5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

Gerben Kleijn
(http://gerbenkleijn.com/)

Network Security and Network Engineering

Windows NTFS Master File Table (MFT) Analysis

©® December 2,2013 (http://gerbenkleijn.com/?p=261) a gerbenkleijn (http://gerbenkleijn.com/?
author=1) o 3 Comments (http://gerbenkleijn.com/?p=261#comments)

In this blog post | will describe how to read file entries in the Master File Table (MFT) for an NTFS
volume. I will look at specific sections of hex code for a file and discuss how they relate to the way
afileis stored physically on a hard drive. Understanding this post will be easier if you follow along
on your own system, but you will need to be able to access your MFT. If you have access to
forensic software like EnCase then you probably already know how to access the MFT. If not, then
you can download Accessdata’s FTK Imager - a free digital forensic software suite that can be
downloaded here (http://www.accessdata.com/support/product-downloads). If you know how to
use The Sleuth Kit (TSK) to copy the MFT from your hard drive then thatis an option too.

The MFT contains information on every file that is saved on the volume and as such, it usually
contains tens to hundreds of thousands of entries. To make sure we can find and analyze a
known file, download an image file from the Internet and give it a unique name. | downloaded a
picture of the Dutch flag to my desktop and named it “Dutch_flag.jpg”. Then open up FTK Imager
or another forensic software that you choose to use and add your hard drive (the one that
contains the image) as an evidence file. The MFT will be located at the root of the drive, for
instance at “C:\”.

http://gerbenkieijn.com/?p=261 113

http://gerbenkleijn.com/
http://gerbenkleijn.com/?p=261
http://gerbenkleijn.com/?author=1
http://www.accessdata.com/support/product-downloads

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

(http://gerbenkleijn.com/wp-

content/uploads/2013/12/picl.png)

Now we need to locate our file in the MFT, which we can do using the search function. Searching
for “Dutch_flag” brings me to the following entry in the MFT:

1L307¢10 |00 OD 00 &0 00 02 00 J0D-00 [0 30 OD 03 &0 OB

JLIBM0 4= 4% 40 &5 A0 02 3 Q0-&F 1 3B OE OL 90 Q0 [1LED -]
1L3UB0LD | OF 00 03 80 36 03 DL O0-30 D2 00 00 00 &4 00 0 a0
1L3UB0C0 30 OO0 03 S0 00 OF 00 O0-0F [0 30 00 &0 4C 04 o ‘L
LLANB0A0 |33 00 g4 20 00 O0F DO QO=-10 [0 30 0D g0 20 a0 4

LLAUBEAD |30 00 00 50 00 03 G O0-48 D1 00 00 13 S0 00 0]
1138050 EF DA ED 77 BF E4 [E 01-FO B2 B9 77 BF E4 CE DR iDww;el B"'wyil
di3igmi Fu B BY 79 BE E§ LE Ul-35 BA D2 V9 BF 4 CE 00 87 H_ﬂ: U'.._:ll
LLANA0T0 (20 00 D) 80 Q0 OF 00 Q0-00) 90 0D 0 §0 Q0 &

11318090 |00 OD 00 ©0 21 D4 00 O0D-00 [N 30 OD OO 20 a0 I
11308090 (B0 SA 40 KE Q0 0F 00 00-30 00 00 00 73 40 00 02 BM- - 0o X
1LANADAD (00 OD D) 80 0D 03 07 QD-5K 00 30 0D 18 &0 01 09

1l380b0 3E S5 O €0 OO0 O ©4 QD-92 BA D9 74 EF I4 CE DL D Uiyl
113k8Do0 B8 6C DE 74 BF E4 CE 01-EX F1 B4 77 BF B4 CE 00, 1be;al e ugat
1LAUN0A0 30 AR T3 T4 OF E4 CE 01- I'l & 33 00 00 &0 a0 03 [Y [!]
1L3080=0 79 35 01 00 OO0 D02 00 O0-20 (0 30 00 O3 20 O0 DD y%

