X Synchronization Extension Library

X Consortium Standard

Tim Glauert, Olivetti Research/MultiWorks
Dave Carver, Digital Equipment Corporation, MIT/Project Athena
Jim Gettys, Digital Equipment Corporation, Cambridge Research Laboratory
David Wiggins, X Consortium, Inc.

X Synchronization Extension Library: X Consortium Standard
by Tim Glauert, Dave Carver, Jim Gettys, and David Wiggins

X Version 11, Release 6.4
Version 3.0
Copyright 1991 by Olivetti Research Limited, Cambridge England and Digital Equipment Corporation, Maynard, Massachusetts

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in al copies. Olivetti, Digital, MIT, and the X Consortium make no representations about the suitability for any purpose
of the information in this document. This documentation is provided as is without express or implied warranty.

Copyright © 1991 X Consortium, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

Table of Contents

1. Synchronization ProtOCOlcouuiiii i e
[1=STox 1100 o S
A O oo 11 =o L= 30 =T 1o 1 oo P
O3 1 0o 1o = SRR

Chapter 1. Synchronization Protocol

The core X protocol makes no guarantees about the relative order of execution of requests for
different clients. This meansthat any synchronization between clients must be done at the client level
in an operating system-dependent and network-dependent manner. Even if there was an accepted
standard for such synchronization, the use of a network introduces unpredictable delays between the
synchronization of the clients and the delivery of the resulting requests to the X server.

The core X protocol also makes no guarantees about the time at which requests are executed, which
meansthat all clientswith real-time constraints must implement their timing on the host computer. Any
such timings are subject to error introduced by delays within the operating system and network and
areineticient because of the need for round-trip requests that keep the client and server synchronized.

The synchronization extension provides primitives that allow synchronization between clientsto take
place entirely within the X server. This removes any error introduced by the network and makes it
possibleto synchronize clientson different hosts running different operating systems. Thisisimportant
for multimedia applications, where audio, video, and graphics data streams are being synchronized.
The extension aso provides internal timers within the X server to which client requests can be
synchronized. This allows simple animation applications to be implemented without any round-trip
requests and makes best use of buffering within the client, network, and server.

Description

The mechanism used by this extension for synchronization within the X server is to block the
processing of requests from a client until a specific synchronization condition occurs. When the
condition occurs, the client is released and processing of requests continues. Multiple clients may
block on the same condition to give inter-client synchronization. Alternatively, a single client may
block on a condition such as an animation frame marker.

The extension adds Count er and Al ar mto the set of resources managed by the server. A counter has
a64-bit integer value that may beincreased or decreased by client requests or by the server internally.
A client can block by sending an Awai t request that waits until one of a set of synchronization
conditions, called TRIGGERs, becomes TRUE.

The Cr eat eCount er request alows aclient to create a Count er that can be changed by explicit
Set Count er and ChangeCount er requests. These can be used to implement synchronization
between different clients.

There are some counters, called Syst em Count er s, that are changed by the server internally rather
than by client requests. The effect of any change to a system counter is not visible until the server
has finished processing the current request. In other words, system counters are apparently updated in
the gaps between the execution of requests rather than during the actual execution of a request. The
extension provides asystem counter that advances with the server time as defined by the core protocal,
and it may also provide counters that advance with the real-world time or that change each time the
CRT screenisrefreshed. Other extensions may provide their own extension-specific system counters.

The extension providesan Al ar mmechanism that allows clientsto receive an event on aregular basis
when aparticular counter is changed.

Chapter 2. C Language Binding

The C routines provide direct access to the protocol and add no additional semantics.

The include file for this extension is <X11/extensions/sync.h>. Most of the names in the language
binding are derived from the protocol names by prepending X Sync to the protocol name and changing
the capitalization.

C Functions

Most of the following functions generate SY NC protocol requests.

St at us XSyncQuer yExt ensi on(*dpy, *event base_return,
*error_base return);

If dpy supports the SYNC extension, XSyncQueryExtension returns True, sets
*event_base return to the event number for the first SYNC event, and sets *error_base return to the
error number for the first SYNC error. If dpy does not support the SYNC extension, it returns False.

St at us XSynclnitialize(*dpy, *maj or _version_return,
*m nor_version_return);

XSynclnitialize sats *major_version_return and *minor version return to the major/minor
SYNC protocol version supported by the server. If the XSync library is compatible with the version
returned by the server, this function returns Tr ue. If dpy does not support the SYNC extension, or if
there was an error during communication with the server, or if the server and library protocol versions
are incompatible, this function returns Fal se. The only XSync function that may be called before
this function is X SyncQueryExtension. If aclient violates thisrule, the effects of all XSync callsthat
it makes are undefined.

XSyncSyst enCount er *XSyncLi st Syst emCount er s(*dpy,
*n_counters_return);

XSynclLi st Syst enCount er s returns a pointer to an array of system counters supported by the
display and sets*n_counters_return to the number of countersin the array. The array should be freed
with XSyncFr eeSyst enCount er Li st . If dpy does not support the SYNC extension, or if there
was an error during communication with the server, or if the server does not support any system
counters, this function returns NULL.

