
Introduction 1

1 Fonts

1.1 Introduction
This chapter will cover the details of defining fonts and collections of fonts, and it will explain
how to go about installing fonts in both MkII and MkIV. It helps if you know what a font is,
and are familiar with the ConTEXt font switching macros.

The original ConTEXt font model was based on plain TEX, but evolved into a more extensive
one primarily aimed at consistently typesetting Pragma ADE's educational documents. The fact
that pseudo caps had to be typeset in any font shape in the running text as well as superscripts,
has clearly determined the design. The font model has been relatively stable since 1995.

Currently there are three layers of font definitions:

• simple font definitions: such definitions provide \named access to a specific font in a prede-
fined size

• body font definitions: these result in a coherent set of fonts, often from a same type foundry
or designer, that can be used intermixed as a ‘style'

• typescript definitions: these package serif, sans serif, mono spaced and math and other
styles in such a way that you can conveniently switch between different combinations

These three mechanisms are actually build on top of each other and all rely on a low level
mapping mechanism that is responsible for resolving the real font file name and the specific
font encoding used.

When TEX users install one of the TEX distributions, like TEX-live, automatically a lot of fonts
will be installed on their system. Unfortunately it is not that easy to get a clear picture of what
fonts are there and what is needed to use them. And although the texmf tree is prepared for
commercial fonts, adding newly bought fonts is not trivial. To compensate this, ConTEXt MkII
comes with texfont.pl, a program that can install fonts for you. And if the global setup is
done correctly, MkIV and XƎTEX can use the fonts installed in your operation system without
the need for extra installation work.

1.2 Font files and synonyms
In ConTEXt, whenever possible you should define symbolic names for fonts. The mapping from
such symbolic names onto real font names can be done such that it takes place unnoticed for the
user. This is good since the name depends on the encoding and therefore not seldom is obscure
and hard to remember. The trick is knowing how to use the \definefontsynonym command.

The first argument is the synonym that is being defined or redefined. Redefinition is not only
allowed but often very useful. The second argument is the replacement of the synonym. This
replacement can be a real font name, but it can also be another synonym. The optional third
argument can be used for to specify font settings.

2 Fonts

1 Font files and synonyms

\definefontsynonym [...]1 [...]2 [.=.]
OPTIONAL

3

1 TEXT

2 IDENTIFIER

3 encoding = IDENTIFIER
features = IDENTIFIER
handling = IDENTIFIER
mapping = IDENTIFIER

There is no limit on the number of indirection levels, but the last one in the chain has to be a
valid font name. ConTEXt knows it has reached the bottom level when there is no longer any
replacement possible.

Font settings actually take place at the bottom level, since they are closely related to specific
instances of fonts. Any settings that are defined higher up in the chain perculate down, unless
they are already defined at the lower level.

encoding The font file encoding for tfm-based (MkII) fonts.
handling The font handling for MkII (see previous chapter).
features The font handling for MkIV and XƎTEX (see previous chapter).
mapping letter case change mapping for MkII that may be used in special cases; never actu-

ally used in the ConTEXt core. See chapter ?? on languages for details.

Here is an example of the use of font synonyms:

\definefontsynonym [Palatino] [uplr8t] [encoding=ec]

In this example, the argumnet uplr8t is the real font (the actual file name is uplr8t.tfm, but file
extensions are normally omitted), and it contains the metrics for the Type 1 font URW Palladio
L in EC encoding. From now on, the name Palatino can be used in further font definitions
to identify this font, instead of the dreadfully low--level (and hard to remember) name uplr8t
and its accompanying encoding.

A note on font names: In pdfTEX, the real font is the name of the TEX metrics file, minus the
extension, as we saw already. In XƎTEX and MkIV a font name is a bit more complex, because
in both cases OpenType fonts can be accessed directly by their official font name (but with any
embedded spaces stripped out) as well as via the disk file name.

In these two systems, ConTEXt first attempts to find the font using the official font name. If
that doesn't work, then it tries to use the font by file name as a fallback. Since this is not very
efficient and also because it may generate —harmless, but alarming looking— warnings it is
possible to force ConTEXt into one or the other mode by using a prefix, so you will most often
see synonym definitions like this:

\definefontsynonym [MSTimes] [name:TimesNewRoman] [features=default]
\definefontsynonym [Iwona-Regular] [file:Iwona-Regular] [features=default]

In XƎTEX, the file prefix implies that XƎTEX will search for an OpenType font (with extension
otf or ttf) and if that fails it will try to find a TEX font (with extension tfm). In MkIV, the list
is a little longer: OpenType (otf, ttf), Type 1 (afm), Omega (ofm), and finally TEX (tfm).

Fonts 3

Simple font definitions 1

The use of aliases to hide the complexity of true font names is already very useful, but ConTEXt
goes further than that. An extra synonym level is normally defined that attaches this font name
to a generic name like Serif or Sans.

\definefontsynonym [Serif] [Palatino]

An important advantage of using names like Serif in macro and style definitions is that it
can easily be remapped onto a completely different font than Palatino. This is often useful
when you are experimenting with a new environment file for a book or when you are writing
a ConTEXt module.
In fact, inside an environment file it is useful to go even further and define new symbolic names
that map onto Serif.

\definefontsynonym [TitleFont] [Serif]

By using symbolic names in the main document and in style and macro definitions, you can
make them independent of a particular font and let them adapt automatically to the main doc-
ument fonts. That is of course assuming these are indeed defined in terms of Serif, Sans,
etcetera. All the ConTEXt predefined typescripts are set up this way, and you are very much
encouraged to stick to the same logic for your own font definitions as well.
The list of ‘standard' symbolic names is given in table 1.1
As mentioned earlier, the items in the third argument of \definefontsynonym perculate down
the chain of synonyms. Occasionally, you may want to splice some settings into that chain, and
that is where \setupfontsynonym comes in handy.

\setupfontsynonym [...]1 [.=.]
2

1 IDENTIFIER

2 inherits from \definefontsynonym

For example, the predefined MkII typescripts for font handling that we saw in the previous
chapter contain a sequence of commands like this:

\setupfontsynonym [Serif] [handling=pure]
\setupfontsynonym [SerifBold] [handling=pure]
\setupfontsynonym [SerifItalic] [handling=pure]
....