LLBEBEE0 |00 0F 44 80 55 00 54 00-43 0 &8 00 5F &0 7E 03 DTTCH-_ -
1LAE0J00 |31 0D 2X 80 44 08 50 O0-47 [0 70 00 67 &0 I O3 | J-FEp-g-.
JL3M8110 |30 0D O3 20 76 02 0O Q0-00 [30 OD O] 20 OB D2 O x .o
11308020 |5E 00 00 00 L6 00 DL 00-5E B 03 00 00 40 04 03 “ay (http://gerbenkleljn.com/wp-
11308330 (30 AR I79 74 BF E4 CE Q1-BE £ DE 74 BF I4 CE OB e ul - LFeoAT
1L 5 B140 E1 FT B4 T2 BF E& [E Ol1-35 BA D9 74 BF I4 CE O 4« ¥ Al vejal
1130815000 40 0F 90 Q0 0F 00 Q0-75 35 03 00 00 90 00 03 B 0]

| 'l ﬂJI'"' 20 00 Od 20 00 03 00 aD- I'II DTS 80 74 D

FRERURRI: S 00 g 80 §F 03 & 00-4C ':u:!_ﬂ
i a:au.-';.uu?-c'ua?u'gzuna:m:unuqa'uunu';p-;.. H
11308130 |31 OO0 03 &0 00 OF 03 J0-00 [0 30 00 03 &0 OO0 09

LL3M8lal |53 00 O 20 00 O0F O QO-40) 30 oD O3 20 a0 D2 3 L]
1L3E8Ib0 |30 40 B3 80 00 0F G O0-75 35 03 00 00 80 00 03 B o]
1L3381=D0 79 3% 01 00 O0 O3 00 O0-31 34 41 9C DA 20 FF FF 32 14 /a3
L3824 (30 00) 20 3B 00 O gu=00 UF Le ob (0 20 OB 2 E

11348120 | Lk 0D 00 50 30 03 00 00-5k D0 §F 00 68 90 65 03 4---T-on-e
11318110 |ZE OD &% 00 &4 0D &5 OD-&6C [0 74 OD &9 20 03 D2 I-dam-E-d
11308200 |49 00 £5 80 92 0F 00 00-58 5k 6F 6E 65 54 72 6L 1'e'r . [ZensTEa
LLANAZLD (6E 73 &6 &5 72 5 0D Qk-5K &F 6E 65 43 &4 I0 33 nefer] - Iore=ld=D
1l308220 a0 OA 00 S0 Q0 O 00 Qo-FF FF FT P B2 79 47 LL S E L
1L3L8ZI0 | FF FF FF FF 9 79 & L1-00 D0 00 00 00 80 00 03 iy o6
1LAAZA0 a0 00 D) 80 a0 0§ 0O O0-00 0] 30 00 D3 &0 D 06

1L3M8ZID |00 OD O3 20 OD 02 00 J0-00 [N 30 OD OO 20 a0 D2

content/uploads/2013/12/pic2.png)

Every entryin the MFT is 1,024 bytes in size (1Kb) and starts with the hex value 0x46/49/4C/45/30/,

which translates to “FILEO”. Before continuing, make sure that you are looking at the right MFT
entry. Even though you only downloaded a single file and gave it a unique name, some operating
systems will create a symbolic link for files on the system and this symbolic link will also show up
in the MFT. It might have the same file name, but with “.Ink” at the end. If that is the case, keep

looking for the original file because otherwise the results from the next steps will not make sense.

FTK Imager will provide you with metadata on sections of the MFT that you are looking at. For
instance, if you position your cursor at the very start of the MFT entry for your file you should see
a byte offset for your cursor position at the bottom of the screen. The start of my file is at offset
288,456,704 from the start of the MFT.

http://gerbenkeijn.com/?p=261

2113

http://gerbenkleijn.com/wp-content/uploads/2013/12/pic1.png
http://gerbenkleijn.com/wp-content/uploads/2013/12/pic2.png

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

Cursor pos = 288456704; clus = 17327327; log sec = 138618616; phy sec = 138620664 (http://gerbenkleijn.com/wp-
content/uploads/2013/12/pic3.png)

Since we know that every entry is 1,024 bytes in size, this means that this file is entry number
281,696 in the MFT (288,456,704 / 1,024). This is not very important, butitis always good practice
to verify metadata and to know what you are doing and how these numbers relate to each other.

The first piece of hex code that we’ll look at are bytes number 22 and 23 from the beginning. You
can jump ahead a certain amount of bytes in FTK Imager by using ctrl + g. There are four values
that can be found here:

0x00/00 Deleted file
0x01/00 Allocated file
0x03/00 Allocated directory
0x04/00 Deleted directory

| found the value 0x01/00, which means that “Dutch_flag.jpg” is an allocated file on the file
system.

