
Double Buffer Extension Library

X Consortium Standard

Ian Elliot

Double Buffer Extension Library: X Consortium Standard
by Ian Elliot
Davide Wiggins

Version 1.0
Copyright © 1989 X Consortium, Inc and Digital Equipment Corporation
Copyright © 1992 X Consortium, Inc and Intergraph Corporation
Copyright © 1993 X Consortium, Inc and Silicon Graphics, Inc.
Copyright © 1994 X Consortium, Inc and Hewlett-Packard Company
Copyright © 1995 X Consortium, Inc and Hewlett-Packard Company

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies. Digital Equipment Corporation, Intergraph Corporation, Silicon Graphics,
Hewlett-Packard, and the X Consortium make no representations about the suitability for any purpose of the information in this document.
This documentation is provided "as is" without express or implied warranty.

iii

Table of Contents
1. Introduction .. 1
2. Goals .. 2
3. Concepts .. 3

Window Management Operations .. 4
Complex Swap Actions .. 4

4. C Language Binding .. 6
Types .. 6
C Functions ... 6
Errors ... 7

5. Acknowledgements .. 9
6. References .. 10

1

Chapter 1. Introduction
The Double Buffer Extension (DBE) provides a standard way to utilize double-buffering within the
framework of the X Window System. Double-buffering uses two buffers, called front and back, which
hold images. The front buffer is visible to the user; the back buffer is not. Successive frames of an
animation are rendered into the back buffer while the previously rendered frame is displayed in the
front buffer. When a new frame is ready, the back and front buffers swap roles, making the new
frame visible. Ideally, this exchange appears to happen instantaneously to the user and with no visual
artifacts. Thus, only completely rendered images are presented to the user, and they remain visible
during the entire time it takes to render a new frame. The result is a flicker-free animation.

2

Chapter 2. Goals
This extension should enable clients to:

• Allocate and deallocate double-buffering for a window.

• Draw to and read from the front and back buffers associated with a window.

• Swap the front and back buffers associated with a window.

• Specify a wide range of actions to be taken when a window is swapped. This includes explicit,
simple swap actions (defined below), and more complex actions (for example, clearing ancillary
buffers) that can be put together within explicit "begin" and "end" requests (defined below).

• Request that the front and back buffers associated with multiple double-buffered windows be
swapped simultaneously.

In addition, the extension should:

• Allow multiple clients to use double-buffering on the same window.

• Support a range of implementation methods that can capitalize on existing hardware features.

• Add no new event types.

• Be reasonably easy to integrate with a variety of direct graphics hardware access (DGHA)
architectures.

3

Chapter 3. Concepts
Normal windows are created using the core CreateWindow request, which allocates a set of window
attributes and, for InputOutput windows, a front buffer, into which an image can be drawn. The
contents of this buffer will be displayed when the window is visible.

This extension enables applications to use double-buffering with a window. This involves creating a
second buffer, called a back buffer, and associating one or more back buffer names (XIDs) with the
window for use when referring to (that is, drawing to or reading from) the window’s back buffer. The
back buffer name is a DRAWABLE of type BACKBUFFER.

DBE provides a relative double-buffering model. One XID, the window, always refers to the front
buffer. One or more other XIDs, the back buffer names, always refer to the back buffer. After a buffer
swap, the window continues to refer to the (new) front buffer, and the back buffer name continues to
refer to the (new) back buffer. Thus, applications and toolkits that want to just render to the back buffer
always use the back buffer name for all drawing requests to the window. Portions of an application that
want to render to the front buffer always use the window XID for all drawing requests to the window.

Multiple clients and toolkits can all use double-buffering on the same window. DBE does not provide
a request for querying whether a window has double-buffering support, and if so, what the back buffer
name is. Given the asynchronous nature of the X Window System, this would cause race conditions.
Instead, DBE allows multiple back buffer names to exist for the same window; they all refer to the
same physical back buffer. The first time a back buffer name is allocated for a window, the window
becomes double-buffered and the back buffer name is associated with the window. Subsequently, the
window already is a double-buffered window, and nothing about the window changes when a new
back buffer name is allocated, except that the new back buffer name is associated with the window.
The window remains double-buffered until either the window is destroyed or until all of the back
buffer names for the window are deallocated.

In general, both the front and back buffers are treated the same. particular, here are some important
characteristics:

• Only one buffer per window can be visible at a time (the front buffer).

• Both buffers associated with a window have the same visual type, depth, width, height, and shape
as the window.

