
FORENSIC INSIGHT;
DIGITAL FORENSICS COMMUNITY IN KOREA

NTFS Log Tracker

blueangel

blueangel1275@gmail.com

forensic-note.blogspot.kr

Junghoon Oh

forensicinsight.org Page 2

Index

1. Introduction

2. $LogFile

3. $UsnJrnl

4. NTFS Log Tracker

5. Conclusion

forensicinsight.org Page 3

Introduction

forensicinsight.org Page 4

Introduction

 NTFS’s Log File

• $LogFile : Transaction Log

• $UsnJrnl : Change Log

 Conventional file system forensics for NTFS

• File system event based analysis primarily focusing on $MFT

 $MFT : A file containing meta data for all files and directories in NTFS.

• For deleted files it is possible that there is no meta data in $MFT

 Finding artifacts of deleted is very difficulty for the following reasons

• In case of system drive(C:), the OS creates temp files constantly.

• A periodic garbage collection since Windows 7.

• In case of SSD, unallocated space is arranged by TRIM operation.

forensicinsight.org Page 5

Introduction

 Analysis of $LogFile and $UsnJrnl

• With these files, an investigator can analyze the file system events during a specific period.

• The file system events that are not in $MFT can still be analyzed

 The history of deleted file

 The history of a specific file – $MFT provides only last modified/access time of a file.

• Identify history of access time of a particular file.

• Identify history of modified time of a particular file.

forensicinsight.org Page 6

$LogFile

- $LogFile ?

- The Structure of $LogFile

- The Event Analysis of $LogFile

forensicinsight.org Page 7

$LogFile ?

 The transaction log file of NTFS

• In case of unexpected system shutdown due to power error or critical system failure, the
operating system recovers the status of file system to the previous status with saved
information in "$LogFile" file.

• $LogFile contains all file system transaction records.

 The creation of file/directory

 The deletion of file/directory

 The modification of $data

 The modification of MFT entry

• Each record has LSN($LogFile Sequence Number).

 This LSN information increase sequentially.

• Each record has the operation data and the data before operation for restoration

 Redo : The data after operation

 Undo : The data before operation

• Each volume has $LogFile.

• It is located at entry number 2 of MFT.

Entry Number File Name Stored Information

0 $MFT MFT Entry

1 $MFTMirr Backup of $MFT

2 $LogFile Transaction Log

3 $Volume Volume label, Identifier, Version

forensicinsight.org Page 8

$LogFile ?

 Size of $LogFile

• 64 MB in typical hard disk volume.

• The size can changed based on volume size but typically it is less than 64 MB.

• In case of typical computer usage (web surfing, working on documents, etc), the capacity of

64 MB can hold 2 ~ 3 hours of activities in $LogFile records.

• For forensic readiness, the size of the file should be increased.

 Resize of $LogFile

• chkdsk /L  Print current file size

• “/L : [filesize(KB)]”  Modification of file size

forensicinsight.org Page 9

$LogFile

- $LogFile ?

- The Structure of $LogFile

- The Event Analysis of $LogFile

forensicinsight.org Page 10

The Structure of $LogFile

 Restart Area and Logging Area

• The basic unit of each area is a page.(size : 0x1000)

• Restart Area

 This area has information of the last operation, also known as current operation, record.

 The location of restart area is first and second page (0x0000~0x2000) in the $LogFile.

• Logging Area

 This area has actual operation records.

 It is located after “Restart Area”(0x2000~)

 It is divided into “Buffer Page Area” and “Normal Page Area”

Overall Structure

forensicinsight.org Page 11

The Structure of $LogFile

 The information of the last or current operation record

• The “Current LSN” has the LSN information of the last operation record.

 Two consecutive pages, second page is for the backup

• Each page starts with the magic number(RSTR).

 The format of Restart Area

Restart Area

“RSTR”
(Magic Number)

Update
Sequence
Offset

Update
Sequence
Count

Check Disk LSN

System Page Size Log Page Size Restart
Offset

Minor
Version

Major
Version

Update Sequence Array

Current LSN Log Client Client List Flags

0 1 2 3 4 5 6 7 8 9 A B C D E F

forensicinsight.org Page 12

The Structure of $LogFile

 The actual operation records are recorded.

 This area is divided into “Buffer Page Area” and “Normal Page Area”

• Buffer Page Area

 The first two pages (0x2000~0x4000) in Logging Area. The second page is for the backup purpose.

 The operation records are stored sequentially.

 If the page is full of records, the content of page is moved to “Normal Page Area”

 The last operation, therefore, record is stored in this area.