Bytes 44-47 of the entry contain the record number. For my file, these bytes had the value
0x60/4C/04/00, in little-Endian encoding. Disregarding the trailing zeros, this makes 0x04/4C/60
in big-Endian encoding. Converting this value to decimal results in the number 281,696, which is
exactly the record number that we calculated previously.

The next hex value we’ll look at are bytes 56-59 of the MFT entry. These four bytes indicate the
Standard Information Attribute marker. An entry in the MFT typically has three of these markers;
the Standard Information Attribute, the File Name Attribute, and the Data Attribute. The bytes for
the Standard Information Attribute (SIA) should be 0x10/00/00/00.

&5 49 4C 45 3 00 03 0p-6F LT 3B OE 01 OO0 00 00 | FILEQ: - o7

OF 00 O 00 38 00 QL OD=-20 02 00 OO 0D D4 00 0o a o

00 00 00 00 D0 00 OO O0-09 00 00 00 &0 3C 04 00 ‘L
03 00 && 00 00 00 00 O0-IIETRTNRNTEREIUR RN | - -f - - - - |

S e (http://gerbenkleijn.com/wp-

0 BZ BS 77 EF E4 CE 0Ol-58 BR D3 74 BF E4 CE Dlgar®
20 00 00 00 00 00 00 Q0-00 00 00 OO0 00 OO0 00 OOg - - --covvveen
00 00 00 00 21 04 00 00-00 00 00 00 00 00 00 OO - !
AT A R TS0 00 00 00 T8 00 00 00 |EE{CRE

content/uploads/2013/12/pic4.png)

http://gerbenkeijn.com/?p=261 3/13

http://gerbenkleijn.com/wp-content/uploads/2013/12/pic3.png
http://gerbenkleijn.com/wp-content/uploads/2013/12/pic4.png

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

The next four bytes, offsets 4-7 from the SIA marker, record the attribute’s length. In most cases,
only the first of these bytes will be anything but zeros. For my file entry, the value of this byte is
0x60, which translates to 96 in decimal. This means the entire SIA is 96 bytes long. Bytes 16-19 of
the SIA indicate the size of the contentin the SIA, and bytes 20-23 indicate when the content
starts. Again, chances are only bytes 16 and 20 are anything but zeros. In my file entry, these
values were 0x48 and 0x18, which converts to 72 and 24 respectively. This means that the SIA

content starts at byte 24 from the SIA marker, and the contentis 72 bytes in size.

If you jump 24 bytes from the start of the SIA, there should be four 8-byte sequences of data.
These sequences are timestamps for the following: (1) Time of file creation, (2) Time when file was
last modified, (3) Time when the MFT entry was last modified, and (4) Time when the file was last
accessed. There are programs that will decode these values to normal timestamps for you. One
such program is Dcode, which can be downloaded for free here (http://www.digital-
detective.co.uk/freetools/decode.asp). These values are updated constantly.

These 32 bytes of data are really all the information of interest in the 72 bytes of content
contained in the SIA. Immediately after the SIA is the Filename Attribute (FNA) marker, indicated
by the value 0x/30/00/00/00. Itis not uncommon to find more than one FNA in a file entry. For
instance, immediately after the FNA in my file entry there is another 4-byte sequence with a value
of 0x30/00/00/00.

e e B (http://gerbenkleijn.com/wp-
i

I
OC 02 54 00 55 00 54 D0-43 00 43 00 5F OO TE 00
J1 00 K 00 4k 00 50 00-47 00 70 00 &7 00 ZE 00l -, -
0 00 00 00 TE 00 OO 00-00 00 00 Q0 00 00 OF 00 |0 -y

content/uploads/2013/12/pic5.png)

Again, the length of the attribute can be found at bytes 4-7 from the start of the FNA marker. For
my file entry, byte 4 contained the value 0x78, or 120 in decimal, meaning the attribute was 120
bytes in size. Bytes 16 and 20 show that the contentin the FNA was 0x5A, or 90 bytes in size, and
the content started at offset 0x18, or 24. The first 8 bytes of content contain the SMFT record
number of the parent (bytes 0-5) and the sequence value of the parent (bytes 6-7).

http://gerbenkeijn.com/?p=261 4/13

http://www.digital-detective.co.uk/freetools/decode.asp
http://gerbenkleijn.com/wp-content/uploads/2013/12/pic5.png

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

The next four 8-byte chunks, starting at offset 32 bytes, show the same four 8-byte streams
(another 32 bytes) that represent the time and dates relevant to the file. These date-time stamps
areredundant to the data in the Standard Information Attribute (SIA) from above. Unlike the
timestamps in the SIA, these ones are not updated constantly and are generally notreliable.

