
MySQL Connector/Python

MySQL Connector/Python

Abstract

This manual describes MySQL Connector/Python.

Document generated on: 2012-09-07 (revision: 32128)

iii

Table of Contents
Preface and Legal Notices ... v
1. MySQL Connector/Python .. 1
2. Connector/Python Versions .. 3
3. Connector/Python Installation ... 5

Installing Connector/Python Source Distribution on Linux, UNIX, or OS X 5
Installing Connector/Python Source Distribution on Microsoft Windows ... 6
Verifying Your Connector/Python Installation ... 6

4. Connector/Python Coding Examples ... 7
Connecting to MySQL Using Connector/Python ... 7
Creating Tables Using Connector/Python .. 8
Inserting Data Using Connector/Python ... 10
Querying Data Using Connector/Python .. 11

5. Connector/Python Tutorials ... 13
Tutorial: Raise employee's salary using a buffering cursor .. 13

6. Connector/Python Connection Arguments ... 15
7. Connector/Python API Reference ... 19

Errors and Exceptions .. 21
Module errorcode ... 22
Exception errors.Error ... 22
Exception errors.Warning ... 23
Exception errors.InterfaceError .. 23
Exception errors.DatabaseError .. 23
Exception errors.InternalError .. 23
Exception errors.OperationalError .. 23
Exception errors.ProgrammingError .. 24
Exception errors.IntegrityError .. 24
Exception errors.DataError ... 24
Exception errors.NotSupportedError .. 24
Function errors.custom_error_exception(error=None, exception=None) 24

Class connection.MySQLConnection .. 25
Constructor connection.MySQLConnection(**kwargs) ... 25
Method MySQLConnection.close() ... 25
Method MySQLConnection.config(**kwargs) ... 25
Method MySQLConnection.connect(**kwargs) ... 25
Method MySQLConnection.commit() ... 25
Method MySQLConnection.cursor(buffered=None, raw=None,
cursor_class=None) ... 26
Method MySQLConnection.cmd_change_user(username='', password='',
database='', charset=33) ... 26
Method MySQLConnection.cmd_debug() ... 26
Method MySQLConnection.cmd_init_db(database) ... 26
Method MySQLConnection.cmd_ping() ... 26
Method MySQLConnection.cmd_process_info() ... 27
Method MySQLConnection.cmd_process_kill(mysql_pid) 27
Method MySQLConnection.cmd_quit() ... 27
Method MySQLConnection.cmd_query(statement) ... 27
Method MySQLConnection.cmd_query_iter(statement) ... 27
Method MySQLConnection.cmd_refresh(options) ... 28
Method MySQLConnection.cmd_shutdown() ... 28
Method MySQLConnection.cmd_statistics() ... 28
Method MySQLConnection.disconnect() ... 28

MySQL Connector/Python

iv

Method MySQLConnection.get_rows(count=None) ... 28
Method MySQLConnection.get_row() ... 28
Method MySQLConnection.get_server_info() ... 29
Method MySQLConnection.get_server_version() ... 29
Method MySQLConnection.is_connected() ... 29
Method MySQLConnection.isset_client_flag(flag) ... 29
Method MySQLConnection.ping(attempts=1, delay=0) ... 29
Method MySQLConnection.reconnect(attempts=1, delay=0) 29
Method MySQLConnection.rollback() ... 30
Method MySQLConnection.set_charset_collation(charset=None,
collation=None) ... 30
Method MySQLConnection.set_client_flags(flags) ... 30
Property MySQLConnection.autocommit .. 30
Property MySQLConnection.charset_name .. 31
Property MySQLConnection.collation_name .. 31
Property MySQLConnection.connection_id .. 31
Property MySQLConnection.database .. 31
Property MySQLConnection.get_warnings .. 31
Property MySQLConnection.raise_on_warnings .. 32
Property MySQLConnection.server_host .. 32
Property MySQLConnection.server_port .. 32
Property MySQLConnection.sql_mode .. 32
Property MySQLConnection.time_zone .. 33
Property MySQLConnection.unix_socket .. 33
Property MySQLConnection.user .. 33

Class cursor.MySQLCursor .. 33
Constructor cursor.MySQLCursor ... 33
Method MySQLCursor.callproc(procname, args=()) ... 33
Method MySQLCursor.close() ... 34
Method MySQLCursor.execute(operation, params=None, multi=False) 34
Method MySQLCursor.executemany(operation, seq_params) 34
Method MySQLCursor.fetchall() ... 35
Method MySQLCursor.fetchmany(size=1) ... 35
Method MySQLCursor.fetchone() ... 35
Method MySQLCursor.fetchwarnings() ... 36
Method MySQLCursor.stored_results() ... 36
Property MySQLCursor.column_names .. 36
Property MySQLCursor.statement .. 37
Property MySQLCursor.with_rows .. 37

Class cursor.MySQLCursorBuffered .. 37
Class constants.ClientFlag .. 37
Class constants.FieldType .. 38
Class constants.SQLMode .. 38
Class constants.CharacterSet .. 38
Class constants.RefreshOption .. 38

8. MySQL Connector/Python Change History .. 41

v

Preface and Legal Notices
This manual describes MySQL Connector/Python, a self-contained driver for communicating between
Python programs and MySQL servers.

Legal Notices

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be
subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle
Corporation and/or its affiliates, and shall not be used without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only.
It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement

Legal Notices

vi

only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this material is subject to the terms and conditions of your
Oracle Software License and Service Agreement, which has been executed and with which you agree
to comply. This document and information contained herein may not be disclosed, copied, reproduced,
or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided
below. This document is not part of your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built
and produced, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products,
see Preface and Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can
discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the
MySQL Documentation Library.

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

1

Chapter 1. MySQL Connector/Python
MySQL Connector/Python allows Python programs to access MySQL databases, using an API that
is compliant with the Python DB API version 2.0. It is written in pure Python and does not have any
dependencies except for the Python Standard Library.

MySQL Connector/Python includes support for:

• Almost all features provided by MySQL Server up to and including MySQL Server version 5.5.

• Converting parameter values back and forth between Python and MySQL data types, for example
Python datetime and MySQL DATETIME. You can turn automatic conversion on for convenience, or off
for optimal performance.

• All MySQL extensions to standard SQL syntax.

• Protocol compression, which enables compressing the data stream between the client and server.

• Connections using TCP/IP sockets and on Unix using Unix sockets.

• Secure TCP/IP connections using SSL.

• Self-contained driver. Connector/Python does not require the MySQL client library or any Python
modules outside the standard library.

