
Extending X for Double-Buffering,
Multi-Buffering, and Stereo

Jeffrey Friedberg
Larry Seiler
Jeff Vroom

Extending X for Double-Buffering, Multi-Buffering, and Stereo
by
Jeffrey Friedberg
Larry Seiler
Jeff Vroom

X Version 11, Release 6.4

Version 3.3
Copyright © 1989 Digital Equipment Corporation
Copyright © 1989 X Consortium
Copyright © 1994 X Consortium

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies. Digital Equipment Corporation makes no representations about the
suitability for any purpose of the information in this document. This documentation is provided "as is" without express or implied warranty.
This document is subject to change.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of X Consortium, Inc.

iii

Table of Contents
Warning ... iv
1. Introduction .. 1
2. Goals .. 2
3. Image Buffers ... 3
4. New Requests ... 5
5. Attributes ... 8
6. Events ... 10
7. Errors .. 11

Buffer ... 11
Double-Buffering Normal Windows ... 11
Multi-Buffering Normal Windows .. 11
Stereo Windows .. 12
Single-Buffered Stereo Windows ... 13
Double-Buffering Stereo Windows ... 13
Multi-Buffering Stereo Windows ... 14
Protocol Encoding ... 15

8. TYPES .. 16
9. EVENTS .. 17
10. ERRORS .. 18
11. REQUESTS .. 19

iv

Warning
Warning

The Multi-Buffering extension described here was a draft standard of the X Consortium prior
to Release 6.1. It has been superseded by the Double Buffer Extension (DBE). DBE is an X
Consortium Standard as of Release 6.1.

1

Chapter 1. Introduction
Several proposals have been written that address some of the issues surrounding the support of double-
buffered, multi-buffered, and stereo windows in the X Window System:

• Extending X for Double-Buffering, Jeffrey Friedberg, Larry Seiler, Randi Rost.

• (Proposal for) Double-Buffering Extensions, Jeff Vroom.

• An Extension to X.11 for Displays with Multiple Buffers, David S.H. Rosenthal.

• A Multiple Buffering/Stereo Proposal, Mark Patrick.

The authors of this proposal have tried to unify the above documents to yield a proposal that
incorporates support for double-buffering, multi-buffering, and stereo in a way that is acceptable to
all concerned.

2

Chapter 2. Goals
Clients should be able to:

• Associate multiple buffers with a window.

• Paint in any buffer associated with a window.

• Display any buffer associated with a window.

• Display a series of buffers in a window in rapid succession to achieve a smooth animation.

• Request simultaneous display of different buffers in different windows.

In addition, the extension should:

• Allow existing X applications to run unchanged.

• Support a range of implementation methods that can capitalize on existing hardware features.

3

Chapter 3. Image Buffers
Normal windows are created using the standard CreateWindow request:

CreateWindow
 parent : WINDOW
 w_id : WINDOW
 depth : CARD8
 visual : VISUALID or CopyFromParent
 x, y : INT16
 width, height : INT16
 border_width : INT16
 value_mask : BITMASK
 value_list : LISTofVALUE

This request allocates a set of window attributes and a buffer into which an image can be drawn. The
contents of this image buffer will be displayed when the window is mapped to the screen.

To support double-buffering and multi-buffering, we introduce the notion that additional image buffers
can be created and bound together to form groups. The following rules will apply:

• All image buffers in a group will have the same visual type, depth, and geometry (ie: width and
height).

• Only one image buffer per group can be displayed at a time.

• Draw operations can occur to any image buffer at any time.

• Window management requests (MapWindow, DestroyWindow, ConfigureWindow, etc...)
affect all image buffers associated with a window.

• Appropriate resize and exposure events will be generated for every image buffer that is affected by
a window management operation.

By allowing draw operations to occur on any image buffer at any time, a client could, on a multi-
threaded multi-processor server, simultaneously build up images for display. To support this, each
buffer must have its own resource ID. Since buffers are different than windows and pixmaps (buffers
are not hierarchical and pixmaps cannot be displayed) a new resource, Buffer, is introduced.
Furthermore, a Buffer is also a Drawable, thus draw operations may also be performed on buffers
simply by passing a buffer ID to the existing pixmap/window interface.