The eight bytes after the last 8-byte timestamp entry (offset 40-47) represent the size of the file on
disk, in little-Endian encoding. Disregarding the four bytes of training zeros for my file, the value
was 0x00/40/03/00, which makes 0x00/03/40/00 in big-Endian encoding. Converted to decimal,
this value represents the number 212,992, which is the size on disk in bytes for the file. The size on
disk includes file slack - it represents the amount of sectors needed to store the file. Dividing
212,992 by 512 (the size of a sector) shows that 416 sectors are needed to store this file.

Generd | Secuity | Details | Previous Versions

- Diubch_Flag

Type of file: JPEG image [ipal

Opens wath % ‘windows Photo Viewer Change...
e [GG (http://gerbenkleijn.com/wp-
Gz 205 KB (210,297 bytes)

Seeondick; 208 EE 2125592 bytes)

Created: Morday, November 18, 2013, 53703 PM
M oudified Morday, November 18, 2013, 5:37:03 PH

Accessed Mornday, November 18, 2013, 53653 PM

content/uploads/2013/12/pic6.png)

The actual size of the file without file slack can be found in the next eight bytes. At offset 48-55).
Again disregarding the four bytes of trailing zeros, the value for my file was 0x79/35/03/00, or
0x00/03/35/79 in big-Endian. Converting this value to decimal results in 210,297, which is the

actual size of thefile.

Offset 64 stores the length of the filename and the actual filename is stored beginning at offset 66.
The value of byte 64 for my file entry was 0x0C, which is 12. “Dutch_flag.jpg” has 14 characters, but
the file name stored in this particular FNA was actually “Dutch_~1.jpg”, which has 12 characters.

http://gerbenkeijn.com/?p=261 5/13

http://gerbenkleijn.com/wp-content/uploads/2013/12/pic6.png

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

Looking at the second FNA - the 120 byte sequence following the first FNA - we can see that the
majority of the byte values are the same but this time the value indicating the length of the
filename is OXOE, which is 14, and the filename is stored as “Dutch_flag.jpg”.

DO Sk 40 LE OO0 Q0 00 D0=30 00 00 00 78 O0 00 00 |B2R o x
00 00 00 00 00 @0 07 00-5A 00 00 00 L& 00 01 00| -

SE 55 00 0D OD 00 04 DO-98 OA D3 74 BF E4 CE OL *0 ;e
B2 6C DE 74 BF E4 CE ODL-EL F7 B4 77 EF E4 CE 01 | 1bc;&l &+ w;al

%5 &k [P T4 BF E4 CE 0L-00 40 03 00 00 00 00 Q0 |:fl.- lu-l -]
T2 X5 03 00 00 00 00 00-20 00 00 00 00 00 00 o0 ek
OC 0z 44 0D 55 00 54 00-42 00 42 00 EF OD TE OO - D-U-T-C-H-_

HI'I.'IZITII'IMI.'II'I".I'Ifll'-i-?ﬂl'.l'.lfll'l.'ln-?l'.ll'l.?ﬂ-'l.'ll'lL.IF'I'|

(http://gerbenkleijn.com/wp-

I F? B4 77 BF E4 CE 0l- !PHJ.'[H"-IBF‘HI"I(I

i0 &0 O3 00 00 O0 00 00=-79 35 D2 i o0 0D OD0 OOy -M - - - - -
20 0 00 OD OO0 00 00 IJD[IEI:IJ.ILUIIJ"ELIJ"IlJ

UUUUULU%UUUUUU D -p-g-.

content/uploads/2013/12/p|c7 png)

Immediately after the end of the last FNA is the value 0x80/00/00/00, which is the marker for the
Data Attribute. Byte four again indicates the length of the attribute. For my file entry this value is
0%x48,0r 72.

