5/6/2014 How NTFS Works: Local File Systems

133 out of 156 rated this helpful

Updated: March 28, 2003

Applies To: Windows Server 2003, Windows Server 2003 R2, Windows Server 2003 with SP1, Windows Server
2003 with SP2

How NTFS Works

In this section

o NTFS Architecture
e NTFS Physical Structure
o NTFS Processes and Interactions

e Related Information

A file system is a required part of the operating system that determines how files are named, stored, and
organized on a volume. A file system manages files and folders, and the information needed to locate and
access these items by local and remote users.

Microsoft Windows Server 2003 supports the NTFS file system on basic and dynamic disks. Basic disks and
volumes are the storage types most often used with Windows operating systems. Dynamic disks offer greater
flexibility for volume management because they use a database to track information about dynamic volumes
on the disk and about other dynamic disks in the computer.

During the format of a volume you can choose the type of file system for the volume. When you choose the
NTFS file system, the formatting process places the key NTFS file data structures on the volume, regardless of
whether it is a basic or dynamic volume.

NTFS Architecture

During format and setup of a volume file system on a hard disk, a master boot record (MBR) is created. The
MBR contains a small amount of executable code called the master boot code as well as a partition table for
the disk. When a volume is mounted, the MBR executes the master boot code and transfers control to the boot
sector on the disk, allowing the server to boot the operating system on the file system of that specific volume.

Note

e The partition table contains a number of fields used to describe the partition. One of these fields is the
System ID field, which defines the file system, such as NTFS, on the partition. For NTFS volumes, the
system ID is 0x07.

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 1/33

5/6/2014 How NTFS Works: Local File Systems
The figure NTFS Architecture shows the architecture of this process.

NTFS Architecture

=) Hard disk

I

Master
Boot Record

Boot Sector —l

Mtldr

MNTF=.5vs
Mtoskrnl.exe

f 9

Cperating
System

'y kKemel Mode

L User Mode
Applications

The following table describes the components of an NTFS file system.

NTFS Architecture Components on an x86-based System

Component | Component Description

Hard disk Contains one or more partitions.

Boot sector | Bootable partition that stores information about the layout of the volume and the file system
structures, as well as the boot code that loads Ntdlr.

Master Boot = Contains executable code that the system BIOS loads into memory. The code scans the MBR

Record to find the partition table to determine which partition is the active, or bootable, partition.

NtldIr.dll Switches the CPU to protected mode, starts the file system, and then reads the contents of
the Boot.ini file. This information determines the startup options and initial boot menu
selections.

Ntfs.sys System file driver for NTFS.

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 2/33

5/6/2014 How NTFS Works: Local File Systems

Ntoskrnl.exe | Extracts information about which system device drivers to load and the load order.

Kernel The processing mode that allows code to have direct access to all hardware and memory in
mode the system.

User mode | The processing mode in which applications run.

NTFS Physical Structure

The following information describes how clusters and sectors are organized on an NTFS volume, how the boot
sector on the volume determines the file system, and how the Master File Table (MFT) organizes structures on
the volume.

Clusters and Sectors on an NTFS Volume

A cluster (or allocation unit) is the smallest amount of disk space that can be allocated to hold a file. All file
systems used by Windows Server 2003 organize hard disks based on cluster size, which is determined by the
number of sectors (units of storage on a hard disk) that the cluster contains. For example, on a disk that uses
512-byte sectors, a 512-byte cluster contains one sector, whereas a 4-kilobyte (KB) cluster contains eight
sectors.

Computers access certain sectors on a hard disk during startup to determine which operating system to start
and where the partitions are located. The data stored on these sectors varies depending on the computer
platform.

Sequence of Clusters on an NTFS Volume

Clusters on an NTFS volume are numbered sequentially from the beginning of the partition into logical cluster
numbers. NTFS stores all objects in the file system using a record called the Master File Table (MFT), similar in
structure to a database.

On NTFS volumes, clusters start at sector zero; therefore, every cluster is aligned on the cluster boundary.
Contiguous clusters for file storage allow for faster processing of a file.

Note

e Floppy disks do not use NTFS and are always formatted as FAT.

Limitations of Cluster Sizes on an NTFS Volume

Because NTFS uses different cluster sizes depending on the size of the volume, each file system has a
maximum number of clusters it can support. The smaller the cluster size, the more efficiently a disk potentially
stores information because unused space within a cluster cannot be used by other files. And the more clusters
a file system supports, the larger the volumes you can create and format by using a particular file system. NTFS
uses smaller cluster sizes, which makes it a more efficient file organization structure.

The table Default NTFS Cluster Sizes lists NTFS volume and default cluster sizes.

Default NTFS Cluster Sizes
http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 3/33

5/6/2014 How NTFS Works: Local File Systems

Volume Size NTFS Cluster Size
7 megabytes (MB)-512 MB 512 bytes

513 MB-1,024 MB 1 KB

1,025 MB-2 GB 2 KB

2 GB-2 terabytes 4 KB

Maximum Sizes on an NTFS Volume
Before you format an NTFS volume, evaluate the types of files to be stored on the volume so that you can
determine whether to use the default cluster size.

When formatting NTFS volumes, you can specify a cluster size of up to 64 KB using the Disk Management
snap-in. If you format a volume, but do not specify a cluster size, default values are used. If you want to change
the cluster size after the volume is formatted, you must reformat the volume.

Before you choose a cluster size other than the default, note the following important limitations:

e For Microsoft Windows NT, Windows 2000, Windows XP, and Windows Server 2003, the cluster size of
FAT16 volumes ranging from 2 gigabytes (GB) through 4 GB is 64 KB, which can create compatibility
issues with some applications. For example, setup programs do not compute free space properly on a
volume with 64-KB clusters and cannot run because of a perceived lack of free space. For this reason,
you can use either NTFS or FAT32 to format volumes larger than 2 GB.

e Because file compression is not supported on cluster sizes greater than 4 KB, the default NTFS cluster
size for Windows Server 2003 never exceeds 4 KB.

In theory, the maximum NTFS volume size is 264 clusters minus 1 cluster. However, the maximum NTFS volume

size as implemented in Windows Server 2003 is 232 clusters minus 1 cluster. For example, using 64-KB clusters,
the maximum NTFS volume size is 256 terabytes minus 64 KB. Using the default cluster size of 4 KB, the
maximum NTFS volume size is 16 terabytes minus 4 KB.

Note

e If you use large numbers of files in an NTFS folder (300,000 or more), disable short-file name
generation for better performance, and especially if the first six characters of the long file names are
similar.

The table NTFS Size Limits lists NTFS size limits.
http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 4/33

5/6/2014 How NTFS Works: Local File Systems

NTFS Size Limits

Description Limit

Maximum file size Architecturally: 16 exabytes minus 1 KB (264 bytes minus 1 KB)

Implementation: 16 terabytes minus 64 KB (244 bytes minus 64 KB)

Maximum volume size Architecturally: 264 clusters minus 1 cluster

Implementation: 256 terabytes minus 64 KB (232 clusters minus 1 cluster)

Files per volume 4,294,967,295 (232 minus 1 file)

Partition Tables on MBR and GUID disks

Master boot record (MBR) disks use both basic and dynamic volumes. Because partition tables on MBR disks
support partition sizes only up to 2 terabytes, you must use dynamic volumes to create NTFS volumes over

2 terabytes. Windows Server 2003 manages dynamic volumes in a special database instead of in the partition
table; therefore dynamic volumes are not subject to the 2-terabyte physical limit imposed by the partition table.
Dynamic NTFS volumes can be as large as the maximum volume size supported by NTFS. Itanium-based
computers that use GUID partition table (GPT) disks also support NTFS volumes larger than 2 terabytes.

Organization of an NTFS Volume

The figure Organization of an NTFS Volume illustrates how NTFS organizes structures on a volume.

Organization of an NTFS Volume

MNTFS Master File Master File
Boot Sectar File Tahle System Data Tahle Copy

The following table describes each of the organizational structures on the NTFS volume.

NTFS Volume Components

Component | Description

NTFS Boot Contains the BIOS parameter block that stores information about the layout of the volume
Sector and the file system structures, as well as the boot code that loads Windows Server 2003.

