Interface manual
Xen v3.0 for x86

Xen is Copyright (c) 2002-2005, The Xen Team
University of Cambridge, UK

DISCLAIMER: This documentation is always under active developmat and as
such there may be mistakes and omissions — watch out for these aptease re-
port any you find to the developer’s mailing list. The latest version is Avays
available on-line. Contributions of material, suggestions and correfons are wel-
come.

Contents

1 Introduction 1

2 Virtual Architecture 3
21 CPUstate e 3
2.2 Exceptions. e 4
2.3 Interruptsandevents e 4
24 TiIMe 4
25 XenCPUScheduling 5
2.6 Privilegedoperations 5

3 Memory 7
3.1 MemoryAllocation 7
3.2 Pseudo-PhysicalMemoryo 7
3.3 PageTableUpdates 8
3.4 WritablePage Tables, 9
3.5 ShadowPageTables 9
3.6 SegmentDescriptorTables 9
3.7 StartofDay 10
3.8 VMassists 10

4 Xen Info Pages 11
4.1 Sharedinfopage e 11
4.1.1 wvcpuinfot 12

4.1.2 wvcputimedinfo 13

4.1.3 archsharedinfot 14
4.2 Startinfopage 14

5 Event Channels 17
5.1 Hypercallinterface 17

6 Granttables 19
6.1 Interface 19

6.1.1 Granttable manipulation 19

6.1.2 Hypercalls 20
7 Xenstore 21
7.1 Guidelines 21
7.2 Storelayout 22
8 Devices 27
8.1 Networkl/O. 28
8.1.1 Backend PacketHandling 28
8.1.2 DataTransfer, 28
8.1.3 Networkringinterface 29
8.2 Blockl/O 31
8.21 DataTransfer 31
8.2.2 Blockringinterface., 31
83 Virtual TPM e 32
8.3.1 DataTransfer 32
8.3.2 \Virtual TPMringinterface 33
9 Further Information 35
9.1 Otherdocumentation, 35
9.2 Onlinereferences 35
9.3 Mailinglists 36
A Xen Hypercalls 37
A.l InvokingHypercalls., 37
A2 VirtualCPUSetup 38
A.3 SchedulingandTimer. 39
A.4 Page Table Management 40
A.5 Segmentation Support. 41
A.6 ContextSwitching, 42
A.7 Physical Memory Management 43
A.8 Inter-Domain Communication 43
A9 10 Configuration 44
A.10 Administrative Operations 45
A.11 Access Control Module Hypercalls 46
A.12 Debugging Hypercalls 47

Chapter 1

Introduction

Xen allows the hardware resources of a machine to be virtualized ananibaiby
partitioned, allowing multiple differenguest operating system images to be run si-
multaneously. Virtualizing the machine in this manner provides considerabikilflex
ity, for example allowing different users to choose their preferred aippgr system
(e.g., Linux, NetBSD, or a custom operating system). Furthermore, Xandas se-
cure partitioning between virtual machines (knowrdaswins in Xen terminology),
and enables better resource accounting and QoS isolation than caridvedatith a
conventional operating system.

Xen essentially takes a ‘whole machine’ virtualization approach as pichegrisM
VM/370. However, unlike VM/370 or more recent efforts such as VMaamd Virtual
PC, Xen does not attempt to completely virtualize the underlying hardwastealt
parts of the hosted guest operating systems are modified to work with the \th&Mi;
operating system is effectively ported to a new target architecture, tiypieguiring
changes in just the machine-dependent code. The user-level ARIhanged, and so
existing binaries and operating system distributions work without modification.

In addition to exporting virtualized instances of CPU, memory, network anckblo
devices, Xen exposes a control interface to manage how these res@uecshared
between the running domains. Access to the control interface is restrittediy
only be used by one specially-privileged VM, knowndmnain 0. This domain is a
required part of any Xen-based server and runs the applicationaseftivat manages
the control-plane aspects of the platform. Running the control softwatenmin O,
distinct from the hypervisor itself, allows the Xen framework to separatedtiens
of mechanism and policy within the system.

Chapter 2

Virtual Architecture

In a Xen/x86 system, only the hypervisor runs with full processor pgeiteting 0
in the x86 four-ring model). It has full access to the physical memory dlaiia the
system and is responsible for allocating portions of it to running domains.

On a 32-bit x86 system, guest operating systems mayingel, 2 and3 as they see
fit. Segmentation is used to prevent the guest OS from accessing the pufrtiom
address space that is reserved for Xen. We expect most gueatingeystems will
use ring 1 for their own operation and place applications in ring 3.

On 64-bit systems it is not possible to protect the hypervisor from unttggstest code
running in rings 1 and 2. Guests are therefore restricted to run in rinty3Tme guest
kernel is protected from its applications by context switching between tmekand
currently running application.

In this chapter we consider the basic virtual architecture provided by Bl state,
exception and interrupt handling, and time. Other aspects such as mendalg\daoe
access are discussed in later chapters.

2.1 CPU state

All privileged state must be handled by Xen. The guest OS has no doeesato CR3
and is not permitted to update privileged bits in EFLAGS. Guest OSebypsecalls
to invoke operations in Xen; these are analogous to system calls butfomeuing 1
to ring 0.

A list of all hypercalls is given in Appendix A.

2.2 Exceptions

A virtual IDT is provided — a domain can submit a table of trap handlers to Xan v
the settrap _table hypercall. The exception stack frame presented to a virtual trap
handler is identical to its native equivalent.

2.3 Interrupts and events

Interrupts are virtualized by mapping them eegent channels, which are delivered
asynchronously to the target domain using a callback supplied visetteallbacks
hypercall. A guest OS can map these events onto its standard interrugctiispech-
anisms. Xen is responsible for determining the target domain that will handke ea
physical interrupt source. For more details on the binding of eventesuo event
channels, see Chapter 8.

2.4 Time

Guest operating systems need to be aware of the passage of bothr ngall¢tock)
time and their own ‘virtual time’ (the time for which they have been executing)- Fu
thermore, Xen has a notion of time which is used for scheduling. The follomatigns

of time are provided:

Cycle counter time. This provides a fine-grained time reference. The cycle counter
time is used to accurately extrapolate the other time references. On SMP ma-
chines it is currently assumed that the cycle counter time is synchronized be-
tween CPUs. The current x86-based implementation achieves this within inter-
CPU communication latencies.

System time. This is a 64-bit counter which holds the number of nanoseconds that
have elapsed since system boot.

Wall clock time. This is the time of day in a Unix-stylstruct timeval (seconds and
microseconds since 1 January 1970, adjusted by leap seconds). RclNht
hosted bydomain 0 can keep this value accurate.

Domain virtual time. This progresses at the same pace as system time, but only while
a domain is executing — it stops while a domain is de-scheduled. Therefore the
share of the CPU that a domain receives is indicated by the rate at which its
virtual time increases.

Xen exports timestamps for system time and wall-clock time to guest operating sys-
tems through a shared page of memory. Xen also provides the cycle ctionatert the
instant the timestamps were calculated, and the CPU frequency in Hertz.I[dhis a

the guest to extrapolate system and wall-clock times accurately based auritbet c
cycle counter time.

Since all time stamps need to be updated and agadically a version number is also
stored in the shared info page, which is incremented before and aftatimgpdhe
timestamps. Thus a guest can be sure that it read a consistent state kingliee
two version numbers are equal and even.

Xen includes a periodic ticker which sends a timer event to the currenthutngc
domain every 10ms. The Xen scheduler also sends a timer event whardwerain
is scheduled; this allows the guest OS to adjust for the time that has passedtwh
has been inactive. In addition, Xen allows each domain to request thatebelye a
timer event sent at a specified system time by using#téimer _op hypercall. Guest
OSes may use this timer to implement timeout values when they block.

2.5 Xen CPU Scheduling

Xen offers a uniform API for CPU schedulers. It is possible to chdos® a num-
ber of schedulers at boot and it should be easy to add more. The SkDEradit
schedulers are part of the normal Xen distribution. SEDF will be going amalyits
use should be avoided once the credit scheduler has stabilized amiebdmdefault.
The Credit scheduler provides proportional fair shares of the hGgtlds to the run-
ning domains. It does this while transparently load balancing runnable ¢@etdss
the whole system.

Note: SMP host support Xen has always supported SMP host systems. When using
the credit scheduler, a domain’s VCPUs will be dynamically moved acrogsiqath
CPUs to maximise domain and system throughput. VCPUs can also be manually
restricted to be mapped only on a subset of the host’s physical CPUg thsipinning
mechanism.

