Chapter 12 -- File Systems Page 1 of 63

[Previous] [Next]

Chapter 12
File Systems

In this chapter, we present an overview of the file system formats supported by Microsoft Windows
2000. We then describe the types of file system drivers and their basic operation, including how they
interact with other system components such as the memory manager and the cache manager.
Windows 2000 includes a native file system format, called the NTFS file system. In the balance of
the chapter, we focus on the on-disk layout of NTFS volumes and the advanced features of NTFS,
such as compression, recoverability, quotas, and encryption.

To fully understand this chapter, you should be familiar with the terminology introduced in Chapter
10, including the terms volume and partition. You'll also need to be acquainted with these additional
terms:

o Sectors are hardware-addressable blocks on a storage medium. Hard disks for x86 systems
almost always define a 512-byte sector size. Thus, if the operating system wants to modify the
632nd byte on a disk, it must write a 512-byte block of data to the second sector on the disk.

o File system formats define the way that file data is stored on storage media and impact a file
system's features. For example, a format that doesn't allow user permissions to be associated
with files and directories can't support security. A file system format can also impose limits on
the sizes of files and storage devices that the file system supports. Finally, some file system
formats efficiently implement support for either large or small files or for large or small disks.

o Clusters are the addressable blocks that many file system formats use. Cluster size is always a
multiple of the sector size, as shown in Figure 12-1. File system formats use clusters to manage
disk space more efficiently; a cluster size that is larger than the sector size divides a disk into
more manageable blocks. The potential trade-off of a larger cluster size is wasted disk space, or
internal fragmentation, that results because file sizes typically aren't perfect multiples of cluster
sizes.

Cluster
/Sectc}r (4 sectors)

Figure 12-1 Sectors and a cluster on a disk

o Metadata is data stored on a volume in support of file system format management. It isn't
typically made accessible to applications. Metadata includes the data that defines the placement
of files and directories on a volume, for example.

[Previous] [Next]

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 2 of 63

Windows 2000 File System Formats

Windows 2000 includes support for the following file system formats:
e CDFS
e UDF
e FAT12, FAT16, and FAT32
e NTFS

Each of these formats is best suited for certain environments, as you'll see in the following sections.

CDFS

CDFS, or CD-ROM File System, is a relatively simple format that was defined in 1988 as the read-
only formatting standard for CD-ROM media. Windows 2000 implements ISO 9660-compliant
CDFS in \Winnt\System32\Drivers\Cdfs.sys, with long filename support defined by Level 2 of the
ISO 9660 standard. Because of its simplicity, the CDFS format has a number of restrictions:

 Directory and file names must be fewer than 32 characters long.
« Directory trees can be no more than eight levels deep.

CDFS is considered a legacy format because the industry has adopted the Universal Disk Format
(UDF) as the standard for read-only media.

UDF

The Windows 2000 UDF file system implementation is ISO 13346-compliant and supports UDF
versions 1.02 and 1.5. OSTA (Optical Storage Technology Association) defined UDF in 1995 as a
format to replace CDFS for magneto-optical storage media, mainly DVD-ROM. UDF is included in
the DVD specification and is more flexible than CDFS. UDF file systems have the following traits:

o Filenames can be 255 characters long.
e The maximum path length is 1023 characters.
o Filenames can be upper and lower case.

Although the UDF format was designed with rewritable media in mind, the Windows 2000 UDF
driver \Winnt\System32\Drivers\Udfs.sys) provides read-only support.

FAT12, FAT16, and FAT32

Windows 2000 supports the FAT file system primarily to enable upgrades from other versions of
Windows, for compatibility with other operating systems in multiboot systems, and as a floppy disk
format. The Windows 2000 FAT file system driver is implemented in \Winnt\System32
\Drivers\Fastfat.sys.

Each FAT format includes a number that indicates the number of bits the format uses to identify

clusters on a disk. FAT12's 12-bit cluster identifier limits a partition to storing a maximum of 2t2
(4096) clusters. Windows 2000 uses cluster sizes from 512 bytes to 8 KB in size, which limits a

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 3 of 63

FAT12 volume size to 32 MB. Therefore, Windows 2000 uses FAT12 as the format for all 5¥-inch
floppy disks and 3.5-inch floppy disks, which store up to 1.44 MB of data.

FAT16, with a 16-bit cluster identifier, can address 216 (65,536) clusters. On Windows 2000,
FAT16 cluster sizes range from 512 bytes (the sector size) to 64 KB, which limits FAT16 volume
sizes to 4 GB. The cluster size Windows 2000 uses depends on the size of a volume. The various
sizes are listed in Table 12-1. If you format a volume that is less than 16 MB as FAT by using the
format command or the Disk Management snap-in, Windows 2000 uses the FAT12 format instead
of FAT16.

Table 12-1 Default FAT16 Cluster Sizes in Windows 2000

Volume Size Cluster Size

0-32 MB 512 bytes

33 MB-64 MB 1 KB

65 MB-128 MB 2 KB

129 MB-256 MB 4 KB

257 MB-511 MB 8 KB

512 MB-1023 MB 16 KB

1024 MB-2047 MB 32 KB

2048 MB-4095 MB 64 KB

A FAT volume is divided into several regions, which are shown in Figure 12-2. The file allocation
table, which gives the FAT file system format its name, has one entry for each cluster on a volume.
Because the file allocation table is critical to the successful interpretation of a volume's contents, the
FAT format maintains two copies of the table so that if a file system driver or consistency-checking
program (such as Chkdsk) can't access one (because of a bad disk sector, for example) it can read
from the other.

File allacation Roct
lable 2 dil‘EcD‘,::lr' Other direciories and all files
{duplicate) ¥

Boot | File allocation
sactor lable 1

Figure 12-2 FAT format organization

Entries in the file allocation table define file-allocation chains (shown in Figure 12-3) for files and
directories, where the links in the chain are indexes to the next cluster of a file's data. A file's
directory entry stores the starting cluster of the file. The last entry of the file's allocation chain is the
reserved value of OXFFFF for FAT16 and OXFFF for FAT12. The FAT entries for unused clusters
have a value of 0. You can see in Figure 12-3 that FILEL is assigned clusters 2, 3, and 4; FILE2 is
fragmented and uses clusters 5, 6, and 8; and FILE3 uses only cluster 7.

File directory entries

FILE1 [m | FILE2 I O :'..'.I

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 4 of 63

Figure 12-3 Example FAT file-allocation chains

The root directory of FAT12 and FAT16 volumes are preassigned enough space at the start of a
volume to store 256 directory entries, which places an upper limit on the number of files and
directories that can be stored in the root directory. (There's no preassigned space or size limit on
FAT32 root directories.) A FAT directory entry is 32 bytes and stores a file's name, size, starting
cluster, and time stamp (last-accessed, created, and so on) information. If a file has a name that is
Unicode or that doesn't follow the MS-DOS 8.3 naming convention, additional directory entries are
allocated to store the long filename. The supplementary entries precede the file's main entry. Figure
12-4 shows an example directory entry for a file named "The quick brown fox." The system has
created a THEQUI~1.FOX 8.3 representation of the name (you don't see a."" in the directory entry
because it is assumed to come after the eighth character) and used two more directory entries to store
the Unicode long filename. Each row in the figure is made up of 16 bytes.

Second (and last)
leng entry
- - - 1
(w42 | 1 a i | oo |U‘~‘=" K
1 1 I sl [

1

1
FFFF ONFFFF

T

[FFFF FFFF

a l xoF | cupn SR
sum

u
1 1 [
T I
L Ll b Qa3 f &
L | l [
™ T T T T T T
T H E o 1]} i - i F [+] X QX230 | NT Croaie brme
| 1 1 1 |
Comate gate | Last access (0000 Last moodied | Last mod®ed | g siatir File gita
L date 1ime dale
Short enlry
Firsd long enlry

Figure 12-4 FAT directory entry

FAT32 is the most recently defined FAT-based file system format, and it's included with Windows
95 OSR2, Windows 98, and Windows Millennium Edition. FAT32 uses 32-bit cluster identifiers but
reserves the high 4 bits, so in effect it has 28-bit cluster identifiers. Because FAT32 cluster sizes can
be as large as 32 KB, FAT32 has a theoretical ability to address 8-terabyte (TB) volumes. Although
Windows 2000 works with existing FAT32 volumes of larger sizes (created in other operating
systems), it limits new FAT32 volumes to a maximum of 32 GB. FAT32's higher potential cluster
numbers let it more efficiently manage disks than FAT16; it can handle up to 128-MB volumes with
512-byte clusters. Table 12-2 shows default cluster sizes for FAT32 volumes.

Table 12-2 Default Cluster Sizes for FAT32 Volumes

Partition Size Cluster Size
32 MBto 8 GB 4 KB
8 GB to 16 GB 8 KB
16 GB to 32 GB 16 KB
32GB 32 KB

Besides the higher limit on cluster numbers, other advantages FAT32 has over FAT12 and FAT16
include the fact that the FAT32 root directory isn't stored at a predefined location on the volume, the
root directory doesn't have an upper limit on its size, and FAT32 stores a second copy of the boot
sector for reliability. A limitation FAT32 shares with FAT16 is that the maximum file size is 4 GB,
because directories store file sizes as 32-bit values.

NTFS

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 5 of 63

As we said at the beginning of the chapter, the NTFS file system is the native file system format of
Windows 2000. NTFS uses 64-bit cluster indexes. This capacity gives NTFS the ability to address
volumes of up to 16 exabytes (16 billion GB); however, Windows 2000 limits the size of an NTFS
volume to that addressable with 32-bit clusters, which is 128 TB (using 64-KB clusters). Table 12-3
shows the default cluster sizes for NTFS volumes. (You can override the default when you format an
NTFS volume.)

Table 12-3 Default Cluster Sizes for NTFS Volumes

Volume Size Default Cluster Size
512 MB or less 512 bytes
513 MB-1024 MB (1 GB) 1 KB
1025 MB-2048 MB (2 GB) 2 KB
Greater than 2048 MB 4 KB

NTFS includes a number of advanced features, such as file and directory security, disk quotas, file
compression, directory-based symbolic links, and encryption. One of its most significant features is
recoverability. If a system is halted unexpectedly, the metadata of a FAT volume can be left in an
inconsistent state, leading to the corruption of large amounts of file and directory data. NTFS logs
changes to metadata in a transactional manner so that file system structures can be repaired to a
consistent state with no loss of file or directory structure information. (File data can be lost,
however.)

We'll describe NTFS data structures and advanced features in detail later in this chapter.

[Previous] [Next]

File System Driver Architecture

File system drivers (FSDs) manage file system formats. Although FSDs run in kernel mode, they
differ in a number of ways from standard kernel-mode drivers. Perhaps most significant, they must
register as an FSD with the 1/0 manager and they interact more extensively with the memory
manager and the cache manager. Thus, they use a superset of the exported Ntoskrnl functions that
standard drivers use. Whereas you need the Windows 2000 DDK in order to build standard kernel-
mode drivers, you must have the Windows 2000 Installable File System (IFS) Kit to build file
system drivers. (See Chapter 1 for more information on the DDK, and see
www.microsoft.com/ddk/ifskit for more information on the IFS Kit.)

Windows 2000 has two different types of file system drivers:
o Local FSDs manage volumes directly connected to the computer.

o Network FSDs allow users to access data volumes connected to remote computers.

Local FSDs

Local FSDs include Ntfs.sys, Fastfat.sys, Udfs.sys, Cdfs.sys, and the Raw FSD (integrated in
Ntoskrnl.exe). Figure 12-5 shows a simplified view of how local FSDs interact with the I/0O manager
and storage device drivers. As we described in the section "Volume Mounting" in Chapter 10, a
local FSD is responsible for registering with the 1/0 manager. Once the FSD is registered, the 1/0
manager can call on it to perform volume recognition when applications or the system initially

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 6 of 63

access the volumes. Volume recognition involves an examination of a volume's boot sector and
often, as a consistency check, the file system metadata.

Application Application
User mode
Kernel mode
'O manager

§

File system driver

¢ Logical
volume

(partition)

Storage device drivers

Figure 12-5 Local FSD

The first sector of every Windows 2000-supported file system format is reserved as the volume's
boot sector. A boot sector contains enough information so that a local FSD can both identify the

volume on which the sector resides as containing a format that the FSD manages and locate any

other metadata necessary to identify where metadata is stored on the volume.

When a local FSD recognizes a volume, it creates a device object that represents the mounted file
system format. The I/O manager makes a connection through the volume parameter block (VPB)
between the volume's device object (which is created by a storage device) and the device object that
the FSD created. The VPB's connection results in the 1/0 manager redirecting 1/0 requests targeted
at the volume device object to the FSD device object. (See Chapter 10 for more information on
VPBs.)

To improve performance, local FSDs usually use the cache manager to cache file system data,
including metadata. They also integrate with the memory manager so that mapped files are
implemented correctly. For example, they must query the memory manager whenever an application
attempts to truncate a file in order to verify that no processes have mapped the part of the file
beyond the truncation point. Windows 2000 doesn't permit file data that is mapped by an application
to be deleted either through truncation or file deletion.

Local FSDs also support file system dismount operations, which permit the system to disconnect the
FSD from the volume object. A dismount occurs whenever an application requires raw access to the
on-disk contents of a volume or the media associated with a volume is changed. The first time an
application accesses the media after a dismount, the 1/0 manager reinitiates a volume mount
operation for the media.

Remote FSDs

Remote FSDs consist of two components: a client and a server. A client-side remote FSD allows
applications to access remote files and directories. The client FSD accepts 1/0O requests from
applications and translates them into network file system protocol commands that the FSD sends
across the network to a server-side remote FSD. A server-side FSD listens for commands coming
from a network connection and fulfills them by issuing 1/O requests to the local FSD that manages
the volume on which the file or directory that the command is intended for resides. Figure 12-6
shows the relationship between the client and server sides of a remote FSD interaction.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 7 of 63

Client Server
Application
User mode User mode
Kernel mode Kernel mode
o
'O manager t
’ Local FSD
rodtocion [0 ——
Soagodoi 13— M

Figure 12-6 Remote FSD operation

Windows 2000 includes a client-side remote FSD named LANMan Redirector (redirector) and a
server-side remote FSD server named LANMan Server (server). The redirector is implemented as a
port/miniport driver combination, where the port driver \Winnt\System32\Drivers\Rdbss.sys) is
implemented as a driver subroutine library and the miniport (\Winnt\System32\Drivers\Mrxsmb.sys)
uses services implemented by the port driver. The port/miniport model simplifies redirector
development because the port driver, which all remote FSD miniport drivers share, handles many of
the mundane details involved with interfacing a client-side remote FSD to the Windows 2000 1/0
manager. In addition to the FSD components, both LANMan Redirector and LANMan Server
include Win32 services named Workstation and Server, respectively.

Windows 2000 relies on the Common Internet File System (CIFS) protocol to format messages
exchanged between the redirector and the server. CIFS is an enhanced version of Microsoft's Server
Message Block (SMB) protocol. (For more information on CIFS, go to www.cifs.com.)

Like local FSDs, client-side remote FSDs usually use cache manager services to locally cache file
data belonging to remote files and directories. However, client-side remote FSDs must implement a
distributed cache coherency protocol, called oplocks (opportunistic locking), so that the data an
application sees when it accesses a remote file is the same as the data applications running on other
computers that are accessing the same file see. Although server-side remote FSDs participate in
maintaining cache coherency across their clients, they don't cache data from the local FSDs, because
local FSDs cache their own data. (Oplocks are described further in the section "Distributed File
Caching" in Chapter 13.)

NOTE

A filter driver that layers over a file system driver is called file-system filter driver. The
ability to see all file system requests and optionally modify or complete them enables a
range of applications, including on-access virus scanners and remote file replication
services. Filemon, on the companion CD as \Sysint\Filemon, is an example of a file-
system filter driver that is a pass-through filter. Filemon displays file system activity in
real time without modifying the requests it sees.

EXPERIMENT

Viewing the List of Registered File Systems

When the I/0 manager loads a device driver into memory, it typically names the driver

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems

Page 8 of 63

object it creates to represent the driver so that it's placed in the \Drivers object manager
directory. The driver objects for any driver the 1/0 manager loads that have a Type
attribute value of SERVICE_FILE_SYSTEM_DRIVER (2) are placed in the \FileSystem
directory by the I/0 manager. Thus, using a tool like Winobj (on the companion CD in
\Sysint\Winobj.exe), you can see the file systems that have registered on a system, as
shown in the following screen shot. (Note that some file system drivers also place device
objects in the \FileSystem directory.)

¥4, WinDbij - Systeme Internale: hilp:/fwww. syzintemals. com
File “iew Help

[% = EE =0

=
1 Archlame
£ LS
L0 Driver
[wmiGuid
-] Device
) Windows
(3 RPC Contrel
[] BasedlamedObiects
Lo
S FileSpstesm
L1 ObjectTypes
) Secuiy
{1 Calbsck
3 KnowrDls

Narre [Type | Symlink
A Cats Duiver
9% CdfsRecognizar Devica
SLEFS Dhiver
33 EFSFiRerFs Device
ﬁ Fastis Dhiwer
ﬂ Fz Fec Duiver
o MRxSmb Dhiver
'H [LETE Dnivar
ﬂ tup Dniver
ﬁmmlos Diivei
+ Npls Duiver
2 Nz Duiver
'::@Nlisﬁsmgrizar Drevica
1 R Dhiver
{ Fidbes Dniver
Stw Dhivear
UdisCdRarFecoanzer Device
2% UdisDiskR ecaphizar Devica

|[Cumrertly selected: \FleSystem

File System Operation

Applications and the system access files in two ways: directly, via file 1/0 functions (such as
ReadFile and WriteFile), and indirectly, by reading or writing a portion of their address space that
represents a mapped file section. (See Chapter 7 for more information on mapped files.) Figure 12-7
is a simplified diagram that shows the components involved in these file system operations and the
ways in which they interact. As you can see, an FSD can be invoked through several paths:

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh...

From a user or system thread performing explicit file 1/0
From the memory manager's modified page writer
Indirectly from the cache manager's lazy writer
Indirectly from the cache manager's read-ahead thread

From the memory manager's page fault handler

2011.12. 12.

Chapter 12 -- File Systems Page 9 of 63

NitReadFleNilWileFile NiCreateSection Page faull
IRP
loPageAsad F:T?;;;:"
File system | loAsynchronous Pageile Virtual
driver - memory |
Meodified and | manager
mapped page
writer

f 9

Nencached
and paging 10

Storage
device
driver

MrCroateSection
MmFiushSechon

CeCopyRead
.
Cache Page fault
| manager
FastioRead, FastioWnite Head-ahead

Figure 12-7 Components involved in file system 1/O

The following sections describe the circumstances surrounding each of these scenarios and the steps
FSDs typically take in response to each one. You'll see how much FSDs rely on the memory
manager and the cache manager.

Explicit File 1/0

The most obvious way an application accesses files is by calling Win32 1/O functions such as
CreateFile, ReadFile, and WriteFile. An application opens a file with CreateFile and then reads,
writes, or deletes the file by passing the handle returned from CreateFile to other Win32 functions.
The CreateFile function, which is implemented in the Kernel32.dll Win32 client-side DLL, invokes
the native function NtCreateFile, forming a complete root-relative pathname for the path that the
application passed to it (processing ."" and ."." symbols in the pathname) and prepending the path
with "\??" (for example, \??\C:\Susan\Todo.txt).

