Interested in learning
more about security?

-~
i

SANS Institute
InfoSec Reading Room

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Reverse Engineering the Microsoft exFAT File
System

The Extended FAT File System (exFAT) is a new and not yet widely used file system. It has been out for a few
years and it will gain acceptance and momentum with the release of storage devices that will support the new
SDXC standard. Forensics investigators and the maker of forensics tools need to be ready and prepared for an

influx of acquired evidence that requires analysis of this new file structure.

Copyright SANS Institute
Author Retains Full Rights

Secunia’s Yearly Report 2010

Get latest facts & figures on vulnerabilities
= Click herea

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/558

Reverse Engineering the Microsoft Extended FAT File
System (exFAT)

GIAC (GCFA) Gold Certification

Author: Robert Shullich, rshullic@earthlink.net
Advisor: Aman Hardikar

Accepted: 12/01/2009

ABSTRACT

As Technology pushes the limits of removable media - so drives the need for a new file
system in order to support the larger capacities and faster access speeds being designed.
Microsoft’s answer to this need is the new Extended FAT File System (exFAT) which
has been made available on its newer operating systems and which will be supported on
the new secure digital extended capacity (SDXC) storage media. This new file system is
proprietary and requires licensing from Microsoft and little has been published about
exFAT’s internals. Yet in order to perform a full and proper digital forensics examination
of the media, the file system layout and organization must be known. This paper takes a
look under the hood of exFAT and demystifies the file system structure in order to be an

aid in the performance of a digital investigation.

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 2 |

1 Introduction

In the US DOIJ Special Report released in April 2004, Forensic Examination of
Digital Evidence: A Guide for Law Enforcement (US Department Of Justice (2004)) one
of the steps for evidence examination under Application and File Analysis is:

“Examining the users’ default storage location(s) for applications and the file
structure of the drive to determine if files have been stored in their default or an
alternate location(s)”

How does the forensics examiner accomplish such a feat when the file system is
unknown or not documented? This task becomes a real challenge when having to do an
analysis on proprietary systems such as embedded systems. But now, with the drive
towards storage media with larger capacities, the limits on many of the existing file
systems will be reached during the newest wave of storage technology.

To accommodate these advances, a new file system has been developed by Microsoft
a few years ago, and it is called the Extended FAT File System, abbreviated as exFAT,
and what some are nicknaming as FAT64. Microsoft is licensing this technology, so in
order to implement an exFAT file system a license will be required from Microsoft. In
January 2009 a new Secure Digital Extended Capacity (SDXC) specification was
announced (Hissink, 2009), with capacities that could reach up to 2 TB, and will use this
new exFAT file system. This new file system may actually fly and gain momentum in
2010 when device support reaches the market.

But today, there is no real Linux support, very few tools support this new file system,
and even the commercial forensics tools are behind in support. There are very few, if any,
open source tools that understand the file organization, and just recently the
specifications of the exFAT file system got released with one of Microsoft’s patent
applications (Microsoft Patent 0164440 (June 25, 2009)).

How does the forensic examiner “examine the file structure of the drive” when the
tools don’t know, and there is no how-to book to help him? This paper is intended to
provide basic insight to the file system structure to allow the forensics examiner to make

sense of the structure beyond just a blob of bytes.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 3 |

2 Definitions

Steps in Processing Digital Evidence — Assessment, Acquisition, Examination,
Analysis, Documenting and Reporting. (US Department Of Justice, 2004)

Digital Evidence — Any data stored or transmitted using a computer that support or
refute a theory of how an offense occurred or that address critical elements of the offense
such as intent or alibi. (Casey, 2004)

Digital Forensics — Digital forensics involves the identification, collection,
preservation, examination, and analysis of digital evidence. It is a technical, computer-
related field involved in the collection and examination of evidence from computers,

including audio, video, and graphical images. (http://www.ncfs.org/digital evd.html)

Forensic Examiner — Conducts the examination process to extract and analyze digital
evidence. Extraction refers to the recovery of data from its media. (US Department Of
Justice, 2004)

File Fragmentation — for the purposes of this paper, a file is considered fragmented if
the clusters that the file is stored in either are not in order or there are gaps in the physical
cluster layout, or both. A file is considered not fragmented when the file is physically
stored in order within contiguous clusters.

Removable Media — is storage media that can be removed from its reader and stored
or transported to another location, possibly to be used on a different machine. Examples
of removable storage media are floppy disks, magnetic and paper tape, flash drives, flash
cards, CD/DVD, and ZIP/JAZ. This paper will address removable media that is random
access, which eliminates purely sequential devices such as magnetic and paper tape.

Superfloppy — a configuration where the entire storage media is a single file system
and there is no partitioning. There is no MBR record and when the media is booted the
VBR is loaded by the BIOS. Not all BIOS firmware will support a superfloppy. The
concept of the superfloppy was introduced when media such as 3M’s LS-120 and

Iomega’s Zip disks surpassed the conventional 1.44MB capacities.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 4 |

3 Prior Work

There does not appear to be much research released at this time. The exFAT file
system has been in the market since 2006 with its introduction in Windows CE 6.0, but
exFAT didn’t hit the desktop/server market until the release of Vista SP 1 in March 2008.
The support has effectively existed on the desktop for almost 2 years.

At the Techno Forensics Conference that was held at NIST in Oct 2009
(http://www.thetrainingco.com/html/TechnoForensics2009.html) Jeff Hamm from

Paradigm Solutions gave a presentation on the internals of the exFAT file system. He
provided a presentation and paper on the topic, which provided a good foundation for the
work being presented here. His work is based on a forensic class he teaches that includes

exFAT internals.

4 Setting a Foundation

4.1 Purpose, Disclaimer and Scope
4.1.1 Purpose

The purpose of this paper is to describe the format and layout of the Microsoft
exFAT file system as currently released in the Microsoft desktop and server platforms.
The intent is to aid in the forensic examination of storage media that is formatted with the
exFAT file system. This document can be used as a guide for the forensics examiner in
order to provide a starting point in the search for electronic digital evidence that may be

stored or hidden within this file system.

4.1.2 Disclaimer

The exFAT file system is proprietary property of Microsoft, and an
implementation of the exFAT file system requires a Microsoft license to the
specifications. Licensing may be found at the Microsoft Intellectual Property Licensing
for exFAT page. The research in this paper provides an analysis of the exFAT file system
including its structure and organization. It is not meant to implement the exFAT file
system or any part of it. A static examination is performed of the contents of storage

media, and does not attempt to perform any dynamic analysis by direct non-standard

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 5 |

modification to the file system itself. Any file system changes were done via standard

drivers and operating system utilities.

4.1.3 Assumptions
The contents of this paper are strictly based on exFAT Version 1.00 as specified
in Appendix A of the pending patent Microsoft Patent 0164440.
Unless otherwise specified, all:
e Values are unsigned
e Are stored in little-endian format
e Uses decimal notation for constants, unless specified as a hexadecimal
constant
e Specifies hexadecimal constants using the prefix notation of 0x
e Specified character strings within the directory structure as 16-bit Unicode
e Character strings do not require null termination
e When describing the capacity of storage media will use power of 10
terminology
e When describing the capacity of the file system or components will use

power of 2 terminology

4.1.4 Out of Scope

Some features have not been released or announced for this version. The
information presented here has been limited but hopefully provides enough of the
internals for a forensic examiner to get started.

The scope of this project either excludes or minimizes certain analysis that could
not be done at this time. Features did not yet exist and there was a need to limit the

amount of work being performed due to time constraints.

The following items are limitations or assumptions of this paper:

e Limited to version exFAT 1.00

e File system follows the standards

o exFAT file system NOT installed within a partition

e The file system is assumed NOT broken, NOT corrupt and NOT damaged

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 6 |

e Limited to the examination of removable media such as USB Flash Drives and
SD, CF, SM memory cards

¢ No file system behavioral analysis

e No bad blocks or media failures analysis

e No file system performance analysis

e Analysis is static analysis, not dynamic

e No analysis of data in unallocated space

e No analysis of OEM region in VBR

e No analysis of Volume GUID Entries

The following were not analyzed because these features have not been implemented

e Transactional FAT (TexFAT)

o 2"FAT

e 2" Bitmap

e ACL

The unaddressed items listed above are left for further research for anyone wanting to
follow-up with any of these specific issues, or analyze new versions of exFAT as they

come out in the future.

4.2 Relevance to the Field of Digital Forensics

What will happen when there is an attempt to examine storage media formatted
with the exFAT file system on a Windows system that doesn’t have exFAT support?
Figure 1 shows the disk properties window of an exFAT formatted disk when displayed

on such a system.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 7 |

Removable Disk (Iz) Properties

General | AutoPlay | Todls | Hardware
@ |

Type: Removable Disk

File system: RAW

B Usedspace: 0 bytes 0bytes
B Free space: 0 bytes 0 bytes

Capacity: Obytes 0bytes

Drive

Figure 1 Disk Properties of exFAT file system using Windows XP without exFAT support

There is no information displayed and the operating system indicates that the file
system is RAW. Forensics examination is usually performed using either open source
tools or commercial tools. Two of the most widely used commercial forensics application
tools are EnCase by Guidance Software (http://www.guidancesoftware.com/) and the

Forensics Tool Kit (FTK) by Access Data. (http://www.accessdata.com/) (Carlton, 2008).

These tools are used on Microsoft Windows operating systems. Currently Microsoft
Windows 7 was just released in October 2009, but the two predecessor desktop operating
systems are Windows XP and Windows Vista.

However the Microsoft Vista operating system has always seen a resistance of
users to migrate from XP to Vista. (Carvey, 2005) (Larkin, 2007) This leaves many users
in the field using these tools on Windows XP, and a large user base of these applications
are law enforcement or organizations with internal forensics response teams. What does a
forensics examiner on a Windows XP machine do when confronted with storage media
that the operating system won’t recognize? Or even when trying to perform a simple
directory command as shown in Figure 2 below (Don’t do this with evidence without

using write blockers).

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \

8 |

Command Prompt

Microsoft Windows XP [Uersion 5.1.26881
CC>» Copyright 1985-28081 Microsoft Corp.

H:s2>die iz
The volume does not contain a recognized file system.

Please make sure that all regquirved file system drivers are loaded and that the v
olume iz not corrupted.

Hz >

Figure 2 Dir command on Windows XP system without the exFAT drivers

Using Windows Explorer instead, opening the exFAT formatted media on a

system that doesn’t have exFAT support may result in this message:

Disk is not formatted |E!

"'-.. The disk in drive F is not formatted,
L

Do wou want bo Format it now?

Figure 3 Opening exFAT media in Windows Explorer on an XP system without the exFAT drivers

So, the drivers are then installed onto Windows XP, is that enough? Check this

out:

{» AccessData FTK 1.01.5 DEMD VERSION - RilexFAT Etraction'01}

Ge (a0t Yew lodk e
Dvervew Exzee Oraghcs E-uian Sraren Bacamart

- Ve, wg e be)

[Tores e 7] (a7 amrr T 7] [Gecams [}
[Beotratied bers 0] | Spreadaberin 1]

(RTINS 20 [s Exasnaon 0] [Usatasas 1]}
[. e Far 0] [Cenpbics]

0] [FromRecycie Bin
30 (Dspicain tmem

4 ATO000 SNDHAME Urkncwn\Dirvel reeS pacelS

AT

racwon\ Do S pance .

0 Listea 0 Cheeked Tos FAT DU O NONAME.

Figure 4 Screenshot of FTK Toolkit 1.81.5 Analysis of exFAT media

The output in Figure 4 displays 20 files all as free space. But because the tool

doesn’t understand the exFAT file structure, what results is an expensive version of a hex

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room

Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 9 |

editor. Files typically have an internal signature (as shown in Figure 5) that can identify
the file type. This can be used to recover files when a directory is lost. Although the files
could be identified this way, there is an assumption: the file is not fragmented, and the

blocks are in proper order.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
42 4D 72 16 08 00 00 00 00 00 36 00 00 00 28 00 BME: ccoooa ®ooo

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4D 5A 50 00 02 00 00 00O 04 00 OF 00 FF FF 00 00 M7 5 0000000 Vy..

Figure 5 File Signatures of a BMP (Top) and an EXE (Bottom)

Unless the forensics examiner can determine where the blocks are located, the
proper sequence order of the blocks, and determine the completeness of the file (are
blocks missing?) — Items recovered could be suspect.

If there is digital evidence to be found, will someone take time to look for it? If
storage media is collected, and brought to a digital forensics lab, what will happen to it?
If the technician at the lab inserts the media in a system and tries to image it, will they
bother to continue if the operating system reports back that the media is RAW or corrupt?
Will they even be able to acquire an image? Or, will the storage media just get bagged
and tagged and added to the evidence pile and never processed?

Suppose the forensics examiner get past that, and manages to acquire the image
and at least do some analysis by carving out pieces and analyzing them. What position
does this leave the results of a forensics examination when digital evidence has been
uncovered and extracted, especially if that evidence is to be used in court?

When examining the expert witness, the tools and the technology will be put
through the Daubert guidelines (Daubert v. Merrell Dow Pharmaceuticals). For a file
system analysis, procedures that will be scrutinized are those that are used to break one
large file system image into the smaller components such as files. (Carrier, 2003)

Taking the position of prosecution and law enforcement, consider the forensics
examiner on the witness stand as an expert witness. How would the expert answer
questions posed from the defense about what was uncovered if the expert could not
understand and describe with authority the file system? The defense may first come up
with a question such as “how could you read this media when it shows up on my expert’s

machine as unreadable? When the expert gets past that, then “how do you know this file

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 10 |

was deleted or if other files were not mixed in with this one?” This line of questioning is
intended to put doubt into the jury or the judge. This approach might not be as effective
with media formatted as FAT or FAT32, as these are well known, well documented, and
well understood file systems. Until exFAT has been out there a while, accepted,
documented, and widely used, the forensic expert will be challenged with addressing that
gap.

The fact that file systems are relevant to digital forensics should not require an
argument or any discussion. Without any understanding of the file system or organization
of the image being acquired it would be difficult, if not impossible, to make any sense of
it. Today the world is mostly ASCII, but what if it was a disk from an IBM mainframe
that used EBCDIC? Tools that search for ASCII strings won’t work. What about the
difference between Little-Endian vs. Big-Endian where the byte order makes a
difference? All data is binary, ones and zeros, what makes data is the context of those
representations.

The exFAT file system has been out for a few years already, why hasn’t anyone
cared and why will they care now? Many of the current file systems were constrained to
2TiB, although some could handle larger volume sizes. Disks with storage capacities at
2TB used to only be seen in servers and in data centers. Within the past couple of years,
buying storage devices with 1TB and 2TB capacities with a price point of less than $200
for use in home desktops was made possible. Storage capacities of the Secure Digital SD
cards were achieving 4GB, but a SDHC card was achieving up to 32GB. The SD type
cards are used in many portable consumer electronics such as Personal Digital Assistants,
Smart Phones, Cameras, and even GPS devices. In 2009, with the announcement of the
SDXC media, with supported capacities up to 2TB, the current file systems are going to
have a problem keeping up with these expanded capacities and faster I/O speeds.

DVD media today comes in 4.7GB and 8.5GB capacities. Producing a single
video file that exceeds the 4GiB file limit of FAT32 is a problem. Use of NTFS can
overcome this limitation but NTFS is not designed for removable media. NTFS is also a
lazy write system, where NTFS will write data to storage media when it gets around to it.
An abrupt removal of the storage media or even in the event of a power failure of the

device can leave the file system in an inconsistent state.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 11 |

NTEFS has large overhead with the many components of its file structure. A faster,
more efficient file system was needed to exceed the capacities of FAT32 and not have the
overhead of NTFS. Microsoft’s answer was exFAT, and the file system was released with
Windows CE 6.0 in November 2006.

The SDXC standard was announced at the Consumer Electronics Show (CES) in
Las Vegas in January 2009. (Hissink, 2009). It is expected to actually see devices that
these chips could be used in released by March 2010. Already there has been an
announcement that 3 computer manufacturers will have integrated card readers. Lenovo,
Hewlett Packard, and Dell have all been fingered as having Arrandale-based laptops in
the works for release in early 2010 which will feature integrated SDXC readers.
(Halfacree, 2009). Microsoft is driving for wider acceptance of use of the exFAT file
system and has expanded its licensing program and already several media card
manufacturers have bought into the standard. (Fontana, 2009)

On the software front, there was a December 3rd, 2009 announcement by
Diskinternals updating their Uneraser program to support exFAT. (Yahoo News, 2009).
Now there is a product on the market that will recover deleted files stored on an exFAT
file system. The industry now sees exFAT as a new market for their products to address
(Yahoo News (December 3rd, 2009)) because now exFAT will be more viable. When the
SDXC devices start being shipped, the need for forensics applications that support the
exFAT file system will accelerate. These products were probably needed earlier, but
expect that as the SDXC ship dates come closer that more forensics application support

for the exFAT file system will be seen.

4.3 Research Methodology

There are many proprietary and not well documented file systems in existence
today. The challenge is to take a file system apart and see what makes it tick. The
methodology used in this paper to do this exFAT analysis depended on examination of
various Microsoft Patents, examination of previous file systems in the FAT family,
Google searches, examination of information provided in Microsoft knowledge bases and
MSDN, and low level examination of the file system format. Since source code is not
available, this all comes down to what is called “black box” analysis (BCS SIGIST,
2001).

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 12 |

The Microsoft Patents relevant to this research paper are:
e Microsoft Patent 0164440 Quick Filename Lookup Using Name Hash
e Microsoft Patent 0265400 Extensible File System
e Microsoft Patent 7613738 FAT Directory Structure for use in Transaction
Safe File System
The low level analysis was performed by using a Microsoft Windows XP SP3 laptop
and a Microsoft Server 2008 SP1 server (later, during the research, upgraded to SP2) and
using these systems to format removable media, such as USB flash drives, Compact
Flash, Secure Digital, and Smart Media with the exFAT file system. Then, using the DD
tool from the Helix 2008R1 CD-ROM (http://www.e-fense.com), live acquisitions of the

drive were taken for analysis. A live acquisition was required because there were issues
to get the underlying Linux system to recognize the media in order to image it.
Once the image was acquired, then a copy of Winhex (http:/www.x-

ways.net/winhex/) was used to go through the file structures. Using a hex editor on a

large file over and over again becomes very tedious. To conduct the file system structure
analysis a program was written using Microsoft Visual Studio 2003 to develop a C
program that would provide formatted printouts of the file system components and
metadata.

As the program was being developed, an exFAT file system would be created, and
files would be added, deleted, and then added again and images acquired between some
of the operations to see what effect the operation had on the file structure. The output of
the program was then verified to the output of various operating system utilities such a
DIR, CHKDSK, DISK MANAGEMENT, and WINDOWS EXPLORER. In some cases
screen shots were taken to be used in this paper and presented as figures.

Results must be verified in order to validate the analysis. Using the native tools listed
above and comparing results is the best way to make sure it was done right. Even
following the specifications is not enough because the implementation might not exactly

follow the specifications.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 13 |

4.4 Survey of Removable Media

The reader will be given a taste of the history of removable media because the
evolution of removable media and the increase of storage capacities has been a driver for
a new file system that can support high capacities.

One of the earliest random access removable storage media was the floppy disk,
which even pre-dates the PC. There were 8 and 12 inch variations with what would be
considered today as low capacities. (History of the Floppy Disk) The last floppy was the
3.5 inch with 1.44MB capacity, although IBM did have a 2.88MB version. In attempts to
exceed these limits, Imation (formerly 3M) released their LS-120 drives which took a
120MB style 3.5 inch floppy. This was an attempt to compete with lomega, which had
the Zip drives at 100MB and the JAZ drives at 1GB. The ZIP drives reached higher
capacities over its lifetime, at least up to 750MB and the JAZ drives up to 2GB. Before
the days of USB, the Zip drives connected via a parallel cable and the JAZ via SCSI
cables. Internal IDE and SCSI versions of these drives were also available.

When compact disk (CD) started to become available, it provided a much larger
storage media with capacities over 600MB. As programs and operating systems became
larger it was more affordable to provide the distribution of these on CDROM. For
example, a software product could require dozens of 1.44MB floppy disks to do an install.
A 650MB CDROM could hold the data of 450 floppies. Today, some software products
may be released on multiple CDROM discs or even on DVD now. (History and
Capacities of CDROM) (History and Capacities of DVD) CDROM has killed the floppy,
as many workstations and laptops either don’t ship with floppy drives anymore or the
floppy drive comes as a separate USB attachment. With the CD-R and CD-RW media,
these media are writable, and provide more storage space than floppies. The DVD which
is replacing the CDROM comes in 4.7GB and 8.5GB versions, but the Dual Layer
(8.5GB) is not that popular yet. Another disc format replacing the DVD may be the Blu-
Ray Disc, with storage capacities of 25GB and 50GB. (History and Capacities of Blue
Ray Disc) The larger capacity is to support High Definition video which requires more

storage because there is higher resolution and requires more digital storage.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 14 |

Another storage line for removable media is Compact Flash, Smart Media, Secure
Digital, and Memory stick (Figure 6). These media types are common for use in cameras,

and have been used in PDA, Cell Phones, and even GPS devices.