To allow existing X applications to work unchanged, we assume a window ID passed in a draw request,
for a multi-buffered window, will be an alias for the ID of the currently displayed image buffer. Any
draw requests (eq: GetImage) on the window will be relative to the displayed image buffer.

In window management requests, only a window ID will be accepted. Requests like QueryTree, will
continue to return only window ID's. Most events will return just the window ID. Some new events,
described in a subsequent section, will return a buffer ID.

When a window has backing store the contents of the window are saved off-screen. Likewise, when
the contents of an image buffer of a multi-buffer window is saved off-screen, it is said to have backing
store. This applies to all image buffers, whether or not they are selected for display.

In some multi-buffer implementations, undisplayed buffers might be implemented using pixmaps.
Since the contents of pixmaps exist off-screen and are not affected by occlusion, these image buffers
in effect have backing store.

On the other hand, both the displayed and undisplayed image buffers might be implemented using a
subset of the on-screen pixels. In this case, unless the contents of an image buffer are saved off-screen,
these image buffers in effect do not have backing store.

Image Buffers

4

Output to any image buffer of an unmapped multi-buffered window that does not have backing store is
discarded. Output to any image buffer of a mapped multi-buffer window will be performed; however,
portions of an image buffer may be occluded or clipped.

When an unmapped multi-buffered window becomes mapped, the contents of any image buffer buffer
that did not have backing store is tiled with the background and zero or more exposure events are
generated. If no background is defined for the window, then the screen contents are not altered and
the contents of any undisplayed image buffers are undefined. If backing store was maintained for an
image buffer, then no exposure events are generated.

5

Chapter 4. New Requests
The new request, CreateImageBuffers, creates a group of image buffers and associates them
with a normal X window:

CreateImageBuffers
 w_id : WINDOW
 buffers : LISTofBUFFER
 update_action : {Undefined,Background,Untouched,Copied}
 update_hint : {Frequent,Intermittent,Static}
 =>
 number_buffers : CARD16

 (Errors: Window, IDChoice, Value)

One image buffer will be associated with each ID passed in buffers. The first buffer of the list is
referred to as buffer[0], the next buffer[1], and so on. Each buffer will have the same visual type and
geometry as the window. Buffer[0] will refer to the image buffer already associated with the window
ID and its contents will not be modified. The displayed image buffer attribute is set to buffer[0].

Image buffers for the remaining ID's (buffer[1],...) are allocated. If the window is mapped, or if these
image buffers have backing store, their contents will be tiled with the window background (if no
background is defined, the buffer contents are undefined), and zero or more expose events will be
generated for each of these buffers. The contents of an image buffer is undefined when the window
is unmapped and the buffer does not have backing store.

If the window already has a group of image buffers associated with it (ie: from a previous
CreateImageBuffers request) the actions described for DestroyImageBuffers are
performed first (this will delete the association of the previous buffer ID's and their buffers as well as
de-allocate all buffers except for the one already associated with the window ID).

To allow a server implementation to efficiently allocate the buffers, the total number of buffers
required and the update action (how they will behave during an update) is specified "up front" in the
request. If the server cannot allocate all the buffers requested, the total number of buffers actually
allocated will be returned. No Alloc errors will be generated \- buffer[0] can always be associated
with the existing displayed image buffer.

For example, an application that wants to animate a short movie loop may request 64 image buffers.
The server may only be able to support 16 image buffers of this type, size, and depth. The application
can then decide 16 buffers is sufficient and may truncate the movie loop, or it may decide it really
needs 64 and will free the buffers and complain to the user.

One might be tempted to provide a request that inquires whether n buffers of a particular type, size,
and depth could be allocated. But if the query is decoupled from the actual allocation, another client
could sneak in and take the buffers before the original client has allocated them.

While any buffer of a group can be selected for display, some applications may display buffers in a
predictable order (ie: the movie loop application). The list order (buffer[0], buffer[1], ...) will be used
as a hint by the server as to which buffer will be displayed next. A client displaying buffers in this
order may see a performance improvement.

update_action indicates what should happen to a previously displayed buffer when a different buffer
becomes displayed. Possible actions are:

Undefined The contents of the buffer that was last displayed will become undefined after
the update. This is the most efficient action since it allows the implementation
to trash the contents of the buffer if it needs to.