The NtCreateFile system service uses ObOpenObjectByName to open the file, which parses the
name starting with the object manager root directory and the first component of the path name
("??").\?? is a subdirectory that contains symbolic links representing volumes that are assigned drive
letters (and symbolic links to serial ports and other device objects that Win32 applications access
directly), so the "C:" component of the name resolves to the \??\C: symbolic link. The symbolic link
points to a volume device object under \Device, so when the object manager encounters the volume
object, the object manager hands the rest of the pathname to the parse function that the 1/0O manager
has registered for device objects, lopParseDevice. (In volumes on dynamic disks, a symbolic link
points to an intermediary symbolic link, which points to a volume device object.) Figure 12-8 shows
how volume objects are accessed through the object manager namespace. The figure shows how the
\??2\C: symbolic link points to the \Device\Harddisk\VVolumel volume device object.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 10 of 63

¥, Winllky - Spriome Inbmnals bip /feeen, syscdnenalz com
Eie Yew e
SEEMm & F
B e A [Hame [Tie [Symiink |
i Auchlers i Global SymbokcLik \T?
= :"5 AVRDMLPTL Gbelelrd \Dwvce'Parsbshidml)
0 Dusvsr 1
PRl SymbobcLink. Whevice'Flopoyd
£ winud lae Sogcelel ol LL PR T Yol
¥ j.&“" I e Spmbobilid, \WDevceiHaddiobmel }
-] Smesions L T T T
- 5 RiPC Consol oMz Symbokelink WDevicehSendl)
3 51 Baschamodd ottt i Cfiomd Spbokelid, \Dence\Cdflomd
=k il Spmbobclk \DaracelHadtkWobamaZ
(1 FaeSyatem ,,:'DlSPLn.Tz Symbobclink \DeviceVWideol
3 DbjectTypes ADISPAYE Spebelelnd \DenceWides?
= Seciniy I,-'[‘lSH.A‘H SpmmbobcLink. (hevnceidend
1| Calback hr'Dr:i:mm it L, (hevace DimContsohBimConty W
1 FroweDis ¥ _"J_I
|Cumertly selected \F

Ma'wWinllks - Systems Inbemals: Wi /feves, spsintomnalz com
Ei A =] [Hase [Tipe [Sombink 4]
1 ArcHeme ¥ HAPL0 [y,
:: :LS I Harddizk) Dreclony
- —l Haordakl Daccioy
._.il E"‘Tﬂ‘d I Heosid e - Larcii
EwiE _- ay
0 tncees —— I~=
i] Hasddik Diriichemes i e it
=™ S IN0_Fl Dievice
S Harddek (i PMLILTICAST Device
{0 Handdisk S IPSEC D
) Sen ld= Drescioey -
=) wirDiz =2 | ¥

Figure 12-8 Drive-letter name resolution

After locking the caller's security context and obtaining security information from the caller's token,
lopParseDevice creates an 1/0 request packet (IRP) of type IRP_MJ_CREATE, creates a file object
that stores the name of the file being opened, follows the VVPB of the volume device object to find
the volume's mounted file system device object, and uses loCallDriver to pass the IRP to the file
system driver that owns the file system device object.

When an FSD receives an IRP_MJ_CREATE IRP, it looks up the specified file, performs security
validation, and if the file exists and the user has permission to access the file in the way requested,
returns a success code. The object manager creates a handle for the file object in the process's handle
table and the handle propagates back through the calling chain, finally reaching the application as a
return parameter from CreateFile. If the file system fails the create, the I/0 manager deletes the file
object it created for it.

We've skipped over the details of how the FSD locates the file being opened on the volume, but a
ReadFile function call operation shares many of the FSD's interactions with the cache manager and
storage driver. The path into the kernel taken as the result of a call to ReadFile is the same as for a
call to CreateFile, but the NtReadFile system service doesn't need to perform a name lookup—it
calls on the object manager to translate the handle passed from ReadFile into a file object pointer. If
the handle indicates that the caller obtained permission to read the file when the file was opened,
NtReadFile proceeds to create an IRP of type IRP_MJ_READ and sends it to the FSD on which the
file resides. NtReadFile obtains the FSD's device object, which is stored in the file object, and calls
loCallDriver, and the 1/0 manager locates the FSD from the device object and gives the IRP to the
FSD.

If the file being read can be cached (the FILE_FLAG_NO_BUFFERING flag wasn't passed to
CreateFile when the file was opened), the FSD checks to see whether caching has already been
initiated for the file object. The PrivateCacheMap field in a file object points to a private cache map
data structure (which we described in Chapter 11), if caching is initiated for a file object. If the FSD
hasn't initialized caching for the file object (which it does the first time a file object is read from or
written to), the PrivateCacheMap field will be null. The FSD calls the cache manager
CclnitializeCacheMap function to initialize caching, which involves the cache manager creating a
private cache map and, if another file object referring to the same file hasn't initiated caching, a

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 11 of 63

shared cache map and a section object.

After it has verified that caching is enabled for the file, the FSD copies the requested file data from
the cache manager's virtual memory to the buffer that the thread passed to ReadFile. The file system
performs the copy within a try/except block so that it catches any faults that are the result of an
invalid application buffer. The function the file system uses to perform the copy is the cache
manager's CcCopyRead function. CcCopyRead takes as parameters a file object, file offset, and
length.

When the cache manager executes CcCopyRead, it retrieves a pointer to a shared cache map, which
is stored in the file object. Recall from Chapter 11 that a shared cache map stores pointers to virtual
address control blocks (VACBS), with one VACB entry per 256-KB block of the file. If the VACB
pointer for a portion of a file being read is null, CcCopyRead allocates a VACB, reserving a 256-KB
view in the cache manager's virtual address space, and maps (using MmCreateSection and
MmMapViewOfSection) the specified portion of the file into the view. Then CcCopyRead simply
copies the file data from the mapped view to the buffer it was passed (the buffer originally passed to
ReadFile). If the file data isn't in physical memory, the copy operation generates page faults, which
are serviced by MmAccessFault.

When a page fault occurs, MmAccessFault examines the virtual address that caused the fault and
locates the virtual address descriptor (VAD) in the VAD tree of the process that caused the fault.
(See Chapter 7 for more information on VAD trees.) In this scenario, the VAD describes the cache
manager's mapped view of the file being read, so MmAccessFault calls MiDispatchFault to handle a
page fault on a valid virtual memory address. MiDispatchFault locates the control area (which the
VAD points to) and through the control area finds a file object representing the open file. (If the file
has been opened more than once, there might be a list of file objects linked through pointers in their
private cache maps.)

With the file object in hand, MiDispatchFault calls the 1/0 manager function loPageRead to build
an IRP (of type IRP_MJ_READ) and sends the IRP to the FSD that owns the device object the file
object points to. Thus, the file system is reentered to read the data that it requested via CcCopyRead,
but this time the IRP is marked as noncached and paging I/O. These flags signal the FSD that it
should retrieve file data directly from disk, and it does so by determining which clusters on disk
contain the requested data and sending IRPs to the volume manager that owns the volume device
object on which the file resides. The volume parameter block (VPB) field in the FSD's device object
points to the volume device object.

The virtual memory manager waits for the FSD to complete the IRP read and then returns control to
the cache manager, which continues the copy operation that was interrupted by a page fault. When
the CcCopyRead completes, the FSD returns control to the thread that called NtReadFile, having
copied the requested file data—with the aid of the cache manager and the virtual memory
manager—to the thread's buffer.

The path for WriteFile is similar except that the NtWriteFile system service generates an IRP of type
IRP_MJ_WRITE and the FSD calls CcCopyWrite instead of CcCopyRead. CcCopyWrite, like
CcCopyRead, ensures that the portions of the file being written are mapped into the cache and then
copies to the cache the buffer passed to WriteFile.

If a file's data is already stored in the system's working set, there are several variants on the scenario
we've just described. If a file's data is already stored in the cache, CcCopyRead doesn't incur page
faults. Also, under certain conditions, NtReadFile and NtWriteFile call an FSD's fast 1/0 entry point
instead of immediately building and sending an IRP to the FSD. Some of these conditions follow:
the portion of the file being read must reside in the first 4 GB of the file, the file can have no locks,
and the portion of the file being read or written must fall within the file's currently allocated size.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 12 of 63

The fast 1/0 read and write entry points for most FSDs call the cache manager's CcFastCopyRead
and CcFastCopyWrite functions. These variants on the standard copy routines ensure that the file's
data is mapped in the file system cache before performing a copy operation. If this condition isn't
met, CcFastCopyRead and CcFastCopyWrite indicate that fast I/O isn't possible. When fast 1/0 isn't
possible, NtReadFile and NtWriteFile fall back on creating an IRP.

Memory Manager's Modified and Mapped Page Writer

The memory manager's modified and mapped page writer threads wake up periodically to flush
modified pages. The threads call loAsynchronousPageWrite to create IRPs of type IRP_MJ WRITE
and write pages to either a paging file or a file that was modified after being mapped. Like the IRPs
that MiDispatchFault creates, these IRPs are flagged as noncached and paging 1/0. Thus, an FSD
bypasses the file system cache and issues IRPs directly to a storage driver to write the memory to
disk.

Cache Manager's Lazy Writer

The cache manager's lazy writer thread also plays a role in writing modified pages because it
periodically flushes views of file sections mapped in the cache that it knows are dirty. The flush
operation, which the cache manager performs by calling MmFlushSection, triggers the memory
manager to write any modified pages in the portion of the section being flushed to disk. Like the
modified and mapped page writers, MmFlushSection uses loAsynchronousPageWrite to send the
data to the FSD.

Cache Manager's Read-Ahead Thread

The cache manager includes a thread that is responsible for attempting to read data from files before
an application, a driver, or a system thread explicitly requests it. The read-ahead thread uses the
history of read operations that were performed on a file, which are stored in a file object's private
cache map, to determine how much data to read. When the thread performs a read-ahead, it simply
maps the portion of the file it wants to read into the cache (allocating VACBS as necessary) and
touches the mapped data. The page faults caused by the memory accesses invoke the page fault
handler, which reads the pages into the system's working set.

Memory Manager's Page Fault Handler

We described how the page fault handler is used in the context of explicit file I/0 and cache
manager read-ahead, but it is also invoked whenever any application accesses virtual memory that is
a view of a mapped file and encounters pages that represent portions of a file that aren't part of the
application's working set. The memory manager's MmAccessFault handler follows the same steps it
does when the cache manager generates a page fault from CcCopyRead or CcCopyWrite, sending
IRPs via loPageRead to the file system on which the file is stored.

[Previous] [Next]

NTFS Design Goals and Features

In the following section, we'll look at the requirements that drove the design of NTFS. Then in the
subsequent section, we'll examine the advanced features of NTFS.

High-End File System Requirements

From the start, NTFS was designed to include features required of an enterprise-class file system. To
minimize data loss in the face of an unexpected system outage or crash, a file system must ensure

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 13 of 63

that the integrity of the file system's metadata be guaranteed at all times, and to protect sensitive data
from unauthorized access, a file system must have an integrated security model. Finally, a file
system must allow for software-based data redundancy as a low-cost alternative to hardware-
redundant solutions for protecting user data. In this section, you'll find out how NTFS implements
each of these capabilities.

Recoverability

To address the requirement for reliable data storage and data access, NTFS provides file system
recovery based on the concept of an atomic transaction. Atomic transactions are a technique for
handling modifications to a database so that system failures don't affect the correctness or integrity
of the database. The basic tenet of atomic transactions is that some database operations, called
transactions, are all-or-nothing propositions. (A transaction is defined as an 1/0O operation that alters
file system data or changes the volume's directory structure.) The separate disk updates that make up
the transaction must be executed atomically; that is, once the transaction begins to execute, all its
disk updates must be completed. If a system failure interrupts the transaction, the part that has been
completed must be undone, or rolled back. The rollback operation returns the database to a
previously known and consistent state, as if the transaction had never occurred.

NTFS uses atomic transactions to implement its file system recovery feature. If a program initiates
an 1/0O operation that alters the structure of an NTFS drive—that is, changes the directory structure,
extends a file, allocates space for a new file, and so on—NTFS treats that operation as an atomic
transaction. It guarantees that the transaction is either completed or, if the system fails while
executing the transaction, rolled back. The details of how NTFS does this are explained in the
section "NTFS Recovery Support.”

In addition, NTFS uses redundant storage for vital file system information so that if a sector on the
disk goes bad, NTFS can still access the volume's critical file system data. This redundancy of file
system data contrasts with the on-disk structures of both the FAT file system and the HPFS file
system (OS/2's native file system format), which have single sectors containing critical file system
data. On these file systems, if a read error occurs in one of those sectors an entire volume is lost.

Security

Security in NTFS is derived directly from the Windows 2000 object model. Files and directories are
protected from being accessed by unauthorized users. (For more information on Windows 2000
security, see Chapter 8.) An open file is implemented as a file object with a security descriptor
stored on disk as a part of the file. Before a process can open a handle to any object, including a file
object, the Windows 2000 security system verifies that the process has appropriate authorization to
do so. The security descriptor, combined with the requirement that a user log on to the system and
provide an identifying password, ensures that no process can access a file unless given specific
permission to do so by a system administrator or by the file's owner. (For more information about
security descriptors, see the section "Security Descriptors and Access Control" in Chapter 8, and for
more details about file objects, see the section "File Objects™ in Chapter 9.)

Data Redundancy and Fault Tolerance

In addition to recoverability of file system data, some customers require that their own data not be
endangered by a power outage or catastrophic disk failure. The NTFS recovery capabilities do
ensure that the file system on a volume remains accessible, but they make no guarantees for
complete recovery of user files. Protection for applications that can't risk losing file data is provided
through data redundancy.

Data redundancy for user files is implemented via the Windows 2000 layered driver model
(explained in Chapter 9), which provides fault tolerant disk support. NTFS communicates with a

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 14 of 63

volume manager, which in turn communicates with a hard disk driver to write data to disk. A
volume manager can mirror, or duplicate, data from one disk onto another disk so that a redundant
copy can always be retrieved. This support is commonly called RAID level 1. Volume managers also
allow data to be written in stripes across three or more disks, using the equivalent of one disk to
maintain parity information. If the data on one disk is lost or becomes inaccessible, the driver can
reconstruct the disk’s contents by means of exclusive-OR operations. This support is called RAID
level 5. (See Chapter 10 for more information on striped volumes, mirrored volumes, and RAID-5
volumes.)

Advanced Features of NTFS

In addition to NTFS being recoverable, secure, reliable, and efficient for mission-critical systems, it
includes the following advanced features that allow it to support a broad range of applications. Some
of these features are exposed as APIs for applications to leverage, and others are internal features:

o Multiple data streams

e Unicode-based names

¢ General indexing facility

o Dynamic bad-cluster remapping

o Hard links and junctions

o Compression and sparse files

o Change logging

o Per-user volume quotas

e Link tracking

e Encryption

e POSIX support

o Defragmentation
The following sections provide an overview of these features.
Multiple Data Streams
In NTFS, each unit of information associated with a file, including its name, its owner, its time
stamps, its contents, and so on, is implemented as a file attribute (NTFS object attribute). Each
attribute consists of a single stream, that is, a simple sequence of bytes. This generic implementation
makes it easy to add more attributes (and therefore more streams) to a file. Because a file's data is

"just another attribute™ of the file and because new attributes can be added, NTFS files (and file
directories) can contain multiple data streams.

An NTFS file has one default data stream, which has no name. An application can create additional,
named data streams and access them by referring to their names. To avoid altering the Microsoft
Win32 1/O APIs, which take a string as a filename argument, the name of the data stream is
specified by appending a colon (:) to the filename. Because the colon is a reserved character, it can
serve as a separator between the filename and the data stream name, as illustrated in this example:

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 15 of 63

myfile.dat:stream2

Each stream has a separate allocation size (how much disk space has been reserved for it), actual
size (how many bytes the caller has used), and valid data length (how much of the stream has been
initialized). In addition, each stream is given a separate file lock that is used to lock byte ranges and
to allow concurrent access.

One component in Windows 2000 that uses multiple data streams is the Apple Macintosh file server
support that comes with Windows 2000 Server. Macintosh systems use two streams per file—one to
store data and the other to store resource information, such as the file type and the icon used to
represent the file. Because NTFS allows multiple data streams, a Macintosh user can copy an entire
Macintosh folder to a Windows 2000 Server, and another Macintosh user can copy the folder from
the server without losing resource information.

Windows Explorer is another application that uses streams. When you right-click on an NTFS file
and select Properties, the Summary tab of the resulting dialog box lets you associate information
with the file, such as a title, subject, author, and keywords. Windows Explorer stores the information
in an alternate stream it adds to the file, named "Summary Information.”

Other applications can use the multiple data stream feature as well. A backup utility, for example,
might use an extra data stream to store backup-specific time stamps on files. Or an archival utility
might implement hierarchical storage in which files that are older than a certain date or that haven't
been accessed for a specified period of time are moved to tape. The utility could copy the file to
tape, set the file's default data stream to 0, and add a data stream that specifies the name and location
of the tape on which the file is stored.

EXPERIMENT

Looking at Streams

Most Windows 2000 applications aren't designed to work with alternate named streams,
but both the echo and the more commands are. Thus, a simple way to view streams in
action is to create a named stream using echo and then display it using more. The
following command sequence creates a file named test with a stream named stream:

C:\>echo hello > test:stream
C:\>more < test:stream

hello

C:\>

If you perform a directory listing, test's file size doesn't reflect the data stored in the
alternate stream because NTFS returns the size of only the unnamed data stream for file
query operations, including directory listings.

C:\>dir test
Volume in drive C is WINDOWS
Volume Serial Number is 3991-3040

Directory of C:\
08/01/00 02:37p 0 test
1 File(s) 0 bytes

112,558,080 bytes free
C:\>

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 16 of 63

Unicode-Based Names

Like Windows 2000 as a whole, NTFS is fully Unicode enabled, using Unicode characters to store
names of files, directories, and volumes. Unicode, a 16-bit character-coding scheme, allows each
character in each of the world's major languages to be uniquely represented, which aids in moving
data easily from one country to another. Unicode is an improvement over the traditional
representation of international characters—using a double-byte coding scheme that stores some
characters in 8 bits and others in 16 bits, a technique that requires loading various code pages to
establish the available characters. Because Unicode has a unique representation for each character, it
doesn't depend on which code page is loaded. Each directory and filename in a path can be as many
as 255 characters long and can contain Unicode characters, embedded spaces, and multiple periods.

General Indexing Facility

The NTFS architecture is structured to allow indexing of file attributes on a disk volume. This
structure enables the file system to efficiently locate files that match certain criteria—for example,
all the files in a particular directory. The FAT file system indexes filenames but doesn't sort them,
making lookups in large directories slow.

Several NTFS features take advantage of general indexing, including consolidated security
descriptors, in which the security descriptors of a volume's files and directories are stored in a single
internal stream, have duplicates removed, and are indexed using an internal security identifier that
NTFS defines.

Dynamic Bad-Cluster Remapping

Ordinarily, if a program tries to read data from a bad disk sector, the read operation fails and the data
in the allocated cluster becomes inaccessible. If the disk is formatted as a fault tolerant NTFS
volume, however, the Windows 2000 fault tolerant driver dynamically retrieves a good copy of the
data that was stored on the bad sector and then sends NTFS a warning that the sector is bad. NTFS
allocates a new cluster, replacing the cluster in which the bad sector resides, and copies the data to
the new cluster. It flags the bad cluster and no longer uses it. This data recovery and dynamic bad-
cluster remapping is an especially useful feature for file servers and fault tolerant systems or for any
application that can't afford to lose data. If the volume manager isn't loaded when a sector goes bad,
NTFS still replaces the cluster and doesn't reuse it, but it can't recover the data that was on the bad
sector.

Hard Links and Junctions

A hard link allows multiple paths to refer to the same file or directory. If you create a hard link
named C:\Users\Documents\Spec.doc that refers to the existing file C:\My Documents\Spec.doc, the
two paths link to the same on-disk file and you can make changes to the file using either path.
Processes can create hard links with the Win32 CreateHardLink function or the In POSIX function.