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 5/33

5/6/2014

http://tecl

How NTFS Works: Local File Systems

Master File Contains the information necessary to retrieve files from the NTFS partition, such as the
Table attributes of a file.

File System Stores data that is not contained within the Master File Table.
Data

Master File Includes copies of the records essential for the recovery of the file system if there is a
Table Copy | problem with the original copy.

Boot Sectors

On MBR disks, the boot sector, which is located at the first logical sector of each partition, is a critical disk
structure for starting your computer. It contains executable code and the data required by the code, including
information that the file system uses to access the volume. The boot sector is created when you format a
volume. At the end of the boot sector is a 2-byte structure called a signature word or end of sector marker,
which is always set to 0x55AA. On computers running Windows Server 2003, the boot sector on the active
partition loads into memory and starts Ntldr, which loads the boot menu if multiple versions of Windows are
installed, or loads the operating system if only one operating system is installed.

GUID partition table (GPT) disks are similar to MBR disks, except they use primary and backup partition
structures to provide redundancy. These structures are located at the beginning and the end of the disk. GPT
identifies these structures by their logical block address (LBA) rather than by their relative sectors.

A boot sector consists of the following elements:

e An x86-based CPU jump instruction.

e The original equipment manufacturer identification (OEM ID).

e The BIOS parameter block (BPB), a data structure.

e The extended BPB.

e The executable boot code (or bootstrap code) that starts the operating system.

All Windows Server 2003 boot sectors contain the preceding elements regardless of the type of disk (basic
disk or dynamic disk).

Components of a Boot Sector

The MBR transfers CPU execution to the boot sector, so the first three bytes of the boot sector must be valid,
executable x86-based CPU instructions. This includes a jump instruction that skips the next several
nonexecutable bytes.

Following the jump instruction is the 8-byte OEM ID, a string of characters that identifies the name and version
number of the operating system that formatted the volume. To preserve compatibility with MS-DOS, Windows
Server 2003 records “NTFS” in this field.

hnet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx

6/33

5/6/2014

How NTFS Works: Local File Systems
Note

® You might also see the OEM ID "MSWIN4.0" on disks formatted by Windows 95 and “MSWIN4.1" on
disks formatted by Windows 95 OEM Service Release 2 (OSR2), Windows 98, and Windows Millennium
Edition. Windows Server 2003 does not use the OEM ID field in the boot sector except for verifying
NTFS volumes.

Following the OEM ID is the BPB, which provides information that enables the executable boot code to locate
Ntldr. The BPB always starts at the same offset, so standard parameters are in a known location. Disk size and
geometry variables are encapsulated in the BPB. Because the first part of the boot sector is an x86 jump
instruction, the BPB can be extended in the future by appending new information at the end. The jump
instruction needs only a minor adjustment to accommodate this change. The BPB is stored in a packed
(unaligned) format.

NTFS Boot Sector

The table Boot Sector Sections on an NTFS Volume describes the boot sector of a volume that is formatted
with NTFS. When you format an NTFS volume, the format program allocates the first 16 sectors for the boot
sector and the bootstrap code.

Boot Sector Sections on an NTFS Volume

Byte Offset Field Length Field Name

0x00 3 bytes Jump instruction
0x03 8 bytes OEM ID

0x0B 25 bytes BPB

0x24 48 bytes Extended BPB

0x54 426 bytes Bootstrap code
Ox01FE 2 bytes End of sector marker

On NTFS volumes, the data fields that follow the BPB form an extended BPB. The data in these fields enables
Ntldr to find the MFT during startup. On NTFS volumes, the MFT is not located in a predefined sector. For this
reason, NTFS can move the MFT if there is a bad sector in the current location of the MFT. However, if the data
is corrupted, the MFT cannot be located, and Windows Server 2003 assumes that the volume has not been
formatted.

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx

7/33

5/6/2014

How NTFS Works: Local File Systems

The following example illustrates the boot sector of an NTFS volume that is formatted by using Windows
Server 2003. The printout is formatted in three sections:

e Bytes 0x00— 0xOA are the jump instruction and the OEM ID (shown in bold print).

e Bytes 0xOB-0x53 are the BPB and the extended BPB.

e The remaining code is the bootstrap code and the end of sector marker (shown in bold print).

Physical Sector:
00000000: EB
00000010: 00
00000020: 00
00000030: 00
00000040: F6
00000050: 00

52 90 4E
00 00 00
00 00 00
00 04 00
00 00 00
00 00 00

Cyl @, Side 1, Sector 1

54 46 53 20 - 20 20 20 00 02 08 00 00 .R.NTFS

00 F8 00 00 - 3F 00 FF 00 3F 00 00 00 [SR
80 00 80 00 - 1C 91 11 01 00 00 00 0O
00 00 00 00 - 11 19 11 00 00 00 00 00
01 00 00 00 - 3A B2 7B 82 (D 7B 82 14:.{..{..
FA 33 Co 8E - Do BC 00 7C FB B8 CO 07 3..... [....

The table BPB and Extended BPB Fields on NTFS Volumes describes the fields in the BPB and the extended BPB

on NTFS volumes. The fields starting at 0x0B, 0x0OD, 0x15, 0x18, 0x1A, and 0x1C match those on FAT16 and
FAT32 volumes. The sample values correspond to the data in this example.

BPB and Extended BPB Fields on NTFS Volumes

Byte
Offset

0x0B

0x0D

0x0E

0x10

0x13

Field
Length

2 bytes

1 byte

2 bytes

3 bytes

2 bytes

Sample
Value

00 02

08

00 00

00 00

00

00 00

Field Name and Definition

Bytes Per Sector. The size of a hardware sector. For most disks used in the
United States, the value of this field is 512.

Sectors Per Cluster.The number of sectors in a cluster.

Reserved Sectors. Always 0 because NTFS places the boot sector at the
beginning of the partition. If the value is not 0, NTFS fails to mount the
volume.

Value must be 0 or NTFS fails to mount the volume.

Value must be 0 or NTFS fails to mount the volume.

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx

8/33

5/6/2014
0x15

0x16

0x18

Ox1A

0x1C

0x20

0x24

0x28

0x30

0x38

0x40

1 byte

2 bytes

2 bytes

2 bytes

4 bytes

4 bytes

4 bytes

8 bytes

8 bytes

8 bytes

1 byte

00 00

3F 00

FF 00

3F 00
00 00

00 00
00 00

80 00
80 00

1C91
1101
00 00
00 00

00 00
04 00
00 00
00 00

1119
11 00
00 00
00 00

How NTFS Works: Local File Systems

Media Descriptor. Provides information about the media being used. A value
of F8 indicates a hard disk and FO indicates a high-density 3.5-inch floppy
disk. Media descriptor entries are a legacy of MS-DOS FAT16 disks and are
not used in Windows Server 2003.

Value must be 0 or NTFS fails to mount the volume.

Not used or checked by NTFS.

Not used or checked by NTFS.

Not used or checked by NTFS.

The value must be 0 or NTFS fails to mount the volume.

Not used or checked by NTFS.

Total Sectors. The total number of sectors on the hard disk.

Logical Cluster Number for the File $MFT. Identifies the location of the MFT
by using its logical cluster number.

Logical Cluster Number for the File $MFTMirr. Identifies the location of the
mirrored copy of the MFT by using its logical cluster number.

Clusters Per MFT Record. The size of each record. NTFS creates a file record
for each file and a folder record for each folder that is created on an NTFS
volume. Files and folders smaller than this size are contained within the MFT.
If this number is positive (up to 7F), then it represents clusters per MFT
record. If the number is negative (80 to FF), then the size of the file record is 2

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx

9/33

5/6/2014 How NTFS Works: Local File Systems
raised to the absolute value of this number.

0x41 3 bytes | 00 00 Not used by NTFS.
00

0x44 1lbyte | 01 Clusters Per Index Buffer. The size of each index buffer, which is used to
allocate space for directories. If this number is positive (up to 7F), then it
represents clusters per MFT record. If the number is negative (80 to FF), then
the size of the file record is 2 raised to the absolute value of this number.