1.3 Simple font definitions
The most simple font definition takes place with \definefont.

\definefont [...]1 [...]2 [...]
OPTIONAL

3

1 IDENTIFIER

2 FILE

3 TEXT

4 Fonts

1 Simple font definitions

name style, alternative explanation
Blackboard -- Used by the \bbd macro
Calligraphic -- Used by the \cal macro
Fraktur -- Used by the \frak macro
Gothic -- Used by the \goth macro
OldStyle -- Used by the \os macro
MPtxtfont -- The default font for METAPOST

Calligraphy cg,tf
Handwriting hw,tf
MathRoman(Bold) mm,mr(bf)
MathItalic(Bold) mm,mi(bf)
MathSymbol(Bold) mm,sy(bf)
MathExtension(Bold) mm,ex(bf)
MathAlpha(Bold) mm,ma(bf)
MathBeta(Bold) mm,mb(bf)
MathGamma(Bold) mm,mc(bf)
MathDelta(Bold) mm,md(bf)
Mono tt,tf
MonoBold tt,bf
MonoItalic tt,it
MonoBoldItalic tt,bi
MonoSlanted tt,sl
MonoBoldSlanted tt,bs
MonoCaps tt,sc
Sans ss,tf
SansBold ss,bf
SansItalic ss,it
SansBoldItalic ss,bi
SansSlanted ss,sl
SansBoldSlanted ss,bs
SansCaps ss,sc
Serif rm,tf
SerifBold rm,bf
SerifItalic rm,it
SerifBoldItalic rm,bi
SerifSlanted rm,sl
SerifBoldSlanted rm,bs
SerifCaps rm,sc

Table 1.1 Standard symbolic font names, and the style--alternative pair they be-
long to.

This macro defines a font with the same name as the first argument and you can use its name
as an identifier to select that font. The second argument works in the same way as the second
argument to \definefontsynonym: you can use either a font synonym or a real font. There
is an optional third argument that can be either a bare number like 1.5 , or a named setup

Fonts 5

Simple font definitions 1

(see section ??). In case of a bare number, that is a local setting for the interline space. In case
of a setup, that setup can do whatever it wants.

For instance:

\loadmapfile [koeieletters]
\definefont [ContextLogo] [koeielogos at 72pt]
\ContextLogo \char 2

will result in

�
If you want a fixed size font like in the example above, you can define a font using the primitive
TEX at or scaled modifiers.

Be warned that at is often useful, but scaled is somewhat unreliable since it scales the font
related to its internal design size, and that is often unknown. Depending on the design size is
especially dangerous when you use symbolic names, since different fonts have different design
sizes, and designers differ in their ideas about what a design size is. Compare for instance the
10pt instance of a Computer Modern Roman with Lucida Bright (which more looks like a 12pt
then).

\definefont [TitleFont] [Serif scaled 2400]

Hardcoded sizes can be useful in many situations, but they can be annoying when you want to
define fonts in such a way that their definitions adapt themselves to their surroundings. That
is why ConTEXt provides an additional way of scaling:

\definefont [TitleFont] [Serif sa 2.4]

The sa directive means as much as ‘scaled at the body font size'. Therefore this definition will
lead to a 24pt scaling when the (document) body font size equals 10pt. Because the definition
has a lazy nature, the font size will adapt itself to the current body font size.

There is an extra benefit to using sa instead of at. Instead of a numeric multiplier, you can also
use the identifiers that were defined in the body font environment that specified the related
dimensions. For example, this scales the font to the b size, being 1.440 by default:

\definefont [TitleFont] [Serif sa b]

In fact, if you use a bare name like in

\definefont [TitleFont] [Serif]

it will internally be converted to

\definefont [TitleFont] [Serif sa *]

which in turn expands into the current actual font size, after the application of size corrections
for super-- and subscripts etc.

For example

\definefont [TitleFont] [Sans]
{\TitleFont test} and {\tfc \TitleFont test}

6 Fonts

1 Defining body fonts

gives

test and test
A specialized alternative to sa that is sometimes useful is mo. Here the size maps onto to body
font size only after it has passed through an optional size remapping. Such remappings are
defined by the macro \mapfontsize:

\mapfontsize [...]1 [...]2

1 DIMENSION

2 DIMENSION

Such remapping before applying scaling is sometimes handy for math fonts, where you may
want to use slightly different sizes than the ones given in the body font environment. In the
ConTEXt distribution, this happens only with the Math Times fonts, where the predefined type-
script contains the following lines:

\mapfontsize [5pt] [6.0pt]
\mapfontsize [6pt] [6.8pt]
\mapfontsize [7pt] [7.6pt]
\mapfontsize [8pt] [8.4pt]
\mapfontsize [9pt] [9.2pt]
\mapfontsize [10pt] [10pt]
\mapfontsize [11pt] [10.8pt]
\mapfontsize [12pt] [11.6pt]
\mapfontsize [14.4pt] [13.2pt]

As we have seen, \definefont creates a macro name for a font switch. For ease of use, there is
also a direct method to access a font:

\definedfont [...]*

* inherits from \definefont

Where the argument has exactly the same syntax as the second argument to \definefont. In
fact, this macro executes \definefont internally, and then immediately switches to the defined
font.

1.4 Defining body fonts
In older versions of ConTEXt, the model for defining fonts that will be described in this section
was the top--level user interface. These days, typescripts are used at the top--level, and the body
font definitions are wrapped inside of those.

Most commercial fonts have only one design size, and when you create a typescript for such
fonts, you can simply reuse the predefined size definitions. Later on we will see that this means
you can just refer to a default definition.

Fonts 7

Defining body fonts 1

Still, you may need (or want) to know the details of body font definitions if you create your
own typescripts, especially if the fonts are not all that standard. For example, because Latin
Modern comes in design sizes, there was a need to associate a specific font with each bodyfont
size. You may find yourself in a similar situation when you attempt to create a typescript for a
‘professional' commercial font set.

The core of this intermediate model is the \definebodyfont command that is used as follows:

\definebodyfont [10pt] [rm] [tf=tir at 10pt]

This single line actually defines two font switches \tf for use after a \rm command, and \rmtf
for direct access.

As one can expect, the first implementation of a font model in TEX is also determined and
thereby complicated by the fact that the Computer Modern Roman fonts come in design sizes.
As a result, definitions can look rather complex and because most TEX users start with those
fonts, font definitions are considered to be complex.

Another complicating factor is that in order to typeset math, even more (font) definitions are
needed. Add to that the fact that sometimes fonts with mixed encodings have to be used, i.e.
with the glyphs positioned in different font slots, and you can understand why font handling
in TEX is often qualified as ‘the font mess'. Flexibility simply has its price.