• Both buffers associated with a window are "visible" (or "obscured") in the same way. When an
Expose event is generated for a window, both buffers should be considered to be damaged in the
exposed area. Damage that occurs to either buffer will result in an Expose event on the window.
When a double-buffered window is exposed, both buffers are tiled with the window background,
exactly as stated by the core protocol. Even though the back buffer is not visible, terms such as
obscure apply to the back buffer as well as to the front buffer.

• It is acceptable at any time to pass a BACKBUFFER in any request, notably any core or extension
drawing request, that expects a DRAWABLE. This enables an application to draw directly into
BACKBUFFERs in the same fashion as it would draw into any other DRAWABLE.

• It is an error (Window) to pass a BACKBUFFER in a core request that expects a Window.

• A BACKBUFFER will never be sent by core X in a reply, event, or error where a Window is
specified.

• If core X11 backing-store and save-under applies to a double-buffered window, it applies to both
buffers equally.

• If the core ClearArea request is executed on a double-buffered window, the same area in both the
front and back buffers is cleared.

Concepts

4

The effect of passing a window to a request that accepts a DRAWABLE is unchanged by this extension.
The window and front buffer are synonomous with each other. This includes obeying the GetImage
semantics and the subwindow-mode semantics if a core graphics context is involved. Regardless of
whether the window was explicitly passed in a GetImage request, or implicitly referenced (that is,
one of the window’s ancestors was passed in the request), the front (that is, visible) buffer is always
referenced. Thus, DBE-naive screen dump clients will always get the front buffer. GetImage on a
back buffer returns undefined image contents for any obscured regions of the back buffer that fall
within the image.

Drawing to a back buffer always uses the clip region that would be used to draw to the front buffer with
a GC subwindow-mode of ClipByChildren. If an ancestor of a double-buffered window is drawn
to with a core GC having a subwindow-mode of IncludeInferiors, the effect on the double-buffered
window’s back buffer depends on the depth of the double-buffered window and the ancestor. If the
depths are the same, the contents of the back buffer of the double-buffered window are not changed. If
the depths are different, the contents of the back buffer of the double-buffered window are undefined
for the pixels that the IncludeInferiors drawing touched.

DBE adds no new events. DBE does not extend the semantics of any existing events with the
exception of adding a new DRAWABLE type called BACKBUFFER. If events, replies, or errors that
contain a DRAWABLE (for example, GraphicsExpose) are generated in response to a request,
the DRAWABLE returned will be the one specified in the request.

DBE advertises which visuals support double-buffering.

DBE does not include any timing or synchronization facilities. Applications that need such facilities
(for example, to maintain a constant frame rate) should investigate the Synchronization Extension, an
X Consortium standard.

Window Management Operations
The basic philosophy of DBE is that both buffers are treated the same by core X window management
operations.

When the core DestroyWindow is executed on a double-buffered window, both buffers associated
with the window are destroyed, and all back buffer names associated with the window are freed.

If the core ConfigureWindow request changes the size of a window, both buffers assume the new
size. If the window’s size increases, the effect on the buffers depends on whether the implementation
honors bit gravity for buffers. If bit gravity is implemented, then the contents of both buffers are
moved in accordance with the window’s bit gravity (see the core ConfigureWindow request), and
the remaining areas are tiled with the window background. If bit gravity is not implemented, then the
entire unobscured region of both buffers is tiled with the window background. In either case, Expose
events are generated for the region that is tiled with the window background. If the core GetGeometry
request is executed on a BACKBUFFER, the returned x, y, and border-width will be zero.

If the Shape extension ShapeRectangles, ShapeMask, ShapeCombine, or ShapeOffset
request is executed on a double-buffered window, both buffers are reshaped to match the new window
shape. The region difference is the following:

 D = newshape # oldshape

It is tiled with the window background in both buffers, and Expose events are generated for D.

Complex Swap Actions
DBE has no explicit knowledge of ancillary buffers (for example, depth buffers or alpha buffers),
and only has a limited set of defined swap actions. Some applications may need a richer set of swap

Concepts

5

actions than DBE provides. Some DBE implementations have knowledge of ancillary buffers, and/
or can provide a rich set of swap actions. Instead of continually extending DBE to increase its set of
swap actions, DBE provides a flexible "idiom" mechanism. If an application’s needs are served by the
defined swap actions, it should use them; otherwise, it should use the following method of expressing
a complex swap action as an idiom. Following this policy will ensure the best possible performance
across a wide variety of implementations.

