5/7/2014 A Primer on Temporary Internet Files - IEInternals - Site Home - MSDN Blogs

A Primer on Temporary Internet Files

. EricLaw [ex-MSFT] 19 Mar 2011 8:34 AM 15

On Windows Vista and above, Internet Explorer's Temporary Internet Files are maintained in two isolated WinINET
cache containers. One cache is used for sites loaded in Protected Mode (Internet Zone and Restricted Zone) and the
other cache is used for sites loaded outside of Protected Mode (Trusted Sites, Local Intranet, and Local Machine).

Each cache container consists of two components: a memory-mapped index database (index.dat) and a nested folder
structure containing the response entities that have been cached. Each index holds up to 60000 entries, and each entry
maps one request URL to a set of response headers, a bit of metadata, and optionally a file path to the response
entity body (if one exists). The cache is cleaned (scavenged) when either the index entry limit is reached, or the disk
quota (250mb by default for IE9) is exceeded. If the user deletes their browser history (Tools > Delete Browsing
History) the cache index is overwritten with zeros, and all response entities are deleted from disk. If the user closes an
InPrivate Browsing session, every item in the cache which was stored during the InPrivate session is removed.

When Internet Explorer asks WinINET to make a network request on its behalf, if the request flags allow, WinINET will
reuse a fresh response from the local cache, if one is available. If an expired response is available, WinINET will
attempt to validate its freshness by making a conditional HTTP request in order to get back a HTTP /304 if the
response entity is still valid or a new copy of the response entity if the cached version is no longer up-to-date. If
WInINET only has a partial response in the cache, it will issue a HTTP request with a Range header indicating the
remaining part of the file which is not yet in the cache. In order to avoid corruption, the Range request will contain an
If-Range header containing the ETag of the originally cached response, and/or a pre-RFC2616 Unless-Modified-Since
header containing the Last-Modified time of the originally cached response. If the server’'s copy of the resource has
changed, it will send the entire file again; if not, it will send a HTTP /206 partial response containing only the requested
range of the file.

Prior to IE6, Internet Explorer introduced a mechanism for viewing cached files; you can access this mechanism by
clicking Tools > Internet Options > General > Browsing History > Settings. In the TIF and History Settings dialog, click
the View Files button. Alternatively, you can simply type shell:cache into the Internet Explorer Address Bar or the Start
> Run prompt. Doing this will open a Windows Explorer window to the
C:\Users\username\AppData\Local\Microsoft\Windows\Temporary Internet Files folder.

= | = P

ol | J <« Wind... » Temporary Internet Files ,OI

Organize * =~ 0 @

Mame Internet Address Type Size Expires it

f: favicon.ico http://msdn.microsoft.com/favicon.ico Icon 2KB 3/19/2011 6:57

W/ favicon.ico http://en.wikipedia.org/favicon.ico Icon 1KB Mone

|£] Hanselminutes... http://feeds feedburner.com/Hanselmin... XML Docu... 49 KB 3/19/2011 6:00

=] IE9CompatViewl... http:/fie9cvlistie.microsoft.com/IE9Com... XML Docu... 107 KB 3/19/2011 8:05

3 iefavicon.ico https://twitter.com/phoenix/iefavicenice Icon 8KB 3/15/2021 9:14 M

E nytico http://css.nyt.com/fimages/icons/nytico Icon 15KB 3/20/201112:07
1| I} 3

I favicon.ico

It is important to understand that what you see above is not exactly what is stored on disk—alert readers will observe
that Explorer is showing columns, like Internet Address and Expires, that are not typically seen for other folders.

This is accomplished through the magic of a Shell Namespace Extension. As explained on MSDN: With a namespace
extension, you can take any body of data and have Windows Explorer present it to the user as a virtual folder. When a user
browses into this folder, your data is presented as a tree-structured hierarchy of folders and files, much like the rest of the Shell
namespace.

This folder is mapped to the Namespace Extension using the desktop.ini file within the folder; it contains the following
text:

[.ShellClassInfo]
UICLSID={7BD29E00-76C1-11CF-9DD0-00A0C9034933}

The CLSID listed refers to a COM object implemented in IEFrame.dll. When the Namespace Extension is invoked, it
generates the “friendly” view of the non-Protected Mode cache. It generates this view by making API calls into the
WInINET cache code. The COM object enumerates the cache using FindFirstUrlICacheEntry / FindNextUrlICacheEntry
without passing any filter; this means that files download by XDomainRequest, files temporarily cached while InPrivate,
and cached HTTP/3xx redirects, are not shown in this view.