5124

| CompactFlash®

Figure 6 Compact Flash, SDXC,

an Srt Media and SD cards

Memory Card Marketshare

6 MMC xDP
"’“P“*l 3%_ 2%

Flash

Memaory Stick
12%

arythingbutipod.com

source: http://www.anythingbutipod.com/archives/2009/01/next-generation-sdxc-details.php
Figure 7 Jan 2009, Memory Card Market Share,

Compact flash has achieved 128GB capacities; although some of it may be flash
and some of it actual micro disk drives. Smart media which has been discontinued
achieved 128MB capacities. The SD cards, specifically the SDHC has a capacity range
4GB-32GB. The SD card market dominates the market share (see Figure 7) and if it
continues to hold that share it may become the largest driver towards exFAT use.

So the common theme so far is capacities of storage media going to 32GB, with
the exception of the Compact Flash which is getting to 128GB and beyond.

Today there are USB flash drives with capacities now up to 256GB on a stick.
Although this is interesting, it’s the compact flash and SD cards that are more common to
digital still and motion cameras. And the new SDXC card, with a capacity range of
32GB-2TB could give the SD association the ability to surpass the compact flash

association.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 15 |

Since the new SDXC cards will support exFAT (indications that SDXC will
support FAT32 were not observed), if SDXC is successful with exFAT, it will push
exFAT out into the wide open. And with some laptop manufacturers announcing that they
will build SDXC card readers into the laptop itself, maybe SDXC will be the new floppy.
Integrated compact flash and SD card readers are not new. For example the Dell 24 inch
monitor has built-in slots for these media cards. Many photo printers have card reader
slots that allow the printer to print directly off the media cards and allow the connected
computer direct access to the cards used in these integrated slots.

Integration into the desktop or laptop system is only the next logical step. As it
becomes easier to use and access these forms of media, the higher the potential that this

media may be used to store something that will eventually become digital evidence.

4.5 Survey of Microsoft File Systems

The FAT file system originated in the late 1970’s with the MS DOS Operating System. The
system has evolved over the years with the file systems FAT12, FAT16, and FAT32 and now, the
new member of the FAT family exFAT. FAT is a simple file system organization and is ideal for
removable media where quick removal of the media is required. Almost every operating system
since MS DOS recognize the FAT12 and FAT16 file systems and almost every operating system
since Windows 98 recognize the FAT32 system. These file systems are also used in consumer
electronics such as cell phones, PDA’s, and GPS devices. The FAT file system is lightweight
without many features or file system overhead. Microsoft recommends FAT for flash media.

The NTEFS file system was created for the enterprise and for use in Windows NT Servers and
Workstations. Prior to NTFS Microsoft supported two file systems, the FAT file system and the
HPFS (High Performance File System). HPFS was used in OS/2 and Warp, an operating system
that was a joint venture between Microsoft and IBM. HPFS was also used in earlier versions of
Windows NT. NTFS provides many features that include fault tolerance, speed, security, larger file
sizes and space optimization. NTFS is not designed for removable media, because it uses a lazy
write scheme and is slower to write to a disk than FAT. In a lazy write system output operations are
queued and might be delayed as I/O is overlapped. Disengaging the removable media before the
writes have completed could leave the file system in an inconsistent state and could become
corrupted. NTFS also provides encryption and compression for files and folders. Although NTFS
is only supported on a Windows NT type of system (Windows 2000, Windows XP, Windows

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 16 |

Vista, Windows 7), there were some OEM drivers available to allow systems such as Windows 95
and Windows 98 access to a NTFS volume. Drivers for NTFS access may also be found on some
Linux systems. Microsoft recommends NTFS for fixed disk media.

The UDF file system is used for optical media such as CD and DVD. It has high portability
because it uses an ISO standard and can be read by many different file systems and used in
consumer electronics. UDF has many features and limitations of NTFS. Some features, such as
Alternate Data Streams (ADS) is provided by UDF but not supported in all the Microsoft UDF
drivers. (Microsoft, 2004)

4.6 Getting the drivers put onto Windows XP

In order to inspect the file system using the native Windows XP operating system
commands XP support of the exFAT file system must be added. This is achieved by
going to the Microsoft support site and downloading the KB955704 update that adds
exFAT support. Invoke the update, accept the terms, and then reboot your XP system.

Software Update Installation Wizard g‘
Use this wizard to instal the following softwars updste:

Update for Windows XP
(KB955704)

Before you install this update, we recommend that you

- Back up your system
~Close ol open programs

You might nesd to restart your computer after you complate
this update. To continue, click Next

Cancel |

Figure 8 Step 1 — Invoke Update KB955704

Software Update Installation Wizard E‘
License Agreement i |
gy
)
Please read the following license agreement. To continue with setup.
= you must accept the agreement.
PLEASE NOTE: Microsoft Comoration for based ~

on where you live. one of s affiictes)
licensss this suppisment to you. The
supplement is idertified for use with ane or
mare hlicroscft opereting system products the
‘software}. You may uss a copy of this
|supplement wih each valdly licensed copy of
he software. You may not use f f you do

Inat have license for the saftware. The

" | Do Not Agres §hoee Prnt

cgack [Wet> | Cancel ‘
Figure 9 Step 2 — Agree to the License Agreement

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 17 |

Software Update Installation Wizard
Updating Your System I 'U
oy
5
7] Please wait while setup inspects your cument configuration, archives
@ your cumert filss and Updates yourfilss
Inspecting your current configuration

Details
Inspecting:

| | (=]
Figure 10 Step 3— KB955704 begins to update

Software Update Installation Wizard

Completing the Update for
Windows XP (KB955704)
Installation Wizard

has sstart
utomatically, click
o restart later, select the Do not
bax, and then click Finish

[Fnen] |
Figure 11 Step 4 — KB955704 Completed, now reboot the system

After rebooting, you should now have exFAT support. One of the easiest ways to
see if the update took is to bring up a command window and do a FORMAT /? To get
help. The output is shown in Figure 12.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 18 |

Command Prompt ;]E,Fﬁ

Microsoft Windows XP [Uepsion 5.1.26801
<G> Copyright 1985-2001 Microsoft Corp.

H:\>format /7
Formats a disk for use with Windows HP.

IFORMAT volume [/FS:file—: -‘yﬂtem [~U:1abell [-Q1 [AA:sizel [/C1 [/X1
[FORMAT volume [AUV:labell [/Q]1 [/Fisizel

[FORMAT volume L[-U:labhell [-Q1 [/T:tracks /N:sectors]

[FORMAT volume [UV:labell [-Q1

[FORMAT volume [Q1

volume Specifies the drive letter (Fnllnued by a colon),
#F8:filesystem

AU:label

Q

/G NIFS unly Files cw eate(‘l on the new volume will be compressed
by default.
Forces the volume to dismount first if

d.
the default allocation unit size. Default settings
- gly recomnended for general use.
NIFS supports 512, 1I24 2348 4896, 8192, 16K, 32K, 64K.

9
FAT supports 512, 18 8. 4896, 8192, 16K, 32K, 64K,
128K, 256K for t-ectu > 512 hytes).

FAT32 supports 12. 1 48 4896 8192 16K. 32K. 64K.
(128K, 256K for se

exFAT supports 512 1324 2848 4396 8192 16K, 32K. 64K.
128K, 256K. 512K, iM. 2M. 4M. 8M. 16M. 32

Mote that the FAT and FAT32 files systems impose the
following restrictions on the number of clusters on a volume:

FAT: Number of clusters <= 65526
FAT32: 65526 < Humber of clusters < 4177918

Format will immediately stop processing if it decides that
the above lequnement; cannot be met using the specified
cluster

NIFS compression is not supported for allocation unit sizes
above 48%6.

he size of the floppy disk to format <{1.44>
the number of tracks per disk side.
the number of sectors per track.

=
Figure 12 Format Help command on XP after KB955704

This may be a little deceiving because exFAT is not listed as a file system in the
/FS: option. But under the /A: option it shows you the exFAT supported blocksizes which

at least indicates that the format program was updated.

4.7 International System of Units (Sl) Table

Shorthand Longhand Nth Bytes

KiB Kibibyte 2" 1024
MiB Mebibyte 2% 1024 KiB
GiB Gibibyte 2" 1024 MiB
TiB Tebibyte 2" 1024 GiB
PiB Pebibyte 2" 1024 TiB
EiB Exbibyte 2% 1024 PiB
ZiB Zebibyte 2"° 1024 EiB
YiB Yobibyte 2% 1024 ZiB
Table 1 Numbering Schemes

This paper will get into some very large volume and file sizes and
Table 1 can be used as a reference. Since file systems will be reviewed and this paper
addresses recording media, the definitions have always been confusing in the past. For
example, the common terminology from the metric system was that “kilo” meant 1,000

but in computer speak a kilobyte was always 1024. When a disk manufacturer releases

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 19 |

specifications of a disk drive, there would be a disclaimer that 1 Megabyte = 1,000,000
bytes. So, current terminology is now being used to differentiate between 1,000 and
1,024 by using “kilo” for 1,000 and “kibi” for 1024. This paper will address most of the
sizes as a power of 2, and will be using this different terminology.

The size prefixes are explained in International System of Units (SI) which also
gives more information and references other publications where this naming scheme is
used. In their explanation the older prefixes were a power of 10 where these new prefixes

are a power or 2. Notice that each name has “bibyte” meaning Binary Byte.

4.8 Summary of exFAT Features
e Sector sizes from 512 to 4096 bytes
e C(Clusters sizes to 32MiB
e Subdirectories to 256MiB
¢ Built for speed, less overhead than NTFS but has some of the NTFS features
e TexFAT (To be released later)
e ACL (To be released later)
e UTC Timestamp Support
e OEM Parameters Sector for device dependent parameters
e O sector VBR, support of larger boot program
e Potential capacity to 64ZiB
e Up to 2796202 files per subdirectory

4.9 exFAT Timeline (Key Dates)
e September 2006 — Windows CE 6.0 (HPC Factor (2009))
e March 2008 — Notable Changes in Windows Vista Service Pack 1 (Microsoft
(2008))
e January 2009 — Announcement at CES of SDXC specification (Hissink, 2009)
e January 2009 — Windows XP Drivers Available (Microsoft, 2009)

e August 2009 — Tuxera Signs File System [P Agreement with Microsoft (Galli,
2009)
e March 2009 — Pretec Releases first SDXC Cards (Herrman, 2009)

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 20 |

e December 2009 — Microsoft announces exFAT license program for third-parties
(Microsoft Press Pass, 2009) (Johnston, 2009)

e December 2009 — SDXC laptops due soon (December 2009) (Halfacree, 2009)

e December 2009 — Diskinternals releases exFAT recovery utility (Yahoo News,

2009)

4.10 Maximum Volume and File Limitations

FAT12 FATI16 FAT32 NTFS UDF exFAT
Max Volume Size 32MiB 2GiB° 2TiB’ 16EiB 2TiB* 128PiB'
Max File Size 4GiB’ 4GiB’ 4GiB’ 16EiB> 16EiB’ 16EiB’
Complexity / Low Low Low High Low Low
Performance
Fault Tolerance No No No Yes No Yes®
Object Permissions No No No Yes No Yes®
Max File Name 255 255 256 256 127 Unicode or 255
Length 254 ASCII Unicode
Comments:

"The maximum exFAT Volume size is specified as 2*2 clusters by a maximum cluster size of 2% (32MB)
which is 27’. There is a published theoretical maximum is 64ZiB which is 27, leaving a cluster size of 2*
(16TiB [27°-2*%)]. The specification in the patent has set an implementation limit of 2*°for the cluster size.
The maximum sector size is 4096 (2'%).

’The maximum file size is 2%*-1 which is a theoretical maximum and currently exceeds the size of the
volume.

*This feature may be supported in a future release

“2TiB at 512 block size, 8TiB at 2Kib block size

°A maximum disk size of 8TB could be supported for a cluster size of 32KiB.

%4GiB for block with 64KiB clusters

7The maximunm file size is 2**-1 which is a theoretical maximum and currently exceeds the size of the
volume.

Table 2 File System Limits

Table 2 makes an attempt to provide a comparison of some common file systems
used on Microsoft systems. Information from the MSDN Library (Microsoft MSDN
EE681827) was used to build part of this table, and some use the terminology of blocks
while others call them clusters. exFAT will use the terms sectors (for the physical block)
and clusters (for the logical block). This was a difficult table to generate, and as you can
see there are many footnote exceptions. The problem is that the actual implementation
may differ based on the operating system used.

If the file system is put into a partition, where a MBR record is required, the

maximum volume size is also limited, usually to less than the theoretical limits of the

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 21 |

volume capacity of the file system. As seen in Table 19, the field for number of sectors is
a 4 byte field, limiting the number of physical sectors, to 2°%. A file system like exFAT
which can have 2% sectors would be constrained in its maximum volume size. In order to
take advantage of the full capacity limits of the file system, it would need to be
configured as a superfloppy where it can escape the limits of the partition MBR.

There is confusion and disagreement on the maximum size of the exFAT volume,
with many theoretical limits expressed. This section will attempt to demystify some of
these limits.

A Microsoft Knowledge Base article (Microsoft, 2009) states a theroetical
maximum volume size of 64ZiB. As seen on other web sites, such as NTFS.COM with
their file system comparison called NTFS vs. FAT also indicates the maximum volume
size of 64ZiB. This number is the result of the following calculations: Microsoft has
imposed an implementation limit of 2'* (4096 bytes) as a sector size limit. In the VBR, as
seen in Table 3 is an 8 byte number than can specify up to 2 sectors. This can result in a
volume space of 2 bytes, which is 64ZiB. This sounds good on paper, but there is one
slight catch, since the FAT cell entries are 32 bits in size and can address at most 2
clusters, this would require a cluster size of oM bytes, or 16TiB. Think about that, 16
tebibytes for ONE cluster. With the exception of high end server file systems, you will
rarely see an entire file system being that large, and this is just one block.

The current exFAT implementation’s maximum is smaller, and is 128PiB. Here is
how this value is calculated: Microsoft has limited the maximum cluster size to 2*° bytes
(32MiB). This number is reached by multiplying the sector size by the number of sectors
per cluster. The sector size may be defined between 2° (512 bytes) and 2'? (4096 bytes)
and the product of these 2 values cannot exceed 2> bytes. Next, the FAT entries are
examined which are 4 bytes and can track 2°% of these clusters. This calculates to a
maximum volume space of 27 bytes (128PiB).

Microsoft in their recent licensing announcement states “support from 32GB to
256TB” (Microsoft Press Pass, 2009). This new stated limit is 2**. The origins of this new
limit is currently unknown, but if you take the maximum sector size which is 2'* and
block it one sector per cluster, at 2* clusters, you will get 2**. Analysis of the exFAT file

system was performed on different storage media SO0MB or less, so 32GB is not a lower

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 22 |

limit either. Unlike FAT32 that requires a minimum number of clusters to be configured,
it appears that exFAT does not have that restriction.
Microsoft has put a practical limit on the sector and cluster sizes. The maximum

4% bytes per

theoretical limits on the cluster size without these limits are a maximum of
cluster, which is a really large number.

When examining the maximum file size, the storage location within the directory
entries of the exFAT file system is an eight byte non-signed integer which can hold a
value up to 2%-1. This value exceeds the maximum volume size based on the current

specifications, and as currently implemented the maximum file size is constrained by the

configured size of the file system.

5 exFAT Internals

5.1 Volume Structure
VOLUME LAYOUT Extended FAT File System (exFAT)

BOOT N
PARAMETERS 9

Sector 0

R

OEM
PARAMETERS 1

RESERVED

Primary VER

12 Sectors

PRIMARY VBR
HASH 1

Sector 11

BOOT)
PARAMETERS 9

Sector 12

- (-—V

OEM
PARAMETERS 1

Backup VBR
12 Sectors

RESERVED

BACKUP VBR
HASH 1

Sector 23

(——b

« FAT Alignment Space

FIRST FAT

FatLength in VBR *Second FAT only if TFAT is
*SECOND FAT defined, not in version 1.0

FatLength in VBR

FatOffset in VBR

«—* HEAP Alignment Space

) CLUSTER
Cluster Heap Offset in VBR HEAP

Figure 13 Extended FAT File System (exFAT) Volume Layout

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 23 |

The exFAT specification defines the volume layout as regions, and defines four regions:

e The Main Boot Region

e The Backup Boot Region
e The FAT Region

e The Data Region

There are also sub regions which will be explained in later sections. A volume layout

is shown in Figure 13.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 24 |
5.2 Volume Boot Record (VBR)
Field Name Offset Size Description/Value
(byte) (byte)
Jump Boot 0 3 0xEB7690
File System Name 8 “EXFAT *
Must Be Zero 11 53 Must be 0x00
Partition Offset 64 8 Sector Address
Volume Length 72 8 Size of total volume in sectors
FAT Offset 80 4 Sector address of 1* FAT
FAT Length 84 4 Size of FAT in Sectors
Cluster Heap offset 88 4 Sector address of the Data Region
Cluster Count 92 4 Number of clusters in the Cluster Heap
Root Directory First Cluster 96 4 Cluster address of the Root Directory
Volume Serial Number 100 4 Volume Serial Number
File System Revision 104 2 VV.MM (01.00 for this release)
Volume Flags 106 2 Field Offset Size | Description
bits bits
Active FAT | 0 1 0—1st
1 —2nd
Volume 1 1 0 — Clean
Dirty 1 - Dirty
Media 2 1 0 — No Failures
Failure 1 — Failures
Reported
Clear to 3 1 No Meaning
Zero
Reserved 4 12
Bytes Per Sector 108 1 This is a power of 2. Range: min of 2° = 512 byte
cluster size, and a max of 2'% = 4096.
Sectors Per Cluster 109 1 This is a power of 2. Range: Min of 2'=512. The
maximum Cluster size is 32 MiB, so the Values in
Bytes per Sector + Sectors Per Cluster cannot exceed
25.
Number of FATS 110 1 This number is either 1 or 2, and is only 2 if TexFAT
is in use.
Drive Select 111 1 Used by INT 13
Percent In Use 112 1 Percentage of Heap in use
Reserved 113 7
Boot Code 120 390 The Boot Program
Boot Signature 510 2 0xAASS
Excess 512 If the sector is larger than 512 bytes, extra padding
may exist beyond the signature
Comments: Volume size is minimum of 1MB and maximum size is 2°*"' sectors

Table 3 Layout for Main and Backup Boot Sector Structure

The Volume Boot Record (VBR), as shown in Table 3, is the first critical file system

collection of metadata needed by the forensics examiner. This collection of sectors

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute

As part of the Information Security Reading Room

Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 25 |

defines the limits and locations of the exFAT regions, and has a pointer to the Root
Directory.

The Main Boot Region of the VBR is composed of five sub-regions of a total of 12
sectors:

e The Main Boot Sector (MBS)

e The Main Extended Boot Sectors (MEBS)

e The OEM Parameters

e A reserved sector

e The Checksum Sector

The Backup Boot Region is a repeat of the 12 sectors found in the Main Boot
Region, and together, both regions total 24 sectors. Since the concept of the term cluster
only applies to the contents of the Cluster Heap, the VBR will always be expressed as
sectors.

The MBS does not differ conceptually from the partition Master Boot Sectors or
Volume Boot Records of previous FAT file systems. It contains Boot Code, the BIOS
Parameters Block (BPB), and a signature. The purpose of the BPB is to describe the
physical layout of the file system volume. The common signature (as shown in Figure 14)

used in this sector is 0xAASS.

Offset o 1 2 3 4 5 6 7 8 9 A B C D E F
000001FO0 00 00 00 00 0O 00 0O 00 00 OO0 00 00 00 00 55 AA iiieniennn. U2

Figure 14 Winhex Display of VBR Signature

The Boot Code is located in the first 3 bytes of the MBS and also consumes 390
bytes at offset 120. The first 3 bytes is a Jump Boot sequence which bypasses the BPB
and jumps to the Boot Code. Since any executable sequence of computer instruction may
be stored in the boot code, this may be of interest to the forensics examiner should
customized boot code be stored. It would be in this area of the sector that a Boot Sector

Virus would modify and implant itself.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 26 |

Offset 0 1 2 3 4 5 6 17 8 9 10 11 12 13 14 15

0 EB 76 90 45 58 46 41 54 20 20 20 00 00 00 00 00 v EXFAT
16 00 00 00 00 0O 00 0O 00 00 OO0 00 00 00 00 00 00 ..ieveveiennnnn.
32 00 00 00 00 0O 00 0O 00 00 OO0 00 00 00 00 00 00 ..ieieieienennnn.
48 00 00 00 00 00 00 00 OO 00 OO OO0 00 00 00 00 00 niieniennnnn.