• Normal Page Area

 The rest of the logging area except for “Buffer Page Area”(0x4000~)

 The operation records are stored sequentially.

 If the area is full of records, the records are overwritten from the start of area.

Logging Area

forensicinsight.org Page 13

The Structure of $LogFile

 Page Configuration

• One header and multiple operation records

• If the last operation record does not fit in a page, the rest of the record contents are stored
in the next page continuously.

 Page Header : the meta data of page is stored.

• Magic Number : “RCRD”

• Last LSN : the highest LSN among the records including the record of crossed the page.

• Next Record Offset : the offset of record having the highest LSN in page.

• Last End LSN : the highest LSN among the records except record that crossed the page.

The Structure of Page

“RCRD”
(Magic Number)

Update
Sequence
Offset

Update
Sequence
Count

Last LSN or File Offset

Flags Page
Count

Page
Position

Next
Record
Offset

Word
Align

DWord Align

Last End LSN

Update Sequence Array

0 1 2 3 4 5 6 7 8 9 A B C D E F

forensicinsight.org Page 14

The Structure of $LogFile

 Operation Record

• The actual content of transaction operation is stored.

• A transaction operation is consist of multiple operation records sequentially.

 Check Point Record : the start record of transaction

 Update Record : the middle records of transaction

 Commit Record : the last record of transaction

• All operation records have the information of previous operation record except “Check Point

Record”.

The Structure of Operation Record

forensicinsight.org Page 15

The Structure of $LogFile

 Operation Record(continue...)

• Configuration of Operation Record : Header + Data

 Header : the meta data of record, Fixed Size(0x58)

 Data

• Redo : The data after operation finished (Example: the written data for ‘write’ operation)

• Undo : The data before operation(Example: the data before ‘write’ operation started)

• The workflow when error recovery is executed

 OS performs backtracking from “Commit Record” with “Previous LSN” and applies “Undo” data.

The Structure of Operation Record

forensicinsight.org Page 16

The Structure of $LogFile

 The Format of Operation Record

• This LSN : LSN of current record

• Previous LSN : LSN of previous record

• Client Undo LSN : In case of a error recovery, a LSN information of record has following ‘Undo’ operation.

• Client Data Length : Size of Record(from “Redo Op” field to end of the record)

• Record Type : 0x02 (Check Point Record), 0x01(the rest Record)

• Flags : 0x01(record cross the current page), 0x00(record doesn’t cross the current page)

The Structure of Operation Record

This LSN Previous LSN

Client Undo LSN Client Data Length Client ID

Record Type Transaction ID Flags Alignment or Reserved

Redo OP Undo OP Redo Offset Redo
Length

Undo Offset Undo
Length

Target
Attribute

LCNs to
follows

Record
Offset

Attr Offset MFT Cluster
Index

Alignment
or Reserved

Target VCN Alignment or Reserved

Target LCN Alignment or Reserved

0 1 2 3 4 5 6 7 8 9 A B C
D E F

forensicinsight.org Page 17

The Structure of $LogFile

 The Format of Operation Record(continue...)

• Redo Op : Redo operation code

• Undo Op : Undo operation code

• Redo Offset : Offset of “Redo” data(from “Redo Op” field)

• Redo Length : Size of “Redo” data

• Undo Offset : Offset of “Undo” data(from “Redo Op” field)

• Undo Length : Size of “Undo” data

The Structure of Operation Record

This LSN Previous LSN

Client Undo LSN Client Data Length Client ID

Record Type Transaction ID Flags Alignment or Reserved

Redo OP Undo OP Redo Offset Redo
Length

Undo Offset Undo
Length

Target
Attribute

LCNs to
follows

Record
Offset

Attr Offset MFT Cluster
Index

Alignment
or Reserved

Target VCN Alignment or Reserved

Target LCN Alignment or Reserved

0 1 2 3 4 5 6 7 8 9 A B C
D E F

forensicinsight.org Page 18

The Structure of $LogFile

 The Format of Operation Record(continue...)

• LCNs to Follows : 0x01(There is a next record), 0x00(There is no next record)

• Record Offset

 In case of operation to MFT record, the offset of attribute applied Redo/Undo data within the MFT
record.

 In case of the rest operation, the value is 0x00

• Attr Offset

 In case of operation to MFT record, the offset of point applied Redo/ Undo data within the attribute

 In case of other operation, the offset of point applied Redo/Undo data within the cluster

The Structure of Operation Record

This LSN Previous LSN

Client Undo LSN Client Data Length Client ID

Record Type Transaction ID Flags Alignment or Reserved

Redo OP Undo OP Redo Offset Redo
Length

Undo Offset Undo
Length

Target
Attribute

LCNs to
follows

Record
Offset

Attr Offset MFT Cluster
Index

Alignment
or Reserved

Target VCN Alignment or Reserved

Target LCN Alignment or Reserved

0 1 2 3 4 5 6 7 8 9 A B C
D E F

forensicinsight.org Page 19

The Structure of $LogFile

 The Format of Operation Record(continue...)

