
5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 1/13

Boot Sector
10 out of 11 rated this helpful

The boot sector, located at sector 1 of each volume, is a critical disk structure for starting your computer. It

contains executable code and data required by the code, including information that the file system uses to

access the volume. The boot sector is created when you format a volume. At the end of the boot sector is a

two-byte structure called a signature word or end of sector marker, which is always set to 0x55AA. On

computers running Windows 2000, the boot sector on the active partition loads into memory and starts Ntldr,

which loads the operating system.

The Windows 2000 boot sector consists of the following elements:

An x 86-based CPU jump instruction.

The original equipment manufacturer identification (OEM ID).

The BIOS parameter block (BPB) a data structure.

The extended BPB.

The executable boot code (or bootstrap code) that starts the operating system.

Note

All Windows 2000 boot sectors contain these elements. However, the NTFS boot sector, the FAT16, and the

FAT32 boot sectors are all formatted differently.

The BPB describes the physical parameters of the volume: the extended BPB begins immediately after the BPB.

Due to differing types of fields and the amount of data they contain, the length of the BPB is different for

FAT16, FAT32, and NTFS boot sectors.

The information in the BPB and the extended BPB is used by disk device drivers to read and configure volumes.

The area following the extended BPB typically contains executable boot code, which performs the actions

necessary to continue the startup process.

Boot Sector Startup Processes

Computers use the boot sector to run instructions during startup. The initial startup process is summarized in

the following steps:

1. The system BIOS and the CPU initiate the power-on self test (POST).

2. The BIOS searches for a boot device (typically a disk).

3. The BIOS loads the first physical sector of the boot device into memory and transfers CPU execution to

that memory address.

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 2/13

If the boot device is on a hard disk, the BIOS loads the MBR. The master boot code in the MBR loads the boot

sector of the active partition, and transfers CPU execution to that memory address. On computers that are

running Windows 2000, the executable boot code in the boot sector finds Ntldr, loads it into memory, and

transfers execution to that file.

Note

Windows 2000 cannot start up from a spanned, striped, or RAID-5 volume that is running dynamic disk. These

disk structures cannot be registered into the MBR's partition table, so a system partition using these structures

is not startable. Windows 2000 must be fully loaded into memory before they can be used.

If there is a floppy disk in drive A, the system BIOS loads the first sector (the boot sector) of the disk into

memory. If the disk is startable — formatted by MS-DOS with core operating system files applied — the boot

sector loads into memory and uses the executable boot code to transfer CPU execution to Io.sys, a core MS-

DOS operating system file. If the floppy disk is not bootable, the executable boot code displays an error

message such as:

Non-System disk or disk error

Replace and press any key when ready

Note

This error will not appear on normally functioning systems that are configured to look for the startup files on

drive C first. On many computers, an option in the CMOS setup program allows the user to set the sequence of

installed disks that the system searches for the startup files.

If you get similar errors when trying to start the computer from the hard disk, the boot sector might be

corrupted. For more information about troubleshooting boot sector problems, see "Damaged MBRs and Boot

Sectors" later in this chapter.

Initially, the startup process is independent of disk format and operating system. The unique characteristics of

operating and file systems become important when the boot sector's executable boot code starts.

Top Of Page

Components of a Boot Sector

The MBR transfers CPU execution to the boot sector, so the first three bytes of the boot sector must be valid,

executable x 86-based CPU instructions. This includes a jump instruction that skips the next several

nonexecutable bytes.

Following the jump instruction is the 8-byte OEM ID, a string of characters that identifies the name and version

number of the operating system that formatted the volume. To preserve compatibility with MS-DOS,

Windows 2000 records "MSDOS5.0" in this field on FAT16 and FAT32 disks. On NTFS disks, Windows 2000

records "NTFS."

Note

You may also see the OEM ID "MSWIN4.0" on disks formatted by Windows 95 and "MSWIN4.1" on disks

formatted by Windows 95 OSR2 and Windows 98. Windows 2000 does not use the OEM ID field in the boot

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 3/13

sector except for verifying NTFS volumes.