MySQL Connector/Python supports from Python version 2.4 through 2.7, and Python 3.1 and later. Note
that Connector/Python does not support the old MySQL Server authentication methods, which means that
MySQL versions prior to 4.1 will not work.

http://www.python.org/dev/peps/pep-0249/
http://docs.python.org/library/

2

3

Chapter 2. Connector/Python Versions
MySQL Connector/Python v1.0.x series is going through a series of beta releases, leading to the first
generally available (GA) version (not released yet). Any development releases prior to general availability
will not be supported once the GA version is released.

The following table summarizes the available Connector/Python versions:

Connector/Python
version

MySQL Server version Python version Status

1.0 5.6, 5.5 (5.1, 5.0, 4.1) 2.4-2.7; 3.1 and later Recommended version

Note

MySQL server versions within brackets are known to work with Connector/Python,
but are not officially supported. Bugs might not get fixed for those versions.

4

5

Chapter 3. Connector/Python Installation

Table of Contents
Installing Connector/Python Source Distribution on Linux, UNIX, or OS X ... 5
Installing Connector/Python Source Distribution on Microsoft Windows ... 6
Verifying Your Connector/Python Installation ... 6

Connector/Python runs on any platform where Python is installed. Python comes pre-installed on almost
any Linux distribution or UNIX-like system such as Apple Mac OS X and FreeBSD. On Microsoft Windows
systems, you can install Python using the installer found on the Python Download website.

Connector/Python is a pure Python implementation of the MySQL Client/Server protocol, meaning it does
not require any other MySQL client libraries or other components. It also has no third-party dependencies.
If you need SSL support, verify that your Python installation has been compiled using the OpenSSL
libraries.

The installation of Connector/Python is similar on every platform and follows the standard Python
Distribution Utilities or Distutils. Some platforms have specific packaging, for example RPM, and, when
made available, the installation of these will be covered in this manual.

Python terminology regarding distributions:

• Source Distribution is a distribution that contains only source files and is generally platform
independent.

• Built Distribution can be regarded as a binary package. It contains both sources and platform-
independent bytecode.

Installing Connector/Python Source Distribution on Linux, UNIX, or
OS X

On UNIX-like systems such as Linux distributions, Solaris, Apple Mac OS X, and FreeBSD, you can
download Connector/Python as a tar archive from http://dev.mysql.com/downloads/connector/python/.

To install Connector/Python from the .tar.gz file, download the latest version and follow these steps:

shell> gunzip mysql-connector-python-1.0.6b1.tar.gz
shell> tar xf mysql-connector-python-1.0.6b1.tar
shell> cd mysql-connector-python-1.0.6b1
shell> sudo python setup.py install

On UNIX-like systems, Connector/Python gets installed in the default location /prefix/lib/
pythonX.Y/site-packages/, where prefix is the location where Python was installed and X.Y is the
version of Python. See How installation works in the Python manual.

If you are not sure where Connector/Python was installed, do the following to retrieve the location:

shell> python
>>> from distutils.sysconfig import get_python_lib
>>> print get_python_lib() # Python v2.x
/Library/Python/2.7/site-packages
>>> print(get_python_lib()) # Python v3.x
/Library/Frameworks/Python.framework/Versions/3.1/lib/python3.1/site-packages

http://python.org/download/
http://www.openssl.org/
http://docs.python.org/install/index.html#install-index
http://docs.python.org/install/index.html#install-index
http://docs.python.org/distutils/
http://dev.mysql.com/downloads/connector/python/
http://docs.python.org/install/index.html#how-installation-works

Installing Connector/Python Source Distribution on Microsoft Windows

6

Note

The above example shows the default installation location on Mac OS X 10.7.

Installing Connector/Python Source Distribution on Microsoft
Windows

On Microsoft Windows systems, you can download Connector/Python as a zip archive from http://
dev.mysql.com/downloads/connector/python/.

Make sure that the Python executable is available in the Windows %PATH% setting. For more information
about installation and configuration of Python on Windows, see the section Using Python on Windows in
the Python documentation.

To install Connector/Python from the .zip file, download the latest version and follow these steps:

1. Unpack the downloaded zip archive into a directory of your choice. For example, into the folder C:
\mysql-connector\. Use the appropriate unzip command for your system, for example, unzip,
pkunzip, and so on.

2. Start a console window (or a DOS window) and change to the folder where you unpacked the
Connector/Python zip archive.

shell> cd C:\mysql-connector\

3. Once inside the Connector/Python folder, do the following:

shell> python setup.py install

On Windows, Connector/Python gets installed in the default location C:\PythonX.Y\Lib\site-
packages\ where X.Y is the Python version you used to install the connector.

If you are not sure where Connector/Python ended up, do the following to retrieve the location where
packages get installed:

shell> python
>>> from distutils.sysconfig import get_python_lib
>>> print get_python_lib() # Python v2.x
>>> print(get_python_lib()) # Python v3.x

Verifying Your Connector/Python Installation

To test that your Connector/Python installation is working and is able to connect to a MySQL database
server, you can run a very simple program where you substitute the login credentials and host information
of the MySQL server. See Connecting to MySQL Using Connector/Python for an example.

http://dev.mysql.com/downloads/connector/python/
http://dev.mysql.com/downloads/connector/python/
http://docs.python.org/using/windows.html

7

Chapter 4. Connector/Python Coding Examples

Table of Contents
Connecting to MySQL Using Connector/Python ... 7
Creating Tables Using Connector/Python .. 8
Inserting Data Using Connector/Python ... 10
Querying Data Using Connector/Python .. 11

These coding examples illustrate how to develop Python applications and scripts which connect to a
MySQL Server using MySQL Connector/Python.

Connecting to MySQL Using Connector/Python

The connect() constructor is used for creating a connection to the MySQL server and returns a
MySQLConnection object.

The following example shows how to connect to the MySQL server:

import mysql.connector
cnx = mysql.connector.connect(user='scott', password='tiger',
 host='127.0.0.1',
 database='employees')
cnx.close()

See Chapter 6, Connector/Python Connection Arguments for all possible connection arguments.

It is also possible to create connection objects using the connection.MySQLConnection() class. Both
methods, using the connect() constructor, or the class directly, are valid and functionally equal, but using
connector() is preferred and will be used in most examples in this manual.

To handle connection errors, use the try statement and catch all errors using the errors.Error exception:

import mysql.connector
from mysql.connector import errorcode
try:
 cnx = mysql.connector.connect(user='scott',
 database='testt')
except mysql.connector.Error as err:
 if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
 print("Something is wrong your username or password")
 elif err.errno == errorcode.ER_BAD_DB_ERROR:
 print("Database does not exists")
 else:
 print(err)
else:
 cnx.close()

If you have lots of connection arguments, it's best to keep them in a dictionary and use the **-operator.
Here is an example:

import mysql.connector
config = {
 'user': 'scott',
 'password': 'tiger',
 'host': '127.0.0.1',
 'database': 'employees',
 'raise_on_warnings': True,

Creating Tables Using Connector/Python

8

}
cnx = mysql.connector.connect(**config)
cnx.close()

Creating Tables Using Connector/Python

All DDL (Data Definition Language) statements are executed using a handle structure known as a cursor.
The following examples show how to create the tables of the employees database. You will need them for
the other examples.

