Next: Numeric Conversions, Previous: Predicates on Numbers, Up: Numbers [Contents][Index]
2¤Ä¤Î¿ô¤¬¿ôÃÍŪ¤ËÅù¤·¤¤¤«¤É¤¦¤«Ä´¤Ù¤ë¤Ë¤Ï¡¢ÉáÄÌ¡¢
eq
¤Ç¤Ï¤Ê¤¯=
¤ò»È¤¦¤Ù¤¤Ç¤¹¡£
¿ôÃÍŪ¤Ë¤ÏÅù¤·¤¤Â¿¤¯¤Î°Û¤Ê¤ëÉâÆ°¾®¿ôÅÀ¿ô¤¬Â¸ºß¤·¤¨¤Þ¤¹¡£
¤½¤ì¤é¤ÎÈæ³Ó¤Ëeq
¤ò»È¤¦¤È¡¢
2¤Ä¤ÎÃͤ¬Æ±°ì¥ª¥Ö¥¸¥§¥¯¥È¤«¤É¤¦¤«Ä´¤Ù¤ë¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£
ÂоÈŪ¤Ë¡¢=
¤Ï¥ª¥Ö¥¸¥§¥¯¥È¤Î¿ôÃͤÀ¤±¤òÈæ³Ó¤·¤Þ¤¹¡£
¸½»þÅÀ¤Ç¤Ï¡¢Emacs Lisp¤Ë¤ª¤¤¤Æ¡¢³ÆÀ°¿ôÃͤϰì°Õ¤ÊLisp¥ª¥Ö¥¸¥§¥¯¥È¤Ç¤¹¡£
¤·¤¿¤¬¤Ã¤Æ¡¢À°¿ô¤Ë¸Â¤ì¤Ðeq
¤Ï=
¤ÈÅù²Á¤Ç¤¹¡£
̤ÃΤÎÃͤÈÀ°¿ô¤òÈæ³Ó¤¹¤ë¤¿¤á¤Ëeq
¤ò»È¤¦¤ÈÊØÍø¤Ê¾ìÌ̤¬¤¢¤ê¤Þ¤¹¡£
¤È¤¤¤¦¤Î¤Ï¡¢eq
¤ÏǤ°Õ¤Î·¿¤Î°ú¿ô¤ò¼õ¤±ÉÕ¤±¤ë¤Î¤Ç¡¢
eq
¤Ï̤ÃΤÎÃͤ¬¿ô¤Ç¤Ê¤¯¤Æ¤â¥¨¥é¡¼¤òÊó¹ð¤·¤Ê¤¤¤«¤é¤Ç¤¹¡£
ÂоÈŪ¤Ë¡¢=
¤Ï¡¢°ú¿ô¤¬¿ô¤ä¥Þ¡¼¥«¤Ç¤Ê¤¤¤È¡¢¥¨¥é¡¼¤òÄÌÃΤ·¤Þ¤¹¡£
¤·¤«¤·¤Ê¤¬¤é¡¢Emacs¤Î¾Íè¤ÎÈǤÇÀ°¿ô¤Îɽ¸½ÊýË¡¤òÊѹ¹¤¹¤ë¾ì¹ç¤ËÈ÷¤¨¤Æ¡¢
À°¿ô¤òÈæ³Ó¤¹¤ë¤È¤¤Ç¤¢¤Ã¤Æ¤â¡¢²Äǽ¤Ê¤é¤Ð¡¢=
¤ò»È¤¦¤Û¤¦¤¬¤è¤¤¤Ç¤·¤ç¤¦¡£
equal
¤Ç¿ô¤òÈæ³Ó¤·¤¿¤Û¤¦¤¬ÊØÍø¤Ê¤³¤È¤â¤¢¤ê¤Þ¤¹¡£
equal
¤Ï¡¢2¤Ä¤Î¿ô¤¬Æ±¤¸¥Ç¡¼¥¿·¿
¡Ê¤É¤Á¤é¤âÀ°¿ô¤Ç¤¢¤ë¤«¡¢¤É¤Á¤é¤âÉâÆ°¾®¿ôÅÀ¿ô¤Ç¤¢¤ë¡Ë¤Ç¡¢
Ʊ¤¸ÃͤǤ¢¤ì¤Ð¡¢2¤Ä¤Î¿ô¤òÅù¤·¤¤¤È°·¤¤¤Þ¤¹¡£
°ìÊý¡¢=
¤Ï¡¢À°¿ô¤ÈÉâÆ°¾®¿ôÅÀ¿ô¤¬Åù¤·¤¤¤³¤È¤ò°·¤¨¤Þ¤¹¡£
Ê̤Τ³¤È¤¬¤é¤â¤¢¤ê¤Þ¤¹¡£ ÉâÆ°¾®¿ôÅÀ¿ô±é»»¤Ï¸·Ì©¤Ç¤Ï¤Ê¤¤¤Î¤Ç¡¢ 2¤Ä¤ÎÉâÆ°¾®¿ôÅÀ¿ô¤¬Åù¤·¤¤¤«¤É¤¦¤«Ä´¤Ù¤ë¤Î¤ÏÀµ¤·¤¯¤¢¤ê¤Þ¤»¤ó¡£ ÉáÄÌ¡¢¶á»÷Ū¤ËÅù¤·¤¤¤³¤È¤òÄ´¤Ù¤ë¤Û¤¦¤¬¤è¤¤¤Î¤Ç¤¹¡£ ¤Ä¤®¤Î´Ø¿ô¤Ï¤½¤Î¤è¤¦¤Ë¤·¤Þ¤¹¡£