0x45 3 bytes | 0000 Not used by NTFS.
00

0x48 8 bytes | 3A B2 Volume Serial Number. The volume’s serial number.
7B 82
CD 7B
82 14

0x50 4 bytes | 00 00 Not used by NTFS.
00 00

Master File Table

When you format a volume with NTFS, Windows Server 2003 creates an MFT and metadata files on the
partition. The MFT is a relational database that consists of rows of file records and columns of file attributes. It
contains at least one entry for every file on an NTFS volume, including the MFT itself.

The MFT stores the information required to retrieve files from the NTFS partition.

MFT and Metadata Files

Because the MFT stores information about itself, NTFS reserves the first 16 records of the MFT for metadata
files (approximately 16 KB), which are used to describe the MFT. Metadata files that begin with a dollar sign ($)
are described in the table Metadata Files Stored in the MFT. The remaining records of the MFT contain the file
and folder records for each file and folder on the volume.

Metadata Files Stored in the MFT

System File MFT .

File Name Record Purpose of the File

Master $Mft 0 Contains one base file record for each file and folder on an NTFS

file table volume. If the allocation information for a file or folder is too large to fit

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 10/33

5/6/2014

Master
file table
mirror

Log file

Volume

Attribute
definitions

Root file
name
index

Cluster
bitmap

Boot
sector

Bad
cluster file

Security
file

Upcase
table

NTFS
extension

$MftMlirr

$LogFile

$Volume

$AttrDef

$Bitmap

$Boot

$BadClus

$Secure

$Upcase

$Extend

N

(o))

11

How NTFS Works: Local File Systems

within a single record, other file records are allocated as well.

Guarantees access to the MFT in case of a single-sector failure. It is a
duplicate image of the first four records of the MFT.

Contains information used by NTFS for faster recoverability. The log file
is used by Windows Server 2003 to restore metadata consistency to
NTFS after a system failure. The size of the log file depends on the size
of the volume, but you can increase the size of the log file by using the
Chkdsk command.

Contains information about the volume, such as the volume label and the
volume version.

Lists attribute names, numbers, and descriptions.

The root folder.

Represents the volume by showing free and unused clusters.

Includes the BPB used to mount the volume and additional bootstrap
loader code used if the volume is bootable.

Contains bad clusters for a volume.

Contains unique security descriptors for all files within a volume.

Converts lowercase characters to matching Unicode uppercase
characters.

Used for various optional extensions such as quotas, reparse point data,
and object identifiers.

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 11/33

5/6/2014 How NTFS Works: Local File Systems
file

12-15 Reserved for future use.

The data segment locations for both the MFT and the backup MFT, $Mft and $MftMirr, respectively, are
recorded in the boot sector. The $MftMirr is a duplicate image of either the first four records of the $Mft or
the first cluster of the $Mft, whichever is larger. If any MFT records in the mirrored range are corrupted or
unreadable, NTFS reads the boot sector to find the location of the $MftMirr. NTFS then reads the $MftMirr and
uses the information in $MftMirr instead of the information in the MFT. If possible, the correct data from the
$MftMirr is written back to the corresponding location in the $Mft.

MFT Zone

To prevent the MFT from becoming fragmented, NTFS reserves 12.5 percent of volume by default for exclusive
use of the MFT. This space, known as the MFT zone, is not used to store data unless the remainder of the
volume becomes full.

Depending on the average file size and other variables, as the volume fills to capacity, either the MFT zone or
the unreserved space on the volume becomes full first.

e Volumes that have a small number of large files exhaust the unreserved space first.
e Volumes with a large number of small files exhaust the MFT zone space first.
In either case, fragmentation of the MFT occurs when one region or the other becomes full. You can change

the size of the MFT zone for newly created volumes by to correspond to a percentage of the volume to be
used as the MFT zone. The MFT zone sizes follow:

e Setting 1, the default, reserves approximately 12.5 percent of the volume.
e Setting 2 reserves approximately 25 percent.
e Setting 3 reserves approximately 37.5 percent.
e Setting 4 reserves approximately 50 percent.
In most computers, the default setting of 1 is adequate. The default setting accommodates volumes with an

average file size of 8 KB. Storing a large number of smaller files might necessitate that you increase the size of
the MFT zone for new volumes.

After you increase the size of the MFT zone, NTFS does not immediately allocate space to accommodate the
size of the new MFT zone. Instead, NTFS exhausts the original reserved space before increasing the size of the
MFT zone. When the original space is exhausted, NTFS looks for the next contiguous space large enough to
hold the additional MFT zone, which can cause the MFT to become fragmented. You can adjust the zone size
for the MFT if the defaults do not fit your needs.

NTFS File Record Attributes

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 12/33

5/6/2014 How NTFS Works: Local File Systems

Every allocated sector on an NTFS volume belongs to a file. Even the file system metadata is part of a file.
NTFS views each file (or folder) as a set of file attributes. File elements such as its name, its security
information, and even its data are file attributes. Each attribute is identified by an attribute type code and an
optional attribute name.

File and folder records are 1 KB each and are stored in the MFT, the attributes of which are written to the
allocated space in the MFT. Besides file attributes, each file record contains information about the position of
the file record in the MFT.

When a file's attributes can fit within the MFT file record for that file, they are called resident attributes.
Attributes such as file name and time stamp are always resident. When the amount of information for a file
does not fit in its MFT file record, some file attributes become nonresident. Nonresident attributes are
allocated one or more clusters of disk space. A portion of the nonresident attribute remains in the MFT and
points to the external clusters. NTFS creates the Attribute List attribute to describe the location of all attribute
records. The table NTFS File Attribute Types lists the file attributes currently defined by NTFS.

NTFS File Attribute Types

Attribute ..
Description
Type
Standard Information such as access mode (read-only, read/write, and so forth) timestamp, and link

Information

count.

Attribute Locations of all attribute records that do not fit in the MFT record.

List

File Name A repeatable attribute for both long and short file names. The long name of the file can be
up to 255 Unicode characters. The short name is the 8.3, case-insensitive name for the file.
Additional names, or hard links, required by POSIX can be included as additional file name
attributes.

Data File data. NTFS supports multiple data attributes per file. Each file typically has one unnamed
data attribute. A file can also have one or more named data attributes.

Object ID A volume-unique file identifier. Used by the distributed link tracking service. Not all files have
object identifiers.

Logged Similar to a data stream, but operations are logged to the NTFS log file just like NTFS

Tool metadata changes. This attribute is used by EFS.

Stream

Reparse Used for mounted drives. This is also used by Installable File System (IFS) filter drivers to

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx

13/33

5/6/2014

http://tecl

How NTFS Works: Local File Systems

Point mark certain files as special to that driver.

Index Root | Used to implement folders and other indexes.

Index Used to implement the B-tree structure for large folders and other large indexes.
Allocation

Bitmap Used to implement the B-tree structure for large folders and other large indexes.
Volume Used only in the $Volume system file. Contains the volume version.

Information

NTFS creates a file record for each file and a folder record for each folder created on an NTFS volume. The
MFT includes a separate file record for the MFT itself. These file and folder records are 1 KB each and are
stored in the MFT. The attributes of the file are written to the allocated space in the MFT. Besides file attributes,
each file record contains information about the position of the file record in the MFT. The figure MFT Entry with
Resident Record shows the contents of an MFT record for a small file or folder. Small files and folders
(typically, 900 bytes or smaller) are entirely contained within the file's MFT record.

MFT Entry with Resident Record

File or
Standard : Unused
Information D'r:z?_::éh‘r Data or Index Space

Typically, each file uses one file record. However, if a file has a large number of attributes or becomes highly
fragmented, it might need more than one file record. If this is the case, the first record for the file, the base file
record, stores the location of the other file records required by the file.

Folder records contain index information. Small folder records reside entirely within the MFT structure, while
large folders are organized B-tree structures and have records with pointers to external clusters that contain
folder entries that cannot be contained within the MFT structure.

The benefit of using B-tree structures is evident when NTFS enumerates files in a large folder. The B-tree
structure allows NTFS to group, or index, similar file names and then search only the group that contains the
file, minimizing the number of disk accesses needed to find a particular file, especially for large folders.
Because of the B-tree structure, NTFS outperforms FAT for large folders because FAT must scan all file names
in a large folder before listing all of the files.