EXPERIMENT

Creating a Hard Link

Although applications can use the Win32 function CreateHardLink to create a hard link,
no tools use this function. However, you can create a hard link by using the POSIX In
utility in the Windows 2000 resource kits. The POSIX tools can't be installed through the
resource kit setup program, so you'll need to copy them manually from the \Apps\Posix
directory in the resource kit CDs.

In addition to hard links, NTFS supports another type of redirectioncalled junctions. Junctions, also

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 17 of 63

called symbolic links, allow a directory to redirect file or directory pathname translation to an
alternate directory. For example, if the path C:\Drivers is a junction that redirects to
C:\Winnt\System32\Drivers, an application reading C:\Drivers\Ntfs.sys actually reads
C:\Winnt\System\Drivers\Ntfs.sys. Junctions are a useful way to lift directories that are deep in a
directory tree to a more convenient depth without disturbing the original tree's structure or contents.
The example just cited lifts the drivers directory to the volume's root directory, reducing the
directory depth of Ntfs.sys from three levels to one when Ntfs.sys is accessed through the junction.
You can't use junctions to link to remote directories—only to directories on local volumes.

Junctions are based on an NTFS mechanism called reparse points. (Reparse points are discussed
further in the section "Reparse Points" later in this chapter.) A reparse point is a file or directory that
has a block of data called reparse data associated with it. Reparse data is user-defined data about the
file or directory, such as its state or location, that can be read from the reparse point by the
application that created the data, a file system filter driver, or the 1/0 manager. When NTFS
encounters a reparse point during a file or directory lookup, it returns a reparse status code, which
signals file system filter drivers that are attached to the volume, and the 1/0 manager, to examine the
reparse data. Each reparse point type has a unique reparse tag. The reparse tag allows the
component responsible for interpreting the reparse point's reparse data to recognize the reparse point
without having to check the reparse data. A reparse tag owner, either a file system filter driver or the
I/0 manager, can choose one of the following options when it recognizes reparse data:

o The reparse tag owner can manipulate the pathname specified in the file 1/0 operation that
crosses the reparse point and let the 1/0 operation reissue with the altered pathname. Junctions
take this approach to redirect a directory lookup, for example.

o The reparse tag owner can remove the reparse point from the file, alter the file in some way,
and then reissue the file 1/0O operation. The Windows 2000 Hierarchical Storage Management
(HSM) system uses reparse points in this way. HSM archives files by moving their contents to
tape, leaving reparse points in their place. When a process accesses a file that has been
archived, the HSM filter driver (\Winnt\System32\Drivers\Rsfilter.sys) removes the reparse
point from the file, reads the file's data from the archival media, and reissues the access. Thus,
the retrieval of the offline data is transparent to a process accessing an archived file.

There are no Win32 functions for creating reparse points. Instead, processes must use the
FSCTL_SET_REPARSE_POINT file system control code with the Win32 DeviceloControl
function. A process can query a reparse point's contents with the FSCTL_GET_REPARSE_POINT
file system control code. The FILE_ATTRIBUTE_REPARSE_POINT flag is set in a reparse point's
file attributes, so applications can check for reparse points by using the Win32 GetFileAttributes
function.

EXPERIMENT

Creating a Junction

Windows 2000 doesn't include any tools for creating junctions, but you can create a
junction with either the Junction tool on the companion CD (\Sysint\Junction.exe) or the
Windows 2000 resource Kits tool Linkd. The Linkd tool also lets you view the definition
of existing junctions, and Junction lets you view information about junctions and other
reparse point tags.

Compression and Sparse Files
NTFS supports compression of file data. Because NTFS performs compression and decompression

procedures transparently, applications don't have to be modified to take advantage of this feature.
Directories can also be compressed, which means that any files subsequently created in the directory

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 18 of 63

are compressed.

Applications compress and decompress files by passing DeviceloControl the
FSCTL_SET_COMPRESSION file system control code. They query the compression state of a file
or directory with the FSCTL_GET_COMPRESSION file system control code. A file or directory
that is compressed has the FILE_ATTRIBUTE_COMPRESSED flag set in its attributes, so
applications can also determine a file or directory's compression state with GetFileAttributes.

A second type of compression is known as sparse files. If a file is marked as sparse, NTFS doesn't
allocate space on a volume for portions of the file that an application designates as empty. NTFS
returns O-filled buffers when an application reads from empty areas of a sparse file. This type of
compression can be useful for client/server applications that implement circular-buffer logging, in
which the server records information to a file and clients asynchronously read the information.
Because the information that the server writes isn't needed after a client has read it, there's no need to
store the information in the file. By making such a file sparse, the client can specify the portions of
the file it reads as empty, freeing up space on the volume. The server can continue to append new
information to the file, without fear that the file will grow to consume all available space on the
volume.

As for compressed files, NTFS manages sparse files transparently. Applications specify a file's
sparseness state by passing the FSCTL_SET_SPARSE file system control code to DeviceloControl.
To set a range of a file to empty, they use the FSCTL_SET ZERO_DATA code, and they can ask
NTFS for a description of what parts of a file are sparse by using
FSCTL_QUERY_ALLOCATED_RANGES. One application of sparse files is the NTFS change
journal, described next.

Change Logging

Many types of applications need to monitor volumes for file and directory changes. For example, an
automatic backup program might perform an initial full backup and then incremental backups based
on file changes. An obvious way for an application to monitor a volume for changes is for it to scan
the volume, recording the state of files and directories, and on a subsequent scan detect differences.
This process can adversely affect system performance, however, especially on computers with
thousands or tens of thousands of files.

An alternate approach is for an application to register a directory notification by using the
FindFirstChangeNotification or ReadDirectoryChangesW Win32 functions. As an input parameter,
the application specifies the name of a directory it wants to monitor, and the function returns
whenever the contents of the directory changes. Although this approach is more efficient than
volume scanning, it requires the application to be running at all times. Using these functions can also
require an application to scan directories, because FindFirstChangeNotification doesn't indicate
what changed—just that something in the directory has changed. An application can pass a buffer to
ReadDirectoryChangesW that the FSD fills in with change records. If the buffer overflows,
however, the application must be prepared to fall back on scanning the directory.

NTFS provides a third approach that overcomes the drawbacks of the first two: an application can
configure the NTFS change journal facility by using the DeviceloControl function's
FSCTL_CREATE_USN_JOURNAL file system control code to have NTFS record information
about file and directory changes to an internal file called the change journal. A change journal is
usually large enough to virtually guarantee that applications get a chance to process changes without
missing any. Applications use the FSCTL_QUERY_USN_JOURNAL file system control to read
records from a change journal, and they can specify that the DeviceloControl function not complete
until new records are available.

Per-User Volume Quotas

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 19 of 63

Systems administrators often need to track or limit user disk space usage on shared storage volumes,
so NTFS includes quota-management support. NTFS quota-management support allows for per-user
specification of quota enforcement, which is useful for usage tracking and tracking when a user
reaches warning and limit thresholds. NTFS can be configured to log an event indicating the
occurrence to the system Event Log if a user surpasses his warning limit. Similarly, if a user
attempts to use more volume storage then her quota limit permits, NTFS can log an event to the
system Event Log and fail the application file 1/0 that would have caused the quota violation with a
"disk full" error code.

NTFS tracks a user's volume usage by relying on the fact that it tags files and directories with the
security 1D (SID) of the user who created them. (See Chapter 8 for a definition of SIDs.) The logical
sizes of files and directories a user owns count against the user's administrator-defined quota limit.
Thus, a user can't circumvent his or her quota limit by creating an empty sparse file that is larger
than the quota would allow and then filling the file with nonzero data. Similarly, whereas a 50-KB
file might compress to 10 KB, the full 50 KB is used for quota accounting.

By default, volumes don't have quota tracking enabled. You need to use the Quota tab of a volume's
Properties dialog box, shown in Figure 12-9, to enable quotas, to specify default warning and limit
thresholds, and to configure the NTFS behavior that occurs when a user hits the warning or limit
threshold. The Quota Entries tool, which you can launch from this dialog box, enables an
administrator to specify different limits and behavior for each user. Applications that want to interact
with NTFS quota management use COM quota interfaces, including IDiskQuotaControl,
IDiskQuotaUser and IDiskQuotaEvents.

Local Disk [C:] Properties 2| x|

Generall Tools i Hardwarel Shalingi Secyity Huota IInDcuLANI

; Statuz sk quotas are dizabled

¥ Enable quota management

™ Deny disk space to uzers excesding quata limit
Select the default quata limit for new users on thiz volume:

Do nat limit disk usage
" Limit dizk space to ! 50 |KE :_I
Sel warning level to | 35 |KB ;I

Select the guota logging options for thiz volume:

[Lag event wheh a user exceeads their quata limit

[Logevent when a user exceeds their warning level

Gluota Entries... |
(] 8 I Cancel I Lpply |

Figure 12-9 Volume Properties dialog box

Link Tracking

Shell shortcuts allow users to place files in their shell namespace (on their desktop, for example) that
link to files located in the file system namespace. The Windows 2000 Start menu uses shell shortcuts

extensively. Similarly, object linking and embedding (OLE) links allow documents from one
application to be transparently embedded in the documents of other applications. The products of the

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 20 of 63

Microsoft Office 2000 suite, including PowerPoint, Excel, and Word, use OLE linking.

Although shell and OLE links provide an easy way to connect files with one another and with the
shell namespace, they have in the past been difficult to manage. If a user moves the source of a shell
or OLE link (a link source is the file or directory to which a link points) in Windows NT 4,
Windows 95, or Windows 98, the link will be broken and the system has to rely on heuristics to
attempt to locate the link's source. NTFS in Windows 2000 includes support for a service application
called distributed link-tracking, which maintains the integrity of shell and OLE links when link
targets move. Using the NTFS link-tracking support, if a link source located on an NTFS volume
moves to any other NTFS volume within the originating volume's domain, the link-tracking service
can transparently follow the movement and update the link to reflect the change.

NTFS link-tracking support is based on an optional file attribute known as an object ID. An
application can assign an object ID to a file by using the FSCTL_CREATE_OR_GET_OBJECT_ID
(which assigns an ID if one isn't already assigned) and FSCTL_SET_OBJECT _ID file system
control codes. Object IDs are queried with the FSCTL_CREATE_OR_GET_OBJECT _ID and
FSCTL_GET_OBJECT _ID file system control codes. The FSCTL_DELETE_OBJECT _ID file
system control code lets applications delete object IDs from files.

Encryption

Corporate users often store sensitive information on their computers. Although data stored on
company servers is usually safely protected with proper network security settings and physical
access control, data stored on laptops can be exposed when a laptop is lost or stolen. NTFS file
permissions don't offer protection because NTFS volumes can be fully accessed without regard to
security by using NTFS file-reading software that doesn't require Windows 2000 to be running.
Furthermore, NTFS file permissions are rendered useless when an alternate Windows 2000
installation is used to access files from an administrator account. Recall from Chapter 8 that the
administrator account has the take-ownership and backup privileges, both of which allow it to access
any secured object by overriding the object's security settings.

NTFS includes a facility called the Encrypting File System (EFS), which users can use to encrypt
sensitive data. The operation of the EFS, as that of file compression, is completely transparent to
applications, which means that file data is automatically decrypted when an application running in
the account of a user authorized to view the data reads it and is automatically encrypted when an
authorized application changes the data.

NOTE

NTFS doesn't permit the encryption of files located in the system volume's root directory
or under the \Winnt directory because many of the files in these locations are required
during the boot process and the EFS isn't active during the boot process.

The EFS relies on cryptographic services supplied by Windows 2000 in user mode, and so it consists
of both a kernel-mode device driver that tightly integrates with NTFS as well as user-mode DLLs
that communicate with the Local Security Authority Subsystem (Lsass) and cryptographic DLLSs.

Files that are encrypted can be accessed only by using the private key of an account's EFS
private/public key pair, and private keys are locked using an account's password. Thus, EFS-
encrypted files on lost or stolen laptops can't be accessed using any means (other than a brute-force
cryptographic attack) without the password of an account that is authorized to view the data.

Applications can use the EncryptFile and DecryptFile Win32 API functions to encrypt and decrypt

files, and FileEncryptionStatus to retrieve as file or directory's EFS-related attributes, like whether
the file or directory is encrypted.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 21 of 63

POSIX Support

As explained in Chapter 2, one of the mandates for Windows 2000 was to fully support the POSIX
1003.1 standard. In the file system area, the POSIX standard requires support for case-sensitive file
and directory names, traversal permissions (where security for each directory of a path is used when
determining whether a user has access to a file or directory), a "file-change-time" time stamp (which
is different than the MS-DOS "time-last-modified"” stamp), and hard links (multiple directory entries
that point to the same file). NTFS implements each of these features.

Defragmentation

A common myth that many people have held since the introduction of NTFS is that it automatically
optimizes file placement on disk so as not to fragment the files. A file is fragmented if its data
occupies discontiguous clusters. For example, Figure 12-10 shows a fragmented file consisting of
three fragments. However, like most file systems (including versions of FAT on Windows 2000),
NTFS makes no special efforts to keep files contiguous, other than to reserve a region of disk space
known as the master file table (MFT) zone for the MFT. (NTFS lets other files allocate from the
MFT zone when volume free space runs low.) Keeping an area free for the MFT can help it stay
contiguous, but it, too, can become fragmented. (See the section "Master File Table (MFT)" later in
this chapter for more information on MFTSs.)

Fragmented file
Contiguous file

Figure 12-10 Fragmented and contiguous files

To facilitate the development of third-party disk defragmentation tools, Windows 2000 includes a
defragmentation API that such tools can use to move file data so that files occupy contiguous
clusters. The API consists of file system controls that let applications obtain a map of a volume's
free and in-use clusters (FSCTL_GET_VOLUME_BITMAP), obtain a map of a file's cluster usage
(FSCTL_GET_RETRIEVAL_POINTERS), and move a file (FSCTL_MOVE_FILE).

Windows 2000 includes a built-in defragmentation tool that is accessible by using the Disk
Defragmenter utility \Winnt\System32\Dfrg.msc). The built-in defragmentation tool has a number
of limitations, such as an inability to be run from the command prompt or to be automatically
scheduled. Third-party disk defragmentation products typically offer a richer feature set.

[Previous] [Next]

NTFS File System Driver

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 22 of 63

As described in Chapter 9, in the framework of the Windows 2000 1/0O system, NTFS and other file
systems are loadable device drivers that run in kernel mode. They are invoked indirectly by
applications that use Win32 or other 1/0 APIs (such as POSIX). As Figure 12-11 shows, the
Windows 2000 environment subsystems call Windows 2000 system services, which in turn locate
the appropriate loaded drivers and call them. (For a description of system service dispatching, see
the section "System Service Dispatching” in Chapter 3.)

Enviranment
subsystam

or CLL
User modae
3 Kermal mode
Windows 2000 system services
110 manager
Object | Sacurily waw Local Virlual
Windows manager | reference procedura | memory NTES driver
2000 ¢ meanitor call Manager
i
executive facy, Voluma
managar
Disk drivar
Kernel

L J
e /
Figure 12-11 Components of the Windows 2000 1/O system

The layered drivers pass 1/0 requests to one another by calling the Windows 2000 executive's 1/0
manager. Relying on the I/0O manager as an intermediary allows each driver to maintain
independence so that it can be loaded or unloaded without affecting other drivers. In addition, the
NTFS driver interacts with the three other Windows 2000 executive components, shown in the left
side of Figure 12-12, that are closely related to file systems.

The log file service (LFS) is the part of NTFS that provides services for maintaining a log of disk
writes. The log file LFS writes is used to recover an NTFS-formatted volume in the case of a system
failure. (See the section "Log File Service (LES)" for more information on LFS.)

The cache manager is the component of the Windows 2000 executive that provides systemwide
caching services for NTFS and other file system drivers, including network file system drivers
(servers and redirectors). All file systems implemented for Windows 2000 access cached files by
mapping them into system address space and then accessing the virtual memory. The cache manager
provides a specialized file system interface to the Windows 2000 memory manager for this purpose.
When a program tries to access a part of a file that isn't loaded into the cache (a cache miss), the
memory manager calls NTFS to access the disk driver and obtain the file contents from disk. The
cache manager optimizes disk 1/0 by using its lazy writer threads to call the memory manager to
flush cache contents to disk as a background activity (asynchronous disk writing). (For a complete
description of the cache manager, see Chapter 11.)

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 23 of 63

Log the Transaction IO manager
Logfile | = Readmwrite the file e, Bt &
Snvica J mirrgred or
= Volume el =lriped volume
Flushthe 'Wriethe MANAGE
log file ca?'m Y |] Readfwrite
| Load data Disk driver |- he dsk
Cache rom disk
manager inta

meamary

¥
Access the mapped ¥
file o 1|us$me cache :
e

Virtual memeory
manager

Figure 12-12 NTFS and related components

NTFS participates in the Windows 2000 object model by implementing files as objects. This
implementation allows files to be shared and protected by the object manager, the component of
Windows 2000 that manages all executive-level objects. (The object manager is described in the
section "Object Manager" in Chapter 3.)

An application creates and accesses files just as it does other Windows 2000 objects: by means of
object handles. By the time an 1/O request reaches NTFS, the Windows 2000 object manager and
security system have already verified that the calling process has the authority to access the file
object in the way it is attempting to. The security system has compared the caller's access token to
the entries in the access-control list for the file object. (See Chapter 8 for more information about
access-control lists.) The 1/0O manager has also transformed the file handle into a pointer to a file
object. NTFS uses the information in the file object to access the file on disk.

Figure 12-13 shows the data structures that link a file handle to the file system's on-disk structure.

Croces)
Handle
Object table
manager rl" File abject
data
structures Ly File objoct
L Stream
contral File
blatks t&n[l‘:l
oc|
Data
NTFS data attribune
slructures
{used to manage
the on-disk Named [™
structure) stream

Master file
table

NTFS T
database
{on disk)

Figure 12-13 NTFS data structures

NTFS follows several pointers to get from the file object to the location of the file on disk. As
Figure 12-13 shows, a file object, which represents a single call to the open-file system service,
points to a stream control block (SCB) for the file attribute that the caller is trying to read or write.
In Figure 12-13, a process has opened both the unnamed data attribute and a named stream (alternate
data attribute) for the file. The SCBs represent individual file attributes and contain information
about how to find specific attributes within a file. All the SCBs for a file point to a common data
structure called a file control block (FCB). The FCB contains a pointer (actually, a file reference,

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 24 of 63

explained in the section "File Reference Numbers" later in this chapter) to the file's record in the
disk-based master file table (MFT), which is described in detail in the following section.

[Previous] [Next]

NTFS On-Disk Structure

This section describes the on-disk structure of an NTFS volume, including how disk space is divided
and organized into clusters, how files are organized into directories, how the actual file data and
attribute information is stored on disk, and finally, how NTFS data compression works.

Volumes

The structure of NTFS begins with a volume. A volume corresponds to a logical partition on a disk,
and it is created when you format a disk or part of a disk for NTFS. You can also create a RAID
volume that spans multiple disks by using the Windows 2000 Disk Management MMC snap-in.

A disk can have one volume or several. NTFS handles each volume independently of the others.
Three sample disk configurations for a 150-MB hard disk are illustrated in Figure 12-14.

{75 MB] (60 MB]
C:
asome) | NTFS
1.75 WE) W [90 Me)

Figure 12-14 Sample disk configurations

A volume consists of a series of files plus any additional unallocated space remaining on the disk
partition. In the FAT file system, a volume also contains areas specially formatted for use by the file
system. An NTFS volume, however, stores all file system data, such as bitmaps and directories, and
even the system bootstrap, as ordinary files.

