Extending X for Double-Buffering,
Multi-Buffering, and Stereo

Jeffrey Friedberg
Larry Seiler
Jeff Vroom

Extending X for Double-Buffering, Multi-Buffering, and Stereo
by

Jeffrey Friedberg

Larry Seiler

Jeff Vroom

X Version 11, Release 6.4

Version 3.3

Copyright © 1989 Digital Equipment Corporation
Copyright © 1989 X Consortium

Copyright © 1994 X Consortium

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies. Digital Equipment Corporation makes no representations about the
suitability for any purpose of the information in this document. This documentation is provided "asis" without express or implied warranty.
This document is subject to change.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
““Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window Systemis atrademark of X Consortium, Inc.

Table of Contents

KA 14 2 o iv
IO | oo [0 (o o I ORI 1
2. GOBIS ..ttt e a e e e 2
G 1 7= o (<30 =01 T 3
4, NEW REOUESES .ttt e e et e e e e e e e e e e e e e e e es 5
I N 1] 1SS PP 8
B, BV IS L.ttt et e e e ean e 10
0 = 0 £ T PP 11
20 5 = PPN 11
Double-Buffering Normal WINAOWScccuiiiiiiiiiiie e e 11
Multi-Buffering Normal WINCAOWSeeuiiiiiiieii e e e e e 11
SEEFEO WINUOWS ...t e e e et e e et e e e e s 12
Single-Buffered Stereo WINCOWSuiiiieiiicre e e e e e e e 13
Double-Buffering Stere0 WIiNAOWSovvuiiiiiii e e e e 13
Multi-Buffering Stere0 WINAOWScc.uuiiiiiiiiiicii e e e e e e 14
Protocol ENCOMINGvvvniiiiieii et e e e e e e e e eanas 15
ST I = =i S PSP 16
LS Y N S S PP 17
10. ERRORS ...ttt et e ettt e e e et e e e e et e e e e et e e e e et e e e e 18
11 REQUESTS L.ttt ittt sttt e et e e et n e e et e e et n e e e et neeeenan s 19

Warning

Warning

The Multi-Buffering extension described here was adraft standard of the X Consortium prior
to Release 6.1. It has been superseded by the Double Buffer Extension (DBE). DBE isan X
Consortium Standard as of Release 6.1.

Chapter 1. Introduction

Severa proposals have been written that address some of the i ssues surrounding the support of double-
buffered, multi-buffered, and stereo windows in the X Window System:

» Extending X for Double-Buffering, Jeffrey Friedberg, Larry Seiler, Randi Rost.
 (Proposal for) Double-Buffering Extensions, Jeff VVroom.

» An Extension to X.11 for Displays with Multiple Buffers, David S.H. Rosenthal.
» A Multiple Buffering/Stereo Proposal, Mark Patrick.

The authors of this proposal have tried to unify the above documents to yield a proposa that
incorporates support for double-buffering, multi-buffering, and stereo in a way that is acceptable to
all concerned.

Chapter 2. Goals

Clients should be able to:

» Associate multiple buffers with awindow.

 Paint in any buffer associated with awindow.

 Digplay any buffer associated with awindow.

» Display aseries of buffersin awindow in rapid succession to achieve a smooth animation.
» Request simultaneous display of different buffersin different windows.

In addition, the extension should:

» Allow existing X applications to run unchanged.

 Support arange of implementation methods that can capitalize on existing hardware features.

Chapter 3. Image Buffers

Normal windows are created using the standard Cr eat eW ndow request:

Cr eat eW ndow

par ent : W NDOW

w_id . W NDOW

dept h : CARDSB

vi sual : VI SUALI D or CopyFronPar ent
X, Yy : INT16

wi dt h, hei ght © INT16

border _wi dth . INT16

val ue_nask . Bl TMASK

val ue_|Ii st . LI STof VALUE

This request allocates a set of window attributes and a buffer into which an image can be drawn. The
contents of thisimage buffer will be displayed when the window is mapped to the screen.

To support double-buffering and multi-buffering, weintroduce the notion that additional image buffers
can be created and bound together to form groups. The following rules will apply:

» All image buffersin a group will have the same visual type, depth, and geometry (ie: width and
height).

» Only one image buffer per group can be displayed at atime.
» Draw operations can occur to any image buffer at any time.

» Window management requests (MapW ndow, Dest r oyW ndow, Conf i gur eW ndow, etc...)
affect all image buffers associated with awindow.

» Appropriate resize and exposure events will be generated for every image buffer that is affected by
awindow management operation.