Like most other TEX users, Hans Hagen started out using the Computer Modern Roman fonts.
Since these fonts have specific design sizes, ConTEXt supports extremely accurate \define-
bodyfont definitions with specific font names and sizes for each combination. The following is
an example of that:

\definebodyfont [12pt] [rm]
[tf=cmr12,
tfa=cmr12 scaled \magstep1,
tfb=cmr12 scaled \magstep2,
tfc=cmr12 scaled \magstep3,
tfd=cmr12 scaled \magstep4,
bf=cmbx12,
it=cmti12,
sl=cmsl12,
bi=cmbxti10 at 12pt,
bs=cmbxsl10 at 12pt,
sc=cmcsc10 at 12pt]

It should be clear to you that for fonts with design sizes, similar \definebodyfont commands
will have to be written for each of the requested body font sizes. But many commercial fonts do
not come in design sizes at all. In fact, many documents have a rather simple design and use
only a couple of fonts for all sizes.

The previous example used the available TEX--specifications scaled and at, but (as we say al-
ready) ConTEXt supports special keyword that is a combination of both: sa (scaled at).

For example, for the Helvetica Type 1 font definition we could define:

\definebodyfont [12pt] [ss]
[tf=hv sa 1.000,

8 Fonts

1 Defining body fonts

bf=hvb sa 1.000,
it=hvo sa 1.000,
sl=hvo sa 1.000,
tfa=hv sa 1.200,
tfb=hv sa 1.440,
tfc=hv sa 1.728,
tfd=hv sa 2.074,
sc=hv sa 1.000]

The scaling is done in relation to the bodyfont size. In analogy with TEX's \magstep we can use
\magfactor: instead of sa 1.440 we could specify sa \magfactor2.

If you are happy with the relative sizes as defined in the body font environment (and there
is no reason not to), the \definebodyfont can be four lines shorter. That is because ConTEXt
predeclares a whole collection of names that combine the styles rm, ss, tt, tf, hw and cg with
the alternatives bf, it, sl, bi, bs, and sc with the postfixes a, b, c, d, x and xx.

For the combination of ss and sl, the following identifiers are predeclared:

\ss \ssa \ssb \ssc \ssd \ssx \ssxx
\sl \sla \slb \slc \sld \slx \slxx
\sssl \sssla \ssslb \ssslc \sssld

And because there are no more sizes in the definition any more, we can just as well combine all
of the requested sizes in a single \definebodyfont by using a list of sizes as the first argument.
This means exactly the same as repeating that whole list five (or more) times, but saves a lot of
typing:

\definebodyfont [12pt,11pt,10pt,9pt,8pt] [ss]
[tf=hv sa 1.000,
bf=hvb sa 1.000,
it=hvo sa 1.000,
sl=hvo sa 1.000,
sc=hv sa 1.000]

Because the font names (may) depend on the encoding vector, we had better use the previously
discussed method for mapping symbolic names. So, any one of the three following lines can be
used, but the third one is best:

\definebodyfont [10pt,11pt,12pt] [ss] [tf=hv sa 1.000]
\definebodyfont [10pt,11pt,12pt] [ss] [tf=Helvetica sa 1.000]
\definebodyfont [10pt,11pt,12pt] [ss] [tf=Sans sa 1.000]

And in the actual ConTEXt core, the default body fonts are in fact defined with commands like
this:

\definebodyfont [default] [rm]
[tf=Serif sa 1,
...
it=SerifItalic sa 1,
...]

Fonts 9

Defining body fonts 1

We saw that \tf is the default font. Here \tf is defined as Serif sa 1 which means that it
is a serif font, scaled to a normal font size. This Serif is mapped elsewhere on for example
Palatino which in turn is mapped on the actual filename uplr8t, as demonstrated earlier.

\definebodyfont [...,...]1 [...]
OPTIONAL

2 [..,.=.,..]
3

1 5pt ... 12pt small big

2 rm ss tt hw cg mm

3 tf = FILE
bf = FILE
sl = FILE
it = FILE
bs = FILE
bi = FILE
sc = FILE
mr = FILE
ex = FILE
mi = FILE
sy = FILE
ma = FILE
mb = FILE
mc = FILE
md = FILE

The macro syntax for \definebodyfont is a bit abbreviated. Besides the two--letter keys that
are listed for the third argument, it is also possible to assign values to font identifiers with the
alphabetic suffixes a through d like tfa as well as the ones with an x or xx suffix like bfx. You
can even define totally new keywords, if you want that.

As an example we will define a bigger fontsize of \tf:

\definebodyfont [10pt,11pt,12pt] [rm]
[tfe=Serif at 48pt,
ite=SerifItalic at 48pt]

\tfe Big {\it Words}.

This becomes:

Big Words.
Note that there is a small trick here: the assignment to ite is needed for the command \it to
work properly. Without that, the command \it would run the ‘normal' version of it and that
has a size of 11pt.

The keywords mr, ex, mi, sy, ma, mb,mc and md all relate to math families. As was already hinted at
in table 1.1, these have extended relatives suffixed by bf for use within bold math environments.

Calls of \definebodyfont for the mm style look quite different from the other styles, because
they set up these special keywords, and nothing else. The first four keys are required in all
math setups just to do basic formula typesetting, the other four (ma . . . md) can be left undefined.

10 Fonts

1 Defining body fonts

Those are normally used for fonts with special symbols or alphabets like the AMS symbol fonts
msam and msbm.
Here is what a setup for a fairly standard mm could look like:

\definebodyfont [10pt] [mm]
[mr=cmr10,
ex=cmex10,
mi=cmmi10,
sy=cmsy10]

\definebodyfont [17.3pt,14.4pt,12pt,11pt,10pt,9pt] [mm]
[ma=msam10 sa 1,
mb=msbm10 sa 1]

The keys mc and md are left undefined. This example explicitly shows how multiple \define-
bodyfonts are combined by ConTEXt automatically and that there is no need to do everything
within a single definition (in fact this was already implied by the tfe trick above.)
Apart from the calling convention as given in the macro syntax that has already been shown,
there are a few alternative forms of \definebodyfont that can be used to defined and call body
fonts by name:

\definebodyfont [...]1 [...]2 [...]3

1 IDENTIFIER

2 inherits from \setupbodyfont

3 inherits from \setupbodyfont

This was used in the default serif font defintion shown above: the first argument to \define-
bodyfont was the identifier default because these definitions were to be used from within
other definitions.
An actual size will be provided by the commands at the top--level in the calling chain, the
third argument in that \definebodyfont call will also be default instead of actually specifying
settings.

\definebodyfont [...]1 [...]2 [...]3

1 inherits from \setupbodyfont

2 inherits from \setupbodyfont

3 IDENTIFIER

The use of the default actually happens deep inside ConTEXt so there is clear code that can be
shown, but if it was written out, a call would for example look like this:

\definebodyfont
[17.3pt,14.4pt,12pt,11pt,10pt,9pt,8pt,7pt,6pt,5pt,4pt]
[rm,ss,tt,mm]
[default]

Fonts 11

Typescripts and typefaces 1

To end this section: for advanced TEX users there is the dimension--register \bodyfontsize.
This variable can be used to set fontwidths. The number (rounded) points is available in \body-
fontpoints.