Clusters

The cluster size on an NTFS volume, or the cluster factor, is established when a user formats the
volume with either the format command or the Disk Management MMC snap-in. The default cluster
factor varies with the size of the volume, but it is an integral number of physical sectors, always a
power of 2 (1 sector, 2 sectors, 4 sectors, 8 sectors, and so on). The cluster factor is expressed as the
number of bytes in the cluster, such as 512 bytes, 1 KB, or 2 KB.

Internally, NTFS refers only to clusters. (However, NTFS forms low-level volume 1/0 operations
such that it is sector-aligned and its length is a multiple of the sector size.) NTFS uses the cluster as
its unit of allocation to maintain its independence from physical sector sizes. This independence
allows NTFS to efficiently support very large disks by using a larger cluster factor or to support
nonstandard disks that have a sector size other than 512 bytes. On a larger volume, use of a larger
cluster factor can reduce fragmentation and speed allocation, at a small cost in terms of wasted disk
space. Both the format command available from the Windows 2000 Command Prompt and the
Format menu option under the All Tasks option on the Action menu in the Disk Management MMC
snap-in choose a default cluster factor based on the volume size, but you can override this size.

NTFS refers to physical locations on a disk by means of logical cluster numbers (LCNs). LCNs are

simply the numbering of all clusters from the beginning of the volume to the end. To convert an
LCN to a physical disk address, NTFS multiplies the LCN by the cluster factor to get the physical

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 25 of 63

byte offset on the volume, as the disk driver interface requires. NTFS refers to the data within a file
by means of virtual cluster numbers (VCNs). VCNs number the clusters belonging to a particular
file from 0 through m. VCNs aren't necessarily physically contiguous, however; they can be mapped
to any number of LCNs on the volume.

Master File Table (MFT)

In NTFS, all data stored on a volume is contained in files, including the data structures used to
locate and retrieve files, the bootstrap data, and the bitmap that records the allocation state of the
entire volume (the NTFS metadata). Storing everything in files allows the file system to easily locate
and maintain the data, and each separate file can be protected by a security descriptor. In addition, if
a particular part of the disk goes bad, NTFS can relocate the metadata files to prevent the disk from
becoming inaccessible.

The master file table (MFT) is the heart of the NTFS volume structure. The MFT is implemented as
an array of file records. The size of each file record is fixed at 1 KB, regardless of cluster size. (The
structure of a file record is described in the "File Records" section.) Logically, the MFT contains one
record for each file on the volume, including a record for the MFT itself. In addition to the MFT,
each NTFS volume includes a set of metadata files containing the information that's used to
implement the file system structure. Each of these NTFS metadata files has a name that begins with
a dollar sign ($), although the signs are hidden. For example, the filename of the MFT is $Mft. The
rest of the files on an NTFS volume are normal user files and directories, as shown in Figure 12-15.

L
o

Shft - MFT

shlfthdirr - MFT mirror

SLogFile - Log file

SWolume - Volume file

SAlrDel - Attribute definition table

Y - Root directory

SBitmap - Velume cluster allocation file
SBoot - Boot sector

$BadClus - Bad-cluster lile

SSecure - Security seftings file
slpCase - Uppercase characler mapping
SExtend - Extended metadata direclory
Unused

- -

Reserved for NTFS
metadata files

[+ I V< T o B S I LS B =]

L=

-
=]

—
s

-
ha

- ey

15 | Unused
16 User liles and directories

Figure 12-15 File records for NTFS metadata files in the MFT

Usually, each MFT record corresponds to a different file. If a file has a large number of attributes or
becomes highly fragmented, however, more than one record might be needed for a single file. In
such cases, the MFT first record, which stores the locations of the others, is called the base file
record.

EXPERIMENT

Viewing the MFT

The Nfi utility included in the OEM Support Tools (part of the Windows 2000 debugging
tools and available for download at
support.microsoft.com/support/kb/articles/Q253/0/66.asp) allows you to dump the
contents of an NTFS volume's MFT as well as to translate a volume cluster number or

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh...

physical-disk sector number (on non-RAID volumes only) to the file that contains it, if it's
part of a file. The first 16 entries of the MFT are reserved for metadata files, but optional
metadata files (which are present only if a volume uses an associated feature) fall outside
this area: \$Extend\$Quota, \$Extend\$Objld, \$Extend\$UsnJrnl, and \$Extend\$Reparse.
The following dump was performed on a volume that uses reparse points ($Reparse),
quotas ($Quota), and object IDs ($Objld):

C:\>nfi G:\
NTFS File Sector Information Utility.
Copyright (C) Microsoft Corporation 1999. All rights reserved.

File O
Master File Table ($MFft)
$STANDARD _INFORMATION (resident)
$FILE_NAME (resident)
$DATA (nonresident)
logical sectors 32-52447 (0x20-0Oxccdf)
$BITMAP (nonresident)
logical sectors 16-23 (0x10-0x17)

File 1
Master File Table Mirror ($MFtMirr)
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$DATA (nonresident)
logical sectors 2048728-2048735 (0x1f42d8-0x1f42dT)

File 2
Log File ($LogFile)
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$DATA (nonresident)
logical sectors 2048736-2073343 (0x1f42e0-0x1fa2ff)

File 3

DASD ($Volume)
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$OBJIECT_ID (resident)
$SECURITY_DESCRIPTOR (resident)
$VOLUME_NAME (resident)
$VOLUME_INFORMATION (resident)
$DATA (resident)

File 4
Attribute Definition Table ($AttrDef)
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$SECURITY_DESCRIPTOR (resident)
$DATA (nonresident)
logical sectors 512256-512263 (0x7d100-0x7d107)

File 5
Root Directory
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$SECURITY_DESCRIPTOR (resident)
$INDEX_ROOT $130 (resident)
$INDEX_ALLOCATION $130 (nonresident)
logical sectors 2073416-2073423 (0x1fa348-0x1fa34f)
$BITMAP $130 (resident)

Page 26 of 63

2011.12. 12.

Chapter 12 -- File Systems Page 27 of 63

File 6
Volume Bitmap ($BitMap)
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$DATA (nonresident)
logical sectors 2073424-2073675 (0Ox1fa350-0x1fad4b)

File 7
Boot Sectors ($Boot)
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$SECURITY_DESCRIPTOR (resident)
$DATA (nonresident)
logical sectors 0-15 (0x0-0xf)

File 8

Bad Cluster List ($BadClus)
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$DATA (resident)
$DATA $Bad (nonresident)

File 9
Security ($Secure)
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$DATA $SDS (nonresident)
logical sectors 2073932-2074447 (Oxl1fa54c-0xl1fa74f)
logical sectors 523160-523163 (0x7fb98-0x7¥fb9b)
$INDEX_ROOT $SDH (resident)
$INDEX_ROOT $SI1 (resident)
$INDEX_ALLOCATION $SDH (nonresident)
logical sectors 1876152-1876159 (0xlcaOb8-0xlcalOb¥T)
$INDEX_ALLOCATION $SI11 (nonresident)
logical sectors 24-31 (0x18-0x1fF)
$BITMAP $SDH (resident)
$BITMAP $SI11 (resident)

File 10
Upcase Table ($UpCase)
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$DATA (nonresident)
logical sectors 2073676-2073931 (Oxl1fad4c-0x1fa54b)

File 11

Extend Table ($Extend)
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$INDEX_ROOT $130 (resident)

File 12

(unknown/unnamed)
$STANDARD_INFORMATION (resident)
$SECURITY_DESCRIPTOR (resident)
$DATA (resident)

File 13

(unknown/unnamed)
$STANDARD_INFORMATION (resident)

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 28 of 63

$SECURITY_DESCRIPTOR (resident)
$DATA (resident)

File 14

(unknown/unnamed)
$STANDARD_INFORMATION (resident)
$SECURITY_DESCRIPTOR (resident)
$DATA (resident)

File 15

(unknown/unnamed)
$STANDARD _INFORMATION (resident)
$SECURITY_DESCRIPTOR (resident)
$DATA (resident)

File 24

\$Extend\$Quota
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$INDEX_ROOT $0 (resident)
$INDEX_ROOT $Q (resident)

File 25

\$Extend\$0bj Id
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$INDEX_ROOT $0 (resident)

File 26

\$Extend\$Reparse
$STANDARD_INFORMATION (resident)
$FILE_NAME (resident)
$INDEX_ROOT $R (resident)

When it first accesses a volume, NTFS must mount it—that is, read metadata from the disk and
construct internal data structures so that it can process application file system accesses. To mount
the volume, NTFS looks in the boot sector to find the physical disk address of the MFT. The MFT's
own file record is the first entry in the table; the second file record points to a file located in the
middle of the disk called the MFT mirror (filename $MftMirr) that contains a copy of the first few
rows of the MFT. This partial copy of the MFT is used to locate metadata files if part of the MFT
file can't be read for some reason.

Once NTFS finds the file record for the MFT, it obtains the VCN-to-LCN mapping information in
the file record's data attribute and stores it in memory. Each run has a VCN-to-LCN mapping and a
run length because that's all the information necessary to locate an LCN for any VCN. This mapping
information tells NTFS where the runs composing the MFT are located on the disk. (Runs are
explained later in this chapter in the section "Resident and Nonresident Attributes.”) NTFS then
processes the MFT records for several more metadata files and opens the files. Next, NTFS performs
its file system recovery operation (described in the section "Recovery"), and finally, it opens its
remaining metadata files. The volume is now ready for user access.

As the system runs, NTFS writes to another important metadata file, the log file (filename
$LogFile). NTFS uses the log file to record all operations that affect the NTFS volume structure,
including file creation or any commands, such as Copy, that alter the directory structure. The log file
is used to recover an NTFS volume after a system failure.

Another entry in the MFT is reserved for the root directory (also known as "\"). Its file record
contains an index of the files and directories stored in the root of the NTFS directory structure.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 29 of 63

When NTFS is first asked to open a file, it begins its search for the file in the root directory's file
record. After opening a file, NTFS stores the file's MFT file reference so that it can directly access
the file's MFT record when it reads and writes the file later.

NTFS records the allocation state of the volume in the bitmap file (filename $Bitmap). The data
attribute for the bitmap file contains a bitmap, each of whose bits represents a cluster on the volume,
identifying whether the cluster is free or has been allocated to a file.

The security file (filename $Secure) stores the volumewide security descriptor database. NTFS files
and directories have individually settable security descriptors, but to conserve space, NTFS stores
the settings in a common file, which allows files and directories that have the same security settings
to reference the same security descriptor. In most environments, entire directory trees have the same
security settings, so this optimization provides a significant savings.

Another system file, the boot file (filename $Boot), stores the Windows 2000 bootstrap code. For the
system to boot, the bootstrap code must be located at a specific disk address. During formatting,
however, the format command defines this area as a file by creating a file record for it. Creating the
boot file allows NTFS to adhere to its rule of making everything on the disk a file. The boot file as
well as NTFS metadata files can be individually protected by means of the security descriptors that
are applied to all Windows 2000 objects. Using this "everything on the disk is a file" model also
means that the bootstrap can be modified by normal file 1/0, although the boot file is protected from
editing.

NTFS also maintains a bad-cluster file (filename $BadClus) for recording any bad spots on the disk
volume and a file known as the volume file (filename $Volume), which contains the volume name,
the version of NTFS for which the volume is formatted, and a bit that when set signifies that a disk
corruption has occurred and must be repaired by the Chkdsk utility. (The Chkdsk utility is covered
in more detail later in the chapter.) The uppercase file (filename $UpCase) includes a translation
table between lowercase and uppercase characters. NTFS maintains a file containing an attribute
definition table (filename $AttrDef) that defines the attribute types supported on the volume and
indicates whether they can be indexed, recovered during a system recovery operation, and so on.

NTFS stores several metadata files in the extensions (directory name $Extend) metadata directory,
including the object identifier file (filename $Objld), the quota file (filename $Quota), the change
journal file (filename $UsnJrnl), and the reparse point file (filename $Reparse). These files store
information related to optional features of NTFS. The object identifier file stores file object IDs, the
quota file stores quota limit and behavior information on volumes that have quotas enabled, the
change journal file records file and directory changes, and the reparse point file stores information
about which files and directories on the volume include reparse point data.

File Reference Numbers

A file on an NTFS volume is identified by a 64-bit value called a file reference. The file reference
consists of a file number and a sequence number. The file number corresponds to the position of the
file's file record in the MFT minus 1 (or to the position of the base file record minus 1 if the file has
more than one file record). The file reference sequence number, which is incremented each time an
MFT file record position is reused, enables NTFS to perform internal consistency checks. A file
reference is illustrated in Figure 12-16.

63 47 0

Sequence
number

File number

Figure 12-16 File reference

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 30 of 63

File Records

Instead of viewing a file as just a repository for textual or binary data, NTFS stores files as a
collection of attribute/value pairs, one of which is the data it contains (called the unnamed data
attribute). Other attributes that comprise a file include the filename, time stamp information, and
possibly additional named data attributes. Figure 12-17 illustrates an MFT record for a small file.

Master file table

Standard
information Filename Data

Figure 12-17 MFT record for a small file

Each file attribute is stored as a separate stream of bytes within a file. Strictly speaking, NTFS
doesn't read and write files—it reads and writes attribute streams. NTFS supplies these attribute
operations: create, delete, read (byte range), and write (byte range). The read and write services
normally operate on the file's unnamed data attribute. However, a caller can specify a different data
attribute by using the named data stream syntax.

Table 12-4 lists the attributes for files on an NTFS volume. (Not all attributes are present for every
file.)

Table 12-4 Attributes for NTFS Files

Attribute Attribute Name Description
Volume $VOLUME_INFORMATION, These attributes are present only in the
information $YOLUME_NAME $Volume metadata file. They store
volume version sand label information.
Standard $STANDARD_INFORMATION File attributes such as read-only,
information archive, and so on; time stamps,

including when the file was created or
last modified; and how many directories
point to the file (its hard link count).

Filename SFILE_NAME The file's name in Unicode characters.
A file can have multiple filename
attributes, as it does when a hard link to
a file exists or when a file with a long
name has an automatically generated
"short name" for access by MS-DOS
and 16-bit Microsoft Windows

applications.
Security $SECURITY_DESCRIPTOR This attribute is present for backward
descriptor compatibility with previous versions of

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems

Data

Index root,
index
allocation,
and index
bitmap

Attribute list

Object ID

Reparse
information

Extended
attributes

EFS
information

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh...

$DATA

$INDEX_ROOT,
$INDEX_ALLOCATION,
$BITMAP

$SATTRIBUTE_LIST

$OBJECT _ID

$REPARSE_POINT

$EA, SEA_INFORMATION

$LOGGED_UTILITY_STREAM

Page 31 of 63

NTFS. The Windows 2000 version of
NTFS stores all security descriptors in
the $Secure metadata file, sharing
descriptors among files and directories
that have the same settings. Previous
versions of NTFS stored private security
descriptor information with each file
and directory.

The contents of the file. In NTFS, a file
has one default unnamed data attribute
and can have additional named data
attributes; that is, a file can have
multiple data streams. A directory has
no default data attribute but can have
optional named data attributes.

Three attributes used to implement
filename allocation and bitmap indexes
for large directories (directories only).

A list of the attributes that make up the
file and the file reference of the MFT
file record in which each attribute is
located. This seldom-used attribute is
present when a file requires more than
one MFT file record.

A 64-byte identifier for a file or
directory, with the lowest 16 bytes (128
bits) unique to the volume. The link-
tracking service assigns object IDs to
shell shortcut and OLE link source files.
NTFS provides APIs so that files and
directories can be opened with their
object ID rather than their filename.

This attribute stores a file's reparse point
data. NTFS junctions and mount points
include this attribute.

Extended attributes aren't actively used
but are provided for backward
compatibility with OS/2 applications.

EFS stores data in this attribute that's
used to manage a file's encryption, such
as the encrypted version of the key
needed to decrypt the file and a list of
users that are authorized to access the
file. The word logged is in the attribute's
name because changes to this attribute
are recorded in the volume log file
(described later in this chapter) for
recoverability.

2011.12. 12.

Chapter 12 -- File Systems Page 32 of 63

Table 12-4 shows attribute names; however, attributes actually correspond to numeric type codes,
which NTFS uses to order the attributes within a file record. The file attributes in an MFT record are
ordered by these type codes (numerically in ascending order), with some attribute types appearing
more than once—if a file has multiple data attributes, for example, or multiple filenames.

Each attribute in a file record is identified with its attribute type code and has a value and an optional
name. An attribute's value is the byte stream composing the attribute. For example, the value of the
$FILE_NAME attribute is the file's name; the value of the $DATA attribute is whatever bytes the
user stored in the file.

Most attributes never have names, though the index-related attributes and the $DATA attribute often
do. Names distinguish among multiple attributes of the same type that a file can include. For
example, a file that has a named data stream has two $DATA attributes: an unnamed $DATA
attribute storing the default unnamed data stream and a named $DATA attribute having the name of
the alternate stream and storing the named stream'’s data.

Filenames

Both NTFS and FAT allow each filename in a path to be as many as 255 characters long. Filenames
can contain Unicode characters as well as multiple periods and embedded spaces. However, the FAT
file system supplied with MS-DOS is limited to 8 (non-Unicode) characters for its filenames,
followed by a period and a 3-character extension. Figure 12-18 provides a visual representation of
the different file namespaces Windows 2000 supports and shows how they intersect.

Examples

"TraflingDots...”
"SameNamelifferentCase”
"samenamedi fferentcase™
"Trafl fngSpaces

"LongFileName™

“UnfecodeName parpa”
“File.Name.With.Dots"
"File.Name2.With.Dots™
"Name With Empedded Spaces™
"_BeginningDot™

MS-DOS Windows

clignts “EIGHTCHR 123"

“CASEELND _TYP™

Figure 12-18 Windows 2000 file namespaces

The POSIX subsystem requires the biggest namespace of all the application execution environments
that Windows 2000 supports, and therefore the NTFS namespace is equivalent to the POSIX
namespace. The POSIX subsystem can create names that aren't visible to Win32 and MS-DOS
applications, including names with trailing periods and trailing spaces. Ordinarily, creating a file
using the large POSIX namespace isn't a problem because you would do that only if you intended
the POSIX subsystem or POSIX client systems to use that file.

The relationship between 32-bit Windows (Win32) applications and MS-DOS Windows
applications is a much closer one, however. The Win32 area in Figure 12-18 represents filenames
that the Win32 subsystem can create on an NTFS volume but that MS-DOS and 16-bit Windows
applications can't see. This group includes filenames longer than the 8.3 format of MS-DOS names,
those containing Unicode (international) characters, those with multiple period characters or a
beginning period, and those with embedded spaces. When a file is created with such a name, NTFS
automatically generates an alternate, MSDOS-style filename for the file. Windows 2000 displays
these short names when you use the /x option with the dir command.

The MS-DOS filenames are fully functional aliases for the NTFS files and are stored in the same
directory as the long filenames. The MFT record for a file with an autogenerated MS-DOS filename

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 33 of 63

is shown in Figure 12-19.

Standard NTFS MS-DOS
infermation filename filename Data

New filename attribute

Figure 12-19 MFT file record with an MS-DQOS filename attribute

The NTFS name and the generated MS-DOS name are stored in the same file record and therefore
refer to the same file. The MS-DOS name can be used to open, read from, write to, or copy the file.
If a user renames the file using either the long filename or the short filename, the new name replaces
both the existing names. If the new name isn't a valid MS-DOS name, NTFS generates another MS-
DOS name for the file.

NOTE

POSIX hard links are implemented in a similar way. When a hard link to a POSIX file is
created, NTFS adds another filename attribute to the file's MFT file record. The two
situations differ in one regard, however. When a user deletes a POSIX file that has
multiple names (hard links), the file record and the file remain in place. The file and its
record are deleted only when the last filename (hard link) is deleted. If a file has both an
NTFS name and an autogenerated MSDOS name, however, a user can delete the file
using either name.