Following the OEM ID is the BPB, which provides information that enables the executable boot code to locate

Ntldr. The BPB always starts at the same offset, so standard parameters are in a known location. Disk size and

geometry variables are encapsulated in the BPB. Because the first part of the boot sector is an x86 jump

instruction, the BPB can be extended in the future by appending new information at the end. The jump

instruction needs only a minor adjustment to accommodate this change. The BPB is stored in a packed

(unaligned) format.

Top Of Page

FAT16 Boot Sector

Table 1.6 describes the boot sector of a volume formatted with the FAT16 file system.

Table 1.6 Boot Sector Sections on a FAT16 Volume

Byte Offset Field Length Field Name

0x00 3 bytes Jump Instruction

0x03 LONGLONG OEM ID

0x0B 25 bytes BPB

0x24 26 bytes Extended BPB

0x3E 448 bytes Bootstrap Code

0x01FE WORD End of Sector Marker

The following example illustrates a hexadecimal printout of the boot sector on a FAT16 volume. The printout is

formatted in three sections:

Bytes 0x00– 0x0A are the jump instruction and the OEM ID (shown in bold print).

Bytes 0x0B– 0x3D are the BPB and the extended BPB.

The remaining section is the bootstrap code and the end of sector marker (shown in bold print).

Physical Sector: Cyl 0, Side 1, Sector 1

00000000: EB 3C 90 4D 53 44 4F 53 - 35 2E 30 00 02 40 01 00 .<.MSDOS5.0 ..@..

00000010: 02 00 02 00 00 F8 FC 00 - 3F 00 40 00 3F 00 00 00?.@.?...

00000020: 01 F0 3E 00 80 00 29 A8 - 8B 36 52 4E 4F 20 4E 41 ..>...)..6RNO NA

00000030: 4D 45 20 20 20 20 46 41 - 54 31 36 20 20 20 33 C0 ME FAT16 3.

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 4/13

00000040: 8E D0 BC 00 7C 68 C0 07 - 1F A0 10 00 F7 26 16 00|h......&..

00000050: 03 06 0E 00 50 91 B8 20 - 00 F7 26 11 00 8B 1E 0BP.. ..&.....

00000060: 00 03 C3 48 F7 F3 03 C8 - 89 0E 08 02 68 00 10 07 ...H........h...

00000070: 33 DB 8F 06 13 02 89 1E - 15 02 0E E8 90 00 72 57 3.............rW

00000080: 33 DB 8B 0E 11 00 8B FB - 51 B9 0B 00 BE DC 01 F3 3.......Q.......

00000090: A6 59 74 05 83 C3 20 E2 - ED E3 37 26 8B 57 1A 52 .Yt... ...7&.W.R

000000A0: B8 01 00 68 00 20 07 33 - DB 0E E8 48 00 72 28 5B ...h. .3...H.r([

000000B0: 8D 36 0B 00 8D 3E 0B 02 - 1E 8F 45 02 C7 05 F5 00 .6...>....E.....

000000C0: 1E 8F 45 06 C7 45 04 0E - 01 8A 16 24 00 EA 03 00 ..E..E.....$....

000000D0: 00 20 BE 86 01 EB 03 BE - A2 01 E8 09 00 BE C1 01

000000E0: E8 03 00 FB EB FE AC 0A - C0 74 09 B4 0E BB 07 00t......

000000F0: CD 10 EB F2 C3 50 4A 4A - A0 0D 00 32 E4 F7 E2 03PJJ...2....

00000100: 06 08 02 83 D2 00 A3 13 - 02 89 16 15 02 58 A2 07X..

00000110: 02 A1 13 02 8B 16 15 02 - 03 06 1C 00 13 16 1E 00

00000120: F7 36 18 00 FE C2 88 16 - 06 02 33 D2 F7 36 1A 00 .6........3..6..

00000130: 88 16 25 00 A3 04 02 A1 - 18 00 2A 06 06 02 40 3A .. %*...@:

00000140: 06 07 02 76 05 A0 07 02 - 32 E4 50 B4 02 8B 0E 04 ...v....2.P.....