64 3F 00 00 00 00 00 00 OO C1 F3 01 00 OO 00 00 00 Booooooo Ao......
80 80 00 00 00 80 00 00 00 00 01 00 00 58 3E 00 00 So0o@coooooo X>..
96 05 00 00 00 EC 99 D1 C4 00 01 00 00 09 03 01 80 oL AMNAL L L. €
112 5C 00 00 00 00 00 00 00 Nocoooooa

Figure 15 Winhex of the first 120 bytes of a MBS

The File System Name, also referred to as the OEM label, is an 8 byte ASCII field
containing the name of the file system. This makes identification of the file system easier,
and as shown in Figure 15 the name is “EXFAT” and is padded with training blanks. If
this file system is created on a fixed hard drive in a partition, you cannot rely on the
partition type within the MBR to determine the file system type because the partition
code for exFAT is 0x07 and is shared with other file systems (see Table 20). The next
field, Must Be Zero, defines 53 bytes of 0x00 in a location that the older FAT file
systems used to define their BPB. This reduces the risk of the legacy FAT
implementations of accidently mounting an exFAT volume by mistake.

The Volume Length is a count of the total number of sectors on the volume. This
number needs to be larger than a 32 bit number, so it is defined as 2**. Suppose for
example the maximum sized Cluster Heap was defined, which is currently limited to 2°*-
11 clusters. If the cluster ratio is set to 1 sector per cluster (1:1), then a 32 bit number is
required to hold the volume length. If the sector to cluster ratio was 1:16, then a 36 bit
number would be required. If the current maximum as per the specification were used,
and assuming a sector size of 512 bytes, an additional 16 bits need to be added, requiring
a 48 bit number. This is based on a 25 bit maximum (32MiB cluster size) and 9 of those
bits are used to define 512 bytes for the sector size.

Four fields are used to describe the FAT. The FAT offset is used to define the
sector offset of the FAT region and points to the 1* FAT. If the number of FATS is 2,
then the 2" FAT will immediately follow the 1* FAT, starting on a sector boundary. The
number of FATS will always be 1 because TexFAT is not implemented and the 2™ FAT
only exists in a TexFAT environment. If the implementation does not verify this value,
then the file system could be modified to increase this number and imbed fake FATS in

the volume in order to create additional slack space to hide data. The FAT length is the

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 27 |

length of the FAT in sectors. In the Volume Flags there is a flag for the Active FAT. This
only applies in a TexFAT environment, when number of FATS is equal to 2. This flag

indicates which of the two FATS is active.

e+ Command Prompt

#N:zectors Specifies the number of sectors per track.

C:s>chkdsk f:

The type of the file system is exFAT.

Uolume Serial Number is C4D1-29EC

Mindows is verifying files and folders...

Uolume label is FMTServer2BB3.

File and folder verification is complete.

Mindows has checked the file system and found no probhlems.

63848 KB total disk space.
KB in 17 files.
KB in 1 indexes.
B KB in bad sectors.
KB in use by the system.
KB available on disk.

bytes in each allocation unit.
15268 total allocation wnits on disk.
?2 allocation units available on disk.

Figure 16 Chkdsk of an exFAT formatted disk

The final region, the Cluster Heap, is the data portion of the volume structure and
holds the directories and files. The Cluster Heap is allocated in cluster units and the
Cluster Count defines how many allocation units are defined. The Cluster Offset
identifies the sector address of where the Cluster Heap begins. Once inside the Cluster
Heap, the addressing units are in clusters. In Figure 16 the Cluster Count is shown as
total allocation units on disk, and in this example shows 15,960.

In comparison, a FAT32 file system requires a minimum of 65,526 clusters
making FAT32 unusable for small disks formats. exFAT does not have that restriction
and smaller media may be used. In testing, a 32MB compact flash card was formatted as
an exFAT file system.

A key value in this sector for the forensics examiner is the Root Directory First
Cluster. The details of the Root Directory are described in section 6.1, and this value
points to the first cluster of the Root Directory which resides in the Cluster Heap. The
VBR defines the structure of the volume, but the Root Directory defines the contents
within the Cluster Heap. All the metadata about files, subdirectories, the volume label,
etc reside in this directory.

Two critical fields are the bytes per sector and sectors per cluster. One thing that
is special about these fields is that the values contained are exponents. For example

Figure 15 shows that the bytes per sector are 9 and the sectors per cluster are 8. This is 2°

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 28 |

bytes per sector (512) and 2° sectors per cluster (8) resulting in a cluster size of 4096
bytes. The maximum aggregate sum of these two exponents is 25, for a maximum cluster
size of 32MiB. The maximum value for the bytes per sector field is 12 (2'*~ 4096 bytes).
At offset location 104 is the file system revision number, which appears in Figure
15 and is 0x0100 and translates to version 01.00.
The boot signature of the MBS is always at offset location 510. If the sector size
is defined as greater than 512 bytes, the signature will still be located at this location, and

the remainder of the sector will be undefined and not used.

Field Name Offset (byte) Size (byte) Description/Value
Extended Boot Code 0 508-4092 Additional Boot Code
Extended Boot Signature 508-4092 4 0xAAS550000
Comments: Signature actually stored as 0x000055AA

Table 4 Layout for Extended Boot Sector Structure

The Main Extended Boot Region takes up the next 8 sectors, even when not used.
This allows a larger boot program by providing additional sectors for boot code. Unlike
the MBS, the MEBS, when extended to larger than 512 bytes, allows usage of the entire
sector for boot code and the record signature is moved to the last four bytes. If a sector
size of 4096 bytes was used, the boot signature would be at offset 4092. If a MEBS sector
is not in use, the boot code should all be 0x00, followed by the boot signature.

Field Name Offset (byte) Size (byte) Description/Value
Parameters[0] 0 48 Parameters
Parameters|[1] 48 48 Parameters
Parameters[2] 96 48 Parameters
Parameters[3] 244 48 Parameters
Parameters[4] 192 48 Parameters
Parameters[5] 240 48 Parameters
Parameters[6] 288 48 Parameters
Parameters[7] 336 48 Parameters
Parameters|[§] 384 48 Parameters
Parameters[9] 432 48 Parameters
Reserved 480 32-3616 Rest of sector Reserved

Table 5 Layout for OEM Parameter Structure

The next sector in the VBR (sector 9) is the OEM parameters record. Since this

record really doesn’t exist yet (it is all zeros in the file systems that were generated), there

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 29 |

is little analysis that can be done at this time. The patent specifies this table as 10 fields of
48 bytes, the first 16 bytes of each field is the GUID and the remaining 32 bytes are the
parameters, but no additional definition is provided.

The entries are not sorted, and it is possible that the first 9 are empty and the last
has data, so the specification states that all 10 entries should be searched. This sector is
filled out by the media manufacturer at the factory and a format operation is not supposed
to erase this sector with the exception of a secure wipe of the media.

Examination of Microsoft MSDN AA914663 provides a definition of the 32 byte

parameter field, as shown in Figure 17:

struct

{
GUID OemParameterType; //Value is OEM FLASH PARAMETER GUID
UINT32 EraseBlockSize; //Erase block size in bytes
UINT32 PageSize;
UINT32 NumberOfSpareBlocks;
UINT32 tRandomAccess; //Random Access Time in nanoseconds
UINT32 tProgram; //Program time in nanoseconds
UINT32 tReadCycle; // Serial read cycle time in nanoseconds
UINT32 tWriteCycle; // Write Cycle time in nanoseconds
UCHAR Reserved[4];

}

FlashParameters;

Figure 17 OEM Parameters Type Definition

Sector 10 is reserved, and is not currently defined. Sector 11 is a checksum sector,
where every 4 byte integer is a 32 bit repeating checksum value of the previous 11 sectors.
If anyone wanted to tamper with the VBR by changing values in the BPB or the boot
code, like a boot sector virus infecting the VBR, then the checksum would have to be
recalculated and sector 11 would need to be updated. The last 3 sectors of this 12 sector
VBR (sectors 9, 10 and 11) do not contain signatures, the signatures are only used for

sectors containing boot code and are in the first 9 sectors.

Offset 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5632 7D OA 4E 29 7D OA 4E 29 7D OA 4E 29 7D OA 4E 29 }.N)}.N)}.N)}.N)
5648 7D OA 4E 29 7D OA 4E 29 7D OA 4E 29 7D OA 4E 29 }.N)}.N)}.N)}.N)

Figure 18 Winhex dump of part of a VBR checksum sector

Figure 18 shows a partial dump of the checksum sector, the checksum is

0x294E0A7D and repeats in every 4 bytes of the entire sector. For a sector size of 512

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 30 |

bytes, it would repeat 128 times. Figure 19 shows the Microsoft Visual C function that

was used to compute and verify the checksum value.

UINT32 VBRChecksum(const unsigned char octets[], long NumberOfBytes)
{

UINT32 Checksum = 0;

long Index;

for (Index = 0; Index < NumberOfBytes; Index++)
{

if (Index == 106 || Index == 107 || Index == 112)
{
continue;
}
Checksum = ((Checksum <<31) | (Checksum>> 1)) + (UINT32) octets[Index];

}

return Checksum;
Figure 19 Code snippet of VBR checksum calculation function in C
For comparison, the FAT32 VBR is within a reserved 32 sector region, with a

primary VBR of 3 sectors at sectors 0, 1 and 2 and then a backup VBR located at sectors
6, 7 and 8. (Mueller, 2003) In a FAT32 VBR, executable boot code can reside in the 1%
and 3" sectors, where an exFAT VBR can have 9 sectors containing executable code.
Figure 49 shows a formatted dump using a Winhex template to display the 1*
sector VBR. This template doesn’t currently exist because it was developed as part of this

research, but the source code for the template is provided in Figure 48.

5.3 File Allocation Table (FAT)

Field Name Offset (byte) Size (byte) Description/Value
FAT Entry [0] 0 4 Media Type 0xFFFFFF8 Hard Drive
FAT Entry [1] 4 4 Constant OxFFFFFFFF
FAT Entry [2] 8 4 First Cluster
Last FAT Entry (Cluster Count+1) * 4 Last Cluster
4
Free Space (Cluster Count +2) * Remainder of Sector ~ What is left over of the last sector
4
Comments: The First cluster is cluster 2, there is no cluster 0 or 1. If there were 10 clusters (Cluster Count)
the clusters would be numbered from 2 to 11, and the entire FAT would be 12 entries of 32 bits each.

Table 6 Layout for the File Allocation Table (FAT)

exFAT is in the FAT family of file systems along with FAT12, FAT16 and
FAT32. In explaining the FAT file system, Carrier, 2005 on page 260 explains the two
purposes of the FAT, one being to determine the allocation status of a cluster and the
other is to find the next allocated cluster in a file or directory cluster chain. In the exFAT

file system these responsibilities change.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 31 |

In exFAT, the FAT is no longer used for allocation status. Like NTFS, exFAT
will use a bitmap to keep track of the cluster allocation status. As far as where the next
cluster resides, the FAT in the exFAT file system will work similar to previous FAT file
systems when the file is fragmented. If the file or directory becomes fragmented then the
FAT will need to be used to track the location of the clusters.

Theoretically, this change has the potential of speeding up I/O operations. When
writing on a FAT32 file system the FAT must be accessed when each cluster is allocated
or read. In exFAT this operation is flipping a bit in the Allocation Bitmap. As long as the
file remains not fragmented, the FAT does not need to be updated. Even if there is data
already in the FAT, those corresponding cells don’t even need to be zeroed because there
is a flag in the Stream Extension Directory Entry (Section 6.9) that indicates that the FAT
is invalid. Read operations of a non-fragmented file stored in exFAT would not require
access to the FAT or the Allocation Bitmap and reduces overall file system I/O overhead.

The FAT uses a singly linked list to track the location of clusters. A singly linked
list is an object with a key and a next pointer, but does not have a previous pointer like
found in a doubly linked list. (Cormen, Leiserson, Rivest & Stein, 2001). In the case of a
FAT, an array is used and the cell location is the key. The contents at that cell are the

next pointer.

Byte Capacity Media Size and Type

FO 2.88 MiB 3.5-inch, 2-sided, 36-sector
FO 1.44 MiB 3.5-inch, 2-sided, 18-sector
F9 720 KiB 3.5-inch, 2-sided, 9-sector
F9 1.2MiB 5.25-inch, 2-sided, 15-sector
FD 360 KiB 5.25-inch, 2-sided, 9-sector
FF 320 KiB 5.25-inch, 2-sided, 8-sector
FC 180 KiB 5.25-inch, 1-sided, 9-sector
FE 160 KiB 5.25-inch, 1-sided, 8-sector
F8 Fixed disk

Table 7 Media Descriptor Definitions as used in legacy FAT file systems

The first two cell entries of the FAT table are predefined. The first entry is the
media type, and is set to O0xF8 which signifies a fixed disk. FAT12 and FAT16 systems

are capable of supporting floppy disks, and other media values were available (see Table

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 32 |

7). exFAT does not support floppy disks. Figure 20 shows the results of trying to format a
3% inch floppy disk using a Server 2008 system with the exFAT support installed.

= ministrator: Command Prompt

Microsoft Windows [Uersion 6.8.6801]

Copyright <c> 2886 Microsoft Corporation. All rights reserved.
CislUserssadministrator>dir a:

The disk media is not recognized. It may not be formatted.

C:\Users“admninistrator>format a: fs:iexfat
Insert new disk for drive A

and press ENTER when ready...

The type of the file system is RAW.

The new file system is EXRFAT.

Formatting 1.44M

Floppy disks cannot be formatted with the eXFAT file system.

C:sUsershadministrator>

Figure 20 Attempt to format a 1.44 floppy disk with an exFAT file system

Offset 0o 12 3 4 5 6 7 8 9 A B C D E F

00020000 F8 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF gyyyyyyyyyyvyyyy
00020010 FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 {9y cvneenncenns
00020020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wuvvuewuernennns
00020030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wuevuevuernennnn

Figure 21 Winhex display of 16 FAT cells

The Winhex display in Figure 21 shows the first 16 locations of a specific exFAT
file system. The first location has OxFFFFFFF8 which is the media descriptor. The
second location is OxXFFFFFFFF. Both of these relative locations in an exFAT file system
should always have those same 2 values in them.

The first cluster in an exFAT file system is at index 2, which works out nice since
the first two cells are reserved and do not represent any clusters. In this same example,
clusters 2, 3 and 4 have EOF markers, i.e. OXFFFFFFFF. In the file system that is being
used for this example, cluster 2 is the first cluster of the Allocation Bitmap, cluster 3 is
the first cluster of the UP-Case Table, and Cluster 4 is the first cluster of the Root
Directory. All three of these areas are created as part of the format operation to initially
create the file system and are not part of normal file system operations.

Although the UP-Case Table and Allocation Bitmap sizes should be static and
those areas should not be fragmented, the Root Directory can grow and could fragment.
Section 5.2 provides the definition of the VBR where the Root Directory first cluster
pointer resides, it should be noted that there is no equivalent of a No FAT Chain flag, and
as will be seen in sections 6.3 and 6.4, the directory entries for the Allocation Bitmap and

UP-Case Table do not have this flag as well. Without an indication of whether the FAT is

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 33 |

used to chain clusters, the assumption is that they are chained and the FAT for these 3

areas will operate as in legacy FAT implementations.

Printing Simulated chkdsk totals

131072 bytes in each allocation unit.
497 Total allocation units on disk.
61 Allocation units available on disk.
436 Allocation units in use.

Analyzing 1st FAT
FF (End Of Chains): 3 ~ F7 (Bad Clusters): 0 Cell Contains Zero: 494 NonZero (Remaining Non-Zero Cells): 0

Figure 22 Program simulated Chkdsk totals

As part of analyzing the FAT structure, the program reads all the FAT cell entries
(excluding the first two reserved cells) and provides a count of them as shown in Figure
22. As shown in Figure 21, there are 3 EOF markers. That particular 64MB USB drive
was 87 percent full with 3 very large files on it, so that only 61 clusters were still free.
Using 128KiB cluster sizes, there were only 497 clusters created in that file system, and
when the program counted both zero and non-zero cells, the contents of 494 FAT entries
contained zeroes. The other 3 non-zero entries were those 3 EOF markers.

What this shows is that even though this particular USB drive had 436 clusters
allocated and in use, the FAT table wasn’t used to record anything except for 3 of the
clusters. This verifies that the FAT isn’t used to represent all file cluster chains. This
theoretically should have less of a performance impact on reading a file compared to
when using one of the FAT predecessors. If a FAT chain is not generated for a
contiguous set of file blocks then the FAT does not need to be consulted. This can reduce
I/O to read the FAT entries and may simplify I/O operations where multiple blocks can
be read at once.

There are a few special values that relate to the FAT:

e 0x00000000 — No significant meaning

e (0x00000001 — Not a valid cell value

o OxFFFFFFF6 — Largest Value

o OxFFFFFFF7 — Bad Block

o OxFFFFFFF8 — Media Descriptor

o OxFFFFFFF9-OxFFFFFFFE — Not Defined

o OxFFFFFFFF — End of File (EOF)

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 34 |

Typically the cells may have zero which would indicate that there is no chain. In
exFAT, if there is no chain, then a bit in the secondary flags of the directory record would
indicate that the FAT chain is invalid. Knowing whether a chain exists in the first place is
marked in the directory entry.

Since the cluster index begins at 2, there is no cluster 0 or cluster 1. So there should
be no FAT entries with a value of 1. The actual valid values of clusters will be in the
range of 2 to the Cluster Count + 1. For example, if there were 10 clusters, the range
would be from 2 thru 11.

The largest value for Cluster Count + 1 is OxFFFFFFF6. This limits the number of
entries in the FAT table to 2*>-11. This is also the maximum number of clusters that can
be tracked by a 32 bit FAT table in the Cluster Heap. OXFFFFFFF7 is used to mark bad
clusters and OXFFFFFFFF is used for the FAT Chain EOF marker, and this is consistent
with the prior versions of the FAT family. If a bad cluster is marked by a FAT bad cluster
marker, then the media failure flag in the VBR should also be set.

The maximum number of FAT tables for exFAT is 2, but since Transactional exFAT
(TexFAT) is not supported in version 1.0, there will only be one FAT defined. The
address of the first FAT, the size of the FAT table, and the number of FAT tables is
specified in the VBR. If the number of FAT is set to 2, then the 2" FAT will begin on the
next sector address following the first FAT and both FAT tables will be the same size.
When there are 2 FAT tables, the active FAT table is indicated by a flag in the VBR. (See

section 5.2)

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 35 |

Extended FAT File System (exFAT) — FAT Example
MBS in VBR
FatOffset
FAT Link List Array
*Media Type is Physically X’FFFFFFF8'
stored as X'F8FFFFFF’ “Media Type +0
because of little endian X'FFFFFFFF’
Always This Value +4
2 +8
Directory Record 40 hl +160
T +164
First Cluster “ 80 &
40 42 +168 7
43 +72 5
5
1
N g
80 101 +320 E
81 +324 f,
82 +328 @
g.
100 +400 =
X’FFEFFFFF’
101 End Of File Marker +404
102 +408
This example is a file of 4 103 +412
Clusters: 40, 41, 80 & 101

Figure 23 Extended FAT File System (exFAT) Example

Using Figure 23, examination of a FAT chain will be illustrated. There are two
main pointers in play, the first being the sector address of the FAT table as specified in
the Main Boot Sector of the VBR. This example assumes a single FAT. The FAT Offset
points to the first entry in the first FAT table, which is the media descriptor.

The second pointer is the first cluster pointer located in the Stream Extensions
Directory Entry in the directory. In this example the first cluster in the chain of data
blocks is at cluster 40.

After processing the data in cluster 40, the next cluster needs to be accessed. The
Stream Extension Directory Entry is examined and it was determined that the FAT chain
is valid, so the contents in cell 40 of the FAT table is examined. Cell 40 is at byte offset
160 of the FAT table because each cell entry is 32 bits. The cell location contains 41, the

next cluster in the chain.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 36 |

The process then reads the data in cluster 41, processes it, and extracts the contents
in cell 41 of the FAT table. This time the contents is 80, so the process reads cluster 80,
processes it, and reads cell 80 of the FAT table.

At cell 80 the contents is 101, the process reads cluster 101, processes it, and then
examines cell 101 of the FAT table and sees the EOF marker, which flags the end of
chain and no more clusters remain. In theory the FAT might not even need to be
consulted for the EOF marker because the process may have already stopped reading if

the data length was reached.
The walk of the FAT chain is now complete.

5.4 Allocation Bitmap Table

Extended FAT File System (exFAT) — Allocation Bit Map Example

MBS in VBR

Root Directory First Cluster \

Root Directory

‘ X’83' Volume Label Directory Record ‘

‘ X”82' UP Case Table Directory Record

First Cluster

X’81' Allocation Bit Map Directory Entry
First Cluster

yoea

olly oup ut Az

Cluster 2 is the first cluster, Clusters 0 and 1 do not exist and are
/ not represented in the table

Clusters 9 Thru2 [~ +0 g
Clusters 17-10 +1 E
Clusters 25-18 +2 §
Clusters 33-26
Clusters 41-34 11000000xCO +4 i:
Clusters 4942 H
Clusters 57-50 i_'
Clusters 65-58 3
Clusters 73-66 é
Clusters 81-74 g
Clusters 89-82 E
Clusters 97-90 H
Clusters 105-98 00001000x08 +12 “.

+14 i
+15 i

This example is a file of 4 Clusters: 40, 41, 80 & 101 as only clusters allocated

Figure 24 Extended FAT File System (exFAT) Allocatlon Bitmap Example

The maximum number of Allocation Bitmap tables for exFAT is 2, but since
TexFAT is not supported, there will only be one Allocation Bitmap table.