Here's the algorithm NTFS uses to generate an MS-DOS name from a long filename:

1. Remove from the long name any characters that are illegal in MSDOS names, including spaces
and Unicode characters. Remove preceding and trailing periods. Remove all other embedded
periods, except the last one.

2. Truncate the string before the period (if present) to six characters, and append the string "~ n
" (where n is a number, starting with 1, that is used to distinguish different files that truncate to
the same name). Truncate the string after the period (if present) to three characters.

3. Put the result in uppercase letters. MS-DOS is case-insensitive, and this step guarantees that
NTFS won't generate a new name that differs from the old only in case.

4. If the generated name duplicates an existing name in the directory, increment the ~n string.

Table 12-5 shows the long Win32 filenames from Figure 12-18 and their NTFS-generated MS-DOS
versions. The current algorithm and the examples in Figure 12-18 should give you an idea of what
NTFS-generated MS-DOSstyle filenames look like. Application developers shouldn't depend on this
algorithm, though, because it might change in the future.

Table 12-5 NTFS-Generated Filenames

Win32 Long Name NTFS-Generated Short Name
LongFileName LONGFI~1
UnicodeName.FDPL UNICOD~1
File.Name.With.Dots FILENA~1.DOT
File.Name2.With.Dots FILENA~2.DOT

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 34 of 63

Name With Embedded Spaces NAMEWI~1
.BeginningDot BEGINN~1

Resident and Nonresident Attributes

If a file is small, all its attributes and their values (its data, for example) fit in the file record. When
the value of an attribute is stored directly in the MFT, the attribute is called a resident attribute. (In
Figure 12-17, for example, all attributes are resident.) Several attributes are defined as always being
resident so that NTFS can locate nonresident attributes. The standard information and index root
attributes are always resident, for example.

Each attribute begins with a standard header containing information about the attribute, information
that NTFS uses to manage the attributes in a generic way. The header, which is always resident,
records whether the attribute's value is resident or nonresident. For resident attributes, the header
also contains the offset from the header to the attribute's value and the length of the attribute's value,
as Figure 12-20 illustrates for the filename attribute.

Standard
information Filename Data
"RESIDEMNT"
Offset: 8h MYFILE.DAT
Length: 14h

I:I Attribute header
I:I Attribute value

Figure 12-20 Resident attribute header and value

When an attribute's value is stored directly in the MFT, the time it takes NTFS to access the value is
greatly reduced. Instead of looking up a file in a table and then reading a succession of allocation
units to find the file's data (as the FAT file system does, for example), NTFS accesses the disk once
and retrieves the data immediately.

The attributes for a small directory, as well as for a small file, can be resident in the MFT, as Figure
12-21 shows. For a small directory, the index root attribute contains an index of file references for
the files and the subdirectories in the directory.

Standard
infermation Filename Index root

Index of files

file1, file2, filed, ...

Empty

Figure 12-21 MFT file record for a small directory

Of course, many files and directories can't be squeezed into a 1-KB fixed-size MFT record. If a
particular attribute, such as a file's data attribute, is too large to be contained in an MFT file record,
NTFS allocates clusters for the attribute's data separate from the MFT. This area is called a run (or
an extent). If the attribute's value later grows (if a user appends data to the file, for example), NTFS
allocates another run for the additional data. Attributes whose values are stored in runs rather than in

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 35 of 63

the MFT are called nonresident attributes. The file system decides whether a particular attribute is
resident or nonresident; the location of the data is transparent to the process accessing it.

When an attribute is nonresident, as the data attribute for a large file might be, its header contains
the information NTFS needs to locate the attribute's value on the disk. Figure 12-22 shows a
nonresident data attribute stored in two runs.

HPFS
Standard . extended
information Filename Data attributes
Dalta Data

Figure 12-22 MFT file record for a large file with two data runs

Among the standard attributes, only those that can grow can be nonresident. For files, the attributes
that can grow are the data and the attribute list (not shown in Figure 12-22). The standard
information and filename attributes are always resident.

A large directory can also have nonresident attributes (or parts of attributes), as Figure 12-23 shows.
In this example, the MFT file record doesn't have enough room to store the index of files that make
up this large directory. A part of the index is stored in the index root attribute, and the rest of the
index is stored in nonresident runs called index buffers. The index root, index allocation, and bitmap
attributes are shown here in a simplified form. They are described in more detail in the next section.
The standard information and filename attributes are always resident. The header and at least part of
the value of the index root attribute are also resident for directories.

Standard Index
infermatien Filename Index root allocation Bilmap
Index of files
filed filep
1 1
] 1
Index buﬂirs<|: file1 file2 file3 files fileg

Figure 12-23 MFT file record for a large directory with a nonresident filename index

When a file's (or a directory's) attributes can't fit in an MFT file record and separate allocations are
needed, NTFS keeps track of the runs by means of VCN-to-LCN mapping pairs. LCNs represent the
sequence of clusters on an entire volume from 0 through n. VCNs number the clusters belonging to a
particular file from 0 through m. For example, the clusters in the runs of a nonresident data attribute
are numbered as shown in Figure 12-24.

Standard

informaticon Filename Data
File 16 /
VCN 0 1 \ 2 3 4 5 \ 5] 7
i I
Dalta Data
] !
LCM 1355 1356 1357 1358 1588 1589 1580 1591

Figure 12-24 VCNs for a nonresident data attribute

If this file had more than two runs, the numbering of the third run would start with VCN 8. As

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 36 of 63

Figure 12-25 shows, the data attribute header contains VCN-to-LCN mappings for the two runs
here, which allows NTFS to easily find the allocations on the disk.

Standard
infermation Filemame Data
Starting Starting NMumber of
File 16 VCN LCN clusters f
o 1355 4
4 1588 4
VCN 0 1 2 3 4 5 6 7
)]
Data Data
I 1
LCH 1355 1356 1357 1358 1588 1589 1590 1591

Figure 12-25 VCN-to-LCN mappings for a nonresident data attribute

Although Figure 12-25 shows just data runs, other attributes can be stored in runs if there isn't
enough room in the MFT file record to contain them. And if a particular file has too many attributes
to fit in the MFT record, a second MFT record is used to contain the additional attributes (or
attribute headers for nonresident attributes). In this case, an attribute called the attribute list is added.
The attribute list attribute contains the name and type code of each of the file's attributes and the file
reference of the MFT record where the attribute is located. The attribute list attribute is provided for
those cases in which a file grows so large or so fragmented that a single MFT record can't contain
the multitude of VCN-to-LCN mappings needed to find all its runs. Files with more than 200 runs
typically require an attribute list.

Indexing

In NTFS, a file directory is simply an index of filenames—that is, a collection of filenames (along
with their file references) organized in a particular way for quick access. To create a directory,
NTFS indexes the filename attributes of the files in the directory. The MFT record for the root
directory of a volume is shown in Figure 12-26.

Standard Index Imdex
information Filename reat allecation Bitmap
Index of files
File 5 "z . . . VCN-to-LCHN
filed file1 0 filels | mappings
YCN 0 1 2 3 WCN 8 9 l 10 11
fileg | file1 | file3 file11 [file12 |file13 [file14
LCM 1355 1356 1357 1358 LCN 2033 2034 2035 203§

L
VCN 4 5 B 7

lileg | fileg file2

LCM 1588 1589 1590 1591
Figure 12-26 Filename index for a volume's root directory

Conceptually, an MFT entry for a directory contains in its index root attribute a sorted list of the
files in the directory. For large directories, however, the filenames are actually stored in 4-KB fixed-
size index buffers that contain and organize the filenames. Index buffers implement a b+ tree data
structure, which minimizes the number of disk accesses needed to find a particular file, especially
for large directories. The index root attribute contains the first level of the b+ tree (root
subdirectories) and points to index buffers containing the next level (more subdirectories, perhaps,
or files).

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 37 of 63

Figure 12-26 shows only filenames in the index root attribute and the index buffers (file6, for
example), but each entry in an index also contains the file reference in the MFT where the file is
described and time stamp and file size information for the file. NTFS duplicates the time stamp and
file size information from the file's MFT record. This technique, which is used by FAT and NTFS,
requires updated information to be written in two places. Even so, it's a significant speed
optimization for directory browsing because it enables the file system to display each file's time
stamps and size without opening every file in the directory.

The index allocation attribute maps the VCNSs of the index buffer runs to the LCNs that indicate
where the index buffers reside on the disk, and the bitmap attribute keeps track of which VCNs in
the index buffers are in use and which are free. Figure 12-26 shows one file entry per VCN (that is,
per cluster), but filename entries are actually packed into each cluster. Each 4-KB index buffer can
contain about 20 to 30 filename entries.

The b+ tree data structure is a type of balanced tree that is ideal for organizing sorted data stored on
a disk because it minimizes the number of disk accesses needed to find an entry. In the MFT, a
directory's index root attribute contains several filenames that act as indexes into the second level of
the b+ tree. Each filename in the index root attribute has an optional pointer associated with it that
points to an index buffer. The index buffer it points to contains filenames with lexicographic values
less than its own. In Figure 12-26, for example, file4 is a first-level entry in the b+ tree. It points to
an index buffer containing filenames that are (lexicographically) less than itself—the filenames file0,
filel, and file3. Note that the names filel, file2, and so on that are used in this example are not literal
filenames but names intended to show the relative placement of files that are lexicographically
ordered according to the displayed sequence.

Storing the filenames in b+ trees provides several benefits. Directory lookups are fast because the
filenames are stored in a sorted order. And when higher-level software enumerates the files in a
directory, NTFS returns already-sorted names. Finally, because b+ trees tend to grow wide rather
than deep, NTFS's fast lookup times don't degrade as directories grow.

NTFS also provides general support for indexing data besides filenames. As we stated earlier, a file
can have an object ID assigned to it, which is stored in the file's SOBJECT _ID attribute. NTFS
provides an API that allows applications to open a file by using the file's object ID instead of its
name. NTFS therefore must make the process of translating an object ID to a file's file number an
efficient one. To do so, it stores a mapping of all a volume's object IDs to their file reference
numbers in the \$Extend\$Objld metadata file. NTFS sorts the object IDs in the $Objld's $O index.
As are filenames in filename indexes, the object ID index is stored as a b+ tree.

Data Compression and Sparse Files

NTFS supports compression on a per-file, per-directory, or per-volume basis. (NTFS compression is
performed only on user data, not file system metadata.) You can tell whether a volume is
compressed by using the Win32 GetVolumelnformation function. To retrieve the actual compressed
size of a file, use the Win32 GetCompressedFileSize function. Finally, to examine or change the
compression setting for a file or directory, use the Win32 DeviceloControl function. (See the
FSCTL_GET_COMPRESSION and FSCTL_SET_COMPRESSION file system control codes.)
Keep in mind that although setting a file's compression state compresses (or decompresses) the file
right away, setting a directory's or volume's compression state doesn't cause any immediate
compression or decompression. Instead, setting a directory's or volume's compression state sets a
default compression state that will be given to all newly created files and subdirectories within that
directory or volume.

The following section introduces NTFS compression by examining the simple case of compressing

sparse data. The subsequent sections extend the discussion to the compression of ordinary files and
sparse files.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 38 of 63

Compressing Sparse Data

Sparse data is often large but contains only a small amount of nonzero data relative to its size. A
sparse matrix is one example of sparse data.As described earlier, NTFS uses VCNs, from 0 through
m, to enumerate the clusters of a file. Each VCN maps to a corresponding LCN, which identifies the
disk location of the cluster. Figure 12-27 illustrates the runs (disk allocations) of a normal,
noncompressed file, including its VCNSs and the LCNs they map to.

VON 0 1 2 3 4 5 G 7]] 10 11

T T T
Dala Data Data
| | |

LCN 1355 1356 1357 1358 1588 1582 1590 159 2033 2034 2035 2036

Figure 12-27 Runs of a noncompressed file

This file is stored in 3 runs, each of which is 4 clusters long, for a total of 12 clusters. Figure 12-28
shows the MFT record for this file. As described earlier, to save space, the MFT record's data
attribute, which contains VCN-to-LCN mappings, records only one mapping for each run, rather
than one for each cluster. Notice, however, that each VCN from 0 through 11 has a corresponding
LCN associated with it. The first entry starts at VCN 0 and covers 4 clusters, the second entry starts
at VCN 4 and covers 4 clusters, and so on. This entry format is typical for a noncompressed file.

Standard
information Filename Data

Starting Starting Number of
VCHN LCN

clusters |
0 1355 4
4 1588 4
8 2033 4

Figure 12-28 MFT record for a noncompressed file

When a user selects a file on an NTFS volume for compression, one NTFS compression technique is
to remove long strings of zeros from the file. If the file's data is sparse, it typically shrinks to occupy
a fraction of the disk space it would otherwise require. On subsequent writes to the file, NTFS
allocates space only for runs that contain nonzero data.

Figure 12-29 depicts the runs of a compressed file containing sparse data. Notice that certain ranges
of the file's VCNs (16-31 and 64-127) have no disk allocations.

VCN o 15

Dala
1

LCN 133134135 136137 138139140141 142143144 145146 147 148

Data
L

193194 195 196 197 198 199 200201 202 203 204 205206 207 208

48 63
|
Data
1

96 97 98 99 100101 102102104105 108107 108109 110 111

128 143

Data
I

324 325 326 327 D28 320 330 331 332 333 334 335 336 337 338 139

Figure 12-29 Runs of a compressed file containing sparse data

The MFT record for this compressed file omits blocks of VCNs that contain zeros and therefore

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 39 of 63

have no physical storage allocated to them. The first data entry in Figure 12-30, for example, starts
at VCN 0 and covers 16 clusters. The second entry jumps to VCN 32 and covers 16 clusters.

Standard
information Filename Data

Starting Starting Number of
VCN LCN clusters

0 133 16
32 193 16
48 296 16
128 324 16

Figure 12-30 MFT record for a compressed file containing sparse data

When a program reads data from a compressed file, NTFS checks the MFT record to determine
whether a VCN-to-LCN mapping covers the location being read. If the program is reading from an
unallocated "hole™ in the file, it means that the data in that part of the file consists of zeros, so NTFS
returns zeros without accessing the disk. If a program writes nonzero data to a "hole,” NTFS quietly
allocates disk space and then writes the data. This technique is very efficient for sparse file data that
contains a lot of zero data.

Compressing Nonsparse Data

The preceding example of compressing a sparse file is somewhat contrived. It describes
"compression” for a case in which whole sections of a file were filled with zeros but the remaining
data in the file wasn't affected by the compression. The data in most files isn't sparse, but it can still
be compressed by the application of a compression algorithm.

In NTFS, users can specify compression for individual files or for all the files in a directory. (New
files created in a directory marked compressed are automatically compressed—existing files must be
compressed individually.) When it compresses a file, NTFS divides the file's unprocessed data into
compression units 16 clusters long (equal to 8 KB for a 512-byte cluster, for example). Certain
sequences of data in a file might not compress much, if at all; so for each compression unit in the
file, NTFS determines whether compressing the unit will save at least 1 cluster of storage. If
compressing the unit won't free up at least 1 cluster, NTFS allocates a 16-cluster run and writes the
data in that unit to disk without compressing it. If the data in a 16-cluster unit will compress to 15 or
fewer clusters, NTFS allocates only the number of clusters needed to contain the compressed data
and then writes it to disk. Figure 12-31 illustrates the compression of a file with four runs. The
unshaded areas in this figure represent the actual storage locations that the file occupies after
compression. The first, second, and fourth runs were compressed; the third run wasn't. Even with
one noncompressed run, compressing this file saved 26 clusters of disk space, or 41 percent.

VCN @ 15
T T 1
Compressed data
L1 1

LCN 19 20 21 22

16 m
| | I
Compressad dala
l L l

23 24 25 26 27 28 29 30

32 47
| I I]
Moncompressad data
| 1 l 1

97 98 99 100 101102103104 105106107 108109 110 111 112

48 &3
| | | |
Comprassed dala
| 1 1 l

MIN4 NS MENMT IR 1192120121122

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 40 of 63

Figure 12-31 Data runs of a compressed file

NOTE

Although the diagrams in this chapter show contiguous LCNs, a compression unit need
not be stored in physically contiguous clusters. Runs that occupy noncontiguous clusters
produce slightly more complicated MFT records than the one shown in Figure 12-32.

When it writes data to a compressed file, NTFS ensures that each run begins on a virtual 16-cluster
boundary. Thus the starting VCN of each run is a multiple of 16, and the runs are no longer than 16
clusters. NTFS reads and writes at least one compression unit at a time when it accesses compressed
files. When it writes compressed data, however, NTFS tries to store compression units in physically
contiguous locations so that it can read them all in a single 1/O operation. The 16-cluster size of the
NTFS compression unit was chosen to reduce internal fragmentation: the larger the compression
unit, the less the overall disk space needed to store the data. This 16-cluster compression unit size
represents a trade-off between producing smaller compressed files and slowing read operations for
programs that randomly access files. The equivalent of 16 clusters must be decompressed for each
cache miss. (A cache miss is more likely to occur during random file access.) Figure 12-32 shows
the MFT record for the compressed file shown in Figure 12-31.

Standard
information Filename Data
‘ Starting Starting NMumber of
VCN LCMN clusters

4] 19 4

16 23 a8
32 o7 16
48 113 10

Figure 12-32 MFT record for a compressed file

One difference between this compressed file and the earlier example of a compressed file containing
sparse data is that three of the compressed runs in this file are less than 16 clusters long. Reading
this information from a file's MFT file record enables NTFS to know whether data in the file is
compressed. Any run shorter than 16 clusters contains compressed data that NTFS must decompress
when it first reads the data into the cache. A run that is exactly 16 clusters long doesn't contain
compressed data and therefore requires no decompression.

If the data in a run has been compressed, NTFS decompresses the data into a scratch buffer and then
copies it to the caller's buffer. NTFS also loads the decompressed data into the cache, which makes
subsequent reads from the same run as fast as any other cached read. NTFS writes any updates to the
file to the cache, leaving the lazy writer to compress and write the modified data to disk
asynchronously. This strategy ensures that writing to a compressed file produces no more significant
delay than writing to a noncompressed file would.

NTFS keeps disk allocations for a compressed file contiguous whenever possible. As the LCNs
indicate, the first two runs of the compressed file shown in Figure 12-31 are physically contiguous,
as are the last two. When two or more runs are contiguous, NTFS performs disk read-ahead, as it
does with the data in other files. Because the reading and decompression of contiguous file data take
place asynchronously before the program requests the data, subsequent read operations obtain the
data directly from the cache, which greatly enhances read performance.

Sparse Files

Sparse files (the NTFS file type, as opposed to files that consist of sparse data, described earlier) are

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 41 of 63

essentially compressed files for which NTFS doesn't apply compression to the file's nonsparse data.
However, NTFS manages the run data of a sparse file's MFT record the same way it does for
compressed files that consist of sparse and nonsparse data.

Reparse Points

A reparse point is a block of up to 16 KB of application-defined reparse data and a 32-bit reparse tag
that are stored in the SREPARSE_POINT attribute of a file or directory. Whenever an application
creates or deletes a reparse point, NTFS updates the \$Extend\$Reparse metadata file, in which
NTFS stores entries that identify the file record numbers of files and directories that contain reparse
points. Storing the records in a central location enables NTFS to provide interfaces for applications
to enumerate all a volume's reparse points or just specific types of reparse points, such as mount
points. (See Chapter 10 for more information on mount points.) The \$Extend\$Reparse file uses the
general indexing facility of NTFS by collating the file's entries (in an index named $R) by reparse
point tags.