New Requests

6

Background The contents of the buffer that was last displayed will be set to the
background of the window after the update. The background action allows
devices to use a fast clear capability during an update.

Untouched The contents of the buffer that was last displayed will be untouched after the
update. Used primarily when cycling through images that have already been
drawn.

Copied The contents of the buffer that was last displayed will become the same
as those that are being displayed after the update. This is useful when
incrementally adding to an image.

update_hint indicates how often the client will request a different buffer to be displayed. This hint will
allow smart server implementations to choose the most efficient means to support a multi-buffered
window based on the current need of the application (dumb implementations may choose to ignore
this hint). Possible hints are:

Frequent An animation or movie loop is being attempted and the fastest, most
efficient means for multi-buffering should be employed.

Intermittent The displayed image will be changed every so often. This is common for
images that are displayed at a rate slower than a second. For example,
a clock that is updated only once a minute.

Static The displayed image buffer will not be changed any time soon.
Typically set by an application whenever there is a pause in the
animation.

To display an image buffer the following request can be used:

DisplayImageBuffers
 buffers : LISTofBUFFER
 min_delay : CARD16
 max_delay : CARD16

 (Errors: Buffer, Match)

The image buffers listed will become displayed as simultaneously as possible and the update action,
bound at CreateImageBuffers time, will be performed.

A list of buffers is specified to allow the server to efficiently change the display of more than one
window at a time (ie: when a global screen swap method is used). Attempting to simultaneously display
multiple image buffers from the same window is an error (Match) since it violates the rule that only
one image buffer per group can be displayed at a time.

If a specified buffer is already displayed, any delays and update action will still be performed for
that buffer. In this instance, only the update action of Background (and possibly Undefined) will have
any affect on the contents of the displayed buffer. These semantics allow an animation application to
successfully execute even when there is only a single buffer available for a window.

When a DisplayImageBuffers request is made to an unmapped multi-buffered window, the
effect of the update action depends on whether the image buffers involved have backing store. When
the target of the update action is an image buffer that does not have backing store, output is discarded.
When the target image buffer does have backing store, the update is performed; however, when the
source of the update is an image buffer does not have backing store (as in the case of update action
Copied), the contents of target image buffer will become undefined.

min_delay and max_delay put a bound on how long the server should wait before processing the display
request. For each of the windows to be updated by this request, at least min_delay milli-seconds should

New Requests

7

elapse since the last time any of the windows were updated; conversely, no window should have to
wait more than max_delay milli-seconds before being updated.

min_delay allows an application to slow down an animation or movie loop so that it appears
synchronized at a rate the server can support given the current load. For example, a min_delay of 100
indicates the server should wait at least 1/10 of a second since the last time any of the windows were
updated. A min_delay of zero indicates no waiting is necessary.

max_delay can be thought of as an additional delay beyond min_delay the server is allowed to wait
to facilitate such things as efficient update of multiple windows. If max_delay would require an
update before min_delay is satisfied, then the server should process the display request as soon as the
min_delay requirement is met. A typical value for max_delay is zero.

To implement the above functionality, the time since the last update by a DisplayImageBuffers
request for each multi-buffered window needs to be saved as state by the server. The server may delay
execution of the DisplayImageBuffers request until the appropriate time (e.g. by requeuing the
request after computing the timeout); however, the entire request must be processed in one operation.
Request execution indivisibility must be maintained. When a server is implemented with internal
concurrency, the extension must adhere to the same concurrency semantics as those defined for the
core protocol.

To explicitly clear a rectangular area of an image buffer to the window background, the following
request can be used:

ClearImageBufferArea
 buffer : BUFFER
 x, y : INT16
 w, h : CARD16
 exposures : BOOL

 (Errors: Buffer, Value)

Like the X ClearArea request, x and y are relative to the window's origin and specify the upper-left
corner of the rectangle. If width is zero, it is replaced with the current window width minus x. If height
is zero it is replaced with the current window height minus y. If the window has a defined background
tile, the rectangle is tiled with a plane mask of all ones, a function of Copy, and a subwindow-mode
of ClipByChildren. If the window has background None, the contents of the buffer are not changed.
In either case, if exposures is true, then one or more exposure events are generated for regions of the
rectangle that are either visible or are being retained in backing store.