• MFT Cluster Index : In case of operation for MFT record, the location of record applied Redo/Undo data within
cluster

 First (0x0000), Second(0x0002), Third (0x0003), forth(0x0006)

• Target VCN : VCN(Virtual Cluster Number) of “$MFT” file applied Redo/Undo data

• Target LCN : LCN(Logical Cluster Number) of the disk applied Redo/Undo data

The Structure of Operation Record

This LSN Previous LSN

Client Undo LSN Client Data Length Client ID

Record Type Transaction ID Flags Alignment or Reserved

Redo OP Undo OP Redo Offset Redo
Length

Undo Offset Undo
Length

Target
Attribute

LCNs to
follows

Record
Offset

Attr Offset MFT Cluster
Index

Alignment
or Reserved

Target VCN Alignment or Reserved

Target LCN Alignment or Reserved

0 1 2 3 4 5 6 7 8 9 A B C
D E F

forensicinsight.org Page 20

The Structure of $LogFile

 Redo/Undo Operation Code

The Structure of Operation Record

NTFS Operation Hex Value

Noop 0x00

CompensationlogRecord 0x01

InitializeFileRecordSegment 0x02

DeallocateFileRecordSegment 0x03

WriteEndofFileRecordSegement 0x04

CreateAttribute 0x05

DeleteAttribute 0x06

UpdateResidentValue 0x07

UpdataeNonResidentValue 0x08

UpdateMappingPairs 0x09

DeleteDirtyClusters 0x0A

SetNewAttributeSizes 0x0B

forensicinsight.org Page 21

The Structure of $LogFile

 Redo/Undo Operation Code(continue...)

The Structure of Operation Record

AddindexEntryRoot 0x0C

DeleteindexEntryRoot 0x0D

AddIndexEntryAllocation 0x0F

SetIndexEntryVenAllocation 0x12

UpdateFileNameRoot 0x13

UpdateFileNameAllocation 0x14

SetBitsInNonresidentBitMap 0x15

ClearBitsInNonresidentBitMap 0x16

PrepareTransaction 0x19

CommitTransaction 0x1A

ForgetTransaction 0x1B

OpenNonresidentAttribute 0x1C

DirtyPageTableDump 0x1F

TransactionTableDump 0x20

UpdateRecordDataRoot 0x21

forensicinsight.org Page 22

$LogFile

- $LogFile ?

- The Structure of $LogFile

- The Event Analysis of $LogFile

forensicinsight.org Page 23

The Event Analysis of $LogFile

 The need for event analysis based on file-level events

• The information stored in an operation record is not based on file-level events

 A transaction operation is consist of multiple operation records sequentially.

• Creating a need for transforming information to file-level events which is meaningful to

investigator.

• The file-level events focused on this research are

 Creating File/Directory

 Deleting File/Directory

 Writing Data

 Renaming File/Directory

 Moving File/Directory

forensicinsight.org Page 24

The Event Analysis of $LogFile

 Creating Resident File

• The record order of creating resident file(Redo/Undo)

1. 0x15/0x16(Set Bits In Nonresident Bit Map/Clear Bits In Nonresident Bit Map)

2. 0x00/0x03(Noop/Deallocate File Record Segment)

3. 0x0E/0x0F(Add Index Entry Allocation/Delete Index Entry Allocation)

4. 0x02/0x00(Initialize File Record Segment/Noop)

5. 0x1B/0x01(Forget Transaction/Compensation Log Record)

 The above screen shot is taken from a research version of $LogFile parsing tool.

Creating File/Directory

forensicinsight.org Page 25

The Event Analysis of $LogFile

 The Information that can be obtained from a resident file creation event

• MFT Entry Number

 From Redo data of 0x15/0x16(Set Bits In Nonresident Bit Map/Clear Bits In Nonresident Bit
Map)

operation record

 The first four bytes of Redo data is “MFT Entry Number” of targeted MFT record by operation

Creating File/Directory

Current LSN

Previous LSN

Redo Op

Undo Op

forensicinsight.org Page 26

The Event Analysis of $LogFile

 The Information that can be obtained(continued…)

• Creation Time, File Name, Parent Directory Information, File/Directory Separator

 From Redo data of 0x02/0x00(Initialize File Record Segment/Noop) operation record

 This Redo data is the content of MFT record.