As suggested by the term "idiom," a complex swap action should be expressed as a group/series
of requests. Taken together, this group of requests may be combined into an atomic operation by
the implementation, in order to maximize performance. The set of idioms actually recognized for
optimization is implementation dependent. To help with idiom expression and interpretation, an
idiom must be surrounded by two protocol requests: DBEBeginIdiom and DBEEndIdiom. Unless
this begin-end pair surrounds the idiom, it may not be recognized by a given implementation, and
performance will suffer.

For example, if an application wants to swap buffers for two windows, and use core X to clear only
certain planes of the back buffers, the application would issue the following protocol requests as a
group, and in the following order:

• DBEBeginIdiom request.

• DBESwapBuffers request with XIDs for two windows, each of which uses a swap action of
Untouched.

• Core X PolyFillRectangle request to the back buffer of one window.

• Core X PolyFillRectangle request to the back buffer of the other window.

• DBEEndIdiom request.

The DBEBeginIdiom and DBEEndIdiom requests do not perform any actions themselves. They
are treated as markers by implementations that can combine certain groups/series of requests as idioms,
and are ignored by other implementations or for nonrecognized groups/series of requests. If these
requests are sent out of order, or are mismatched, no errors are sent, and the requests are executed as
usual, though performance may suffer.

An idiom need not include a DBESwapBuffers request. For example, if a swap action of Copied
is desired, but only some of the planes should be copied, a core X CopyArea request may be used
instead of DBESwapBuffers. If DBESwapBuffers is included in an idiom, it should immediately
follow the DBEBeginIdiom request. Also, when the DBESwapBuffers is included in an idiom,
that request’s swap action will still be valid, and if the swap action might overlap with another request,
then the final result of the idiom must be as if the separate requests were executed serially. For example,
if the specified swap action is Untouched, and if a PolyFillRectangle using a client clip
rectangle is done to the window’s back buffer after the DBESwapBuffers request, then the contents
of the new back buffer (after the idiom) will be the same as if the idiom was not recognized by the
implementation.

It is highly recommended that Application Programming Interface (API) providers define, and
application developers use, "convenience" functions that allow client applications to call one
procedure that encapsulates common idioms. These functions will generate the DBEBeginIdiom
request, the idiom requests, and DBEEndIdiom request. Usage of these functions will ensure best
possible performance across a wide variety of implementations.

6

Chapter 4. C Language Binding
All identi#er The header for this extension is <X11/extensions/Xdbe.h>. names provided by this
header begin with Xdbe.

Types
The type XdbeBackBuffer is a Drawable.

The type XdbeSwapAction can be one of the constants XdbeUndefined, XdbeBackground,
XdbeUntouched, or XdbeCopied.

C Functions
The C functions provide direct access to the protocol and add no additional semantics. For complete
details on the effects of these functions, refer to the appropriate protocol request, which can be derived
by replacing Xdbe at the start of the function name with DBE. All functions that have return type
Status will return nonzero for success and zero for failure.

Status XdbeQueryExtension(*dpy, *major_version_return,
*minor_version_return);

XdbeQueryExtension sets major version return and minor version return to the major and minor
DBE protocol version supported by the server. If the DBE library is compatible with the version
returned by the server, it returns nonzero. If dpy does not support the DBE extension, or if there
was an error during communication with the server, or if the server and library protocol versions are
incompatible, it returns zero. No other Xdbe functions may be called before this function. If a client
violates this rule, the effects of all subsequent Xdbe calls that it makes are undefined.

XdbeScreenVisualInfo *XdbeGetVisualInfo(*dpy, *screen_specifiers,
*num_screens);

XdbeGetVisualInfo returns information about which visuals support double buffering. The
argument num_screens specifies how many elements there are in the screen_specifiers list. Each
drawable in screen_specifiers designates a screen for which the supported visuals are being requested.
If num_screens is zero, information for all screens is requested. In this case, upon return from this
function, num_screens will be set to the number of screens that were found. If an error occurs,
this function returns NULL; otherwise, it returns a pointer to a list of XdbeScreenVisualInfo
structures of length num_screens. The nth element in the returned list corresponds to the nth drawable
in the screen_specifiers list, unless element in the returned list corresponds to the nth screen of the
server, starting with screen zero.

