m ORPHANS IN THE

NTFS WORLD “raining 22

Dustin Hurlbut

AccessData

Orphan Files — Definition

An orphan is defined for files just as it is for humans. Orphan files are files that no longer have a par-
ent; the parent being the folder they were in. If a folder is deleted, the files within it are deleted as well
but are not orphans. The folder and children files are potentially recoverable with the information intact
in the Master File Table ($MFT). To orphan a file, the parent folder is overwritten. At this point, the re-
cords in the $SMFT are still there as are the pointers from the children files to the parent folder, but they
are referencing a parent record in the $MFT that no longer has the correct information. The child has
been severed from the parent irrevocably.

$MFT Records 101

How do FTK and FTK Imager know this? How does it detect that the child file is pointing back to a
parent folder that is no longer correct? The answers lies in the $SMFT records for these files and folders.

Header (Windows 2000 - 48 bytes—Windows XP - 56 bytes)

Standard Information Attribute (SIA) 10 00 00 00 (contains dates/times)

File Name Attribute 30 00 00 00

Other Attributes

Figure 1 - $MFT Record and Attribute Information - 1024 Byte Records

The basic $MFT record for a file or a folder consists of 1024 bytes. Within those 1024 bytes exists a
header (48 bytes for Windows 2000 and 56 bytes for Windows XP). There are various attribute areas
associated with a particular file or folder. Attributes in the $MFT are not like the bit switched attributes
we were used to in DOS such as the hidden, system, or archive bits. $MFT attributes contain informa-
tion about the file in dedicated areas such as date and time stamps, file name, data runs, security, and
other associated information. For the scope of this paper, we will limit our discussion to one attribute
relative to orphan files, the File Name Attribute (FNA).

The File Name Attribute begins with a
“header” of 30 00 00 00. You can locate it Finding the File Name Attribute
in the $MFT by parsing the previous [[-start at the beginning of the $MFT record and move in 56 bytes on an XP
header and attributes to get to it (See Fig- | machine, 48 bytes on a Windows 2000 box.
ure 2)- Once located, it, qlong with the -You will see the Standard Information Attribute (SIA) header of 10 00 00 00.
$NIIFT rI;QCOI’d Teader' contain the data to -Directly behind this header is a four byte value in little endian that will give you
solve this puzzle. the size of the STA.

In the header of any $MFT record for || -For Example, if it is 60h that equates to 90d.
is an entry at offset 16-17d (d in this article || o . . <o ot the beginning of the STA (10 00 00 00) and highlight 90
represents a decimal number) called the | ies over.
stored sequence value. This number is a

o . “You will then see the header 30 00 00 00 which is the beginning of the FNA.
two-byte hex number in little endian for- || 2" en see The header which is the beginning of the

mat. It contains the number of times that Figure 2

Page 1 AccessData -

i gt
A Trainin »
ccessData ining ' Seg

Sequence Value
Offset 16-17d

Allocation Value
Offset 22-23d

SMFT —

Record for

a Parent

Folder

Figure 3 - Location of Sequence and Allocation Values

particular record in the SMFT has been used. When
the $MFT record is created, it will carry the number
01 00h. Each time the object of that record is de-
leted, it will increment by one, but only when that file
or folder is deleted. When the record is reallocated,
the sequence number will not change. It will incre-
ment only when deletion occurs. See Figure 3 for a
graphic depiction of where the sequence number is
located.

Header
SIA 1000 00 00
FNA 30 00 00 00

Other $MFT Attributes

Binary File or Folder Deleted or

Allocated
00 00000000 File Unallocated
01 00000001 File Allocated
02 00000010 Folder Unallocated
03 00000011 Folder Allocated

Figure 4 - Allocation Value Translations

Also in the header of the $SMFT record is a two byte value which indicates the status of the of the record.
This is located at offset 22d (Figure 3). This little endian value indicates whether the record is occupied
by an allocated file or folder, or an unallocated (deleted) file or folder (See Figure 4 for a chart of alloca-

tion number designations).

Evaluating Whether a Child is Orphaned

This information resides in the $MFT record for each folder or file. To answer the questions we
asked at the beginning of the paper; how does FTK know whether the child belongs to the parent and
how does the child keep track of the parent so NTFS knows what is going on? We need the sequence

number and the status number.

Sequence Value

Allocation Value

Header

SIA 10 00 00 00

I

FNA 30 00 00 00

i

Other $MFT Data

8-Byte Child Parent Identifier
Offset 25-32d

Figure 5 - Necessary Information for Parent/Child Link Establishment

= Page 2

AccessData =

Training I 282

To complete the process, we need one more piece of information. We need to know where the child
thinks the parent is. In each $MFT record, there is an eight byte value located 24 bytes from the begin-
ning of the File Name Attribute (See Figure 5). These eight bytes keep track of the parent in a unique
way. The first six bytes are a pointer to the parent’s record number in the $SMFT. To locate the parent
from this number, simply multiply the value found in those six bytes (little endian format) by 1024 (size of
$MFT record) and it will give you the offset of the first byte of the parent’s record location in the $MFT.