(http://gerbenkleijn.com/wp-

" T
i I:II] L 134 53 an I:II] IZIIII—I]I:I oF 1E- o0 o IIII:I 0& 00

content/uploads/2013/12/pic8.png)

Eight bytes after the Data Attribute marker there will be a one byte value of either 0x00 or 0x01. If
the value is 0x01 that means that the file for this MFT entryis ‘non-resident’ - the data resides
somewhere on the hard drive. If the value is 0x00 that means the file is a resident file and the data
is actually contained within the MFT entry itself. For certain small files, there is actually enough
roomin the 1,024 byte MFT entry to store the file data. The value for any image file should be 0x01
because such a file would typically be larger than 1,024 bytes. If the value for your file is 0x00 then
you are likely looking at the wrong MFT entry. Also, the results for the next steps will be different if
you’re looking at aresident file entry.

Jumping 32 bytes from the start of the Data Attribute marker brings us to a sequence of two bytes
thatindicate where the ‘data run’ is located. The data run is the sequence of bytes thatindicate
where the file is actually stored on disk. For myfile, the value of these two bytes was 0x40/00 or
0x/00/40 in big-Endian. Converting this to decimal results in 64, meaning the data run is located 64
bytes from the start of the Data Attribute Marker.

http://gerbenkeijn.com/?p=261 6/13

http://gerbenkleijn.com/wp-content/uploads/2013/12/pic7.png
http://gerbenkleijn.com/wp-content/uploads/2013/12/pic8.png

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

64 OO0 70 00 &7 00 ZE 00=50 00 00 00 48 00 OO0 00 j.p |-_| - H
0L OO0 OO 00 OO 0 O0F 00-00 00 OO0 0O OO0 0O o0 oo

33 00 00 00 00 00 00 oo-[NIME 00 00 00 00 00 3 g | (http://gerbenkleijn.com/wp-
¥E

00 40 03 00 OO0 00 00 DO-79 35 03 00 OO0 OO oD 0D @
P9 35 03 00 00 D 00 D0-31 34 &1 8C OR 00 FF FF vl 14a TE

content/uploads/2013/12/pic9.png)

Jumping to this location reveals the 8-byte sequence 0x31/34/61/9C/0A/00/FF/FF. The first byte
of this sequence is the data run header, which is viewed as two nibbles (3 and 1). Adding these two
nibbles together reveals the number of bytes following the header that are used in the data run.
For my file that means that four bytes after the header are used for the data run, so we’re actually
only looking at the value 0x31/34/61/9C/0A. Additionally, the second nibble in the header (1) is
used to indicate the number of bytes after the header that are used to indicate how many
contiguous clusters are used to store the file data. The first nibble in the header (3) is used to
indicate the number of bytes after the header that are used to indicate the starting sector of the
file data. If 0x00 follows the run list, then there are no more data runs for this file. If something
else than 0x00 follows, then the file is fragmented and spread out over multiple locations on the
hard disk. In that case, another data run will immediately follow the first one, indicating the
starting point and length of the cluster where the data is continued. This can go on for as many
fragments of space are needed to store thefile.

For my file, there is only one data run since it is followed by 0x00. After going through this file, |
will also provide an example for a file that has multiple data runs. The value 0x34 indicates how
many clusters are needed to store the file and the value 0x61/9C/0A indicates the starting sector
of the file. Converting these values to big-Endian and then to decimal results in 52 and 695,393.
FTK Imager has the ability to ‘go to sector/cluster’ (ctrl +s), butit only seems to be ableto goto a
specific sector, not a cluster. Therefore, you want to find out what sector the file is on.

How many sectors go into a cluster depends on what operating system you are using, and what
settings you chose when the operating system was installed or when the hard drive was
formatted. | believe the Windows 7 defaultis 8 sectors per cluster. Knowing this, look again at the
value that we found previously under the Filename Attribute Marker for the amount of sectors
needed to store the file. This value was 416. Divide 416 by 8 and you have 52. Again - it’s always
good to understand how these numbers fit together.

I multiplied the number 695,393 by 8, which results in 5,563,144. In FTK Imager, | navigated out of
the MFT and up to the actual partition so that the contents of the entire partition is displayed and
then | jumped to sector 5,563,144. This brought me right to the start of the “Dutch_flag.jpg” file.

http://gerbenkeijn.com/?p=261 713

http://gerbenkleijn.com/wp-content/uploads/2013/12/pic9.png

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

DOascEL0DD [FF 09 FF E0 00 L0 4k 46-45 & 00 01 0L 01 00 2c ¢rs TFIF .