00000150: 02 C0 E5 06 0A 2E 06 02 - 86 E9 8B 16 24 00 CD 13$...

00000160: 0F 83 05 00 83 C4 02 F9 - CB 58 28 06 07 02 76 11X(...v.

00000170: 01 06 13 02 83 16 15 02 - 00 F7 26 0B 00 03 D8 EB&.....

00000180: 90 A2 07 02 F8 CB 42 4F - 4F 54 3A 20 43 6F 75 6CBOOT: Coul

00000190: 64 6E 27 74 20 66 69 6E - 64 20 4E 54 4C 44 52 0D dn't find NTLDR.

000001A0: 0A 00 42 4F 4F 54 3A 20 - 49 2F 4F 20 65 72 72 6F ..BOOT: I/O erro

000001B0: 72 20 72 65 61 64 69 6E - 67 20 64 69 73 6B 0D 0A r reading disk..

000001C0: 00 50 6C 65 61 73 65 20 - 69 6E 73 65 72 74 20 61 .Please insert a

000001D0: 6E 6F 74 68 65 72 20 64 - 69 73 6B 00 4E 54 4C 44 nother disk.NTLD

000001E0: 52 20 20 20 20 20 20 00 - 00 00 00 00 00 00 00 00 R 000001F0:

00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 55 AAU.

Tables 1.7 and 1.8 illustrate the layout of the BPB and the extended BPB for FAT16 volumes. The sample values

correspond to the data in the preceding example.

Table 1.7 BPB Fields for FAT16 Volumes

Byte

Offset

Field

Length
Value Field Name and Definition

0x0B WORD 0x0002 Bytes Per Sector . The size of a hardware sector. Valid decimal values

for this field are 512, 1024, 2048, and 4096. For most disks used in the

United States, the value of this field is 512.

0x0D BYTE 0x40 Sectors Per Cluster . The number of sectors in a cluster. Because FAT16

can track only a limited number of clusters (up to 65,536), large volumes

are supported by increasing the number of sectors per cluster. The

default cluster size for a volume depends on the volume size. Valid

decimal values for this field are 1, 2, 4, 8, 16, 32, 64, and 128. Values that

lead to clusters larger than 32 KB (Bytes Per Sector * Sectors Per

Cluster) can cause disk and software errors.

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 5/13

0x0E WORD 0x0100 Reserved Sectors . The number of sectors preceding the start of the first

FAT, including the boot sector. The value of this field is always 1.

0x10 BYTE 0x02 Number of FATs . The number of copies of the FAT on the volume. The

value of this field is always 2.

0x11 WORD 0x0002 Root Entries . The total number of 32-byte file and folder name entries

that can be stored in the root folder of the volume. On a typical hard

disk, the value of this field is 512. One entry is always used as a Volume

Label, and files and folders with long names use multiple entries per file.

The largest number of file and folder entries is typically 511, but entries

run out before you reach that number if long file names are used.

0x13 WORD 0x0000 Small Sectors . The number of sectors on the volume represented in 16

bits (< 65,536). For volumes larger than 65,536 sectors, this field has a

value of zero and the Large Sectors field is used instead.

0x15 BYTE 0xF8 Media Descriptor . Provides information about the media being used. A

value of 0xF8 indicates a hard disk and 0xF0 indicates a high-density 3.5-

inch floppy disk. Media descriptor entries are a legacy of MS-DOS FAT16

disks and are not used in Windows 2000.

0x16 WORD 0xFC00 Sectors Per FAT . The number of sectors occupied by each FAT on the

volume. The computer uses this number and the number of FATs and

hidden sectors, to determine where the root directory begins. The

computer can also determine where the user data area of the volume

begins based on the number of entries in the root directory (512).

0x18 WORD 0x3F00 Sectors Per Track . Part of the apparent disk geometry used on a low-

level formatted disk.

0x1A WORD 0x4000 Number of Heads . Part of the apparent disk geometry used on a low-

level formatted disk.

0x1C DWORD 0x3F000000 Hidden Sectors . The number of sectors on the volume before the boot

sector. This value is used during the boot sequence to calculate the

absolute offset to the root directory and data areas.