This way of defining fonts has been part of ConTEXt from the beginning, but as more compli-
cated designs started to show up, we felt the need for a more versatile mechanism.

1.5 Typescripts and typefaces
On top of the existing traditional font module, ConTEXt now provides a more abstract layer of
typescripts and building blocks for definitions and typefaces as font containers. The original
font definition files have been regrouped into such typescripts thereby reducing the number of
files involved.

As we saw earlier, ‘using' a typescript is done via the a call to the macro \usetypescript. Here
is the macro syntax setup again:

\usetypescript [...,...]1 [...,...]
OPTIONAL

2 [...,...]
OPTIONAL

3

1 IDENTIFIER

2 IDENTIFIER

3 IDENTIFIER

Typescripts are in fact just organized definitions, and ‘using' a typescript therefore actually
means nothing more than executing the set of definitions that is contained within a particular
typescript.

The main defining command for typescripts is a start--stop pair that wraps the actual macro
definitions.

\starttypescript [...] [...] [...]
....

\stoptypescript

As with \usetypescript, there can be up to three arguments, and these two sets of arguments
are linked to eachother: the values of the first and second argument in the call to \starttype-
script of

\starttypescript [palatino] [texnansi,ec,qx,t5,default]
...

\stoptypescript

are what make the MkII-style call to \usetypescript

\usetypescript [palatino] [ec]
...

possible and meaningful: the first argument in both cases is the same so that this matches,
and the second argument of \usetypescript appears in the list that is the second argument
of \starttypescript, so this also matches. ConTEXt will execute all matching blocks it knows
about: there may be more than one.

12 Fonts

1 Typescripts and typefaces

To perform the actual matching, ConTEXt scans through the list of known \starttypescript
blocks for each of the combinations of items in the specified arguments of \usetypescript.
These blocks can be preloaded definitions in TEX's memory, or they may come from a file.

There is a small list of typescript files that is tried always, and by using \usetypescriptfile
you actually add extra ones at the end of this list.

The automatically loaded files for the three possible engines are, in first to last order:

pdftex xetex luatex explanation
type-tmf type-tmf type-tmf Core TEX community fonts
type-siz type-siz type-siz Font size setups
type-one Type 1 free fonts

type-otf type-otf OpenType free fonts
type-xtx MacOSX font support

type-akb Basic Adobe Type 1 mappings
type-loc type-loc type-loc A user configuration file

Extra arguments to \usetypescript are ignored, and that is why that same two-argument call
to \usetypescript works correctly in MkIV as well, even tough the typescript itself uses only
a single argument:

\starttypescript [palatino]
...

\stoptypescript

On the other hand, extra arguments to \starttypescript are not ignored: a \starttypescript
with two specified arguments will not be matched by a \usetypescript that has only one
specified argument.

However, you can force any key at all to match by using the special keyword all in your \use-
typescript or \starttypescript. We will see later that this use of a wildcard is sometimes
handy.

1.5.1 A typescript in action
Before we can go on and explain how to write \starttypescript blocks, we have to step back
for a moment to the macro \definetypeface, and especially to the third, fourth and fifth argu-
ment:

\starttypescript [palatino] [texnansi,ec,qx,t5,default]
\definetypeface[palatino] [rm] [serif] [palatino] [default]
...

Remember how in the previous chapter there were the tables that listed all the predefined com-
binations? It was said there that these ‘. . . are nothing more than convenience names that are
attached to a group of fonts by the person that wrote the font definition'.

Here is how that works: these arguments of \definetypeface are actually used as parts of
\usetypescript calls. To be preciese, inside the macro definition of \definetypeface, there
are the following lines:

\def\definetypeface
...

Fonts 13

Typescripts and typefaces 1

\usetypescript[#3,map][#4][name,default,\typefaceencoding,special]
\usetypescript[#3][#5][size]
...

In our example #3 is serif, #4 is palatino, and #5 is default. The value of \typefaceencoding
is inherited from the calling \usetypescript. That means that the two lines expand into:

\usetypescript[serif,map][palatino] [name,default,ec,special]
\usetypescript[serif][default][size]

And those typescripts will be searched for. This example is using MkII, so the list of typescript
files is type-tmf, type-siz, type-one, type-akb, and type-loc. The first two arguments of
\usetypescript are handled depth first, so first all ‘serif' typescripts are tried against all the
files in the list and then all the ‘map' typescripts.

Not all of the seached typescript blocks are indeed present in the list of files that have to be
scanned, but a few are, and one apparently even more than once:

type-tmf.tex serif palatino name
type-one.tex serif palatino texnansi,ec,8r,t5
type-one.tex serif palatino ec,texnansi,8r
type-one.tex map all –
type-siz.tex serif default size

All of the found blocks are executed, so let's look at them in order

\starttypescript [serif] [palatino] [name]
\definefontsynonym [Serif] [Palatino]
\definefontsynonym [SerifBold] [Palatino-Bold]
\definefontsynonym [SerifItalic] [Palatino-Italic]
\definefontsynonym [SerifSlanted] [Palatino-Slanted]
\definefontsynonym [SerifBoldItalic] [Palatino-BoldItalic]
\definefontsynonym [SerifBoldSlanted] [Palatino-BoldSlanted]
\definefontsynonym [SerifCaps] [Palatino-Caps]

\stoptypescript

This block has mapped the standard symbolic names to names in the ‘Palatino' family, one of
the standard font synonym actions as explained in the beginning of this chapter.

\starttypescript [serif] [palatino] [texnansi,ec,8r,t5]
\definefontsynonym [Palatino]

[\typescriptthree-uplr8a] [encoding=\typescriptthree]
\definefontsynonym [Palatino-Italic]

[\typescriptthree-uplri8a] [encoding=\typescriptthree]
\definefontsynonym [Palatino-Bold]

[\typescriptthree-uplb8a] [encoding=\typescriptthree]
\definefontsynonym [Palatino-BoldItalic]

[\typescriptthree-uplbi8a] [encoding=\typescriptthree]
\definefontsynonym [Palatino-Slanted]

[\typescriptthree-uplr8a-slanted-167] [encoding=\typescriptthree]
\definefontsynonym [Palatino-BoldSlanted]

[\typescriptthree-uplb8a-slanted-167] [encoding=\typescriptthree]

14 Fonts

1 Typescripts and typefaces

\definefontsynonym [Palatino-Caps]
[\typescriptthree-uplr8a-capitalized-800] [encoding=\typescriptthree]