2.6 Privileged operations

Xen exports an extended interface to privileged domains Ramain 0). This allows
such domains to build and boot other domains on the server, and prowdasic
interfaces for managing scheduling, memory, networking, and block eevic

Chapter 3

Memory

Xen is responsible for managing the allocation of physical memory to domaids, a
for ensuring safe use of the paging and segmentation hardware.

3.1 Memory Allocation

As well as allocating a portion of physical memory for its own private use ¥so
reserves s small fixed portion of every virtual address space. Thisaselb in the
top 64MB on 32-bit systems, the top 168MB on PAE systems, and a largéorpor
the middle of the address space on 64-bit systems. Unreserved physicairy is
available for allocation to domains at a page granularity. Xen tracks thershipeind
use of each page, which allows it to enforce secure partitioning betweraids.

Each domain has a maximum and current physical memory allocation. A guest OS
may run a ‘balloon driver’ to dynamically adjust its current memory allocatipricu
its limit.

3.2 Pseudo-Physical Memory

Since physical memory is allocated and freed on a page granularity, thergisran-
tee that a domain will receive a contiguous stretch of physical memory. vowsost
operating systems do not have good support for operating in a fraginghysical
address space. To aid porting such operating systems to run on top ,of/Xemake a
distinction betweemachine memory andpseudo-physical memory.

Put simply, machine memory refers to the entire amount of memory installed in the
machine, including that reserved by Xen, in use by various domains, rogntly
unallocated. We consider machine memory to comprise a set ofnddBine page
frames numbered consecutively starting from 0. Machine frame numbers mean the
same within Xen or any domain.

Pseudo-physical memory, on the other hand, is a per-domain abstradtt@liows a
guest operating system to consider its memory allocation to consist of a caundigu
range of physical page frames starting at physical frame 0, despitad¢héhhfit the
underlying machine page frames may be sparsely allocated and in any order

To achieve this, Xen maintains a globally readatkzhine-to-physical table which
records the mapping from machine page frames to pseudo-physicalloraeklition,
each domain is supplied withghysi cal-to-machine table which performs the inverse
mapping. Clearly the machine-to-physical table has size proportional tortberda of
RAM installed in the machine, while each physical-to-machine table has sizerprop
tional to the memory allocation of the given domain.

Architecture dependent code in guest operating systems can then tise tables to
provide the abstraction of pseudo-physical memory. In general, onigicespecial-
ized parts of the operating system (such as page table management) needsrto
stand the difference between machine and pseudo-physical addresse

3.3 Page Table Updates

In the default mode of operation, Xen enforces read-only accessgt tphles and
requires guest operating systems to explicitly request any modificationsvaXidates
all such requests and only applies updates that it deems safe. This ssamgce
prevent domains from adding arbitrary mappings to their page tables.

To aid validation, Xen associates a type and reference count with eachrynpage.

A page has one of the following mutually-exclusive types at any point in tiragep
directory D), page tableRT), local descriptor tablelLOT), global descriptor table
(GDT), or writable RW). Note that a guest OS may always create readable mappings
of its own memory regardless of its current type.

This mechanism is used to maintain the invariants required for safety; fonm&a
a domain cannot have a writable mapping to any part of a page table as tHé wou
require the page concerned to simultaneously be of tPfesndRW.

mmu_update(mmu_update_t *req, int count, int *success_count, domid_t domid)

This hypercall is used to make updates to either the domain’s pagetables @ to th
machine to physical mapping table. It supports submitting a queue of upalétasng
batching for maximal performance. Explicitly queuing updates using this atexwill
cause any outstanding writable pagetable state to be flushed from the system.

3.4 Writable Page Tables

Xen also provides an alternative mode of operation in which guests havéugien
that their page tables are directly writable. Of course this is not really thee sexe
Xen must still validate modifications to ensure secure partitioning. To this eenl, X
traps any write attempt to a memory page of tyE (i.e., that is currently part of a
page table). If such an access occurs, Xen temporarily allows writssatwéhat page
while at the same timelisconnecting it from the page table that is currently in use.
This allows the guest to safely make updates to the page because the peatgel
entries cannot be used by the MMU until Xen revalidates and reconnecisate.
Reconnection occurs automatically in a number of situations: for example tlbe
guest modifies a different page-table page, when the domain is preemptdtenever
the guest uses Xen'’s explicit page-table update interfaces.

Writable pagetable functionality is enabled when the guest requests it, ugimgasist
hypercall. Writable pagetables aot provide full virtualisation of the MMU, so the
memory management code of the guest still needs to be aware that it is rmming
Xen. Since the guest’s page tables are used directly, it must translatiopseysical
addresses to real machine addresses when building page table ertdagieEt may

not attempt to map its own pagetables writably, since this would violate the memory
type invariants; page tables will automatically be made writable by the hyperasor
necessary.

3.5 Shadow Page Tables

Finally, Xen also supports a form shadow page tables in which the guest OS uses

a independent copy of page tables which are unknown to the hardveanetiich are
never pointed to bgr3). Instead Xen propagates changes made to the guest’s tables
to the real ones, and vice versa. This is useful for logging page wstgs for live
migration or checkpoint). A full version of the shadow page tables also altpvest

OS porting with less effort.

3.6 Segment Descriptor Tables

At start of day a guest is supplied with a default GDT, which does nateesithin its
own memory allocation. If the guest wishes to use other than the defaultrifigt’l
and ring-3 segments that this GDT provides, it must register a custom G@'dran
LDT with Xen, allocated from its own memory.

The following hypercall is used to specify a new GDT:

int setgdt(unsigned long frame._list, int entries)

frame_list: An array of up to 14 machine page frames within which the
GDT resides. Any frame registered as a GDT frame may only be mapped
read-only within the guest’'s address space (e.g., no writable mappings,
no use as a page-table page, and so on). Only 14 pages may be specified
because pages 15 and 16 are reserved for the hypervisor's Gbdsen

entries. The number of descriptor-entry slots in the GDT.

The LDT is updated via the generic MMU update mechanism (i.e., vientha_update
hypercall.

3.7 Start of Day

The start-of-day environment for guest operating systems is ratheratiff to that
provided by the underlying hardware. In particular, the processdready executing
in protected mode with paging enabled.

Domain O is created and booted by Xen itself. For all subsequent domains, the ana-
logue of the boot-loader is thdowmain builder, user-space software runningdomain

0. The domain builder is responsible for building the initial page tables for a thoma
and loading its kernel image at the appropriate virtual address.

3.8 VM assists

Xen provides a number of “assists” for guest memory management. Thresgall-
able on an “opt-in” basis to provide commonly-used extra functionality to atgue
vm_assist(unsigned int cmd, unsigned int type)

The cmd parameter describes the action to be taken, whilstythe parameter de-
scribes the kind of assist that is being referred to. Available commands &odows:

VMASST _CMD _enable Enable a particular assist type
VMASST _CMD _disable Disable a particular assist type
And the available types are:

VMASST _TYPE _4gb_segmentsProvide emulated support for instructions that rely
on 4GB segments (such as the techniques used by some TLS solutions).

VMASST TYPE _4gb_segmentsnotify Provide a callback to the guest if the above
segment fixups are used: allows the guest to display a warning messagg du
boot.

VMASST TYPE _writable pagetables Enable writable pagetable mode - described
above.

10

Chapter 4

Xen Info Pages

The Shared info pageis used to share various CPU-related state between the guest
OS and the hypervisor. This information includes VCPU status, time information
and event channel (virtual interrupt) state. Ttart info page is used to pass build-
time information to the guest when it boots and when it is resumed from a siespen
state. This chapter documents the fields included istia@ed.info _t andstart _info _t
structures for use by the guest OS.

4.1 Shared info page

Theshared.info_t is accessed at run time by both Xen and the guest OS. It is used to
pass information relating to the virtual CPU and virtual machine state betwe@%he
and the hypervisor.

The structure is declared ken/include/public/xen.h

typedef struct shared_info {
vepu_info_t vepu_info[MAX_VIRT_CPUS];

| *
* A domain can create "event channels" on which it can send and r eceive
* asynchronous event notifications. There are three classes of event that
* are delivered by this mechanism:
* 1. Bi-directional inter- and intra-domain connections. Do mains must
* arrange out-of-band to set up a connection (usually by alloc ating
* an unbound ’listener’ port and avertising that via a storage service
* such as xenstore).
* 2. Physical interrupts. A domain with suitable hardware-ac cess
* privileges can bind an event-channel port to a physical inte rrupt
* source.
* 3. Virtual interrupts (‘events’). A domain can bind an event -channel
* port to a virtual interrupt source, such as the virtual-time r
* device or the emergency console.
*
* Event channels are addressed by a "port index". Each channel is
* associated with two bits of information:
+ 1. PENDING -- notifies the domain that there is a pending noti fication

11

* to be processed. This bit is cleared by the guest.