DOs3eEL0L0 |01 30 00 DD FF ED OZ E4-50 &5 6F 74 &F 73 €8 6F ., i EFhoroshs

DOsScA 00 70 30 33 ZX 20 00 35 &2-498 40 04 04 00 00 00 00 p 3.0-BS5LR

DOa3cEL030 02 5F LG 02 00 00 02 00-02 IC 02 74 00 LF A 20 @

D03CELD40 |43 6F 72 62 9 73 2E 20-20 4L 6C 60 20 52 63 §7 Corbis. ALL Rig

DOePcd 00 BB T8 73 20 £ £5 TE 45-7I 7€ #5 B4 ZE IC O dE Ets Peserved. -5

DOASCHLOGN | 00 15 A9 20 52 6F T3 61-60 74 79 20 &5 72 65 63 - - Royslty-Fres

DOa3cELDT0 | 2F 43 4F 52 42 49 53 LC-DZ 7% 00 C2 54 6B 65 20 ACARBIE- x EThe .

DOabedLOBD |66 £C &1 BT T3 20 &F 66-20 £ 6F 74 £ 20 T4 68 Elaga of bath s (// / -
DOs3ea LOPD 65 30 4K 6% 74 68 &5 72-6C &1 6K &4 73 20 &} 49K = Negheolandz s http. gerbenkleljn.com Wp
DOaSCELOND | 64 20 6F 66 20 74 68 65-20 47 72 61 6E 64 20 44 4 of che Grand D

DOa3cELObD |75 €3 68 79 20 6F 65 20-40 75 78 65 €0 62 6F 75 uchy of Luesbog

DOsSca LOch |72 &7 20 &2 &F 74 &8 J0-75 T3 43 Z0 &3 aF TZ 49 ©g hokh e hocd

DOsFCELOA0 | Th 6F 6 74 61 B0 20 62-61 T2 73 20 6F 66 20 72 zontal bata of €

DOa3CELDRD |65 &4 IC 20 77 6B 65 T4-65 20 20 61 6E 64 20 62 =d, uhice, and b

DhOedes lODD eC 75 83 Z0 20 g2 &F JO=74 &2 &3 20 73 6l &0 a3 Lue, 1% tha Jaue

Cursor pos = 223 o e = BEEIIH) phy sev = BRGE]IE

content/uploads/2013/12/picl10.png)

Jumping 210,297 bytes ahead positioned my cursor right behind the value 0xFF/D9 - the footer
for the JPEG file signature which indicates the end of a JPEG file. Looking at the metadata at the
bottom of the screen revealed that this data was located on sector 5,563,554 — 410 sectors after
the starting sector. It makes sense that this number is not 416 because not all of the last cluster
was used to store the file. This tells us that the file slack in the last cluster is approximately 6

sectorsin size.

00aScR4560 ki 54 IB L5 B3 63 AT 19-09 2B 49 OE D5 00 22 05 ° oS -(I-0-2
00aSc34570 45 BA OF 3E 18 3F 23 FF-D9 PO 00 00 &3 00 00 00 -+ o 7é0
J0aBeRaian 00 00 &0 00 0D 00 0D S-00 OO 00 00 &3 00 OO o0a

N0sBcFE590 00 00 00 00 00 00 00 00-00 O3 00 00 90 00 0D 00

00a5C34540 00 00 OO 00 00 00 0D 00-00 00 00 00 00 00 0D 04 (http://gerbenkleljn.com/wp-
008GcE45h0 00 DO G0 00 00 00 00 00-00 00 00 00 &0 00 0D 00
O00mBcHEicO 00 00 OO0 00 00 00 00 O0-00 OD 00 00 OO 00 00 o0

PR [0 = TEREA0IET] log S8 = SRAIEEY phif Jil = EREEE0T

content/uploads/2013/12/picll.png)

So what happens if a file is fragmented and has multiple data runs? As mentioned earlier, the
second data run will immediately follow the first one and this will continue for as many data runs
as necessary to store the file on disk. Here is an example of a file with 13 data runs.