By alowing draw operations to occur on any image buffer at any time, a client could, on a multi-
threaded multi-processor server, simultaneously build up images for display. To support this, each
buffer must have its own resource ID. Since buffers are different than windows and pixmaps (buffers
are not hierarchical and pixmaps cannot be displayed) a new resource, Buf f er, is introduced.
Furthermore, aBuf f er isalsoaDr awabl e, thusdraw operations may a so be performed on buffers
simply by passing a buffer 1D to the existing pixmap/window interface.

Toallow existing X applicationsto work unchanged, we assumeawindow 1D passed in adraw request,
for amulti-buffered window, will be an alias for the ID of the currently displayed image buffer. Any
draw requests (eq: Get | mage) on the window will be relative to the displayed image buffer.

In window management requests, only awindow 1D will be accepted. RequestslikeQuer y Tr ee, will
continue to return only window ID's. Most events will return just the window I1D. Some new events,
described in a subsequent section, will return a buffer ID.

When awindow has backing store the contents of the window are saved off-screen. Likewise, when
the contents of an image buffer of amulti-buffer window is saved off-screen, it is said to have backing
store. Thisappliesto all image buffers, whether or not they are selected for display.

In some multi-buffer implementations, undisplayed buffers might be implemented using pixmaps.
Since the contents of pixmaps exist off-screen and are not affected by occlusion, these image buffers
in effect have backing store.

On the other hand, both the displayed and undisplayed image buffers might be implemented using a
subset of the on-screen pixels. Inthis case, unlessthe contents of animage buffer are saved off-screen,
these image buffersin effect do not have backing store.

Image Buffers

Output to any image buffer of an unmapped multi-buffered window that does not have backing storeis
discarded. Output to any image buffer of amapped multi-buffer window will be performed; however,
portions of an image buffer may be occluded or clipped.

When an unmapped multi-buffered window becomes mapped, the contents of any image buffer buffer
that did not have backing store is tiled with the background and zero or more exposure events are
generated. If no background is defined for the window, then the screen contents are not altered and
the contents of any undisplayed image buffers are undefined. If backing store was maintained for an
image buffer, then no exposure events are generated.

Chapter 4. New Requests

The new request, Cr eat el nageBuf f er s, creates a group of image buffers and associates them
with anormal X window:

Creat el nageBuffers

w.id . W NDOW

buffers . LI STof BUFFER

update_action : {Undefined, Background, Unt ouched, Copi ed}
updat e_hi nt . {Frequent,Intermttent, Static}

=>

nunber buffers : CARDL6

(Errors: Wndow, |DChoice, Value)

One image buffer will be associated with each ID passed in buffers. The first buffer of the list is
referred to as buffer[Q], the next buffer[1], and so on. Each buffer will have the same visual type and
geometry as the window. Buffer[0] will refer to the image buffer already associated with the window
ID and its contents will not be modified. The displayed image buffer attribute is set to buffer[Q].

Image buffersfor the remaining 1D's (buffer[1],...) are alocated. If the window is mapped, or if these
image buffers have backing store, their contents will be tiled with the window background (if no
background is defined, the buffer contents are undefined), and zero or more expose events will be
generated for each of these buffers. The contents of an image buffer is undefined when the window
is unmapped and the buffer does not have backing store.

If the window already has a group of image buffers associated with it (ie: from a previous
Creat el nageBuf f ers regquest) the actions described for Destroyl mageBuffers are
performed first (this will delete the association of the previous buffer ID's and their buffers aswell as
de-allocate al buffers except for the one already associated with the window ID).

To alow a server implementation to efficiently alocate the buffers, the total number of buffers
required and the update action (how they will behave during an update) is specified "up front" in the
request. If the server cannot alocate al the buffers requested, the total number of buffers actually
allocated will be returned. No Al | oc errors will be generated \- buffer[0] can aways be associated
with the existing displayed image buffer.

For example, an application that wants to animate a short movie loop may request 64 image buffers.
The server may only be able to support 16 image buffers of thistype, size, and depth. The application
can then decide 16 buffers is sufficient and may truncate the movie loop, or it may decide it really
needs 64 and will free the buffers and complain to the user.

One might be tempted to provide a request that inquires whether n buffers of a particular type, size,
and depth could be alocated. But if the query is decoupled from the actual allocation, another client
could sneak in and take the buffers before the original client has allocated them.