The group of image buffers allocated by a CreateImageBuffers request can be destroyed with
the following request:

DestroyImageBuffers
 w_id : WINDOW

 (Error: Window)

The association between the buffer ID's and their corresponding image buffers are deleted. Any image
buffers not selected for display are de-allocated. If the window is not multi-buffered, the request is
ignored.

8

Chapter 5. Attributes
The following attributes will be associated with each window that is multi-buffered:

 displayed_buffer : CARD16
 update_action : {Undefined,Background,Untouched,Copied}
 update_hint : {Frequent,Intermittent,Static}
 window_mode : {Mono,Stereo}
 buffers : LISTofBUFFER

displayed_buffer is set to the index of the currently displayed image buffer (for stereo windows, this
will be the index of the left buffer \- the index of the right buffer is simply index+1). window_mode
indicates whether this window is Mono or Stereo. The ID for each buffer associated with the window
is recorded in the buffers list. The above attributes can be queried with the following request:

GetMultiBufferAttributes
 w_id : WINDOW
 =>
 displayed_buffer : CARD16
 update_action : {Undefined,Background,Untouched,Copied}
 update_hint : {Frequent,Intermittent,Static}
 window_mode : {Mono,Stereo}
 buffers : LISTofBUFFER

 (Errors: Window, Access, Value)

If the window is not multi-buffered, a Access error will be generated. The only multi-buffer attribute
that can be explicitly set is update_hint. Rather than have a specific request to set this attribute, a
generic set request is provided to allow for future expansion:

SetMultiBufferAttributes
 w_id : WINDOW
 value_mask : BITMASK
 value_list : LISTofVALUE

 (Errors: Window, Match, Value)

If the window is not multi-buffered, a Match error will be generated. The following attributes are
maintained for each buffer of a multi-buffered window:

 window : WINDOW
 event_mask : SETofEVENT
 index : CARD16
 side : {Mono,Left,Right}

window indicates the window this buffer is associated with. event_mask specifies which events,
relevant to buffers, will be sent back to the client via the associated buffer ID (initially no events are
selected). index is the list position (0, 1, ...) of the buffer. side indicates whether this buffer is associated
with the left side or right side of a stereo window. For non-stereo windows, this attribute will be set
to Mono. These attributes can be queried with the following request:

GetBufferAttributes
 buffer : BUFFER

Attributes

9

 =>
 window : WINDOW
 event_mask : SETofEVENT
 index : CARD16
 side : {Mono,Left,Right}

 (Errors: Buffer, Value)

The only buffer attribute that can be explicitly set is event_mask. The only events that are valid are
Expose and the new ClobberNotify and UpdateNotify event (see Events section below). A
Value error will be generated if an event not selectable for a buffer is specified in an event mask.
Rather than have a specific request to set this attribute, a generic set request is provided to allow for
future expansion:

SetBufferAttributes
 buffer : BUFFER
 value_mask : BITMASK
 value_list : LISTofVALUE

 (Errors: Buffer, Value)

Clients may want to query the server about basic multi-buffer and stereo capability on a per screen
basis. The following request returns a large list of information that would most likely be read once by
Xlib for each screen, and used as a data base for other Xlib queries:

GetBufferInfo
 root : WINDOW
 =>
 info : LISTofSCREEN_INFO

Where SCREEN_INFO and BUFFER_INFO are defined as:

 SCREEN_INFO : [normal_info : LISTofBUFFER_INFO,
 stereo_info : LISTofBUFFER_INFO]

 BUFFER_INFO : [visual : VISUALID,
 max_buffers : CARD16,
 depth : CARD8]

Information regarding multi-buffering of normal (mono) windows is returned in the normal_info list.
The stereo_info list contains information about stereo windows. If the stereo_info list is empty, stereo
windows are not supported on the screen. If max_buffers is zero, the maximum number of buffers for
the depth and visual is a function of the size of the created window and current memory limitations.