* 2. MASK -- if this bit is clear then a 0->1 transition of PENDIN G

* will cause an asynchronous upcall to be scheduled. This bit i s only
* updated by the guest. It is read-only within Xen. If a channel

* becomes pending while the channel is masked then the ’'edge’ i s lost
* (i.e., when the channel is unmasked, the guest must manually handle
* pending notifications as no upcall will be scheduled by Xen)

*

* To expedite scanning of pending notifications, any 0->1 pen ding

* transition on an unmasked channel causes a corresponding bi tina

* per-vcpu selector word to be set. Each bit in the selector cov ers a

* 'C long’ in the PENDING bhitfield array.

*/

unsigned long evtchn_pending[sizeof(unsigned long) * 8);

unsigned long evtchn_mask[sizeof(unsigned long) * 8];

[*

* Wallclock time: updated only by control software. Guests sh ould base

+ their gettimeofday() syscall on this wallclock-base value

*/

uint32_t wc_version; / * Version counter: see vcpu_time_info_t. */
uint32_t wc_sec; / * Secs 00:00:00 UTC, Jan 1, 1970. */

uint32_t wc_nsec; / * Nsecs 00:00:00 UTC, Jan 1, 1970. */

arch_shared_info_t arch;
} shared_info_t;

vepu.info An array ofvepu.info_t structures, each of which holds either runtime in-
formation about a virtual CPU, or is “empty” if the corresponding VCPU does
not exist.

evtchn_pending Guest-global array, with one bit per event channel. Bits are set if an
event is currently pending on that channel.

evtchn.mask Guest-global array for masking notifications on event channels.
wc_version Version counter for current wallclock time.

wc_sec Whole seconds component of current wallclock time.

wc_nsec Nanoseconds component of current wallclock time.

arch Host architecture-dependent portion of the shared info structure.

4.1.1 vcpuinfo_t

typedef struct vcpu_info {

[*
* ’'evtchn_upcall_pending’ is written non-zero by Xen to indi cate
* a pending notification for a particular VCPU. It is then clea red
* by the guest OS /before/ checking for pending work, thus avoi ding
* a set-and-check race. Note that the mask is only accessed by X en
* on the CPU that is currently hosting the VCPU. This means that the
+ pending and mask flags can be updated by the guest without spe cial

* synchronisation (i.e., no need for the x86 LOCK prefix).
* This may seem suboptimal because if the pending flag is set by
* a different CPU then an IPl may be scheduled even when the mask

12

* is set. However, note:

* 1. The task of ’interrupt holdoff' is covered by the per-even t-

* channel mask bits. A ’'noisy’ event that is continually being

* triggered can be masked at source at this very precise

* granularity.

* 2. The main purpose of the per-VCPU mask is therefore to restr ict
* reentrant execution: whether for concurrency control, or t (o]

* prevent unbounded stack usage. Whatever the purpose, we exp ect
* that the mask will be asserted only for short periods at a time ,
* and so the likelihood of a ’'spurious’ IPI is suitably small.

* The mask is read before making an event upcall to the guest: a

* non-zero mask therefore guarantees that the VCPU will not re ceive
* an upcall activation. The mask is cleared when the VCPU reque sts

* to block: this avoids wakeup-waiting races.

*/

uint8_t evtchn_upcall_pending;
uint8_t evtchn_upcall_mask;
unsigned long evtchn_pending_sel;
arch_vcpu_info_t arch;
vcpu_time_info_t time;
} vepu_info_t; / * 64 bytes (x86) */
evtchn_upcall_pending This is set non-zero by Xen to indicate that there are pending

events to be received.

evichn.upcall_mask This is set non-zero to disable all interrupts for this CPU for
short periods of time. If individual event channels need to be masked, th
evtichn.maskin theshared.info_t is used instead.

evichn_pending sel When an event is delivered to this VCPU, a bit is set in this se-
lector to indicate which word of thevtchn pending array in theshared.info _t
contains the event in question.

arch Architecture-specific VCPU info. On x86 this contains the virtualized CR2 re
ister (page fault linear address) for this VCPU.

time Time values for this VCPU.

4.1.2 vcputime_info

typedef struct vcpu_time_info {

[*

* Updates to the following values are preceded and followed by an

* increment of 'version’. The guest can therefore detect upda tes by

* looking for changes to 'version'. If the least-significant bit of

* the version number is set then an update is in progress and the guest
* must wait to read a consistent set of values.

* The correct way to interact with the version number is simila r to

* Linux’s seqglock: see the implementations of read_seqgbegin Iread_seqretry.
*/

uint32_t version;

uint32_t pado;

uinté4_t tsc_timestamp; / * TSC at last update of time vals. */

uinté4_t system_time; / * Time, in nanosecs, since boot. */

[*

* Current system time:

* system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul

13

* CPU frequency (Hz):
* ((10"9 << 32) / tsc_to_system_mul) >> tsc_shift
*/
uint32_t tsc_to_system_mul;
int8_t tsc_shift;
int8_t padl[3];
} vepu_time_info_t; / * 32 bytes */

version Used to ensure the guest gets consistent time updates.

tsc_timestamp Cycle counter timestamp of last time value; could be used to expolate
in between updates, for instance.

systemtime Time since boot (nanoseconds).

tsc.to_systemmul Cycle counter to nanoseconds multiplier (used in extrapolating
current time).

tsc_shift Cycle counter to nanoseconds shift (used in extrapolating current time).

4.1.3 archshared.info_t

On x86, thearch_shared.info_t is defined as follows (from xen/public/arch-x3@.h):

typedef struct arch_shared_info {
unsigned long max_pfn; / * max pfn that appears in table */
/* Frame containing list of mfns containing list of mfns contai ning p2m. */
unsigned long pfn_to_mfn_frame_list_list;

} arch_shared_info_t;

max_pfn The maximum PFN listed in the physical-to-machine mapping table (P2M

table).

pfn_to_mfn_frame_list_list Machine address of the frame that contains the machine
addresses of the P2M table frames.

4.2 Startinfo page

The start info structure is declared as the followingx@m/include/public/xen.h:

#define MAX_GUEST_CMDLINE 1024
typedef struct start_info {
/* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME =*/

char magic[32]; / * "Xen-<version>.<subversion>". */

unsigned long nr_pages; / * Total pages allocated to this domain. */
unsigned long shared_info; / * MACHINE address of shared info struct. */
uint32_t flags; / * SIF_xxx flags. */
unsigned long store_mfn; / * MACHINE page number of shared page. */
uint32_t store_evtchn; / * Event channel for store communication. */
unsigned long console_mfn; / * MACHINE address of console page. */
uint32_t console_evtchn; / * Event channel for console messages. */
/* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME) */
unsigned long pt_base; / * VIRTUAL address of page directory. */
unsigned long nr_pt_frames; / * Number of bootstrap p.t. frames. */
unsigned long mfn_list; / * VIRTUAL address of page-frame list. */

14

unsigned long mod_start; / * VIRTUAL address of pre-loaded module. */
unsigned long mod_len; / * Size (bytes) of pre-loaded module. */
int8_t cmd_line[]MAX_GUEST_CMDLINE];

} start_info_t;

The fields are in two groups: the first group are always filled in whenraailo is
booted or resumed, the second set are only used at boot time.

The always-available group is as follows:
magic A text string identifying the Xen version to the guest.
nr_pages The number of real machine pages available to the guest.

shared.info Machine address of the shared info structure, allowing the guest to map
it during initialisation.

flags Flags for describing optional extra settings to the guest.

store_mfn Machine address of the Xenstore communications page.
store_evtchn Event channel to communicate with the store.

consolemfn Machine address of the console data page.

consoleevtchn Event channel to notify the console backend.

The boot-only group may only be safely referred to during system boot:
pt_base Virtual address of the page directory created for us by the domain huilder
nr_pt_frames Number of frames used by the builders’ bootstrap pagetables.
mfn_list Virtual address of the list of machine frames this domain owns.
mod_start Virtual address of any pre-loaded modules (e.g. ramdisk)
mod_len Size of pre-loaded module (if any).

cmd_line Kernel command line passed by the domain builder.