The remaining two bytes are the sequence number (in little endian) of the parent record. If the stored
sequence value in the parent is the same as that stored in the child’s File Name Attribute, then that child
is still linked to the parent and all is well.

If the parent is deleted, the parent’s sequence value increments by one. The child still points back to
the parent, but now the sequence numbers don’'t match, the parent is one ahead of the child. This
means that the file’s parent folder has been deleted, and for that matter, so has the child. The parent’s
status will be 02h, folder unallocated. FTK will view this as a deleted folder and the children are consid-
ered associated files, not orphans. How then do we make them orphans?

When adding a file or folder to the $MFT, it does so by sorting down from the top and finding the next
available record. If the parent folder of the children gets reused, the status number changes to either an
active file or active folder. At this point, FTK will render the existing deleted children entries as orphans.
Their record information is still in the $MFT, but their pointer back to the parent is no longer valid as the
parent’s record has been reused in favor of a new file or folder with no connection to those files.

Sequence numbers match Parent Record Allocated File = Child

+1 |Parent record unallocated File = Child
(Deleted)

Parent sequence number

+1 | Parent record allocated File = Orphan

Parent sequence number
or more

Figure 6 - NTFS Orphan Decision Maker

How does FTK know this? It looks at the sequence value in the child’s File Name Attribute for the
parent. If the parent record sequence value is incremented by one, and the status value of the parent
record indicates an allocated file or folder. FTK knows that there is no way the parent can be associated
with that child. If the sequence number is one ahead, and the status of the record is unallocated, it
knows that the child is still associated with the just deleted parent folder. The table in Figure 6 can be
used to chart the status of the parent record.

FTK presents an accurate view of the status of folders and their associated files. In NTFS, orphans
can occur when there is still valid data in the $MFT for each file that points back to a parent, even if that
file's parent has been deleted and its record reused. FTK does not make an assumption that the data in
the parent record is associated with the child, it checks using this procedure we have described. The
Diagram in Figure 7 shows the process of comparing the eight bytes of data in the FNA of the child with
the data in the parent folder to determine their status.

Practical Applications of NTFS Orphans

The Orphan folder in FTK or FTK Imager represents all the files FTK locates in an NTFS environment
that have no legitimate parent folder. To envision how this works you can try this exercise using a
thumb drive formatted in NTFS.

First take a newly formatted thumb drive in NTFS and add two folders to it called; Normal Files and
Orphaned Files. Next, place two text files in the Normal Files folder (call them NormalFilel.txt and Nor-
malFile2.txt) and three text files in the Orphaned Files folder (call these Orphanl.txt, Orphan2.txt, and
Orphan3.txt). Image the thumb drive and call it Imagel. Add this image to FTK Imager.

Page 3 AccessData -

i og
AccessData Training I 2o

Record 30 - I < Allocated or
> - Unallocated
. -

. L]
. .
. L]
\J -
% Parent Folder .
s
. »
. .
* L]
% H Pointers to Parent
% . Sequence Number
.
. :
) -
. .
Record 31 N .
L)
. .
. .
. .
3 2
LJ -
\J L]
“‘ :
L v
. .
. -
. .
. -
. u
. H
. .
. .
.)
Record 32 3 mE ° Eaa
. -
: . ¥
Child 1 . .
. .

Figure 7 - Pointers in the Child File to the Parent Folder

I “FTK Imager

= Fle Mew Mode Help

aa g ha[===2 2.
I|Eviu:|enu:e Tree # | |Fi|e Lisk
= @ Evidence: Image 01.E01 | Fame | Size | Date Madified
=)l Partition 1 [124MB] [Ch3Extend 1EE 11/24)2004 11:00:00 PM
: EI---E OrphanTest [NTFS] [CMormal Files LKE 11/24/2004 11:02:19 PM
- =D Troot] i Eomhaned Files LEE 11/24/2004 11:03:55 FM
00000000 |30 00 00 00 OL. #0 00 00-00 10 00 00 08 00 00 00
Properties 00000010 |10 00 00 DU“SS 0l 00 00-55 01 00 00 OO0 00 00 oo
Gi 00000020 |1£ 00 QO° U0 00 00 01 O0-65 00 55 00 00 OO 00 00
Mame Orphaned Files 00000030 | 1e DEI D0 00 00 00 0L DO0-30 3d 9 bb 79 42 cd 01
&.3 short Filename | ORPHAMN-1 00000040 JE0 cd 09 e 79 dZ cd D1-£0 cd 09 ef 79 d2 cd 01
File Class Directary nnnnnpsn £0 cd 09 es 79 d2 c4 01-10 00 00 00 OO0 00 OO Q0
File Size 360 nuznjnnsu 0d 00 00 00 00 00 00 O0-20 00 00 00 OO0 00 00 00
Physical Size 260 ol *00000070 [0k 03 AF 00 72 00 70 O0-68 OO 61 00 Ge 00 31 00
MFT Record Numbei2s 00000080 |Ze 00 74 00 76 00 74 00-20 00 00 00 OO0 00 O1 00

Figure 8 - $MFT Record Number for Orphan File Folder

Click on the drive root and select the Orphaned Files folder. Select the properties tab in the lower left
corner and view the $SMFT Record number (See Figure 8)

. Inthe example, it is #28. Multiply that record
number by 1024 (the $MFT record size). In this example, it is 28,672

Next, open the $MFT file in the Root Directory and right click on the hex viewing area in the lower

right pane. Select Go To Offset and the resulting calculated offset of 28,672 from this example. This
will place you in the first byte of the $MFT record for the Orphaned File folder

AccessData

Page 4

AccessData
Training

fees

File Yiew Mode Help

& a| 8

Evidence Tree

OE[=Ee 2.