The following request returns the major and minor version numbers of this extension:

GetBufferVersion
 =>
 major_number : CARD8
 minor_number : CARD8

The version numbers are an escape hatch in case future revisions of the protocol are necessary. In
general, the major version would increment for incompatible changes, and the minor version would
increment for small upward compatible changes. Barring changes, the major version will be 1, and
the minor version will be 1.

10

Chapter 6. Events
All events normally generated for single-buffered windows are also generated for multi-buffered
windows. Most of these events (ie: ConfigureNotify) will only be generated for the window and
not for each buffer. These events will return a window ID.

Expose events will be generated for both the window and any buffer affected. When this event is
generated for a buffer, the same event structure will be used but a buffer ID is returned instead of
a window ID. Clients, when processing these events, will know whether an ID returned in an event
structure is for a window or a buffer by comparing the returned ID to the ones returned when the
window and buffer were created.

GraphicsExposure and NoExposure are generated using whatever ID is specified in the
graphics operation. If a window ID is specified, the event will contain the window ID. If a buffer ID
is specified, the event will contain the buffer ID.

In some implementations, moving a window over a multi-buffered window may cause one or more
of its buffers to get overwritten or become unwritable. To allow a client drawing into one of these
buffers the opportunity to stop drawing until some portion of the buffer is writable, the following
event is added:

ClobberNotify
 buffer : BUFFER
 state : {Unclobbered,PartiallyClobbered,FullyClobbered}

The ClobberNotify event is reported to clients selecting ClobberNotify on a buffer. When a buffer
that was fully or partially clobbered becomes unclobbered, an event with Unclobbered is generated.
When a buffer that was unclobbered becomes partially clobbered, an event with PartiallyClobbered
is generated. When a buffer that was unclobbered or partially clobbered becomes fully clobbered, an
event with FullyClobbered is generated.

ClobberNotify events on a given buffer are generated before any Expose events on that buffer,
but it is not required that all ClobberNotify events on all buffers be generated before all Expose
events on all buffers.

The ordering of ClobberNotify events with respect to VisibilityNotify events is not
constrained.

If multiple buffers were used as an image FIFO between an image server and the X display server,
then the FIFO manager would like to know when a buffer that was previously displayed, has been
undisplayed and updated, as the side effect of a DisplayImageBuffers request. This allows the
FIFO manager to load up a future frame as soon as a buffer becomes available. To support this, the
following event is added:

UpdateNotify
 buffer : BUFFER

The UpdateNotify event is reported to clients selecting UpdateNotify on a buffer. Whenever a
buffer becomes updated (e.g. its update action is performed as part of a DisplayImageBuffers
request), an UpdateNotify event is generated.

11

Chapter 7. Errors
The following error type has been added to support this extension:

Buffer
A value for a BUFFER argument does not name a defined BUFFER.

Double-Buffering Normal Windows
The following pseudo-code fragment illustrates how to create and display a double-buffered image:

/*
 * Create a normal window
 */
CreateWindow(W, ...)

/*
 * Create two image buffers. Assume after display, buffer
 * contents become "undefined". Assume we will "frequently"
 * update the display. Abort if we don't get two buffers,
 */
n = CreateImageBuffers(W, [B0,B1], Undefined, Frequent)
if (n != 2) <abort>

/*
 * Map window to the screen
 */
MapWindow(W)

/*
 * Draw images using alternate buffers, display every
 * 1/10 of a second. Note we draw B1 first so it will
 * "pop" on the screen
 */
while animating
{
 <draw picture using B1>
 DisplayImageBuffers([B1], 100, 0)

 <draw picture using B0>
 DisplayImageBuffers([B0], 100, 0)
}

/*
 * Strip image buffers and leave window with
 * contents of last displayed image buffer.
 */
DestroyImageBuffers(W)

Multi-Buffering Normal Windows
Multi-buffered images are also supported by these requests. The following pseudo-code fragment
illustrates how to create a a multi-buffered image and cycle through the images to simulate a movie
loop:

Errors

12

/*
 * Create a normal window
 */
CreateWindow(W, ...)