In a MySQL server, tables are very long-lived objects, and are often accessed by multiple applications
written in different languages. You might typically work with tables that are already set up, rather than
creating them within your own application. Avoid setting up and dropping tables over and over again, as
that is an expensive operation. The exception is temporary tables, which can be created and dropped
quickly within an application.

from __future__ import print_function
import mysql.connector
from mysql.connector import errorcode
DB_NAME = 'employees'
TABLES = {}
TABLES['employees'] = (
 "CREATE TABLE `employees` ("
 " `emp_no` int(11) NOT NULL AUTO_INCREMENT,"
 " `birth_date` date NOT NULL,"
 " `first_name` varchar(14) NOT NULL,"
 " `last_name` varchar(16) NOT NULL,"
 " `gender` enum('M','F') NOT NULL,"
 " `hire_date` date NOT NULL,"
 " PRIMARY KEY (`emp_no`)"
 ") ENGINE=InnoDB")
TABLES['departments'] = (
 "CREATE TABLE `departments` ("
 " `dept_no` char(4) NOT NULL,"
 " `dept_name` varchar(40) NOT NULL,"
 " PRIMARY KEY (`dept_no`), UNIQUE KEY `dept_name` (`dept_name`)"
 ") ENGINE=InnoDB")
TABLES['salaries'] = (
 "CREATE TABLE `salaries` ("
 " `emp_no` int(11) NOT NULL,"
 " `salary` int(11) NOT NULL,"
 " `from_date` date NOT NULL,"
 " `to_date` date NOT NULL,"
 " PRIMARY KEY (`emp_no`,`from_date`), KEY `emp_no` (`emp_no`),"
 " CONSTRAINT `salaries_ibfk_1` FOREIGN KEY (`emp_no`) "
 " REFERENCES `employees` (`emp_no`) ON DELETE CASCADE"
 ") ENGINE=InnoDB")
TABLES['dept_emp'] = (
 "CREATE TABLE `dept_emp` ("
 " `emp_no` int(11) NOT NULL,"
 " `dept_no` char(4) NOT NULL,"
 " `from_date` date NOT NULL,"
 " `to_date` date NOT NULL,"
 " PRIMARY KEY (`emp_no`,`dept_no`), KEY `emp_no` (`emp_no`),"
 " KEY `dept_no` (`dept_no`),"
 " CONSTRAINT `dept_emp_ibfk_1` FOREIGN KEY (`emp_no`) "
 " REFERENCES `employees` (`emp_no`) ON DELETE CASCADE,"
 " CONSTRAINT `dept_emp_ibfk_2` FOREIGN KEY (`dept_no`) "
 " REFERENCES `departments` (`dept_no`) ON DELETE CASCADE"
 ") ENGINE=InnoDB")
TABLES['dept_manager'] = (
 " CREATE TABLE `dept_manager` ("
 " `dept_no` char(4) NOT NULL,"
 " `emp_no` int(11) NOT NULL,"

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_ddl
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_temporary_table

Creating Tables Using Connector/Python

9

 " `from_date` date NOT NULL,"
 " `to_date` date NOT NULL,"
 " PRIMARY KEY (`emp_no`,`dept_no`),"
 " KEY `emp_no` (`emp_no`),"
 " KEY `dept_no` (`dept_no`),"
 " CONSTRAINT `dept_manager_ibfk_1` FOREIGN KEY (`emp_no`) "
 " REFERENCES `employees` (`emp_no`) ON DELETE CASCADE,"
 " CONSTRAINT `dept_manager_ibfk_2` FOREIGN KEY (`dept_no`) "
 " REFERENCES `departments` (`dept_no`) ON DELETE CASCADE"
 ") ENGINE=InnoDB")
TABLES['titles'] = (
 "CREATE TABLE `titles` ("
 " `emp_no` int(11) NOT NULL,"
 " `title` varchar(50) NOT NULL,"
 " `from_date` date NOT NULL,"
 " `to_date` date DEFAULT NULL,"
 " PRIMARY KEY (`emp_no`,`title`,`from_date`), KEY `emp_no` (`emp_no`),"
 " CONSTRAINT `titles_ibfk_1` FOREIGN KEY (`emp_no`)"
 " REFERENCES `employees` (`emp_no`) ON DELETE CASCADE"
 ") ENGINE=InnoDB")

The above code shows how we are storing the CREATE statements in a Python dictionary called TABLES.
We also define the database in a global variable called DB_NAME, which allows you to easily use a different
schema.

cnx = mysql.connector.connect(user='scott')
cursor = cnx.cursor()

A single MySQL server can contain multiple databases. Typically, you specify the database to switch to
when connecting to the MySQL server. This example does not connect to the database upon connection,
so that it can make sure the database exists, and create it if not.

def create_database(cursor):
 try:
 cursor.execute(
 "CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format(DB_NAME))
 except mysql.connector.Error as err:
 print("Failed creating database: {}".format(err))
 exit(1)
try:
 cnx.database = DB_NAME
except mysql.connector.Error as err:
 if err.errno == errorcode.ER_BAD_DB_ERROR:
 create_database(cursor)
 cnx.database = DB_NAME
 else:
 print(err)
 exit(1)

We first try to change to a particular database using the database property of the connection object cnx.
If there is an error, we examine the error number to check if the database does not exist. If so, we call the
create_database function to create it for us.

On any other error, the application exits and displays the error message.

for name, ddl in TABLES.iteritems():
 try:
 print("Creating table {}: ".format(name), end='')
 cursor.execute(ddl)
 except mysql.connector.Error as err:
 if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:
 print("already exists.")
 else:
 print(err.errmsg)
 else:

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_database

Inserting Data Using Connector/Python

10

 print("OK")
cursor.close()
cnx.close()

After we succesfully created or changed to the target database, we create the tables by iterating over the
items of the TABLES dictionary.

We handle the error when the table already exists by simply notifying the user that it was already there.
Other errors are printed, but we simply continue creating tables. (We show how to handle the “table
already exists” condition for illustration purposes. In a real application, we would typically avoid the error
condition entirely by using the IF NOT EXISTS clause of the CREATE TABLE statement.)

The output would be something like this:

Creating table employees: already exists.
Creating table salaries: already exists.
Creating table titles: OK
Creating table departments: already exists.
Creating table dept_manager: already exists.
Creating table dept_emp: already exists.