The “Name” listed isn’t actually the name of the cache file on disk, but rather a filename simplistically parsed out of
the URL. The HTTP expiration information and similar columns is retrieved from the metadata stored in the index.

Most importantly, this view does not show the Protected Mode cache; it only shows files that are downloaded outside of
Protected Mode. In the screenshot, you'll see a number of Internet-Zone URLs; these are here because Internet
Explorer's Medium Integrity “Frame Process” is downloading the FavIcons; the rest of these pages are downloaded and
rendered by the Low Integrity Protected Mode “Tab Process.”

This view may even show files that do not exist; if the backing response entity file was deleted from the disk without
calling DeleteUrlCacheEntry to delete the index entry, the Namesspace Extension will still show the entry. However, if
WInINET ever wants to reuse the entry, it will find the file missing and will need to re-download from the server.

To see the actual files on disk, open shell:cache\Content.IE5. You'll see the following view:

http://blog s.msdn.com/b/ieinternals/archive/2011/03/19/wininet-temporary-internet-files-cache-and-explorer-folder-view.aspx

1/5

http://blogs.msdn.com/7001/ProfileUrlRedirect.ashx
http://blogs.msdn.com/7001/ProfileUrlRedirect.ashx
http://blogs.msdn.com/b/ie/archive/2011/03/17/internet-explorer-9-network-performance-improvements.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/07/08/technical-information-about-conditional-http-requests-and-the-refresh-button.aspx
http://msdn.microsoft.com/en-us/library/cc144095(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa384026(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa384049(v=vs.85).aspx
http://blogs.msdn.com/b/ie/archive/2010/07/14/caching-improvements-in-internet-explorer-9.aspx
http://msdn.microsoft.com/en-us/library/aa383983(v=vs.85).aspx

5/7/2014

MName Date mcdrifir:d Type Size
index.dat 3/19/2011 7:28 AM DAT File 464 KB
desktop.ini 3/18/2011 7:01 AM Configurat... 1KE
CAABNROX 3/19/2011 7:35 AM File folder
ICSUYRXA 3/19/2011 7:35 AM File folder
MWT155A0 3/19/2011 7:30 AM File folder
QOYAOM79 3/19/2011 7:30 AM File folder

A Primer on Temporary Internet Files - IEInternals - Site Home - MSDN Blogs

You see the index.dat database file, and four randomly named subfolders each of which, if opened, contains cached

response files:

T N W L 1 e e T T N

mvl ;< Windows » Temporary Internet Files » ContentIE5 » MWTL55A0

Organize » Share with «

Mame Date modified Type Size

L | Ad[1].tpl 3/19/2011 8:11 AM TPL File 1KB

ﬂ answers_favicon[1].ico 3/18/2011 911 PM Icon 2KB
desktop.ini 3/18/2011 7:01 AM Configurat... 1KB

IE\I favicon[1].ico 3/18/2011 8:05 PM Icon 2KB

#§ favicon[2].ico 3/18/2011 910 PM Icon 2KB

’ﬁ* favicon[4].ico 3/18/2011 919 PM Icon 15 KB

The folders are randomly named to mitigate certain types of attacks that involve placing malicious content at
predictable file locations and then opening it using a url that uses the file:// protocol scheme. There are four of them
to similarly aid in randomness, as well as for legacy reasons (older filesystems had a limit on the number of files
contained in a single folder).

The Protected Mode cache files can be viewed in a similar way, by opening shell:cache\Low\Content.IE5 instead:

MNarme Date mcaified Type Size
index.dat 3/19/2011 7:18 AM DAT File 2,272 KB
desktop.ini 3/18/2011 7:01 AM Configurat... 1KB
EWTOU9SN 3/19/2011 7:38 AM File folder
HPR49403 3/19/2011 7:38 AM File folder
T3KLBOCF 3/19/2011 7:38 AM File folder
UFNQCAHS 3/19/2011 7:38 AM File folder

Again, you'll see the same layout, with four more randomly named subfolders.
Thanks for reading!

-Eric

Comments

zz 19 Mar 2011 5:48 PM
S Hi Eric,

Thanks for the wonderful writeup on this topic. I find it very informative. Perhaps you can enlighten me
on a particular pet peeve that might be related.

Whenever I'm in InPrivate mode, I find that the favicon never shows up on any of the tabs nor for any
inprivate pinned sites.

Is this normal behavior? Is it because of the low integrity temp storage doesn't keep them around?
Nevertheless, the favicons shows up in my Favorites.

