does have the ability to hash
any desired target file. The main difference between ntfswalk's approach to that of a normal hash tool,
is ntfswalk accesses the file contents of the file at the cluster level directly, whereas many other
hashing tools do not. This becomes more important when considering your target machine may be

https://tzworks.net/prototype_page.php?proto_id=12 6/7

5/6/2014 Windows $MFT and NTFS Metadata Extractor Tool

infected with malware, and whether the actual file contents that are viewed have been masked by
malicious software.

Using the switch -hashfile [md5 | sha1] will invoke the hashset option. The hashing routine will only
target files with data and only the 'unnamed' data streams vice any alternate data streams. Filtering on
executable type files is a good way to generate a hashset on any exe, dynamic link library or driver file.
Below is an example of running the option on a Linux box targeting a 'dd' image of a NTFS volume:

niftwwalk - limited yer 0.45; Copyright (c) TZWorks LLC
run Rimeee: OT/0R/13 4 B —

Crsdlirs: nfliwallold smage = Restcases/xp dblake dd” -filter_glg “mz” -has

mids hash

CCI0ENITE] 24605044 Joaa SR hb 0D

Laari i

Fog b Tete Lo e]

G A A0R0TTTDOLC Lo AISOEM TRIAES
I TrSEhesIT 2 TSO260 650l TR
O TR AR o] Bl QS0 G 5
G 26 T 32 TERLBTIGA F060: Sald 2250
J40 00 2oac TIBOG T Thel TEdo ol

50fc 40265000 14418 TRIEEES TLT

inccke tile size

CoDO00C0EZ DaoDOG000
CuDD0000ET CuDIESD
CoaDDDOCOET Caolid430
CorDDO000EE D00 100
CorDDO000eD DoDOd 00
CoDO0000Es Tkl edid
CoohO00000h Coi04S00
Co0000060: D580
CorD0000060d w4550
CorD000C0E DD0S0
CoiD0000R! (oD0GS0

maatey

O ZRI00E
L2006
O R I006
O/ RII006
O 2RrH006
O 2BrH006
O 2BrH006

“mds"

Imtir-Lic

1200000, 000

12 00000,
1270y 0 N
12000,

12:00000.000 1§

12000, 0y

OX2Rr0nG 1:

O ZAr00gG

OX2Ar3006 13
OXZArI006 12

filgnamie
B.715 pootvid,dll
6905 koo ol

path

[P WWINDOWS Sy SemaR
[P WINDOAWS Sy S em AR,
[P INDOWS Fonts!

[Foct[UAWINDOMW SISy stem I drens)
[FoctWAINDOMW S S st em TN ey
[Foct[UANDOAM S8yt em SN e
[FootWANDOMWS S yatem INarmeenst
[rootNINDOAY S S ystem I vers)
[root NN E Sy stem Iuadreers)
[Foot[WMANDOAWS Sy stom 3 Ndriversh

WS sy siemIdidiverst

In the example above, ntfswalk scanned the contents of every file to see whether it was an executable
(independent of what the extension was) or not. If it determined that a PE (or 16 bit version of a exe/dll)
signature was present, it computed the MD5 hash of the contents. As you can imagine, this process
takes some time depending on the size of the volume you are analyzing.

For more information

If you would like more information about ntfswalk, contact us via email.

Downloads
32-bit Version 64-bit Version
Windows: ntfswalk32.v.0.51.win.zip ntfswalk64.v.0.51.win.zip md5/shat
Linux: ntfswalk32.v.0.51.lin.tar.gz ntfswalk64.v.0.51.lin.tar.gz md5/shat
Mac OS X: ntfswalk.v.0.51.osx.tar.gz ntfswalk.v.0.51.0sx.tar.gz md5/sha1

*32bit apps can run in a 64bit linux distribution if "ia32-libs" (and dependencies) are present.

Terms of Use | Disclaimer | Contact
© 2014 TZWorks Limited Liability Company

https://tzworks.net/prototype_page.php?proto_id=12 77

mailto:info@tzworks.net
javascript:win_test('download.php?proto_id=12& vers=win& typ=32')
javascript:win_test('download.php?proto_id=12& vers=win& typ=64')
javascript:hash_win('http://www.tzworks.net/prototypes/ntfswalk/ntfswalk.v.0.51.win.hash.txt')
javascript:win_test('download.php?proto_id=12& vers=lin& typ=32')
javascript:win_test('download.php?proto_id=12& vers=lin& typ=64')
javascript:hash_win('http://www.tzworks.net/prototypes/ntfswalk/ntfswalk.v.0.51.linux.hash.txt')
javascript:win_test('download.php?proto_id=12& vers=mac& typ=32')
javascript:win_test('download.php?proto_id=12& vers=mac& typ=64')
javascript:hash_win('http://www.tzworks.net/prototypes/ntfswalk/ntfswalk.v.0.51.osx.hash.txt')
javascript:win_dis('terms.html')
javascript:win_dis('terms.html')
mailto:info@tzworks.net