0x20 DWORD 0x01F03E00 Large Sectors . If the value of the Small Sectors field is zero, this field

contains the total number of sectors in the FAT16 volume. If the value of

the Small Sectors field is not zero, the value of this field is zero.

Table 1.8 Extended BPB Fields for FAT16 Volumes

Byte

Offset

Field

Length
Value Field Name and Definition

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 6/13

0x24 BYTE 0x80 Physical Drive Number . Related to the BIOS physical drive number.

Floppy disk drives are identified as 0x00 and physical hard disks are

identified as 0x80, regardless of the number of physical disk drives.

Typically, this value is set prior to issuing an INT 13h BIOS call to

specify the device to access. The value is only relevant if the device is

a boot device.

0x25 BYTE 0x00 Reserved . FAT16 volumes are always set to zero.

0x26 BYTE 0x29 Extended Boot Signature . A field that must have the value 0x28 or

0x29 to be recognized by Windows 2000.

0x27 DWORD 0xA88B3652 Volume Serial Number . A random serial number created when

formatting a disk, which helps to distinguish between disks.

0x2B 11 bytes NO NAME Volume Label . A field once used to store the volume label. The

volume label is now stored as a special file in the root directory.

0x36 LONGLONG FAT16 File System Type . A field with a value of either FAT, FAT12 or

FAT16, depending on the disk format.

Top Of Page

FAT32 Boot Sector

Table 1.9 describes the boot sector of a volume formatted with the FAT32 file system.

Note

The FAT32 boot sector is structurally very similar to the FAT16 boot sector, but the FAT32 BPB contains

additional fields. The FAT32 extended BPB uses the same fields as FAT16, but the offset addresses of these

fields within the boot sector are different than those found in FAT16 boot sectors. Drives formatted in FAT32

are not readable by operating systems that are incompatible with FAT32.

Table 1.9 Boot Sector Sections on a FAT32 Volume

Byte Offset Field Length Field Name

0x00 3 bytes Jump Instruction

0x03 LONGLONG OEM ID

0x0B 53 bytes BPB

0x40 26 bytes Extended BPB

0x5A 420 bytes Bootstrap Code

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 7/13

0x01FE WORD End of Sector Marker

The following example illustrates a hexadecimal printout of the boot sector on a FAT32 volume. The printout is

formatted in three sections:

Bytes 0x00– 0x0A are the jump instruction and the OEM ID (shown in bold print).

Bytes 0x0B– 0x59 are the BPB and the extended BPB.

The remaining section is the bootstrap code and the end of sector marker (shown in bold print).

Physical Sector: Cyl 878, Side 0, Sector 1

00000000: EB 58 90 4D 53 44 4F 53 - 35 2E 30 00 02 08 20 00 .X.MSDOS5.0

00000010: 02 00 00 00 00 F8 00 00 - 3F 00 FF 00 EE 39 D7 00?....9..

00000020: 7F 32 4E 00 83 13 00 00 - 00 00 00 00 02 00 00 00 ​2N.............

00000030: 01 00 06 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00000040: 80 00 29 8B 93 6D 54 4E - 4F 20 4E 41 4D 45 20 20 ..)..mTNO NAME

00000050: 20 20 46 41 54 33 32 20 - 20 20 33 C9 8E D1 BC F4 FAT32 3.....

00000060: 7B 8E C1 8E D9 BD 00 7C - 88 4E 02 8A 56 40 B4 08 {......|.N..V@..

00000070: CD 13 73 05 B9 FF FF 8A - F1 66 0F B6 C6 40 66 0F ..s......f...@f.

00000080: B6 D1 80 E2 3F F7 E2 86 - CD C0 ED 06 41 66 0F B7?.......Af..

00000090: C9 66 F7 E1 66 89 46 F8 - 83 7E 16 00 75 38 83 7E .f..f.F..~..u8.~

000000A0: 2A 00 77 32 66 8B 46 1C - 66 83 C0 0C BB 00 80 B9 *.w2f.F.f.......