While any buffer of a group can be selected for display, some applications may display buffersin a
predictable order (ie: the movie loop application). Thelist order (buffer[0], buffer[1], ...) will be used
as a hint by the server as to which buffer will be displayed next. A client displaying buffers in this
order may see a performance improvement.

update_action indicates what should happen to a previously displayed buffer when a different buffer
becomes displayed. Possible actions are:

Undefined The contents of the buffer that was|ast displayed will become undefined after
the update. Thisisthe most efficient action sinceit allowstheimplementation
to trash the contents of the buffer if it needs to.

New Requests

Background The contents of the buffer that was last displayed will be set to the
background of the window after the update. The background action alows
devicesto use afast clear capability during an update.

Untouched The contents of the buffer that was last displayed will be untouched after the
update. Used primarily when cycling through images that have aready been
drawn.

Copied The contents of the buffer that was last displayed will become the same

as those that are being displayed after the update. This is useful when
incrementally adding to an image.

update_hint indicates how often the client will request adifferent buffer to be displayed. Thishint will
allow smart server implementations to choose the most efficient means to support a multi-buffered
window based on the current need of the application (dumb implementations may choose to ignore
this hint). Possible hints are:

Frequent An animation or movie loop is being attempted and the fastest, most
efficient means for multi-buffering should be employed.

Intermittent Thedisplayedimagewill be changed every so often. Thisiscommon for
images that are displayed at a rate slower than a second. For example,
aclock that is updated only once a minute.

Static The displayed image buffer will not be changed any time soon.
Typically set by an application whenever there is a pause in the
animation.

To display an image buffer the following request can be used:

Di spl ayl mageBuf fers

buffers . LI STof BUFFER
nm n_del ay . CARD16
max_del ay . CARD16

(Errors: Buffer, Match)

The image buffers listed will become displayed as simultaneously as possible and the update action,
bound at Cr eat el mageBuf f er s time, will be performed.

A list of buffers is specified to allow the server to efficiently change the display of more than one
window at atime (ie: when aglobal screen swap method isused). Attempting to simultaneously display
multiple image buffers from the same window is an error (Mat ch) sinceit violates the rule that only
one image buffer per group can be displayed at atime.

If a specified buffer is already displayed, any delays and update action will still be performed for
that buffer. In thisinstance, only the update action of Background (and possibly Undefined) will have
any affect on the contents of the displayed buffer. These semantics allow an animation application to
successfully execute even when thereis only a single buffer available for awindow.

When a Di spl ayl mageBuf f er s request is made to an unmapped multi-buffered window, the
effect of the update action depends on whether the image buffers involved have backing store. When
thetarget of the update action is an image buffer that does not have backing store, output is discarded.
When the target image buffer does have backing store, the update is performed; however, when the
source of the update is an image buffer does not have backing store (as in the case of update action
Copied), the contents of target image buffer will become undefined.

min_delay and max_delay put abound on how long the server should wait before processing the display
request. For each of thewindowsto be updated by thisrequest, at least min_delay milli-seconds should

New Requests

elapse since the last time any of the windows were updated; conversely, no window should have to
wait more than max_delay milli-seconds before being updated.

min_delay allows an application to slow down an animation or movie loop so that it appears
synchronized at arate the server can support given the current load. For example, amin_delay of 100
indicates the server should wait at least 1/10 of a second since the last time any of the windows were
updated. A min_delay of zero indicates no waiting is necessary.

max_delay can be thought of as an additional delay beyond min_delay the server is allowed to wait
to facilitate such things as efficient update of multiple windows. If max_delay would require an
update before min_delay is satisfied, then the server should process the display request as soon as the
min_delay requirement is met. A typical value for max_delay is zero.

To implement the above functionality, the time since the last update by aDi spl ayl nageBuf f er s
request for each multi-buffered window needsto be saved as state by the server. The server may delay
execution of the Di spl ayl mageBuf f er s request until the appropriate time (e.g. by requeuing the
request after computing the timeout); however, the entire request must be processed in one operation.
Request execution indivisibility must be maintained. When a server is implemented with internal
concurrency, the extension must adhere to the same concurrency semantics as those defined for the
core protocol.

To explicitly clear a rectangular area of an image buffer to the window background, the following
request can be used:

Cl ear | mageBuf f er Ar ea

buf f er : BUFFER
X, VY . INT16
w, h . CARD16
exposures . BOOL

(Errors: Buffer, Value)

Likethe X Cl ear Ar ea regquest, x and y are relative to the window's origin and specify the upper-left
corner of therectangle. If width is zero, it isreplaced with the current window width minus x. If height
iszeroitisreplaced with the current window height minusy. If the window has a defined background
tile, the rectangle is tiled with a plane mask of all ones, a function of Copy, and a subwindow-mode
of ClipByChildren. If the window has background None, the contents of the buffer are not changed.
In either case, if exposuresis true, then one or more exposure events are generated for regions of the
rectangle that are either visible or are being retained in backing store.