=10 x|

| Date Modified T

= @ Evidence: Image 01.EO1 A | Mame Size | Twpe
El sl Partition 1 [12448] [$Extend LEE Directory 11242004 11:00:00 PM
Elh-" OrphanTest [NTFS] [CSiNarmal Files 1KEB Directory 11f24/2004 11:02:19 PM
E—'D [roat] [Z)Orphaned Files 1KE Directory 11/24/2004 11:03:55 PM
T $BadChus = gatroef IKE Reguar file 11/24/2004 11:00:00 PM
LD $Edtend (e $Badcius OKE Regular file 11/242004 11:00:00 PM
k $5ecure. [t 4Bitmap 32KB Regular file 11/74/2004 11:00:00 FM
= g?;::;gge;”es _ [$B0ot BKE Requlr fils 11/24/2004 11:00:00 PM
oy I [4130 4KB MTFSindex allocation 11/24/2004 11:01:28 PM
@:}:LogFile 2,048 KB Regular file 11/24/2004 11:00:00 PM
Hex Value Interpreter x| M KB Regular file 11/74/2004 11:00:00 FM =
Type | Size | Walue
sinedilens: R 000070y 4c 45 30 00 03 00-6f 05 15 00 00 00 00 00 |[FILEO-=-ge=ses--]
unsigned integer 1-8 1 Q0porTaL0 0z 00 33 00 35 03 00 o0 oo 04 00 oo (B8 -egeceees
FILETIME [UTC] & Leeiion7020 00 00 00 00 OO0 00-09 00 00 00 1 00 00 00 |«rxerrerennrens
FILETIME [ocal] & .+**" | 00007030 (0d 0O D1 OO OO 0D OO 00-10 OO 00 OO0 60 00 00 OO0 |«rrrerenesss
Bl o Dffset s 007040 (00 00 00 00 00 00 00 00-48 00 00 00 18 00 00 OO0 |«««-xn=- Hewroono
D .t 007050 |£0 23 d9 7f 79 d2 o4 01-d0 30 51 df 79 d2 cd OL|-#--y----00-7
timf ["Byte Offset Cos Select al Ctled P 79 d2 o4 0l-d0 4b 7a e5 Ta d2 cd OL|Pe-eye---Ezez
i | B | 1 00 00 00 D0-00 00 00 00 00 00 00 00 |«rxverarennnnnes
Chl 1 0z 01 00 00-00 00 00 00 00 00 00 00 |«reeererennnanns
LA EDW Lok ‘:trlTC 0 00 00 00 00-30 00 00 00 70 Q0 00 00 |«x«-=--- Qeerpres
Capy hex 2kl +H
~Oriin Save selection, e e L
0 00 00 05 D0-£0 23 d9 7f 79 d2 c4 01 $0y
&' Beginning of file E 79 dZ c4 01-30 bS5 de 82 79 d2 cd OL|-#--g---0-H-g-
€ Current postion Find. .. CUrHF | 73 42 c4 01-00 00 D0 00 0D 00 00 00 [~ grereeeerns
4l et e tenek o ko off i 00 00 00-00 00 00 10 00 00 00 00 |rerrerranrensrns
g 00 50 00-48 00 41 00 4e 00 7e 00|--0-ReP-H-A-H--
-
|| kK I I »
Pr = 1= start = 28688, len = 2; clus = 85378; log sec = 85378; phy sec = 85410
For Help, press Fi D@l -

Figure 9 - Sequence and Allocation Values for the Orphaned Files Folder

Highlight the first row of hex numbers. At the beginning of the next row, highlight offsets 16-17d and
note the decimal value in the Hex Value Interpreter tab to the lower left (See Figure 9). This is the se-
quence value and has a value of one in this example as this is the first time the record has been used.

Note offsets 22-23 also shown in Figure 9. This is the allocation value showing whether the folder is
deleted or allocated. In this example, it is three, indicating an allocated folder (for allocation number in-

terpretation, see Figure 4).

Next, open the Orphaned Files folder and highlight the first file, Orphanl.txt. Note the $MFT Record
number (31 in this example). Multiply 31 x 1024 (31,744) to obtain the $MFT offset for this file. Navi-
gate to the $MFT and right click in the hex area to enter this offset to view the record for this file. Note
the sequence value for this file is one, indicating this record has been used only once, and the allocation
number is one, indicating it is an allocated file.

We now must find the eight byte pointer to the parent folder's record. Figure 10 outlines the steps to
locate the pointer. First, highlight the header of the record for Orphanl.txt. In this example it is a Win-
dows XP system so the header is 56 bytes. On a Windows 2000 machine it will be 48 bytes.