000000B0: 01 00 E8 2B 00 E9 48 03 - A0 FA 7D B4 7D 8B F0 AC ...+..H...}.}...

000000C0: 84 C0 74 17 3C FF 74 09 - B4 0E BB 07 00 CD 10 EB ..t.<.t.........

000000D0: EE A0 FB 7D EB E5 A0 F9 - 7D EB E0 98 CD 16 CD 19 ...}....}.......

000000E0: 66 60 66 3B 46 F8 0F 82 - 4A 00 66 6A 00 66 50 06 f̀f;F...J.fj.fP.

000000F0: 53 66 68 10 00 01 00 80 - 7E 02 00 0F 85 20 00 B4 Sfh.....~.... ..

00000100: 41 BB AA 55 8A 56 40 CD - 13 0F 82 1C 00 81 FB 55 A..U.V@........U

00000110: AA 0F 85 14 00 F6 C1 01 - 0F 84 0D 00 FE 46 02 B4F..

00000120: 42 8A 56 40 8B F4 CD 13 - B0 F9 66 58 66 58 66 58 B.V@......fXfXfX

00000130: 66 58 EB 2A 66 33 D2 66 - 0F B7 4E 18 66 F7 F1 FE fX.*f3.f..N.f...

00000140: C2 8A CA 66 8B D0 66 C1 - EA 10 F7 76 1A 86 D6 8A ...f..f....v....

00000150: 56 40 8A E8 C0 E4 06 0A - CC B8 01 02 CD 13 66 61 V@............fa

00000160: 0F 82 54 FF 81 C3 00 02 - 66 40 49 0F 85 71 FF C3 ..T.....f@I..q..

00000170: 4E 54 4C 44 52 20 20 20 - 20 20 20 0D 0A 4E 54 4C NTLDR ..NTL 00000180:

44 52 20 69 73 20 6D 69 - 73 73 69 6E 67 FF 0D 0A DR is missing... 00000190: 44

69 73 6B 20 65 72 72 - 6F 72 FF 0D 0A 50 72 65 Disk error...Pre 000001A0: 73 73

20 61 6E 79 20 6B - 65 79 20 74 6F 20 72 65 ss any key to re 000001B0: 73 74 61

72 74 0D 0A 00 - 00 00 00 00 00 00 00 00 start........... 000001C0: 00 00 00 00

00 00 00 00 - 00 00 00 00 00 00 00 00 000001D0: 00 00 00 00 00

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 8/13

00 00 00 - 00 00 00 00 00 00 00 00 000001E0: 00 00 00 00 00 00

00 00 - 00 00 00 00 00 00 00 00 000001F0: 00 00 00 00 00 00 00

00 - 00 7B 8E 9B 00 00 55 AA{....U.

Tables 1.10 and 1.11 illustrate the layout of the BPB and the extended BPB for FAT32 volumes. The sample

values correspond to the data in the preceding example.

Table 1.10 BPB Fields for FAT32 Volumes

Byte

Offset

Field

Length
Value Field Name and Definition

0x0B WORD 0x0002 Bytes Per Sector . The size of a hardware sector.

Valid decimal values for this field are 512, 1024, 2048,

and 4096. For most disks used in the United States,

the value of this field is 512.

0x0D BYTE 0x08 Sectors Per Cluster . The number of sectors in a

cluster. Because FAT32 can only track a finite number

of clusters (up to 4,294,967,296), extremely large

volumes are supported by increasing the number of

sectors per cluster. The default cluster size for a

volume depends on the volume size. Valid decimal

values for this field are 1, 2, 4, 8, 16, 32, 64, and 128.

The Windows 2000 implementation of FAT32 allows

for the creation of volumes only up to a maximum of

32 GB. However, larger volumes created by other

operating systems (Windows 95 OSR2 and later) are

accessible in Windows 2000.

0x0E WORD 0x0200 Reserved Sectors . The number of sectors preceding

the start of the first FAT, including the boot sector.

The decimal value of this field is typically 32.

0x10 BYTE 0x02 Number of FATs . The number of copies of the FAT

on the volume. The value of this field is always 2.