The XdbeScreenVisualInfo structure has the following fields:

int count number of items in visinfo
XdbeVisualInfo* visinfo list of visuals and depths for this screen

The XdbeVisualInfo structure has the following fields:

VisualID visual one visual ID that supports double-buffering
int depth depth of visual in bits
int perflevel performance level of visual

void XdbeFreeVisualInfo XdbeGetVisualInfo(*visual_info);

C Language Binding

7

XdbeFreeVisualInfo frees the list of XdbeScreenVisualInfo returned by
XdbeGetVisualInfo.

XdbeBackBuffer XdbeAllocateBackBufferName(*dpy, *window,
swap_action);

XdbeAllocateBackBufferName returns a drawable ID used to refer to the back buffer of
the specified window. The swap_action is a hint to indicate the swap_action that will likely
be used in subsequent calls to XdbeSwapBuffers. The actual swap_action used in calls to
XdbeSwapBuffers does not have to be the same as the swap_action passed to this function, though
clients are encouraged to provide accurate information whenever possible.

Status XdbeDeallocateBackBufferName(*dpy, buffer);

XdbeDeallocateBackBufferName frees the specified drawable ID, buffer, that was obtained
via XdbeAllocateBackBufferName. The buffer must be a valid name for the back buffer of a
window, or an XdbeBadBuffer error results.

Status XdbeSwapBuffers(*dpy, *swap_info, num_windows);

XdbeSwapBuffers swaps the front and back buffers for a list of windows. The argument
num_windows specifies how many windows are to have their buffers swapped; it is the number
of elements in the swap_info array. The argument swap_info specifies the information needed per
window to do the swap.

The XdbeSwapInfo structure has the following fields:

Window swap_window window for which to swap buffers
XdbeSwapAction swap_action swap action to use for this swap window

Status XdbeBeginIdiom(*dpy);

XdbeBeginIdiom marks the beginning of an idiom sequence. See the section called “Complex
Swap Actions” for a complete discussion of idioms.

Status XdbeEndIdiom(*dpy);

XdbeEndIdiom marks the end of an idiom sequence.

XdbeBackBufferAttributes *XdbeGetBackBufferAttributes(*dpy,
buffer);

XdbeGetBackBufferAttributes returns the attributes associated with the specified buffer.

The XdbeBackBufferAttributes structure has the following fields:

Window window window that buffer belongs to

If buffer is not a valid XdbeBackBuffer, window is set to None.

The returned XdbeBackBufferAttributes structure can be freed with the Xlib function
XFree.

Errors
The XdbeBufferError structure has the following fields:

int type

C Language Binding

8

Display * display Display the event was read from
XdbeBackBuffer buffer resource id
unsigned long serial serial number of failed request
unsigned char error code error base + XdbeBadBuffer
unsigned char request code Major op-code of failed request
unsigned char minor code Minor op-code of failed request

9

Chapter 5. Acknowledgements
We wish to thank the following individuals who have contributed their time and talent toward shaping
the DBE specification:

T. Alex Chen, IBM; Peter Daifuku, Silicon Graphics, Inc.; Ian Elliott, Hewlett-Packard Company;
Stephen Gildea, X Consortium, Inc.; Jim Graham, Sun; Larry Hare, AGE Logic; Jay Hersh, X
Consortium, Inc.; Daryl Huff, Sun; Deron Dann Johnson, Sun; Louis Khouw, Sun; Mark Kilgard,
Silicon Graphics, Inc.; Rob Lembree, Digital Equipment Corporation; Alan Ricker, Metheus; Michael
Rosenblum, Digital Equipment Corporation; Bob Scheifler, X Consortium, Inc.; Larry Seiler, Digital
Equipment Corporation; Jeanne Sparlin Smith, IBM; Jeff Stevenson, Hewlett-Packard Company;
Walter Strand, Metheus; Ken Tidwell, Hewlett-Packard Company; and David P. Wiggins, X
Consortium, Inc.

Mark provided the impetus to start the DBE project. Ian wrote the first draft of the specification. David
served as architect.

10

Chapter 6. References
Jeffrey Friedberg, Larry Seiler, and Jeff Vroom, "Multi-buffering Extension Specification Version
3.3."

Tim Glauert, Dave Carver, Jim Gettys, and David P. Wiggins, "X Synchronization Extension Version
3.0."

	Double Buffer Extension Library
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Goals
	Chapter 3. Concepts
	Window Management Operations
	Complex Swap Actions

	Chapter 4. C Language Binding
	Types
	C Functions
	Errors

	Chapter 5. Acknowledgements
	Chapter 6. References