The first four bytes after the header are the Standard Information Attribute (SIA) header. It consists
of hex 10 00 00 00 followed immediately by a four byte little endian value that denotes the size of the
SIA. We must sweep those four bytes to interpret them in the Hex Value Interpreter. In the example,

60h = 96d. Place your cursor at the beginning of the SIA and sweep 96 bytes in.

AccessData

Page 5

AccessData
Training

e

Step 2 - Highlight the STA
size byte after the header

a00o7c00 fuli] 2 10 00 00 o0 o0 ooMFILEQ----he------
el AMORICI] 00 01 00 a0 01 00 00 o0 o4 oo Ao " Sfepl—l4@h“ghffhe
il BI00 OO0 00 00 oo oo oo Qo 00 00 OOff-------«--«----. -
Q0007230 4 00 00 00 650 00 o0 oo |EEEEee. header to find the STIA
00007ec40 |00 00 00 00 00 00 00 00 00 15 00 00 0o
00007250 | Bleada e ol _J0_d B T Y = B U= B e 1= P | | T EYS
0o0007e60 IDDDD?CDD|4E 49 4c 45 30 00 03 00-08 62 10 00 00 00 OO0 OO |FILEQ:---h=-----
60 01 00 00 00 04 00 00| ====8r==x"enrennn
aoo
o Hew Value Interpreker e e
oood Tupe | gize | value L10 00 o0 oo oo 00 00 f-eeeeieeanns -
000d zigned integer 18 95 'gg Eg gg 22 #g gg 23 ET 6"';"'H"';"'
0ao £ : : B T I
UUULIEQSI ned ifeger £et 35 £0 cd 09 e6 79 dZ cd OL|==--yroeons e
ono07edo || 00007c70 (20 00 00 00 00 00 OO0 00-00 00 00 00 00 00 00 00| sreereereescens
goon7een || 0000780 (OO0 00 00 02 01 00 Q0-00 00 00 N0 00 00 00 00 e
oooo7een 00007290 00007c0o0 |46 4% 4c 45 30 00 03 00-08
Q0007cal oo007clo|ol 00 01 00 38 00 Ol 00-60
a0-06

00007ec0 oooo7c3o
00007cdo 0ooo07c40
00007ce0 00007c50 | o
000a7cEn oooo07ecen
00oo7c70 (M
oooo7csn
oooo7ceo
00007cal

o
o
o
00007cho | 1) 00007:20
3
3
o
o

ao-
al-
0l-
ao-
ao-

45 0
o ¢
fo ¢
oo o
oo o

Step 3 - Highlight
the SIA to find
the beginning of
the FNA (in this
case 96 bytes in)

oo
0l

fadl | 00007c00 (46 49 4c 45 30 00 03 00-08

Step 5 - The first 6 bytes are the $MFT
Record # for the parent and the last 2
bytes are the parent sequence number (all
in little endian)

gggggChg ;; 0000700 (46 49 4c 45 30
Duuu?czu Sofooo7e1o fo1 0o 01 o0 38
DDDD?C 0| gl P000TC20 DO 00 DO 00 0O
uuuu?C:u op | 20007030 (05 00 04 00 04
° 0000740 (00 00 00 OO0 00
0000750 (30 3d 9c bb 79
00007c60 [£0 cd 09 e 79
0000770 (20 00 00 00 00
Step 4 - Move in 24 bytes 00007can
from the start of the FNA nooo7eso
to find the 8-byte child to ouunEal
arent pointer i
P P 00007k
= .
0o007cd séﬁid integer 18 28
00007 cef unsigned integer 18 23
FILETIME [UTC] & -
00007ct FILETIME [lacall &
DOS date 2
DOS time 2
time_t (UTC) 4
time_t (lacal] 4

Bule s Littl= enc

i~ Big sodiz

00007cl0(0L 00 O1 0O 38 00 Ol 00-60
00007czZ0 (00 00 00 00 00 00 00 00-06
00007c30(08 00 04 00 04 00 00 00-10
00007ec40 (00 00 00 00 00 00 00 00-43
00007¢50 (30 3d 9c bb 72 d2 o4 01l-f0
00007e60(£0 cd 09 e6 79 d2 c4 01-f0
00007¢70 (20 00 00 0O 00 00 00 00-00
00007030 (00 00 00 00 O3 01 OO0 00-00
00007c80 (00 00 00 00 00 00 00 00-30
00007ca0 (00 00 00 00 00 00 04 00-33
ano07ebn 00 00 00 00 [ENEEiEkdl
00007ccO |30 3d 9¢ bb 79 d2 o4 01-30
00007ed0 (30 3d 9c hh 79 d2 c4 01-00
00007ce0 (00 00 00 0O OO OO0 OO0 00-20
a0007ef0 [0h 03 4F 00 72 00 70 00-63

cd 09
cd 09
00 oo
00 0o
00 oo
00 0o
3d 9c
3d 9c
00 oo
00 oo
00 &1

0o oo oo
04 00 00
0o oo oo

00 00 00f--
00 00 oaj--

da c4 01
dz cd4 01
00 0o oo
00 00 oo

00 00 00|«
0D 01 00f--

dZ cd 01

dz c4 01|0=
00 00 00 (0=

00 0o oo
0o 31 00

c-0-r-prheasnel-

Figure 10 - Steps to find the Sequence and Allocation Pointer from Child o Parent

The next four bytes after the SIA is the File Name Attribute header which is 30 00 00 00h. Place the
cursor at the beginning of this attribute, in front of the byte “30h”, and sweep in 24 bytes. The next 8
bytes are the child to parent pointer for the file.