Last Access Time

Each file and folder on an NTFS volume contains an attribute called Last Access Time. This attribute shows
when the file or folder was last accessed, such as when a user performs a folder listing, adds files to a folder,
reads a file, or makes changes to a file. The most up-to-date Last Access Time is always stored in memory and
is eventually written to disk within two places:

e The file's attribute, which is part of its MFT record.

hnet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 14/33

5/6/2014 How NTFS Works: Local File Systems

e Adirectory entry for the file. The directory entry is stored in the folder that contains the file. Files with
multiple hard links have multiple directory entries.

The Last Access Time on disk is not always current because NTFS looks for a one-hour interval before forcing
the Last Access Time updates to disk. NTFS also delays writing the Last Access Time to disk when users or
programs perform read-only operations on a file or folder, such as listing the folder's contents or reading (but
not changing) a file in the folder. If the Last Access Time is kept current on disk for read operations, all read
operations become write operations, which impacts NTFS performance.

Note

e File-based queries of Last Access Time are accurate even if all on-disk values are not current. NTFS
returns the correct value on queries because the accurate value is stored in memory.

NTFS eventually writes the in-memory Last Access Time to disk as follows.

Within the file’s attribute

NTFS typically updates a file's attribute on disk if the current Last Access Time in memory differs by more than
an hour from the Last Access Time stored on disk, or when all in-memory references to that file are gone,
whichever is more recent. For example, if a file's current Last Access Time is 1:00 P.M., and you read the file at
1:30 P.M., NTFS does not update the Last Access Time. If you read the file again at 2:00 P.M., NTFS updates the
Last Access Time in the file’s attribute to reflect 2:00 P.M. because the file’s attribute shows 1:00 P.M. and the
in-memory Last Access Time shows 2:00 P.M.

Within a directory entry for a file
NTFS updates the directory entry for a file during the following events:

e When NTFS updates the file's Last Access Time and detects that the Last Access Time for the file differs
by more than an hour from the Last Access Time stored in the file’s directory entry. This update typically
occurs after a program closes the handle used to access a file within the directory. If the program holds
the handle open for an extended time, a lag occurs before the change appears in the directory entry.

e When NTFS updates other file attributes such as Last Modify Time, and a Last Access Time update is
pending. In this case, NTFS updates the Last Access Time along with the other updates without
additional performance impact.

Note
e NTFS does not update a file's directory entry when all in-memory references to that file are gone.

If you have an NTFS volume with a high number of folders or files, and a program is running that briefly
accesses each of these in turn, the [/O bandwidth used to generate the Last Access Time updates can be a
significant percentage of the overall [/O bandwidth.

Multiple Data Streams
A data stream is a sequence of bytes. An application populates the stream by writing data at specific offsets
within the stream. The application can then read the data by reading the same offsets in the read path. Every

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 15/33

5/6/2014

How NTFS Works: Local File Systems

file has a main, unnamed stream associated with it, regardless of the file system used.

However, NTFS supports additional named data streams in which each data stream is an alternate sequence of
bytes as illustrated in the figure Unnamed and Named Streams. Applications can create additional named
streams and access the streams by referring to their names. This feature permits related data to be managed
as a single unit. For example, a graphics program can store a thumbnail image of bitmap in a named data
stream within the NTFS file containing the image.

Unnamed and Named Streams

Streamexarnple .doc

Main Unnamed Stream — Wisible to all
1 file systems

Streamexanple.doc: Streaml Strearmnd

Streamexample. doc: Stream 2 Streamz — Yizsihle to NTFS
volurnes only

Streamexample.doc Streamn Streamn

FAT volumes support only the main, unnamed stream, so if you try to copy or move Streamexample.doc to a
FAT volume or floppy disk, you receive an error message.

NTFS Processes and Interactions

The following sections describe NTFS processes and interactions.

Mounting an NTFS Volume

When mounting an NTFS volume, the MBR executes code to start up the boot sector. The boot sector then
executes additional code to mount the volume.

Master Boot Code Startup Process
The MBR contains a small amount of executable code called the master boot code, the disk signature, and the

partition table for the disk. During startup, the master boot code performs the following activities:

=

Scans the partition table for the active partition.
2. Finds the starting sector of the active partition.
3. Loads a copy of the boot sector from the active partition into memory.

4. Transfers control to the executable code in the boot sector.

Boot Sector Startup Process
Computers use the boot sector to run instructions during startup. The initial startup process is summarized in

the following steps:

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx

16/33

5/6/2014 How NTFS Works: Local File Systems
1. The system BIOS and the CPU initiate the power-on self test (POST).

2. The BIOS finds the boot device, which is typically the first disk the BIOS finds, unless the controller is
configured to boot from a different disk.

3. The BIOS loads the first physical sector of the boot device into memory and transfers CPU execution to
that memory address.

If the boot device is on a hard disk, the BIOS loads the MBR. The master boot code in the MBR loads the boot
sector of the active partition, and transfers CPU execution to that memory address. On computers that are
running Windows Server 2003, the executable boot code in the boot sector finds Ntldr, loads it into memory,
and transfers execution to that file.

Note

e Windows Server 2003 cannot start up from a spanned, striped, or RAID-5 volume on dynamic disks.
These disk structures cannot be registered into the MBR partition table; therefore, a system volume that
uses these structures cannot start.

If drive A contains a floppy disk, the system BIOS loads the first sector (the boot sector) of the disk into
memory. If the disk is a startup disk (formatted by MS-DOS with core operating system files applied), the boot
sector loads into memory and uses the executable boot code to transfer CPU execution to Io.sys, a core MS-
DOS operating system file. If the floppy disk is not a startup disk, the executable boot code displays an error
message.

Note

e These messages do not appear on normally functioning systems that are configured to look for the
startup files on drive C first. On many computers, an option in the CMOS setup program allows the user
to set the sequence of installed disks that the system searches to find the startup files.

If you get similar errors when trying to start the computer from the hard disk, the boot sector might be
corrupted.

Initially, the startup process is independent of disk format and operating system. The unique characteristics of
operating and file systems become important when the boot sector’s executable boot code starts.

Formatting Volumes

During volume format, Windows Server 2003 places key NTFS file system structures on the volume, including
the boot sector and the MFT as well as replacing Ntldr. Formatting also aligns clusters at the cluster size
boundary.

Formatting a volume will check the integrity of all sectors on the volume during the process, as well as allow
you to change the cluster size used on the volume. If a volume is formatted using Quick format, the file system
structure on the volume is created, but the integrity of every sector in the volume is not checked.

Converting Volumes

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 17/33

5/6/2014 How NTFS Works: Local File Systems

Windows Server 2003 can convert previous versions of NTFS to the new version of NTFS used in Windows
Server 2003.

Converting NTFS Volumes Formatted By Using Windows 2000

When Windows Server 2003 first mounts an NTFS volume that was formatted by using Windows 2000,
Windows Server 2003 converts the NTFS volume to NTFS 3.1. The conversion consists of changing the NTFS
version from 3.0 to 3.1. No other changes are made to existing metadata or files on the volume. However,
Windows Server 2003 uses a different header style for new files created on NTFS 3.1 volumes. As a result of
this change, some non-Microsoft imaging programs cannot create images of NTFS 3.1 volumes. Contact the
manufacturer of your imaging program to find out if a version is available that supports NTFS 3.1 volumes in
Windows Server 2003.

Computers running Windows NT 4.0 with Service Pack 4 or later or Windows 2000 can access NTFS 3.1
volumes without any conversion or additional service packs. Also, note that NTFS 3.1 is identical in Windows XP
and Windows Server 2003.

Converting NTFS Volumes Formatted By Using Windows NT 4.0 and Earlier

When you upgrade the operating system from Windows NT 4.0 to Windows Server 2003, all local volumes
formatted by using the version of NTFS used in Windows NT 4.0 and earlier are upgraded to NTFS 3.1. The
upgrade occurs when Windows Server 2003 mounts the volume for the first time after Windows Server 2003
Setup is completed. (The upgrade does not take place during Setup.) Any NTFS volumes that are removed or
turned off during Setup, or added after Setup, are converted when Windows Server 2003 mounts the volumes.