So its bit strange and frustrating that favicons show up in one place but not the other.

Thanks.

EricLaw [MSFT] 19 Mar 2011 9:57 PM

@) @zz When you create a Favorite, the page's Favicon is copied from the Temporary Internet Files into an
NTFS Alternate Data Stream on the .URL file that represents the favorite. That way, even if the TIF is
cleared, the icon is still available in your favorites.

http://blog s.msdn.com/b/ieinternals/archive/2011/03/19/wininet-temporary-internet-files-cache-and-explorer-folder-view.aspx

http://blogs.msdn.com/b/ieinternals/rsscomments.aspx?WeblogPostID=10143409

5/7/2014

(¥ b 4

™
Py]

A Primer on Temporary Internet Files - IEInternals - Site Home - MSDN Blogs

KS 20 Mar 2011 4:59 AM
Why is there no TIF view of the protected mode parts?

EricLaw [ex-MSFT] 20 Mar 2011 8:35 AM

@KS: The investment simply wasn't prioritized in the Windows Vista timeframe when Protected Mode
was introduced; this view is a very rarely-used feature. Showing the low-integrity cache would have
required a significant investment to spin up a COM object at low-integrity and enumerate the low-
integrity cache at that IL.

Farhan 17 Apr 2011 4:38 AM

Thanks for this informative article. Can you please put some light over accessing Temp internet files of
other user profiles created on the machine? Thanks Farhan

[EricLaw: Can you explain what you mean specifically? Temporary Internet Files are stored in a per-user
location, so NTFS ACLs will generally prevent one user from accessing other user's files.]

Peter 3 Aug 2011 11:09 PM
What's the limit of number of objects in the cache for IE8 and IE9 respectively?

EricLaw [ex-MSFT] 4 Aug 2011 6:08 AM

@Peter: The scavenger will run on a cache as soon as it exceeds 60,000 objects. That number is the
same between IE6-IE9.

hmdhingra 21 Jan 2013 12:41 PM

Luse [E 9. If the cache limit is 60,000 whyy is my Norton antisoftawre on scanning counts >800,000 files
in C:\Users\Harimohan\AppData\Local\Temp\Low\Temporary InternetFiles\Content.IES\LM4P6AP1\...
WITH ...js. Is it Ok/possible to delete these files.

EricLaw: If there are really that many files under the Content.IE5 folder, that suggests that something has
corrupted the cache index and is preventing proper cleanup. You can safely open this folder in Explorer
and delete everything in it (use Shift+Delete to prevent a very slow copy to the recycle bin).

s30 Sep 2013 9:04 PM
Still confused. Idelete my temporary internet folder, however, when I check settings and files all these

icons are still in temporary internet folder. Should I delete everything one at a time from there, also?
What happens if I do? Thanks

[EricLaw] I'm not sure what "delete my temporary internet folder" means? If you use the Delete Browser
History command, without the "preserve favorite website" option set, the folder will be cleared.

Mike Appleby 19 Mar 2014 6:09 PM

Hi, With IELI0+ the wininet cache is started by a scheduled task when the user logs on and does not end
till the user logs off. Is it possible to end close the wininet cache? Ideally via an API? If the scheduled task
process is killed, when you run IE the wininet cache manager is ran from dllhost, again this process
doesn't terminate till the user logs off. Any ideas?

[EricLaw] When one asks: "/'d like to surgically remove the brain from a patient and put it back in later, any
tips?" the proper response isn't suggesting a saw to use, but rather to ask: "Why on earth would you
want to do such a thing?"

Hinggus 28 Apr 2014 2:58 AM

Iunderstand that the wininet cache scavenger will be scheduled to run when the number of files cached
exceeds 60000. Is it possible to initiate the cache scavenger manually, or via an API?

[EricLaw] The file count is only one trigger for the scavenger; the size of the cache is another trigger,
and there's a timer (10 minutes?) for routine scavenging as well.

http://blog s.msdn.com/b/ieinternals/archive/2011/03/19/wininet-temporary-internet-files-cache-and-explorer-folder-view.aspx

3/5

http://blogs.msdn.com/7001/ProfileUrlRedirect.ashx
http://blogs.msdn.com/7001/ProfileUrlRedirect.ashx
http://blogs.msdn.com/7001/ProfileUrlRedirect.ashx
http://blogs.msdn.com/7001/ProfileUrlRedirect.ashx
http://blogs.msdn.com/503609/ProfileUrlRedirect.ashx
http://blogs.msdn.com/503609/ProfileUrlRedirect.ashx

5/7/2014

e

A Primer on Temporary Internet Files - IEInternals - Site Home - MSDN Blogs

Hinggus 28 Apr 2014 11:33 AM
In other words, there is no way for an wininet application, or from commandline, to initiate a cache
scavenger run?