The Change Journal File
The change journal file, \$Extend\$UsnJrnl, is a sparse file that NTFS creates only when an
application enables change logging. The journal stores change entries in the $J data stream. Entries
include the following information about a file or directory change:

o The time of the change

o The change type (delete, rename, size extend, and so on)

o The file or directory's attributes

o The file or directory's name

o The file or directory's file reference number

o The file reference number of the file's parent directory
The journal is sparse so that it never overflows; when the journal's on-disk size exceeds the
maximum defined for the file, NTFS simply begins zeroing the file data that precedes the window of
change information having a size equal to the maximum journal size, as shown in Figure 12-33. To
prevent constant resizing when an application is continuously exceeding the journal's size, NTFS

shrinks the journal only when its size is twice an application-defined value over the maximum
configured size.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 42 of 63

Ofset 0 b

¢ Wirtual size of $UsnJrnl

Start of nonsparse data =

Physical size of $UsnJml

|:| Deleted change entries
|:| Change entries

Figure 12-33 Change journal ($UsnJrnl) space allocation

Object IDs

In addition to storing the object ID assigned to a file or directory in the SOBJECT _ID attribute of its
MFT record, NTFS also keeps the correspondence between object IDs and their file reference
numbers in the $O index of the \$Extend\$Objld metadata file. The index collates entries by object
ID, making it easy for NTFS to quickly locate a file based on its ID. This feature allows
applications, using undocumented native API functionality, to open a file or directory using its
object ID.

Quota Tracking

The NTFS quota-tracking facility associates an owner ID with each user who creates files and stores
the user's owner ID with each file or directory the user creates. To determine whether a user has
been assigned an ID, NTFS uses the user's SID as a key to index the $O index of the
\$Extend\$Quota metadata file. If an ID isn't located, NTFS allocates a unique 1D for the user and
records the association in the $O index.

\$Extend\$Quota also contains an index named $Q that NTFS uses to store per-user quota
information entries, collating the entries by owner ID. When a user attempts to allocate space on a
volume, NTFS uses the owner ID to look up the user's quota entry and determine whether there is
sufficient disk space left in the user's quota to allow the allocation.

Consolidated Security

Another example of general indexing is seen in the \$Secure metadata file, which stores security
descriptors for all the files and directories on a volume. NTFS assigns each unique security
descriptor an NTFS security ID. (These are different than the SIDs described in Chapter 8.)

When a process applies a security descriptor to a file or directory, NTFS obtains a 32-bit hash of the
descriptor and looks up the corresponding security ID in an index named $SDH that is stored in the

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 43 of 63

\$Secure file. Multiple security descriptors can hash to the same value, so NTFS compares the
security descriptor being applied with any that have the same hash to verify an exact match. If it
locates the applied security descriptor in the $SDH index, NTFS assigns the file the associated
security ID. Otherwise, it allocates a new security 1D, updates the $SDH index, and adds the security
descriptor to the $SII index. The $SII index is collated by security 1D so that when a user attempts to
open a file or directory, NTFS can quickly locate the file or directory's security descriptor by using
the file or directory's security ID.

[Previous] [Next]

NTFS Recovery Support

NTFS recovery support ensures that if a power failure or a system failure occurs, no file system
operations (transactions) will be left incomplete and the structure of the disk volume will remain
intact without the need to run a disk repair utility. The NTFS Chkdsk utility is used to repair
catastrophic disk corruption caused by 1/O errors (bad disk sectors, electrical anomalies, or disk
failures, for example) or software bugs. But with the NTFS recovery capabilities in place, Chkdsk is
rarely needed.

As mentioned earlier (in the section "Recoverability"), NTFS uses a transaction-processing scheme
to implement recoverability. This strategy ensures a full disk recovery that is also extremely fast (on
the order of seconds) for even the largest disks. NTFS limits its recovery procedures to file system
data to ensure that at the very least the user will never lose a volume because of a corrupted file
system; however, unless an application takes specific action (such as flushing cached files to disk),
NTFS doesn't guarantee user data to be fully updated if a crash occurs. Transaction-based protection
of user data is available in most of the database products available for Windows 2000, such as
Microsoft SQL Server. The decision not to implement user data recovery in the file system
represents a trade-off between a fully fault tolerant file system and one that provides optimum
performance for all file operations.

The following sections describe the evolution of file system reliability as a context for an
introduction to recoverable file systems, detail the transaction-logging scheme NTFS uses to record
modifications to file system data structures, and explain how NTFS recovers a volume if the system
fails.

Evolution of File System Design

The development of a recoverable file system was a step forward in the evolution of file system
design. In the past, two techniques were common for constructing a file system's 1/0 and caching
support: careful write and lazy write. The file systems developed for Digital Equipment
Corporation's (now Compaq's) VAX/VMS and for some other proprietary operating systems
employed a careful write algorithm, while OS/2 HPFS and most older UNIX file systems used a lazy
write file system scheme.

The next two subsections briefly review these two types of file systems and their intrinsic trade-offs
between safety and performance. The third subsection describes NTFS's recoverable approach and
explains how it differs from the other two strategies.

Careful Write File Systems
When an operating system crashes or loses power, 1/O operations in progress are immediately, and
often prematurely, interrupted. Depending on what 1/O operation or operations were in progress and

how far along they were, such an abrupt halt can produce inconsistencies in a file system. An
inconsistency in this context is a file system corruption—a filename appears in a directory listing,

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 44 of 63

for example, but the file system doesn't know the file is there or can't access the file. The worst file
system corruptions can leave an entire volume inaccessible.

A careful write file system doesn't try to prevent file system inconsistencies. Rather, it orders its
write operations so that, at worst, a system crash will produce predictable, noncritical
inconsistencies, which the file system can fix at its leisure.

When any kind of file system receives a request to update the disk, it must perform several
suboperations before the update will be complete. In a file system that uses the careful write
strategy, the suboperations are always written to disk serially. When allocating disk space for a file,
for example, the file system first sets some bits in its bitmap and then allocates the space to the file.
If the power fails immediately after the bits are set, the careful write file system loses access to some
disk space—to the space represented by the set bits—but existing data isn't corrupted.

Serializing write operations also means that 1/0O requests are filled in the order in which they are
received. If one process allocates disk space and shortly thereafter another process creates a file, a
careful write file system completes the disk allocation before it starts to create the file because
interleaving the suboperations of the two 1/O requests could result in an inconsistent state.

NOTE

The FAT file system uses a write-through algorithm that causes disk modifications to be
immediately written to the disk. Unlike the careful write approach, the write-through
technique doesn't require the file system to order its writes to prevent inconsistencies.

The main advantage of a careful write file system is that in the event of a failure the volume stays
consistent and usable without the need to immediately run a slow volume repair utility. Such a utility
is needed to correct the predictable, nondestructive disk inconsistencies that occur as the result of a
system failure, but the utility can be run at a convenient time, typically when the system is rebooted.

Lazy Write File Systems

A careful write file system sacrifices speed for the safety it provides. A lazy write file system
improves performance by using a write-back caching strategy; that is, it writes file modifications to
the cache and flushes the contents of the cache to disk in an optimized way, usually as a background
activity.

The performance improvements associated with the lazy write caching technique take several forms.
First, the overall number of disk writes is reduced. Because serialized, immediate disk writes aren't
required, the contents of a buffer can be modified several times before they are written to disk.
Second, the speed of servicing application requests is greatly increased because the file system can
return control to the caller without waiting for disk writes to be completed. Finally, the lazy write
strategy ignores the inconsistent intermediate states on a file volume that can result when the
suboperations of two or more 1/O requests are interleaved. It is thus easier to make the file system
multithreaded, allowing more than one 1/O operation to be in progress at a time.

The disadvantage of the lazy write technique is that it creates intervals during which a volume is in
too inconsistent a state to be corrected by the file system. Consequently, lazy write file systems must
keep track of the volume's state at all times. In general, lazy write file systems gain a performance
advantage over careful write systems—at the expense of greater risk and user inconvenience if the
system fails.

Recoverable File Systems

A recoverable file system such as NTFS tries to exceed the safety of a careful write file system while
achieving the performance of a lazy write file system. A recoverable file system ensures volume

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 45 of 63

consistency by using logging techniques (sometimes called journaling) originally developed for
transaction processing. If the operating system crashes, the recoverable file system restores
consistency by executing a recovery procedure that accesses information that has been stored in a
log file. Because the file system has logged its disk writes, the recovery procedure takes only
seconds, regardless of the size of the volume.

The recovery procedure for a recoverable file system is exact, guaranteeing that the volume will be
restored to a consistent state. In NTFS, none of the inadequate restorations associated with lazy write
file systems can happen.

A recoverable file system incurs some costs for the safety it provides. Every transaction that alters
the volume structure requires that one record be written to the log file for each of the transaction's
suboperations. This logging overhead is ameliorated by the file system's "batching” of log records—
writing many records to the log file in a single 1/O operation. In addition, the recoverable file system
can employ the optimization techniques of a lazy write file system. It can even increase the length of
the intervals between cache flushes because the file system can be recovered if the system crashes
before the cache changes have been flushed to disk. This gain over the caching performance of lazy
write file systems makes up for, and often exceeds, the overhead of the recoverable file system's
logging activity.

Neither careful write nor lazy write file systems guarantee protection of user file data. If the system
crashes while an application is writing a file, the file can be lost or corrupted. Worse, the crash can
corrupt a lazy write file system, destroying existing files or even rendering an entire volume
inaccessible.

The NTFS recoverable file system implements several strategies that improve its reliability over that
of the traditional file systems. First, NTFS recoverability guarantees that the volume structure won't
be corrupted, so all files will remain accessible after a system failure.

Second, although NTFS doesn't guarantee protection of user data in the event of a system crash—
some changes can be lost from the cache—applications can take advantage of the NTFS write-
through and cache-flushing capabilities to ensure that file modifications are recorded on disk at
appropriate intervals. Both cache write-through—forcing write operations to be immediately
recorded on disk—and cache flushing—forcing cache contents to be written to disk—are efficient
operations. NTFS doesn't have to do extra disk 1/0 to flush modifications to several different file
system data structures because changes to the data structures are recorded—in a single write
operation—in the log file; if a failure occurs and cache contents are lost, the file system
modifications can be recovered from the log. Furthermore, unlike the FAT file system, NTFS
guarantees that user data will be consistent and available immediately after a write-through
operation or a cache flush, even if the system subsequently fails.

Logging

NTFS provides file system recoverability by means of a transaction-processing technique called
logging. In NTFS logging, the suboperations of any transaction that alters important file system data
structures are recorded in a log file before they are carried through on the disk. That way, if the
system crashes, partially completed transactions can be redone or undone when the system comes
back online. In transaction processing, this technique is known as write-ahead logging. In NTFS,
transactions include writing to the disk or deleting a file and can be made up of several
suboperations.

Log File Service (LFS)

The log file service (LFS) is a series of kernel-mode routines inside the NTFS driver that NTFS uses
to access the log file. Although originally designed to provide logging and recovery services for

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 46 of 63

more than one client, the LFS is used only by NTFS. The caller—NTFS in this case—passes the
LFS a pointer to an open file object, which specifies a log file to be accessed. The LFS either
initializes a new log file or calls the Windows 2000 cache manager to access the existing log file
through the cache, as shown in Figure 12-34.

I Log the transaction I'G manager
at
200, fhe NTFS driver
= service
Write the
1 volume updates
Readiwritediush

Flushthe thelogfie
log file

Cache
manager

Ll
Call the virtual memory
manager lo access
the mapped file

\

Figure 12-34 Log file service (LFS)

The LFS divides the log file into two regions: a restart area and an "infinite" logging area, as shown
in Figure 12-35.

LFS restart area Logging area

Copy 1 Copy 2 Log records

—

Figure 12-35 Log file regions

NTFS calls the LFS to read and write the restart area. NTFS uses the restart area to store context
information such as the location in the logging area at which NTFS will begin to read during
recovery after a system failure. The LFS maintains a second copy of the restart data in case the first
becomes corrupted or otherwise inaccessible. The remainder of the log file is the logging area,
which contains transaction records NTFS writes in order to recover a volume in the event of a
system failure. The LFS makes the log file appear infinite by reusing it circularly (while
guaranteeing that it doesn't overwrite information it needs). The LFS uses logical sequence numbers
(LSNs) to identify records written to the log file. As the LFS cycles through the file, it increases the
values of the LSNs. NTFS uses 64 bits to represent LSNs, so the number of possible LSNs is so
large as to be virtually infinite.

NTFS never reads transactions from or writes transactions to the log file directly. The LFS provides
services NTFS calls to open the log file, write log records, read log records in forward or backward
order, flush log records up to a particular LSN, or set the beginning of the log file to a higher LSN.
During recovery, NTFS calls the LFS to perform the following actions: read forward through the log
records to redo any transactions that were recorded in the log file but weren't flushed to disk at the
time of the system failure; read backward through the log records to undo, or roll back, any
transactions that weren't completely logged before the crash; and set the beginning of the log file to a
record with a higher LSN when NTFS no longer needs the older transaction records in the log file.

Here's how the system guarantees that the volume can be recovered:

1. NTFS first calls the LFS to record in the (cached) log file any transactions that will modify the

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 47 of 63

volume structure.
2. NTFS modifies the volume (also in the cache).

3. The cache manager prompts the LFS to flush the log file to disk. (The LFS implements the
flush by calling the cache manager back, telling it which pages of memory to flush. Refer back
to the calling sequence shown in Figure 12-34.)

4. After the cache manager flushes the log file to disk, it flushes the volume changes (the
metadata operations themselves) to disk.

These steps ensure that if the file system modifications are ultimately unsuccessful, the
corresponding transactions can be retrieved from the log file and can be either redone or undone as
part of the file system recovery procedure.

File system recovery begins automatically the first time the volume is used after the system is
rebooted. NTFS checks whether the transactions that were recorded in the log file before the crash
were applied to the volume, and if they weren't, it redoes them. NTFS also guarantees that
transactions not completely logged before the crash are undone so that they don't appear on the
volume.

Log Record Types

The LFS allows its clients to write any kind of record to their log files. NTFS writes several types of
records. Two types, update records and checkpoint records, are described here.

Update records Update records are the most common type of record NTFS writes to the log file.
Each update record contains two kinds of information:

o Redo information How to reapply one suboperation of a fully logged (*committed")
transaction to the volume if a system failure occurs before the transaction is flushed from the
cache

o Undo information How to reverse one suboperation of a transaction that was only partially
logged ("not committed") at the time of a system failure

Figure 12-36 shows three update records in the log file. Each record represents one suboperation of a
transaction, creating a new file. The redo entry in each update record tells NTFS how to reapply the
suboperation to the volume, and the undo entry tells NTFS how to roll back (undo) the suboperation.

LFS restart area Legging area
Log file records

| Ta | |'Ti_ﬂ lrﬁ_c__---
/

!
Redo: Allacatefinitialize an MFT file record Reda: 521 its 3-9 in the Bimap
Undo: Deallocate the lile record Unda: Clear bits 3-9 in the biimap

Redo; Add the filename to the index
Unda: Remove the Tilename from the index

Figure 12-36 Update records in the log file

After logging a transaction (in this example, by calling the LFS to write the three update records to
the log file), NTFS performs the suboperations on the volume itself, in the cache. When it has
finished updating the cache, NTFS writes another record to the log file, recording the entire
transaction as complete—a suboperation known as committing a transaction. Once a transaction is
committed, NTFS guarantees that the entire transaction will appear on the volume, even if the
operating system subsequently fails.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 48 of 63

When recovering after a system failure, NTFS reads through the log file and redoes each committed
transaction. Although NTFS completed the committed transactions before the system failure, it
doesn't know whether the cache manager flushed the volume modifications to disk in time. The
updates might have been lost from the cache when the system failed. Therefore, NTFS executes the
committed transactions again just to be sure that the disk is up to date.

After redoing the committed transactions during a file system recovery, NTFS locates all the
transactions in the log file that weren't committed at failure and rolls back (undoes) each
suboperation that had been logged. In Figure 12-36, NTFS would first undo the T1C suboperation

and then follow the backward pointer to le and undo that suboperation. It would continue to follow

the backward pointers, undoing suboperations, until it reached the first suboperation in the
transaction. By following the pointers, NTFS knows how many and which update records it must
undo to roll back a transaction.

Redo and undo information can be expressed either physically or logically. Physical descriptions
specify volume updates in terms of particular byte ranges on the disk that are to be changed, moved,
and so on. Logical descriptions express updates in terms of operations such as "delete file A.dat." As
the lowest layer of software maintaining the file system structure, NTFS writes update records with
physical descriptions. Transaction-processing or other application-level software might benefit from
writing update records in logical terms, however, because logically expressed updates are more
compact than physically expressed ones. Logical descriptions necessarily depend on NTFS to
understand what operations, such as deleting a file, involve.

NTFS writes update records (usually several) for each of the following transactions:

e Creating a file

e Deleting a file

o Extending a file

e Truncating a file

o Setting file information

e Renaming a file

o Changing the security applied to a file
The redo and undo information in an update record must be carefully designed because although
NTFS undoes a transaction, recovers from a system failure, or even operates normally, it might try
to redo a transaction that has already been done or, conversely, to undo a transaction that never
occurred or that has already been undone. Similarly, NTFS might try to redo or undo a transaction
consisting of several update records, only some of which are complete on disk. The format of the
update records must ensure that executing redundant redo or undo operations is idempotent, that is,
has a neutral effect. For example, setting a bit that is already set has no effect, but toggling a bit that
has already been toggled does. The file system must also handle intermediate volume states
correctly.

Checkpoint records In addition to update records, NTFS periodically writes a checkpoint record to
the log file, as illustrated in Figure 12-37.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 49 of 63

LFS restarl area Logging area
Log file records
LSM LSN LSN LSM
NTFS restart | F058 059 2060 | 2061 \ S

Checkpoint record
Figure 12-37 Checkpoint record in the log file

A checkpoint record helps NTFS determine what processing would be needed to recover a volume if
a crash were to occur immediately. Using information stored in the checkpoint record, NTFS knows,
for example, how far back in the log file it must go to begin its recovery. After writing a checkpoint
record, NTFS stores the LSN of the record in the restart area so that it can quickly find its most
recently written checkpoint record when it begins file system recovery after a crash occurs.

Although the LFS presents the log file to NTFS as if it were infinitely large, it isn't. The generous
size of the log file and the frequent writing of checkpoint records (an operation that usually frees up
space in the log file) make the possibility of the log file's filling up a remote one. Nevertheless, the
LFS accounts for this possibility by tracking several numbers:

o The available log space

o The amount of space needed to write an incoming log record and to undo the write, should that
be necessary

e The amount of space needed to roll back all active (noncommitted) transactions, should that be
necessary

If the log file doesn't contain enough available space to accommodate the total of the last two items,
the LFS returns a "log file full" error and NTFS raises an exception. The NTFS exception handler
rolls back the current transaction and places it in a queue to be restarted later.

To free up space in the log file, NTFS must momentarily prevent further transactions on files. To do
so, NTFS blocks file creation and deletion and then requests exclusive access to all system files and
shared access to all user files. Gradually, active transactions either are completed successfully or
receive the "log file full” exception. NTFS rolls back and queues the transactions that receive the
exception.

Once it has blocked transaction activity on files as just described, NTFS calls the cache manager to
flush unwritten data to disk, including unwritten log file data. After everything is safely flushed to
disk, NTFS no longer needs the data in the log file. It resets the beginning of the log file to the
current position, making the log file "empty.” Then it restarts the queued transactions. Beyond the
short pause in 1/0 processing, the "log file full" error has no effect on executing programs.

This scenario is one example of how NTFS uses the log file not only for file system recovery but
also for error recovery during normal operation. You'll find out more about error recovery in the
following section.