15

16

Chapter 5

Event Channels

Event channels are the basic primitive provided by Xen for event ndidfite An
event is the Xen equivalent of a hardware interrupt. They essentialy ste bit of
information, the event of interest is signalled by transitioning this bit from Q to 1

Notifications are received by a guest via an upcall from Xen, indicatimgnman event
arrives (setting the bit). Further notifications are masked until the bit isetdeagain

(therefore, guests must check the value of the bit after re-enabling deévery to

ensure no missed notifications).

Event notifications can be masked by setting a flag; this is equivalent tolidigab
interrupts and can be used to ensure atomicity of certain operations in tstekgtreel.

5.1 Hypercall interface

event_channel_op(evtchn_op_t *op)

The event channel operation hypercall is used for all operationwvemt ehannels /
ports. Operations are distinguished by the value ofctind field of theop structure.
The possible commands are described below:

EVTCHNOP _alloc_unbound Allocate a new event channel port, ready to be con-
nected to by a remote domain.

e Specified domain must exist.
e A free port must exist in that domain.

Unprivileged domains may only allocate their own ports, privileged domains
may also allocate ports in other domains.

EVTCHNOP _bind_interdomain Bind an event channel for interdomain communi-
cations.

e Caller domain must have a free port to bind.

17

¢ Remote domain must exist.

e Remote port must be allocated and currently unbound.

e Remote port must be expecting the caller domain as the “remote”.
EVTCHNORP _bind _virg Allocate a port and bind a VIRQ to it.

e Caller domain must have a free port to bind.

e VIRQ must be valid.

e VCPU must exist.

¢ VIRQ must not currently be bound to an event channel.
EVTCHNOP _bind_ipi Allocate and bind a port for notifying other virtual CPUs.

e Caller domain must have a free port to bind.

e VCPU must exist.
EVTCHNOP _bind _pirqg Allocate and bind a port to a real IRQ.

Caller domain must have a free port to bind.

e PIRQ must be within the valid range.

Another binding for this PIRQ must not exist for this domain.
e Caller must have an available port.

EVTCHNOP _close Close an event channel (no more events will be received).
e Port must be valid (currently allocated).

EVTCHNOP _send Send a notification on an event channel attached to a port.
e Port must be valid.
e Only valid for Interdomain, IPI or Allocated Unbound ports.

EVTCHNOP _status Query the status of a port; what kind of port, whether itis bound,
what remote domain is expected, what PIRQ or VIRQ itis bound to, whatyCP
will be notified, etc. Unprivileged domains may only query the state of their own
ports. Privileged domains may query any port.

EVTCHNOP _bind _vcpu Bind event channel to a particular VCPU - receive notifica-
tion upcalls only on that VCPU.

e VCPU must exist.
e Port must be valid.

e Event channel must be either: allocated but unbound, bound to andnterd
main event channel, bound to a PIRQ.

18

Chapter 6

Grant tables

Xen's grant tables provide a generic mechanism to memory sharing betlwaeins.
This shared memory interface underpins the split device drivers fok lalod network
10.

Each domain has its owgrant table. This is a data structure that is shared with Xen;

it allows the domain to tell Xen what kind of permissions other domains have on its
pages. Entries in the grant table are identifiedynt references A grant reference

is aninteger, which indexes into the grant table. It acts as a capability wisigiidhtee

can use to perform operations on the granter’s memory.

This capability-based system allows shared-memory communications betng@n u
ileged domains. A grant reference also encapsulates the details ofed $lzaye, re-
moving the need for a domain to know the real machine address of a pagledtiisgs
This makes it possible to share memaory correctly with domains running in fully-virtu
alised memory.

6.1 Interface

6.1.1 Grant table manipulation

Creating and destroying grant references is done by direct accéss ¢ant table.
This removes the need to involve Xen when creating grant referencelfying ac-
cess permissions, etc. The grantee domain will invoke hypercalls to useahe g
references. Four main operations can be accomplished by directly maimguitze
table:

Grant foreign accessallocate a new entry in the grant table and fill out the access
permissions accordingly. The access permissions will be looked up bykem
the grantee attempts to use the reference to map the granted frame.

End foreign accesscheck that the grant reference is not currently in use, then remove

19

the mapping permissions for the frame. This prevents further mappings from
taking place but does not allow forced revocations of existing mappings.

Grant foreign transfer allocate a new entry in the table specifying transfer permis-
sions for the grantee. Xen will look up this entry when the grantee attempts to
transfer a frame to the granter.

End foreign transfer remove permissions to prevent a transfer occurring in future. If
the transfer is already committed, modifying the grant table cannot prevent it
from completing.

6.1.2 Hypercalls

Use of grant references is accomplished via a hypercall. The grdaetdplhypercall
takes three arguments:
grant_table_op(unsigned int cmd, void *uop, unsigned int count)

cmd indicates the grant table operation of interesbp is a pointer to a structure
(or an array of structures) describing the operation to be performeecdunt field
describes how many grant table operations are being batched together.

The core logic is situated iren/common/granttable.c. The grant table operation
hypercall can be used to perform the following actions:

GNTTABOP _map_grant_ref Given a grant reference from another domain, map the
referred page into the caller's address space.

GNTTABOP _unmap_grant_ref Remove a mapping to a granted frame from the caller’s
address space. Thisis used to voluntarily relinquish a mapping to a graged p

GNTTABOP _setup.table Setup grant table for caller domain.
GNTTABOP _dump_table Debugging operation.

GNTTABOP _transfer Given atransfer reference from another domain, transfer own-
ership of a page frame to that domain.

20

Chapter 7

Xenstore

Xenstore is the mechanism by which control-plane activities occur. Tlaséias
include:

e Setting up shared memory regions and event channels for use with theesplit d
vice drivers.

¢ Notifying the guest of control events (e.g. balloon driver requests)

e Reporting back status information from the guest (e.g. performancedelate
statistics, etc).

The store is arranged as a hierachical collection of key-value paict. deanain has a
directory hierarchy containing data related to its configuration. Domainseaneitped
to register for notifications about changes in subtrees of the store, apgliochanges
to the store transactionally.

7.1 Guidelines

A few principles govern the operation of the store:
e Domains should only modify the contents of their own directories.

e The setup protocol for a device channel should simply consist of egtéra
configuration data into the store.

e The store should allow device discovery without requiring the relevavitee
drivers to be loaded: a Xen “bus” should be visible to probing code intlestg

e The store should be usable for inter-tool communications, allowing the tools
themselves to be decomposed into a number of smaller utilities, rather than a
single monolithic entity. This also facilitates the development of alternate user
interfaces to the same functionality.

21

7.2 Store layout

There are three main paths in XenStore:

/vm stores configuration information about domain

/local/domain stores information about the domain on the local node (domid, etc.)
ftool stores information for the various tools

The/vm path stores configuration information for a domain. This information doesn't
change and is indexed by the domain’s UUID./Mn entry contains the following
information:

uuid uuid of the domain (somewhat redundant)

on_reboot the action to take on a domain reboot request (destroy or restart)
on_poweroff the action to take on a domain halt request (destroy or restart)
on_crash the action to take on a domain crash (destroy or restart)

vcpus the number of allocated vcpus for the domain

memory the amount of memory (in megabytes) for the domain Note: appears to
sometimes be empty for domain-0

vcpu_avail the number of active vcpus for the domain (vepus - number of disabled
vcpus)

name the name of the domain

Ivm/<uuid >/image/

The image path is only available for Domain-Us and contains:
ostype identifies the builder type (linux or vmx)

kernel path to kernel on domain-0

cmdline command line to pass to domain-U kernel

ramdisk path to ramdisk on domain-0

/local

The/local path currently only contains one directofigcal/domain that is
indexed by domain id. It contains the running domain information. The readuave
two storage areas is that during migration, the uuid doesn’t change bdothain id
does. Thelocal/domain directory can be created and populated before finalizing
the migration enabling localhost to localhost migration.