The FAT table lives outside the Cluster Heap, but the Allocation Bitmap table
lives inside the Cluster Heap and resides within a set of clusters. The Allocation Bitmap

table appears to be built first and has been assigned to cluster 2 (the first cluster in the

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 37 |

Cluster Heap). This is not written in stone, so the Allocation Bitmap table can actually be
anywhere in the Cluster Heap, whether built there by the format program or moved
somewhere else afterwards.

An Allocation Bitmap Directory Entry will point to the Allocation Bitmap table
with its first cluster field. This entry is explained in section 6.3.

The Allocation Bitmap table is broken down into multiple 8 bit bytes where each 8
bit byte represents the allocation status of 8 clusters. The first cluster, cluster 2, is
represented in the first byte by the first bit (bit 0) in the Allocation Bitmap table. When
performing the calculation to find the relative position for the cluster in the table, first
subtract 2 from the cluster number, divide by &, and the resulting integer is the byte offset
into the Allocation Bitmap table. For the remaining bits, the clusters will be mapped from
the least significant bit (bit 0) through the most significant bit (bit 7).

Expanding on the example from Figure 23, Figure 24 will show a corresponding
Allocation Bitmap where clusters 40 and 41 are allocated. The bit positions go from right
to left, so in this example will show left to right as clusters 41 to 34 and the first 2 bits set
to 1, indicating that they are allocated.

Bits that are zero are unallocated (free). Note that the first byte of the table

represents clusters 9 through 2, where byte 0, bit 0, is cluster 2 — the first cluster.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 38 |

5.5 Time Stamp Format

Extended FAT File System (exFAT) — Timestamp Format

144480 85 02 AF 9B 20 00 00 00 69 64 7D 3B F8 B4 95 32

From WInHex' 144496 69 64 7D 3B 8C 00 00 00 00 00 00 00 00 00 00 00

-7

X'32'

X'95'

X'B4'

X’Fg'

Year =b'0011001' = x'19" = 25 + 1980 = 2005
Month = b'0100" = x'04' = 4

Day =b'10101' = x'15' = 21

Hours =b10110" = X'16' = 22 (10 pm)
Minutes = b'100111' = x'27' = 39

Double Seconds =b'11000' = x'18'=24 *2 = 48

Last Modified Timestamp: 3295B4F8 04/21/2005 22:39:48

Figure 25 Extended FAT File System (exFAT) Timestamp Format

When an investigator or forensics analyst wants to develop a timeline of activity
on a system, one of the most useful pieces of information is the file times. (Carvey, 2005).
This process is called a MAC time analysis. Understanding the 3 main timestamps and
their behavior when used for file creation, access, and modification is important to
achieve this goal. The analysis of these timestamps can provide valuable insight into the
history of the file and the extent of the user’s knowledge of the files existence and
contents (Casey, 2002). Section 6.8 will show where the timestamps are located and how
to extract them. This section will explain the underlying format in order to help the
forensics examiner understand how to convert the timestamp to a human readable date
and time.

A breakdown of the file system timestamp format is provided by Carrier (Carrier,
2005). Another example is provided in Figure 25. MSDN provides a mapping and calls
this the DOS date/time format (Figure 26).

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 39 |

The DOS date/time format is a bitmask:

24 16 8 0
t—t—t—t—t—t—t—+—+ +—t—t—t—t—t—t—t—+ +—t—t—t—t—t—t—t—+ +—t—t—t—t—t—t—+—+
IYIYIYIYIYIY[Y[M| [MIMIM|IDIDIDIDID| [hlhlhlhlh|m|m|m| [m|m|m|s|s|s|s]|s]
tt—t—t—t—+—+—+—+ +—t—t—+—t—+—+—+—+ +—t—t—t—t—t—t—+—+ +—t—t—t—t—t—t—+—+

\ /\ /\ / \ /\ /\ /

year month day hour minute second

The year is stored as an offset from 1980. Seconds are stored in two-second increments.
(So if the "second" value is 15, it actually represents 30 seconds.)

Source: http://blogs.msdn.com/oldnewthing/archive/2003/09/05/54806.aspx
Figure 26 The DOS Date/Time format

The DOS date/time format has not changed in exFAT, and is the same as used in
earlier FAT file systems. The exFAT file system provides support for UTC timestamps
which has an advantage when data is collected from different time zones, and can be
important when the forensics examiner has to correlate data and logs taken from several
different systems that may have been located in different time zones. This analysis hasn’t
established if there is a special single UTC timestamp format, but it was determined that
the exFAT file system actually uses the aggregate of three different fields to make up
what can be called the UTC timestamp. These fields are not stored together as one single
set of fields for each type of date/time timestamp. This is different than the NTFS UTC
timestamps that use a 64-bit number in 100 nanosecond intervals with an epoch of
January 1, 1601 (UTC).

The first field is the DOS date/time value. This is actually 2 separate fields by
itself since the date is in one 16 bit word and the time is in the other 16 bits. Since both of
these components are stored together, this will be treated as one 32 bit (4 bytes) date/time
stamp. Microsoft has also specified this as a 4 byte single field, and not as two separate
fields.

The next field is a one byte field for 10ms units, and ranges from 0-199. This
actually provides the “odd” seconds. Since in the DOS timestamp format the seconds are
really “double seconds” the seconds will always be even. When the 10ms portion is then
factored in, between 0-1990 ms, or between 0-1.99 seconds is being added. So when the
contents of this field are 100 or more, the seconds will become odd when combined. This

field only exists for the Create and Last Modified timestamps, and it appears that

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 40 |

Windows XP maintains both these fields while Server 2008 only maintain the create
10ms field. This appears to be an inconsistency in the cross platform implementation, and
requires more black box behavioral analysis to map the different scenarios.

The third field which appears for all three components (create, modify, access) is
the time zone offset, and is one byte. These fields contain non-zero values when UTC
support is present. Windows XP with exFAT support installed has UTC support, but
Vista SP1 and Server 2008 SP1 did not. Examination of these fields will provide
information on whether the operating system that created or updated the corresponding
date/time timestamp field had UTC support, and will provide insight into the timestamp
contents. Initial tests using Server 2008 SP1 did not produce these dates. After applying
SP2 to the Server 2008 system the time zone offsets began to appear.

A search to find any documentation on the format of the time zone offsets did not
produce any results. Trial and error was used by changing the clock settings on the
Windows XP machine and then observing changes in these fields to see how they were
affected. Table 23 was generated based on those observations and with some
extrapolation provides a translation of these offsets. They appear to be in the range of
128-255 in 15 minute increments that appear to provide a range of + 16 hours. A formula
was developed (by Jeff Hamm) that shows the time zone offset to be a 7 bit signed
integer. The purpose of the high order bit has not been determined.

The location of these fields also conflict with the layout as appearing in the
specification released in the Patent. The create time zone offset overlays the field defined
for last access 10ms, and the other two time zone offset values overlay 2 bytes of a
reserved area. The File Directory Entry layout in Table 15 has been modified to reflect
what was observed based on the implementations behavior and does not match the layout
provided in the specification.

The DOS Timestamp will always be written with the local machine time. It could
have been implemented in one of two ways, where the UTC time could have been entered
into the DOS Timestamp, but Microsoft apparently didn’t go that route. So regardless of
whether the host system has UTC support or not, the same date/time information is
recorded, it is the local time. Then, with UTC support, the time zone offset is recorded for

the corresponding timestamp.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 41 |

5.6 Cluster Heap

The Cluster Heap is the data area of the file system volume. The Root Directory,
files, subdirectories, the UP-Case Table, and the Allocation Bitmap reside in this area on
the storage media. Allocation status — allocated or unallocated clusters — is tracked by the
Allocation Bitmap, and when clusters must be chained to combine multiple clusters into a
larger non-contiguous file, these chains are tracked within the FAT file structure. The

FAT itself it stored outside of the Cluster Heap.

5.7 Transactional FAT

Transactional FAT or Transaction safe FAT, and also known as TexFAT for the
exFAT file system is not supported in this version, and there is little documentation
currently available on this feature. This is a limitation for this research as there is no
empirical study that can be performed at this time. Information provided here is based on
the theory of what to expect and looking at what Microsoft may have done in the
Windows CE version of exFAT.

Microsoft has a patent (Microsoft Patent 7613738 (November 3, 2009)) called
“FAT Directory Structure for use in Transaction Safe File System” that provides some
idea of how this feature should work.

In Figure 42 is an example a 18 MB file using 140 clusters, each sized at 128KiB.
This is 256 sectors per cluster, or 35,840 sectors that have to be written. Supposed the file
system was fragmented in such a way to force the file to be fragmented, then 140 FAT
entries would have to be accessed. In any case, 140 bits in the allocation table would have
to also be modified when the file is written or deleted. Now, lets take a theoretical
example of a 8.5GB avi video file using the same blocking factor to be written to a very
large storage medium. That would come out to 64,850 clusters or over 16.6 million
sectors. Even with very fast devices, it is not just the time to write out such a large file,
but the multiple different operations required to complete such an operation. Updates are
required to the directory, Allocation Bitmap, and FAT table. What happens if it breaks in
the middle? The objective of Transaction Safe FAT is to make all those updates atomic.

The desirable properties of transactions is the ACID test. (Elmasri & Navathe, 1994)
These properties include the Atomicity, Consistency, Isolation and Durability of that

transaction. The atomic principle is effectively an “all or nothing” result.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 42 |

The way Transaction Safe FAT is supposed to work is that there will be 2 copies of
the FAT and 2 copies of the Allocation Bitmap, and the FAT and Allocation Bitmap will
be paired. The metadata would be frozen from updates so that updates to the file system
would be isolated, and a working pair of the FAT/Bitmap would be updated and in flux.
Should the transaction fail, such as the storage media suddenly being abruptly yanked out
of the storage device or the occurrence of a power failure, the state and consistency of the
file system would not be impacted. Once the transaction is successfully completed, the
FAT/Bitmap pair is flipped to the other set.

The patent refers to the use of placeholders. Suppose a subdirectory is being updated.
The subdirectory is pointed to by a parent directory, and that pointer is a first cluster field
in the Stream Extensions Directory Entry of the File Entry Set that defines the
subdirectory. A placeholder cluster is obtained, the data is copied over to the placeholder,
and then the placeholder is updated. Once the update is complete, the cluster address
pointer in the parent Stream Extension Directory Entry is then updated to point to the
placeholder, and the old cluster can then be released and returned to the Cluster Heap.

Microsoft MSDN CC907928 discusses limitations in the Windows CE version of
TexFAT. It is not known at this time whether these limitations will carry over to the
desktop as well. In the Windows CE version, file names are limited to 247 characters due
to the way the Root Directory will be updated. A shadow copy of the Root Directory is
maintained for the updates that require transaction safety. The Root Directory in

Windows CE is in a fixed location and can’t be moved.

6 exFAT Directory Structure

To explain what is not in exFAT, let’s examine something that the legacy FAT file
systems did have. Figure 27 shows a display of a FAT32 subdirectory:

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1048576 2E 20 20 20 20 20 20 20 20 20 20 10 00 AC 8B 6B o Lok
1048592 87 3B 87 3B 00 00 8C 6B 87 3B 04 00 00 00 00 00 $7%7. .Gk, ...
1048608 2E 2E 20 20 20 20 20 20 20 20 20 10 00 AC 8B 6B oo ..ok
1048624 87 3B 87 3B 00 00 8C 6B 87 3B 00 00 00 00 00 00 $r47. €k, ..

Figure 27 Winhex display of FAT 32 Subdirectory for special pointers

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 43 |

Since Winhex supports FAT and FAT32 with its factory supplied templates, let’s

run the FAT directory template on these two special directory entries.

EFAT Directory Entry, Base Offset: 1048576

Record #: 1)
Oftset Title L
1048576 Filename [blank-padded)
1048584 Extension [blank-padded)]
1048587 OF = LFN entry 10
1048587 Attributes [- -a-dir-vol-s-her) 000710000
1048576 00 = Mever used, EG = Erased 2E
1048588 [reserved) 1]
1048530 Creation date & time 124072003 13:28:22
1048583 Cr. time refinernent in 10-ms units 172
1048532 Access date [no timel] 12/07/2003 07.28:14
1048538 Update date & time 124072009 1328:24
1048536 [FAT 32] High waord of cluster 3 1]
1048602 TE-bit cluster # 4
1048604 File size [zera for a directory) o

Figure 28 Winhex Template of the "." subdirectory in FAT32

31 FAT Directory Entry, Base Offset: 1048608

Record #: 1
Ottset Title K
1048608 Filename [blank-padded)
1048616 Extension [blank-padded)]
1048619 OF = LFN entry 10
1048619 Attributes [- -a-dir-vol-z-her] 00010000
1042608 00 = Mever used, EG = Erased 2E
1048620 [reserved] o
1048622 Creation date & time 124072003 13:28:22
1048621 Cr. time refinement in 10-ms units 172
1048624 Access date [no time!) 12/07/2009 0728:14
1048630 Update date & time 124072003 13:28:24
1048628 [FAT 32| High word of cluster # 1]
1048634 T6-hit cluster # 1}
1048636 File size [zero for a directory) 1]

Figure 29 Winhex Template of the ".." subdirectory in FAT32

Figure 28 and Figure 29 displays two special subdirectory entries that exist in the
FAT and FAT32 subdirectories. These are actually physical entries in those directories
and are the first two entries of each subdirectory, and exist even when the directory is
empty. They do not exist in the Root Directory. Those entries have special definitions: “.”
means this directory and “..” means containing directory. The exFAT specifications
indicate that these special filenames shall not be physically recorded in the directory.
Now when the directory is listed they may be listed as if they did exist, so in exFAT these
two special directories have shifted from a physical concept to a conceptual concept — the
reverse of the legacy FAT file systems.

Microsoft classifies the entries in the directory as either critical or benign. Critical

entries are required for the file system to operate properly, benign entries are optional.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 44 |

With the exception of file and subdirectory definitions, all critical entries must be in the
Root Directory.

For the forensics examiner, the benign entries may have significant importance.
When an exFAT file system goes through the mount process it is expected that the mount
will only succeed if the critical entries are in order. All defined critical entries must be
known to the file system and if any unknown critical entries are found then the file
system should not be mounted. However, the file system will ignore the benign entries.

This is where it can become interesting. This would allow critical entries to be
changed to benign entries, or even new benign entries to be created and effectively create
a new file system within a file system. If someone wanted to create files and hide them,
benign entries could be created pointing to the clusters where the hidden data resides and
the file system would ignore those entries. If the Allocation Bitmap was updated to
prevent destruction of the data, there would be allocated space to files that did not show
up in any directory listing. The only way to uncover this type of hidden data is to go deep
into the file system with a byte by byte inspection.

The directory entries are also broken down into Primary and Secondary entries. In
exFAT the only secondary entries are found in a file or subdirectory definition. The
Primary and Secondary entries of a specific definition, when grouped together, are called

a Directory Entry Set, which is actually an array of directory entries.

Type Field | Offset | Size
In Use 7 1
Category 6 1
Importance | 5 1
Code 0 5

Table 8 Breakdown of the Entry Type

Table 8 provides the layout of the entry type, a one byte field that identifies each
entry in the directory. Since 0x00 is an end of directory marker, 0x80 is not defined. The
identification of primary/secondary and critical/benign entries come from this value.

e In Use: 0—Notn Use, 1- In Use

e (Category: 0 — Primary entry, 1 — Secondary entry

e Importance: 0 — Critical entry, 1 — Benign entry

e Code: Identifies the entry

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 45 |

6.1 Root Directory

The Root Directory is used to define files, sub-directories, the volume label, the
location of the UP-Case Table, and the location of the Allocation Bitmap. Other entries
such as TexFAT and ACL may also reside in the directory, but these entries do not exist
because support has not been implemented. They do exist in the Windows CE version of
the exFAT support.

The directory entries are 32 bytes in length, each beginning with a type code (Entry
Type) to identify the purpose and status of the entry. Multiple entries are used to define a
file or a subdirectory, with a minimum of 3 and a maximum of 19 entries. The directory
entry set making up a file is an ordered array of entries, containing 1 primary and
multiple secondary entries, and do not contain sequence numbers or other identifiers to
keep the entries in order.

For File Entry Sets, the first bit is used to indicate if the entry is in use. In some
cases, if this bit is set to off, then the entry is part of a deleted set. This will vary based on
the purpose of the entry.

10 different entry types are defined in exFAT, and in the next sections the details
will be provided on each, where known. A subdirectory can hold up to 2,796,202 (2**/3)
files. This is based on a maximum data length of a subdirectory being limited to 256MiB.

Such a limitation wasn’t indicated for the Root Directory.

6.2 Volume Label Directory Entry

Field Name Offset (byte) Size (byte) Description/Value

Entry Type 0 1 0x83
Type Field | Offset | Size | Value
In Use 7 1 1
Category 6 1 0
Importance | 5 1 0
Code 0 5 00011

Character 1 1 Number of characters in label

Count

Volume Label 2 22 Volume Label in Unicode

Reserved 24 8

Comments: If the Entry Type is 0x03 then there is no volume label
Table 9 Layout for Volume Label Directory Entry

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 46 |

The Volume Label Directory Entry defines the volume label. This is a 0x83 entry,
and the length of the volume label is a maximum of 11 characters in length and is
expressed as a 16 bit Unicode string. A character count is provided to indicate the length
of the volume label as the string is not null terminated.

If the media is formatted without a volume label, then a 0x03 directory entry will
appear instead, which indicates that there is no volume label. Here the “InUse” bit would
be set to off, but it does not indicate a deleted volume label, just that one was not

assigned.

6.3 Allocation Bitmap Directory Entry

Field Name Offset (byte) Size (byte) Description/Value
Entry Type 0 1 0x81
Type Field | Offset | Size | Value
In Use 7 1 1
Category 6 1 0
Importance | 5 1 0
Code 0 5 00001
Bit Map Flags 1 1
Bit | Size | Value | Purpose
7-1 Reserved
0 |1 0 1* Bitmap
0 |1 1 2" Bitmap
Reserved 2 18
First Cluster 20 4 Cluster Address of First Data Block
Data Length 24 8 Length of the Data

Comments: There will be at least 1 of these entries. The number of entries is based on the Number of
Fats specified in the VBR/MBS.

Table 10 Layout for Allocation Bitmap Directory Entry

The Allocation Bitmap Directory Entry defines the location of the Allocation
Bitmaps. There will be either 1 or 2 of this type 0x81 entry, depending on the number of
FATs. 2 FATs only exist when TexFAT is being used. When there are 2 FATs, a bit in
the Bit Map Flags will indicate which FAT is associated with this directory entry.

The first cluster field points to the start of the Allocation Bitmap. Although the
Allocation Bitmap may usually be in the first cluster (cluster 2) it can theoretically be
placed anywhere in the Cluster Heap, and probably can be moved to a different set of

clusters. The forensics examiner should not depend on the Allocation Bitmap being the

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 47 |

first cluster in the Cluster Heap, as someone who may manipulate the Cluster Heap
storage could move the Allocation Bitmap to fool an investigator.

The data length field holds the length of the Allocation Bitmap in bytes. To
determine what this value should be, take the number of clusters in the Cluster Heap
(Cluster Count in the VBR), and divide by 8 — rounding up to the next byte integer. This
will calculate how many bytes are required for each Allocation Bitmap; the Allocation

Bitmap is one bit per cluster defined in the Cluster Heap.

6.4 UP-Case Table Directory Entry

Field Name Offset (byte) Size (byte) Description/Value

Entry Type 0 1 0x82
Type Field | Offset | Size | Value
In Use 7 1 1
Category 6 1 0
Importance | 5 1 0
Code 0 5 00010

Reservedl 1 3

Table Checksum 4 4

Reserved2 8 12

First Cluster 20 4 Cluster Address of First Data Block

Data Length 24 8 Length of the Data

Comments:

Table 11 Layout for UP-Case Table Directory Entry

The UP-Case Table is used to convert the filename to upper case for certain
operations, such as comparing the filename to a search string. The case of the filenames
is preserved when stored in the directory, but certain operations are case insensitive.

The first cluster field points to the beginning of the UP-Case Table, and the data
length holds the length of the table. There is a Table Checksum value which is a
checksum of the table and must be checked prior to using the table. A routine that can be

used calculate the checksum is shown in Figure 30.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 48 |

UINT32 UPCaseChecksum(const unsigned char octets[], long NumberOfBytes)
{
UINT32 Checksum = 0;
long Index;
for (Index = 0; Index < NumberOfBytes; Index++)
{
Checksum = ((Checksum <<31) | (Checksum>> 1)) + (UINT32) octets[Index];
}

return Checksum;

Figure 30 Checksum routine for the UP-Case Table

The UP-Case Table is small, at less than 6,000 characters. Now imagine a cluster
size of 128KiB being used for the file system. That provides over 100KiB of file slack
space for hiding things. Now imagine the maximum cluster size of 32MiB. This is a
cluster location that does not display when executing a DIR command, will probably
never be moved or relocated during a disk defragmentation, and probably will not be
modified or overwritten by the file system. The checksum is only done against the UP-
Case Table itself and not on the slack space and makes this a prime target space for the

sophisticated criminal to hide things.