(defvar fuzz-factor 1.0e-6) (defun approx-equal (x y) (or (and (= x 0) (= y 0)) (< (/ (abs (- x y)) (max (abs x) (abs y))) fuzz-factor)))
Common Lisp¤Ë´Ø¤·¤¿Ãí°Õ¡§
Common Lisp¤Ç¤Ï¡¢¿ô¤ÎÈæ³Ó¤Ë¤Ï¤Ä¤Í¤Ë
=
¤ò»È¤¦É¬Íפ¬¤¢¤ë¡£ ¤È¤¤¤¦¤Î¤Ï¡¢Common Lisp¤Ç¤ÏÊ£¿ô¥ï¡¼¥É¤ÎÀ°¿ô¤ò¼ÂÁõ¤·¤Æ¤¤¤ë¤¿¤á¡¢ 2¤Ä¤Î°Û¤Ê¤ëÀ°¿ô¥ª¥Ö¥¸¥§¥¯¥È¤¬Æ±¤¸¿ôÃͤòɽ¤¹¤³¤È¤¬¤¢¤ê¤¨¤ë¡£ Emacs Lisp¤Ç¤Ï¡¢À°¿ôÃͤÎÈϰϤ¬À©¸Â¤µ¤ì¤Æ¤¤¤ë¤¿¤á¡¢ Ǥ°Õ¤ÎÃͤÎÀ°¿ô¥ª¥Ö¥¸¥§¥¯¥È¤Ï¤½¤ì¤¾¤ì1¤Ä¤·¤«¤Ê¤¤¡£
¤³¤Î´Ø¿ô¤Ï¡¢°ú¿ô¤¬¿ôÃÍŪ¤ËÅù¤·¤¤¤«Ä´¤Ù¡¢
¤½¤¦¤Ê¤é¤Ðt
¤òÊÖ¤·¡¢¤µ¤â¤Ê¤±¤ì¤Ðnil
¤òÊÖ¤¹¡£
¤³¤Î´Ø¿ô¤Ï¡¢°ú¿ô¤¬¿ôÃÍŪ¤ËÅù¤·¤¤¤«Ä´¤Ù¡¢
Åù¤·¤¯¤Ê¤±¤ì¤Ðt
¤òÊÖ¤·¡¢Åù¤·¤±¤ì¤Ðnil
¤òÊÖ¤¹¡£
¤³¤Î´Ø¿ô¤Ï¡¢Âè1°ú¿ô¤¬Âè2°ú¿ô¤è¤ê¾®¤µ¤¤¤«Ä´¤Ù¡¢
¤½¤¦¤Ê¤é¤Ðt
¤òÊÖ¤·¡¢¤µ¤â¤Ê¤±¤ì¤Ðnil
¤òÊÖ¤¹¡£
¤³¤Î´Ø¿ô¤Ï¡¢Âè1°ú¿ô¤¬Âè2°ú¿ô¤è¤ê¾®¤µ¤¤¤«¡¢¤¢¤ë¤¤¤Ï¡¢Åù¤·¤¤¤«Ä´¤Ù¡¢
¤½¤¦¤Ê¤é¤Ðt
¤òÊÖ¤·¡¢¤µ¤â¤Ê¤±¤ì¤Ðnil
¤òÊÖ¤¹¡£
¤³¤Î´Ø¿ô¤Ï¡¢Âè1°ú¿ô¤¬Âè2°ú¿ô¤è¤êÂ礤¤¤«Ä´¤Ù¡¢
¤½¤¦¤Ê¤é¤Ðt
¤òÊÖ¤·¡¢¤µ¤â¤Ê¤±¤ì¤Ðnil
¤òÊÖ¤¹¡£
¤³¤Î´Ø¿ô¤Ï¡¢Âè1°ú¿ô¤¬Âè2°ú¿ô¤è¤êÂ礤¤¤«¡¢¤¢¤ë¤¤¤Ï¡¢Åù¤·¤¤¤«Ä´¤Ù¡¢
¤½¤¦¤Ê¤é¤Ðt
¤òÊÖ¤·¡¢¤µ¤â¤Ê¤±¤ì¤Ðnil
¤òÊÖ¤¹¡£
¤³¤Î´Ø¿ô¤Ï¡¢°ú¿ô¤ÎÃæ¤ÇºÇÂç¤Î¤â¤Î¤òÊÖ¤¹¡£
(max 20) ⇒ 20 (max 1 2.5) ⇒ 2.5 (max 1 3 2.5) ⇒ 3
¤³¤Î´Ø¿ô¤Ï¡¢°ú¿ô¤ÎÃæ¤ÇºÇ¾®¤Î¤â¤Î¤òÊÖ¤¹¡£
(min -4 1) ⇒ -4
¤³¤Î´Ø¿ô¤Ï¡¢number¤ÎÀäÂÐÃͤòÊÖ¤¹¡£