The group of image buffers allocated by a Cr eat el nageBuf f er s request can be destroyed with
the following request:

Destroyl mageBuf fers
w.id ;W NDOW
(Error: W ndow)
The association between the buffer ID's and their corresponding image buffers are deleted. Any image

buffers not selected for display are de-allocated. If the window is not multi-buffered, the request is
ignored.

Chapter 5. Attributes

The following attributes will be associated with each window that is multi-buffered:

di spl ayed _buffer : CARDL6

update_action . {Undefi ned, Backgr ound, Unt ouched, Copi ed}
updat e_hi nt . {Frequent,Internmittent, Static}

wi ndow_node . {Mono, St er eo}

buffers . LI STof BUFFER

displayed buffer is set to the index of the currently displayed image buffer (for stereo windows, this
will be the index of the left buffer \- the index of the right buffer is ssimply index+1). window_mode
indicates whether this window is Mono or Sereo. The ID for each buffer associated with the window
isrecorded in the buffers list. The above attributes can be queried with the following request:

CetMulti BufferAttri bute

wid : W NDOW

=>

di spl ayed_buffer : CARDL6

updat e_action : {Undefi ned, Backgr ound, Unt ouched, Copi ed}
updat e_hi nt : {Frequent,Intermttent, Static}

wi ndow_node . {Mono, St er eo}

buffers . LI STof BUFFER

(Errors: Wndow, Access, Value)
If the window isnhot multi-buffered, aAccess error will be generated. The only multi-buffer attribute

that can be explicitly set is update_hint. Rather than have a specific request to set this attribute, a
generic set request is provided to allow for future expansion:

Set Mul ti Buf ferAttri butes

w_id . W NDOW
val ue_nask . Bl TMASK
val ue_Ii st . LI STof VALUE

(Errors: Wndow, Match, Val ue)

If the window is not multi-buffered, a Mat ch error will be generated. The following attributes are
maintained for each buffer of a multi-buffered window:

wi ndow ;W NDOW

event _mask . SETof EVENT

i ndex . CARD16

si de . {Mono, Left, Right}

window indicates the window this buffer is associated with. event_mask specifies which events,
relevant to buffers, will be sent back to the client via the associated buffer ID (initialy no events are
selected). indexisthelist position (0, 1, ...) of the buffer. sideindicateswhether thisbuffer isassociated
with the left side or right side of a stereo window. For non-stereo windows, this attribute will be set
to Mono. These attributes can be queried with the following request:

CetBuf ferAttributes
buf f er . BUFFER

Attributes

=>
Wi ndow W NDOW

event _mask SETof EVENT

i ndex CARD16

si de {Mono, Left, Ri ght}
(Errors: Buffer, Value)

The only buffer attribute that can be explicitly set is event_mask. The only events that are valid are
Expose and the new Cl obber Not i f y and Updat eNot i f y event (see Events section below). A
Val ue error will be generated if an event not selectable for a buffer is specified in an event mask.
Rather than have a specific request to set this attribute, a generic set request is provided to allow for
future expansion:

Set Buf ferAttributes
buffer
val ue_mask
val ue_|i st

BUFFER

Bl TMASK

LI STof VALUE
Buf f er,

(Errors: Val ue)

Clients may want to query the server about basic multi-buffer and stereo capability on a per screen

basis. The following request returns alargelist of information that would most likely be read once by
Xlib for each screen, and used as a data base for other Xlib queries:

CetBufferlnfo

r oot W NDOW
=>
info LI STof SCREEN | NFO

Where SCREEN | NFOand BUFFER | NFOare defined as:

SCREEN _| NFO [normal _info : LI STof BUFFER | NFO,
stereo_info : LI STof BUFFER | NFO]
BUFFER _| NFO [visual VI SUALI D,
max_buffers : CARDLG,
depth CARDS]

Information regarding multi-buffering of normal (mono) windows s returned in the normal_info list.
The stereo_info list contains information about stereo windows. If the stereo_info list is empty, stereo
windows are not supported on the screen. If max_buffersis zero, the maximum number of buffersfor
the depth and visual is afunction of the size of the created window and current memory limitations.