B0 00 Op 00 &0 00 00 O0-01 00 Q0 00 00 Q0 03 00

00 00 Op o0 00 00 OD OD=50 02 QD o0 00 00 D on 1]
40 00 00 OO0 00 00 OD O0-00 10 24 00 00 00 oo oo @ §

5 00 Z5 00 00 00 OO 00-36 00 28 00 00 00 00 00 (& -§---- -5 -§ -
2l IF T4-25 3L 3 36 i

| (http://gerbenkleijn.com/wp-

79 47 L1-00 00 00 OO0 00 00 00 OO0 |jee, v&

content/uploads/2013/12/picl21.png)

The first data run indicates that four bytes after the header are used for information on where
datais stored and over how many contiguous clusters. Following immediately after the first data
run is another data run with the header 0x21, and the one after that has the header 0x31. This
continuous until the last data run is encountered which is 0x31/19/09/23/FB. This data run can be
identified as the last one because itis immediately followed by the bytes 0x00, indicating the data

runs have ended.

http://gerbenkeijn.com/?p=261 8/13

http://gerbenkleijn.com/wp-content/uploads/2013/12/pic10.png
http://gerbenkleijn.com/wp-content/uploads/2013/12/pic11.png
http://gerbenkleijn.com/wp-content/uploads/2013/12/pic121.png

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

So with this file being fragmented across the hard drive, how can the clusters that contain
information for this file be found? The process here is a little different from when thereis only a
single data run. Not for the first data run - that one works exactly the same. However, for the
second data run and every one after that, the starting location for the data is actually calculated
from the start of the previous data run.

For this example, the first data run (0x31/0F/AA/B3/03) indicates that there are 15 (0xOF) clusters
of information stored for this file starting at cluster 242,602 (0x03/B3/AA). Data run two, which is
0x21/1F/74/25, indicates that there are 31 (0x1F) clusters of information starting 9,588 (0x25/74)
bytes from the start of the first data run. This would be at cluster 252,190. The third data run
indicates that there are 58 clusters of information stored 34,870 clusters from the start of the
second data run, which would be cluster 287,060. This continues for all 13 data runs for this file.

However, something strange occurs atdata run 7, which is 0x31/11/0D/22/FB. Applying the same
process we’ve been following suggests that there are 17 (0x11) clusters of information stored
16,458,253 clusters from the start of the sixth data run. You can’t tell from the picture but the hard
drive that was used for this example only contained a total of 1,024,134 clusters, meaning that the
designated cluster falls well outside the range of total available clusters.

What happened here is that the 7" data run actually points back to an earlier cluster on the hard
drive - one that comes before the 61 data run rather than after it. The key indicator is the last byte
of the data run; if the byte falls between the values 0x00 and 0x7F then the amount of clusters to
the next data run is positive. If the value of the last byte falls between 0x80 and OxFF then the
amount of clusters to the next data run is negative. For data run 7 the last byte is OxFB, meaning
the amount of clusters to the next data run is negative.

With a data run that points backwards, the process to follow is as follows:

1. Convertthe hexadecimal value to Big Endian.

2. Convertthe value to binary.

3. Apply a XOR calculation to each bitin the binary value. This means you make each bit the
opposite bit,so a0 becomes alandalbecomesad.

4. Add 1to theresult.

5. Convertthe result to decimal.

6. Subtractthe value from the start of the previous data run.

http://gerbenkieijn.com/?p=261 9/13

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

While at first glance this may seem like a crazy amount of work, it’s really not so bad. For data run
7, these steps look like this:

0x0D/22/FB=0xFB/22/0D.

0xFB/22/0D=11111011001000100000 1101

1111101100100010 0000 1101 becomes 000001001101 110111110010
000001001101110111110010 becomes 000001001101110111110011
000001001101110111110011=318,963

The start of the 6% data run was 328,508, so 328,508 - 318,963 = 9,545,

o vk wbhd =

The start of the 7t data run is at cluster 9,545,

Now that we know how to find out where the clusters with data for this fragmented file are located
we can carve (extract, or retrieve) the data. Doing so simply requires you to copy all the data
indicated by each data run. So data run 1 indicates that 61,440 bytes (15 clusters; 15 * 4,096 bytes)
need to be copied starting at cluster 242,602. Data run 2 indicates that 126,976 bytes need to be
copied starting at cluster 252,190 and these bytes need to be appended (added to the end) of the
data copied from data run 1. Next, the data from data run 3 is added and this continues until the
data for all 13 data runs is added together. If done correctly, the result will be a complete file.

Hopefully this walkthrough made sense. If you have any feedback or if the walkthrough did not
match up with what you found on your system, please let me know by leaving me a comment.

3 comments on “Windows NTFS Master File Table (MFT) Analysis”

Gargodong December 24,2013 11:15 pm

One mistake: Is possible that MFT file may be fragmented, so your formula: Offset / Record size =
Record number is not always true.