To populate the employees tables, use the dump files of the Employee Sample Database. Note that
you only need the data dump files that you will find in an archive named like employees_db-dump-
files-1.0.5.tar.bz2. After downloading the dump files, do the following from the command line,
adding connection options to the mysql commands if necessary:

shell> tar xzf employees_db-dump-files-1.0.5.tar.bz2
shell> cd employees_db
shell> mysql employees < load_employees.dump
shell> mysql employees < load_titles.dump
shell> mysql employees < load_departments.dump
shell> mysql employees < load_salaries.dump
shell> mysql employees < load_dept_emp.dump
shell> mysql employees < load_dept_manager.dump

Inserting Data Using Connector/Python
Inserting or updating data is also done using the handler structure known as a cursor. When you use a
transactional storage engine such as InnoDB (which is the default in MySQL 5.5 and later), you must
commit the data after a sequence of INSERT, DELETE, and UPDATE statements.

In this example we show how to insert new data. The second INSERT depends on the value of the newly
created primary key of the first. We are also demonstrating how to use extended formats. The task is to
add a new employee starting to work tomorrow with a salary set to 50000.

Note

The following example uses tables created in the example Creating Tables Using
Connector/Python. The AUTO_INCREMENT column option for the primary key of the
employees table is important to ensure reliable, easily searchable data.

from __future__ import print_function
from datetime import date, datetime, timedelta
import mysql.connector
cnx = mysql.connector.connect(user='scott', database='employees')
cursor = cnx.cursor()
tomorrow = datetime.now().date() + timedelta(days=1)
add_employee = ("INSERT INTO employees "
 "(first_name, last_name, hire_date, gender, birth_date) "
 "VALUES (%s, %s, %s, %s, %s)")
add_salary = ("INSERT INTO salaries "

http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/employee/en/index.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_commit
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_primary_key

Querying Data Using Connector/Python

11

 "(emp_no, salary, from_date, to_date) "
 "VALUES (%(emp_no)s, %(salary)s, %(from_date)s, %(to_date)s)")
data_employee = ('Geert', 'Vanderkelen', tomorrow, 'M', date(1977, 6, 14))
Insert new employee
cursor.execute(add_employee, data_employee)
emp_no = cursor.lastrowid
Insert salary information
data_salary = {
 'emp_no': emp_no,
 'salary': 50000,
 'from_date': tomorrow,
 'to_date': date(9999, 1, 1),
}
cursor.execute(add_salary, data_salary)
Make sure data is committed to the database
cnx.commit()
cursor.close()
cnx.close()

We first open a connection to the MySQL server and store the connection object in the variable cnx. We
then create a new cursor, by default a MySQLCursor object, using the connection's cursor() method.

We could calculate tomorrow by calling a database function, but for clarity we do it in Python using the
datetime module.

Both INSERT statements are stored in the variables called add_employee and add_salary. Note that
the second INSERT statement uses extended Python format codes.

The information of the new employee is stored in the tuple data_employee. The query to insert the
new employee is executed and we retrieve the newly inserted value for the column emp_no using the
lastrowid property of the cursor object.

Next, we insert the new salary for the new employee. We are using the emp_no variable in the directory
holding the data. This directory is passed to the execute() method of the cursor object.

Since by default Connector/Python turns autocommit off, and MySQL 5.5 and later uses transactional
InnoDB tables by default, it is necessary to commit your changes using the connection's commit()
method. You could also roll back using the rollback() method.

Querying Data Using Connector/Python

The following example shows how to query data using a cursor created using the connection's cursor()
method. The data returned is formatted and printed on the console.

The task is to select all employees hired in the year 1999 and print their names with their hire date to the
console.

import datetime
import mysql.connector
cnx = mysql.connector.connect(user='scott', database='employees')
cursor = cnx.cursor()
query = ("SELECT first_name, last_name, hire_date FROM employees "
 "WHERE hire_date BETWEEN %s AND %s")
hire_start = datetime.date(1999, 1, 1)
hire_end = datetime.date(1999, 12, 31)
cursor.execute(query, (hire_start, hire_end))
for (first_name, last_name, hire_date) in cursor:
 print("{}, {} was hired on {:%d %b %Y}".format(
 last_name, first_name, hire_date))
cursor.close()
cnx.close()

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_autocommit
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_rollback
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_query

Querying Data Using Connector/Python

12

We first open a connection to the MySQL server and store the connection object in the variable cnx. We
then create a new cursor, by default a MySQLCursor object, using the connection's cursor() method.

In the preceding example, we store the SELECT statement in the variable query. Note that we are using
unquoted %s-markers where dates should have been. Connector/Python converts hire_start and
hire_end from Python types to a data type that MySQL understands and adds the required quotes. In this
case, it replaces the first %s with '1999-01-01', and the second with '1999-12-31'.

We then execute the operation stored in the query variable using the execute() method. The data used
to replace the %s-markers in the query is passed as a tuple: (hire_start, hire_end).

After executing the query, the MySQL server is ready to send the data. The result set could be zero rows,
one row, or 100 million rows. Depending on the expected volume, you can use different techniques to
process this result set. In this example, we use the cursor object as an iterator. The first column in the
row will be stored in the variable first_name, the second in last_name, and the third in hire_date.

We print the result, formatting the output using Python's built-in format() function. Note that hire_date
was converted automatically by Connector/Python to a Python datetime.date object. This means that
we can easily format the date in a more human-readable form.

The output should be something like this:

..
Wilharm, LiMin was hired on 16 Dec 1999
Wielonsky, Lalit was hired on 16 Dec 1999
Kamble, Dannz was hired on 18 Dec 1999
DuBourdieux, Zhongwei was hired on 19 Dec 1999
Fujisawa, Rosita was hired on 20 Dec 1999
..

13

Chapter 5. Connector/Python Tutorials

Table of Contents
Tutorial: Raise employee's salary using a buffering cursor ... 13

These tutorials illustrate how to develop Python applications and scripts that connect to a MySQL database
server using MySQL Connector/Python.

Tutorial: Raise employee's salary using a buffering cursor

The following example script will give a long-overdue raise effective tomorrow to all employees who joined
in the year 2000 and are still with the company.

We are using buffered cursors to iterate through the selected employees. This way we do not have to fetch
the rows in a new variables, but can instead use the cursor as an iterator.

