5/7/2014 How To Deadlock Yourself (Don't Do This) - Ntdebugging Blog - Site Home - MSDN Blogs

How To Deadlock Yourself (Don’t Do This)

ntdebug 19 Jul 2012 10:52 AM 1

Some APIs should come with a warning in big red letters saying “DANGER!”, or perhaps more subtly “PROCEED WITH CAUTION”. One such APl is

ExSetResourceOwnerPointer. Although the documentation contains an explanation of what limited activity you can do with the resource after making this call, its warning is not

very strongly worded.

You may see evidence of a call to ExSetResourceOwnerPointer in a debug. A lock in llocks will have an unusual owner field, such as the one shown below:
2: kd> !locks
*%%% DUMP OF ALL RESOURCE OBJECTS ****
KD: Scanning for held locks...
Resource @ Oxfffffa80llefede8 Exclusively owned
Contention Count = 20
NumberOfSharedWaiters = 16
Threads: fffff88007fab7£3-02<*> *** Unknown owner, possibly FileSystem

fffffag80169538a0-01
fffffa801512a410-01
fffffa801607bb60-01
fffffa800cd77040-01

fffffa80lea69060-01
fffffa801279b340-01
fEfffa8012£79060-01
fffffa8013a8e040-01

fffffa8017dfd430-01
fffffa8016d079a0-01
fffffa8013b4e040-01
fffffa800cd76040-01

fffffa800cd76b60-01
fffffa8015452aa0-01
fffffa801b03e300-01
fffffa80172d7490-01

The error “*** Unknown owner, possibly FileSystem” is an indicator that the owner field of this eresource has likely been modified by ExSetResourceOwnerPointer. Fortunately for
us debuggers, programmers often point the owner field to a location on the thread stack. You can pass an address to the lthread command and it will interpret the address as a

stack value.
2: kd> !thread fffff88007fab7f3 e
fff££f88007fab7f3 is not a thread object, interpreting as stack value...

THREAD fffffa80169538a0 Cid 0004.0638 Teb: 0000000000000000 Win32Thread: 0000000000000000 WAIT: (WrResource) KernelMode Non-Alertable

fffffa8013%ea3e0 Semaphore Limit Ox7fffffff

IRP List:

fffffa8016£d1010: (0006,0310) Flags: 00000884 Mdl: 00000000

Not impersonating

DeviceMap fffff8a000008aal

Owning Process fffffa800cd6a5f0 Image: System

Attached Process N/A Image: N/A

Wait Start TickCount 27606952 Ticks: 141 (0:00:00:02.199)

Context Switch Count 90787

UserTime 00:00:00.000

KernelTime 00:00:02.496

Win32 Start Address nt!ExpWorkerThread (Oxfffff80002293a50)

Stack Init fffff88007fabdb0 Current fffff88007fab3al

Base fffff88007fac000 Limit ffff£f88007£fa6000 Call 0

Priority 14 BasePriority 13 UnusualBoost 1 ForegroundBoost 0 IoPriority 2 PagePriority 5
Child-SP RetAddr Call Site

f££££880°07fab3e0 f££££800°0228da52 nt!KiSwapContext+0x7a
fEEFE880°07fab520 fffff800°0228fbaf nt!KiCommitThreadWait+0x1d2
ff£f£f£880°07fab5b0 fffff800°0224ec9e nt!KeWaitForSingleObject+0x19f
ffff£880°07fab650 fffff800°022ad98c nt!ExpWaitForResource+Oxae

ffff£880 07fab6c0 fff£f880°0140fcl0 nt!ExAcquireSharedStarveExclusive+0xlbc
fffff880°07fab720 fffff880°0140f8e2 sis!SipDereferenceCSFile+0x40
ffff£880°07fab750 £ffff880°0140£608 sis!SipDereferencePerLink+0x62
f££££880°07fab780 ff£f£f£880°014102e7 sis!SipDereferenceScb+0x184
fffff880°07fab7c0 fffff800°025796e6 sis!SiFilterContextFreedCallback+0xaf
fff£f£880°07fab7f0 fffff880°016b%bcc nt!FsRtlTeardownPerStreamContexts+0xe2
fE££££880°07fab840 ff£fff880°016b98d5 Ntfs!NtfsDeleteScb+0x108
fff£f£880°07£fab880 fffff880°0162ccb4 Ntfs!NtfsRemoveScb+0x61
fffff880°07fab8c0 fffff880°016b72dc Ntfs!NtfsPrepareFcbForRemoval+0x50
fEE££880°07fab8f0 fffff880°01635882 Ntfs!NtfsTeardownStructures+0xdc
fEEFE880°07fab970 fffff880°016ce813 Ntfs!NtfsDecrementCloseCounts+0xa2
fff£ff880° 07fab9%0 fffff880°016a838f Ntfs!NtfsCommonClose+0x353
fffff880°07faba80 fffff880 0l6cd7ef Ntfs!NtfsFspClose+0x15f