The Ntfs.sys driver performs the conversion by determining which version of NTFS is used on the volume and
converting the volume if necessary. The conversion takes only a few seconds on any size volume and consists
of the following new records in the master file table:

e $Secure, which contains unique security descriptors for all files within a volume.

e $Extend, which is used for extensions such as quotas, reparse point data, and object identifiers. The
conversion process also adds three new files the to $Extend directory:

o $Quota, used for disk quotas.

o $Reparse, used for reparse points.

o $ObjID, used for distributed link tracking.
Both $Secure and $Extend take the place of previously unused master file table (MFT) records, so sufficient
space always exists in the volume for these two records. However, $Quota, $Reparse, and $ObjID are new

additions to the MFT, and you must have enough free space in the volume to contain these files, or the
conversion fails.

If the conversion fails, the volume is still available, but you can only perform NTFS-related tasks that were
available in Windows NT 4.0 or earlier. To convert the volume to NTFS 3.1, you must free disk space by
deleting or moving files and then dismount the volume.

Note

e Removable media that is formatted by using the previous version of NTFS is upgraded after the

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 18/33

5/6/2014 How NTFS Works: Local File Systems
installation or upgrade process, or when you insert the media and Windows Server 2003 mounts it.

Limitations in Converting Volumes

The conversion is a one-way process. After you convert a volume to NTFS, you cannot reconvert the volume to
FAT without backing up your data, reformatting the volume as FAT, and then restoring your data. There should
also be a certain amount of free space on the volume and sufficient memory to update the cache.

The following limitations also apply to conversion of a volume from FAT to NTFS:

e In multiple-boot configurations, NTFS volumes are accessible only by using Windows NT 4.0 with Service
Pack 4 or later, Windows 2000, Windows XP, or Windows Server 2003.

e When you install Recovery Console onto a volume that is formatted for either the FAT16 or FAT32 file
systems, and then convert the volume to NTFS, the Recovery Console no longer runs. This problem
occurs because the file-system-specific boot files (in the cmmdcons folder of the system volume) that are
used to run Recovery Console are not valid for a volume that has been converted to NTFS. You can re-
install Recovery Console from the Windows Server 2003 operating system disk after the conversion. You
can also use the Windows Server 2003 operating system disk to start Recovery Console.

e Because formatting in Windows Server 2003 aligns FAT data clusters at the cluster size boundary,
conversion can preserve the cluster size for the size of the volume (up to 4 KB) instead of using the 512-
byte cluster size used in Windows 2000 for converted volumes. The table Cluster Sizes for Volumes
Converted to NTFS lists cluster sizes for volumes converted to NTFS.

Cluster Sizes for Volumes Converted to NTFS

Original FAT Cluster Size Converted NTFS Cluster Size
512 bytes 512 bytes
1 KB 1 KB
2 KB 2 KB
4 KB and larger 4 KB
File Naming

Windows Server 2003 supports both long and short file names on NTFS volumes.

File Names in Windows Server 2003
Every time you create a file with a long file name, NTFS creates a second file entry that has a similar 8.3 short
file name. A file with an 8.3 short file name has a file name containing 1 to 8 characters and a file name

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 19/33

5/6/2014 How NTFS Works: Local File Systems

extension containing 1 to 3 characters. The file name and file name extension are separated by a period.

File names in Windows Server 2003 can be up to 255 characters and can contain spaces, multiple periods, and
special characters that are not allowed in MS-DOS file names. Windows Server 2003 makes it possible for
other operating systems to access files that have long names by generating an MS-DOS-readable (8.3) name
for each file. These MS-DOS-readable names also enable MS-DOS-based and Windows 3.x-based applications
to recognize and load files that have long file names. When a program saves a file on a computer running
Windows Server 2003, both the 8.3 file name and long file name are retained.

Note

e The 8.3 format means that files can have between 1 and 8 characters in the file name. The name must
start with a letter or a number and can contain any characters except the following:

e "/\I[1:;|=,%7(space)

e An 8.3 file name typically has a file name extension that is from one to three characters long and has the
same character restrictions. A period separates the file name from the file name extension.

e Several special file names are reserved by the system and cannot be used for files or folders: CON,
AUX, COM1, COM2, COM3, COM4, LPT1, LPT2, LPT3, PRN, NUL

How NTFS Generates Short File Names

In Windows Server 2003, both FAT and NTFS use the Unicode character set, which contains several prohibited
characters that MS-DOS cannot read, for their names. To generate a short MS-DOS-readable file name,
Windows Server 2003 deletes all of these characters from the long file name and removes any spaces. Because
an MS-DOS-readable file name can have only one period, Windows Server 2003 also removes extra periods
from the file name. If necessary, Windows Server 2003 truncates the file name to six characters and appends a
tilde (~) and a number. For example, each non-duplicate file name is appended with ~1. Duplicate file names
end with ~2, then ~3, and so on. After the file names are truncated, the file name extensions are truncated to
three or fewer characters. Finally, when displaying file names at the command line, Windows Server 2003
translates all characters in the file name and extension to uppercase.

Note

e You can permit extended characters by using the fsutil behavior set command. You must restart the
computer before this setting takes effect. For more information about using the fsutil behavior set
command, see the topic Fsutil: behavior in Help and Support Center in Windows Server 2003.

When five or more files exist that can result in duplicate short file names, Windows Server 2003 uses a slightly
different method for creating short file names. For the fifth and subsequent files, Windows Server 2003:

e Uses only the first two letters of the long file name.

e Generates the next four letters of the short file name by mathematically manipulating the remaining
letters of the long file name.

e Appends ~1 (or another number, if necessary, to avoid a duplicate file name) to the result.

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 20/33

5/6/2014 How NTFS Works: Local File Systems

This method substantially improves performance when Windows Server 2003 must create short file names for a
large number of files with similar long file names. Windows Server 2003 uses this method to create short
names for files on both FAT and NTFS volumes.

The following table shows the short file names for files created by six tests.

Short File Names Created by Windows Server 2003 — Example One

Long File Name Short File Name
This is test 1.txt THISIS~1.TXT
This is test 2.txt THISIS~2.TXT
This is test 3.txt THISIS~3.TXT
This is test 4.txt THISIS~4.TXT
This is test 5.txt THA1CA~1.TXT
This is test 6.txt THALCE~1.TXT

If the long file names in the preceding table are created in a different order, their short file names are different,
as shown in the following table.

Short File Names Created by Windows Server 2003 — Example Two

Long File Name Short File Name
This is test 2.txt THISIS~1.TXT
This is test 3.txt THISIS~2.TXT
This is test 1.txt THISIS~3.TXT
This is test 4.txt THISIS~4.TXT

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 21/33

5/6/2014 How NTFS Works: Local File Systems

This is test 5.txt THAICA~L.TXT

This is test 6.txt THA1CE~1.TXT

When you delete a file, its short file name is also deleted. When you create new files in the same folder,
Windows Server 2003 might re-use short file names that have been deleted. For instance, in Example 1, if you
delete the file "This is test 1.txt,” and then create a new file called "This is test 7.txt," its short file name becomes
THISIS~1.TXT.

If you have a large number of files (300,000 or more) in a folder, and the files have long file names with the
same initial characters, the time required to create the files increases. The increase occurs because NTFS bases
the short file name on the first six characters of the long file name. In folders with more than 300,000 files, the
short file names start to conflict after NTFS uses all of the 8.3 names that are similar to the long file names.
Repeated conflicts between a generated short file name and existing short file names cause NTFS to
regenerate the short file name from 6 to 8 times.

Compression of Files and Folders

NTFS supports compression on individual files, all files within a folder, and all files within NTFS volumes.
Because compression is implemented within NTFS, any Windows-based program can read and write
compressed files without determining the compression state of the file. Compression is set in a bit within the
file header, while information about compression is stored in the Data file attribute.

Files and directories are compressed and decompressed by passing FSCTL_SET_COMPRESSION code to
DeviceloControl. A compressed file or directory then has the flag FILE_ATTRIBUTE_COMPRESSED associated
with it. Applications can determine a file or directory’s compression state using GetFileAttributes.

When a program opens a compressed file, NTFS decompresses only the portion of the file being read and
then copies that data to memory. By leaving data in memory uncompressed, NTFS performance is not
impacted when it reads or modifies data in memory. NTFS compresses the modified or new data in the file
when the data is later written to disk.