• “Creation Time” can be obtained from “$STANDARD_INFORMATION” attribute

• “File Name” and “Parent Directory Information(Parent File Reference Address)” can be obtained
from “$FILE_NAME” attribute.

• Full path of object(file or directory) can be obtained if “Parent File Reference Address” value is
calculated with $MFT

• If there is “$INDEX_ROOT” attribute, object is directory.

Creating File/Directory

Current LSN

Previous LSN

Redo Op

Undo Op

Redo Data

forensicinsight.org Page 27

The Event Analysis of $LogFile

 Creating a Non-Resident File

• The same as that of Resident File

 There is no difference in allocating MFT record.

 The information that can be obtained is the same as that of creating Resident file.

Creating File/Directory

forensicinsight.org Page 28

The Event Analysis of $LogFile

 In case of creating long file name

• 0x0E/0x0F(Add Index Entry Allocation/Delete Index Entry Allocation) operation is performed
twice.  allocating the Index Entry of long file name

• The second $FILE_NAME attribute provides file name created.

Creating File/Directory

forensicinsight.org Page 29

The Event Analysis of $LogFile

 Obtaining “Create Time” in case of “File System Tunneling”

• File System Tunneling ?

 When a file is deleted but a new file created with the exact same file name within 15 seconds

in the same directory, the previous file’s time attributions are assigned to the new file.

• Operation Modifying “MFT Modified Time” information

 Redo : Update Resident Value

 Record Offset : 0x38

 Attr Offset : 0x20

Creating File/Directory

forensicinsight.org Page 30

The Event Analysis of $LogFile

 Obtaining “Create Time” in case of “File System Tunneling”(Continue…)

• Finds modify operation record of ‘MFT Modified Time’ of the parent directory of a file created

 Obtaining “Parent MFT Reference Number”

• From the redo data of ‘Initialize File Record Segment’ of a file creation event.

 Target VCN = Parent MFT Reference Number / 4

 MFT Cluster Index = Parent MFT Reference Number % 4

 Find the record of modify operation of ‘MFT Modified Time’ of a directory that has the same

value of the above calculated value of “Target VCN” and “MFT Cluster Index”. (Among the older

events from the file creation time)

• Determine the file system tunneling

 IF(“Create Time” of file != “MFT Modified Time” of parent directory)

 File System Tunneling!!

 This method is not 100% guaranteed because OS creates and deletes dozens of file within 1

second.

Creating File/Directory

forensicinsight.org Page 31

The Event Analysis of $LogFile

 Events of Resident File deletion

• The record order of Deleting Resident File(Redo/Undo)

1. 0x0F/0x0E(Delete Index Entry Allocation/Add Index Entry Allocation)

2. 0x03/0x02(Deallocation File Record Segment/Initialize File Record Segment)

3. 0x16/0x15(Clear Bits In Nonresident Bit Map/Set Bits In Nonresident Bit Map)

4. 0x1B/0x01(Forget Transaction/Compensation Log Record)

Deleting File/Directory

forensicinsight.org Page 32

The Event Analysis of $LogFile

 The Information that can be obtained

• Deleted File Name, Parent Directory Information and File/Directory Separator

 From Undo data of 0x0F/0x0E(Delete Index Entry Allocation/Add Index Entry Allocation)
operation record

 Undo data is the content of Index Entry($FILE_NAME attribute)

• Full path of object(file or directory) can be obtained when “Parent File Reference Address” value
is calculated with $MFT.

• “Deleted File Name” can be obtained from “Name” value of $FILE_NAME attribute.

• “File/Directory Separator” can be obtained from “Flag” value of $FILE_NAME attribute.

• Delete Time

 Get it from “MFT Modified Time” of Parent Directory. (same logic explained in Page 29 and 30.)

Deleting File/Directory

Current LSN

Previous LSN

Redo Op

Undo Op

Undo Data

forensicinsight.org Page 33

The Event Analysis of $LogFile

 In case of deleting a long file name

• 0x0F/0x0E(Delete Index Entry Allocation/Add Index Entry Allocation) operation is performed
twice.  Deallocating the Index Entry of long file name

• For obtaining deleted file name, acquire from second $FILE_NAME attribute

Deleting File/Directory

forensicinsight.org Page 34

The Event Analysis of $LogFile

 Deleting a Non-Resident File

• Same as deletion of Resident File

• The record order of Non Resident File(Redo/Undo)

1. 0x0F/0x0E(Delete Index Entry Allocation(or Root)/Add Index Entry Allocation(or Root))