Recovery

NTFS automatically performs a disk recovery the first time a program accesses an NTFS volume
after the system has been booted. (If no recovery is needed, the process is trivial.) Recovery depends
on two tables NTFS maintains in memory:

e The transaction table keeps track of transactions that have been started but aren't yet
committed. The suboperations of these active transactions must be removed from the disk
during recovery.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 50 of 63

o The dirty page table records which pages in the cache contain modifications to the file system
structure that haven't yet been written to disk. This data must be flushed to disk during
recovery.

NTFS writes a checkpoint record to the log file once every 5 seconds. Just before it does, it calls the
LFS to store a current copy of the transaction table and of the dirty page table in the log file. NTFS
then records in the checkpoint record the LSNs of the log records containing the copied tables.
When recovery begins after a system failure, NTFS calls the LFS to locate the log records
containing the most recent checkpoint record and the most recent copies of the transaction and dirty
page tables. It then copies the tables to memory.

The log file usually contains more update records following the last checkpoint record. These update
records represent volume modifications that occurred after the last checkpoint record was written.
NTFS must update the transaction and dirty page tables to include these operations. After updating
the tables, NTFS uses the tables and the contents of the log file to update the volume itself.

To effect its volume recovery, NTFS scans the log file three times, loading the file into memory
during the first pass to minimize disk 1/0. Each pass has a particular purpose:

1. Analysis

2. Redoing transactions

3. Undoing transactions
Analysis Pass
During the analysis pass, as shown in Figure 12-38, NTFS scans forward in the log file from the
beginning of the last checkpoint operation to find update records and use them to update the
transaction and dirty page tables it copied to memory. Notice in the figure that the checkpoint

operation stores three records in the log file and that update records might be interspersed among
these records. NTFS therefore must start its scan at the beginning of the checkpoint operation.

Analysis pass

Cx age
'

Beginning of checkpoint operation |

Updatel |Transadiun} ‘Ched;ponw IUpda!e| IUpdate
record table record record record [7
A

End of checkpoint operation

Figure 12-38 Analysis pass

Most update records that appear in the log file after the checkpoint operation begins represent a
modification to either the transaction table or the dirty page table. If an update record is a
"transaction committed" record, for example, the transaction the record represents must be removed
from the transaction table. Similarly, if the update record is a "page update” record that modifies a
file system data structure, the dirty page table must be updated to reflect that change.

Once the tables are up to date in memory, NTFS scans the tables to determine the LSN of the oldest
update record that logs an operation that hasn't been carried out on disk. The transaction table
contains the LSNs of the noncommitted (incomplete) transactions, and the dirty page table contains
the LSNs of records in the cache that haven't been flushed to disk. The LSN of the oldest update
record that NTFS finds in these two tables determines where the redo pass will begin. If the last
checkpoint record is older, however, NTFS will start the redo pass there instead.

Redo Pass

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 51 of 63

During the redo pass, as shown in Figure 12-39, NTFS scans forward in the log file from the LSN of
the oldest update record, which it found during the analysis pass. It looks for "page update™ records,
which contain volume modifications that were written before the system failure but that might not
have been flushed to disk. NTFS redoes these updates in the cache.

Redo pass
Update Dirty page| |Update | [Transaction| [Checkpoint | | Update
©olrecord | T 7 table record lable racord record | ©
Vi

l
Baginning of checkpoint oparation

Oldest unwritten log record

Figure 12-39 Redo pass

When NTFS reaches the end of the log file, it has updated the cache with the necessary volume
modifications and the cache manager's lazy writer can begin writing cache contents to disk in the
background.

Undo Pass

After it completes the redo pass, NTFS begins its undo pass, in which it rolls back any transactions
that weren't committed when the system failed. Figure 12-40 shows two transactions in the log file;
transaction 1 was committed before the power failure, but transaction 2 wasn't. NTFS must undo
transaction 2.

Powear tailure
Undo pass %
LSN LSM LSN LSN LSN
4044 40:5 4046 4047 4048 4049
L
I rransaction 1 “Transaction commited” recaord

DTra.nsmion 2

Figure 12-40 Undo pass

Suppose that transaction 2 created a file, an operation that comprises three suboperations, each with
its own update record. The update records of a transaction are linked by backward pointers in the log
file because they are usually not contiguous.

The NTFS transaction table lists the LSN of the last-logged update record for each noncommitted
transaction. In this example, the transaction table identifies LSN 4049 as the last update record
logged for transaction 2. As shown from right to left in Figure 12-41, NTFS rolls back transaction 2.

LSN LSMN LSN LSN LSM
4044 4045 4049 4047 4048 4049
[rraneacsi :
Transaction 1 Redo: Set bits 39 in the bitmap
[Jtransaction 2 Unde: Clear bits 3-0 inthe bimap

Redo: Add the Tilenams to the indax
Unde: Memove the filename fromthe index

Redao: Allocateinitialize an MFT file record
Undo: Deallocale the file record

Figure 12-41 Undoing a transaction

After locating LSN 4049, NTFS finds the undo information and executes it, clearing bits 3 through 9
in its allocation bitmap. NTFS then follows the backward pointer to LSN 4048, which directs it to

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 52 of 63

remove the new filename from the appropriate filename index. Finally, it follows the last backward
pointer and deallocates the MFT file record reserved for the file, as the update record with LSN
4046 specifies. Transaction 2 is now rolled back. If there are other noncommitted transactions to
undo, NTFS follows the same procedure to roll them back. Because undoing transactions affects the
volume's file system structure, NTFS must log the undo operations in the log file. After all, the
power might fail again during the recovery, and NTFS would have to redo its undo operations!

When the undo pass of the recovery is finished, the volume has been restored to a consistent state.
At this point, NTFS flushes the cache changes to disk to ensure that the volume is up to date. NTFS
then writes an "empty" LFS restart area to indicate that the volume is consistent and that no recovery
need be done if the system should fail again immediately. Recovery is complete.

NTFS guarantees that recovery will return the volume to some preexisting consistent state, but not
necessarily to the state that existed just before the system crash. NTFS can't make that guarantee
because, for performance, it uses a "lazy commit" algorithm, which means that the log file isn't
immediately flushed to disk each time a "transaction committed" record is written. Instead,
numerous "transaction committed" records are batched and written together, either when the cache
manager calls the LFS to flush the log file to disk or when the LFS writes a checkpoint record (once
every 5 seconds) to the log file. Another reason the recovered volume might not be completely up to
date is that several parallel transactions might be active when the system crashes and some of their
"transaction committed" records might make it to disk whereas others might not. The consistent
volume that recovery produces includes all the volume updates whose "transaction committed"
records made it to disk and none of the updates whose "transaction committed" records didn't make
it to disk.

NTFS uses the log file to recover a volume after the system fails, but it also takes advantage of an
important "freebie” it gets from logging transactions. File systems necessarily contain a lot of code
devoted to recovering from file system errors that occur during the course of normal file 1/0.
Because NTFS logs each transaction that modifies the volume structure, it can use the log file to
recover when a file system error occurs and thus can greatly simplify its error handling code. The
"log file full” error described earlier is one example of using the log file for error recovery.

Most 1/O errors a program receives aren't file system errors and therefore can't be resolved entirely
by NTFS. When called to create a file, for example, NTFS might begin by creating a file record in
the MFT and then enter the new file's name in a directory index. When it tries to allocate space for
the file in its bitmap, however, it could discover that the disk is full and the create request can't be
completed. In such a case, NTFS uses the information in the log file to undo the part of the operation
it has already completed and to deallocate the data structures it reserved for the file. Then it returns a
"disk full" error to the caller, which in turn must respond appropriately to the error.

[Previous] [Next]

NTFS Bad-Cluster Recovery

The volume managers included with Windows 2000, FtDisk (for basic disks) and Logical Disk
Manager (LDM, for dynamic disks), can recover data from a bad sector on a fault tolerant volume,
but if the hard disk doesn't use the SCSI protocol or runs out of spare sectors, a volume manager
can't perform sector sparing to replace the bad sector. (See Chapter 10 for more information on the
volume managers.) When the file system reads from the sector, the volume manager instead recovers
the data and returns the warning to the file system that there is only one copy of the data.

The FAT file system doesn't respond to this volume manager warning. Moreover, neither these file
systems nor the volume managers keep track of the bad sectors, so a user must run the Chkdsk or
Format utility to prevent a volume manager from repeatedly recovering data for the file system.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 53 of 63

Both Chkdsk and Format are less than ideal for removing bad sectors from use. Chkdsk can take a
long time to find and remove bad sectors, and Format wipes all the data off the partition it's
formatting.

In the file system equivalent of a volume manager's sector sparing, NTFS dynamically replaces the
cluster containing a bad sector and keeps track of the bad cluster so that it won't be reused. (Recall
that NTFS maintains portability by addressing logical clusters rather than physical sectors.) NTFS
performs these functions when the volume manager can't perform sector sparing. When a volume
manager returns a bad-sector warning or when the hard disk driver returns a bad-sector error, NTFS
allocates a new cluster to replace the one containing the bad sector. NTFS copies the data that the
volume manager has recovered into the new cluster to reestablish data redundancy.

Figure 12-42 shows an MFT record for a user file with a bad cluster in one of its data runs as it
exited before the cluster went bad. When it receives a bad-sector error, NTFS reassigns the cluster
containing the sector to its bad-cluster file. This prevents the bad cluster from being allocated to
another file. NTFS then allocates a new cluster for the file and changes the file's VCN-to-LCN
mappings to point to the new cluster. This bad-cluster remapping (introduced earlier in this chapter)
is illustrated in Figure 12-43. Cluster number 1357, which contains the bad sector, is replaced by a
new cluster, number 1049.

Standard

information Filename Data
Starting Starting Number of| |
YCM LCMN clusters i
4] 1355 3
User 3 1588 a
file
WCN 0 1 2 3 4 5
Bad
L LCM 13585 1356 1357 1588 18589 1590

Figure 12-42 MFT record for a user file with a bad cluster

Bad-sector errors are undesirable, but when they do occur, the combination of NTFS and volume
managers provides the best possible solution. If the bad sector is on a redundant volume, the volume
manager recovers the data and replaces the sector if it can. If it can't replace the sector, it returns a
warning to NTFS and NTFS replaces the cluster containing the bad sector.

If the volume isn't configured as a redundant volume, the data in the bad sector can't be recovered.
When the volume is formatted as a FAT volume and the volume manager can't recover the data,
reading from the bad sector yields indeterminate results. If some of the file system's control
structures reside in the bad sector, an entire file or group of files (or potentially, the whole disk) can
be lost. At best, some data in the affected file (often, all the data in the file beyond the bad sector) is
lost. Moreover, the FAT file system is likely to reallocate the bad sector to the same or another file
on the volume, causing the problem to resurface.

Like the other file systems, NTFS can't recover data from a bad sector without help from a volume
manager. However, NTFS greatly contains the damage a bad sector can cause. If NTFS discovers
the bad sector during a read operation, it remaps the cluster the sector is in, as shown in Figure 12-
43. If the volume isn't configured as a redundant volume, NTFS returns a "data read" error to the
calling program. Although the data that was in that cluster is lost, the rest of the file—and the file
system—remains intact; the calling program can respond appropriately to the data loss; and the bad
cluster won't be reused in future allocations. If NTFS discovers the bad cluster on a write operation
rather than a read, NTFS remaps the cluster before writing and thus loses no data and generates no
error.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 54 of 63

[Standard
information Filename Data

Starli Starting Number of v
‘..I’CNn‘g LCNng clusters (

Bad- _— Q 1357 1
cluster
file VCN 0
Bad
L LCM 1357
[~ standard
information Filename Data
Starting Starting Number of| _/
VCN LCHN clusters {
o] 1355 2
User
file 2 1049 1
3 1588 3
VCN 0 1 2 3 E 5
'— LCM 1355 1356 1049 1588 1589 15890

Figure 12-43 Bad-cluster remapping

The same recovery procedures are followed if file system data is stored in a sector that goes bad. If
the bad sector is on a redundant volume, NTFS replaces the cluster dynamically, using the data
recovered by the volume manager. If the volume isn't redundant, the data can't be recovered and
NTFS sets a bit in the volume file that indicates corruption on the volume. The NTFS Chkdsk utility
checks this bit when the system is next rebooted, and if the bit is set, Chkdsk executes, fixing the file
system corruption by reconstructing the NTFS metadata.

In rare instances, file system corruption can occur even on a fault tolerant disk configuration. A
double error can destroy both file system data and the means to reconstruct it. If the system crashes
while NTFS is writing the mirror copy of an MFT file record, of a filename index, or of the log file,
for example, the mirror copy of such file system data might not be fully updated. If the system were
rebooted and a bad-sector error occurred on the primary disk at exactly the same location as the
incomplete write on the disk mirror, NTFS would be unable to recover the correct data from the disk
mirror. NTFS implements a special scheme for detecting such corruptions in file system data. If it
ever finds an inconsistency, it sets the corruption bit in the volume file, which causes Chkdsk to
reconstruct the NTFS metadata when the system is next rebooted. Because file system corruption is
rare on a fault tolerant disk configuration, Chkdsk is seldom needed. It is supplied as a safety
precaution rather than as a first-line data recovery strategy.

The use of Chkdsk on NTFS is vastly different from its use on the FAT file system. Before writing
anything to disk, FAT sets the volume's dirty bit and then resets the bit after the modification is
complete. If any I/O operation is in progress when the system crashes, the dirty bit is left set and
Chkdsk runs when the system is rebooted. On NTFS, Chkdsk runs only when unexpected or
unreadable file system data is found and NTFS can't recover the data from a redundant volume or
from redundant file system structures on a single volume. (The system boot sector is duplicated, as
are the parts of the MFT required for booting the system and running the NTFS recovery procedure.
This redundancy ensures that NTFS will always be able to boot and recover itself.)

Table 12-6 summarizes what happens when a sector goes bad on a disk volume formatted for one of
the Windows 2000-supported file systems according to various conditions that we've described in
this section.

Table 12-6 Summary of NTFS Data Recovery Scenarios

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 55 of 63

With a SCSI disk that has spare With a non-SCSI disk or a disk

Scenario sectors with no spare sectors*
Fault tolerant 1. Volume manager recovers the 1. Volume manager recovers the
volume** data. data.

2. Volume manager performs 2. Volume manager sends the data
sector sparing (replaces the and a bad-sector error to the file
bad sector). system.

3. File system remains unaware 3. NTFS performs cluster
of the error. remapping.

Non-fault- 1. Volume manager can't recover 1. Volume manager can't recover
tolerant volume the data. the data.

2. Volume manager sends a bad- 2. Volume manager sends a bad-
sector error to the file system. sector error to the file system.

3. NTFS performs cluster 3. NTFS performs cluster
remapping. Data is lostt. remapping. Data is lostt.

* In neither of these cases can a volume manager perform sector sparing: (1) hard disks that don't
use the SCSI protocol have no standard interface for providing sector sparing; (2) some hard disks
don't provide hardware support for sector sparing, and SCSI hard disks that do provide sector
sparing can eventually run out of spare sectors if a lot of sectors go bad.

** A fault tolerant volume is one of the following: a mirror set or a RAID-5 set.
T In a write operation, no data is lost: NTFS remaps the cluster before the write.

If the volume on which the bad sector appears is a fault tolerant volume (a mirrored or RAID-5
volume), and if the hard disk is one that supports sector sparing (and that hasn't run out of spare
sectors), which file system you're using—FAT or NTFS—doesn't matter. The volume manager
replaces the bad sector without the need for user or file system intervention.

If a bad sector is located on a hard disk that doesn't support sector sparing, the file system is
responsible for replacing (remapping) the bad sector or—in the case of NTFS—the cluster in which
the bad sector resides. The FAT file system doesn't provide sector or cluster remapping. The benefits
of NTFS cluster remapping are that bad spots in a file can be fixed without harm to the file (or harm
to the file system, as the case may be) and that the bad cluster won't be reallocated to the same or
another file.

[Previous] [Next]

Encrypting File System Security

EFS security relies on Windows 2000 cryptography support, which Microsoft introduced in
Windows NT 4. The first time a file is encrypted, EFS assigns the account of the user performing the
encryption a private/public key pair for use in file encryption. Users can encrypt files via Windows
Explorer by opening a file's Properties dialog box, pressing Advanced, and selecting the Encrypt
Contents To Secure Data option, as shown in Figure 12-44. Users can also encrypt files via a
command-line utility named cipher. Windows 2000 automatically encrypts files that reside in
directories that are designated as encrypted directories. When a file is encrypted, EFS generates a
random number for the file that EFS calls the file's file encryption key (FEK). EFS uses the FEK to
encrypt the file's contents with a stronger variant of the Data Encryption Standard (DES)
algorithm—DESX. EFS stores the file's FEK with the file but encrypts the file with the user's EFS
public key by using the RSA public key-based encryption algorithm. After EFS completes these

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 56 of 63

steps, the file is secure: other users can't decrypt the data without the file's decrypted FEK, and they
can't decrypt the FEK without the private key.

Advanced Attributes 7| x|

| Eﬂ Choose the options you want For this File.

—#rchive and Index attributes

¥ File is ready for archiving

V¥ For Fast searching, allow Indexing Service to index this file

—Compress or Encrypk attributes

™ Compress contents bo save disk space

| | Encrypt contents ko secure data

(04 I Cancel I

Figure 12-44 Encrypt files by using the Advanced Attributes dialog box

EFS uses a private/public key algorithm to encrypt FEKSs. To encrypt file data, EFS uses DESX
because DESX is a symmetric encryption algorithm, which means it uses the same key to encrypt
and decrypt data. Symmetric encryption algorithms are typically very fast, which makes them
suitable for encrypting large amounts of data, such as file data. However, symmetric encryption
algorithms have a weakness: you can bypass their security if you obtain the key. If multiple users
want to share one encrypted file protected only by DESX, each user would require access to the
file's FEK. Leaving the FEK unencrypted would obviously be a security problem, but encrypting the
FEK once would require all the users to share the same FEK decryption key—another potential
security problem.

Keeping the FEK secure is a difficult problem, which EFS addresses with the public key-based half
of its encryption architecture. Encrypting a file's FEK for individual users who access the file lets
multiple users share an encrypted file. EFS can encrypt a file's FEK with each user's public key and
can store each user's encrypted FEK with the file. Anyone can access a user's public key, but no one
can use a public key to decrypt the data that the public key encrypted. The only way users can
decrypt a file is with their private key, which the operating system must access and typically stores
in a secure location. A user's private key decrypts the user's encrypted copy of a file's FEK.
Windows 2000 stores private keys on a computer's hard disk (which isn't terribly secure), but
subsequent releases of the operating system will let users store their private key on portable media
such as smart cards. Public key-based algorithms are usually slow, but EFS uses these algorithms
only to encrypt FEKSs. Splitting key management between a publicly available key and a private key
makes key management a little easier than symmetric encryption algorithms do and solves the
dilemma of keeping the FEK secure.