The first six bytes of this eight byte value is the $MFT record number for the parent. You can sweep
them and read the parent’s record number from the Hex Value Interpreter. In our example the six bytes
in Little Endian are 1C 00 00 00 00 00 which equates to decimal 28. This is the SMFT record number for
the Orphaned Files folder we created and examined earlier.

Also view the last two bytes of this eight byte sequence. Note that the value is 01 00 (also little en-
dian) or decimal one. This is the sequence number for the parent we viewed earlier and at this point,
agrees with the current value found in the parent at offsets 16-17d.

Next, go back to the thumb drive using Windows Explorer and delete the Orphaned Files folder.
Make an image of the thumb drive and name it Image02. Open this image in FTK Imager and view the
Root Directory. Note the Orphaned Files folder you created is now marked as deleted. If you click on it
you will see that it still retains the $SMFT Record number of 28. You can also see that the files contained
within the Orphaned Files folder are also deleted (See Figure 11).

AccessData

Page 6

AccessData H
Training I{ 2e 8

I FTK Imager 10} x|
= File Yiew Mode Hel R e . Il—FiIE L
SRS = &y Fvidence: Image 02 01 Marne
s O [=Ee 2. =1t Partition 1 [124MB] %) Orphanl bxt

|Evidence Tree * | [File List E-TE OrphanTest [MNTFS] & Orphanz bt ®
=] @ Evidence: Image 02.E01 Mame Elﬂ [root] ﬁ] Crphand.bxk =

-l Partition 1 [124MB] [i$Extend e '[-.r; 4B adClus
E-T8 OmhanTest [NTFS] Emarmal Files
E“j [root] (W Crphaned Files
o -l $BadClus = $attrDef
1 $Estend @l:&:BadClus H
TE $5ecurs $Bitmap :
{23 Nomal Files =) $e00t ++0) orphan o
; =----1‘§g'_‘|hDrphaned Files $130 ----- b Unpartitioned 5pace [bazic disk]
l['.': Unﬁitizfe;gpace [basic disk] $LngFiIe 2,043 KB Regular file 11f2442004 11:...
= 48KB Regular File 11j24/2004 11:... ~|
|Prl:||:|erties H || 00007c00 (46 49 4c 45 30 00 03 00-0f 09 1& 00 00 00 00 00 [FILEQ: = s« rereses ;I
00007c10 _uz 00] 01 00 38 00[00_0O}60 01 00 00 00 04 00 00 |+v e eesoeeeees
Hdte $MFT 00007cZ@ 00 00 00 00 00 00 OU OOPE 00 00 00 1E OO0 00 O0|«--rerrerenseens
A Reqular e 00007c30 [0a 00 04 00 04 00 0D O0-10 0O 00 00 60 00 00 00 [=exeeeesse
EoT 49,152 000074000 00 00 00 0O 00 0O 00-43,00 00 00 18 00 00 00|+« +e=+> Hevooooe
Physical Size 49,152 DUDD':I:CSD 30 3d S9c bb 79 d2 c4 01-£0 '&:‘d 09 ed 79 d2 cd 01 |Q=--gee--nn- ¥
MET Recard Humbel 0 000Q7ca0 [£0 cd 09 e6 79 d2 cd4 01-f0 o 09 ed 79 d2 cd Ol f----g-e-v--- b L

o UUD.":I?C?U Z0 00 00 00 00 00 00 00-00 DU“DD 00 00 00 00 00| =sseeevemenenns
0Q007cE0 |00 00 00 00 03 01 00 00-00 00 0 00 00 00 00 00| -srserrearaanns

Archive

pd007c90 |00 00 00 00 00 00 00 00-30 00 @ 00 70 00 00 00 |--«----- Oveepiess
ampessedl ralse 00007ca0 (00 00 00 00 00 00 04 00-58 00 00500 18 00 0L 00 |-«-«eee- > CRRRERE —
Encrypted False o 00007cho fle 00 00 00 00 oOf0l oofs0 3d 9c b 79 d2 o4 Ol|-wceee-- ey
Hidden true 21| 00007cc0 |30 50 Sqbb 79 4z cAppl-30 3d 9c BY 79 d2 04 0L D= eqee Oz ogpe - -
Offline false 1| 00007cd0 |30 3d 9 bb 79 dZ c4 ©1-00 00 00 00%00 00 00 00 [0z« cgererreearns