The following request returns the major and minor version numbers of this extension:

Get Buf f er Ver si on
=>
maj or _nunber
m nor _nunber

CARDS8
CARDS8

The version numbers are an escape hatch in case future revisions of the protocol are necessary. In
general, the major version would increment for incompatible changes, and the minor version would
increment for small upward compatible changes. Barring changes, the major version will be 1, and
the minor version will be 1.

Chapter 6. Events

All events normally generated for single-buffered windows are also generated for multi-buffered
windows. Most of these events (ie: Conf i gur eNot i f y) will only be generated for the window and
not for each buffer. These eventswill return awindow ID.

Expose events will be generated for both the window and any buffer affected. When this event is
generated for a buffer, the same event structure will be used but a buffer ID is returned instead of
awindow ID. Clients, when processing these events, will know whether an ID returned in an event
structure is for a window or a buffer by comparing the returned 1D to the ones returned when the
window and buffer were created.

Graphi csExposur e and NoExposur e are generated using whatever 1D is specified in the
graphics operation. If awindow ID is specified, the event will contain the window ID. If abuffer ID
is specified, the event will contain the buffer ID.

In some implementations, moving a window over a multi-buffered window may cause one or more
of its buffers to get overwritten or become unwritable. To allow a client drawing into one of these
buffers the opportunity to stop drawing until some portion of the buffer is writable, the following
event is added:

Cl obber Noti fy
buf fer : BUFFER
state : {Uncl obbered, Partial | yCl obber ed, Ful | yd obber ed}

TheCl obber Not i fy eventisreported to clients selecting Clobber Notify on abuffer. When abuffer
that was fully or partially clobbered becomes unclobbered, an event with Unclobbered is generated.
When a buffer that was unclobbered becomes partially clobbered, an event with PartiallyClobbered
is generated. When a buffer that was unclobbered or partially clobbered becomes fully clobbered, an
event with FullyClobbered is generated.

Cl obber Not i fy events on agiven buffer are generated before any Expose events on that buffer,
but it isnot required that all Gl obber Not i f y eventson al buffers be generated beforeall Expose
events on all buffers.

The ordering of Cl obber Not i fy events with respect to Vi si bilityNotify eventsis not
constrained.

If multiple buffers were used as an image FIFO between an image server and the X display server,
then the FIFO manager would like to know when a buffer that was previously displayed, has been
undisplayed and updated, as the side effect of aDi spl ayl mageBuf f er s request. This allowsthe
FIFO manager to load up a future frame as soon as a buffer becomes available. To support this, the
following event is added:

Updat eNot i fy
buffer . BUFFER

The Updat eNot i fy event is reported to clients selecting UpdateNotify on a buffer. Whenever a
buffer becomes updated (e.g. its update action is performed as part of aDi spl ayl nageBuf f ers
request), an Updat eNot i f y event is generated.

10

Chapter 7. Errors

The following error type has been added to support this extension:

Buffer

A value for aBUFFER argument does not name a defined BUFFER.

Double-Buffering Normal Windows

The following pseudo-code fragment illustrates how to create and display a double-buffered image:

/*

* Create a nornmal w ndow
*/

CreateWndow(W ...)

/*

* Create two inage buffers. Assune after display, buffer

* contents become "undefined". Assume we will "frequently"
* update the display. Abort if we don't get two buffers,
*/

n = Createl mageBuffers(W [BO,Bl], Undefined, Frequent)

if (n!=2) <abort>

/*

* Map wi ndow to the screen
*/

MapW ndow(W)

/*

* Draw i mages using alternate buffers, display every
* 1/10 of a second. Note we draw Bl first so it wll
* "pop" on the screen

*/
whi | e ani mati ng
{
<draw pi cture using Bl>
Di spl ayl mageBuffers([B1], 100, 0)
<draw pi cture using BO>
Di spl ayl mageBuffers([B0O], 100, 0)
}
/*

* Strip inmage buffers and | eave wi ndow with
* contents of last displayed i mage buffer.
*/

Destroyl mageBuffers(W)

Multi-Buffering Normal Windows

Multi-buffered images are also supported by these requests. The following pseudo-code fragment
illustrates how to create a a multi-buffered image and cycle through the images to simulate a movie
loop:

11

Errors

/*

* Create a nornmal w ndow

*/

CreateWndow(W ...)