2. 0x03/0x02(Deallocation File Record Segment/Initialize File Record Segment)

3. 0x16/0x15(Clear Bits In Nonresident Bit Map/Set Bits In Nonresident Bit Map)

4. 0x1B/0x01(Forget Transaction/Compensation Log Record)

Deleting File/Directory

forensicinsight.org Page 35

The Event Analysis of $LogFile

 Writing Data of a Resident File(Applicable until Windows XP)

• If Redo operation is “Update Resident Value” and “Record Offset” is more than 0xF8 and “Attr
Offset” is more than 0x18, it is an operation of updating $DATA attribute

 If the length of file name is 1(the short file name), then the start offset of $DATA attribute is
0xF8 within MFT record.

 The actual file data starts from 0x18 offset within $DATA attribute

• If Undo data is all zero, the operation is writing data of new file. If not, modifying data.

Writing Data

Current LSN

Previous LSN

Redo Op

Undo Op

Redo Data

Undo Data

Record Offset

Attr Offset

forensicinsight.org Page 36

The Event Analysis of $LogFile

 Modifying Data of a Resident File(Applicable until Windows XP)

• There are some data left in “Undo Data” area.

 Undo Data : the data before modification

 Redo Data : the data after modification

Writing Data

Current LSN

Previous LSN

Redo Op

Undo Op

Redo Data

Undo Data

Record Offset

Attr Offset

forensicinsight.org Page 37

The Event Analysis of $LogFile

 Finding Targeted File in Writing Data for a Resident File

• Compare values of “Target LCN(VCN)” and “MFT Cluster Index” between “Update Resident Value” and

“Initialize File Record Segment” operation records.

• If the two operation records have the same value of “Target LCN(VCN)” and “MFT Cluster Index”, it is

considered that data was written to the file via “Initialize File Record Segment” operation.

Writing Data

forensicinsight.org Page 38

The Event Analysis of $LogFile

 Writing Data of a Non-Resident File

• In case of Non-Resident file, the actual file data is stored in external cluster.

 The location information of file data can be obtained from 0x09/0x09(Update Mapping
Pairs/Update Mapping Pairs) operation.

 If “Attr Offset” is 0x40, the content of Cluster Run can be obtained in Redo data.

 In the picture below, the file data is allocated as much as 2 clusters from 38th(0x26) cluster.

Writing Data

Current LSN

Previous LSN

Redo Op

Undo Op

Redo Data

Undo Data

Record Offset

Attr Offset

forensicinsight.org Page 39

The Event Analysis of $LogFile

 Finding a Targeted File in Writing Data for a Non-Resident File

• Same as that of Resident File.(Use values of Target LCN and MFT Cluster Index for
comparison.)

• Generally, “Update Mapping Pairs” operation right after file creation event is writing data of
Non-Resident file.

• The record order of writing data to Non-Resident File when the file is created.

1. 0x06/0x05(Delete Attribute/Create Attribute)

2. 0x05/0x06(Create Attribute/Delete Attribute)

3. 0x15/0x16(Set Bits In Nonresident Bit Map/Clear Bits In Nonresident Bit Map)

4. 0x0B/0X0B(Set New Attribute Sizes/ Set New Attribute Sizes)

5. 0X09/0X09(Update Mapping Pairs/ Update Mapping Pairs)

6. 0x0B/0X0B(Set New Attribute Sizes/ Set New Attribute Sizes)

7. 0X1B/0X01(Forget Transaction/Compensation Log Record)

Writing Data

forensicinsight.org Page 40

The Event Analysis of $LogFile

 The operations during File/Directory renaming event

• Delete and Create of $FILE_NAME attribute

 If "Delete Attribute” and “Create Attribute” operations are located next to each other, this is a
renaming file event.(These operation's "Record Offset" is 0x98 and "Attr Offset" is 0x00)

 $FILE_NAME attribute is located at 0x98 offset within MFT record.

 The two serial operations should have the same “Target LCN(VCN)” value.

• The record order of renaming file

1. 0x0F/0X0E(Delete Index Entry Allocation/Add Index Entry Allocation)

2. 0x06/0x05(Delete Attribute/Create Attribute)

3. 0x05/0x06(Create Attribute/Delete Attribute)

4. 0x0E/0x0F(Add Index Entry Allocation/Delete Index Entry Allocation)

5. 0x1B/0x01(Forget Transaction/Compensation Log Record)

Renaming File/Directory

forensicinsight.org Page 41

The Event Analysis of $LogFile

 Delete Attribute(0x06)  Create Attribute(0x05)

• The File Name before Renaming and after Renaming can be obtained from each
operation’s Redo Data($FILE_NAME attribute)

• Renaming Time can be obtained from “MFT Modified Time” of Parent Directory.(same as
Page 29 and 30)

• File/Directory Separator can be obtained from “Flag” value of $FILE_NAME attribute.