I ask because our application is intended to run 24/7 for weeks and it is using URLDownloadToFile with
HTTP to download files, although not continuously but frequently. In a citrix environment where one or
more instances of our application, from the same user account, has been running fine for 15+ hours,
one of the instance would start reporting failures to open the requested files which were successfully
opened just moments or minutes ago (no file changes on the webserver during the run). The only way
to fix this problem is to restart the application.

I'm trying to figure out what could have cause this problem: cache scavenger, exhaustion of file handles,
calling wininet API from multiple threads in our application, etc?

[EricLaw] Are we having this same conversation on StackOverflow by chance? The problem isn't likely to
be the scavenger; you may want to watch a "stuck" process in Process Monitor to see if you see
anything suspicious. While WIinINET doesn't offer a way to invoke the scavenger, you could try clearing
the cache once in a "stuck" state to see if it makes any difference. See e.g.

http://support.microsoft.com/kb/815718

Hinggus 28 Apr 2014 3:13 PM
Thanks for the feedback. I will try to use Process Monitor to watch a "stuck” process tomorrow.

I did try to purge the cache using IE but that didn't help the "stuck" process.

Hinggus 30 Apr 2014 1:11 PM

Thanks to your advice, by using ProcessExplorer, I was able to see that the "stuck" process has a handle
count of >9700, and a long list of opened files (same files downloaded by our application multiple times
and cached at different locations in the WInINET cache). I suspect that the failure to download
additional files can be attributed to the exhaustion of file handles allowed in a process.

What confuses me is that our application periodically opens these files by calling InternetOpenUr| with
the INTERNET_FLAG_RESYNCHRONIZE flag, retrieves the file contents by calling InternetReadFile, and
then closes them by calling InternetCloseHandle. I'd expect that calling InternetCloseHandle would take
care of closing all handles relating to the file.

Furthermore, if these files have remain unchanged on the webserver, why would they be downloaded
and cached again at a different location when requested repeatedly? I'd expect all subsequent open
requests be satisfied by accessing the cached copy because INTERNET_FLAG_RESYNCHRONIZE
stipulates that "Reloads HTTP resources if the resource has been modified since the last time it was
downloaded".

What am I missing here and how can these files be closed properly?

[EricLaw] I wrote about what INTERNET_FLAG_RESYNCHRONIZE does under the covers

here: http://blogs.msdn.com/b/ieinternals/archive/2010/07/08/technical-information-about-conditional-
http-requests-and-the-refresh-button.aspx. Have you watched your traffic in Fiddler to see whether
you're getting a HTTP/200 each time, or a HTTP/304? (Does the server's response have a Last-Modified
and/or ETAG that would allow a 304?)

You said you're using URLDownloadTofFile, but then said you're using InternetReadFile-- is there some
reason you're not reading the created file directly (not using WIinINET)? Do you see the same behavior if
using URLDownloadToCacheFile instead?

Hinggus 30 Apr 2014 3:05 PM

I should have been clearer: Our FileControl is a ActiveX control that is responsible to download files for
its clients. It provide supports for redundency via backup webservers. The FileControl basically
supports two ways to return a requested file to its application clients:

1) the path of the cached file (client is responsible to open and close the cached file);
2) the content of the file in a BSTR (FileControl is expected to open and close the requested file).

The FileControl in turn calls URLDownloadToFile to faciliate for the first option and InternetOpenUrl for
the second. According to ProcessExplorer, it appears that only files that were opened for option (2)
were left opened.

I've not used Fiddler before, any pointers for me to get started?

[EricLaw] Install it from http://getfiddler.com. Open it. Watch.

http://blog s.msdn.com/b/ieinternals/archive/2011/03/19/wininet-temporary-internet-files-cache-and-explorer-folder-view.aspx

4/5

http://support.microsoft.com/kb/815718
http://blogs.msdn.com/b/ieinternals/archive/2010/07/08/technical-information-about-conditional-http-requests-and-the-refresh-button.aspx
http://getfiddler.com/

5/7/2014 A Primer on Temporary Internet Files - IEInternals - Site Home - MSDN Blogs

http://blog s.msdn.com/blieinternals/archive/2011/03/19/wininet-temporary-internet-files-cache-and-explorer-folder-view.aspx 5/5