Note that the script is an example; there are other ways of doing this simple task.

from __future__ import print_function
from decimal import Decimal
from datetime import datetime, date, timedelta
import mysql.connector
Connect with the MySQL Server
cnx = mysql.connector.connect(user='scott', database='employees')
Get two buffered cursors
curA = cnx.cursor(buffered=True)
curB = cnx.cursor(buffered=True)
Query to get employees who joined in a period defined by two dates
query = (
 "SELECT s.emp_no, salary, from_date, to_date FROM employees AS e "
 "LEFT JOIN salaries AS s USING (emp_no) "
 "WHERE to_date = DATE('9999-01-01')"
 "AND e.hire_date BETWEEN DATE(%s) AND DATE(%s)")
UPDATE and INSERT statements for the old and new salary
update_old_salary = (
 "UPDATE salaries SET to_date = %s "
 "WHERE emp_no = %s AND from_date = %s")
insert_new_salary = (
 "INSERT INTO salaries (emp_no, from_date, to_date, salary) "
 "VALUES (%s, %s, %s, %s)")
Select the employes getting a raise
curA.execute(query, (date(2000, 1, 1), date(2001, 1, 1)))
Iterate through the result of curA
for (emp_no, salary, from_date, to_date) in curA:
 # Update the old and insert the new salary
 new_salary = int(round(salary * Decimal('1.15')))
 curB.execute(update_old_salary, (tomorrow, emp_no, from_date))
 curB.execute(insert_new_salary,
 (emp_no, tomorrow, date(9999, 1, 1,), new_salary))
 # Commit the changes
 cnx.commit()
cnx.close()

14

15

Chapter 6. Connector/Python Connection Arguments

The following lists the arguments which can be used to initiate a connection with the MySQL server using
either:

• Function mysql.connector.connect()

• Class mysql.connector.MySQLConnection()

Argument Name Default Description

user (username*) The username used to authenticate with the MySQL
Server.

password (passwd*) The password to authenticate the user with the MySQL
Server.

database (db*) Database name to use when connecting with the MySQL
Server.

host 127.0.0.1 Hostname or IP address of the MySQL Server.

port 3306 TCP/IP port of the MySQL Server. Must be an integer.

unix_socket The location of the Unix socket file.

use_unicode True Whether to use Unicode or not.

charset utf8 Which MySQL character set to use.

collation utf8_general_ciWhich MySQL collation to use.

autocommit False Whether to autocommit transactions.

time_zone Set the time_zone session variable at connection.

sql_mode Set the sql_mode session variable at connection.

get_warnings False Whether to fetch warnings.

raise_on_warnings False Whether to raise an exception on warnings.

connection_timeout
(connect_timeout*)

 Timeout for the TCP and Unix socket connections.

client_flags MySQL client flags.

buffered False Whether cursor object fetches the result immediately after
executing query.

raw False Whether MySQL results are returned as-is, rather than
converted to Python types.

ssl_ca File containing the SSL certificate authority.

ssl_cert File containing the SSL certificate file.

ssl_key File containing the SSL key.

dsn Not supported (raises NotSupportedError when
used).

* Synonymous argument name, available only for compatibility with other Python MySQL drivers. Oracle
recommends not to use these alternative names.

Authentication with MySQL will use username and password. Note that MySQL Connector/Python does
not support the old, insecure password protocols of MySQL versions prior to 4.1.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_autocommit

16

When the database parameter is given, the current database is set to the given value. To later change
the database, execute the MySQL USE command or set the database property of the MySQLConnection
instance.

By default, Connector/Python tries to connect to a MySQL server running on localhost using TCP/IP.
The host argument defaults to IP address 127.0.0.1 and port to 3306. Unix sockets are supported by
setting unix_socket. Named pipes on the Windows platform are not supported.

Strings coming from MySQL are by default returned as Python Unicode literals. To change this behavior,
set use_unicode to False. You can change the character setting for the client connection through the
charset argument. To change the character set after connecting to MySQL, set the charset property
of the MySQLConnection instance. This technique is preferred over using the MySQL SET NAMES
statement directly. Similar to the charset property, you can set the collation for the current MySQL
session.

Transactions are not automatically committed; call the commit() method of the MySQLConnection
instance within your application after doing a set of related insert, update, and delete operations. For data
consistency and high throughput for write operations, it is best to leave the autocommit configuration
option turned off when using InnoDB or other transactional tables.

The time zone can be set per connection using the time_zone argument. This is useful if the MySQL
server is set, for example, to UTC and TIMESTAMP values should be returned by MySQL converted to the
PST time zone.

MySQL supports so called SQL Modes. which will change the behavior of the server globally or per
connection. For example, to have warnings raised as errors, set sql_mode to TRADITIONAL. For more
information, see Server SQL Modes.

Warnings generated by queries are fetched automatically when get_warnings is set to True. You can
also immediately raise an exception by setting raise_on_warnings to True. Consider using the MySQL
sql_mode setting for turning warnings into errors.

To set a timeout value for connections, use connection_timeout.

MySQL uses client flags to enable or disable features. Using the client_flags argument, you have
control of what is set. To find out what flags are available, use the following:

from mysql.connector.constants import ClientFlag
print '\n'.join(ClientFlag.get_full_info())

If client_flags is not specified (that is, it is zero), defaults are used for MySQL v4.1 and later. If you
specify an integer greater than 0, make sure all flags are set. A better way to set and unset flags is to use a
list. For example, to set FOUND_ROWS, but disable the default LONG_FLAG:

flags = [ClientFlag.FOUND_ROWS, -ClientFlag.LONG_FLAG]
mysql.connector.connect(client_flags=flags)

By default, MySQL Connector/Python does not buffer or pre-fetch results. This means that after a query
is executed, your program is responsible of fetching the data. This avoids using excessive memory when
queries return large result sets. If you know that the result set is small enough to handle all at once,
fetching the results immediately by setting buffered to True. It is also possible to set this per cursor (see
cursor manual).

MySQL types will be converted automatically to Python types. For example, a DATETIME column becomes
a datetime.datetime object. When conversion should be done differently, for example to get better
performance, set raw to True.

http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-real-connect.html
http://docs.python.org/library/datetime.html#datetime.datetime

17

Using SSL connections is possible when your Python installation supports SSL, that is, when it is compiled
against the OpenSSL libraries. When you provide the arguments ssl_ca, ssl_key and ssl_cert, the
connection switches to SSL. You can use this in combination with the compressed argument set to True.

passwd, db and connect_timeout are valid for compatibility with other MySQL interfaces and are
respectively the same as password, database and connection_timeout. The latter take precedence.
Data source name syntax or dsn is not used; if specified, it raises a NotSupportedError exception.

http://docs.python.org/library/ssl.html

18

19

Chapter 7. Connector/Python API Reference

Table of Contents
Errors and Exceptions .. 21

Module errorcode ... 22
Exception errors.Error ... 22
Exception errors.Warning ... 23
Exception errors.InterfaceError .. 23
Exception errors.DatabaseError .. 23
Exception errors.InternalError .. 23
Exception errors.OperationalError .. 23
Exception errors.ProgrammingError .. 24
Exception errors.IntegrityError .. 24
Exception errors.DataError ... 24
Exception errors.NotSupportedError .. 24
Function errors.custom_error_exception(error=None, exception=None) 24