The compression algorithms in NTFS support cluster sizes of up to 4 KB. When the cluster size is greater than
4 KB on an NTFS volume, none of the NTFS compression features are available.

Moving and Copying Files or Folders

Moving and copying files and folders can change their compression state. The resulting compression state
depends on whether you move or copy the files and whether you move the files between NTFS volumes or to
FAT volumes.

NTFS supports compression on one file, all files in a directory, or all files on a volume. Compression is setin a
bit within the file header, while information about compression is stored in the Data file attribute. When the bit
is set, the system compresses the file when it is saved and decompresses it as needed.

Compression adds overhead to the system because a compressed NTFS file is decompressed, copied, and
then recompressed as a new file even when the file is copied in the same computer. Any change to the
compression attribute is applied to the files you specify for moving or copying. If you compress all files in the
volume, the process might take a few minutes to finish, depending on the size of the volume, the number of

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 22/33

5/6/2014 How NTFS Works: Local File Systems

files to compress, and the speed of the computer. The delay occurs because Windows Server 2003 must
change the compression state of every folder on the volume and compress or uncompress every file on the
volume.

Changing the compression state of folders is relatively fast because for each folder Windows Server 2003
changes only the compression attribute. However, compressing or uncompressing every file on the volume
takes longer because NTFS must read data in its current form (compressed or uncompressed) from the disk,
convert the data to its new form in memory, and then write the data back to disk.

Moving Files or Folders within an NTFS Volume

When you move an uncompressed file or folder to another folder on the NTFS volume, the file remains
uncompressed. The figure Moving an Uncompressed File to a Compressed Folder illustrates the result of
moving an uncompressed file to a compressed folder.

Moving an Uncompressed File to a Compressed Folder

Folder: From Folder: To
~State: Compressed State: Carmpressed

Folder: From/testthis
|-State: Uncompressed

Folder: To/ftestthis
tm _State: Uncompressed
= A moved file keeps
its compression state
reqardless of the
compression state of

the folder it is mowved to,

When you move a compressed file to an uncompressed folder, the file remains uncompressed after the move.
The figure Moving a Compressed File to an Uncompressed Folder illustrates the result of moving a
compressed file or folder to a compressed folder.

Moving a Compressed File to an Uncompressed Folder

Folder: From Folder: To
~ State: Uncompressed State: Uncompressed

Folder: FromAtestthis
|-State:t:nmpressed

Folder: To/testthis
‘m -State: Compressed
= & moved file keeps
its compression state
regardless of the
compression state of

the folder it is mowed to.

Copying Files or Folders within an NTFS Volume
Copying a file to a folder takes on the compression attribute of the target folder.

If you copy a compressed file to an uncompressed folder, the file is uncompressed when it is copied to the
folder, as shown in the figure Copying a Compressed File to an Uncompressed Folder.

Copying a Compressed File to an Uncompressed Folder

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 23/33

5/6/2014

http://tecl

How NTFS Works: Local File Systems

Folder: From Folder: To
~ State: Compressed State: Uncompressed

Folder: From,/testthis
|-State: Carnpressed

Folder: To/testthis
— State: Uncormpressed
= & copied file takes on
the cormpression state

of the folder it is copied to.

When you copy a file to a folder that already contains a file of the same name, the copied file takes on the
compression attribute of the target file, as shown in the figure Copying a File to a Folder that Contains a File of
the Same Name.

Copying a File to a Folder that Contains a File of the Same Name

Folder: From Folder: To
~State; Compressed State: Compressed

Folder: From/testthis
|-State: Compressed

. Falder: To/testthis
) —State: Uncompressed
= . .
- A file copied to a folder
that already contains a file
of the same name takes on

the cormpression state of the
file it replaces.

Copying Files between FAT and NTFS Volumes
Files copied from a FAT folder to an NTFS folder take on the compression attribute of the target folder.
Compressed files copied from an NTFS volume to a FAT volume or floppy disk are uncompressed.

Mounted Drives on NTFS Volumes

Mounted drives, also known as volume mount points or drive paths, are volumes attached to an empty folder
on an NTFS volume. Mounted drives function the same way as any other volume, but are assigned a label or
name instead of a drive letter. Mounted drives are robust against system changes that occur when devices are
added or removed from a computer. They are not subject to the 26-volume limit imposed by drive letters, so
you can use them for access to more than 26 volumes on your computer.

The version of NTFS included with Windows Server 2003 must be used on the host volume. However, the
volume to be mounted can be formatted in any file system supported by Windows Server 2003.

One volume can host multiple mounted drives, providing a way for you to easily extend the storage capacity of
any particular volume on a Windows Server 2003 system. Users on the local computer or users who connect to
it over a network can continue to use the same drive letter for access to the volume, but multiple volumes can
be in use simultaneously from that drive letter.

Only NTFS volumes can hold a mounted drive, although any local drive can be mounted on one.

Implementing Mounted Drives

NTFS mounted drives are implemented by using reparse points and are subject to their restrictions. Reparse
points are a collection of user-defined data. The format of this data is understood by the application which

stores the data, and a file system filter, which you install to interpret the data and process the file. When an
application sets a reparse point, it stores this data, plus a reparse tag, which uniquely identifies the data it is
hnet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 24/33

5/6/2014 How NTFS Works: Local File Systems

storing. When the file system opens a file with a reparse point, it attempts to find the file system filter
associated with the data format identified by the reparse tag. If a file system filter is found, the filter processes
the file as directed by the reparse data. If a file system filter is not found, the file open operation fails.

The following restrictions apply to reparse points:

e Reparse points can be established for a directory, but the directory must be empty. Otherwise, NTFS
fails to establish the reparse point. In addition, you cannot create directories or files in a directory that
contains a reparse point.

e Reparse points and extended attributes are mutually exclusive. NTFS cannot create a reparse point when
the file contains extended attributes, and it cannot create extended attributes on a file that contains a
reparse point.

e Reparse point data cannot exceed 16 kilobytes. Setting a reparse point fails if the amount of data to be
placed in the reparse point exceeds this limit.

Hard Links

A hard link is an NTFS-only based link to a given file. When you create a hard link to a file on an NTFS volume,
NTFS adds a directory entry for the hard link without duplicating the original file. By creating hard links you can:

e Use the same file name as the original file but appear in different folders.
e Use different file names from the original file but appear in the same folder.

e Use different file names from the original file and appear in different folders.

Because a hard link is a directory entry for a file, an application can modify a file by using any of its hard links.
Applications that use any other hard link can detect the changes. However, directory entries for hard links are
updated only when a user accesses a file by using the hard link. For example, if a user opens and modifies a
file by using its hard link, and the size of the original file changes, the hard link that is used to access the file
also shows the new size.

Hard links do not have security descriptors; instead, the security descriptor belongs to the original file to which
the hard link points. Thus, if you change the security descriptor of any hard link, you actually change the
underlying file's security descriptor. All hard links that point to the file allow the newly specified access. You
cannot give a file different security descriptors on a per-hard-link basis.

Hard links use the Win32 function CreateHardLink to create hard links between files.

Distributed Link Tracking

Distributed link tracking ensures that shell shortcuts and OLE links continue to work after the target file is
renamed or moved. When you create a shortcut to a file on an NTFS volume, distributed link tracking stamps a
unique object identifier (ID) into the target file, known as the link source. Information about the object ID is also
stored within the referring file, known as the link client. Distributed link tracking uses this object ID to locate the
link source in any combination of the following events that occur on NTFS volumes within a Windows

Server 2003-based domain:

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 25/33

5/6/2014 How NTFS Works: Local File Systems

e The link source is renamed.

e The link source is moved to another folder on the same volume or to a different volume on the same
computer.

e The link source is moved from one shared network folder to another shared network folder on different
computers within the same domain.

e The computer containing the link source is renamed.
e The name of the shared network folder containing the link source has changed.

¢ The volume containing the link source is moved to another computer within the same domain.
Note

e Distributed link tracking works only on NTFS volumes in computers running Windows 2000, Windows XP,
or Windows Server 2003. The NTFS volumes cannot be on removable media.