/local/domain/<domid>
This path contains:

cpu_time xend start time (this is only around for domain-0)

22

handle private handle for xend
name see /vm
on_reboot see /vm
on_poweroff see /vm
on_crash see /vm
vm the path to the VM directory for the domain
domid the domain id (somewhat redundant)
running indicates that the domain is currently running
memory the current memory in megabytes for the domain (empty for domain-07?)
maxmemKiB the maximum memory for the domain (in kilobytes)
memory_KiB the memory allocated to the domain (in kilobytes)
cpu the current CPU the domain is pinned to (empty for domain-0?)
cpu_weight the weight assigned to the domain
vcpu_avail a bitmap telling the domain whether it may use a given VCPU
online_vcpus how many vcpus are currently online
vcpus the total number of vcpus allocated to the domain
console/ a directory for console information
ring-ref the grant table reference of the console ring queue
port the event channel being used for the console ring queue (local port)
tty the current tty the console data is being exposed of
limit the limit (in bytes) of console data to buffer
backend/ a directory containing all backends the domain hosts
vbd/ a directory containing vbd backends
<domid>/ a directory containing vbd’s for domid
<virtual-device>/ a directory for a particular virtual-device on do-
mid
frontend-id domain id of frontend
frontend the path to the frontend domain
physical-device backend device number
sector-size backend sector size
info O read/write, 1 read-only (is this right?)

domain name of frontend domain

23

params parameters for device
type the type of the device
dev the virtual device (as given by the user)
node output from block creation script
vif/ a directory containing vif backends
<domid>/ a directory containing vif's for domid
<vif number >/ a directory for each vif
frontend-id the domain id of the frontend
frontend the path to the frontend
mac the mac address of the vif
bridge the bridge the vif is connected to
handle the handle of the vif
script the script used to create/stop the vif
domain the name of the frontend
vtpm/ a directory containing vtpm backends
<domid>/ a directory containing vtpm’s for domid
<vtpm number>/ a directory for each vtpm
frontend-id the domain id of the frontend
frontend the path to the frontend
instance the instance of the virtual TPM that is used

pref_instance the instance number as given in the VM configuration
file; may be different froninstance

domain the name of the domain of the frontend
device/ a directory containing the frontend devices for the domain
vbd/ a directory containing vbd frontend devices for the domain

<virtual-device>/ a directory containing the vbd frontend for virtual-
device

virtual-device the device number of the frontend device
backend-id the domain id of the backend

backend the path of the backend in the store (/local/domain path)
ring-ref the grant table reference for the block request ring queue

event-channel the event channel used for the block request ring queue

24

vif/ a directory containing vif frontend devices for the domain
<id>/ adirectory for vif id frontend device for the domain
backend-id the backend domain id
mac the mac address of the vif
handle the internal vif handle
backend a path to the backend’s store entry

tx-ring-ref the grant table reference for the transmission ring
queue

rx-ring-ref the grant table reference for the receiving ring queue
event-channel the event channel used for the two ring queues
vtpm/ a directory containing the vtpm frontend device for the domain
<id> adirectory for vtpm id frontend device for the domain
backend-id the backend domain id
backend a path to the backend’s store entry
ring-ref the grant table reference for the tx/rx ring
event-channel the event channel used for the ring
device-misc/ miscellanous information for devices
vif/ miscellanous information for vif devices
nextDevicelD the next device id to use
security/ access control information for the domain
ssidref security reference identifier used inside the hypervisor
accesscontrol/ security label used by management tools
label security label name
policy security policy name
store/ per-domain information for the store
port the event channel used for the store ring queue
ring-ref - the grant table reference used for the store’s communication channel

image - private xend information

25

26

Chapter 8

Devices

Virtual devices under Xen are provided bysplit device driver architecture. The
illusion of the virtual device is provided by two co-operating drivers: fioatend,
which runs an the unprivileged domain and baekend, which runs in a domain with
access to the real device hardware (often callddweer domain; in practice domain
0 usually fulfills this function).

The frontend driver appears to the unprivileged guest as if it weeakdevice, for
instance a block or network device. It receives 10 requests from itsekas usual,
however since it does not have access to the physical hardware gfdtem it must
then issue requests to the backend. The backend driver is respdosibdeeiving
these 10 requests, verifying that they are safe and then issuing themreatltevice
hardware. The backend driver appears to its kernel as a nornrabfusekernel 10
functionality. When the IO completes the backend notifies the frontend thdathes
ready for use; the frontend is then able to report IO completion to its owreker

Frontend drivers are designed to be simple; most of the complexity is in tikerihc
which has responsibility for translating device addresses, verifyingrdupiests are
well-formed and do not violate isolation guarantees, etc.

Split drivers exchange requests and responses in shared memorgnvetkent chan-
nel for asynchronous notifications of activity. When the frontendedroomes up, it
uses Xenstore to set up a shared memory frame and an interdomain ememélcior

communications with the backend. Once this connection is established, thenwo ca

communicate directly by placing requests / responses into shared memotiyesind
sending notifications on the event channel. This separation of notificatondata
transfer allows message batching, and results in very efficient deviessac

This chapter focuses on some individual split device interfaces avaitalken guests.

27

8.1 Network I/O

Virtual network device services are provided by shared memory comntiomaaith

a backend domain. From the point of view of other domains, the backendmay
viewed as a virtual ethernet switch element with each domain having one & mor
virtual network interfaces connected to it.

From the point of view of the backend domain itself, the network backerdrdron-

sists of a number of ethernet devices. Each of these has a logical @irewtction to
a virtual network device in another domain. This allows the backend domaiute,r
bridge, firewall, etc the traffic to / from the other domains using normal aijvey

system mechanisms.

8.1.1 Backend Packet Handling

The backend driver is responsible for a variety of actions relating to amsrmission
and reception of packets from the physical device. With regard to trasiemjshe
backend performs these key actions:

e Validation: To ensure that domains do not attempt to generate invalid (e.g.
spoofed) traffic, the backend driver may validate headers ensurtigdhirce
MAC and IP addresses match the interface that they have been sent from.

Validation functions can be configured using standard firewall ripesb(es
in the case of Linux).

e Scheduling: Since a number of domains can share a single physical network
interface, the backend must mediate access when several domainsagach h
packets queued for transmission. This general scheduling functicusigs
basic shaping or rate-limiting schemes.

e Logging and Accounting: The backend domain can be configured with clas-
sifier rules that control how packets are accounted or logged. For éxalog
messages might be generated whenever a domain attempts to send a TGP packe
containing a SYN.

On receipt of incoming packets, the backend acts as a simple demultiplex&et®a
are passed to the appropriate virtual interface after any necessgiydand account-
ing have been carried out.

8.1.2 Data Transfer
Each virtual interface uses two “descriptor rings”, one for transmit, therdor re-

ceive. Each descriptor identifies a block of contiguous machine memonatdibto
the domain.

28

The transmit ring carries packets to transmit from the guest to the backendiml
The return path of the transmit ring carries messages indicating that theitsonéee
been physically transmitted and the backend no longer requires the asdquages
of memory.

To receive packets, the guest places descriptors of unused pages keceive ring.
The backend will return received packets by exchanging these patfes domain’s
memory with new pages containing the received data, and passing baxlpties

regarding the new packets on the ring. This zero-copy approach ahevisckend to
maintain a pool of free pages to receive packets into, and then delivarttheppro-
priate domains after examining their headers.

If a domain does not keep its receive ring stocked with empty buffers thekeps
destined to it may be dropped. This provides some defence againsterdicelock
problems because an overloaded domain will cease to receive furterSiailarly,
on the transmit path, it provides the application with feedback on the rateiahwh
packets are able to leave the system.

Flow control on rings is achieved by including a pair of producer indexabe shared

ring page. Each side will maintain a private consumer index indicating theomgxt
standing message. In this manner, the domains cooperate to divide the ritganto
message lists, one in each direction. Notification is decoupled from the immediate
placement of new messages on the ring; the event channel will be usetdcate
notification wheneither a certain number of outstanding messages are quened,
specified number of nanoseconds have elapsed since the oldestengasaijaced on

the ring.

8.1.3 Network ring interface

The network device uses two shared memory rings for communication: otrars-
mit, one for receive.

Transmit requests are described by the following structure:

typedef struct netif_tx_request {

grant_ref_t gref; / *» Reference to buffer page */
uintl6_t offset; / * Offset within buffer page */
uint16_t flags; / * NETTXF * /

uintl6_t id; / * Echoed in response message. */
uintl6_t size; / * Packet size in bytes. */

} netif_tx_request_t;
gref Grant reference for the network buffer
offset Offset to data

flags Transmit flags (currently only NETTXEsumblank is supported, to indicate
that the protocol checksum field is incomplete).