\loadmapfile[\typescriptthree-urw-palatino.map]
\stoptypescript

This maps the Palatino names onto the actual font files. Some further processing is taking place
here: the calling \usetypescript that was called from within the \definetypeface knows
that it wants ec encoding. Because this is the third argument, it becomes the replacement of
\typescriptthree. The body of the typescript therefore reduces to:

\definefontsynonym[Palatino] [ec-uplr8a] [encoding=ec]
\definefontsynonym[Palatino-Italic] [ec-uplri8a] [encoding=ec]
\definefontsynonym[Palatino-Bold] [ec-uplb8a] [encoding=ec]
\definefontsynonym[Palatino-BoldItalic] [ec-uplbi8a] [encoding=ec]
\definefontsynonym[Palatino-Slanted] [ec-uplr8a-slanted-167] [encoding=ec]
\definefontsynonym[Palatino-BoldSlanted][ec-uplb8a-slanted-167] [encoding=ec]
\definefontsynonym[Palatino-Caps] [ec-uplr8a-capitalized-800][encoding=ec]

\loadmapfile[ec-urw-palatino.map]

Incidentally, this also loads a font map file. In earlier versions of ConTEXt, this was done by
separate typescripts in the file type-map.tex, but nowadays all map loading is combined with
the definition of the synonyms that link to the true fonts on the harddisk. This way, there is a
smaller chance of errors creeping in. See section 1.9 for more details on font map files.
The third match is a block that sets sets up ‘TeXPalladioL' font synonyms. These will not actually
be used, but it is a match so it will be executed anyway.

\starttypescript [serif] [palatino] [ec,texnansi,8r]
\definefontsynonym[TeXPalladioL-BoldItalicOsF]

[\typescriptthree-fplbij8a][encoding=\typescriptthree]
...
\stoptypescript

The next matched entry loads the font map files for the default fonts:

\starttypescript [map] [all]
\loadmapfile[original-base.map]
\loadmapfile[original-ams-base.map]

\stoptypescript

this will not really be needed for the palatino \rm typescript, but it ensures that even if there
is something horribly wrong with the used typescripts, at least pdfTEX will be able to find the
Latin Modern (the default font set) on the harddisk.
The last match is the missing piece of the font setup:

\starttypescript [serif] [default] [size]
\definebodyfont
[4pt,5pt,6pt,7pt,8pt,9pt,10pt,11pt,12pt,14.4pt,17.3pt]
[rm] [default]

\stoptypescript

Fonts 15

Typescripts and typefaces 1

and now the typescript is complete.

As explained earlier, that last block references a named \definebodyfont that is defined in
type-unk.tex:

\definebodyfont [default] [rm]
[tf=Serif sa 1,
bf=SerifBold sa 1,
it=SerifItalic sa 1,
sl=SerifSlanted sa 1,
bi=SerifBoldItalic sa 1,
bs=SerifBoldSlanted sa 1,
sc=SerifCaps sa 1]

similar default blocks are defined for the other five font styles also.

Looking back, you can see that the Palatino-specific typescripts did actually do anything except
definining font synonyms, loading a map file, and calling a predefined bodyfont.

1.5.2 Some more information
As we saw already, typescripts and its invocations have up to three specifiers. An invocation
matches the script specification when the three arguments have common keywords, and the
special keyword all is equivalent to any match.

Although any keyword is permitted in any of the three arguments, the current definitions (and
macros like \definetypeface) make heavy use of some keys in particular:

pattern application
[serif] [*] [*] serif fonts
[sans] [*] [*] sans serif fonts
[mono] [*] [*] mono spaced fonts
[math] [*] [*] math fonts
[*] [*] [size] size specifications
[*] [*] [name] symbolic name mapping
[*] [*] [special] special settings
[*] [all] [*] default case(s)
[map] [*] [*] map file specifications

When you take a close look at the actual files in the distribution you will notice a quite a few
other keywords. One in particular is worth mentioning: instead of the predefined sizes in de-
fault, you can use the dtp size scripts with their associated body font environments by using

\usetypescript [all] [dtp] [size]

or

\definetypeface[palatino] [rm] [serif] [palatino] [dtp]

In the top--level typescript for the palatino, we had a bunch of \definetypeface commands,
as follows:

\definetypeface [funny] [rm] [serif] [palatino] [default] [encoding=texnansi]
\definetypeface [funny] [ss] [sans] [palatino] [default] [encoding=texnansi]

16 Fonts

1 Typescripts and typefaces

\definetypeface [funny] [tt] [mono] [palatino] [default] [encoding=texnansi]
\definetypeface [funny] [mm] [math] [palatino] [default] [encoding=texnansi]

Once these commands are executed (wether or not as part of a typescript), \funny will enable
this specific collection of fonts. In a similar way we can define a collection \joke.

\definetypeface [joke] [rm] [serif] [times] [default] [encoding=texnansi]
\definetypeface [joke] [ss] [sans] [helvetica] [default] [rscale=.9,

encoding=texnansi]
\definetypeface [joke] [tt] [mono] [courier] [default] [rscale=1.1,

encoding=texnansi]
\definetypeface [joke] [mm] [math] [times] [default] [encoding=texnansi]

And the familiar Computer Modern Roman as \whow:

\definetypeface [whow] [rm] [serif] [modern] [latin-modern] [encoding=ec]
\definetypeface [whow] [ss] [sans] [modern] [latin-modern] [encoding=ec]
\definetypeface [whow] [tt] [mono] [modern] [latin-modern] [encoding=ec]
\definetypeface [whow] [mm] [math] [modern] [latin-modern] [encoding=ec]

Now has become possible to switch between these three font collections at will. Here is a sample
of some text and a little bit of math:

Who is {\it fond} of fonts?
Who claims that $t+e+x+t=m+a+t+h$?
Who {\ss can see} {\tt the difference} here?

When typeset in \funny, \joke, and whow, the samples look like:

Who is fond of fonts?
Who claims that t + e + x + t = m + a + t + h?
Who can see the difference here?

Who is fond of fonts?
Who claims that t + e + x + t = m + a + t + h?
Who can see the difference here?

Who is fond of fonts?
Who claims that t+ e+ x+ t = m+ a+ t+ h?
Who can see the difference here?

With \showbodyfont you can get an overview of this font.

[funny] \mr : Ag

\tf \sc \sl \it \bf \bs \bi \tfx \tfxx \tfa \tfb \tfc \tfd

\rm Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\ss Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\tt Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag

Figure 1.1 The funny typeface collection.