Class connection.MySQLConnection .. 25
Constructor connection.MySQLConnection(**kwargs) ... 25
Method MySQLConnection.close() ... 25
Method MySQLConnection.config(**kwargs) ... 25
Method MySQLConnection.connect(**kwargs) ... 25
Method MySQLConnection.commit() ... 25
Method MySQLConnection.cursor(buffered=None, raw=None,
cursor_class=None) ... 26
Method MySQLConnection.cmd_change_user(username='', password='',
database='', charset=33) ... 26
Method MySQLConnection.cmd_debug() ... 26
Method MySQLConnection.cmd_init_db(database) ... 26
Method MySQLConnection.cmd_ping() ... 26
Method MySQLConnection.cmd_process_info() ... 27
Method MySQLConnection.cmd_process_kill(mysql_pid) ... 27
Method MySQLConnection.cmd_quit() ... 27
Method MySQLConnection.cmd_query(statement) ... 27
Method MySQLConnection.cmd_query_iter(statement) ... 27
Method MySQLConnection.cmd_refresh(options) ... 28
Method MySQLConnection.cmd_shutdown() ... 28
Method MySQLConnection.cmd_statistics() ... 28
Method MySQLConnection.disconnect() ... 28
Method MySQLConnection.get_rows(count=None) ... 28
Method MySQLConnection.get_row() ... 28
Method MySQLConnection.get_server_info() ... 29
Method MySQLConnection.get_server_version() ... 29
Method MySQLConnection.is_connected() ... 29
Method MySQLConnection.isset_client_flag(flag) ... 29
Method MySQLConnection.ping(attempts=1, delay=0) ... 29
Method MySQLConnection.reconnect(attempts=1, delay=0) 29
Method MySQLConnection.rollback() ... 30
Method MySQLConnection.set_charset_collation(charset=None,
collation=None) ... 30
Method MySQLConnection.set_client_flags(flags) ... 30

20

Property MySQLConnection.autocommit .. 30
Property MySQLConnection.charset_name .. 31
Property MySQLConnection.collation_name .. 31
Property MySQLConnection.connection_id .. 31
Property MySQLConnection.database .. 31
Property MySQLConnection.get_warnings .. 31
Property MySQLConnection.raise_on_warnings .. 32
Property MySQLConnection.server_host .. 32
Property MySQLConnection.server_port .. 32
Property MySQLConnection.sql_mode .. 32
Property MySQLConnection.time_zone .. 33
Property MySQLConnection.unix_socket .. 33
Property MySQLConnection.user .. 33

Class cursor.MySQLCursor .. 33
Constructor cursor.MySQLCursor ... 33
Method MySQLCursor.callproc(procname, args=()) ... 33
Method MySQLCursor.close() ... 34
Method MySQLCursor.execute(operation, params=None, multi=False) 34
Method MySQLCursor.executemany(operation, seq_params) 34
Method MySQLCursor.fetchall() ... 35
Method MySQLCursor.fetchmany(size=1) ... 35
Method MySQLCursor.fetchone() ... 35
Method MySQLCursor.fetchwarnings() ... 36
Method MySQLCursor.stored_results() ... 36
Property MySQLCursor.column_names .. 36
Property MySQLCursor.statement .. 37
Property MySQLCursor.with_rows .. 37

Class cursor.MySQLCursorBuffered .. 37
Class constants.ClientFlag .. 37
Class constants.FieldType .. 38
Class constants.SQLMode .. 38
Class constants.CharacterSet .. 38
Class constants.RefreshOption .. 38

This section contains the public API reference of Connector/Python. Although valid for both Python 2 and
Python 3, examples should be considered working for Python 2.7, and Python 3.1 and greater.

The following overview shows the mysql.connector package with its modules. Currently, only the most
useful modules, classes and functions for end users are documented.

mysql.connector
 errorcode
 errors
 connection
 constants
 conversion
 cursor
 dbapi
 locales
 eng
 client_error
 protocol
 utils

Errors and Exceptions

21

Errors and Exceptions
The mysql.connector.errors module defines exception classes for errors and warnings raised
by MySQL Connector/Python. Most classes defined in this module are available when you import
mysql.connector.

The exception classes defined in this module follow mostly the Python Database Specification v2.0
(PEP-249). For some MySQL client or server errors it is not always clear which exception to raise. It is
good to discuss whether an error should be reclassified by opening a bug report.

MySQL Server errors are mapped with Python exception based on their SQLState (see Server Error
Codes and Messages). The following list shows the SQLState classes and the exception Connector/
Python will raise. It is, however, possible to redefine which exception is raised for each server error. Note
that the default exception is DatabaseError.

• 02: DataError

• 07: DatabaseError

• 08: OperationalError

• 0A: NotSupportedError

• 21: DataError

• 22: DataError

• 23: IntegrityError

• 24: ProgrammingError

• 25: ProgrammingError

• 26: ProgrammingError

• 27: ProgrammingError

• 28: ProgrammingError

• 2A: ProgrammingError

• 2B: DatabaseError

• 2C: ProgrammingError

• 2D: DatabaseError

• 2E: DatabaseError

• 33: DatabaseError

• 34: ProgrammingError

• 35: ProgrammingError

• 37: ProgrammingError

• 3C: ProgrammingError

• 3D: ProgrammingError

http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html
http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html

Module errorcode

22

• 3F: ProgrammingError

• 40: InternalError

• 42: ProgrammingError

• 44: InternalError

• HZ: OperationalError

• XA: IntegrityError

• 0K: OperationalError

• HY: DatabaseError

Module errorcode

This module contains both MySQL server and client error codes defined as module attributes with the error
number as value. Using error codes instead of error numbers could make reading the source code a bit
easier.

>>> from mysql.connector import errorcode
>>> errorcode.ER_BAD_TABLE_ERROR
1051

See Server Error Codes and Messages and Client Error Codes and Messages.

Exception errors.Error

This exception is the base class for all other exceptions in the errors module. It can be used to catch all
errors in a single except statement.

The following example shows how we could catch syntax errors:

import mysql.connector
try:
 cnx = mysql.connector.connect(user='scott', database='employees')
 cursor = cnx.cursor()
 cursor.execute("SELECT * FORM employees") # Syntax error in query
 cnx.close()
except mysql.connector.Error as err:
 print("Something went wrong: {}".format(err))

Initializing the exception supports a few optional arguments, namely msg, errno, values and sqlstate.
All of them are optional and default to None. errors.Error isinternally used by Connector/Python to
raise MySQL client and server errors and should not be used by your application to raise exceptions.