fEff£880° 07fabb50 fffff880°01635c0d Ntfs!NtfsCommonCreate+0x193f
ff£f££880°07fabd30 fffff800°0227e787 Ntfs!NtfsCommonCreateCallout+0xld
fffff880 07fabd60 fffff800°0227e741 nt!KySwitchKernelStackCallout+0x27 (TrapFrame @ fffff880 07fabc20)

http://blog s.msdn.com/b/ntdebug ging/archive/2012/07/19/how-to-deadl ock- yourself-don-t-do-this.aspx

12

http://blogs.msdn.com/60842/ProfileUrlRedirect.ashx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff545600(v=vs.85).aspx

5/7/2014 How To Deadlock Yourself (Don't Do This) - Ntdebugging Blog - Site Home - MSDN Blogs

fffff880°085fffe0 fffff800°0229620a nt!KiSwitchKernelStackContinue
f££££880°08600000 ££f££f£880°01635b2f nt!KeExpandKernelStackAndCalloutEx+0x29a
fEf££880°086000e0 fffff880°016d29c0 Ntfs!NtfsCommonCreateOnNewStack+0x4f
ff£f£f£880°08600140 fffff880°013330b6 Ntfs!NtfsFsdCreate+0x1b0
f££££880°086002f0 ££££f£800°0258d717 fltmgr!FltpCreate+0xa6
fEf££880°086003a0 fffff800°0258379f nt!IopParseDevice+0x5a7
fff£f£880°08600530 fffff800°02588b16 nt!ObpLookupObjectName+0x32f
fEE££880°08600630 ££££f£800°0258£827 nt!ObOpenObjectByName+0x306
fEf££880°08600700 fEffff800°02599438 nt!IopCreateFile+0x2b7
fff£f£880°086007a0 fffff880°01405bcf nt!NtCreateFile+0x78

ffff£880° 08600830 fffff880° 01405fbf sis!SipOpenBackpointerStream+0x10b
f££££880°086008£f0 ff£f£f£880°0140657d sis!SipOpenCSFileWork+0x3bf
fE£££880°08600c70 fEffff800°02293b61 sis!SipOpenCSFile+0x21
ffff£880°08600chb0 fffff800°0252ea26 nt!ExpWorkerThread+0x111
f££££880°08600d40 f£f£££800°02264866 nt!PspSystemThreadStartup+0x5a
fEE££880°08600d80 00000000 00000000 nt!KxStartSystemThread+0x16

Looking at the call stack for the above thread we can see that sis.sys is trying to acquire the eresource shared. Ordinarily, if a thread already owns an eresource exclusive, it can
obtain it shared without first releasing the exclusive ownership. In this scenario the kernel will compare the eresource’s owner field to the current thread and if they match the
thread will be allowed to take shared ownership of the eresource. This is where the danger of ExSetResourceOwnerPointer comes into play. If you change the owner field with
ExSetResourceOwnerPointer then this check fails because the owner field doesn’t match the current thread.

The result of this scenario is that the thread waits for the exclusive owner to release the lock so this thread can get shared access. Unfortunately this thread is the exclusive
owner, and it is the shared waiter. The thread has deadlocked on itself.

Even if you are careful in your handling of the resource after calling ExSetResourceOwnerPointer, there is often a risk that your driver may be re-entered in the same thread and you
may end up in a scenario you didn't initially anticipate. This is why using this APl is dangerous, and should be awided when not absolutely necessary.

This issue demonstrated in this article was addressed in KB2608658 (issue 3), which is available for download from the Microsoft Download Center.
Comments

Janine Patterson
[30 Jul 2012 1:59 AM

Great Sometimes i see very nice and easy created blogs but in the most ways they are very usefull like your blog

http://blog s.msdn.com/b/ntdebug ging/archive/2012/07/19/how-to-deadl ock- yourself-don-t-do-this.aspx

22

http://support.microsoft.com/kb/2608658
http://www.microsoft.com/en-us/download/details.aspx?id=29146
http://blogs.msdn.com/b/ntdebugging/rsscomments.aspx?WeblogPostID=10331696