Distributed link tracking attempts to maintain even those links that do not occur within a domain: cross-domain,
within a workgroup, or on a single computer that is not connected to a network. Links can always be
maintained in these events when a link source is moved within a computer, or when the network shared folder
on the link source computer is changed. Typically, links can be maintained when the link source is moved to
another computer; however, this form of tracking is less reliable over time.

Distributed link tracking uses different services for client and server:

e The Distributed Link Tracking Client service runs on all Windows 2000-based and Windows Server 2003-
based computers. In computers that are not part of a network, the Client service performs all activities
related to link tracking.

e The Distributed Link Tracking Server service runs on Windows 2000 and Windows Server 2003 domain
controllers. The Server service maintains information relating to the movement of link sources. Because
of this service and the information it maintains, links within a domain are more reliable than those
outside a domain. For computers that run in a domain, the Distributed Link Tracking Client service takes
advantage of this information by communicating with the Distributed Link Tracking Server service.

The Distributed Link Tracking Client service monitors activity on NTFS volumes and stores maintenance
information in a file called Tracking.log, which is located at the root of each volume in a hidden folder called
System Volume Information. This folder is protected by permissions that allow only the system to have access
to it. The System Volume Information folder is also used by other Windows Server 2003 services such as
Indexing Service.

Sparse Files

Sparse files provide a method of saving disk space for files that contain meaningful data, as well as large
sections of data composed of zeros. If an NTFS file is marked as sparse, then NTFS allocates disk clusters only
for the data explicitly specified by the application. Non-specified ranges of the file are represented by non-
allocated space on the disk. When a sparse file is read from allocated ranges, the data is returned as it was

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 26/33

5/6/2014 How NTFS Works: Local File Systems

stored. Data read from non-allocated ranges is returned as zeros.

File system application programming interfaces (APIs) allow for the file to be copied or backed as actual bits
and sparse stream ranges.File system APIs also allow for querying allocated ranges. Programs that implement
these APIs then need only to read allocated ranges to recover all data in the file. The result is efficient file
system storage and access. The figure Sparse Data Storage shows how data is stored with and without the

sparse file attribute set.

Sparse Data Storage

Without Sparse File Attribute Set

——Sparse data {zeros)
10 gigabytes

.—Disk space used
17 gigabytes

——Meaningful data
7 gigahbytes

With Sparse RAle Attribute Set

——Sparse data (zeros)
10 gigabytes

——Disk space used
7 gigabytes

——Meaningful data
7 gigabytes

For example, the properties of a file might show that the file is a 1-GB sparse file. Although the file is 1 GB, it
occupies only 64 KB of disk space.

Note

e Only NTFS volumes mounted by Windows 2000, Windows XP, or the Windows Server 2003 family
support sparse files. If you copy or move a sparse file to a FAT volume or an NTFS volume mounted by
an operating system other than those listed previously, the file is built to its originally specified size. If
the required space is not available, the operation fails.

Disk Quotas

You can enable disk quotas to restrict the amount of volume space users take up on remote or local
computers with NTFS file systems. Disk quotas uses names from the domain in which the server resides. An
administrator can then set disk quotas against those users in the domain.

For additional information about Disk Quotas, see the Disk Quotas Technical Reference.

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 27/33

http://technet.microsoft.com/en-us/library/cc786969(v=ws.10).aspx

5/6/2014 How NTFS Works: Local File Systems

NTFS Change Journal

As files, folders, and other NTFS objects are added, deleted, and modified, NTFS enters change journal
records in streams, one for each volume on the computer.

The total size of all the records currently in the journal varies, but there is a configurable maximum size. The
change journal can exceed the maximum size until the size reaches an outer threshold, at which point a portion
of the oldest records are deleted until the change journal is restored to its maximum size. The maximum size
of the change journal is configurable but cannot be reduced, only increased.

The change journal conveys significant scalability benefits to applications that might otherwise need to scan an
entire volume for changes. File system indexing, replication managers, virus scanners, and incremental backup
applications can benefit from using the change journal.

The change journal is much more efficient than time stamps or file notifications for determining changes in a
particular namespace. Applications that must rescan an entire volume to determine changes can now scan once
and subsequently refer to the change journal. The I/O cost depends on how many files have changed, not on
how many files exist on the volume.

The APIs are fully documented and can be leveraged by independent software vendors (ISVs). Microsoft uses
the change journal in Windows Server 2003 components such as the Indexing Service and File Replication
Service. ISVs can use this feature to enhance the scalability and robustness of a range of products including
backup, antivirus, and auditing tools.

NTFS File System Recoverability

NTFS is a recoverable file system that guarantees the consistency of the volume by using standard transaction
logging and recovery techniques. In the event of a system failure, NTFS runs a recovery procedure that
accesses information stored in a transaction log file. The NTFS recovery procedure guarantees that the volume
is restored to a consistent state. Transaction logging requires very little overhead.

Recovering NTFS File Structures

NTFS views each operation that modifies a file on a volume as a transaction and manages each one as an
integral unit. NTFS might also break a single complex operation into multiple transactions. After a transaction is
started, it is either completed, or if an event occurs that causes the operation to fail, it is rolled back, and the
NTFS volume returns to its state before the transaction began. Events that can cause an operation to fail
include bad sectors, transient low-memory conditions, and disconnected devices.

To ensure that a transaction can either be completed or rolled back, NTFS performs the following steps for
each transaction:

1. Records the metadata operations of a transaction in a log file cached in memory.
2. Records the actual metadata operations in memory.

3. Marks the transaction in the cached log file as committed.

4. Flushes the log file to disk.

5. Flushes the actual metadata operations to disk.

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 28/33

5/6/2014 How NTFS Works: Local File Systems

Steps 4 and 5 occur in a lazy fashion after the transaction is completed, meaning that the flush operations are
not tied to the transaction itself. Instead, NTFS modifies the log and metadata quickly in memory, and then
flushes later at a convenient time to boost performance.

NTFS guarantees that the log records containing the metadata operations of the transaction are written to disk
before the metadata that is modified in the transaction is written to disk. After NTFS updates the cache, NTFS
commits the transaction by recording in the cached log file that the transaction is complete. After the cached
log file is flushed to disk, all committed transactions are guaranteed to be completed, even if the system fails
before the changes are written to disk.

Note

e Applications can specify the FILE_FLAG_WRITE_THROUGH Win32 flag to instruct the system to write
through any intermediate cache and go directly to disk. The system can still cache write operations, but
cannot lazily flush them.

If a system failure occurs, NTFS has enough information in the log to complete or abort any partial NTFS
transaction. During recovery operations, NTFS redoes each committed transaction found in the log file. Then
NTFS locates in the log file the transactions that were not committed at the time of the system failure and
undoes each metadata operation recorded in the log file. Because NTFS flushes the log to disk before any
metadata changes are written to disk, NTFS has complete information available about any metadata changes
that need to be rolled back during recovery.

Note

e NTFS uses transaction logging and recovery to guarantee that the volume structure is not corrupted. For
this reason, all file system data is accessible after a system failure. NTFS guarantees user data only if the
program used to create the data uses the FILE_FLAG_WRITE_THROUGH Win32 flag. If the program does
not use this flag, user data can be lost due to a system failure. If a system failure does occur, NTFS
shows either the previous data, the new data, or zeros. Users do not see random data on the volume as
the result of a crash.

Caching and Data Recovery

The cache is the area of RAM that contains the most recently used data. When you write data to disk, the lazy-
writetechnique in Windows Server 2003 indicates that the data is written when it is still in the cache. Cache
memory can also be on the disk controller, such as cache memory available on SCSI controllers, or on the disk
unit, such as cache memory available on Advanced Technology Attachment (ATA) disks. The following
information can help you decide whether to enable the disk or the controller cache:

e Write caching improves disk performance, particularly if large amounts of data are being written to the
disk.

e Control of the write-back cache is a firmware function provided by the disk manufacturer. See the
documentation supplied with the disk or disk controller. You cannot configure the write-back cache from
Windows Server 2003.

e Write caching does not impact the reliability of the file system’s own metadata as long as the firmware
provided by the disk manufacturer honors write-through requests issued by the NTFS driver. NTFS
instructs the disk device driver to ensure that metadata is written whether or not write caching is

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 29/33

5/6/2014 How NTFS Works: Local File Systems

enabled. Non-metadata is typically written to disk and can be cached.

e Read caching in the disk does not affect the reliability of a file system.