00007ce0 (00 OO0 .ﬁEl 00 00 00 00 30-20 O0 00 00 B0 00 00 OO0 |=xrevrre srenens

L
4
:. 00007cf0 (0b O3r4f 00 72 00 7O D‘B_—ES 00 &l 00 6&‘ 00 31 00f+-0+r*p-h-a-n-1-
. 00007400 | Ze El.ﬂ 74 00 75 00 74 00%40 00 00 00 28°%00 00 00 |.-trx-C-f---j--- =
0 | K % % | »
Properties [He:x value Interpreter 3 kursor pos = 31744; clus = 85384; log sec = 853‘8_4; phy sec = 85416 ‘\
L N .
For Help, press F1 o~ 5 B . [] A
. . . %
L R . .
L .. “ L
Sequence Number Parent $MFT Record Number Parent Sequence Number Allocation Status

Figure 11 - Sequence, Allocation, and Pointers from Deleted Orphanl.txt to Parent

Check the Orphanl.txt deleted file by clicking on it and noting its $SMFT Record number of 31. Navi-
gate to that record in the $MFT (31 * 1024 = Offset 31,744) and note that offset 16-17d now reads 02 00
or 02d. This is the sequence value and you can now see that it has changed from 1 to 2 because the
file has been deleted.

You can also see that offset 22-23d has also changed to a 00 value indicating, using Figure 4, that
the status of the record is now a deleted file.

Navigate to offset 24 of the File Name Attribute and you will see that the eight byte sequence indicat-
ing the parent offset and sequence number has not changed. Figure 11 shows the Orphanl.txt file in
the $MFT in its deleted state. FTK Imager considers this file as deleted but still belonging to the deleted
parent folder Orphaned Files folder.

Now add a new file to the root of the thumb drive and name it ParentKiller.txt. This file will overwrite
the original Orphaned Files folder record in the $SMFT. The $MFT only adds new records if there are
none available. It does so by searching from the top down to find an unallocated record. In this exam-
ple, it will discover the unallocated folder record at number 28 and use it for ParentKiller.txt.

Once you have added this file, image the thumb drive and name the image, Image03. Open the im-
age in FTK Imager and view what has changed. You will see in the Root Directory that the Orphaned

Page 7 AccessData il. .
AccessData Training o2

Files folder is gone, and in its place is the file called ParentKiller.txt. Select this file and note that its
$MFT Record number is 28, the same as the original Orphaned Files folder.

Navigate to the $MFT offset for ParentKiller.txt (28 x 1024 = Offset at 28,672) and view the record
data. Figure 12 shows the information in the $MFT for this file. You can see that the sequence number
is two and hasn’t been changed since the original folder was deleted, and the allocation number is now
one for an allocated file. FTK Imager now considers the three deleted files to be orphans (See Figure 13).

[rcimager =18l
E Eil= W¥iew Mode Help
aa|g OEal==e 2.

|Evidence Tree

= @ Ewidence: Image 03.E01 kame I Sizel Tvpe I Date Modified
-l Partition 1 [124MB] I $Extend 1KE Directory 11/24/2004 11:00:00 PM
EI---L':" OrphanTest [NTFS] [CIMarmal Files 1KE Direckary 11242004 11:02:19 PM
B [ract] =) $arttrDer IKE Regular file 11/24/2004 11:00:00 PM
- I# $BadClus = $Badcius OKE Regular file 11/24/2004 11:00:00 PM
@$Bitmap 3ZKE Regular file 11/24/2004 11:00:00 PM
B 1 L Fil $Boot S KB PRegular File 11242004 11:00:00 PM
@iﬁhaz[ma f=s [130 4KE NTFS indesc allocation 11/24/2004 11:17:32 PM
E_, Unpartitioned Space [basic disk] $LDgF|Ie 2,04 KE eguar e ,1'24,1'20:00:00 P
=] i Legular File 014 H H
lem i Regular File 11242004 11:00:00 PM ;ll
|Properties * || oooo7o00 | 4c 45 30 00 03 00-16 le 18 00 00 00 00 OO0 |FILEOQ--==r===u-- |
oooo7010 02 uuluz 0o 38 0028 02 00 00 00 04 00 00 === aGreefonreann
TR SMFT 00007020 [00 00 00 00 00 00 00 00-07 00 00 00 lc 00 00 00 |«-ssereaneereann
File Class Reqular file 00007030 (03 00 20 74 00 00 00 00-10 00 00 00 &0 00 00 00 [
File Siza 49,152 00007040 (00 00 00 00 00 00 00 00-45 00 00 00 18 00 00 00 |==-«=x--
Phesical Size 45,152 00007050 (60 2 £7 c0 7b d2 c4 01-80 1f 10 d7 7hb dZ cd OLl| /--§
NET RS NS 00007060 (80 1 10 d7 7b d2 c4 01-80 1f 10 d7 7b d2 c4 01 fomeees
~— | oooo7070 |20 00 00 00 OO0 00 OO0 00-00 00 00 00 00 00 00 00| =reereaeeenaann
; 00007080 (00 00 00 00 03 01 00 00-00 00 00 00 00 00 00 00 [«-ssereaneaneanns
Archive 00007090 |00 00 00 00 00 00 00 O0-30 00 00 00 78 00 00 00 |--«--x-- O---x-
Compressed False 000070a0 |00 00 00 00 00 00 05 00-5a 00 00 00 18 00 Ol 00| --=--x-- Eevsnren —d
Encrypted False 000070b0 (05 00 00 00 00 00 05 00-60 Zf £7 cO0 7b d2 cd OLl|---e-n-- AR
Hidden true 000070c0 (60 2 £7 c0 7b dZ c4 0l-60 2F€ £7 c0 7b d2 c4 01| /--§ AR
Offline: false Z1| oooo70d0 |80 2€ £7 o0 Th dZ c4 01-00 00 00 00 00 00 OO0 00| fe=ferennneenn-
00007020 (00 00 00 00 00 00 00 O0-20 00 00 00 00 00 00 00 |[«-sseree woreann
000070E0 [0c 02 50 00 41 00 52 00-45 00 4e 00 54 00 7Fe 00 |--P-A&-R-E-N-T-~-
00007100 (31 00 2e 00 54 00 58 00-54 00 Ze 00 74 00 78 00 |l-. T+X-Ts. t-x+
00007110 (30 00 00 00 80 00 00 O0-00 00 00 00 00 00 04 00 [0- - ereanenraann =]
Properties |Hex Yalue Interpreter }Cursor pos = 28672; clus = 85378; log sec = 85378; phy sec = 85410
For Help, press F1 LI A