) Reply (/?p=261&replytocom=18#respond)

gerbenkleijn January 6, 2014 3:35 pm

http://gerbenkieijn.com/?p=261 10/13

http://gerbenkleijn.com/?p=261&replytocom=18#respond

5/6/2014

Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

You’re absolutely right about that. I’'m planning to add a section on analyzing MFT
entries of fragmented files - I'll make sure to include your feedback in that!

) Reply (/?7p=261&replytocom=22#respond)

Yves April 24,2014 3:06 am

Nice explanation.

About negative data runs you have to check only the first bit of the value (so after big endian
conversion)

About fragmented MFT | did some scripting in python in order to rebuild the MFT based on the
fact that MFT fragments are always allocated by chunks

When analysing MFT attributes with forensic aims the DATE-TIME values included in FNA’s are
quite interesting too

Lot of things to discover within resident DATA attributes and unnamed DATA attributes (ADS)

) Reply (/?p=261&replytocom=68#respond)

Leave a Reply

Your email address will not be published.

Name*

Email*

Website

Your comment...

You may use these HTML (HyperText Markup Language) tags and attributes:

 <abbr title=""> <acronym title=""> <blockquote cite=""> <cite>
<code> <del datetime=""> <i> <q cite=""> <strike>

http://gerbenkeijn.com/?p=261

1113

http://gerbenkleijn.com/?p=261&replytocom=22#respond
http://gerbenkleijn.com/?p=261&replytocom=68#respond

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

Post Comment

Search ... Search

Recent Posts

Linux IPtables (http://gerbenkleijn.com/?p=289)
Snort Troubleshooting (http://gerbenkleijn.com/?p=284)

Windows NTFS Master File Table (MFT) Analysis (http://gerbenkleijn.com/?p=261)

£l (http://searchsecurity.techtarget.com/rss/Security-Wire-Daily-News.xml)
SearchSecurity (http://rss.techtarget.com/160.xml)

How the Target CEO resignation will affect other execs' security views
(http://searchsecurity.techtarget.com/news/2240220103/How-the-Target-CEO-resignation-will-affect-other-execs-
security-views)

What should enterprises look for in vulnerability assessment tools?
(http://searchsecurity.techtarget.com/feature/What-should-enterprises-look-for-in-vulnerability-assessment-
tools)

John Pescatore: BYOIT, loT among top information security trends
(http://searchsecurity.techtarget.com/news/2240220011/John-Pescatore-BYOIT-loT-among-top-information-
security-trends)

£l (http://seclists.org/rss/bugtraq.rss) Bugtraq (http://seclists.org/#bugtraq)

CVE-2014-0930 - Kernel Memory Leak And Denial Of Service Condition in IBM AIX
(http://seclists.org/bugtraq/2014/May/30)

CVE-2014-2882 - Lack of SSL Certificate Validation in Citrix Netscaler (http://seclists.org/bugtraq/2014/May/29)

CVE-2014-2881 - Poor Quality Implementation of Diffie-Hellman Key Exchange in Citrix Netscaler
(http://seclists.org/bugtraq/2014/May/28)

http://gerbenkieijn.com/?p=261

1213

http://gerbenkleijn.com/?p=289
http://gerbenkleijn.com/?p=284
http://gerbenkleijn.com/?p=261
http://searchsecurity.techtarget.com/rss/Security-Wire-Daily-News.xml
http://rss.techtarget.com/160.xml
http://searchsecurity.techtarget.com/news/2240220103/How-the-Target-CEO-resignation-will-affect-other-execs-security-views
http://searchsecurity.techtarget.com/feature/What-should-enterprises-look-for-in-vulnerability-assessment-tools
http://searchsecurity.techtarget.com/news/2240220011/John-Pescatore-BYOIT-IoT-among-top-information-security-trends
http://seclists.org/rss/bugtraq.rss
http://seclists.org/#bugtraq
http://seclists.org/bugtraq/2014/May/30
http://seclists.org/bugtraq/2014/May/29
http://seclists.org/bugtraq/2014/May/28

5/6/2014 Windows NTFS Master File Table (MFT) Analysis — Gerben Kleijn

© 2014 Gerben Kleijn. Proudly powered by WordPress.
Morphic (http://csthemes.com/theme/morphic) by csThemes

http://gerbenkeijn.com/?p=261 13/13

http://csthemes.com/theme/morphic