Renaming File/Directory

Current LSN

Previous LSN

Redo Op

Undo Op

Target LCN

Redo Data

Record Offset

Attr Offset

forensicinsight.org Page 42

The Event Analysis of $LogFile

 The differences between the Move & Rename event

• File/Directory move event has different parent directory information but the same file name

between before and after a file rename.

• The rest information is same as renaming file event.

Moving File/Directory

forensicinsight.org Page 43

$UsnJrnl

- $UsnJrnl ?

- The Structure of $UsnJrnl

forensicinsight.org Page 44

$UsnJrnl ?

 Journal(Change) Log File of NTFS

• This file is used to determine whether any change is occurred in a specific file by applications.

• From Win7, Journal Function is activated by default

 In case of deactivation setting(in Win XP), it is possible to activate through “Fsutil”.

> fsutil usn [createjournal] m=<MaxSize> a=<AllocationDelta> <VolumePath>

 For more information about “Fsutil” : http://technet.microsoft.com/en-us/library/cc788042.aspx

• The file is composed of “$Max” attribute and “$J“ attribute

 $Max : The meta data of change log is stored.

 $J : The actual change log records are stored.

• Each record has USN(Update Sequence Number) information.

• The record order is determined with USN.

• USN = the offset value of a record within $J attribute

• USN information is also stored in then $STANDARD_INFORMATION attribute of a MFT record

http://technet.microsoft.com/en-us/library/cc788042.aspx

forensicinsight.org Page 45

$UsnJrnl ?

 Journal(Change) Log File of NTFS(continue…)

• The file is located under “$Extend” folder.

• The size of log data(generally…)

 In case of full time use(24 hours/day), the log for 1~2 days are recorded.

 In case of regular use(8 hours/day), the log for 4~5 days are recorded.

forensicinsight.org Page 46

$UsnJrnl

- $UsnJrnl ?

- The Structure of $UsnJrnl

forensicinsight.org Page 47

The Structure of $UsnJrnl

 The size of $Max attribute

• 32 Bytes fixed size

 The format of $Max attribute

The Structure of $Max attribute

Offset Size Stored Information Detail

0x00 8 Maximum Size The maximum size of log data

0x08 8 Allocation Size The size of allocated area when new log data is saved.

0x10 8 USN ID The creation time of "$UsnJrnl" file(FILETIME)

0x18 8 Lowest Valid USN The least value of USN in current records
With this value, investigator can approach the start point of
first record within "$J" attribute

forensicinsight.org Page 48

The Structure of $UsnJrnl

 The Structure of c

• The log records of variable size are listed consecutively.

• The zero-filled "Sparse Area" occupies front part of an attribute.

 The reason for this structure is because the operating system keeps the same size of the log
data saved in the $J attribute.

 The record allocation policy of $J attribute

1. The new log records are added at the end of the attribute.

2. If the total size of the added records exceeds "Allocation Size", the operation system assures that
the size of the entire log data exceeds "Maximum Size".

3. If the size of the entire log data exceeds "Maximum Size", the front area of attribute is occupied
by zero as much as size of "Allocation Size".

 Thus, the logical size of $J attribute grow continuously, but the size of area saving actual data
is kept constant.

 The general size of log data is 0x200000 ~ 0x23FFFFF

forensicinsight.org Page 49

The Structure of $UsnJrnl

 The format of record (http://msdn.microsoft.com/en-us/library/aa365722.aspx)

• The reason for using "Parent MFT Reference Number“ instead of "MFT Reference Number"

 If "MFT Reference Number“ is used, full path information may not be obtained when relevant file is
deleted.

Offset Size Stored Information Detail

0x00 4 Size of Record

0x04 2 Major Version 2(Change Journal Software’s major version)

0x06 2 Minor Version 0(Change Journal Software’s minor version)

0x08 8 MFT Reference Number "MFT Reference Number" of file or directory that effected by currently
change event.

0x10 8 Parent MFT Reference Number "MFT Reference Number" of parent directory of file and directory that
effected by currently change event.
The full path information can be obtained with this information and $MFT.

0x18 8 USN Update Sequence Number

0x20 8 TimeStamp(FILETIME) Event Time(UTC +0)

0x28 4 Reason Flag The flag of change event

0x2C 4 Source Information The subject that triggers change of event

0x30 4 Security ID

0x34 4 File Attributes The attribute information of the object effected by current event.
Generally, it is used for classifying the object into a file or directory.