Figure 12 - Sequence and Allocation Numbers for ParentKiller.tx+

Now navigate to the Orphanl.txt file and view the $MFT data for its record. The eight byte pointer in
the File Name Attribute still points to record 28 and has the sequence number of the parent. FTK now
knows this file is an orphan since its sequence number is one off and the allocation status of the record
is 00, allocated.

I FTK Imager |

File Wiew Mode Help
1 =51 [

=101 x|

& a2 - e B

E'-.-'il:leru:E Tree |File List]
= @ Evidence: Image 03.E01 Marme | Size | Twpe | Date Modified
=l Partition 1 [124MB] ¥ Orphanl.txt LKE Regular file 11242004 11:04:08 P
E'"E DrphanTest [MTFS] ¥ orphanz.txt LKE Regular fils 11242004 11:04:17 PM
=0 [raot] # crphan.txt LKE Regular file 114242004 11:04:32 PM
& $BadClus

10 $Extend
E E $Secure
i {0 Mormal Files

'['_!-’ Unpartitioned Space [basic dizk]

Figure 13 - FTK Imager Orphan Folder Now Occupied

Page 8

AccessData =
Training r‘ (-

AccessData

00007000 J46 49 4c 45 30 00 03 00-16 le 15 00 00 00 00 00 |FILED:s-rsreoce-
0foz_oo]oz oo 38 oofoL_oofzs 0z 00 00 00 04 00 00 |-cceBeeefrennens
; |0 [00ADD 00 00 00 00 DODOO-07 00 00 00 Ll 00 00 00 |++rererrreannens
Name Parentkiller.txt] »* fo |03 00 20 74 00 00 00 MO-10 00 00 0D 60 00 OO 0O |-« te-v-ex-
3.3 short Filename PAREMT~1.TRTe I|:| 03 00 00 00 00 00 OO0 Dh‘—dlﬁ 00 00 00 18 00 00 O0|«sssssss et
File Class Reqular file |o|6d 2£ £7 co 70 dz ca 01380 1f 10 d7 7b d2 o4 OL [fee{enrees feue
Fils Size a0 > 0|gf 1f 10 A7 7b d2 c4 01760 1f 10 d7 Tb d2 4 OL|sere{erreens fene
S ; 0|20 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| rreeeererernnas
Phiysical Size 80« 0|0 00 00 00 03 01 00 00-08, 00 00 00 00 00 00 00 | vevererereesess
MFT Record Mumber |28 4° lo|po 0o oo 0o 00 00 00 DO-30%00 00 00 78 00 00 OO |reeeee-- Qeerxess
K 0000700 D0 00 00 00 00 00 05 00-5a §0 00 00 18 00 01 00 |=---cx-- Tevrmnns
o 0000700 fO5 00 00 00 00 00 05 00-60 2§ £7 c0 7b d2 €4 OL|-----=-- peedees
o 0000705060 2E £7 0 7h dZ cd 01-60 2f2£7 o0 Th dZ cd OL| fee{es " frefens
& 000070405 60 2£ £7 €0 7b d2 c4 01-00 0000 00 00 00 00 00| F - fexxeeeenee
K 000070= |00 00 00 00 00 00 00 O0-20 00 B 00 00 00 00 00 |[=rereeer reaens
- 00007020 [Oc 02 50 00 41 00 52 00-45 00 4% 00 54 00 Te 00|--F-A-R-E-N-T-x-
o 00007108 [31 00 Ze 00 54 00 58 D0-54 00 Ze%00 74 00 78 00 1+, -T+X-T-.-tex
o 00007110 |30 00 00 00 80 00 00 00-00 00 0090 00 00 04 00 |0 xxxcneesnsn-
o 00007140 (62 00 00 00 1§ 00 01 00-05 00 00 O 00 00 05 00 [Bexeerereaeaanne
K 00007150 (60 2£ £7 c0 7b d2 4 0L-60 2£ £7 o Tb d2 o4 OL| " fe-{=r= /e {en>
00007130 |60 2E £7 c0 7b d2 cd 01-60 2f £7 cO%h d2 cd OL | fee{rss frefens
28672d = 7000h DO007ES0 (00 00 00 00 00 00 00 00-00 00 00 00 B 00 00 00 [« «ceeeenerceanns
Y 00007160 |20 00 00 00 00 00 00 00-10 01 50 00 61 00 72 00 [-v-veroe T-a-r:
: 0000770 (65 00 Ge 00 74 00 4b 00-63 00 6c 00 66500 65 00 fe-n-t-K-i-1-1-e-
0000F150 |72 00 Ze 00 74 00 78 00-74 00 00 00 18°00 00 00 fre . «fexeteeessee
H :
* _ H Binary File or Folder Deleted o
28 * 1024 = 28,672 | i
2 : -
. 00000000 File Deleted s
E ..' 00000001 File Allocated I
- ..' 00000010 Folder Deleted
ICh = 28d ..' 00000011 Folder Allocated
4 :
D0007c00 |46 49 4c 45 30 00 03 0F-0f 03 18 00 00 00 00 00 |FILED:=«---scse-
00007clo|dz 00 01 00 38 00 00 Of-60 OL OO0 00 00 04 00 00 [«rreGeer "rrnrens