29

id Echoed to guest by the backend in the ring-level response so that ¢isé @an
match it to this request

size Buffer size

Each transmit request is followed by a transmit response at some laterTdases
part of the shared-memory communication protocol and allows the guesbten{p
tially) retire internal structures related to the request. It does not imply sonletevel
response. This structure is as follows:

typedef struct netif_tx_response {
uintl6_t id;
intl6_t status;

} netif_tx_response_t;

id Echo of the ID field in the corresponding transmit request.
status Success / failure status of the transmit request.

Receive requests must be queued by the frontend, accompanied hateodmf page-
frames to the backend. The backend transfers page frames full obdekato the
guest

typedef struct {
uintl6_t id; / * Echoed in response message. */
grant_ref_t gref; / * Reference to incoming granted frame */
} netif_rx_request _t;

id Echoed by the frontend to identify this request when responding.

gref Transfer reference - the backend will use this reference to traasiemme of
network data to us.

Receive response descriptors are queued for each receiveel fidote that these may
only be queued in reply to an existing receive request, providing aniinform of
traffic throttling.

typedef struct {

uintl6_t id;

uintl6_t offset; / * Offset in page of start of received packet */
uintl6_t flags; / * NETRXF»* */

intl6_t status; / * -ve: BLKIF_RSP_ * ; +ve: Rx'ed pkt size. */

} netif_rx_response_t;

id ID echoed from the original request, used by the guest to match thistespmthe
original request.

offset Offset to data within the transferred frame.

flags Transmit flags (currently only NETRXEsumvalid is supported, to indicate
that the protocol checksum field has already been validated).

status Success / error status for this operation.

Note that the receive protocol includes a mechanism for guests to egoeivming
memory frames but there is no explicit transfer of frames in the other direchnests
are expected to return memory to the hypervisor in order to use the netviertace.

30

Theymust do this or they will exceed their maximum memory reservation and will not
be able to receive incoming frame transfers. When necessary, theruhiskable to
replenish its pool of free network buffers by claiming some of this free mgrinom

the hypervisor.

8.2 Block /O

All guest OS disk access goes through the virtual block device VBD aterf This
interface allows domains access to portions of block storage devices vsibie the
block backend device. The VBD interface is a split driver, similar to the oftw
interface described above. A single shared memory ring is used betwefortend
and backend drivers for each virtual device, across which |Oagtguand responses
are sent.

Any block device accessible to the backend domain, including networdhalsck

(iSCSI, *NBD, etc), loopback and LVM/MD devices, can be exported ¥8D. Each

VBD is mapped to a device node in the guest, specified in the guest’s startfiguco
ration.

8.2.1 Data Transfer

The per-(virtual)-device ring between the guest and the block backemgorts two
messages:

READ Read data from the specified block device. The front end identifies theede
and location to read from and attaches pages for the data to be copied-to (typ
ically via DMA from the device). The backend acknowledges completed rea
requests as they finish.

WRITE Write data to the specified block device. This functions essentialREaD
except that the data moves to the device instead of from it.

8.2.2 Block ring interface

The block interface is defined by the structures passed over the simamdry in-
terface. These structures are either requests (from the frontend tmt¢hkend) or
responses (from the backend to the frontend).

The request structure is defined as follows:
typedef struct blkif_request {

uint8_t operation; / * BLKIF_OP_??? */
uint8_t nr_segments; / * number of segments */
blkif vdev_t handle; / * only for read/write requests */
uinté4_t id; / * private guest value, echoed in resp */
blkif_sector_t sector_number;/ * start sector idx on disk (r/w only) */

31

struct blkif_request_segment {

grant_ref_t gref; / + reference to 1/0O buffer frame */
[+ @first_sect: first sector in frame to transfer (inclusive) . */
/= @last_sect: last sector in frame to transfer (inclusive). */
uint8_t first_sect, last_sect;

} seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
} blkif_request_t;

The fields are as follows:

operation operation ID: one of the operations described above
nr_segmentsnumber of segments for scatter / gather 10 described by this request
handle identifier for a particular virtual device on this interface

id this value is echoed in the response message for this 10; the guest maytase it
identify the original request

sectornumber start sector on the virtual device for this request

frame_and_sects This array contains structures encoding scatter-gather 10 to be per-
formed:

gref The grant reference for the foreign I/O buffer page.
first__sect First sector to access within the buffer page (0 to 7).
last_sect Last sector to access within the buffer page (0 to 7).

Data will be transferred into frames at an offset determined by the value of
first _sect .

8.3 Virtual TPM

Virtual TPM (VTPM) support provides TPM functionality to each virtual rhane that
requests this functionality in its configuration file. The interface enables isna
access their own private TPM like it was a hardware TPM built into the machine

The virtual TPM interface is implemented as a split driver, similar to the network
and block interfaces described above. The user domain hosting therfdoexports

a character device /dev/tpmO to user-level applications for communicating weith th
virtual TPM. This is the same device interface that is also offered if a henelWPM

is available in the system. The backend provides a single interface /devi\ipre the
virtual TPM is waiting for commands from all domains that have located thekerat

in a given domain.

8.3.1 Data Transfer

A single shared memory ring is used between the frontend and backeedsdiTPM
requests and responses are sent in pages where a pointer to theseapdgother

32

information is placed into the ring such that the backend can map the pages into its
memory space using the grant table mechanism.

The backend driver has been implemented to only accept well-formed EBlksts.

To meet this requirement, the length indicator in the TPM request must coriraitly

cate the length of the request. Otherwise an error message is automaticabipaden
by the device driver.

The virtual TPM implementation listens for TPM request on /dev/vtpm. Since it must
be able to apply the TPM request packet to the virtual TPM instance aksibwiih the
virtual machine, a 4-byte virtual TPM instance identifier is prepended to packet

by the backend driver (in network byte order) for internal routing efrbquest.

8.3.2 Virtual TPM ring interface

The TPM protocol is a strict request/response protocol and therefidlyeone ring is
used to send requests from the frontend to the backend and respontesreverse
path.

The request/response structure is defined as follows:
typedef struct {

unsigned long addr; / * Machine address of packet. */
grant_ref_t ref; / * grant table access reference. */
uintl6_t unused,; / * unused */
uintl6_t size; / * Packet size in bytes. */

} tpmif_tx_request_t;
The fields are as follows:

addr The machine address of the page associated with the TPM request/espons
request/response may span multiple pages

ref The grant table reference associated with the address.

size The size of the remaining packet; up to PAGIEZE bytes can be found in the
page referenced by 'addr’

The frontend initially allocates several pages whose addresses ad stdahe ring.
Only these pages are used for exchange of requests and responses

33

34

Chapter 9

Further Information

If you have questions that are not answered by this manual, the safradgerma-
tion listed below may be of interest to you. Note that bug reports, suggestimhs
contributions related to the software (or the documentation) should be st X@n
developers’ mailing list (address below).

9.1 Other documentation

If you are mainly interested in using (rather than developing for) XenxXdmeUsers
Manual is distributed in thelocs/ directory of the Xen source distribution.

9.2 Online references

The official Xen web site can be found at:
http://www.xensource.com

This contains links to the latest versions of all online documentation, includimg th
latest version of the FAQ.

Information regarding Xen is also available at the Xen Wiki at
http://wiki.xensource.com/xenwiki/

The Xen project uses Bugzilla as its bug tracking system. You'll find theBlegzilla
at http://bugzilla.xensource.com/bugzilla/.

35

9.3 Mailing lists

There are several mailing lists that are used to discuss Xen related topiesndst
widely relevant are listed below. An official page of mailing lists and subsorip
information can be found at

http://lists.xensource.com/

xen-devel@lists.xensource.consed for development discussions and bug reports.
Subscribe at:
http://lists.xensource.com/xen-devel

xen-users@lists.xensource.corsed for installation and usage discussions and re-
quests for help. Subscribe at:
http://lists.xensource.com/xen-users

xen-announce@lists.xensource.cortsed for announcements only. Subscribe at:
http://lists.xensource.com/xen-announce

xen-changelog@lists.xensource.cor@hangelog feed from the unstable and 2.0 trees
- developer oriented. Subscribe at:
http://lists.xensource.com/xen-changelog

36

Appendix A

Xen Hypercalls

Hypercalls represent the procedural interface to Xen; this appetiégarizes and
describes the current set of hypercalls.

A.1 Invoking Hypercalls

Hypercalls are invoked in a manner analogous to system calls in a conadrajmr-
ating system; a software interrupt is issued which vectors to an entry pivirin en.