/*

* Create 'N inmmge buffers. Assune after display, buffer

* contents are "untouched". Assume we will "frequently"

* update the display. Abort if we don't get all the buffers.
*/

n = Createl mgeBuffers(W [BO,B1,...,B(N-1)], Untouched, Frequent)
if (n!= N <abort>

/*

* Map wi ndow to screen

*/

MapW ndow(W)

/*

* Draw each frame of novie one per buffer

*/

foreach frame
<draw frame using B(i)>

/*
* Cycle through franes, one frame every 1/10 of a second.
*/
whi | e ani mati ng
{

foreach frane

Di spl ayl mageBuffers([B(i)], 100, 0)

}

Stereo Windows

How stereo windows are supported on a server is implementation dependent. A server may contain
specialized hardware that allows left and right images to be toggled at field or frame rates. The
stereo affect may only be perceived with the aid of special viewing glasses. The display of a stereo
picture should be independent of how often the contents of the picture are updated by an application.
Double and multi-buffering of images should be possible regardless of whether theimage is displayed
normally or in stereo.

To achieve this goal, a simple extension to normal windows is suggested. Stereo windows are just
like normal windows except the displayed image is made up of aleft image buffer and aright image
buffer. To create a stereo window, a client makes the following request:

Cr eat eSt er eoW ndow

par ent : W NDOW

w_id : W NDOW

left, right . BUFFER

dept h : CARDS

vi sual : VI SUALI D or CopyFronPar ent
X, Yy : I NT16

wi dt h, hei ght : I NT16

border_wi dth : I NT16

val ue_mask : Bl TMASK

12

Errors

val ue_Ii st . LI STof VALUE

(Errors: Alloc, Color, Cursor, Match,
Pi xmap, Val ue, W ndow)

Thisrequest, modeled after the Cr eat eW ndowrequest, addsjust two new parameters: left and right.
For stereo, it isessential that one can distinguish whether adraw operation isto occur on theleft image
or right image. While an internal mode could have been added to achieve this, using two buffer ID's
allows clients to simultaneously build up the left and right components of a stereo image. These ID's
alwaysrefer to (are an dias for) the left and right image buffers that are currently displayed.

Like norma windows, the window ID is used whenever a window management operation is to be
performed. Window queries would also return this window ID (eg: Quer yTr ee) as would most
events. Like the window ID, the left and right buffer ID's each have their own event mask. They can
be set and queried using the Set / Get Buf f er At t ri but es requests.

Using the window 1D of a stereo window in a draw request (eg: Get | mage) results in pixels that
are undefined. Possible semantics are that both left and right images get drawn, or just asingle sideis
operated on (existing applications will have to be re-written to explicitly use the left and right buffer
ID'sin order to successfully create, fetch, and store stereo images).

Having an explicit Cr eat eSt er eoW ndow request is helpful in that a server implementation will
know from the onset whether a stereo window is desired and can return appropriate status to the client
if it cannot support this functionality.

Some hardware may support separate stereo and non-stereo modes, perhaps with different vertical
resolutions. For example, the vertical resolution in stereo mode may be half that of non-stereo mode.
Selecting one mode or the other must be done through some means outside of this extension (eg: by
providing a separate screen for each hardware display mode). The screen attributes (ie: x/y resolution)
for a screen that supports normal windows, may differ from a screen that supports stereo windows;
however, all windows, regardless of type, displayed on the same screen must have the same screen
attributes (ie: pixel aspect ratio).

If a screen that supports stereo windows also supports normal windows, then the images presented to
the left and right eyes for normal windows should be the same (ie: have no stereo offset).

Single-Buffered Stereo Windows

The following shows how to create and display a single-buffered stereo image:

/*

* Create the stereo window, map it the screen,
* and draw the left and right inmages

*/

CreateStereoWndow(W L, R ...)

MapW ndow(W)

<draw picture using L, R>

Double-Buffering Stereo Windows

Additional image buffers may be added to a stereo window to allow double or multi-buffering of
stereo images. Simply usethethe Cr eat el mageBuf f er s request. Even numbered buffers (0,2,...)
will be left buffers. Odd numbered buffers (1,3,...) will be right buffers. Displayable stereo images are
formed by consecutive left/right pairs of image buffers. For example, (buffer[0],buffer[1]) form the
first displayable stereo image; (buffer[2],buffer[3]) the next; and so on.

13

Errors

The Cr eat el mageBuf f er s request will only create pairs of |eft and right image buffersfor stereo
windows. By always pairing left and right image buffers together, implementations might be able
to perform some type of optimization. If an odd number of buffers is specified, a Val ue error is
generated. All therulesmentioned at the start of thisproposal still apply to theimage buffers supported
by a stereo window.