/*
 * Create 'N' image buffers. Assume after display, buffer
 * contents are "untouched". Assume we will "frequently"
 * update the display. Abort if we don't get all the buffers.
 */
n = CreateImageBuffers(W, [B0,B1,...,B(N-1)], Untouched, Frequent)
if (n != N) <abort>

/*
 * Map window to screen
 */
MapWindow(W)

/*
 * Draw each frame of movie one per buffer
 */
foreach frame
 <draw frame using B(i)>

/*
 * Cycle through frames, one frame every 1/10 of a second.
 */
while animating
{
 foreach frame
 DisplayImageBuffers([B(i)], 100, 0)
}

Stereo Windows
How stereo windows are supported on a server is implementation dependent. A server may contain
specialized hardware that allows left and right images to be toggled at field or frame rates. The
stereo affect may only be perceived with the aid of special viewing glasses. The display of a stereo
picture should be independent of how often the contents of the picture are updated by an application.
Double and multi-buffering of images should be possible regardless of whether the image is displayed
normally or in stereo.

To achieve this goal, a simple extension to normal windows is suggested. Stereo windows are just
like normal windows except the displayed image is made up of a left image buffer and a right image
buffer. To create a stereo window, a client makes the following request:

CreateStereoWindow
 parent : WINDOW
 w_id : WINDOW
 left, right : BUFFER
 depth : CARD8
 visual : VISUALID or CopyFromParent
 x, y : INT16
 width, height : INT16
 border_width : INT16
 value_mask : BITMASK

Errors

13

 value_list : LISTofVALUE

 (Errors: Alloc, Color, Cursor, Match,
 Pixmap, Value, Window)

This request, modeled after the CreateWindow request, adds just two new parameters: left and right.
For stereo, it is essential that one can distinguish whether a draw operation is to occur on the left image
or right image. While an internal mode could have been added to achieve this, using two buffer ID's
allows clients to simultaneously build up the left and right components of a stereo image. These ID's
always refer to (are an alias for) the left and right image buffers that are currently displayed.

Like normal windows, the window ID is used whenever a window management operation is to be
performed. Window queries would also return this window ID (eg: QueryTree) as would most
events. Like the window ID, the left and right buffer ID's each have their own event mask. They can
be set and queried using the Set/GetBufferAttributes requests.

Using the window ID of a stereo window in a draw request (eg: GetImage) results in pixels that
are undefined. Possible semantics are that both left and right images get drawn, or just a single side is
operated on (existing applications will have to be re-written to explicitly use the left and right buffer
ID's in order to successfully create, fetch, and store stereo images).

Having an explicit CreateStereoWindow request is helpful in that a server implementation will
know from the onset whether a stereo window is desired and can return appropriate status to the client
if it cannot support this functionality.

Some hardware may support separate stereo and non-stereo modes, perhaps with different vertical
resolutions. For example, the vertical resolution in stereo mode may be half that of non-stereo mode.
Selecting one mode or the other must be done through some means outside of this extension (eg: by
providing a separate screen for each hardware display mode). The screen attributes (ie: x/y resolution)
for a screen that supports normal windows, may differ from a screen that supports stereo windows;
however, all windows, regardless of type, displayed on the same screen must have the same screen
attributes (ie: pixel aspect ratio).

If a screen that supports stereo windows also supports normal windows, then the images presented to
the left and right eyes for normal windows should be the same (ie: have no stereo offset).

Single-Buffered Stereo Windows
The following shows how to create and display a single-buffered stereo image:

/*
 * Create the stereo window, map it the screen,
 * and draw the left and right images
 */
CreateStereoWindow(W, L, R, ...)

MapWindow(W)

<draw picture using L,R>

Double-Buffering Stereo Windows
Additional image buffers may be added to a stereo window to allow double or multi-buffering of
stereo images. Simply use the the CreateImageBuffers request. Even numbered buffers (0,2,...)
will be left buffers. Odd numbered buffers (1,3,...) will be right buffers. Displayable stereo images are
formed by consecutive left/right pairs of image buffers. For example, (buffer[0],buffer[1]) form the
first displayable stereo image; (buffer[2],buffer[3]) the next; and so on.