0x38 2 Size of Filename The size of object name effected by current event

0x3A 2 Offset to Filename The offset of object name within record

0x3C N Filename The object(file or directory) name effected by current event

http://msdn.microsoft.com/en-us/library/aa365722.aspx

forensicinsight.org Page 50

The Structure of $UsnJrnl

 Reason Flag (http://msdn.microsoft.com/en-us/library/aa365722.aspx)

Flag Description

0x01 The file was overwritten.

0x02 The file or directory was added to

0x04 The file or directory was truncated.

0x10 The named data streams for a file is overwritten.

0x20 A named data streams for the file were added .

0x40 A named data streams for the file was truncated.

0x100 The file or directory was created for the first time.

0x200 The file or directory was deleted.

0x400 The file's or directory's extended attributes were changed.

0x800 The access rights to the file or directory was changed.

0x1000 The file or directory was renamed.(previous name)

0x2000 The file or directory was renamed.(new name)

0x4000 A user changed the FILE_ATTRIBUTE_NOT_CONTENT_INDEXED attribute.

0x8000 A user has either changed one or more file or directory attributes or one or more time stamps.

0x10000 A hard link was added to or removed from the file or directory

0x20000 The compression state of the file or directory was changed from or to compressed.

0x40000 The file or directory was encrypted or decrypted.

0x80000 The object identifier of the file or directory was changed.

0x100000 The reparse point contained in the file or directory was changed, or a reparse point was added to or deleted from the file or directory.

0x200000 A named stream has been added to or removed from the file, or a named stream has been renamed.

0x80000000 The file or directory was closed.

http://msdn.microsoft.com/en-us/library/aa365722.aspx

forensicinsight.org Page 51

The Structure of $UsnJrnl

 Source Information (http://msdn.microsoft.com/en-us/library/aa365722.aspx)

Flag Description

0x00 Normal Event

0x01 The operation provides information about a change to the file or directory made by the
operating system

0x02 The operation adds a private data stream to a file or directory.

0x04 The operation creates or updates the contents of a replicated file.

http://msdn.microsoft.com/en-us/library/aa365722.aspx

forensicinsight.org Page 52

The Structure of $UsnJrnl

 File Attribute (http://msdn.microsoft.com/en-us/library/gg258117.aspx)

Value Description

0x01 A file that is read-only.

0x02 The file or directory is hidden

0x04 A file or directory that the operating system uses a part of, or uses exclusively.

0x10 The handle that identifies a directory.

0x20 An archive file or directory.

0x40 This value is reserved for system use.

0x80 A file that does not have other attributes set.

0x100 A file that is being used for temporary storage.

0x200 A file that is a sparse file.

0x400 A file or directory that has an associated reparse point, or a file that is a symbolic link.

0x800 A file or directory that is compressed.

0x1000 This attribute indicates that the file data is physically moved to offline storage.

0x2000 The file or directory is not to be indexed by the content indexing service.

0x4000 A file or directory that is encrypted.

0x8000 The directory or user data stream is configured with integrity (only supported on ReFS volumes).

0x10000 This value is reserved for system use.

0x20000 The user data stream not to be read by the background data integrity scanner (AKA scrubber).

http://msdn.microsoft.com/en-us/library/gg258117.aspx

forensicinsight.org Page 53

NTFS Log Tracker

- The Tool Design and Development

- The Toole Functions

- The Comparison of Existing Tools

- Case Study

forensicinsight.org Page 54

The Tool Design and Development

Tool Design

forensicinsight.org Page 55

The Tool Design and Development

Tool Development : https://code.google.com/p/ntfs-log-tracker/

https://code.google.com/p/ntfs-log-tracker/

forensicinsight.org Page 56

NTFS Log Tracker

- The Tool Design and Development

- The Toole Functions

- The Comparison of Existing Tools

- Case Study

forensicinsight.org Page 57

NTFS Log Tracker

 Extracting File-Level Event from $LogFile

• Creation/Deletion File/Directory Event(Including “File System Tunneling”)

 If there is odd creation event having discontinuous creation time in the middle of events, this
event is “File System Tunneling“ event.