To display aimage buffer pair of amulti-buffered stereo image, either the left buffer ID or right buffer
ID may be specifiedinaDi spl ayl mageBuf f er s request, but not both.

To double-buffer a stereo window:

/*

* Create stereo window and nmap it to the screen

*/

CreateStereoWndow(W L, R ...)

/*

* Create two pairs of image buffers. Assune after display,

* puffer contents becone "undefined". Assume we will "frequently"
* update the display. Abort if we did get all the buffers.

*/

n = Createl mageBuffers(W [LO,RO,L1, Rl], Undefined, Frequently)
if (n!=4) <abort>

/*

* Map wi ndow to the screen
*/

MapW ndow(W)

/*
* Draw i mages using alternate buffers,
* display every 1/10 of a second.

*/
whi | e ani mati ng
{
<draw picture using L1, R1>
Di spl ayl mageBuf fers([L1], 100, 0)
<draw pi cture using LO, RO>
Di spl ayl mageBuffers([LO], 100, 0)
}

Multi-Buffering Stereo Windows

To cycle through N stereo images:

/*

* Create stereo w ndow

*/

CreateStereoWndow(W L, R ...)

/*

* Create N pairs of image buffers. Assunme after display,

* puffer contents are "untouched". Assume we will "frequently"
* update the display. Abort if we don't get all the buffers.

*

~

14

Errors

n = Createl mageBuffers(W [LO,RO,...,L(N1),R(N-1)], Untouched, Frequently)
if (n!= N2) <abort>

/*

* Map wi ndow to screen
*/

MapW ndow(W)

/*
* Draw the left and right halves of each inage
*/
foreach stereo i mage
<draw picture using L(i),R(i)>

/*
* Cycle through i nages every 1/10 of a second
*/
whi | e ani mating
{
foreach stereo i mage
Di spl ayl mageBuffers([L(i)], 100, 0)
}

Protocol Encoding

The officid name of this extension is "Multi-Buffering". When this string passed to
Quer yExt ensi on theinformation returned should be interpreted as follows:

major-opcode Specifies the major opcode of this extension. The first byte of each
extension request should specify thisvalue.

first-event Specifiesthe codethat will bereturned when Cl obber Not i f y events
are generated.

first-error Specifies the code that will be returned when Buf f er errors are
generated.

The following sections describe the protocol encoding for this extension.

15

Chapter 8. TYPES

BUFFER I NFO

4 VI SUALI D
2 CARD16

1 CARDS8

1

SETof BUFFER_EVENT

#x00008000
#x02000000
#x04000000

vi sual
max- buf fers
depth
unused

Exposur e
Cl obber Noti fy
Updat eNoti fy

16

Chapter 9. EVENTS

Cl obber Not i fy

1 see first-event code
1 unused
2 CARD16 sequence nunber
4 BUFFER buf f er
1 state

0 Uncl obbered

1 Partiallyd obbered

2 Ful l yd obbered
23 unused
Updat eNoti fy
1 first-event+1 code
1 unused
2 CARD16 sequence nunber
4 BUFFER buf f er
24 unused

17

Chapter 10. ERRORS

Buf f er

1 0 Error

1 see first-error code

2 CARD16 sequence nunber
4 CARD32 bad resource id
2 CARD16 nm nor - opcode

1 CARD8 nmaj or - opcode

21 unused

18

Get Buf f er Ver si on

see mmj or - opcode
0

1

\Y

1

CARD16

CARDS8
CARDS8

NFRPRPRANRRE!' NR R

N

Creat el nageBuffers

see mmj or - opcode
1

3+n

W NDOW

P ANRE R

Undefi ned
Backgr ound
Unt ouched
Copi ed

WNPEFLO

Fr equent
Intermttent
2 Static

= O

LI STof BUFFER

V S

1

CARD16

CARD16

NNPANERPEL ! BN

N

Dest royl mageBuf fers

1 see mmj or - opcode
1 2

2 2

4 W NDOW

Di spl ayl mageBuffers

1 see mmj or - opcode
2 2+n
2 CARD16

Chapter 11. REQUESTS

maj or - opcode
nmi nor - opcode
request length

Reply

unused
sequencenumnber
reply length

maj orver si on nunber
ni norver si on nunber
unused

maj or - opcode
ni nor - opcode
request!l ength
wi d

updat e- acti on

updat e- hi nt
unused
buffer-1list
Reply

unused
sequencenumnber
reply length
number - buf fers
unused

maj or - opcode
nmi nor - opcode
request length
wi d

maj or - opcode
request!l ength
m n- del ay

19

REQUESTS

2 CARD16 max- del ay
4n LI STof BUFFER buffer-1list

SetMulti Buf ferAttri butes

1 see mmj or-opcode mmj or - opcode
1 4 ni nor - opcode
2 3+n requestl! ength
4 W NDOW wid
4 Bl TMASK val ue-mask (has n bits set to 1)