0x11 WORD 0x0000 Root Entries (FAT12/FAT16 only) . For FAT32

volumes, this field must be set to zero.

0x13 WORD 0x0000 Small Sectors (FAT12/FAT16 only) . For FAT32

volumes, this field must be set to zero.

0x15 BYTE 0xF8 Media Descriptor . Provides information about the

media being used. A value of 0xF8 indicates a hard

disk and 0xF0 indicates a high-density 3.5-inch floppy

disk. Media descriptor entries are a legacy of MS-

DOS FAT16 disks and are not used in Windows 2000.

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 9/13

0x16 WORD 0x0000 Sectors Per FAT (FAT12/FAT16 only) . For FAT32

volumes, this field must be set to zero.

0x18 WORD 0x3F00 Sectors Per Track . Contains the "sectors per track"

geometry value for disks that use INT 13h. The

volume is broken down into tracks by multiple heads

and cylinders.

0x1A WORD 0xFF00 Number of Heads . Contains the "count of heads"

geometry value for disks that use INT 13h. For

example, on a 1.44-MB, 3.5-inch floppy disk this value

is 2.

0x1C DWORD 0xEE39D700 Hidden Sectors . The number of sectors on the

volume before the boot sector. This value is used

during the boot sequence to calculate the absolute

offset to the root directory and data areas. This field

is generally only relevant for media that are visible on

interrupt 13h. It must always be zero on media that

are not partitioned.

0x20 DWORD 0x7F324E00 Large Sectors . Contains the total number of sectors

in the FAT32 volume.

0x24 DWORD 0x83130000 Sectors Per FAT (FAT32 only) . The number of

sectors occupied by each FAT on the volume. The

computer uses this number and the number of FATs

and hidden sectors (described in this table), to

determine where the root directory begins. The

computer can also determine where the user data

area of the volume begins based on the number of

entries in the root directory.

0x28 WORD 0x0000 Extended Flags (FAT32 only) . The value of the bits

in this two-byte structure are:

Bits 0–3: Number of the active FAT (starting count at

0, not 1). It is only valid if mirroring is disabled.

Bits 4–6: Reserved.

Bit 7: A value of 0 means the FAT is mirrored at run

time into all FATs. A value of 1 means only one FAT is

active (referenced in bits 0-3).

Bits 8–15: Reserved.

0x2A WORD 0x0000 File System Version (FAT32 only) . The high byte is

the major revision number, whereas the low byte is

the minor revision number. This field supports the

ability to extend the FAT32 media type in the future

with concern for old FAT32 drivers mounting the

volume. If the field is non-zero, back-level Windows

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 10/13

versions will not mount the volume.

0x2C DWORD 0x02000000 Root Cluster Number (FAT32 only) . The cluster

number of the first cluster of the root directory. This

value is typically, but not always, 2.

0x30 WORD 0x0100 File System Information Sector Number (FAT32

only) . The sector number of the File System

Information (FSINFO) structure in the reserved area of

the FAT32 volume. The value is typically 1. A copy of

the FSINFO structure is kept in the Backup Boot

Sector, but it is not kept up-to-date.

0x34 WORD 0x0600 Backup Boot Sector (FAT32 only) . A non-zero value

indicates the sector number in the reserved area of

the volume in which a copy of the boot sector is

stored. The value of this field is typically 6. No other

value is recommended.

0x36 12

bytes

0x000000000000000000000000 Reserved (FAT32 only) . Reserved space for future

expansion. The value of this field should always be

zero.

Table 1.11 Extended BPB Fields for FAT32 Volumes

Byte

Offset

Field

Length
Value Field Name and Definition

0x40 BYTE 0x80 Physical Drive Number . Related to the BIOS physical drive number.

Floppy disk drives are identified as 0x00 and physical hard disks are

identified as 0x80, regardless of the number of physical disk drives.

Typically, this value is set prior to issuing an INT 13h BIOS call to

specify the device to access. It is only relevant if the device is a boot

device.

0x41 BYTE 0x00 Reserved . FAT32 volumes are always set to zero.