Several components work together to make EFS work, as the diagram of EFS architecture in Figure
12-45 shows. As you can see, EFS is implemented as a device driver that runs in kernel mode and is
tightly connected with the NTFS file system driver. Whenever NTFS encounters an encrypted file,
NTFS executes functions in the EFS driver that the EFS driver registered with NTFS when EFS
initialized. The EFS functions encrypt and decrypt file data as applications access encrypted files.
Although EFS stores an FEK with a file's data, users' public keys encrypt the FEK. To encrypt or
decrypt file data, EFS must decrypt the file's FEK with the aid of cryptography services that reside
in user mode.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 57 of 63

Cryptagraphic
service
providers

Microsoft Base
Cryptographic

Lsasmy Provider 1.0
Lsass Application

~ User mode

o Kernel made
EFS Encrypted
\ callouts W file access
KSecOD [-==| EFS o
B J""‘L
NTFS

Figure 12-45 EFS architecture

The Local Security Authority Subsystem (Lsass - \Winnt\System32\Lsass.exe) manages logon
sessions but also handles EFS key management chores. For example, when the EFS driver needs to
decrypt an FEK in order to decrypt file data a user wants to access, the EFS driver sends a request to
Lsass. EFS sends the request via a local procedure call (LPC). The KSecDD (\Winnt\System32
\Drivers\Ksecdd.sys) device driver exports functions for other drivers that need to send LPC
messages to Lsass. The Local Security Authority Server (Lsasrv - \Winnt\System32\Lsasrv.dll)
component of Lsass that listens for remote procedure call (RPC) requests passes requests to decrypt
an FEK to the appropriate EFS-related decryption function, which also resides in Lsasrv. Lsasrv
uses functions in Microsoft's CryptoAPI (also referred to as CAPI) to decrypt the FEK, which the
EFS driver sent to Lsass in encrypted form.

CryptoAPI comprises cryptographic service provider (CSP) DLLs that make various cryptography
services (such as encryption/decryption and hashing) available to applications. The CSP DLLs
manage retrieval of user private and public keys, for example, so that Lsasrv doesn't need to concern
itself with the details of how keys are protected or even with the details of the encryption algorithms.
After Lsasrv decrypts an FEK, Lsasrv returns the FEK to the EFS driver via an LPC reply message.
After EFS receives the decrypted FEK, EFS can use DESX to decrypt the file data for NTFS. Let's
look at the details of how EFS integrates with NTFS and how Lsasrv uses CryptoAPI to manage
keys.

Registering Callbacks

NTFS doesn't require the EFS driver's (Winnt\System32\Drivers\Efs.sys) presence to execute, but
encrypted files won't be accessible if the EFS driver isn't present. NTFS has a plug-in interface for
the EFS driver, so when the EFS driver initializes, it can attach itself to NTFS. The NTFS driver
exports several functions for the EFS driver to use, including one that EFS calls to notify NTFS both
of the presence of EFS and of the EFS-related APIs EFS is making available.

Encrypting a File for the First Time

The NTFS driver calls only the EFS functions that register when NTFS encounters an encrypted file.
A file's attributes record that the file is encrypted in the same way that a file records that it is
compressed (discussed earlier in this chapter). NTFS and EFS have specific interfaces for converting
a file from nonencrypted to encrypted form, but user-mode components primarily drive the process.
Windows 2000 lets you encrypt a file in two ways: by using the cipher command-line utility or by

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 58 of 63

checking the Encrypt Contents To Secure Data box in the Advanced Attibutes dialog box for a file
in Windows Explorer. Both Windows Explorer and the cipher command rely on the EncryptFile
Win32 API that the Advapi32.dll (Advanced Win32 APIs DLL) exports. Advapi32 loads another
DLL, Feclient.dll (File Encryption Client DLL), to obtain APIs that Advapi32 can use to invoke
EFS interfaces in Lsasrv via LPCs.

When Lsasrv receives an LPC message from Feclient to encrypt a file, Lsasrv uses the Windows
2000 impersonation facility to impersonate the user that ran the application (either cipher or
Windows Explorer) that is encrypting the file. This procedure lets Windows 2000 treat the file
operations that Lsasrv performs as if the user who wants to encrypt the file is performing them.
Lsasrv usually runs in the System account. (The System account is described in Chapter 8.) In fact,
if it doesn't impersonate the user, Lsasrv usually won't have permission to access the file in question.

Lsasrv next creates a log file in the volume's System Volume Information directory into which
Lsasrv records the progress of the encryption process. The log file usually has the name efs0.log, but
if other files are undergoing encryption, increasing numbers replace the 0 until a unique log file
name for the current encryption is created.

CryptoAPI relies on information that a user's registry profile stores, so Lsasrv next uses the
LoadUserProfile API function of Userenv.dll (User Environment DLL) to load the profile into the
registry of the user it is impersonating. Typically, the user profile is already loaded, because
Winlogon loads a user's profile when a user logs on. However, if a user uses the Windows 2000
RunAs command to log on to a different account, when you try to access encrypted files from that
account, the account's profile might not load.

Lsasrv then generates an FEK for the file by using the RSA encryption facilities of the Microsoft
Base Cryptographic Provider 1.0 CSP.

Constructing Key Rings

At this point, Lsasrv has an FEK and can construct EFS information to store with the file, including
an encrypted version of the FEK. Lsasrv reads the
HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\EFS\CurrentKeys\CertificateHash value of the user performing the encryption
to obtain the user's public key signature. (Note that this key doesn't appear in the registry until a file
or folder is encrypted.) Lsasrv uses the signature to access the user's public key and encrypt FEKSs.

Lsasrv can now construct the information that EFS stores with the file. EFS stores only one block of
information in an encrypted file, and that block contains an entry for each user sharing the file.
These entries are called key entries, and EFS stores them in the Data Decryption Field (DDF)
portion of the file's EFS data. A collection of multiple key entries is called a key ring, because, as
mentioned earlier, EFS lets multiple users share encrypted files.

Figure 12-46 shows a file's EFS information format and key entry format. EFS stores enough
information in the first part of a key entry to precisely describe a user's public key. This data
includes the user's security ID (SID), the container name in which the key is stored, the
cryptographic provider name, and the private/public keypair certificate hash. The second part of the
key entry contains an encrypted version of the FEK. Lsasrv uses the CryptoAPI to encrypt the FEK
with the RSA algorithm and the user's public key.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 59 of 63

EFS information

Varsion Koy ontry
Header
Checksum User SID
Nurmmber of DDF key entries (516-21-.)
Confainer name
Data CDF key antry 1 {ee341-2144-55ba...)
decryption :
field Provider nama
{Micrasolt Base Cryptographic Provider 1.0)
DDF key entry 2
EF% certilicate hash
Number of DRF key entries Leraaen)
e wﬂf:ﬁ Encrypled FEK
field DRF key entry 1 {o3ledize...)

Figure 12-46 Format of EFS information and key entries

Next, Lsasrv creates another key ring that contains recovery key entries. EFS stores information
about recovery key entries in a file's Data Recovery Field (DRF). The format of DRF entries is
identical to the format of DDF entries. The DRF's purpose is to let designated accounts, or Recovery
Agents, decrypt a user's file when administrative authority must have access to the user's data. For
example, suppose a company employee used a CryptoAPI that let him store his private key on a
smart card, and then he lost the card. Without Recovery Agents, no one could recover his encrypted
data.

Recovery Agents are defined with the Encrypted Data Recovery Agents security policy of the local
computer or domain. This policy is available from the Group Policy MMC snap-in, as shown in
Figure 12-47. When you use the Recovery Agent Wizard (by right-clicking on Encrypted Data
Recovery Agents and selecting Encrypted Recovery Agent from the New option), you can add
Recovery Agents and specify which private/public key pairs (designated by their certificates) the
Recovery Agents use for EFS recovery. Lsasrv interprets the recovery policy when it initializes and
when it receives notification that the recovery policy has changed. EFS creates a DRF key entry for
each Recovery Agent by using the cryptographic provider registered for EFS recovery. The default
Recovery Agent provider is the RSA encryption facility of Base Cryptographic Provider 1.0—the
same provider Lsasrv uses for user keys.

i Comeoled - [Conenle floatiLocsl Compulnr PolcphComputer Configwstion\Windows SollingshSecuity Settings’. . 9[=]
1 Corscle wfrdow Heb DEHE @ =imix
|| Beon Vew Frones | @ = [Em B DEE
Tret | Fureortes | lowed To - | |
=) Cormee Flod | =] Adrirnatr]
=} Local Compntes Policy
E (& Computer Confipasion
] Sothams Safng:
= o) Wirddows Sating:
Y S criphs Stk hutdoer]
= [P Srcurty Seitreg

(i Accaunt Pokors
1 () Lozal Febismt

9, 1P Seuity Pulbtas on Local Wiathis
W]] et g Terplaled
1+ M Uter Confpatstion

|Erciypled Dot Fscuvery Agenis thore cordin 1 coticate [

Figure 12-47 Encrypted Data Recovery Agents group policy

In the final step in creating EFS information for a file, Lsasrv calculates a checksum for the DDF
and DRF by using the MD5 hash facility of Base Cryptographic Provider 1.0. Lsasrv stores the
checksum's result in the EFS information header. EFS references this checksum during decryption to
ensure that the contents of a file's EFS information haven't become corrupted or been tampered with.

Encrypting File Data
Figure 12-48 illustrates the flow of the encryption process. After Lsasrv constructs the necessary

information for a file a user wants to encrypt, it can begin encrypting the file. Lsasrv creates a
backup file, EfsO.tmp, for the file undergoing encryption. (Lsasrv uses higher numbers in the backup

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 60 of 63

filename if other backup files exist.) Lsasrv creates the backup file in the directory that contains the
file undergoing encryption. Lsasrv applies a restrictive security descriptor to the backup file so that
only the System account can access the file's contents. Lsasrv next initializes the log file that it
created in the first phase of the encryption process. Finally, Lsasrv records in the log file that the
backup file has been created. Lsasrv encrypts the original file only after the file is completely backed

up.

Lsasrv next sends the EFS device driver, through NTFS, a command to add to the original file the
EFS information that it just created. NTFS receives this command, but because NTFS doesn't
understand EFS commands, NTFS calls the EFS driver. The EFS driver takes the EFS information
that Lsasrv sent and uses exported NTFS functions to apply the information to the file. The exported
NTFS functions let EFS add the $LOGGED_UTILITY_STREAM attribute to NTFS file. Execution
returns to Lsasrv, which copies the contents of the file undergoing encryption to the backup file.
When the backup copy is complete, including backups of all alternate data streams, Lsasrv records
in the log file that the backup file is up to date. Lsasrv then sends another command to NTFS to tell
NTFS to encrypt the contents of the original file.

Application

1o an encryplad file.

x@ Application writes data

User mode

l Kernel mode
@ NTFS places data in

WIES in fila systam cache, i b
-m “F syslem driver | € manager
; (3 Cache manager lazy writes
NTFS asks EFS driver data to disk via NTFS.
to encrypt lile contents

headed te disk

@ MWTFS writes encrypled
fila contents to disk.

Figure 12-48 Flow of EFS

When NTFS receives the EFS command to encrypt the file, NTFS deletes the contents of the
original file and copies the backup data to the file. After NTFS copies each section of the file, NTFS
flushes the section's data from the file system cache, which prompts the cache manager to tell NTFS
to write the file's data to disk. Because the file is marked as encrypted, at this point in the file-writing
process, NTFS calls EFS to encrypt the data before NTFS writes the data to disk. EFS uses the
unencrypted FEK that NTFS passes it to perform DESX encryption of the file, one sector (512
bytes) at a time.

On Windows 2000 versions approved for export outside the United States, the EFS driver
implements a 56-bit key DESX encryption. For the U.S.-only version of Windows 2000, the key is
128 bits long.

After EFS encrypts the file, Lsasrv records in the log file that the encryption was successful and
deletes the file's backup copy. Finally, Lsasrv deletes the log file and returns control to the
application that requested the file's encryption.

Encryption Process Summary

The following list summarizes the steps EFS performs to encrypt a file:

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 61 of 63

1. The user profile is loaded if necessary.

2. Alog file is created in the System Volume Information directory with the name Efsx.log,
where X is a unique number (for example, Efs0.log). As subsequent steps are performed,
records are written to the log so that the file can be recovered in case the system fails during
the encryption process.

3. Base Cryptographic Provider 1.0 generates a random 128-bit FEK for the file.

4. A user EFS private/public key pair is generated or obtained.
HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\EFS\CurrentKeys\CertificateHash identifies the user's key pair.

5. A DDF key ring is created for the file that has an entry for the user. The entry contains a copy
of the FEK that has been encrypted with the user's EFS public key.

6. A DRF key ring is created for the file. It has an entry for each Recovery Agent on the system,
with each entry containing a copy of the FEK encrypted with the agent's EFS public key.

7. A backup file with a name in the form EfsO.tmp is created in the same directory as the file to be
encrypted.

8. The DDF and DRF key rings are added to a header and augment the file as its EFS attribute.
9. The backup file is marked encrypted, and the original file is copied to the backup.

10. The original file's contents are destroyed, and the backup is copied to the original. This copy
operation results in the data in the original file being encrypted because the file is now marked
as encrypted.

11. The backup file is deleted.
12. The log file is deleted.
13. The user profile is unloaded (if it was loaded in step 1).

If the system crashes during the encryption process, either the original file remains intact or the
backup file contains a consistent copy. When Lsasrv initializes after a system crash, it looks for log
files under the System Volume Information subdirectory on each NTFS volume on the system. If
Lsasrv finds one or more log files, it examines their contents and determines how recovery should
take place. Lsasrv deletes the log file and the corresponding backup file if the original file wasn't
modified at the time of the crash; otherwise, Lsasrv copies the backup file over the original, partially
encrypted file and then deletes the log and backup. After Lsasrv processes log files, the file system
will be in a consistent state with respect to encryption, with no loss of user data.

The Decryption Process

The decryption process begins when a user opens an encrypted file. NTFS examines the file's
attributes when opening the file and then executes a callback function in the EFS driver. The EFS
driver reads the SLOGGED_UTILITY_STREAM attribute associated with the encrypted file. To
read the attribute, the driver calls EFS support functions that NTFS exports for EFS's use. NTFS
completes the necessary steps to open the file. The EFS driver ensures that the user opening the file
has access privileges to the file's encrypted data (that is, that an encrypted FEK in either the DDF or
DRF key rings corresponds to a private/public key pair associated with the user). As EFS performs
this validation, EFS obtains the file's decrypted FEK to use in subsequent data operations the user
might perform on the file.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 62 of 63

EFS can't decrypt an FEK and relies on Lsasrv (which can use CryptoAPI) to perform FEK
decryption. EFS sends an LPC message by way of the Ksecdd.sys driver to Lsasrv that asks Lsasrv
to obtain the decrypted form of the encrypted FEK in the SLOGGED_UTILITY_STREAM attribute
data (the EFS data) that corresponds to the user who is opening the file.

When Lsasrv receives the LPC message, Lsasrv executes the Userenv.dll (User Environment DLL)
LoadUserProfile API function to bring the user's profile into the registry, if the profile isn't already
loaded. Lsasrv proceeds through each key field in the EFS data, using the user's private key to try to
decrypt each FEK. For each key, Lsasrv attempts to decrypt a DDF or DRF key entry's FEK. If the
certificate hash in a key field doesn't refer to a key the user owns, Lsasrv moves on to the next key
field. If Lsasrv can't decrypt any DDF or DRF key field's FEK, the user can't obtain the file's FEK.
Consequently, EFS denies access to the application opening the file. However, if Lsasrv identifies a
hash as corresponding to a key the user owns, it decrypts the FEK with the user's private key using
CryptoAPI.

Because Lsasrv processes both DDF and DRF key rings when decrypting an FEK, it automatically
performs file recovery operations. If a Recovery Agent that isn't registered to access an encrypted
file (that is, it doesn't have a corresponding field in the DDF key ring) tries to access a file, EFS will
let the Recovery Agent gain access because the agent has access to a key pair for a key field in the
DRF key ring.

Decrypted FEK Caching

Traveling the path from the EFS driver to Lsasrv and back can take a relatively long time—in the
process of decrypting an FEK, CryptoAPI uses results in more than 2000 registry API calls and 400
file system accesses on a typical system. The EFS driver, with the aid of NTFS, uses a cache to try
to avoid this expense.

Decrypting File Data

After an application opens an encrypted file, the application can read from and write to the file.
NTFS calls the EFS driver to decrypt file data as NTFS reads the data from the disk, and before
NTFS places the data in the file system cache. Similarly, when an application writes data to a file,
the data remains in unencrypted form in the file system cache until the application or the cache
manager uses NTFS to flush the data back to disk. When an encrypted file's data writes back from
the cache to the disk, NTFS calls the EFS driver to encrypt the data.

As stated earlier, the EFS driver performs encryption and decryption in 512-byte units. The 512-byte
size is the most convenient for the driver because disk reads and writes occur in multiples of the
512-byte sector.

Backing Up Encrypted Files

An important aspect of any file encryption facility's design is that file data is never available in
unencrypted form except to applications that access the file via the encryption facility. This
restriction particularly affects backup utilities, in which archival media store files. EFS addresses
this problem by providing a facility for backup utilities so that the utilities can back up and restore
files in their encrypted states. Thus, backup utilities don't have to be able to decrypt file data, nor do
they need to decrypt file data in their backup procedures.

Backup utilities use the new EFS API functions OpenEncryptedFileRaw, ReadEncryptedFileRaw,
WriteEncryptedFileRaw, and CloseEncryptedFileRaw in Windows 2000 to access a file's encrypted
contents. The Advapi32.dll library provides these API functions, which all use LPCs to invoke
corresponding functions in Lsasrv. For example, after a backup utility opens a file for raw access
during a backup operation, the utility calls ReadEncryptedFileRaw to obtain the file data. The

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

Chapter 12 -- File Systems Page 63 of 63

Lsasrv function EfsReadFileRaw issues control commands (which the EFS session key encrypts
with DESX) to the NTFS driver to read the file's EFS attribute first and then the encrypted contents.

EfsReadFileRaw might have to perform multiple read operations to read a large file. As
EfsReadFileRaw reads each portion of such a file, Lsasrv sends an RPC message to Advapi32.dll
that executes a callback function that the backup program specified when it issued the
ReadEncryptedFileRaw API function. EfsReadFileRaw hands the encrypted data it just read to the
callback function, which can write the data to the backup media. Backup utilities restore encrypted
files in a similar manner. The utilities call the WriteEncryptedFileRaw API function, which invokes
a callback function in the backup program to obtain the unencrypted data from the backup media
while Lsasrv's EfsWriteFileRaw function is restoring the file's contents.

EXPERIMENT

Viewing EFS Information

EFS has a handful of other API functions that applications can use to manipulate
encrypted files. For example, applications use the AddUsersToEncryptedFile API
function to give additional users access to an encrypted file and
RemoveUsersFromEncryptedFile to revoke users' access to an encrypted file.
Applications use the QueryUsersOnEncryptedFile function to obtain information about a
file's associated DDF and DRF key fields. QueryUsersOnEncryptedFile returns the SID,
certificate hash value, and display information that each DDF and DRF key field contains.
The following output is from the EFSDump utility, included on the companion CD under
\Sysint\Efsdump.exe, when an encrypted file is specified as a command-line argument:

C:\>efsdump test.txt

EFS Information Dumper v1.02

Copyright (C) 1999 Mark Russinovich

Systems Internals - http://www.sysinternals.com

test.txt:
DDF Entry:
SUSANCOMP\Joe:
CN=Joe,L=EFS,0U=EFS File Encryption Certificate
DRF Entry:
SUSANCOMP\Administrator
OU=EFS File Encryption Certificate, L=EFS, CN=Administrator

You can see that the file test.txt has one DDF entry for user Joe and one DRF entry for
Administrator, which is the only Recovery Agent currently registered on the system.

[Previous] [Next]

Conclusion

As you saw in the introduction to this chapter, the overriding goal for NTFS was to provide a file
system that wasn't only reliable but also fast. The performance of Windows 2000 disk 1/0 isn't due
solely to the implementation of NTFS, however. It comes in large measure from synergy between
NTFS and the Windows 2000 cache manager. Together, NTFS and the cache manager achieve
respectable 1/0 performance while providing an unprecedented level of reliability and high-end data
storage features for both workstation and server systems.

file://C:\Documents and Settings\FazekasG\Local Settings\Temp\~hh... 2011.12. 12.