6.5 Volume GUID Directory Entry

Field Name Offset (byte) Size (byte) Description/Value

Entry Type 0 1 0xA0
Type Field | Offset | Size | Value
In Use 7 1 1
Category 6 1 0
Importance | 5 1 1
Code 0 5 0

Secondary Count 1 1 Always Zero

Set Checksum 1 2

General Primary Flags 4 2 Field Offset | Size | Value
Allocation 0 1 0—No
Possible
No FAT Chain | 1 1 0 — Valid

1 - Invalid

Custom 2 14

Volume GUID 6 16

Reserved 22 10

Comments: There is either no GUID entry, or a maximum of 1

This is a benign primary entry

Table 12 Layout for Volume GUID Directory Entry

This entry is defined as a benign primary entry. The specification provided a

definition of a Volume GUID Directory Entry. There may be either 1 or none of these

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 49 |

occurring in the file system. None of the tests performed during this research produced
such an entry, and with lack of a GUID entry to analyze, there isn’t much more that can

be provided at this time.

6.6 TexFAT Padding Directory Entry

Field Name Offset (byte) Size (byte) Description/Value

Entry Type 0 1 0xAl
Type Field | Offset | Size | Value
In Use 7 1 1
Category 6 1 0
Importance | 5 1 1
Code 0 5 1

Reserved 1 31

Comments: The patent does not provide the specifications for this entry
This is a benign primary entry

Table 13 Layout for TexFAT Padding Directory Entry

TexFAT is not supported in version 1.00, but the specification indicated the
existence of such an entry without actually defining the fields. This is also classified as a

benign primary entry.

6.7 Windows CE Access Control Table Directory Entry

Field Name Offset (byte) Size (byte) Description/Value

Entry Type 0 1 0xE2
Type Field | Offset | Size | Value
In Use 7 1 1
Category 6 1 1
Importance | 5 1 1
Code 0 5 2

Reserved 1 31

Comments: The patent does not provide the specifications for this entry
This is a benign secondary entry

Table 14 Layout for Windows CE Access Control Table Directory Entry

ACL is not supported in version 1.00, but the specification indicated the existence
of such an entry without actually defining the fields. Since the entry is labeled “Windows
CE”, this may be a holdover of the Windows CE implementation. This is also classified

as a benign secondary entry. Access control is typically on a file by file basis. If these

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 50 |

entries do come into support in the future, they probably will become secondary entries

of the File Entry Set.

6.8 File Directory Entry

Field Name Offset Size Description/Value
(byte) (byte)

Entry Type 0 1 0x85
Type Field | Offset | Size | Value
In Use 7 1 1
Category 6 1 0
Importance | 5 1 0
Code 0 5 00101

Secondary Count 1 1

Set Checksum 2 2

File Attributes 4 2
Attribute Offset | Size | Mask
Reserved2 | 6 10
Archive 5 1 0x20
Directory | 4 1 0x10
Reservedl | 3 1
System 2 1 0x04
Hidden 1 1 0x02
Read-Only | 0 1 0x01

Reservedl 6 2

Create 8 4 DOS Timestamp Format

Last Modified 12 4 DOS Timestamp Format

Last Accessed 16 4 DOS Timestamp Format

Create 10ms 20 1 10ms increments between 0-199

Last Modified 10ms 21 1 10ms increments between 0-199

Create TZ Offset' 22 1 Time zone difference to UTC in 15 min increments

Last Modified TZ' 23 1 Time zone difference to UTC in 15 min increments

Offset

Last Accessed TZ' 24 1 Time zone difference to UTC in 15 min increments

Offset

Reserved2 25 7

Comments: If the In Use bit is zero (0x05) then this is probably a deleted file, it will also occur when a
file is renamed and the number of file name extension directory entries changes.

'These fields are not defined in the specification provided in the patent document, they were
observed during the analysis of the implementation.

Table 15 Layout for File Directory Entry

A File Directory Entry defines a file or subdirectory. It does not stand alone. The
File Entry Set should contain from 3 to 19 32-byte directory entries. The File Directory
Entry (0x85) starts the File Entry Set, followed by a Stream Extension Directory Entry

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 51 |

(0xCO0) and then from 1 to 17 of the File Name Extension Directory Entry (0xC1). These
entries must be in sequence without gaps.

The secondary count is a one byte unsigned integer that will range from 2 to 18,
and indicate how many entries follow the primary directory entry. In the case of the 0x85
entry, this count does not include the 0x85 entry itself. This value can actually go to 255
as a maximum, but in the current implementation, 18 will be the maximum. The reason
that the 0x85 entry is not included is that this entry is a primary entry and the other
entries are secondary entries, and this is a count of the secondary entries contained in the
entry set.

File Attributes are very similar to those used in FAT/FAT32 and should have the
same value definitions. The attribute for a volume label does not exist in exFAT because
the volume label is defined in a 0x81 entry. Since Long File Name and 8.3 filename

support does not exist in exFAT, those attributes are no longer defined as well.

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

143456 85 02 32 50 20 00 00 00 66 64 7D 3B 73 85 32 35 w0218 oo o G} § B2
143472 66 64 7D 3B[C3 00 00 00 00 00 00 00 00 00 00 OO fd};A. ...
143488 CO 03 00 OB 9B 10 00 00 CO E8 03 00 00 00 00 00 A...> . RAe.. ...

143504 00 00 00 00 06 00 00 00 cCcO E8 03 00 00 00 00 00 Ae......
143520 Cl 00 77 00 69 00 6E 00 68 00 65 00 6C 00 70 00 A.w.i.n.h.e.l.p.
143536 2E 00 65 00 78 00 65 00 00 00 00 0O OO OO0 00 00 00@0%o@oooc0o00000

Figure 31 File Entry Set created by Server 2008 SP1

Figure 31 shows a File Entry Set sequence of the x85, xCO and xC1 entries. The
three timestamps are: Create (0x3B7D6466) Last Modified (0x35328573) Last Accessed
(0x3B7D6466) and this entry was created using a Windows Server 2008 SP1 machine.

Now examine what happens when you display the properties of this fie:

 (E— B
General | Compatibility | Details | General | Wersion | Compatibity |
CE [winhelp.exe C@. [winhelp

Typeof fle: Application (.exe) Type of file: Application

Description: Windows Help Engine Description: Windaws Help Engine

Location: Y Location: Ft
Sizet 250 KB (256,192 bytes) Size 250 KB (256,192 bytes)

Size on disk: 252 KB (258,048 bytes) Size on disk: 252 KB (258,048 bytes)

Created: Sunday, November 28, 2008, 12:35:13 PM Created: Sunday. N 129, 2009, 12:35:13 PM

Modified: Monday, September 18, 2006, 4:43:35 FM Madified: Monday. er 18, 2006, 4 43:38 PM

Accessed: Sunday, Nover 29, 2009 Accesse o Sunday. N 129, 2009

Attributes: T geadonly: [T/ Hidden ¥ Archive Attributes: [Clifead-orii [Hidden [“] Archive

Figure 32 Display of File Properties for exFAT created on Server 2008

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 52 |

For accessed, the date is provided but no time is given. The left was performed
using Windows Server 2008 SP1, and the right was performed on a Windows XP SP3
machine, the results are both the same. Although with exFAT the last access time is
stored, not all commands will display the time value. Figure 33 shows the properties of a
NTEFS file and displays both the time and date, so the capability to display the accessed
time is there but not provided for exFAT files.

exbEAT Specification Properties

General |F'DF Security | Summany

ﬂ!‘li-. |exFAT Specification |
Yacbe

Type of file: Adobe Aciobat 7.0 Document
Openswith: A~ Adobe Acrobat 7.0

Locatior: T:\exFaT Project 2009-12-12 09-35 pm
Sizer 406 KB (416,353 hytes)
Size on disk: 408 KB (417,792 butes)

Created; Yesterday, December 12, 2009, 6:44:44 AM
Modified: Monday, Movember 30, 2009, 1:10:44 P
Accessed Today, December 13, 2009, 2:33:47 PM

Aributes: [Headoriy []Hidden

Figure 33 Display of File Properties for NTFS on Windows XP

The exFAT specification defines 3 additional fields of a single byte non-signed
integer to add a 10ms increment to each time, this value ranges (in decimal) from 0 to
199. Only 2 of these 3 fields were implemented. Since the seconds recorded in the DOS
time value is double seconds (every two seconds) the 10ms increment adds in the odd

missing second as well as refines the time to within 10 milliseconds.

Now look at the display in Figure 34 at the same file using Windows Explorer:

File

Edit ‘ew Favorites Tools Help :,'

5 > ? j'-.l sSearch ||~ Folders v

Address |‘=-' Fii v| & so

A Name Size | Type Date Modified Date Created Date Accessed G

File and Folder Tasks &L winhelp 251 KE Application 9716/2006 4145 PM 11/29/2009 12:35 PM 11/29/2009 12:35 PM
unvise32 84KE Applcation 12/17/1999 313 AWM 11/29/2009 12:36 PM 11/29/2009 12:36 PM —
Other Places [Z] setupact 304 KB Text Document 11/9/2008 5:21 AM 11/29/2000 12:35PM 11/29/2009 12:35 FM
SESETUP 280 KE Application 4[25/2005 1:07 AM 11/29/2009 12:35 PM 11/29/2009 12:35 PM
g ! = sET11 bmp 108KE THMPFile 3(24/2005 G:46 PM 11/29/2009 12:36 PM 11/29/2009 12:36 PM
Detals | gl regedt 132KE Application 1/19/2008 2:33 AM 11/29/2000 12:35 PM 11/29/2000 12:35PM ¥
62.0MB d My Computer

Figure 34 Display of dates using Windows Explorer

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 53 |

The date accessed shows a time value when the properties window did not.

In performing some of the black box testing on the Windows XP system, the
MAC times exhibited unexpected behavior. Opening a file on an exFAT file and
displaying data in the file, or copying the file to another physical disk did not affect the
last accessed timestamp on the source file. Performing the same operations on a NTFS
file did change the last accessed timestamp on each operation. It is expected that when a
file is accessed, i.e. one of its data clusters are read, that the last accessed timestamp
would be changed, and observation showed it was not updated at all. If the file was
modified, then the last accessed timestamp did change. Also, in this scenario, the
modified 10ms increment was set to zero. Although the analysis was only performed for
a few files, this indicates a potentially bigger problem, especially if an investigation
depends on these timestamps being consistent and properly updated as expected.

Let’s look at a theoretical situation: suppose the forensics examiner is
investigating a case of child porn, and the investigation target makes a claim that the
pictures (let’s say here that they are JPEG files in a JPG format) got downloaded but the
target claims that they never looked at them and didn’t even realize that they were there.
The forensics examiner is dependent on the different metadata of the file system to
confirm or refute such a claim. However, if the file system does not update the last
accessed timestamp when any program opens the JPG file, then how can such a claim be
validated?

In Figure 31 look at the next 3 bytes (offset 143476) after the time stamps, they
are 0xC3, 0x00, 0x00 and refer to the 10ms additions to Create, Modified, Accessed, in

that order. The 10ms increment for Modified and Accessed are zero.

Offset 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7929856 85 04 6C 53 20 00 00 00 55 0B 76 3B 39 65 27 33 w.1S ...U.v;9e'3
7929872 55 0B 76 3B 45 00 EC EC EC 00 00 00 00 00 00 00 U6 We oo oco00 00

Figure 35 Winhex of 0x85 entry created on Windows XP SP3

Figure 35 shows the Winhex dump of a 0x85 entry for a different USB stick and
for a different file, but was created on Windows XP SP3 with the KB for exFAT support
applied. Observe two occurrences in the display: First, the 10ms increments for Create,

Modified and Access are 0x45, 0x00 and OXEC. Second, the other two bytes of OXEC are

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 54 |

sitting in a reserved area which is undefined. For all files being created in exFAT by the
Windows XP system, the 3 byte sequence of 0OXECECEC is always being written in offset
22 of the 0x85 entry. This value may be different when created on a different XP system.
As explained in section 5.5, these are time zone offsets and are part of the UTC
timestamp. (In this example OxEC will convert to EST or GMT-5, the time zone in use on
the systems used in this research).

One of the key procedures of a forensics examiner is to create a timeline of the
events that occurred within a system. In order to do this, there needs to be an
understanding of the timestamp metadata stored in the file system as well as knowledge
of the tools that display such data (MAC Time Analysis). The behavior of what is written
in the timestamp storage locations has some variance depending on which operating
system is used. Even on the same operating system the different tools that display that
metadata may behave differently.

A checksum is computed across all entries in the entry set. The size of the entry
set in entries will be the secondary count + 1; the size of the entry set in bytes will be the

size * 32, with a minimum entry set of 3 entries being 96 bytes.

UINT16 EntrySetChecksum(const unsigned char octets[], long NumberOfBytes)

{
UINT16 Checksum = 0;
long Index;

for (Index = 0; Index < NumberOfBytes; Index++)
{

if (Index == 2 || Index == 3)
{
continue;
}
Checksum = ((Checksum <<15) | (Checksum>> 1)) + (UINT1l6) octets[Index];

}

return Checksum;

}

Figure 36 File Entry Set Checksum Calculation in C

Figure 36 shows the code that can be used to calculate the checksum value for the
File Entry Set. The checksum itself is located at offsets 2 & 3, so this field is excluded
during the calculation.

If the 0x85 entry is not in use, with the high bit set off in the entry type, then this
directory entry will actually be shown as a 0x05 entry. This most likely indicates that the
file was deleted. All the remaining entries that are part of the same File Entry Set will
also have their high order bits set to off, resulting in the 0xCO becoming a 0x40 and each

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \

55 |

0xC1 becoming a 0x41. Although these bits are changed to zero, the checksum of the File

Entry Set is not recalculated or altered.

The next four figures will be used to take a deeper dive into the File Directory

Entry:
Offset 01 2 3 4 5 6 17 8 9 10 11 12 13 14 15
524544 85 04 EF 91 20 00 00 00 50 62 86 3B D3 62 BA 3A ..1' ...Pbt;0b°:
524560 50 62 86 3B 11 00 EC EC EC 00 00 00 00 00 00 00 Pbt;..iii.......
Figure 37 Winhex Dump of a 0x85 image before deletion
Seeking Relative Byte Location: 524544, For Directory Index: 9, Reading 1 byte, Bytes
read: 1
Root Entry Type Read is: 85 Directory Entry Record
Checksum: 91EF
Calculated Checksum is: 91EF Size Directory Set (bytes): 160
Secondary Count 004
File Attributes: 0020 Archive
Create Timestamp: 3B866250 12/06/2009 12:18:32
Last Modified Timestamp: 3ABA62D3 05/26/2009 12:22:38
Last Accessed Timestamp: 3B866250 12/06/2009 12:18:32
10 ms Offset Create 11 17
10 ms Offset Modified 00 0
Time Zone Create EC 236 Value of tz is: GMT -05:00
Time Zone Modified EC 236 Value of tz is: GMT -05:00
Time Zone Last Accessed EC 236 Value of tz is: GMT -05:00
Figure 38 Formatted translation of a 0x85 image before deletion
Offset 01 2 3 4 5 6 17 8 9 10 11 12 13 14 15
524544 05 04 EF 91 20 00 00 00 50 62 86 3B D3 62 BA 3A ..iY L. .Pbt;0b°:
524560 50 62 86 3B 11 00 EC EC EC 00 00 00 00 00 00 00 Pbt;..iii.......
Figure 39 Winhex dump of a 0x85 image after deletion
Seeking Relative Byte Location: 524544, For Directory Index: 9, Reading 1 byte, Bytes
read: 1
Root Entry Type Read is: 5 Directory Entry Record (Deleted)
Checksum: 91EF
Calculated Checksum is: 89EF Size Directory Set (bytes): 160
Secondary Count 004
File Attributes: 0020 Archive
Create Timestamp: 3B866250 12/06/2009 12:18:32
Last Modified Timestamp: 3ABA62D3 05/26/2009 12:22:38
Last Accessed Timestamp: 3B866250 12/06/2009 12:18:32
10 ms Offset Create 11 17
10 ms Offset Modified 00 0
Time Zone Create EC 236 Value of tz is: GMT -05:00
Time Zone Modified EC 236 Value of tz is: GMT -05:00
Time Zone Last Accessed EC 236 Value of tz is: GMT -05:00

© 2010 The SANS Institute

Figure 40 Formatted translation of a 0x85 image after deletion

This example was performed using a Windows XP system, so the 3 time zone

offsets (OXEC) appear in the entry. Now this value may be different on other Windows

XP systems, for example Jeff Hamm of Paradigm Solutions who presented this topic at

the Techno Digital Investigation conference in Oct 2009, showed the values of 0xFO in

Robert Shullich rshullic@earthlink.net

As part of the Information Security Reading Room

Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 56 |

his hex dumps (Hamm 2009), and he believes that these may be the time zone values. He
believed that these values were a time zone offset in minutes. Further research using the
black box analysis shows that these are in fact a time zone offset, but not in minutes, but
coded for 15 minute intervals. Those values that appeared in a reserved area might have
been ignored during my analysis if Jeff hadn’t given me a clue of what they might be.

Before deleting the file, the file directory entry has an entry type of 0x85, and a
file entry set checksum value of 0x91EF and the program recalculates the checksum and
it matches with 0x91EF.

The file is then deleted, and an after set of images of the directory entries are
produced. The file entry type is now set to 0x05 because the entry is no longer in use and
the high order bit has been set to zero. The checksum stored in the file directory entry
remains at 0x91EF, but when the File Entry Set checksum was recalculated, a value of
0x89EF was obtained. These checksums do not match, and this is because the “InUse” bit
was turned off in all the entry types of the File Entry Set. But the checksum was not
recalculated and updated as part of the deletion process.

When a File Entry Set goes to not “InUse” it doesn’t always mean the file was
deleted. When a file is renamed, and the file name length requires a different number of
file name extension entries, a complete new File Entry Set is created. It is possible to
determine some of the file renaming actions performed on the file system because the
directory entry with the old name may still be in the directory and intact. It also appears
that the file system may be more apt at times to add a new directory entry into unused
space in the directory before overwriting existing inactive entries providing a potential
longer life for the artifacts.

A test was performed where a file was renamed but did not require a change in the
size of the File Entry Set. A filename of less than 15 characters was renamed to a smaller
file name. The original File Entry Set was modified, and did not result in a deleted File
Entry Set followed by a new File Entry Set.

The size of the File Entry Set in Figure 38 is 5 entries, and since the size of each
directory entry is 32 bytes, the complete File Entry Set is 160 bytes. The File Entry Set
contains 5 entries because the secondary count is 4, and this does not include the file

directory entry itself, so one is added to it.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 57 |

6.9 Stream Extension Directory Entry

Field Name Offset Size Description/Value
(byte) (byte)

Entry Type 0 1 0xCO0
Type Field | Offset | Size | Value
In Use 7 1 1
Category 6 1 1
Importance | 5 1 0
Code 0 5 0

General 1 1 Field Offset | Size | Value

Secondary Flags Allocation 0 1 0—-No
Possible 1 —Yes
No FAT Chain | 1 1 0 — Valid

1 - Invalid

Custom 2 14

Reservedl 2 1

Name Length 3 1

Name hash 4 2 Used for directory searches

Reserved2 6 2

Valid Data 8 8

Length

Reserved3 16 4

First Cluster 20 4 Cluster Address of First Data Block

Data Length 24 8 Length of the Data

If this is a directory, then the maximum value for
this field is 256M
Comments: 1 Entry Per File
If the In Use bit is zero (0x40) then this is probably part of a deleted file set

Table 16 Layout for Stream Extension Directory Entry

The Stream Extension Directory Entry provides information on the location and

size of the file. It also provides a hash of the file name that can be used to speed up

directory searches. The address of the first cluster points to the first cluster of the data file.

If the data length is zero, then there might not be any cluster allocated, and the

first cluster address may also be zero. Since the first cluster of the Cluster Heap always

begins at index 2 (cluster 0 and cluster 1 are not defined), a zero as the first cluster can

never be the address of a real cluster. If there is no cluster allocated to this file, then the

secondary flags should indicate that the FAT chain is also invalid.

If the file is deleted then the first bit that indicates that the entry would be in use

will actually now be set to zero, and the resulting entry type will be 0x40.