The following examples show the result when using no or a combination of the arguments:

>>> from mysql.connector.errors import Error
>>> str(Error())
'Unknown error'
>>> str(Error("Oops! There was an error."))
'Oops! There was an error.'
>>> str(Error(errno=2006))
'2006: MySQL server has gone away'
>>> str(Error(errno=2002, values=('/tmp/mysql.sock', 2)))
"2002: Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2)"
>>> str(Error(errno=1146, sqlstate='42S02', msg="Table 'test.spam' doesn't exist"))

http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html
http://dev.mysql.com/doc/refman/5.5/en/error-messages-client.html

Exception errors.Warning

23

"1146 (42S02): Table 'test.spam' doesn't exist"

The example which uses error number 1146 is used when Connector/Python receives an error packet from
the MySQL Server. The information is parsed and passed to the Error exception as shown.

Each exception subclassing from Error can be initialized using the above mentioned arguments.
Additionally, each instance has the attributes errno, msg and sqlstate which can be used in your code.

The following example shows how to handle errors when dropping a table which does not exists (when you
do not want to use the IF EXISTS clause):

import mysql.connector
from mysql.connector import errorcode
cnx = mysql.connector.connect(user='scott', database='test')
try:
 cur.execute("DROP TABLE spam")
except mysql.connector.Error as err:
 if err.errno == errorcode.ER_BAD_TABLE_ERROR:
 print("Creating table spam")
 else:
 raise

errors.Error is a subclass of the Python StandardError.

Exception errors.Warning

This exception is used for reporting important warnings, however, Connector/Python does not use it. It is
included to be compliant with the Python Database Specification v2.0 (PEP-249).

Consider using either more strict Server SQL Modes or the raise_on_warnings connection argument to
make Connector/Python raise errors when your queries produce warnings.

errors.Warning is a subclass of the Python StandardError.

Exception errors.InterfaceError

This exception is raised for errors originating from Connector/Python itself, not related to the MySQL
server.

errors.InterfaceError is a subclass of errors.Error.

Exception errors.DatabaseError

This exception is the default for any MySQL error which does not fit the other exceptions.

errors.DatabaseError is a subclass of errors.Error.

Exception errors.InternalError

This exception is raised when the MySQL server encounters an internal error, for example, when a
deadlock occurred.

errors.InternalError is a subclass of errors.DatabaseError.

Exception errors.OperationalError

This exception is raised for errors which are related to MySQL's operations. For example, to many
connections, a hostname could not be resolved, bad handshake, server is shutting down, communication
errors, and so on.

http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html

Exception errors.ProgrammingError

24

errors.OperationalError is a subclass of errors.DatabaseError.

Exception errors.ProgrammingError

This exception is raised on programming errors, for example when you have a syntax error in your SQL or
a table was not found.

The following example shows how to handle syntax errors:

try:
 cursor.execute("CREATE DESK t1 (id int, PRIMARY KEY (id))")
except mysql.connector.ProgrammingError as err:
 if err.errno == errorcode.ER_SYNTAX_ERROR:
 print("Check your syntax!")
 else:
 print("Error: {}".format(err))

errors.ProgrammingError is a subclass of errors.DatabaseError.

Exception errors.IntegrityError

This exception is raised when the relational integrity of the data is affected. For example, a duplicate key
was inserted or a foreign key constraint would fail.

The following example shows a duplicate key error raised as IntegrityError:

cursor.execute("CREATE TABLE t1 (id int, PRIMARY KEY (id))")
try:
 cursor.execute("INSERT INTO t1 (id) VALUES (1)")
 cursor.execute("INSERT INTO t1 (id) VALUES (1)")
except mysql.connector.IntegrityError as err:
 print("Error: {}".format(err))

errors.IntegrityError is a subclass of errors.DatabaseError.

Exception errors.DataError

This exception is raised when there were problems with the data. Examples are a column set to NULL
when it can not, out of range values for a column, division by zero, column count does not match value
count, and so on.

errors.DataError is a subclass of errors.DatabaseError.

Exception errors.NotSupportedError

This exception is raised is case some feature was used but not supported by the version of MySQL which
returned the error. It is also raised when using functions or statements which are not supported by stored
routines.

errors.NotSupportedError is a subclass of errors.DatabaseError.

Function errors.custom_error_exception(error=None,
exception=None)

This function defines custom exceptions for MySQL server errors and returns current customizations.

If error is a MySQL Server error number, then you have to pass also the exception class. The error
argument can also be a dictionary in which case the key is the server error number, and value the class of
the exception to be raised.

Class connection.MySQLConnection

25

To reset the customizations, simply supply an empty dictionary.

import mysql.connector
from mysql.connector import errorcode
Server error 1028 should raise a DatabaseError
mysql.connector.custom_error_exception(1028, mysql.connector.DatabaseError)
Or using a dictionary:
mysql.connector.custom_error_exception({
 1028: mysql.connector.DatabaseError,
 1029: mysql.connector.OperationalError,
})
To reset, pass an empty dictionary:
mysql.connector.custom_error_exception({})

Class connection.MySQLConnection
The MySQLConnection class is used to open and manage a connection to a MySQL server. It also used to
send commands and SQL queries and read result.

Constructor connection.MySQLConnection(**kwargs)

The MySQLConnection constructor initializes the attributes and when at least one argument is passed, it
tries to connect with the MySQL server.

For a complete list or arguments, see Chapter 6, Connector/Python Connection Arguments.

Method MySQLConnection.close()

See disconnect().

Returns a tuple.

Method MySQLConnection.config(**kwargs)

Allows to configure a MySQLConnection instance after it was instantiated. See Chapter 6, Connector/
Python Connection Arguments for a complete list of possible arguments.

You could use the config() method to change, for example, the username and call reconnect().

cnx = MySQLConnection(user='joe', database='test')
Connected as 'joe'
cnx.config(user='jane')
cnx.reconnect()
Now connected as 'jane'

Method MySQLConnection.connect(**kwargs)

This method sets up the connection to the MySQL server. If no arguments are given, it uses the already
configured or default values. See Chapter 6, Connector/Python Connection Arguments for a complete list
of possible arguments.

Method MySQLConnection.commit()

This method sends the COMMIT command to the MySQL server, committing the current transaction.
Since by default, Connector/Python does not auto commit, it is important to call this method after every
transaction which updates data for tables using transactional storage engines.

See the rollback() method for rolling back transactions.

Method MySQLConnection.cursor(buffered=None, raw=None, cursor_class=None)

26

>>> cursor.execute("INSERT INTO employees (first_name) VALUES (%s)", ('Jane'))
>>> cnx.commit()

Method MySQLConnection.cursor(buffered=None, raw=None,
cursor_class=None)

This method returns a MySQLCursor() object, or a subclass of it depending the passed arguments.