XSyncSystemCounter has the following fields:

char * name; /* null-terminated name of system counter */
XSyncCounter counter; /* counter id of this system counter */
XSyncVaue resolution; /* resolution of this system counter */

voi d XSyncFreeSyst enCounterList(*list);

XSyncFr eeSyst enCount er Li st frees the memory associated with the system counter list
returned by XSynclLi st Syst enCount er s.

XSyncCount er XSyncCreat eCounter(*dpy, initial_value);

XSyncCr eat eCount er creates a counter on the dpy with the given initial value and returns the
counter ID. It returns None if dpy does not support the SYNC extension.

St at us XSyncSet Counter(*dpy, counter, value);

XSyncSet Count er sets counter to value. It returns Fal se if dpy does not support the SYNC
extension; otherwise, it returns Tr ue.

C Language Binding

St at us XSyncChangeCounter(*dpy, counter, value);

XSyncChangeCount er addsvalueto counter. It returnsFal se if dpy does not support the SYNC
extension; otherwise, it returns Tr ue.

St at us XSyncDest royCounter (*dpy, counter);

XSyncDest r oyCount er destroys counter. It returns Fal se if dpy does not support the SYNC
extension; otherwise, it returns Tr ue.

Status XSyncQueryCounter(*dpy, counter, *value_return);

XSyncQuer yCount er sets*value return to the current value of counter. It returns Fal se if there
was an error during communication with the server or if dpy does not support the SYNC extension;
otherwise, it returns Tr ue.

Status XSyncAwait(*dpy, *wait _list, n_conditions);

XSyncAwai t awaitsontheconditionsinwait_list. Then_conditionsisthe number of wait conditions
inwait_list. It returnsFal se if dpy doesnot support the SY NC extension; otherwise, it returns Tr ue.
The await is processed asynchronously by the server; this function always returns immediately after
issuing the request.

XSyncWaitCondition has the following fields:

XSyncCounter trigger.counter; /*counter to trigger on */
XSyncVaueType trigger.value type; /*absolute/relative */
XSyncValue trigger.wait_value; /*value to compare counter to */
XSyncTestType trigger.test_type; /*pos/neg comparison/transtion */
XSyncvVaue event threshold; /*send event if past threshold */

XSyncVal ueType can be either XSyncAbsol ut e or XSyncRel ati ve.

XSyncTest Type can be one of XSyncPositiveTransition,
XSyncNegat i veTransi ti on, XSyncPosi ti veComnpari son, or
XSyncNegat i veComnpar i son.

XSyncAl arm XSyncCreat eAl arn(*dpy, values_mask, *values’);

XSyncCr eat eAl ar mcreates an dlarm and returnsthe alarm ID. It returns None if the display does
not support the SYNC extension. The values_mask and values specify the alarm attributes.

XSyncAl armAtt ri but es has the following fields. The attribute_ mask column specifies the
symbol that the caller should OR into values mask to indicate that the value for the corresponding
attribute was actually supplied. Default values are used for al attributes that do not have their
attribute_mask OR’ed into values mask. See the protocol description for Cr eat eAl ar mfor the
defaults.

type field name attribute_mask

XSyncCounter trigger.counter; XSyncCACounter
XSyncValueType trigger.value type; XSyncCAVaueType
XSyncVaue trigger.wait_value; XSyncCAVaue
XSyncTestType trigger.test_type; XSyncCATestType

XSyncVaue delta; XSyncCADelta
Bool events, XSyncCAEvents
XSyncAlarmState state; client cannot set this

Status XSyncDestroyAl arm(*dpy, alarm;

C Language Binding

XSyncDest r oyAl ar m destroys alarm. It returns Fal se if dpy does not support the SYNC
extension; otherwise, it returns Tr ue.

Status XSyncQueryAlarn(*dpy, alarm *values_return);

XSyncQuer yAl ar msets *values return to the alarm’s attributes. It returns Fal se if there was an
error during communication with the server or if dpy does not support the SY NC extension; otherwise,
it returns Tr ue.

St at us XSyncChangeAl arnm{ *dpy, alarm values_nask, *values);

XSyncChangeAl ar m changes alarm’s attributes. The attributes to change are specified as in
XSyncCr eat eAl ar m It returns Fal se if dpy does not support the SYNC extension; otherwise,
it returns Tr ue.

Status XSyncSetPriority(*dpy, client_resource_id, priority);

XSyncSet Priority sets the priority of the client owning client_resource id to priority. If
client_resource_id is None, it sets the caller’s priority. It returns Fal se if dpy does not support the
SYNC extension; otherwise, it returns Tr ue.

St at us XSyncGet Priority(*dpy, client_resource_id,
*return_priority);

XSyncCet Priority sets*return_priority to the priority of the client owning client_resource_id.
If client_resource _idisNone, it sets*return_priority to the caller’ spriority. It returns Fal se if there
was an error during communication with the server or if dpy does not support the SYNC extension;
otherwise, it returns Tr ue.