The next figures will take a deep dive at the Stream Extensions Directory Entry:

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute

As part of the Information Security Reading Room

Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 58 |

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

524576 CO0 03 00 20 DC CD 00 00 7D 18 17 01 00 00 00 00 A.. Uf..}.......
524592 00 00 00 00 94 00 00 00 7D 18 17 01 00 00 00 00 P S,

Figure 41 Winhex display before deletion image of a 0xCO0 director entry

Seeking Relative Byte Location: 524576, For Directory Index: 10, Reading 1 byte, Bytes
read: 1
Root Entry Type Read is: CO Directory Entry Record, Stream Extension
Secondary Flags: 03
Flag Bit 0: Allocation Possible
Flag Bit 1: FAT Chain Invalid
Length of UniCode Filename is: 32

Name Hash Value is: DCCD

Stream Extension First Cluster 148 Byte Location: 19398656

Cluster 148 is Allocated

Stream Extension Data Length 18290813 Bytes Slack: 71805 Clusters Used: 140
Stream Extension Valid Data Length 18290813 Bytes Slack: 71805 Clusters Used: 140

Figure 42 Translation of before deletion image of a 0xCO0 director entry

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

524576 40 03 00 20 DC CD 00 00 7D 18 17 01 00 00 00 00 Q.. UL..}.......
524592 00 00 00 00 94 00 00 00O 7D 18 17 01 00 00 00 00 ccoco’cocloccocss

Figure 43 Winhex display after deletion image of a 0xCO0 director entry

Seeking Relative Byte Location: 524576, For Directory Index: 10, Reading 1 byte, Bytes
read: 1
Root Entry Type Read is: 40 Directory Entry Record, Stream Extension (Deleted)
Secondary Flags: 03
Flag Bit 0: Allocation Possible
Flag Bit 1: FAT Chain Invalid
Length of UniCode Filename is: 32

Name Hash Value is: DCCD

Stream Extension First Cluster 148 Byte Location: 19398656

Cluster 148 is Not Allocated

Stream Extension Data Length 18290813 Bytes Slack: 71805 Clusters Used: 140
Stream Extension Valid Data Length 18290813 Bytes Slack: 71805 Clusters Used: 140

Figure 44 Translation of after deletion image of a 0xC0 director entry

The figures above are for an audio file of 18,290,813 bytes written on an exFAT
file system formatted with a 128KiB cluster size. This file will require 140 clusters to
hold the actual file data. Since the file will not fit exactly in the 140 cluster allocation, the
last cluster will not be full. In this case, there is file slack space of 71,805 bytes which is
enough to fit another file that can be hidden in that unused space. When the analysis is
performed before file deletion, the FAT and Allocation Bitmaps are inspected. The
program determines based on the Allocation Bitmap, that the first cluster is allocated. In
order to determine if all 140 clusters are allocated, the Allocation Bitmap must be
inspected for all 140 clusters, and if there is a FAT chain, the FAT has to be traversed to

determine the identity and order of each of those clusters.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 59 |

If the No FAT Chain flag is set to 1 (invalid) as in this example, then the file
clusters are resident in contiguous clusters and indicates that there is no file
fragmentation. To determine if all the clusters are allocated, clusters 148 (the first cluster)
through cluster 287 would have to have their corresponding Allocation Bitmap settings
inspected.

Now the file in this example is then deleted, and the entry type in the Streams
Extensions Directory Entry was changed from a 0xCO to a 0x40 (as seen in Figure 43),
all other fields remain unchanged. When the allocation status of cluster 148 is checked,
the Allocation Bitmap shows that the cluster is no longer allocated. If the cluster was
shown instead to be allocated, then the most likely cause would be that the cluster was
reused for another file indicating that the data may have been overwritten.

Walking the FAT chains (when required) and verifying the Allocation Bitmap
would be essential to the forensics examiner. If any of the clusters of a deleted file are
shown to be allocated — short of a corrupted file system — it would indicate that the
cluster was reassigned to another file and part of the deleted file was overlaid by another.
There are many scenarios of cluster allocations and how files may get overwritten by
other files, and these scenarios are beyond the scope of this paper. But when recovering
deleted files, these possible scenarios need to be understood by the forensics examiner or

tool that is performing the recovery of such deleted files.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 60 |

6.10File Name Extension Directory Entry

Field Name Offset Size Description/Value
(byte) (byte)

Entry Type 0 1 0xCl1
Type Field | Offset | Size | Value
In Use 7 1 1
Category 6 1 1
Importance | 5 1 0
Code 0 5 1
General | 1 Field Offset | Size | Value
Secondary Allocation 0 1 0—-No
Flags Possible 1 —Yes
No FAT Chain | 1 1 0 — Valid
1 - Invalid
Custom 2 14
File Name 2 30 Unicode part of filename is 15 characters, for a maximum of 255

Special filenames of “.” And “..” have special meanings of “this
directory” and “containing directory” and shall not be recorded.
Comments: There can be from 1 to 17 of these entries, for a maximum of 17x15 character long filenames
(255 characters). The representation is 16 bit Unicode, 2 characters per directory entry. The filename
character string is not null terminated.
If the In Use bit is zero (0x40) then this is probably part of a deleted file set

Table 17 Layout for File Name Extension Directory Entry

The 3™ entry type of a File Entry Set is the File Name Extension Directory Entry,
which has an entry type of 0xC1, and with the exception of the previous two directory
entries this entry may repeat multiple times, right now up to 17 times.

The File Name Extension Directory Entry is simple, it has the entry type,
secondary flags, and the remaining 30 bytes are used for a segment of the filename. The
general secondary flags indicate that allocation of clusters is not possible. To understand
this, a typical directory entry has a standard general format that offset 20 is a 4 byte first
cluster address and offset 24 is an 8 byte length value. By setting the flag that allocation
is not possible, this really indicates that offset 20 does not hold a cluster address field.
This allows that field to be redefined as something else and used for different data.

The file name is Unicode (16 bit) characters, and does not use null termination of
the string. The actual length of the string is provided as a one byte unsigned integer in the

Stream Extensions Directory Entry as Name Length. Size limitations present a value

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 61 |

range of 0-255 and the file name length being currently supported is a maximum of 255
characters.

Since a File Name Extension Directory Entry can hold 15 characters per entry, up
to 17 entries may be required to hold longer filenames. This is where the calculation for a
file set is a maximum of 19 directory entries, a filename of 255 characters would require
all 17 0xC1 entries to hold the filename. The strictest order is required because if the
order is not maintained then the wrong filename would be interpreted by the file system.

In Carrier’s book (Carrier, 2005) he describes file name structure of the FAT file
system and the Long File Name (LFN) Entries that supplement the legacy 8.3 filename
support. There are two different entry types in the legacy FAT directory for a file. These
types of entries do not exist in the exFAT file system. There are no 8.3 entries within the
exFAT file system, and unlike in legacy FAT where the end of the filename comes first
in the directory entry order (the entries are in reverse order), the entries in exFAT are in
order where the end of the filename will appear last.

Now a deeper dive is taken into the File Name Extension Directory Entries:

The full filename in the example below is: “cryptography cryp-203-32kbps.mp3”

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
524608 Cl 00 63 00 72 00 79 00 70 00 74 00 6F 00 67 00 A.c.r.y.p.t.o.g.
524624 72 00 61 00 70 00 68 00 79 00 5F 00 63 00 72 00 2 0Elo@oliloWo o@cis
524640 Cl 00 79 00 70 00 2D 00 32 00 30 00 33 00 2D 00 A.y.p.-.2.0.3.-.
524656 33 00 32 00 6B 00 62 00 70 00 73 00 2E 00 6D 00 Jo2okalBo@coBo oo
524672 Cl1 00 70 00 33 00 00 00 00 00 00 00 00 00 00 0O Ap.3..........

524688 00
Figure 45 Winhex display of File Name Extension Directory Entry

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 62 |

Seeking Relative Byte Location: 524608, For Directory Index: 11, Reading 1 byte, Bytes
read: 1
Root Entry Type Read is: Cl Directory Entry Record, File Name Extension
Secondary Flags: 00
Flag Bit 0: Allocation Not Possible
Flag Bit 1: FAT Chain Invalid
cryptography cr
Seeking Relative Byte Location: 524640, For Directory Index: 12, Reading 1 byte, Bytes
read: 1
Root Entry Type Read is: Cl Directory Entry Record, File Name Extension
Secondary Flags: 00
Flag Bit 0: Allocation Not Possible
Flag Bit 1: FAT Chain Invalid
yp-203-32kbps.m
Seeking Relative Byte Location: 524672, For Directory Index: 13, Reading 1 byte, Bytes
read: 1
Root Entry Type Read is: Cl Directory Entry Record, File Name Extension
Secondary Flags: 00
Flag Bit 0: Allocation Not Possible
Flag Bit 1: FAT Chain Invalid
p3
Figure 46 Translation of File Name Extension Directory Entry before deletion

Seeking Relative Byte Location: 524608, For Directory Index: 11, Reading 1 byte, Bytes
read: 1
Root Entry Type Read is: 41 Directory Entry Record, File Name Extension (Deleted)
Secondary Flags: 00

Flag Bit 0: Allocation Not Possible

Flag Bit 1: FAT Chain Valid
cryptography cr
Seeking Relative Byte Location: 524640, For Directory Index: 12, Reading 1 byte, Bytes
read: 1
Root Entry Type Read is: 41 Directory Entry Record, File Name Extension (Deleted)
Secondary Flags: 00

Flag Bit 0: Allocation Not Possible

Flag Bit 1: FAT Chain Valid
yp-203-32kbps.m
Seeking Relative Byte Location: 524672, For Directory Index: 13, Reading 1 byte, Bytes
read: 1
Root Entry Type Read is: 41 Directory Entry Record, File Name Extension (Deleted)
Secondary Flags: 00

Flag Bit 0: Allocation Not Possible

Flag Bit 1: FAT Chain Valid

p3
Figure 47 Translation of File Name Extension Directory Entry after deletion

From the File Name Extension Directory Entry (0xCO) the name length is 32
Unicode characters (each character takes 2 bytes) which will require 3 File Name
Extension Directory Entries, with 2 characters in the 3™ entry. This is verified in the
Winhex and program outputs in Figure 45 and Figure 46. When the file was deleted, and
the “InUse” bit changed to a zero, and as shown the entry types were changed to 0x41 as

displayed in Figure 47.

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 63 |

7 Areas for Future Research

e Hacking the File System — Breaking the file system by changing values and
observing how the file system reacts. If you change the hash values what message
would you get? Would the file system even complain? What if you mark some
entries of an entry set as InUse and other not InUse?

e Moving things around — What if you move the Allocation Bitmap to a different
cluster, would the file system still operate properly? What if you fragment the
Allocation Bitmap and put the clusters in a different order, will the file system
abide by the FAT chain?

e Putting non-standard data in the directory entries — Definitely needed for forensics
examination. Suppose you build a directory of 255 directory entries and put
executable code or pictures in the directory entry. 255x30 = 7,650 bytes to save
bytes in it. Will the file system complain? What will it do?

e Deleting part of a file set — What happens if you leave part of the directory set as
InUse but delete other parts of the entries, what will the file system do?

e What happens if you change critical directory entries to benign entries?

e What happens if you create new benign entries? Will the file system mount?

e OEM Parameters — Since this record type was not encountered in testing, analysis
could not be performed. When someone actually creates these entries they should
be evaluated.

e TexFAT — When Microsoft releases it, it needs analysis.

e ACL — When Microsoft releases it, it needs analysis.

e In a partition — an exFAT file system should be generated in a disk partition to see
what the partition code will actually be set to since the current documentation
says 0x07. What does a listing of the MBR show using native Windows
commands? Do they say exFAT?

e Analysis under Windows 7, does Windows 7 do anything differently?

e MAC Analysis. How and when does Windows 7 update its timestamps?

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 64 |

8 Summary

The Extended FAT File System (exFAT) is a new and not yet widely used file
system. It has been out for a few years and it will gain acceptance and momentum with
the release of storage devices that will support the new SDXC standard. Forensics
investigators and the maker of forensics tools need to be ready and prepared for an influx
of acquired evidence that requires analysis of this new file structure.

The time for addressing this new file system specification is here today. The SDXC
media standard was announced in January 2009. In late 2009, devices that can use this
new media have been announced and they will be available in early 2010. Already there
is media formatted with the exFAT file system out there and containing potential digital

evidence that is being collected but with no tools to analyze them.

9 Acknowledgements

I want to thank Jeff Hamm for his assistance, including providing me with his initial
research that gave me a head start for this paper, as well as collaboration on the
timestamp offsets. I also want to thank X-Ways, the makers of Winhex, who provided a

license for the product so I can develop templates for the research.

10 Author Information

Robert Shullich is a Graduate student in the Forensics Computing program at John
Jay College of Criminal Justice, CUNY. He holds a BS and MS in Computer Science
from the College of Staten Island, CUNY, MBA from Baruch College, CUNY, and a MS
in Telecommunications Networking from Brooklyn Polytechnic University. He serves on
the SANS Advisory Board, the IANS Technical Advisory Committee and the IDC US
Events Advisory Board. With over 35 years in IT including disciplines of Mainframe
Operations, Systems Programming, Program Application Development, LAN
Administration, Networking, and Information Security, he holds many professional

computer certifications including: CPP, CISSP, CISSP-ISSMP, CISSP-ISSAP, SSCP,

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 65 |

CISA, CISM, CGEIT, CEH, CIPP, SCP/SCNA, GSEC, GSNA, GREM, GCFW, GCIH,
GCFA, GAWN, MCSE+Security and Security+.

11 References

BCS SIGIST (2001). Standard for Software Component Testing (April 27, 2001).
Retrieved December 11, 2009 from:
http://www.testingstandards.co.uk/Component Testing.pdf

Carlton, Gregory H (2008). An Evaluation of Windows-Based Computer Forensics
Application Software Running on a Macintosh, Journal of Digital Forensics,
Security and Law, 3(3).

Carrier, Brian (2003). Open Source Digital Forensics Tools: The Legal Argument.
Retrieved December 4, 2009 from: http:/www.digital-
evidence.org/papers/opensrc_legal.pdf

Carrier, Brian (2005). File system forensic analysis. Upper Saddle River, NJ:
Pearson Education, Inc.

Carvey, Harlan (2005). Windows forensics and incident recovery. Boston, MA:
Pearson Education Inc.

Casey, Eoghan (2002). Handbook of Computer Crime Investigation. London:
Academic Press

Casey, Eoghan (2004). Digital evidence and computer crime: forensic science,
computers, and the internet (2" ed.). London: Academic Press.

Cormen, Thomas, Leiserson, Charles, Rivest, Ronlad & Stein, Clifford (2001).
Introduction to Algorithms (2nd ed.). MIT Press

Daubert v. Merrell Dow Pharmaceuticals. Daubert v. Merrell Dow Pharmaceuticals
(92-102), 509 U.S. 579 (1993). Retrieved December 4, 2009 from:
http://supct.law.cornell.edu/supct/html/92-102.7ZS.html

Elmasri, Ramez, & Navathe, Sham (1994). Fundamentals of database systems.
Addison Wesley Publishing Company.

Fontana, John (2009). Microsoft expands exFAT multimedia file system licensing.
Network World (December 10, 2009). Retrieved December 15, 2009 from
http://www.networkworld.com/news/2009/121009-microsoft-exfat-
multimedia-file-system.html?fsrc=netflash-rss

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 66 |

Galli, Peter (2009). Tuxera Signs File System IP Agreement with Microsoft (August
26, 2009) Retrieved December 15, 2009 from
http://port25.technet.com/archive/2009/08/26/tuxera-signs-file-system-
covenant-with-microsoft.aspx

Griffith, E. (2008). OS Wars: The Battle for Your Desktop, PC Magazine, Vol. 27,
No. 4, March 1, 2008. Retrieved December 15, 2009 from
http://www.pcmag.com/article2/0,2817,2273486,00.asp

Halfacree, Gareth (2009). SDXC laptops due soon (December 1, 2009) Retrieved
December 14, 2009 from http://www.bit-
tech.net/news/hardware/2009/12/01/sdxc-laptops-due-soon

Hamm Jeff (2009). Extended FAT File System. Presented at Techno Forensics
Conference October 2009 at NIST, Retrieved January 6, 2010 from
http://paradigmsolutions.files.wordpress.com/2009/12/exfat-excerpt-1-4.pdf

Herrman, John (2009). First SDXC Card Is The World's Fastest, Only Holds 32GB.
(March 6, 2009). Retrieved November 20, 2009 from
http://gizmodo.com/5165352/first-sdxc-card-is-the-worlds-fastest-only-holds-32gb

Hissink , Dennis (2009). CES Show Report: SDXC flash memory cards (January 7, 2009)
Retrieved November 20, 2009 from http://www.ces-show.cony/

History of the Floppy Disk. Wikipedia. Retrieved November 20, 2009 from
http://en.wikipedia.org/wiki/Floppy_disk

History and Capacities of CDROM. Wikipedia. Retrieved November 20, 2009 from
http://en.wikipedia.org/wiki/Cdrom

History and Capacities of DVD. Wikipedia. Retrieved November 20, 2009 from
http://en.wikipedia.org/wiki/DVD

History and Capacities of Blue Ray Disc. Wikipedia. Retrieved November 20, 2009
from http://en.wikipedia.org/wiki/Blue ray

HPC Factor (2009). The History of Windows CE: Windows CE 6.0 & into the
future.... Retrieved October 9, 2009 from
http://www.hpcfactor.com/support/windowsce/wceb.asp

International System of Units (SI). Retrieved November 10, 2009 from
http://physics.nist.gov/cuu/Units/binary.html

Johnston, Stuart (2009). Microsoft Licenses exFAT to Third Parties. (December 10,
2009). Internetnews.com. Retrieved December 15, 2009

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 67 |

http://www.internetnews.com/software/article.php/3852686/Microsoft+Licen
sestexFAT+to+Third+Parties.htm

Larkin, Eric (2007). Vista Resistance: Why XP Is Still So Strong, September 26, 2007.
Retrieved December 15, 2009
http://www.pcworld.com/article/137635/vista resistance why xp is still so

_strong.htm

Microsoft Intellectual Property Licensing for exFAT. Retrieved December 10, 2009
from
http://www.microsoft.com/iplicensing/productDetail.aspx?productTitle=exF
AT File System Licensing Program

Microsoft MSDN AA914663. OEM Parameter Definition with exFAT. Retrieved
December 10, 2009 from http://msdn.microsoft.com/en-
us/library/aa914663.aspx

Microsoft MSDN EE681827. File System Functionality Comparison. Retrieved
December 10, 2009 from http://msdn.microsoft.com/en-
us/library/ee681827(VS.85).aspx

Microsoft MSDN CC907928. TexFAT File Naming Limitations. Retrieved
December 10, 2009 from http://msdn.microsoft.com/en-
us/library/cc907928.aspx

Microsoft Patent 0164440 (June 25, 2009). Quick Filename Lookup Using Name
Hash. Pub No. US 2009/0164440 A1 Retrieved December 10, 2009 from
http://www.pat2pdf.org/patents/pat20090164440.pdf

Microsoft Patent 0265400 (October 22, 2009). Extensible File System. Pub No. US
2009/0265400 A1 Retrieved December 10, 2009 from
http://www.pat2pdf.org/patents/pat20090265400.pdf

Microsoft Patent 7613738 (November 3, 2009). FAT Directory Structure for use in
Transaction Safe File System. Pub No. US 7613738 B2 Retrieved December
10, 2009 from http://www.pat2pdf.org/patents/pat7613738.pdf

Microsoft Press Pass (2009). Microsoft’s Latest Flash Memory Technology Now
Available for License. (December 10, 2009). Retrieved December 10, 2009
from http://www.microsoft.com/presspass/press/2009/dec09/12-
10msflashtechpr.mspx

Microsoft (2004). Local File Systems for Windows. (May 5, 2004) Retrieved December 10,
2009 from http://www.microsoft.com/whdc/device/storage/LocFileSys.mspx

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 68 |

Microsoft (2008). Microsoft Notable Changes in Windows Vista Service Pack 1
(March 2008). Retrieved December 10, 2009 from
http://technet.microsoft.com/en-us/library/cc709618(WS.10).aspx

Microsoft (September 2009). Description of the exFAT file system driver update
package. 0955704. Retrieved November 10, 2009 from
http://support.microsoft.com/kb/955704

Mueller, Scott (2003). Upgrading and Repairing PCs. Que.