0x42 BYTE 0x29 Extended Boot Signature . A field that must have the value 0x28 or

0x29 to be recognized by Windows 2000.

0x43 DWORD 0xA88B3652 Volume Serial Number . A random serial number created when

formatting a disk, which helps to distinguish between disks.

0x47 11 bytes NO NAME Volume Label . A field once used to store the volume label. The

volume label is now stored as a special file in the root directory.

0x52 LONGLONG FAT32 System ID . A text field with a value of FAT32.

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 11/13

Top Of Page

NTFS Boot Sector

Table 1.12 describes the boot sector of a volume formatted with NTFS. The bootstrap code for an NTFS

volume is longer than the 426 bytes, as shown in Table 1.12. When you format an NTFS volume, the format

program allocates the first 16 sectors for the boot sector and the bootstrap code.

Table 1.12 Boot Sector Sections on an NTFS Volume

Byte Offset Field Length Field Name

0x00 3 bytes Jump Instruction

0x03 LONGLONG OEM ID

0x0B 25 bytes BPB

0x24 48 bytes Extended BPB

0x54 426 bytes Bootstrap Code

0x01FE WORD End of Sector Marker

On NTFS volumes, the data fields that follow the BPB form an extended BPB. The data in these fields enables

Ntldr to find the master file table (MFT) during startup. On NTFS volumes, the MFT is not located in a

predefined sector, as on FAT16 and FAT32 volumes. For this reason, the MFT can be moved if there is a bad

sector in its normal location. However, if the data is corrupted, the MFT cannot be located, and Windows 2000

assumes that the volume has not been formatted.

The following example illustrates the boot sector of an NTFS volume formatted while running Windows 2000.

The printout is formatted in three sections:

Bytes 0x00– 0x0A are the jump instruction and the OEM ID (shown in bold print).

Bytes 0x0B–0x53 are the BPB and the extended BPB.

The remaining code is the bootstrap code and the end of sector marker (shown in bold print).

Physical Sector: Cyl 0, Side 1, Sector 1

00000000: EB 52 90 4E 54 46 53 20 - 20 20 20 00 02 08 00 00 .R.NTFS

00000010: 00 00 00 00 00 F8 00 00 - 3F 00 FF 00 3F 00 00 00?...?...

00000020: 00 00 00 00 80 00 80 00 - 4A F5 7F 00 00 00 00 00J.​.....

00000030: 04 00 00 00 00 00 00 00 - 54 FF 07 00 00 00 00 00T.......

00000040: F6 00 00 00 01 00 00 00 - 14 A5 1B 74 C9 1B 74 1Ct..t.

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 12/13

00000050: 00 00 00 00 FA 33 C0 8E - D0 BC 00 7C FB B8 C0 073.....|....

00000060: 8E D8 E8 16 00 B8 00 0D - 8E C0 33 DB C6 06 0E 003.....

00000070: 10 E8 53 00 68 00 0D 68 - 6A 02 CB 8A 16 24 00 B4 ..S.h..hj....$..

00000080: 08 CD 13 73 05 B9 FF FF - 8A F1 66 0F B6 C6 40 66 ...s......f...@f

00000090: 0F B6 D1 80 E2 3F F7 E2 - 86 CD C0 ED 06 41 66 0F?.......Af.

000000A0: B7 C9 66 F7 E1 66 A3 20 - 00 C3 B4 41 BB AA 55 8A ..f..f. ...A..U.

000000B0: 16 24 00 CD 13 72 0F 81 - FB 55 AA 75 09 F6 C1 01 .$...r...U.u....

000000C0: 74 04 FE 06 14 00 C3 66 - 60 1E 06 66 A1 10 00 66 t......f̀..f...f

000000D0: 03 06 1C 00 66 3B 06 20 - 00 0F 82 3A 00 1E 66 6Af;. ...:..fj

000000E0: 00 66 50 06 53 66 68 10 - 00 01 00 80 3E 14 00 00 .fP.Sfh.....>...

000000F0: 0F 85 0C 00 E8 B3 FF 80 - 3E 14 00 00 0F 84 61 00>.....a.