C Macros/Functions

Thefollowing procedures manipulate 64-bit values. They are defined both as macros and asfunctions.
By default, the macro form is used. To use the function form, #undef the macro name to uncover the
function.

voi d XSyncl nt ToVal ue(*pv, 1i);

Convertsi to an XSyncVal ue and storesit in *pv. Performs sign extension (*pv will have the same
signasi.)

voi d XSyncl ntsToVal ue(*pv, low, high);

Stores low in the low 32 bits of *pv and high in the high 32 bits of *pv.
Bool XSyncVal ueG eaterThan(a, b);

Returns Tr ue if ais greater than b, elsereturns Fal se.

Bool XSyncVal ueLessThan(a, b);

Returns Tr ue if aislessthan b, elsereturns Fal se.

Bool XSyncVal ueG eaterOrEqual (a, b);

Returns Tr ue if ais greater than or equal to b, else returns Fal se.
Bool XSyncVal ueLessOrEqual (a, b);

Returns Tr ue if aislessthan or equal to b, elsereturns Fal se.

Bool XSyncVal ueEqual (a, b);

C Language Binding

Returns Tr ue if aisequal to b, elsereturnsFal se.
Bool XSyncVal uel sNegative(Vv);
Returns Tr ue if v is negative, else returns Fal se.
Bool XSyncVal uel sZero(v);

Returns Tr ue if v iszero, elsereturns Fal se.
Bool XSyncVal uel sPositive(v);
Returns Tr ue if v is positive, elsereturns Fal se.
unsi gned int XSyncVal ueLow32(v);
Returns the low 32 bits of v.

unsi gned int XSyncVal ueH gh32(v);
Returns the high 32 bits of v.

voi d XSyncVal ueAdd(*presult, a, b, *poverflow);

Adds ato b and stores the result in *presult. If the result could not fit in 64 bits, * pover#ow is set to
True, elseitisset to Fal se.

voi d XSyncVal ueSubtract(*presult, a, b, *poverflow);

Subtracts b from a and stores the result in *presult. If the result could not fit in 64 bits, * pover#ow
issetto Tr ue, elseitisset to Fal se.

voi d XSyncMaxVal ue(*pv);
Sets *pv to the maximum value expressible in 64 bits.
voi d XSyncM nVal ue(*pv);

Sets *pv to the minimum value expressible in 64 bits.

Events

Let event_base be the value event base return as defined in the function XSyncQuer yExt ensi on.

An XSyncCounter Noti fyEvent's type fidd has the vaue event base +
XSyncCount er Not i fy. Thefields of this structure are:

int type; /* event base + X SyncCounterNotify */
unsigned long serial; /* number of last request processed by server */
Bool send event; /* trueif this came from a SendEvent request */

Display * display; /* Display the event was read from */
XSyncCounter counter; /* counter involved in await */

XSyncValue wait_value; /* value being waited for */

XSyncValue counter_value; /* counter value when this event was sent */

Time time; /* milliseconds */
int count; /* how many more events to come */
Bool destroyed; /* Trueif counter was destroyed */

An XSyncAl ar mNot i f yEvent 'stype field has the value event_base + XSyncAl ar mNot i fy.
The fields of this structure are:

C Language Binding

int type; [* event_base + XSyncAlarmNatify */
unsigned long serial; /* number of last request processed by server */
Bool send_event; /* trueif this came from a SendEvent request */

Display * display; /*Display the event was read from */
XSyncAlarm darm; /* alarm that triggered */
XSyncValue counter_value /* value that triggered the alarm */
XSyncValue adarm vaue /* test value of trigger in alarm */
Time time; * milliseconds */

XSyncAlarmState state; [* new state of alarm */

Errors

Leterror_basebethevalueerror_base returnasdefinedinthefunction XSyncQuer yExt ensi on.

An XSyncAl ar nEr r or 'serror_code field has XSyncBadAl ar m Thefields of this structure are:

int type

Display * display; /* Display the event was read from */
XSyncCounter counter; /* resourceid */

unsignedlong serial; /* seria number of failed request */
unsigned char error_code; /* error_base + XSyncBadAlarm */
unsigned char request_code; /* Major op-code of failed request */
unsigned char minor_code; /* Minor op-code of failed request */

AnXSyncCount er Er r or 'serror codefield hasthevalue error_base + XSyncBadCount er . The
fields of this structure are:

int type

Display * display; /* Display the event was read from */
XSyncCounter counter; /* resourceid */

unsignedlong serial; /* seria number of failed request */
unsigned char error_code; /* error_base + X SyncBadCounter */
unsigned char request_code; /* Major op-code of failed request */
unsigned char minor_code; /* Minor op-code of failed request */

	X Synchronization Extension Library
	Table of Contents
	Chapter 1. Synchronization Protocol
	Description

	Chapter 2. C Language Binding
	C Functions
	C Macros/Functions
	Events
	Errors