NTFS.COM. NTFS vs. FAT. Retrieved December 10, 2009 from
http://www.ntfs.com/ntfs vs fat.htm

SD Card Association. SDXC. Retrieved December 10, 2009 from
http://www.sdcard.org/developers/tech/sdxc

US Department Of Justice (2004). Forensic Examination of Digital Evidence: A
Guide for Law Enforcement. Retrieved December 10, 2009 from
http://www.ncjrs.gov/pdffiles1/nij/199408.pdf

Yahoo News (December 3rd, 2009). The World's First Data Recovery for exFAT
Drives! Retrieved December 8, 2009 from
http://news.yahoo.com/s/prweb/20091203/bsprweb/prweb3275634

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 69 |

12 Appendix
Table of Where Things Are

Reverse Engineering the Microsoft Extended FAT File System (exFAT)........cccceevenennee. 1
GIAC (GCFA) GOld Certificationcc.ceecuieruiieiieniie ettt st seeeeeesneeens 1
ABSTRACT ...ttt ettt et sttt et e a ettt e s et e bt et e e s e bt enteeneenaeentes 1
I INEOAUCTIONttt ettt ettt et e st et esate e bt e sneeeneeas 2
2 DEINITIONS. c..eiiitiiiieiee et sttt et 3
3 PLIOT WOTK oottt ettt ettt eneas 4
4 Setting @ FOUNAAtIONeooviiiiiiiiieiiecieecee ettt s e et eebe e e e ssveennaes 4
4.1 Purpose, Disclaimer and SCOPE........cocuevieririirieniniiiieiecieneee e 4
4.1.1 PUIPOSE. ..o ettt e 4
4.1.2 DISCIAIMET ...ttt ettt e 4
4.13 ASSUMPLIONS . ..eieeeiiieeeiieeeieeeeteeesieeeseteeesereeessaeeseseesareesnsreessseeesseeessseeens 5
4.1.4 OUL OF SCOPE -ttt 5
4.2 Relevance to the Field of Digital FOrensics.........ccccoeeiieiieniienieenieeie e 6
43 Research Methodologyccueeiieiiiiiiiiiee e 11
4.4 Survey of Removable Mediaccceeviieiiiniieiieieciececcie e 13
4.5 Survey of Microsoft File SyStems..........cocevueriiriiniiniinieiinieniecceceece 15
4.6 Getting the drivers put onto Windows XP........cccceeieviiiiiieniiieniecieeeeceeeeen 16
4.7 International System of Units (SI) Table........cccoeoeeniiiiiiiiiiieeee, 18
4.8 Summary of eXFAT Features.........ccovuvveiiieiiiieiieecieeceeeeeeee e 19
4.9 exFAT Timeline (Key Dates)cccooouiriiiiiiiiiieieeieeeeeee e 19
4.10 Maximum Volume and File Limitations...........cccccevuerierienienienieieeieseeeeeens 20
S5 eXFAT INETNALS ..coeniiiiii ittt et e 22
5.1 VOIUME SEIUCLUTE ...ttt ettt 22
5.2 Volume Boot Record (VBR)ooiiiiiiiieieeeeeeee e 24
53 File Allocation Table (FAT)ccoeiiiiiiieieeieeceeeee et 30
54 Allocation Bitmap Table..........ccccooiiiiiiiiiiiiieieeee e 36
5.5 Time Stamp FOrmatccoooviiiiiiiiiiieeeee e 38
5.6 CIUSTEr HEAP...c..iouiiiiiiiiiiieeceee ettt 41
5.7 Transactional FATc...oooiiiii e 41
6 eXFAT DIrectory StIUCLUIEcc.eeiiriiiiiriiriieieeiente ettt 42
6.1 ROOE DITECLOTY ..vieeeiiieeiieeeiiee sttt et ettt et e e saeesaee e snaeeesnseeenns 45
6.2 Volume Label Directory ENtryccccocceveeiiiniiniiiiniiiieicneceeeeeeeee e 45
6.3 Allocation Bitmap Directory Entry.........ccoeeieviieiiieniieiieiiecieceeceeeeee e 46
6.4 UP-Case Table Directory Entryccoccoeeviiniininiiniiieicnececceceeeeee 47
6.5 Volume GUID Directory ENtryccceeeiiiiiieiiieiieiieeieecieeeeeee e 48
6.6 TexFAT Padding Directory Entryccocoeiiiiiiiiiiiiiieeeeeee e 49
6.7 Windows CE Access Control Table Directory Entryccocveeiieiieniieneenne. 49
6.8 File Directory ENtrycooiiiiiiiiiiiiieiee e e 50
6.9 Stream Extension Directory Entryccoevviiiiiiiiiiiiiiieeieeeeeeecee e 57

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 70 |

6.10 File Name Extension Directory ENtry.........ccccoeeveeviiniiiiiiniiieieiecieee e 60
7 Areas for Future Research ..o 63
8 SUIMIMATY ..eoiiiiiiiiieeeiie ettt ettt ettt e st e e st e e et ee et eeetbeesnbbeesnsteesabeeenanes 64
O AcCKNOWIEAZEMENTS......cccuiiiiiiiiciiiecie et eee e eee e e e e ee et eeebaeesseeesnreeenns 64
10 AUthor INfOrmationc.covuiiiiiiiiiinieeee e 64
11 RETEIENICES ...ttt e 65
12 APPENAIX ittt ettt ettt et ettt e b e et e st e e aeesnbeeteeenbeenneennne 69
Table of Where ThiNgS ATEcoooiiiiiieciee ettt e e eae e eaae e saeeeenbeeens 69
LSt OF TADIES ...ttt sttt st 70
LISt OF FIGUIES ...eieiiiieciieecee ettt ettt et e et e e et e e esta e e ensaeesnsaeesaseeennseean 71
Table Of AUTNOTILIESeiueitieiiiitericeeee ettt st 72

|0 T €1 (0 T) oSSR 75

12.2 Partition Master Boot Record Partition Layout...........cccceeveieriiiniiienienieenenne, 77

12.3 List of selected Partition Codescceeuiiriieniiiiiiiniiiiieiiceee e 78

124 SDXC FOIMALS...ccuuiiiiiiiieiieniieiie ettt ettt e 79

12.5 Disassembly of the VBR.......ccciiiiiiiiieee et 80

12.6 Time Zone Offset Table.........cooieiiiiiiiiiiiiiieeeeseeeeeee e 81

12.7 Winhex Sample VBR Template..........c.ccccoveeeiiiiniiieiiieecieeeeeeeeeee e 83

12.8 Winhex Sample VBR Template Outputccceevueeviienieniiieieeieeiee e 84

List of Tables

Table 1 NUumMbering SChemEscooiiiiiiiiiiiieiieeie ettt 18
Table 2 File System LIMIScceoiiiiiieeeiiieeiie et ecieeeetee e iveeeaveeeraeesaeeesnnaeenes 20
Table 3 Layout for Main and Backup Boot Sector Structureccoceevevvereenicniennene 24
Table 4 Layout for Extended Boot Sector Structure............occvveevvieeeieeeiieeeiee e 28
Table 5 Layout for OEM Parameter Structure............ccceeevveeviieriieniieniieniieeie e 28
Table 6 Layout for the File Allocation Table (FAT)cccceeoiiiiiiieeiieeieeeeeeeeeee s 30
Table 7 Media Descriptor Definitions as used in legacy FAT file systems...................... 31
Table 8 Breakdown of the ENtry TyPe....c.veeiiiiiiiiiieeeceee e 44
Table 9 Layout for Volume Label Directory Entryccoeeveviiiiiiniiiinienieeieeieeee 45
Table 10 Layout for Allocation Bitmap Directory Entry.........ccccccveeviieeiiieeiiienieeciiees 46
Table 11 Layout for UP-Case Table Directory Entry.........cccccoeeiiiiieniieniiniieieeieeeene 47
Table 12 Layout for Volume GUID Directory Entryc.cccccvveeiiiieiiiiiiieeiee e 48
Table 13 Layout for TexFAT Padding Directory Entrycccccoevieviiieniiniieinieiieeene 49
Table 14 Layout for Windows CE Access Control Table Directory Entry 49
Table 15 Layout for File Directory ENtryccceeviieiieiiieiieciecieee e 50
Table 16 Layout for Stream Extension Directory Entry........cccceevevievciiencieencieeeieeee, 57
Table 17 Layout for File Name Extension Directory Entrycoccoevieniiiinieninenneenne. 60
Table 18 ACTonym Tablec..oiiiiiiiiiecie e aee e eebee e 76
Table 19 Layout of one 16-byte partition reCord..........ceevvieriieriienieniieiesie e 77
Table 20 Some Partition Type Definitionscccceecieeriiieeriiieeiee e 78
Table 21 SDXC FOIMALS...c..ccouiiiiriiiiieierieeie ettt sttt 79
Table 22 Disassembly of 1st VBR B0t SECtor........ccueveeiieeiiiiiiieeiieeeeeee e 80
Table 23 Time Zone Index Offset Table.........ccccceriiiiiiiiiieiieiieeee e 82

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 71 |

List of Figures

Figure 1 Disk Properties of exFAT file system using Windows XP without exFAT

010 10) o O PPP PRSPPI 7
Figure 2 Dir command on Windows XP system without the exFAT drivers..................... 8
Figure 3 Opening exFAT media in Windows Explorer on an XP system without the

EXF AT AIIVETS .ttt ettt ettt et e sttt e it e et e e sabeenbeeeneeenneas 8
Figure 4 Screenshot of FTK Toolkit 1.81.5 Analysis of exXFAT mediac.ccecevvennennne. 8
Figure 5 File Signatures of a BMP (Top) and an EXE (Bottom)cccceeveiiieicieeniieen. 9
Figure 6 Compact Flash, SDXC, and Smart Media and SD cardscccccevuervereeniennene 14
Figure 7 Jan 2009, Memory Card Market Share,...........cccccveeviieeiiieeciiecieecie e 14
Figure 8 Step 1 — Invoke Update KBOS55704c..oooiiiiieieieeieee et 16
Figure 9 Step 2 — Agree to the License Agreement...........ccceeeveeevvieeeieeniieesinieesieeeenennn 16
Figure 10 Step 3— KB955704 begins to UPdatec.coeeeeviieriieiiieeieeiieeie et 17
Figure 11 Step 4 — KB955704 Completed, now reboot the system..........ccccceevvvervveenenn. 17
Figure 12 Format Help command on XP after KB955704cocooviniininiiniiniiiene 18
Figure 13 Extended FAT File System (exFAT) Volume Layout...........ccccceevevvverrveenenn. 22
Figure 14 Winhex Display of VBR Signaturecccooceeviieiiieiiiniicieciceeeee e 25
Figure 15 Winhex of the first 120 bytes of a MBS.........ccccviiiiiiiiiieeeeeeen 26
Figure 16 Chkdsk of an exFAT formatted disKcccevviiiiiieiiiniiiiiiiceieeie e 27
Figure 17 OEM Parameters Type Definition.........c.cccccvveeviieeriiieiiiecieeceeee e 29
Figure 18 Winhex dump of part of a VBR checksum Sector...........cccccoceeveevieniinenniennene 29
Figure 19 Code snippet of VBR checksum calculation function in C............cc.cceveenneen. 30
Figure 20 Attempt to format a 1.44 floppy disk with an exFAT file system.................... 32
Figure 21 Winhex display of 16 FAT CellS.....ccceoriiiiriiieiieeiieeeeeeeeeeee e 32
Figure 22 Program simulated Chkdsk totals............ccceviiiiiiiniieiiiniieieececece e 33
Figure 23 Extended FAT File System (exFAT) Examplec.ccccevvvveiiinciieniieeeieee, 35
Figure 24 Extended FAT File System (exFAT) Allocation Bitmap Example.................. 36
Figure 25 Extended FAT File System (exFAT) Timestamp Format..............cccccccuvennen. 38
Figure 26 The DOS Date/Time format...........cccvevieeiiieriieniienieeiieeie et 39
Figure 27 Winhex display of FAT 32 Subdirectory for special pointers..............c........... 42
Figure 28 Winhex Template of the "." subdirectory in FAT32ccccoviiiniiviniiniiiinnne 43
Figure 29 Winhex Template of the ".." subdirectory in FAT32cccoovveiievciieeiieee. 43
Figure 30 Checksum routine for the UP-Case Table...........cccceeviieriiiiieniieiecieceeees 48
Figure 31 File Entry Set created by Server 2008 SP1c.oovoiiieiiieiiiieeieeeeeeeeeen 51
Figure 32 Display of File Properties for exFAT created on Server 2008..............cccoeueeee 51
Figure 33 Display of File Properties for NTFS on Windows XP........ccccccovvvvciverciieennnenn. 52
Figure 34 Display of dates using Windows EXplOrer...........ccccoevieeiiiiieniieiiesieeieeee 52
Figure 35 Winhex of 0x85 entry created on Windows XP SP3ccccoeviieviiiivcieeen. 53
Figure 36 File Entry Set Checksum Calculation in C...........ccccoeoieiiiiiieniieienieeee e 54
Figure 37 Winhex Dump of a 0x85 image before deletionc.cceevveeciiencieenciieenen. 55
Figure 38 Formatted translation of a 0x85 image before deletion...........ccccecevvenveneennnene 55
Figure 39 Winhex dump of a 0x85 image after deletionccceevevvevciieniiieciieee. 55
Figure 40 Formatted translation of a 0x85 image after deletion..........c.ccccceeveervinennicnnene 55
Figure 41 Winhex display before deletion image of a 0xCO director entry...................... 58

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 72 |

Figure 42 Translation of before deletion image of a 0xCO0 director entrycc....... 58
Figure 43 Winhex display after deletion image of a 0xCO director entrycce........ 58
Figure 44 Translation of after deletion image of a 0xCO director entrycceeevveneenn. 58
Figure 45 Winhex display of File Name Extension Directory Entry........c.ccccccvvevvveennenn. 61
Figure 46 Translation of File Name Extension Directory Entry before deletion 62
Figure 47 Translation of File Name Extension Directory Entry after deletion 62
Figure 48 Sample Winhex Template that I developed as part of this research................. 83
Figure 49 Output of Sample Winhex Template that were developed as part of this

TESCATCH ..ottt sttt ettt et s ae et ea e et b et eb et et eaee 84

Table of Authorities

Cases

BCS SIGIST (2001). Standard for Software Component Testing (April 27, 2001).
Retrieved December 11, 2009 from http://www.testingstandards.co.uk/Component
TeStINE.PAL et e e e 15, 69

Carlton, Gregory H (2008). An Evaluation of Windows-Based Computer Forensics
Application Software Running on a Macintosh, Journal of Digital Forensics, Security
ANA LaW, 3(3). coueeeiieieeiee et et st 11, 69

Carrier, Brian (2003). Open Source Digital Forensics Tools: The Legal Argument.
Retrieved December 4, 2009 from: http://www.digital-

evidence.org/papers/opensrc legal.pdf.........cccooviiiiiiiiiiiiee 13, 69
Carrier, Brian (2005). File system forensic analysis. Upper Saddle River, NJ: Pearson
EdUcation, INC.. c.....eeviiiiiiiiiieeee ettt 34, 65, 69
Carvey, Harlan (2005). Windows forensics and incident recovery. Boston, MA: Pearson
EdUCAtION INC. c.eevvvviiiiiiiieeeeeeeee et 11,42, 69
Casey, Eoghan (2002). Handbook of Computer Crime Investigation. London: Academic
PrESS e ————————————————————————— 42,69
Casey, Eoghan (2004). Digital evidence and computer crime: forensic science, computers,
and the internet (2nd ed.). London: Academic Press........cccocveevciieeiciieeniie e, 7, 69
Cormen, Thomas, Leiserson, Charles, Rivest, Ronlad & Stein, Clifford (2001).
Introduction to Algorithms (2™ ed.). MIT PLESS......oovoweeeeeeeeeeeereeeseeresreseesenes 35, 69

Daubert v. Merrell Dow Pharmaceuticals. Daubert v. Merrell Dow Pharmaceuticals (92-
102), 509 U.S. 579 (1993). Retrieved December 4, 2009 from:

http://supct.law.cornell.edu/supct/html/92-102.ZS.htmlcccoervieriininiiniinne 13, 69
Elmasri, Ramez, & Navathe, Sham (1994). Fundamentals of database systems. Addison
Wesley Publishing Company.ccoecueeriieniieniienie ettt 45, 69

Fontana, John (2009). Microsoft expands exFAT multimedia file system licensing.
Network World (December 10, 2009). Retrieved December 15, 2009 from:
http://www.networkworld.com/news/2009/121009-microsoft-exfat-multimedia-file-
system.html?fsre=netflash-1Ss...........ccooviiriiiiriiiiii e 15, 69

Galli, Peter (2009). Tuxera Signs File System IP Agreement with Microsoft (August 26,
2009) Retrieved December 15, 2009 from
http://port25.technet.com/archive/2009/08/26/tuxera-signs-file-system-covenant-with-
INICTOSOTE. ASPX 1o utiiiiieiie et ettt te ettt e et e et e st e e bt e stae e bt e seaeenbeeesaeenseensneenseensnaans 23,70

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 73 |

Halfacree, Gareth (2009). SDXC laptops due soon (December 1, 2009) Retrieved
December 14, 2009 from http://www.bit-tech.net/news/hardware/2009/12/01/sdxc-
JAPLOPS-AUE-SOO0MN: ...ttt ettt et e e be e st e e beessaeenseesaaaens 15, 24

Hamm Jeff (2009). Extended FAT File System. Presented at Techno Forensics
Conference October 2009 at NIST, Retrieved January 6, 2010 from
http://paradigmsolutions.files.wordpress.com/2009/12/exfat-excerpt-1-4.pdf....... 60, 70

Herrman, John (2009). First SDXC Card Is The World's Fastest, Only Holds 32GB.
(March 6, 2009). Retrieved November 20, 2009 from
http://gizmodo.com/5165352/first-sdxc-card-is-the-worlds-fastest-only-holds-32gb: 23,

70
Hissink , Dennis (2009). CES Show Report: SDXC flash memory cards (January 7,2009)
Retrieved November 20, 2009 from: http:/www.ces-show.cony 6, 15,23,70

HPC Factor (2009). The History of Windows CE: Windows CE 6.0 & into the future....
Retrieved October 9, 2009 from:

http://www.hpctactor.com/support/windowsce/Wee6.aspccveeviereeeerueenrennenns 23,70
International System of Units (SI). Retrieved November 10, 2009 from
http://physics.nist.gov/cuu/Units/binary.html............cocoviiiiiiiniinininieene. 22,23,70

Johnston, Stuart (2009). Microsoft Licenses exFAT to Third Parties. (December 10,
2009). Internetnews.com. Retrieved December 15, 2009 from
http://www.internetnews.com/software/article.php/3852686/Microsoft+LicensestexFA
THto+Third+PartieS. Ntmoooooiiiiiiiiic e e 24,71

Larkin, Eric (2007). Vista Resistance: Why XP Is Still So Strong, September 26, 2007.
Retrieved December 15, 2009
http://www.pcworld.com/article/137635/vista resistance why xp is_still so strong.h

1300 OO OO UPUPRRTROPORO 11,71
Mueller, Scott (2003). Upgrading and Repairing PCs. QUE.ccoeeeveeeeveeecreeennnnn. 34,72
NTFS.COM. NTFS vs. FAT. Retrieved December 10, 2009 from

http://www.ntfs.com/ntfs vs fat.htmcccoooiiiiiniiiiii e, 25,72
SD Card Association. SDXC. Retrieved December 10, 2009 from

http://www.sdcard.org/developers/tech/SAXC.......ccveviiiiiiriieiiecieeeeee e 72

US Department Of Justice (2004). Forensic Examination of Digital Evidence: A Guide
for Law Enforcement. Retrieved December 10, 2009 from
http://www.ncjrs.gov/pdffiles1/nij/199408.pdfcceeviiiiiiiie e 6,7,72

Yahoo News (December 3rd, 2009). The World's First Data Recovery for exFAT Drives!
Retrieved December 8, 2009 from
http://news.yahoo.com/s/prweb/20091203/bs_prweb/prweb3275634 15,24, 72

Patents

Microsoft Patent 0164440 (June 25, 2009). Quick Filename Lookup Using Name Hash.
Pub No. US 2009/0164440 Al Retrieved December 10, 2009 from
http://www.pat2pdf.org/patents/pat20090164440.pdf..........cccvevererienrennnne 6,9,16,71

Microsoft Patent 0265400 (October 22, 2009). Extensible File System. Pub No. US
2009/0265400 A1 Retrieved December 10, 2009 from
http://www.pat2pdf.org/patents/pat20090265400.pdfccceeiiiriiiniiiiiiiieeiee 16, 71

Microsoft Patent 7613738 (November 3, 2009). FAT Directory Structure for use in
Transaction Safe File System. Pub No. US 7613738 B2 Retrieved December 10, 2009
from http://www.pat2pdf.org/patents/pat7613738.pdfccoveviieviiriiiiiieiiees 16, 71

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 74 |

10

History and Capacities of Blue Ray Disc. Wikipedia. Retrieved November 20, 2009 from:
http://en.wikipedia.org/wiki/Blue rayccccccovviiiiiiiniiiiiienieciieseeeeee e 17,70

History and Capacities of CDROM. Wikipedia. Retrieved November 20, 2009 from:
http://en.wikipedia.org/wiki/Cdrom............c.ccecueeiiiniiiiienieeiecie e 17,70

History and Capacities of DVD. Wikipedia. Retrieved November 20, 2009 from:
http://en.wikipedia.org/Wiki/DVDccccociiiiiiiiiiiiiecee e 17,70

History of the Floppy Disk. Wikipedia. Retrieved December 10, 2009 from
http://en.wikipedia.org/Wiki/FIoppy disSK.........cccceeviimniiiiiiiiieiienieciceiie e 17,70

13

Microsoft (2004). Local File Systems for Windows. (May 5, 2004) Retrieved December 10,
2009 from http://www.microsoft.com/whdc/device/storage/LocFileSys.mspx 20, 71

Microsoft (2008). Microsoft Notable Changes in Windows Vista Service Pack 1 (March
2008). Retrieved December 10, 2009 from http://technet.microsoft.com/en-
us/library/cc7096 L8 (W S.10).aSPX . .eeiueeeiieiieeiieniie et eieeeteeieesreebeesbeeaeeseseesens 23,72

Microsoft (September 2009). Description of the exF AT file system driver update package.
0955704. Retrieved November 10, 2009 from http://support.microsoft.com/kb/955704
... 20, 23,72

Microsoft Intellectual Property Licensing for exFAT. Retrieved December 10, 2009 from
http://www.microsoft.com/iplicensing/productDetail.aspx?productTitle=exFAT File
System Licensing Programccecuieiiieiiiiiieiiiieiie ettt 8,71