Fonts 17

Typescripts and typefaces 1

[joke] \mr : Ag

\tf \sc \sl \it \bf \bs \bi \tfx \tfxx \tfa \tfb \tfc \tfd

\rm Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\ss Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\tt Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag

Figure 1.2 The joke typeface collection.

[whow] \mr : Ag

\tf \sc \sl \it \bf \bs \bi \tfx \tfxx \tfa \tfb \tfc \tfd

\rm Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\ss Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\tt Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag

Figure 1.3 The whow typeface collection.

When defining the joke typeface collection, we used a scale directive. The next sample demon-
strates the difference between the non scaled and the scaled alternatives.

Who is fond of fonts?
Who claims that t + e + x + t = m + a + t + h?
Who can see the difference here?

Who is fond of fonts?
Who claims that t + e + x + t = m + a + t + h?
Who can see the difference here?

It may not be immediately clear from the previous examples, but a big difference between using
typeface definitions and the old method of redefining over and over again, is that the new
method uses more resources. This is because each typeface gets its own name space assigned.
As an intentional side effect, the symbolic names also follow the typeface. This means that for
instance:

\definefont[MyBigFont][Serif sa 1.5] \MyBigFont A bit larger!

will adapt itself to the currently activated serif font shape, here \funny, \joke and \whow.

A bit larger!
A bit larger!
A bit larger!

1.5.3 A bit more about math
Math is kind of special in the sense that it has its own set of fonts, either or not related to the
main text font. By default, a change in style, for instance bold, is applied to text only.

18 Fonts

1 Typescripts and typefaces

$ \sqrt{625} = 5\alpha$
$\bf \sqrt{625} = 5\alpha$
$ \sqrt{625} = \bf 5\alpha$
$\bfmath \sqrt{625} = 5\alpha$

The difference between these four lines is as follows:
√

625 = 5α
√

625 = 5
√

625 = 5
√

625 = 5

In order to get a bold α symbol, we need to define bold math fonts.1 Assuming the font's type-
scripts support bold math, the most convenient way of doing this is the following:

\definetypeface [whow] [mm]
[math,boldmath] [modern] [default] [encoding=texnansi]

Bold math looks like this:
√

625 = 5α√
625 = 5√
625 = 5√
625 = 5

The definitions are given on the next page. Such definitions are normally collected in the pro-
ject bound file, for instance called typeface.tex, that is then manually added to the list of
typescript files:

\usetypescriptfile[typeface] % project scripts

It is also possible to avoid typescripts. When definitions are used only once, it makes sense to
use a more direct method. We will illustrate this with a bit strange example.

Imagine that you want some math formulas to stand out, but that you don't have bold fonts. In
that case you can for instance scale them. A rather direct method is the following.

\definebodyfont
[funny]
[12pt,11pt,10pt,9pt,8pt,7pt] [mm]
[mrbf=MathRoman mo 2,
exbf=MathExtension mo 2,
mibf=MathItalic mo 2,
sybf=MathSymbol mo 2]

Our math sample will now look like:
√

625 = 5α
√

625 = 5
√

625 = 5√
625 = 5

We can also use an indirect method:

Bold math is already prepared in the core modules, so normally one can do with less code1

Fonts 19

Predefined font, style and alternative keywords 1

\definebodyfont
[smallmath] [mm]
[mrbf=MathRoman mo .5,
exbf=MathExtension mo .5,
mibf=MathItalic mo .5,
sybf=MathSymbol mo .5]

\definebodyfont
[funny]
[12pt,11pt,10pt,9pt,8pt,7pt]
[mm] [smallmath]

This method is to be preferred when we have to define more typefaces since it saves keystrokes.
√

625 = 5α
√

625 = 5
√

625 = 5√
625 = 5

For efficiency reasons, the font definitions (when part of a typeface) are frozen the first time
they are used. Until that moment definitions will adapt themselves to changes in for instance
scaling and (mapped) names. Freezing definitions is normally no problem because typefaces
are defined for a whole document and one can easily define more instances. When you redefine
it, a frozen font is automatically unfrozen.

1.6 Predefined font, style and alternative keywords
Some of the internal commands are worth mentioning because they define keywords and you
may want to add to the list.
Font size switching is done with keywords like twelvepoint and commands like \twelvepoint
or \xii, which is comparable to the way it is done in plain TEX. These commands are defined
with:

\definebodyfontswitch [fourteenpointfour] [14.4pt]
\definebodyfontswitch [twelvepoint] [12pt]
\definebodyfontswitch [elevenpoint] [11pt]
\definebodyfontswitch [tenpoint] [10pt]
\definebodyfontswitch [ninepoint] [9pt]
\definebodyfontswitch [eightpoint] [8pt]
\definebodyfontswitch [sevenpoint] [7pt]
\definebodyfontswitch [sixpoint] [6pt]
\definebodyfontswitch [fivepoint] [5pt]
\definebodyfontswitch [fourpoint] [4pt]
\definebodyfontswitch [xii] [12pt]
\definebodyfontswitch [xi] [11pt]
\definebodyfontswitch [x] [10pt]
\definebodyfontswitch [ix] [9pt]
\definebodyfontswitch [viii] [8pt]

20 Fonts

1 Predefined font, style and alternative keywords

\definebodyfontswitch [vii] [7pt]
\definebodyfontswitch [vi] [6pt]

But be warned that \xi is later redefined as a greek symbol.

The keys in \setupbodyfont are defined in terms of:

\definefontstyle [rm,roman,serif,regular] [rm]
\definefontstyle [ss,sansserif,sans,support] [ss]
\definefontstyle [tt,teletype,type,mono] [tt]
\definefontstyle [hw,handwritten] [hw]
\definefontstyle [cg,calligraphic] [cg]

In many command setups we encounter the parameter style. In those situations we can specify
a key. These keys are defined with \definealternativestyle. The third argument is only of
importance in chapter and section titles, where, apart from \cap, we want to obey the font used
there.