On x86/32 machines the instruction requirednis $82 ; the (real) IDT is setup so
that this may only be issued from within ring 1. The particular hypercall to \ekied

is contained ilEAX— a list mapping these values to symbolic hypercall names can be
found inxen/include/public/xen.h

On some occasions a set of hypercalls will be required to carry out aligvel
function; a good example is when a guest operating wishes to context swaamew
process which requires updating various privileged CPU state. Astanination for
these cases, there is a generic mechanism to issue a set of hypercdlégcs a

multicall(void *call_list, int nr_calls)

Execute a series of hypervisor calts; _calls is the length of the array

of multicall _entry _t structures pointed to beall _list . Each
entry contains the hypercall operation code followed by up to 7 word-
sized arguments.

Note that multicalls are provided purely as an optimization; there is no requitémen
use them when first porting a guest operating system.

37

A.2 Virtual CPU Setup

At start of day, a guest operating system needs to setup the virtual GPekecuting
on. This includes installing vectors for the virtual IDT so that the guest@Sandle
interrupts, page faults, etc. However the very first thing a guest OSgatigi is a pair
of hypervisor callbacks: these are the entry points which Xen will usenitheishes
to notify the guest OS of an occurrence.

set_callbacks(unsigned long event_selector, unsigned long event_address,
unsigned long failsafe_selector, unsigned long failsafe_address)

Register the normal (“event”) and failsafe callbacks for event psings

In each case the code segment selector and address within that segment
are provided. The selectors must have RPL 1; in XenLinux we simply use
the kernel’'s CS for botlevent selectorandfailsafe_selector.

The valueeventaddressspecifies the address of the guest OSes event
handling and dispatch routine; tli@ilsafe_addressspecifies a separate
entry point which is used only if a fault occurs when Xen attempts to use
the normal callback.

On x86/64 systems the hypercall takes slightly different arguments. Theceuke
callback CS does not need to be specified (since teh callbacks aredevite @Y S-
RET), and also because an entry address needs to be specifiedSQARYs from
guest user space:

set_callbacks(unsigned long event_address, unsigned long failsafe_address,
unsigned long syscall_address)
After installing the hypervisor callbacks, the guest OS can install a ‘villD@l by
using the following hypercall:
set_trap_table(trap_info_t *table)

Install one or more entries into the per-domain trap handler table (essen-
tially a software version of the IDT). Each entry in the array pointed to by
table includes the exception vector number with the corresponding seg-
ment selector and entry point. Most guest OSes can use the same handlers
on Xen as when running on the real hardware.

A further hypercall is provided for the management of virtual CPUs:

vcpu_op(int cmd, int vepuid, void *extra_args)

This hypercall can be used to bootstrap VCPUSs, to bring them up and
down and to test their current status.

38

A.3 Scheduling and Timer

Domains are preemptively scheduled by Xen according to the parametatiemhby
domain 0 (see Section A.10). In addition, however, a domain may choospltoithx
control certain behavior with the following hypercall:

sched_op_new(int cmd, void *extra_args)

Request scheduling operation from hypervisor. The following subrcands
are available:

SCHEDORP.yield voluntarily yields the CPU, but leaves the caller marked
as runnable. No extra arguments are passed to this command.

SCHEDOP_block removes the calling domain from the run queue and
causes it to sleep until an event is delivered to it. No extra arguments
are passed to this command.

SCHEDOP_shutdown is used to end the calling domain’s execution.
The extra argument is schedshutdown structure which indicates
the reason why the domain suspended (e.g., for reboot, halt, power-
off).

SCHEDOP_poll allows a VCPU to wait on a set of event channels with
an optional timeout (all of which are specified in g@hedpoll extra
argument). The semantics are similar to the UNIAI system call.

The caller must have event-channel upcalls masked when executing
this command.

schedop_new was not available prior to Xen 3.0.2. Older versions provide only the
following hypercall:

sched_op(int cmd, unsigned long extra_arg)

This hypercall supports the following subseschedop_newcommands:

SCHEDOP._yield (extra argumentis 0).

SCHEDOP_block (extra argument is 0).

SCHEDOP_shutdown (extra argument is numeric reason code).
To aid the implementation of a process scheduler within a guest OS, Xen @savid
virtual programmable timer:

set_timer_op(uint64_t timeout)

Request a timer event to be sent at the specified system time (time in
nanoseconds since system boot).

Note that callingset timer _op prior tosched op allows block-with-timeout semantics.

39

A.4 Page Table Management

Since guest operating systems have read-only access to their page Xanaaust
be involved when making any changes. The following multi-purpose hgfiezan
be used to modify page-table entries, update the machine-to-physical mapbpie,
flush the TLB, install a new page-table base pointer, and more.

mmu_update(mmu_update_t *req, int count, int *success_count)

Update the page table for the domain; a setmfnt updates are submitted
for processing in a batch, wituccesscount being updated to report the
number of successful updates.

Each element ofeq[] contains a pointer (address) and value; the least
significant 2-bits of the pointer are used to distinguish the type of update
requested as follows:

MMU _NORMAL _PT_UPDATE: update a page directory entry or page
table entry to the associated value; Xen will check that the update is
safe, as described in Chapter 3.

MMU _MACHPHYS _UPDATE: update an entry in the machine-to-physical
table. The calling domain must own the machine page in question
(or be privileged).

Explicitly updating batches of page table entries is extremely efficient, buecpuire
a number of alterations to the guest OS. Using the writable page table moqedC3ia
is recommended for new OS ports.

Regardless of which page table update mode is being used, howeverathesome
occasions (notably handling a demand page fault) where a guest OS whiltoansod-
ify exactly one PTE rather than a batch, and where that PTE is mapped irtorteat
address space. This is catered for by the following:

update_va_mapping(unsigned long va, uint64_t val, unsigned long
flags)

Update the currently installed PTE that maps virtual addvest® new
valueval. As with mmu_update, Xen checks the modification is safe
before applying it. Thdlags determine which kind of TLB flush, if any,
should follow the update.

Finally, sufficiently privileged domains may occasionally wish to manipulate tgega
of others:

update_va_mapping_otherdomain(unsigned long va, uint64_t val, un-
signed long flags, domid_t domid)

40

Identical toupdate_va_mapping save that the pages being mapped must
belong to the domaidomid.

An additional MMU hypercall provides an “extended command” interfadads pro-
vides additional functionality beyond the basic table updating commands:

mmuext_op(struct mmuext_op *op, int count, int *success_count,
domid_t domid)

This hypercall is used to perform additional MMU operations. These in-
clude updatingcr3 (or just re-installing it for a TLB flush), requesting
various kinds of TLB flush, flushing the cache, installing a new LDT, or
pinning & unpinning page-table pages (to ensure their reference count
doesn't drop to zero which would require a revalidation of all entries).
Some of the operations available are restricted to domains with sufficient
system privileges.

It is also possible for privileged domains to reassign page ownership via
an extended MMU operation, although grant tables are used instead of
this where possible; see Section A.8.

Finally, a hypercall interface is exposed to activate and deactivateugadptional
facilities provided by Xen for memory management.

vm_assist(unsigned int cmd, unsigned int type)

Toggle various memory management modes (in particular writable page
tables).

A.5 Segmentation Support

Xen allows guest OSes to install a custom GDT if they require it; this is context
switched transparently whenever a domain is [de]scheduled. The fodwipercall
is effectively a ‘safe’ version dydt

set_gdt(unsigned long *frame_list, int entries)

Install a global descriptor table for a domairgme_list is an array of up

to 16 machine page frames within which the GDT resides, weittiies

being the actual number of descriptor-entry slots. All page frames must be
mapped read-only within the guest’s address space, and the table must be
large enough to contain Xen’s reserved entries xeeéinclude/public/arch-
x86.32.h).

Many guest OSes will also wish to install LDTs; this is achieved by usingu_update
with an extended command, passing the linear address of the LDT basentliomige

41

number of entries. No special safety checks are required; Xen negasform this
task simply sincdéldt requires CPL 0.

Xen also allows guest operating systems to update just an individual sedesenip-
tor in the GDT or LDT:
update_descriptor(uint64_t ma, uint64_t desc)

Update the GDT/LDT entry at machine address; the new 8-byte de-
scriptor is stored imesc Xen performs a number of checks to ensure the
descriptor is valid.

Guest OSes can use the above in place of context switching entire LDIre(GDT)
when the number of changing descriptors is small.

A.6 Context Switching

When a guest OS wishes to context switch between two processes, ge#melypage
table and segmentation hypercalls described above to perform the thef budkooiv-
ileged work. In addition, however, it will need to invoke Xen to switch thenkeé(ring
1) stack pointer:

stack_switch(unsigned long ss, unsigned long esp)

Request kernel stack switch from hypervisssis the new stack segment,
which espis the new stack pointer.