Errors

14

The CreateImageBuffers request will only create pairs of left and right image buffers for stereo
windows. By always pairing left and right image buffers together, implementations might be able
to perform some type of optimization. If an odd number of buffers is specified, a Value error is
generated. All the rules mentioned at the start of this proposal still apply to the image buffers supported
by a stereo window.

To display a image buffer pair of a multi-buffered stereo image, either the left buffer ID or right buffer
ID may be specified in a DisplayImageBuffers request, but not both.

To double-buffer a stereo window:

/*
 * Create stereo window and map it to the screen
 */
CreateStereoWindow(W, L, R, ...)

/*
 * Create two pairs of image buffers. Assume after display,
 * buffer contents become "undefined". Assume we will "frequently"
 * update the display. Abort if we did get all the buffers.
 */
n = CreateImageBuffers(W, [L0,R0,L1,R1], Undefined, Frequently)
if (n != 4) <abort>

/*
 * Map window to the screen
 */
MapWindow(W)

/*
 * Draw images using alternate buffers,
 * display every 1/10 of a second.
 */
while animating
{
 <draw picture using L1,R1>
 DisplayImageBuffers([L1], 100, 0)

 <draw picture using L0,R0>
 DisplayImageBuffers([L0], 100, 0)
}

Multi-Buffering Stereo Windows
To cycle through N stereo images:

/*
 * Create stereo window
 */
CreateStereoWindow(W, L, R, ...)

/*
 * Create N pairs of image buffers. Assume after display,
 * buffer contents are "untouched". Assume we will "frequently"
 * update the display. Abort if we don't get all the buffers.
 */

Errors

15

n = CreateImageBuffers(W, [L0,R0,...,L(N-1),R(N-1)], Untouched, Frequently)
if (n != N*2) <abort>

/*
 * Map window to screen
 */
MapWindow(W)

/*
 * Draw the left and right halves of each image
 */
foreach stereo image
 <draw picture using L(i),R(i)>

/*
 * Cycle through images every 1/10 of a second
 */
while animating
{
 foreach stereo image
 DisplayImageBuffers([L(i)], 100, 0)
}

Protocol Encoding
The official name of this extension is "Multi-Buffering". When this string passed to
QueryExtension the information returned should be interpreted as follows:

major-opcode Specifies the major opcode of this extension. The first byte of each
extension request should specify this value.

first-event Specifies the code that will be returned when ClobberNotify events
are generated.

first-error Specifies the code that will be returned when Buffer errors are
generated.

The following sections describe the protocol encoding for this extension.

16

Chapter 8. TYPES

BUFFER_INFO

4 VISUALID visual
2 CARD16 max-buffers
1 CARD8 depth
1 unused

SETofBUFFER_EVENT

 #x00008000 Exposure
 #x02000000 ClobberNotify
 #x04000000 UpdateNotify

17

Chapter 9. EVENTS

ClobberNotify
1 see first-event code
1 unused
2 CARD16 sequence number
4 BUFFER buffer
1 state
 0 Unclobbered
 1 PartiallyClobbered
 2 FullyClobbered
23 unused

UpdateNotify
1 first-event+1 code
1 unused
2 CARD16 sequence number
4 BUFFER buffer
24 unused

18

Chapter 10. ERRORS

Buffer
1 0 Error
1 see first-error code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor-opcode
1 CARD8 major-opcode
21 unused

19

Chapter 11. REQUESTS
GetBufferVersion
1 see major-opcode major-opcode
1 0 minor-opcode
2 1 request length
->
1 1 Reply
1 unused
2 CARD16 sequencenumber
4 0 reply length
1 CARD8 majorversion number
1 CARD8 minorversion number
22 unused

CreateImageBuffers

1 see major-opcode major-opcode
1 1 minor-opcode
2 3+n requestlength
4 WINDOW wid
1 update-action
 0 Undefined
 1 Background
 2 Untouched
 3 Copied
1 update-hint
 0 Frequent
 1 Intermittent
 2 Static
2 unused
4n LISTofBUFFER buffer-list
->
1 1 Reply
1 unused
2 CARD16 sequencenumber
4 0 reply length
2 CARD16 number-buffers
22 unused