Cluster Remapping

When NTFS detects a bad sector, NTFS dynamically remaps the cluster containing the bad sector — a recovery
technique called cluster remapping — and allocates a new cluster for the data. If the error occurred during a
read, NTFS returns a read error to the calling program, and the data is lost. If the error occurs during a write,
NTFS writes the data to the new cluster, and no data is lost.

NTFS puts the address of the cluster containing the bad sector in the bad cluster file, $BadClus, in the MFT so
that the bad sector is not reused.

Disk Recovery Operations

NTFS ensures the integrity of all NTFS volumes by performing disk recovery operations whenever a volume is
mounted after the computer is restarted or after the volume is dismounted. NTFS also uses a technique called
cluster remapping to minimize the effects of a bad sector on an NTFS volume.

NTFS views each operation that modifies a file on a volume as a transaction and manages each one as an
integral unit. NTFS might also break a single complex operation into multiple transactions. After a transaction is
started, it is either completed, or if an event occurs that causes the operation to fail, it is rolled back, and the
NTFS volume returns to its state before the transaction began. Events that can cause an operation to fail
include bad sectors, transient low-memory conditions, and disconnected devices.

NTFS guarantees that the log records containing the metadata operations of the transaction are written to disk
before the metadata that is modified in the transaction is written to disk. After NTFS updates the cache, NTFS
commits the transaction by recording in the cached log file that the transaction is complete. After the cached
log file is flushed to disk, all committed transactions are guaranteed to be completed, even if the system
crashes before the changes are written to disk.

If a system failure occurs, NTFS has enough information in the log to complete or abort any partial NTFS
transaction. During recovery operations, NTFS redoes each committed transaction found in the log file. Then
NTFS locates in the log file the transactions that were not committed at the time of the system failure and
undoes each metadata operation recorded in the log file. Because NTFS flushes the log to disk before any
metadata changes are written to disk, NTFS has complete information available about any metadata changes
that need to be rolled back during recovery.

Cleanup Operations on Windows NT-Based Volumes

Because files on volumes formatted by using the version of NTFS included with Windows Server 2003 can be
read and written to by Windows NT 4.0 Service Pack 4 or later, Windows Server 2003 might need to perform
cleanup operations to ensure the consistency of the data structures of a volume after it is mounted on a
computer running Windows NT.

Windows Server 2003 does not perform cleanup operations on volumes previously mounted by using
Windows 2000 or Windows XP.

Cleanup operations affect the following features:

Reparse points
Computers running Windows NT 4.0 or earlier cannot access files that have reparse points, so no cleanup

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 30/33

5/6/2014 How NTFS Works: Local File Systems

operations are necessary. Reparse points are files or directories that have blocks of data called reparse data
associated with them.

Disk quotas

If disk quotas are turned off, Windows Server 2003 performs no cleanup operations. If disk quotas are turned
on, Windows Server 2003 cleans up the quota information by rebuilding the index. If a user exceeds the disk
quota while the NTFS volume is mounted by a Windows NT 4.0 SP4 or later system, and disk quotas are strictly
enforced, all further disk allocations of data by that user using Windows Server 2003 fail. The user can still read
and write data to any existing file but cannot increase the size of a file. However, the user can delete and shrink
files. When usage falls below the assigned disk quota, disk allocations of data can resume.

Encryption
Encrypted files cannot be accessed by computers that are running Windows NT 4.0 or earlier, so no cleanup
operations are necessary.

Sparse files
Computers running Windows NT 4.0 or earlier cannot access sparse files, so no cleanup operations are

necessary.

Change journal

Computers that are running Windows NT 4.0 or earlier do not log file changes in the change journal. When
Windows Server 2003 starts, the change journals on volumes accessed by Windows NT are reset to indicate
that the journal history is incomplete. Applications that use the change journal must be able to accept
incomplete journals.

Object identifiers

Windows Server 2003 maintains two references to the object identifier: one on the file and one in the volume-
wide object identifier index. If you delete a file that has an object identifier, Windows Server 2003 must scan
and clean up the entry in the index.

POSIX Compliance

NTFS provides a several features to support the Portable Operating System Interface (POSIX) standard, which
is defined by the Institute of Electrical and Electronic Engineers (IEEE) standard 1003.1-1990 (also known as
ISO/IEC 9945-1:1990).

NTFS includes the following POSIX-compliant features.

Case-sensitive naming
For example, POSIX interprets README.TXT, Readme.txt, and readme.txt as separate files.

Hard links
A file can have more than one name. This allows two different file names, which can be in different folders on
the same volume, to point to the same data.

Additional time stamps
These show when the file was last accessed or modified.

The POSIX subsystem included with Windows NT and Windows 2000 is not included with Windows Server 2003.
A new subsystem supporting the broad functionality found on most UNIX systems beyond the POSIX.1
standard is shipped as part of Interix 2.2. The Interix subsystem can be certified to the NIST FIPS 151-2 POSIX
Conformance Test Suite.

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 31/33

5/6/2014

http://tecl

How NTFS Works: Local File Systems
Note

® You must use Interix-based programs to manage file names that differ only in case. You cannot use
standard Windows Server 2003 command-line tools (such as copy, del, and move, or their equivalents
in Windows Explorer or My Computer) to manage file names that differ only in case.

Related Information

e Basic Disks and Volumes Technical Reference
e Disk Quotas Technical Reference

e Dynamic Disks and Volumes Technical Reference

Did you find this helpful? Yes No

Community Additions

Calculation for "Clusters Per MFT Record" and "Clusters Per Index Buffer"

These 2 fields of EBPB can be negative (0x80 to OxFF).

The explanation says "If the number is negative (80 to FF), then the size of the file record is 2 raised to the absolute value of
this number.".

Example #1) This byte field is OxFF. The absolute value of -1 is +1. 271 s 2. OK

Example #2) This byte field is 0x80. The absolute value of -128 is +128. 22128 is 3.4e+38. WOW

This last number is greater than NTFS Size Limits -> Maximum file size -> Architecturally: 16 exabytes minus 1 KB (2764
bytes minus 1 KB)

2 ,m JeanF)
ﬁiﬂ 3/24/2013

Typo
This line: "In theory, the maximum NTFS volume size is 264 clusters minus 1 cluster." should be "In theory, the maximum
NTFS volume size is 2264 clusters minus 1 cluster.”

Made me do a double take when Iread it. HA

,".‘. “e Trevor Arjeski

“ 4~ 10/18/2011

hnet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 32/33

http://social.technet.microsoft.com/profile/jeanf%20j/
http://social.technet.microsoft.com/profile/trevor%20arjeski/
http://technet.microsoft.com/en-us/library/cc784732(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc786969(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc785638(v=ws.10).aspx
http://social.technet.microsoft.com/profile/jeanf%20j/
http://social.technet.microsoft.com/profile/trevor%20arjeski/

5/6/2014 How NTFS Works: Local File Systems

Calculating the used disk space exactly

Calculating the used disk space accurately on an NTFS volume is not very easy. The only graphical tool I know that is
capable of doing this is TreeSize Professional from http://www.jam-software.com. It is aware of NTFS compression, sparse
files, hardlinks and alternate data streams (ADS), for the last two an option needs to be activated as it slows down a scan.

In case of hardlinks there is a special problem: If you have two hardlinks in two different folders pointing to the same file,
for which of the folders do you count the file if you don't want to count it twice? It is not possible to find the other names
that points to some data, all you know is that it will be in the same filesystem. That means if we see a file having more than
one hardlink, we do not know if we already counted it elsewhere. TreeSize solves this problem by counting 1/n of the file's
size which has n hardlinks.

The above claim applies only to early versions of Windows. Beginning in Vista, the FindFirstFileName API
(http://msdn.microsoft.com/en-us/library/aa364421.aspx) allows finding the various filenames hardlinking to a single file.

Ben Voigt
5/11/2011

http://technet.microsoft.com/en-us/library/cc781134%28WS.10%29.aspx 33/33

http://social.technet.microsoft.com/profile/ben%20voigt/
http://social.technet.microsoft.com/profile/ben%20voigt/