\definealternativestyle [mediaeval] [\os] []
\definealternativestyle [normal] [\tf] []
\definealternativestyle [bold] [\bf] []
\definealternativestyle [type] [\tt] []
\definealternativestyle [mono] [\tt] []
\definealternativestyle [slanted] [\sl] []
\definealternativestyle [italic] [\it] []
\definealternativestyle [boldslanted,

slantedbold] [\bs] []
\definealternativestyle [bolditalic,

italicbold] [\bi] []
\definealternativestyle [small,

smallnormal] [\tfx] []
\definealternativestyle [smallbold] [\bfx] []
\definealternativestyle [smalltype] [\ttx] []
\definealternativestyle [smallslanted] [\slx] []
\definealternativestyle [smallboldslanted,

smallslantedbold] [\bsx] []
\definealternativestyle [smallbolditalic,

smallitalicbold] [\bix] []
\definealternativestyle [sans,

sansserif] [\ss] []
\definealternativestyle [sansbold] [\ss\bf] []
\definealternativestyle [smallbodyfont] [\setsmallbodyfont] []
\definealternativestyle [bigbodyfont] [\setbigbodyfont] []
\definealternativestyle [cap,

capital] [\smallcapped] [\smallcapped]
\definealternativestyle [smallcaps] [\sc] [\sc]
\definealternativestyle [WORD] [\WORD] [\WORD]

Fonts 21

Symbols and glyphs 1

In section ?? we have already explained how emphasizing is defined. With oldstyle digits this
is somewhat different. We cannot on the forehand in what font these can be found. By default
we have the setup:

\definefontsynonym [OldStyle] [MathItalic]

As we see they are obtained from the same font as the math italic characters. The macro \os
fetches the runtime setting by executing \symbolicfont{OldStyle}, which is just a low-level
version of \definedfont[OldStyle sa *]. A few other macros behave just like that:

macro synonym default value
\os OldStyle MathItalic (lmmi10)
\frak Fraktur eufm10
\goth Gothic eufm10
\cal Calligraphic cmsy10 (lmsy10)
\bbd Blackboard msbm10

In addition to all the alrady mentioned commands there are others, for example macros for
manipulating accents. These commands are discussed in the file font-ini. More information
can also be found in the file core-fnt and specific gimmicks in the file supp-fun. So enjoy
yourself.

1.7 Symbols and glyphs
Some day you may want to define your own symbols, if possible in such a way that they nicely
adapt themselves to changes in style and size. A good example are the eurosymbols. You can
take a look in symb-eur.tex to see how such a glyph is defined.

\definefontsynonym [EuroSerif] [eurose]
\definefontsynonym [EuroSerifBold] [euroseb]
...
\definefontsynonym [EuroSans] [eurosa]
\definefontsynonym [EuroSansBold] [eurosab]
...
\definefontsynonym [EuroMono] [euromo]
\definefontsynonym [EuroMonoBold] [euromob]

Here we use the free Adobe euro fonts, but there are alternatives available. The symbol itself is
defined as:

\definesymbol [euro] [\getglyph{Euro}{\char160}]

You may notice that we only use the first part of the symbolic name. ConTEXt will complete
this name according to the current style. You can now access this symbol with \symbol [euro]

\tf \bf \sl \it \bs \bi
Serif € € € € € €
Sans € € € € € €
Mono € € € € € €

More details on defining symbols and symbol sets can be found in the documentation of the
symbol modules.

22 Fonts

1 Encodings

1.8 Encodings

TODO: Add macro syntax definition blocks

Until now we assumed that an a will become an a during type setting. However, this is not
always the case. Take for example ä or æ. This character is not available in every font and
certainly not in the Computer Modern Typefaces. Often a combination of characters \"a or a
command \ae will be used to produce such a character. In some situation TEX will combine
characters automatically, like in fl that is combined to fl and not fl. Another problem occurs in
converting small print to capital print and vice versa.

Below you see an example of the texnansi mapping:

\startmapping[texnansi]
\definecasemap 228 228 196 \definecasemap 196 228 196
\definecasemap 235 235 203 \definecasemap 203 235 203
\definecasemap 239 239 207 \definecasemap 207 239 207
\definecasemap 246 246 214 \definecasemap 214 246 214
\definecasemap 252 252 220 \definecasemap 220 252 220
\definecasemap 255 255 159 \definecasemap 159 255 159

\stopmapping

This means so much as: in case of a capital the character with code 228 becomes character 228
and in case of small print the character becomes character 196.

These definitions can be found in enco-ans. In this file we can also see:

\startencoding[texnansi]
\defineaccent " a 228
\defineaccent " e 235
\defineaccent " i 239
\defineaccent " o 246
\defineaccent " u 252
\defineaccent " y 255

\stopencoding

and

\startencoding[texnansi]
\definecharacter ae 230
\definecharacter oe 156
\definecharacter o 248
\definecharacter AE 198

\stopencoding

As a result of the way accents are placed over characters we have to approach accented char-
acters different from normal characters. There are two methods: TEX does the accenting itself
or prebuild accentd glyphs are used. The definitions above take care of both methods. Other
definitions are sometimes needed. In the documentation of the file enco-ini more information
on this can be found.

Fonts 23

Map files 1

1.9 Map files

TODO: This section is too informal

If you're already sick of reading about fonts, you probably don't want read this section. But
alas, dvi post processors and pdfTEX will not work well if you don't provide them map files that
tell them how to handle the files that contain the glyphs.
In its simplest form, a definition looks as follows:

usedname < texnansi.enc < realname.pfb

This means as much as: when you want to include a file that has the tfm file usedname, take
the outline file realname.pfb and embed it with the texnansi encoding vector. Sometimes you
need more complicated directives and you can leave that to the experts. We try to keep up with
changes in the map file syntax, the names of fonts, encodings, locations in the TEX tree, etc.
However, it remains a troublesome area.
It makes sense to take a look at the cont-sys.rme file to see what preferences make sense. If
you want to speed up the typescript processing, say (in cont-sys.tex:

\preloadtypescripts

If you want to change the default encoding, you should add something:

\setupencoding [default=texnansi]

You can let ConTEXt load the map files for pdfTEX:

\autoloadmapfilestrue

The following lines will remove existing references to map files and load a few defaults.

\resetmapfiles
\loadmapfile[original-base.map]
\loadmapfile[original-ams-base.map]
\loadmapfile[original-public-lm.map]

As said, map files are a delicate matter.

1.10 Installing fonts

TODO: Document use of MkIVand XƎTEX and in particular OS-
FONTDIR

Most TEX distributions come with a couple of fonts, most noticeably the Computer Modern
Roman typefaces. In order to use a font, TEX has to know its characteristics. These are defined
in tfm and vf files. In addition to these files, on your system you can find a couple of more file
types.
suffix content
tfm TEX specific font metric files that, in many cases, can be generated from afm files

24 Fonts

1 Installing fonts

vf virtual font files, used for building glyph collections from other ones
afm Adobe font metric files that are more limited than tfm files (especially for math

fonts)
pfm Windows specific font metric files, not used by TEX applications
pfb files that contain the outline specification of the glyphs fonts, also called Type 1
enc files with encoding vector specifications
map files that specify how and what font files are to be included

On your disk (or cdrom) these files are organized in such a way that they can be located fast.2

The directory structure normally is as follows:

texmf / fonts / tfm / vendor / name / *.tfm
/ afm / vendor / name / *.afm
/ pfm / vendor / name / *.pfm
/ vf / vendor / name / *.vf
/ type1 / vendor / name / *.pfb