• Writing Data Event

• Renaming/Moving File/Directory Event

• In addition, the operation record having same LSN with that of $MFT record is extracted.
(including file name)

The Toole Functions

forensicinsight.org Page 58

NTFS Log Tracker

 Parsing change log from $UsnJrnl

• TimeStamp

• USN

• FileName

• Full Path(from $MFT)

• Event

• Source Info

• File Attribute

The Toole Functions

forensicinsight.org Page 59

NTFS Log Tracker

 Keyword Search

 Exporting result to CSV file

 Importing SQLite DB(created by NTFS Log Tracker)

The Toole Functions

forensicinsight.org Page 60

NTFS Log Tracker

- The Tool Design and Development

- The Toole Functions

- The Comparison of Existing Tools

- Case Study

forensicinsight.org Page 61

NTFS Log Tracker

 JP(Windows Journal Parser) : http://tzworks.net/prototype_page.php?proto_id=5

• Full Path

 JP doesn’t support Full Path

• Renaming File/Directory Event

• Separating File and Directory

The Comparison of Existing Tools

http://tzworks.net/prototype_page.php?proto_id=5

forensicinsight.org Page 62

NTFS Log Tracker

 $LogFileParser : https://code.google.com/p/mft2csv/wiki/LogFileParser

• Parsing record of $LogFile, $UsnJrnl:$J

• Trace Data Run

• Not Support Full Path

• Not for field investigator, for researcher

The Comparison of Existing Tools

https://code.google.com/p/mft2csv/wiki/LogFileParser

forensicinsight.org Page 63

NTFS Log Tracker

 Encase v7

• MFT Transaction Analysis

 Carving MFT Entry, Index Record within $LogFile

 Not extracting file-level event

The Comparison of Existing Tools

forensicinsight.org Page 64

NTFS Log Tracker

 NTFS TriForce(https://docs.google.com/forms/d/1GzOMe-QHtB12ZnI4ZTjLA06DJP6ZScXngO42ZDGIpR0/viewform)

• The cross analysis with $MFT, $LogFile, $UsnJrnl

• Extracting creation, deletion, rename Event

• Output is SQLite, CSV files

 X-Ways Forensics

• $LogFile Viewer

• It’s commercial tools… I don’t use it yet…

The Comparison of Existing Tools

https://docs.google.com/forms/d/1GzOMe-QHtB12ZnI4ZTjLA06DJP6ZScXngO42ZDGIpR0/viewform

forensicinsight.org Page 65

NTFS Log Tracker

- The Tool Design and Development

- The Toole Functions

- The Comparison of Existing Tools

- Case Study

forensicinsight.org Page 66

NTFS Log Tracker

 Extracting malware that is created and then deleted during the boot process

• Trace of driver file created during boot process is found.

• This file trace is not found in $MFT because it is deleted after loading.

• With “Cluster Number”, extracting this driver file from unallocated space.

• This driver file is confirmed to be malware through reversing.

Case Study 1

forensicinsight.org Page 67

NTFS Log Tracker

 Finding traces of malware located only in memory

• The malware is located only in memory.

• This malware detects the system shutdown and drops another malware file.

• After boot process, this file is loaded to memory and deletes itself

• The file trace for this malware is not found in $MFT.

• We find creation and deletion events for this malware file between the shutdown and boot

process through cross analysis with $UsnJrnl and Event Log.

Case Study 2

forensicinsight.org Page 68

NTFS Log Tracker

 The analysis of $UsnJrnl in Domain Controller(Win2008 R2)

• In case of general Win 2008 R2 server, 1~2 days of change log is saved.

• In case of DC(Domain Controller), more than 1 month of change log is saved.

 I don’t know this reason…

• It is easy to find the trace of malware for the DC.

 Obtained keyword(filename) is used to analyze other systems

Case Study 3

forensicinsight.org Page 69

NTFS Log Tracker

 CTF (thanks to Deok9~)

• 2013 CodeGate CTF, Forensic 200

• Analyzing the $LogFile from given disk image.

 The creation event under specific path is found.

 All file-level events reveal how the CTF challenge were created.

• Detail Solution

 http://forensicinsight.org/wp-content/uploads/2013/03/F-INSIGHT-CodeGate-2013-Write-ups.pdf

Case Study 4

http://forensicinsight.org/wp-content/uploads/2013/03/F-INSIGHT-CodeGate-2013-Write-ups.pdf

forensicinsight.org Page 70

Conclusion

forensicinsight.org Page 71

Conclusion

 NTFS’s log file : $LogFile, $UsnJrnl

 Analysis that rely on the $MFT only are limited and miss the following.

• The trace of delete file

• The repeated event to specific file

 It’s necessary to analyze file system event with $LogFile, $UsnJrnl.

 What NTFS Log Tracker has over other tools

• The analysis of $LogFile, $UsnJrnl

• Supporting Full Path information(with $MFT)

• Keyword search, Exporting result to CSV file, Importing SQLite file(created by this tool)

forensicinsight.org Page 72

Question and Answer