A useful hypercall for context switching allows “lazy” save and restof floating
point state:
fpu_taskswitch(int set)

This call instructs Xen to set tHES bit in thecrO control register; this
means that the next attempt to use floating point will cause a trap which
the guest OS can trap. Typically it will then save/restore the FP state, and
clear theTS bit, using the same call.

This is provided as an optimization only; guest OSes can also choose t@isdve
restore FP state on all context switches for simplicity.

Finally, a hypercall is provided for entering vm86 mode:

switch_.vm86

This allows the guest to run code in vm86 mode, which is needed for some
legacy software.

42

A.7 Physical Memory Management

As mentioned previously, each domain has a maximum and current memoryiahoca
The maximum allocation, set at domain creation time, cannot be modified. However
a domain can choose to reduce and subsequently grow its current alodogtising

the following call:

memory_op(unsigned int op, void *arg)

Increase or decrease current memory allocation (as determined by the
value ofop). The available operations are:

XENMEM _increasereservation Request an increase in machine mem-
ory allocation;arg must point to aen memory_reservation struc-
ture.

XENMEM _decreasereservation Request a decrease in machine mem-
ory allocation;arg must point to aen memory_reservation struc-
ture.

XENMEM _maximum_ram_page Request the frame number of the highest-
addressed frame of machine memory in the syst@im.must point
to anunsigned longwhere this value will be stored.

XENMEM _current _reservation Returns current memory reservation of
the specified domain.

XENMEM _maximum_reservation Returns maximum memory reserva-
tion of the specified domain.

In addition to simply reducing or increasing the current memory allocation \bala
loon driver’, this call is also useful for obtaining contiguous regionmathine mem-
ory when required (e.g. for certain PCI devices, or if using sup&gag

A.8 Inter-Domain Communication

Xen provides a simple asynchronous notification mechanisreveid channels. Each
domain has a set of end-points (mrts) which may be bound to an event source (e.g.
a physical IRQ, a virtual IRQ, or an port in another domain). When agf&nd-points

in two different domains are bound together, then a ‘send’ operatiomenvdl cause
an event to be received by the destination domain.

The control and use of event channels involves the following hypercall:

event_channel_op(evtchn_op_t *op)

Inter-domain event-channel managemenptis a discriminated union which
allows the following 7 operations:

43

alloc_unbound: allocate a free (unbound) local port and prepare for con-
nection from a specified domain.

bind_virg: bind a local port to a virtual IRQ; any particular VIRQ can be
bound to at most one port per domain.

bind _pirg: bind a local port to a physical IRQ; once more, a given pIRQ
can be bound to at most one port per domain. Furthermore the call-
ing domain must be sufficiently privileged.

bind_interdomain: construct an interdomain event channel; in general,
the target domain must have previously allocated an unbound port
for this channel, although this can be bypassed by privileged do-
mains during domain setup.

close: close an interdomain event channel.

send: send an event to the remote end of a interdomain event channel.
status: determine the current status of a local port.

For more details seeen/include/public/eventchannel.h

Event channels are the fundamental communication primitive between Xerirdoma
and seamlessly support SMP. However they provide little bandwidth for comoeazun
tion per seand hence are typically married with a piece of shared memory to produce
effective and high-performance inter-domain communication.

Safe sharing of memory pages between guest OSes is carried ouhbingeccess on
a per page basis to individual domains. This is achieved by usirggéme¢ _table _op
hypercall.

grant_table_op(unsigned int cmd, void *uop, unsigned int count)

Used to invoke operations on a grant reference, to setup the grant table
and to dump the tables’ contents for debugging.

A.9 10 Configuration

Domains with physical device access (i.e. driver domains) receive limitegsado
certain PCI devices (bus address space and interrupts). Howeveguest operating
systems attempt to determine the PCI configuration by directly access the 6] BI
which cannot be allowed for safety.

Instead, Xen provides the following hypercall:

physdev_op(void *physdev_op)

Set and query IRQ configuration details, set the system IOPL, setthe TS
IO bitmap.

44

For examples of usinghysdev _op, see the Xen-specific PCI code in the linux sparse
tree.

A.10 Administrative Operations

A large number of control operations are available to a sufficiently priededpmain
(typically domain 0). These allow the creation and management of new dorfains,
example. A complete list is given below: for more details on any or all of th@sase
seexen/include/public/domO _ops.h

domO_op(domO_op_t *op)

Administrative domain operations for domain management. The options
are:

DOMO_GETMEMLIST: get list of pages used by the domain
DOMO_SCHEDCTL:

DOMO_ADJUSTDOM: adjust scheduling priorities for domain
DOMO_CREATEDOMAIN: create a new domain

DOMO_DESTROYDOMAIN: deallocate all resources associated with
a domain

DOMO_PAUSEDOMAIN: remove adomain from the scheduler run queue.

DOMO_UNPAUSEDOMAIN: mark a paused domain as schedulable once
again.

DOMO_GETDOMAININFO: get statistics about the domain

DOMO_SETDOMAININFO: set VCPU-related attributes

DOMO_MSR: read or write model specific registers

DOMO_DEBUG: interactively invoke the debugger

DOMO_SETTIME: set system time

DOMO_GETPAGEFRAMEINFO:

DOMO_READCONSOLE: read console content from hypervisor buffer
ring

DOMO_PINCPUDOMAIN: pin domain to a particular CPU

DOMO_TBUFCONTROL: get and set trace buffer attributes

DOMO_PHYSINFO: getinformation about the host machine

DOMO_SCHED.ID: get the ID of the current Xen scheduler

DOMO_SHADOW _CONTROL.: switch between shadow page-table modes

45

DOMO_SETDOMAINMAXMEM: set maximum memory allocation of
a domain

DOMO_GETPAGEFRAMEINFO2: batched interface for getting page
frame info

DOMO_ADD _MEMTYPE: set MTRRs
DOMO_DEL _MEMTYPE: remove a memory type range
DOMO_READ _MEMTYPE: read MTRR

DOMO_PERFCCONTROL: control Xen’s software performance coun-
ters

DOMO_MICROCODE: update CPU microcode

DOMO_IOPORT _PERMISSION: modify domain permissions for an 10
port range (enable / disable a range for a particular domain)

DOMO_GETVCPUCONTEXT: get context from a VCPU
DOMO_GETVCPUINFO: get current state for a VCPU
DOMO_GETDOMAININFOLIST: batched interface to get domain info

DOMO_PLATFORM _QUIRK: inform Xen of a platform quirk it needs
to handle (e.g. noirgbalance)

DOMO_PHYSICAL _MEMORY _MAP: getinfo about domQ’s memory
map

DOMO_MAX _VCPUS: change max humber of VCPUs for a domain
DOMO_SETDOMAINHANDLE: setthe handle for a domain

Most of the above are best understood by looking at the code implemengmg(th
xen/common/dom0 _ops.c) and in the user-space tools that use them (mostly in
tools/libxc).

A.11 Access Control Module Hypercalls

Hypercalls relating to the management of the Access Control Module areealso

stricted to domain 0 access for now. For more details on any or all of thkessep

seexen/include/public/acm _ops.h . A complete list is given below:
acm_op(int cmd, void *args)

This hypercall can be used to configure the state of the ACM, query that
state, request access control decisions and dump additional information.

ACMOP _SETPOLICY: setthe access control policy
ACMOP _GETPOLICY: getthe current access control policy and status

46

ACMOP DUMPSTATS: get current access control hook invocation statis-
tics

ACMOP _GETSSID: get security access control information for a do-
main

ACMOP _GETDECISION: get access decision based on the currently
enforced access control policy

Most of the above are best understood by looking at the code implemengng th
(in xen/common/acm _ops.c) and in the user-space tools that use them (mostly in
tools/security andtools/python/xen/lowlevel/acm).

A.12 Debugging Hypercalls

A few additional hypercalls are mainly useful for debugging:

console_io(int cmd, int count, char *str)

Use Xen to interact with the console; operations are:
CONSOLEIQwrite: Output count characters from buffer str.
CONSOLEIQread: Input at most count characters into buffer str.

A pair of hypercalls allows access to the underlying debug registers:

set_debugreg(int reg, unsigned long value)

Set debug registeeg to value

get_debugreg(int req)
Return the contents of the debug registay
And finally:

xen_version(int cmd)
Request Xen version number.

This is useful to ensure that user-space tools are in sync with the uimggniypervisor.

47