Microsoft MSDN AA914663. OEM Parameter Definition with exFAT. Retrieved
December 10, 2009 from http://msdn.microsoft.com/en-us/library/aa914663.aspx ... 33,

71
Microsoft MSDN CC907928. TexFAT File Naming Limitations. Retrieved December 10,
2009 from http://msdn.microsoft.com/en-us/library/cc907928.aspX........cccceeuveene. 46, 71

Microsoft MSDN EE681827. File System Functionality Comparison. Retrieved
December 10, 2009 from http://msdn.microsoft.com/en-
us/library/ee681827(VS.85).aSPX .e.veerueriiriiiiiniieieeient ettt 24,71

Microsoft Press Pass (2009). Microsoft’s Latest Flash Memory Technology Now
Available for License. (December 10, 2009). Retrieved December 10, 2009 from
http://www.microsoft.com/presspass/press/2009/dec09/12-10msflashtechpr.mspx ... 24,
25,71

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \

75 |

12.1 Glossary

Acronym Full Text

ACID Atomicity, Consistency, Isolation and Durability
ACL Access Control List

ASCII American Standard Code for Information Exchange
AVI Audio Video Interface

BIOS Basic Input Output System

BMBS Backup Main Boot Sector

BMEBS Backup Main Extended Boot sector

BPB BIOS Parameter Block

CD Compact Disc

CF Compact Flash (Media Card used in Cameras)
CPU Central processing Unit

CR-R Compact Disc — Read only

CR-RW Compact Disc — Read/Write

DOS Disk Operating System

DVD Digital Versatile Disc or Digital Video Disc
DVD-R DVD - Read Only

DVD-RW DVD — Read/Write

EB Exabytes (1000°)

EBCDIC Extended Binary Coded Decimal Interchange Code
EOF End Of File

exFAT Extensible File Allocation Table

FAT File Allocation Table

FATI12 File Allocation Table, 12-bit cluster indices
FATI16 File Allocation Table, 16-bit cluster indices
FAT32 File Allocation Table, 32-bit cluster indices
FAT64 File Allocation Table, Nickname for exFAT
FTK Forensics Tool Kit

GB Gigabytes (1000°)

GMT Greenwich Mean Time

GPS Global Positioning Satellite

GPT GUID Partition Table

GUID Globally Unique Identifier

HPFS High Performance File System

INT Interrupt

JPEG Joint Photographic Experts Group

KB Kilobytes (1000)

KB Knowledge Base

LFN Long File Name

MAC Modified Date, Accessed Date, Create Date
MB Megabytes (1000%)

MBR Master Boot Record

MBS Main Boot Sector

MEBS Main Extended Boot Sector

MS Milliseconds

NIST National Institute of Standards and Technology

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute

As part of the Information Security Reading Room

Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 76 |

NT New Technology (Windows NT)

NTES NT File System

OEM Original Equipment Manufacture

PB Petabytes (1000°)

PDA Personal Digital Assistants

SD Secure Digital (Media Card used in Cameras, PDA, GPS and other devices)
SDHC Secure Digital High Capacity

SDXC Secure Digital eXtended Capacity media, might just use XC.
SM Smart Media (Media Card used in earlier digital cameras)
TB Terabytes (1000%)

TexFAT Transaction-safe exFAT

UDF Universal Disk Format

USB Universal Serial Bus

UTC Coordinated Universal Time

VBR Volume Boot Record

Windows CE Windows Consumer Electronics

XC eXtended Capacity

YB Yottabytes (1000%)

ZB Zetabytes (10007

Table 18 Acronym Table

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \

77 |

12.2 Partition Master Boot Record Partition Layout

(()lfggt Description
0x00 1 status
0x80 = bootable (active)
0x00 = non-bootable,
other = invalid!
0x01 3 CHS address of first block in partition
The format is described in the next 3 bytes.
0x01 1 head
0x02 1 sector is in bits 5-0; bits 9—8 of cylinder are in bits 7-6
0x03 1 bits 7-0 of cylinder
0x04 1 partition type’
0x05 3 CHS address of last block in partition.
The format is described in the next 3 bytes.
0x05 1 head
0x06 1 sector is in bits 5-0; bits 9-8 of cylinder are in bits 7-6
0x07 1 bits 7-0 of cylinder
0x08 4 LBA of first sector in the partition
0x0C 4 number of blocks in partition, in Little-Endian format
Source: http://en.wikipedia.org/wiki/Master_boot_record

Table 19 Layout of one 16-byte partition record

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute

As part of the Information Security Reading Room

Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \

78 |

12.3 List of selected Partition Codes

Type Description

0x00 Empty

0x01 FATI12

0x04 FATI16, 16~32MB

0x05 Microsoft Extended Partition

0x06 FAT16, 32MB~2GB

0x07 OS/2 IFS (e.g., HPFS)

0x07 exFAT

0x07 Advanced Unix

0x07 Windows NT NTFS

0x08 AIX boot partition

0x0a 0S/2 Boot Manager

0x0b WIN95 OSR2 FAT32

0x0c WINO95 OSR2 FAT32, LBA-mapped
0x0e WINO9S: DOS 16-bit FAT, LBA-mapped
0x0f WINO95: Extended partition, LBA-mapped
0x82 Solaris x86

0x82 Linux Swap

0x83 Linux native partition

0x85 Linux Extended

0xa5 BSD/386, 386BSD, NetBSD, FreeBSD
0xab OpenBSD

Oxa8 Mac OS-X

Oxee EFI GPT Disk

0xfb VMware File System

Oxfc VMware Swap partition

Source: http://www.win.tue.nl/~aeb/partitions/partition types-1.html

Table 20 Some Partition Type Definitions

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute

As part of the Information Security Reading Room

Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \

79 |

12.4SDXC Formats

SDXC microSDXC
Size _ '41'1 4’_1’!"_* ” 110
R |
32
Area 768 mm? 165 mm?
Card Volume 1,613 mm® 165 mm’®
Thickness 2.1 mm 1.0 mm
Weight Approx. 2g Approx. 0.5g
Number of pins 9 pins 8 pins
File System exFAT exFAT
Operating Voltage 2.7V - 3.6V 2.7V - 3.6V
Write-protect Switch YES NO
Copyright protection CPRM CPRM

Compatibility

Yes (with adapter)

Capacity

Over 32 GB -2 TB

Over 32 GB -2 TB

Source: http://www.sdcard.org/developers/tech/sdxc

Table 21 SDXC Formats

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute

As part of the Information Security Reading Room

Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \

80 |

12.5Disassembly of the VBR

jmp short BootCode
db 90h
akExfat db 'EXFAT ! ; OEM Label
db 35h dup (0) ; Must Be Zero
db 38h dup(0) ; Rest of Non-Boot Code of sector
BootCode: XOor cxX, CX ; Beginning of Boot Code
mov ss, Cx
mov sp, 7BFOh
mov ds, cx
mov al, byte 7DFB
Offset84: mov ah, 7Dh
mov si, ax
offset88: lodsb
cbw
inc ax
jz offset99
dec ax
jz offset9E
mov ah, OEh
mov bx, 7
int 10h ; — VIDEO - WRITE CHARACTER AND ADVANCE CURSOR
; AL = character, BH = display page (alpha modes)
; BL = foreground color (graphics modes)
Jjmp short Offset88
offset99: mov al, byte 7DFD
jmp short offset84
offset9e: int 16h ; KEYBOARD -
int 19h ; DISK BOOT
; causes reboot of disk system
db 5Eh dup (0)
aRemoveDisksOrO db 0Dh, 0Ah
db 'Remove disks or other media.', 0FFh, 0Dh, 0OAh
db 'Disk error',0FFh, 0Dh, OAh
db 'Press any key to restart',b 0Dh,OAh
dw 3Bh dup (0)

db 3Dh dup (0FFh)

db 0

db 1Fh

db 2Ch

db 55h, OAAh ; Signature for 1st VBR Sector - Main Boot Sector
db 1FEh dup (0)

db 55h, 0AAh ; Signature for 2nd VBR Sector - Main Extended Boot
db 1FEh dup (0)

db 55h, 0AAh ; Signature for 3rd VBR Sector - Main Extended Boot
db 1FEh dup (0)

db 55h, 0AAh ; Signature for 4th VBR Sector - Main Extended Boot
db 1FEh dup (0)

db 55h, 0AAh ; Signature for 5th VBR Sector - Main Extended Boot
db 1FEh dup (0)

db 55h, 0AAh ; Signature for 6th VBR Sector - Main Extended Boot
db 1FEh dup (0)

db 55h, 0AAh ; Signature for 7th VBR Sector - Main Extended Boot
db 1FEh dup (0)

db 55h, 0AAh ; Signature for 8th VBR Sector - Main Extended Boot
db 1FEh dup (0)

db 55h, 0AAh ; Signature for 9th VBR Sector - Main Extended Boot
db 200h dup(0) ; OEM Parms Sector

db 200h dup(0) ; Reserved Sector

dd 40h dup (0BOEB2FFEh) ; CheckSum Sector

(TTY WRITE)

Sector

Sector

Sector

Sector

Sector

Sector

Sector

Sector

Table 22 Disassembly of 1st VBR Boot Sector

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute

As part of the Information Security Reading Room

Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \ 81 |

12.6 Time Zone Offset Table

Index Offset Time Zone Description

252 -01 Azores Standard Time (GMT-01:00)
Cape Verde Standard Time (GMT-01:00)

248 -02 Mid-Atlantic Standard Time (GMT-02:00)

244 -03 E. South America Standard Time (GMT-03:00)
S.A. Eastern Standard Time (GMT-03:00)
Greenland Standard Time (GMT-03:00)

242 -03:30 Newfoundland Standard Time (GMT-03:30)

240 -04 Atlantic Standard Time (GMT-04:00)
S.A. Western Standard Time (GMT-04:00)
Pacific S.A. Standard Time (GMT-04:00)

236 -05 Eastern Standard Time (GMT-05:00)
U.S. Eastern Standard Time (GMT-05:00)
S.A. Pacific Standard Time (GMT-05:00)

232 -06 Central Standard Time (GMT-06:00)
Canada Central Standard Time (GMT-06:00)
Mexico Standard Time (GMT-06:00)
Central America Standard Time (GMT-06:00)

228 -07 Mountain Standard Time (GMT-07:00)
Mexico Standard Time 2 (GMT-07:00)
U.S. Mountain Standard Time (GMT-07:00)

224 -08 Pacific Standard Time (GMT-08:00)

220 -09 Alaskan Standard Time (GMT-09:00)

216 -10 Hawaiian Standard Time (GMT-10:00)

212 -11 Samoa Standard Time (GMT-11:00)

208 -12 Dateline Standard Time (GMT-12:00)

180 +13 Tonga Standard Time (GMT+13:00)

176 +12 New Zealand Standard Time (GMT+12:00)
Fiji Islands Standard Time (GMT+12:00)

172 +11 Central Pacific Standard Time (GMT+11:00)

168 +10 West Pacific Standard Time (GMT+10:00)
Vladivostok Standard Time (GMT+10:00)
Tasmania Standard Time (GMT+10:00)
E. Australia Standard Time (GMT+10:00)
A.U.S. Eastern Standard Time (GMT+10:00)

166 +09:30 A.U.S. Central Standard Time (GMT+09:30)
Cen. Australia Standard Time (GMT+09:30)

164 +09 Yakutsk Standard Time (GMT+09:00)
Tokyo Standard Time (GMT+09:00)
Korea Standard Time (GMT+09:00)

160 +08 North Asia East Standard Time (GMT+08:00)
W. Australia Standard Time (GMT+08:00)
Taipei Standard Time (GMT+08:00)
Singapore Standard Time (GMT+08:00)
China Standard Time (GMT+08:00)

156 +07 North Asia Standard Time (GMT+07:00)
S.E. Asia Standard Time (GMT+07:00)

154 +06:30 Myanmar Standard Time (GMT=+06:30)

152 +06 N. Central Asia Standard Time (GMT+06:00)
Sri Lanka Standard Time (GMT=+06:00)

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute

As part of the Information Security Reading Room

Author retains full rights.

Reverse Engineering the Microsoft Extended FAT File System (exFAT) \

82 |

Central Asia Standard Time (GMT+06:00)

151

+05:45

Nepal Standard Time (GMT+05:45)

150

+05:30

India Standard Time (GMT+05:30)

148

+05

West Asia Standard Time (GMT=+05:00)
Ekaterinburg Standard Time (GMT+05:00)

146

+04:30

Afghanistan Standard Time (GMT+04:30)

144

+04

Caucasus Standard Time (GMT+04:00)
Arabian Standard Time (GMT+04:00)

142

+03:30

Iran Standard Time (GMT+03:30)

140

+03

Arabic Standard Time (GMT+03:00)
E. Africa Standard Time (GMT+03:00)
Arab Standard Time (GMT+03:00)
Russian Standard Time (GMT+03:00)

136

+02

South Africa Standard Time (GMT+02:00)
Israel Standard Time (GMT+02:00)

GTB Standard Time (GMT+02:00)

FLE Standard Time (GMT+02:00)

Egypt Standard Time (GMT+02:00)

E. Europe Standard Time (GMT+02:00)

132

+01

W. Central Africa Standard Time (GMT+01:00)
W. Europe Standard Time (GMT+01:00)
Romance Standard Time (GMT=+01:00)

Central European Standard Time (GMT+01:00)
Central Europe Standard Time (GMT=+01:00)

128

+00

Greenwich Standard Time (GMT)

Table 23 Time Zone Index Offset Table

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute

As part of the Information Security Reading Room

Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) \

83 |

12.7Winhex Sample VBR Template

applies to file
sector-aligned

begin

section
int64
int64
uint32
uint32
uint32
uint32
uint32
uint32
move -4
hex 4

hex 2
uintle
move -1
uint_flex
move -4
uint flex
move -4
uint flex
move -4
uint flex
move -4
uint flex
move -4
uint flex
move -4
uint flex
move -4
uint flex
move -3
uint8
uint8
uint8

hex 1
uint8
endsection

section
goto

endsection
end

non

nyw

nomn

n3n

nwgn

ngn

ngn

nyn

read-only hex 2

template "Boot Sector exFAT"

// Template by Robert Shullich
// John Jay College of Criminal Justice

goto 0x0040

"Bit

"Bit

"Bit

"Bit

"Bit

"Bit

"Bit

"Bit

0x1FE
"Signature (55 AA)"

// To be applied to the first VBR sector of a exFAT-formatted logical drive.
// This template assumes a DD acquired image

description "BIOS parameter block (BPB) and more"

read-only hex 3 "JMP instruction"
char[8] "OEM"

"exFAT BIOS Parameter Block"
"Partition Offset"

"Total Sectors in Volume"

"FAT Offset (Offset of First FAT)"
"FAT Length (in sectors)"

"Cluster Heap Offset"

"Cluster Count"

"Root Directory First Cluster"
"Volume serial number (decimal)"

"Volume serial number (hex)"
"File System Revision (MM.VV)"
"Volume Flags"

Active FAT"

Volume Dirty"

Media Failure"

Clear to Zero"

Reserved"

Reserved"

Reserved"

Reserved"
"Bytes Per Sector"
"Sectors Per Cluster"
"Number of FATS"

"Drive Select (Hex)"
"Percent in use"

"VBR Signature"

Figure 48 Sample Winhex Template that I developed as part of this research

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute

As part of the Information Security Reading Room

Author retains full rights.

| Reverse Engineering the Microsoft Extended FAT File System (exFAT) | 84 |

12.8 Winhex Sample VBR Template Output

%= Boot Sector exFAT, Base Offset: O

Offset Title Value 25
0 JMP inztruction EB Y& 30
OEM ExFAT
exFAT BIOS Parameter Block,
40 Partition Offget X
48 Total Sectors in Waolume 127337
a0 FAT Offzet [Offset of First FAT] 256
54 FAT Length [in sectars] 256
L] Cluzter Heap Offseat L]
aC Cluster Count 497
EO Root Directony First Cluster 4
G4 Wolume zenal number [decimal] 40024010 730
B4 Wolume zenial number [hex) FE CD 8F EE
(ate] File Syztem Revizion (kb W] oo m
B, Wolume Flags 0
BB Bit 0 - Active FAT 1]
BB Bit 1 - Wolume Dirty 1]
BB Bit 2 - tedia Failure 1]
BB Bit 3 - Clear to Zero 0
EB Bit 4 - Reserved 1]
EB Bit & - Reserved 0
BB Bit & - Reserved 1]
BB Bit ¥ - Reserved 1]
EC Bytes Per Sectar 9
G0 Sectors Per Cluster a
BE Mumber of FATS 1
BF Dirive Select [Hex) a0
il Percent in uge =]
WBR Signature
1FE Signature [B5 Adb) gty n
w

Figure 49 Output of Sample Winhex Template that were developed as part of this research

Robert Shullich rshullic@earthlink.net

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.

Last Updated: May 7th, 2014

Upcoming SANS Training

Click Here for a full list of all Upcoming SANS Events by Location

SANS Secure Europe 2014 Amsterdam, NL May 10, 2014 - May 24, 2014 Live Event
SANS ICS410 London 2014 London, GB May 12, 2014 - May 16, 2014 Live Event
SANS Malaysia @MCMC 2014 Cyberjaya, MY May 12, 2014 - May 24, 2014 Live Event
SANS Melbourne 2014 Melbourne, AU May 12, 2014 - May 17, 2014 Live Event
SANS Bahrain May 2014 Manama, BH May 17, 2014 - May 22, 2014 Live Event
SANS Secure Thailand Bangkok, TH May 26, 2014 - May 31, 2014 Live Event
Digital Forensics & Incident Response Summit Austin, TXUS Jun 03, 2014 - Jun 10, 2014 Live Event
SANS Rocky Mountain 2014 Denver, COUS Jun 09, 2014 - Jun 14, 2014 Live Event
SANS Pen Test Berlin 2014 Berlin, DE Jun 15, 2014 - Jun 21, 2014 Live Event
SEC511 Continuous Monitoring and Security Operations Washington, DCUS Jun 16, 2014 - Jun 21, 2014 Live Event
SANS Milan 2014 Milan, IT Jun 16, 2014 - Jun 21, 2014 Live Event
SANSFIRE 2014 Baltimore, MDUS Jun 21, 2014 - Jun 30, 2014 Live Event
SANS Canberra 2014 Canberra, AU Jun 30, 2014 - Jul 12, 2014 Live Event
FORS518 Mac Forensic Analysis San Jose, CAUS Jul 07, 2014 - Jul 12, 2014 Live Event
SANS Capital City 2014 Washington, DCUS Jul 07, 2014 - Jul 12, 2014 Live Event
SANS San Francisco 2014 San Francisco, CAUS Jul 14, 2014 - Jul 19, 2014 Live Event
SANS London Summer 2014 London, GB Jul 14, 2014 - Jul 21, 2014 Live Event
ICS Security Training - Houston Houston, TXUS Jul 21, 2014 - Jul 25, 2014 Live Event
SANS Boston 2014 Boston, MAUS Jul 28, 2014 - Aug 02, 2014 Live Event
SAlr\]l§rDIj|S_ Continuous Diagnostics and Mitigation Workshop | Washington, DCUS Aug 01, 2014 - Aug 08, 2014 Live Event
\év:NS g?alcrz:pi%y West 2014 OnlineCAUS May 08, 2014 - May 17, 2014 Live Event
SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=34077
http://www.sans.org/secure-europe-2014
http://www.sans.org/link.php?id=36195
http://www.sans.org/ics-london-2014
http://www.sans.org/link.php?id=34710
http://www.sans.org/malaysia-mcmc-2014
http://www.sans.org/link.php?id=34645
http://www.sans.org/sans-melbourne-2014
http://www.sans.org/link.php?id=36322
http://www.sans.org/bahrain-may-2014
http://www.sans.org/link.php?id=34695
http://www.sans.org/secure-thailand-2014
http://www.sans.org/link.php?id=33822
http://www.sans.org/dfir-summit-2014
http://www.sans.org/link.php?id=29600
http://www.sans.org/rocky-mountain-2014
http://www.sans.org/link.php?id=34550
http://www.sans.org/pentest-berlin-2014
http://www.sans.org/link.php?id=36390
http://www.sans.org/sec511-continuous-monitoring-security-operations
http://www.sans.org/link.php?id=34740
http://www.sans.org/sans-milan-2014
http://www.sans.org/link.php?id=27524
http://www.sans.org/sansfire-2014
http://www.sans.org/link.php?id=34650
http://www.sans.org/canberra-2014
http://www.sans.org/link.php?id=36385
http://www.sans.org/for518-mac-forensic-analysis-2014
http://www.sans.org/link.php?id=35690
http://www.sans.org/capital-city-2014
http://www.sans.org/link.php?id=32962
http://www.sans.org/san-francisco-2014
http://www.sans.org/link.php?id=34750
http://www.sans.org/london-summer-2014
http://www.sans.org/link.php?id=35470
http://www.sans.org/scada-training-houston-2014
http://www.sans.org/link.php?id=30907
http://www.sans.org/boston-2014
http://www.sans.org/link.php?id=36675
http://www.sans.org/continuous-monitoring-summit-2014
http://www.sans.org/link.php?id=35190
http://www.sans.org/sans-security-west-2014
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