00007c20 (00 00 00 00 00 00 00 0D-06 00 0D 00 1f 00 00 00 [««eeeenrnnnsrnns
00007¢30 |0p 00 04 00 04 00 00 G0-10 00 00 00 60 00 00 00 [«rxrrrene. ..
00007c40 |6 00 00 00 00 00 00 Q0-48 00 00 00 1% 00 00 00 f-------
00007c50 {3 3d 9c bb 79 d2 c4 D1-£0 cd 09 e6 79 d2 cd 01 [0=--y-- [- Orphand. bt
0000760 |£0 cd 09 es 79 dZ c401-£0 cd 09 e6 79 dZ cd 0L [« ey : ==
00007:70 |20 00 00 00 00 00 00200-00 00 00 00 00 00 00 00| ««««-- File Class Regular file
00007c80 |0D 00 00 00 03 01 00500-00 00 00 00 00 00 0D 0D f=«-=-- File Size 13
00007c90 |00 00 00 00 00 00 0% 00-30 00 00 00 70 00 00 00 [---«--- eEERE
00007ca0 |00 00 00 00 00 00 04 00-55 00 00 00 15 00 OL 00 |------ Physical Size !
00007ch0 [Lc 00 00 00 00 0001 00430 3d 9c bb 79 d2 4 OL|«erre-- MFT Record Mumber |51
000076030 3d 9c bb 79 dz o4 01-30 3d 9c bb 79 d2 c4 01
00007cd0 |30 3d 9c bb 79 d2 o4 0l-00 00 00 00 00 00 00 00
00007ce0 |00 00 00 00 00 00 00 0O0-20 00 00 00 00 00 00 00
00007c£0|0b 03 4F 00 72 00 70 00-68 00 61 00 e 00 31 00
00007400 |2e 00 74 00 78 00 74 00-40 00 00 00 23 00 00 00
0000741000 00 00 00 00 00 05 00-10 00 00 00 1§ 00 00 00

Figure 14 - NTFS, The Orphan Process

Figure 14 shows the process FTK or FTK Imager undertake to make the determination whether a file
is orphaned or associated with a given folder. In our example, Orphanl.txt is an orphan of the $MFT
entry now occupied by ParentKiller.txt. We can determine this by checking the eight byte pointer in Or-
phanl.txt.

Page 9 AccessData il. a
AccessData Training o2

This pointer indicates that the $MFT record for its parent is 1Ch or 28. Multiply the 28 times the re-
cord size, 1024 and you get an offset to navigate to of 28,672 or 70 00h. This pointer also gives you the
sequence number of the parent record for comparative purposes.

Once you navigate back to the parent record, you can check the sequence number to see if they
match. If they do, as in Figure 6, FTK knows the child belongs to the parent. If they do not, FTK checks
the allocation status value. If the sequence number is one ahead, and the record is unallocated FTK
knows the child is still associated with the parent record and is considered deleted. If the sequence is
one or more and the allocation number indicates the record is allocated, FTK knows the child is not as-
sociated with that particular record and classifies it as an orphan and places it in the [orphan] folder.

FTK Imager and FTK both use this process to check the validity of child to parent. Thus in both utili-
ties, you will see an [orphan] folder created off the root to store any file that meets the criteria of being
orphaned from its associated folder.

AccossData

@ 2005 AccessData Corporation - All rights reserved.

Some topics and items in this paper are subject to change. This document is for information purposes only. AccessData makes no war-
ranties, express or implied, in this document. AccessData, Forensic Toolkit, FTK, FTK Imager, Known File Filter, KFF, Password Re-
covery Toolkit, PRTK, Registry Viewer, Ultimate Toolkit, LicenseManager and WipeDrive are either registered trademarks or trade-
marks of AccessData Corporation in the United States and/or other countries. Other trademarks referenced are property of their
respective owners.

PGQZ 10 AccessData -

Faini gt
Trainin »
AccessData ining -