/ pdftex / config / *.cfg
/ config / *.map
/ config / encoding / *.enc

The texmf-local or even better texmf-fonts tree normally contains your own fonts, so that
you don't have to reinstall them when you reinstall the main tree. The pdftexdirectory contains
the files that pdfTEX needs in order to make decisions about the fonts to include. The enc files
are often part of distributions, as is the configuration cfg file. When you install new fonts, you
often also have to add or edit map files.
ConTEXt comes with a Perl script texfont.pl that you can use to install new fonts. Since its
usage is covered by a separate manual, we limit ourselves to a short overview.
Say that you have just bought a new font. A close look at the files will reveal that you got at
least a bunch of afm and pfb files and if you're lucky tfm files.
Installing such a font can be handled by this script. For this you need to know (or invent) the
name of the font vendor, as well as the name of the font. The full set of command line switches
is given below:3

switch meaning
fontroot texmf font root (automatically determined)
vendor vendor name (first level directory)
collection font collection (second level directory)
encoding encoding vector (default: texnansi)
sourcepath when installing, copy from this path
install copy files from source to font tree
makepath when needed, create the paths
show run tex on *.tex afterwards

You seldom need to use them all. In any case it helps if you have a local path defined already.
The next sequence does the trick:

If you have installed teTEX or fpTEX (possibly from the TEXlive cdrom) you will have many thousands of font files on2

your system.
there are a couple of more switches described in the manual mtexfonts.3

Fonts 25

Installing fonts 1

texfont --ve=FontFun --co=FirstFont --en=texnansi --ma --in

This will generate the tfm files from the afm files, and copy them to the right place. The Type 1
files (pfb) will be copied too. The script also generates a map file. When this is done successfully,
a TEX file is generated and processed that shows the font maps. If this file looks right, you can
start using the fonts. The TEX file also show you how to define the fonts.
This script can also do a couple of more advanced tricks. Let us assume that we have bought
(or downloaded) a new font package in the files demofont.afm and demofont.pfb which are
available on the current (probably scratch) directory. First we make sure that this font is installed
(in our case we use a copy of the public Iwona Regular):

texfont --ve=test --co=test --ma --in demofont

We can now say:

\loadmapfile[texnansi-test-test.map]
\definefontsynonym[DemoFont][texnansi-demofont]
\ruledhbox{\definedfont[DemoFont at 50pt]Interesting}

Interesting
From this font, we can derive a slanted alternative by saying:

texfont --ve=test --co=test --ma --in --sla=.167 demofont

The map file is automatically extended with the entry needed.

\definefontsynonym[DemoFont-Slanted][texnansi-demofont-slanted-167]
\ruledhbox{\definedfont[DemoFont-Slanted at 50pt]Interesting}

Interesting
We can also create a wider version:

texfont --ve=test --co=test --ma --in --ext=1.50 demofont

When you use the --make and --install switch, the directories are made, fonts installed, and
entries appended to the map file if needed.

\definefontsynonym[DemoFont-Extended][texnansi-demofont-extended-1500]
\ruledhbox{\definedfont[DemoFont-Extended at 50pt]Interesting}

Interesting
Instead of using pseudo caps in TEX by using \kap, you can also create a pseudo small caps
font.

texfont --ve=test --co=test --ma --in --cap=0.75 demofont

This method is much more robust but at the cost of an extra font.

26 Fonts

1 Getting started

\definefontsynonym[DemoFont-Caps][texnansi-demofont-capitalized-750]
\ruledhbox{\definedfont[DemoFont-Caps at 50pt]Interesting}

INTERESTING
switch meaning
extend=factor stretch the font to the given factor
narrow=factor shrink the font to the given factor
slant=factor create a slanted font
caps=factor replace lowercase characters by small uppercase ones
test use test/test as vendor/collection

When manipulating a font this way, you need to provide a file name. Instead of a factor you
can give the keyword default or a *.

texfont --test --auto --caps=default demofont

The previous example runs create fonts with the rather verbose names:

demofont
demofont-slanted-167
demofont-extended-150
demofont-capitalized-750

This naming scheme makes it possible to use more instances without the risk of conflicts.

In the distribution you will find an example batch file type-tmf.dat which creates metrics
for some free fonts for the encoding specified. When you create the default font metrics this
way, preferably texmf-fonts, you have a minimal font system tuned for you prefered encoding
without the risk for name clashes. When you also supply --install, the font outlines will be
copied from the main tree to the fonts tree, which sometimes is handy from the perspective of
consistency.

1.11 Getting started

TODO: This section needs to be modernized

The way TEX searches for files (we're talking web2c now) is determined by the configuration
file to which the TEXMFCNF environment variable points (the following examples are from my
own system):

set TEXMFCNF=T:/TEXMF/WEB2C

When searching for files, a list of directories is used:

set TEXMF={$TEXMFFONTS,$TEXMFPROJECT,$TEXMFLOCAL,!!$TEXMFMAIN}

Here we've added a font path, which itself is set with:

Fonts 27

Remarks 1

set TEXMFMAIN=E:/TEX/TEXMF
set TEXMFLOCAL=E:/TEX/TEXMF-LOCAL
set TEXMFFONTS=E:/TEX/TEXMF-FONTS

Now you can generate metrics and map files. The batch file is searched for at the ConTEXt data
path in the texmf tree or on the local path.

texfont --encoding=ec --batch type-tmf.dat

If you want to play with encoding, you can also generate more encodings, like 8r or texnansi.

texfont --encoding=texnansi --batch type-tmf.dat
texfont --encoding=8r --batch type-tmf.dat

After a while, there will be generated tfm, vf, and map files. If you let ConTEXt pass the map file
directives to pdfTEX, you're ready now. Otherwise you need to add the names of the mapfiles
to the file pdftex.cfg. You can best add them in front of the list, and, if you use ConTEXt
exclusively, you can best remove the other ones.

As a test you can process the TEX files that are generated in the process. These also give you an
idea of how well the encoding vectors match your expectations.

Now, the worst that can happen to you when you process your files, is that you get messages
concerning unknown tfm files or reports on missing fonts when pdfTEX writes the file. In that
case, make sure that you indeed have the right fonts (generated) and/or that the map files are
loaded. As a last resort you can load all map files by saying:

\usetypescript [map] [all]

and take a look at the log file and see what is reported.

In due time we will provide font generation scripts for installation of other fonts as well as
extend the typescript collection.

1.12 Remarks
It really makes sense to take a look at the font and type definition files (font-*.tex and
type-*.tex). There are fallbacks defined, as well as generic definitions. Studying styles and
manual source code may also teach you a few tricks.