#x00000001 updat e- hi nt
4n LI STof VALUE val ue-1i st
VALUES
1 updat e- hi nt

0 Frequent

1 Intermttent

2 Static

CGCetMul ti BufferAttri butes

1 see mmj or-opcode mmj or - opcode
1 5 ni nor - opcode
2 2 request length
4 W NDOW wid
®
1 1 Reply
1 unused
2 CARD16 sequencenumnber
4 n reply length
2 CARD16 di spl ayed- buf f er
1 updat e- acti on
0 Undefi ned
1 Background
2 Unt ouched
3 Copi ed
1 updat e- hi nt
0 Frequent
1 Intermttent
2 Static
1 Wi ndow node
0 Mono
1 Stereo
19 unused
4n LI STof BUFFER buffer |ist

Set Buf fer Attri butes

1 see mmj or-opcode mmj or - opcode

1 6 nmi nor - opcode

2 3+n requestl! ength

4 BUFFER buf fer

4 Bl TMASK val ue-mask (has n bits set to 1)
#x00000001 event - mask

4n LI STof VALUE val ue-1i st

VALUES

20

REQUESTS

4 SETof BUFFER_EVENT event - mask

CetBuf ferAttri butes

see mmj or - opcode
7

2

BUFFER

AN R R

\%

1

CARD16

0

W NDOW

SETof BUFFER_EVENT
CARD16

1 side

0 Mono

1 Left

2 Ri ght

NABRMBRANEF PP

13

GetBufferlnfo

see mmj or - opcode
8

2

W NDOW

1

CARD16
2(n+m
n

NNEANRR@AENR PR

m

20

8n LI STof BUFFER_| NFO
8m LI STof BUFFER_| NFO

Cr eat eSt er eoW ndow

see mmj or - opcode
9 m nor-opcode
11+n

CARDS8

W NDOW
W NDOW
BUFFER
BUFFER
I NT16

I NT16

CARD16
CARD16
CARD16

NNMNNNNMNNRARARAMRIMNPWNPR PR

0 CopyFr onPar ent
1 I nput Qut put

nmaj or -
m nor -

opcode
opcode

request length

buf f er

Reply

unused
sequencenumnber

reply

wi d

event -
i ndex

unused

nmaj or -

[ength

mask

opcode

ni nor - opcode
request length

r oot

Repl

y

unused
sequencenumnber

repl

yl ength

nunmber BUFFER_INFO in normal -info
nunber BUFFER INFO in stereo-info
unused

normal -i nfo

ster

nmaj or -

eo-info

opcode

request! ength
unused

depth

wi d

par ent

| ef t

ri ght

X

y

wi dt h

hei ght
border-wi dt h
cl ass

21

REQUESTS

4n

2 InputOnly

VI SUALI D

0 CopyFronPar ent

Bl TMASK

encodi ngs are the same
as for CreateW ndow

LI STof VALUE

encodi ngs are the same
as for CreateW ndow

Cl ear | mageBuf f er Ar ea

1
1
2
4
2
2
2
2
3
1

see mmj or- opcode mmj or - opcode

10

5

W NDOW
I NT16

I NT16
CARD16
CARD16

BOCL

vi sual

val ue-mask (has n bits set to 1)

val ue-1|i st

ni nor - opcode
request length
buf f er

X

y

wi dt h

hei ght

unused
exposur es

22

	Extending X for Double-Buffering, Multi-Buffering, and Stereo
	Table of Contents
	Warning
	Chapter 1. Introduction
	Chapter 2. Goals
	Chapter 3. Image Buffers
	Chapter 4. New Requests
	Chapter 5. Attributes
	Chapter 6. Events
	Chapter 7. Errors
	Buffer
	Double-Buffering Normal Windows
	Multi-Buffering Normal Windows
	Stereo Windows
	Single-Buffered Stereo Windows
	Double-Buffering Stereo Windows
	Multi-Buffering Stereo Windows
	Protocol Encoding

	Chapter 8. TYPES
	Chapter 9. EVENTS
	Chapter 10. ERRORS
	Chapter 11. REQUESTS