00000100: B4 42 8A 16 24 00 16 1F - 8B F4 CD 13 66 58 5B 07 .B..$......fX[.

00000110: 66 58 66 58 1F EB 2D 66 - 33 D2 66 0F B7 0E 18 00 fXfX.-f3.f.....

00000120: 66 F7 F1 FE C2 8A CA 66 - 8B D0 66 C1 EA 10 F7 36 f......f..f....6

00000130: 1A 00 86 D6 8A 16 24 00 - 8A E8 C0 E4 06 0A CC B8$.........

00000140: 01 02 CD 13 0F 82 19 00 - 8C C0 05 20 00 8E C0 66f

00000150: FF 06 10 00 FF 0E 0E 00 - 0F 85 6F FF 07 1F 66 61o..fa

00000160: C3 A0 F8 01 E8 09 00 A0 - FB 01 E8 03 00 FB EB FE

00000170: B4 01 8B F0 AC 3C 00 74 - 09 B4 0E BB 07 00 CD 10<.t........

00000180: EB F2 C3 0D 0A 41 20 64 - 69 73 6B 20 72 65 61 64A disk read

00000190: 20 65 72 72 6F 72 20 6F - 63 63 75 72 72 65 64 00 error occurred.

000001A0: 0D 0A 4E 54 4C 44 52 20 - 69 73 20 6D 69 73 73 69 ..NTLDR is missi

000001B0: 6E 67 00 0D 0A 4E 54 4C - 44 52 20 69 73 20 63 6F ng...NTLDR is co

000001C0: 6D 70 72 65 73 73 65 64 - 00 0D 0A 50 72 65 73 73 mpressed...Press

000001D0: 20 43 74 72 6C 2B 41 6C - 74 2B 44 65 6C 20 74 6F Ctrl+Alt+Del to

000001E0: 20 72 65 73 74 61 72 74 - 0D 0A 00 00 00 00 00 00 restart........

000001F0: 00 00 00 00 00 00 00 00 - 83 A0 B3 C9 00 00 55 AAU.

Table 1.13 describes the fields in the BPB and the extended BPB on NTFS volumes. The fields starting at 0x0B,

0x0D, 0x15, 0x18, 0x1A, and 0x1C match those on FAT16 and FAT32 volumes. The sample values correspond to

the data in the preceding example.

Table 1.13 BPB and Extended BPB Fields on NTFS Volumes

Byte Offset Field Length Sample Value Field Name

0x0B WORD 0x0002 Bytes Per Sector

0x0D BYTE 0x08 Sectors Per Cluster

0x0E WORD 0x0000 Reserved Sectors

0x10 3 BYTES 0x000000 always 0

0x13 WORD 0x0000 not used by NTFS

5/10/2014 Boot Sector

http://technet.microsoft.com/en-us/library/cc976796.aspx 13/13

Did you find this helpful?

0x15 BYTE 0xF8 Media Descriptor

0x16 WORD 0x0000 always 0

0x18 WORD 0x3F00 Sectors Per Track

0x1A WORD 0xFF00 Number Of Heads

0x1C DWORD 0x3F000000 Hidden Sectors

0x20 DWORD 0x00000000 not used by NTFS

0x24 DWORD 0x80008000 not used by NTFS

0x28 LONGLONG 0x4AF57F0000000000 Total Sectors

0x30 LONGLONG 0x0400000000000000 Logical Cluster Number for the file $MFT

0x38 LONGLONG 0x54FF070000000000 Logical Cluster Number for the file $MFTMirr

0x40 DWORD 0xF6000000 Clusters Per File Record Segment

0x44 DWORD 0x01000000 Clusters Per Index Block

0x48 LONGLONG 0x14A51B74C91B741C Volume Serial Number

0x50 DWORD 0x00000000 Checksum

Top Of Page

Protecting the Boot Sector

Because a normally functioning system relies on the boot sector to access a volume, it is highly recommended

that you run disk scanning tools such as Chkdsk regularly, as well as back up all of your data files to protect

against data loss if you lose access to a volume.

Top Of Page

© 2014 Microsoft. All rights reserved.

 Yes No