DestroyImageBuffers

1 see major-opcode major-opcode
1 2 minor-opcode
2 2 request length
4 WINDOW wid

DisplayImageBuffers

1 see major-opcode major-opcode
2 2+n requestlength
2 CARD16 min-delay

REQUESTS

20

2 CARD16 max-delay
4n LISTofBUFFER buffer-list

SetMultiBufferAttributes

1 see major-opcode major-opcode
1 4 minor-opcode
2 3+n requestlength
4 WINDOW wid
4 BITMASK value-mask (has n bits set to 1)
 #x00000001 update-hint
4n LISTofVALUE value-list
VALUEs
1 update-hint
 0 Frequent
 1 Intermittent
 2 Static

GetMultiBufferAttributes

1 see major-opcode major-opcode
1 5 minor-opcode
2 2 request length
4 WINDOW wid
®
1 1 Reply
1 unused
2 CARD16 sequencenumber
4 n reply length
2 CARD16 displayed-buffer
1 update-action
 0 Undefined
 1 Background
 2 Untouched
 3 Copied
1 update-hint
 0 Frequent
 1 Intermittent
 2 Static
1 window-mode
 0 Mono
 1 Stereo
19 unused
4n LISTofBUFFER buffer list

SetBufferAttributes

1 see major-opcode major-opcode
1 6 minor-opcode
2 3+n requestlength
4 BUFFER buffer
4 BITMASK value-mask (has n bits set to 1)
 #x00000001 event-mask
4n LISTofVALUE value-list
VALUEs

REQUESTS

21

4 SETofBUFFER_EVENT event-mask

GetBufferAttributes

1 see major-opcode major-opcode
1 7 minor-opcode
2 2 request length
4 BUFFER buffer
->
1 1 Reply
1 unused
2 CARD16 sequencenumber
4 0 reply length
4 WINDOW wid
4 SETofBUFFER_EVENT event-mask
2 CARD16 index
 1 side
 0 Mono
 1 Left
 2 Right
13 unused

GetBufferInfo

1 see major-opcode major-opcode
1 8 minor-opcode
2 2 request length
4 WINDOW root
®
1 1 Reply
1 unused
2 CARD16 sequencenumber
4 2(n+m) replylength
2 n number BUFFER_INFO in normal-info
2 m number BUFFER_INFO in stereo-info
20 unused
8n LISTofBUFFER_INFO normal-info
8m LISTofBUFFER_INFO stereo-info

CreateStereoWindow

1 see major-opcode major-opcode
1 9 minor-opcode
2 11+n requestlength
3 unused
1 CARD8 depth
4 WINDOW wid
4 WINDOW parent
4 BUFFER left
4 BUFFER right
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
2 class
 0 CopyFromParent
 1 InputOutput

REQUESTS

22

 2 InputOnly
4 VISUALID visual
 0 CopyFromParent
4 BITMASK value-mask (has n bits set to 1)
 encodings are the same
 as for CreateWindow
4n LISTofVALUE value-list
 encodings are the same
 as for CreateWindow

ClearImageBufferArea

1 see major-opcode major-opcode
1 10 minor-opcode
2 5 request length
4 WINDOW buffer
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
3 unused
1 BOOL exposures

	Extending X for Double-Buffering, Multi-Buffering, and Stereo
	Table of Contents
	Warning
	Chapter 1. Introduction
	Chapter 2. Goals
	Chapter 3. Image Buffers
	Chapter 4. New Requests
	Chapter 5. Attributes
	Chapter 6. Events
	Chapter 7. Errors
	Buffer
	Double-Buffering Normal Windows
	Multi-Buffering Normal Windows
	Stereo Windows
	Single-Buffered Stereo Windows
	Double-Buffering Stereo Windows
	Multi-Buffering Stereo Windows
	Protocol Encoding

	Chapter 8. TYPES
	Chapter 9. EVENTS
	Chapter 10. ERRORS
	Chapter 11. REQUESTS