When buffered is True, the cursor will fetch all rows after the operation is executed. This is useful when
queries return small result sets. Setting raw will skip the conversion from MySQL data types to Python
types when fetching rows. Raw is usually used when you want to have more performance and/or you want
to do the conversion yourself.

The cursor_class argument can be used to pass a class to use for instantiating a new cursor. It has to
be a subclass of cursor.CursorBase.

The returned object depends on the combination of the buffered and raw arguments.

• If not buffered and not raw: cursor.MySQLCursor

• If buffered and not raw: cursor.MySQLCursorBuffered

• If buffered and raw: cursor.MySQLCursorBufferedRaw

• If not buffered and raw: cursor.MySQLCursorRaw

Returns a CursorBase instance.

Method MySQLConnection.cmd_change_user(username='',
password='', database='', charset=33)

Changes the user using username and password. It also causes the specified database to become the
default (current) database. It is also possible to change the character set using the charset argument.

Returns a dictionary containing the OK packet information.

Method MySQLConnection.cmd_debug()

Instructs the server to write some debug information to the log. For this to work, the connected user must
have the SUPER privilege.

Returns a dictionary containing the OK packet information.

Method MySQLConnection.cmd_init_db(database)

This method makes specified database the default (current) database. In subsequent queries, this
database is the default for table references that do not include an explicit database specifier.

Returns a dictionary containing the OK packet information.

Method MySQLConnection.cmd_ping()

Checks whether the connection to the server is working.

Method MySQLConnection.cmd_process_info()

27

This method is not to be used directly. Use ping() or is_connected() instead.

Returns a dictionary containing the OK packet information.

Method MySQLConnection.cmd_process_info()

This method raises the NotSupportedError exception. Instead, use the SHOW PROCESSLIST statement or
query the tables found in the database INFORMATION_SCHEMA.

Method MySQLConnection.cmd_process_kill(mysql_pid)

Asks the server to kill the thread specified by mysql_pid. Although still available, it's better to use the
SQL KILL command.

Returns a dictionary containing the OK packet information.

The following two lines do the same:

>>> cnx.cmd_process_kill(123)
>>> cnx.cmd_query('KILL 123')

Method MySQLConnection.cmd_quit()

This method sends the QUIT command to the MySQL server, closing the current connection. Since there is
no response from the MySQL, the packet that was sent is returned.

Method MySQLConnection.cmd_query(statement)

This method sends the given statement to the MySQL server and returns a result. If you need to send
multiple statements, you have to use the cmd_query_iter() method.

The returned dictionary contains information depending on what kind of query was executed. If the query is
a SELECT statement, the result contains information about columns. Other statements return a dictionary
containing OK or EOF packet information.

Errors received from the MySQL server are raised as exceptions. An InterfaceError is raised when
multiple results are found.

Returns a dictionary.

Method MySQLConnection.cmd_query_iter(statement)

Similar to the cmd_query() method, but returns a generator object to iterate through results. Use
cmd_query_iter() when sending multiple statements, and separate the statements with semicolons.

The following example shows how to iterate through the results after sending multiple statements:

statement = 'SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cnx.cmd_query(statement, iterate=True):
 if 'columns' in result:
 columns = result['columns']
 rows = cnx.get_rows()
 else:
 # do something useful with INSERT result

Returns a generator object.

http://dev.mysql.com/doc/refman/5.5/en/select.html

Method MySQLConnection.cmd_refresh(options)

28

Method MySQLConnection.cmd_refresh(options)

This method flushes tables or caches, or resets replication server information. The connected user must
have the RELOAD privilege.

The options argument should be a bitwise value using constants from the class
constants.RefreshOption.

See Class constants.RefreshOption for a list of options.

Example:

>>> from mysql.connector import RefreshOption
>>> refresh = RefreshOption.LOG | RefreshOption.THREADS
>>> cnx.cmd_refresh(refresh)

Method MySQLConnection.cmd_shutdown()

Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.

Returns a dictionary containing the OK packet information.

Method MySQLConnection.cmd_statistics()

Returns a dictionary containing information about the MySQL server including uptime in seconds and the
number of running threads, questions, reloads, and open tables.

Method MySQLConnection.disconnect()

This method tries to send the QUIT command and close the socket. It does not raise any exceptions.

MySQLConnection.close() is a synonymous method name and more commonly used.

Method MySQLConnection.get_rows(count=None)

This method retrieves all or remaining rows of a query result set, returning a tuple containing the rows as
sequence and the EOF packet information. The count argument can be used to get a given amount of
rows. If count is not specified or is None, all rows are retrieved.

The tuple returned by get_rows() consists of:

• A list of tuples containing the row data as byte objects, or an empty list when no rows are available.

• EOF packet information as a dictionary containing status_flag and warning_count.

An InterfaceError is raised when all rows have been retrieved.

The get_rows() method is used by MySQLCursor to fetch rows.

Returns a tuple.

Method MySQLConnection.get_row()

This method retrieves the next row of a query result set, returning a tuple.

The tuple returned by get_row() consists of:

Method MySQLConnection.get_server_info()

29

• The row as a tuple containing byte objects, or None when no more rows are available.

• EOF packet information as a dictionary containing status_flag and warning_count, or None when
the row returned is not the last row.

The get_row() method is used by MySQLCursor to fetch rows.

Method MySQLConnection.get_server_info()

This method returns the MySQL server information verbatim, for example '5.5.24-log', or None when
not connected.

Returns a string or None.

Method MySQLConnection.get_server_version()

This method returns the MySQL server version as a tuple, or None when not connected.

Returns a tuple or None.

Method MySQLConnection.is_connected()

Reports whether the connection to MySQL Server is available.

This method checks whether the connection to MySQL is available using the ping() method, but unlike
ping(), is_connected() returns True when the connection is available, False otherwise.

Returns True or False.

Method MySQLConnection.isset_client_flag(flag)

This method returns True if the client flag was set, False otherwise.

Returns True or False.

Method MySQLConnection.ping(attempts=1, delay=0)

Check whether the connection to the MySQL server is still available.

When reconnect is set to True, one or more attempts are made to try to reconnect to the MySQL server
using the reconnect() method. Use the delay argument (seconds) if you want to wait between each
retry.

When the connection is not available, an InterfaceError is raised. Use the is_connected() method to
check the connection without raising an error.

Raises InterfaceError on errors.

Method MySQLConnection.reconnect(attempts=1, delay=0)

Attempt to reconnect with the MySQL server.

The argument attempts specifies the number of times a reconnect is tried. The delay argument is the
number of seconds to wait between each retry.

You might set the number of attempts higher and use a longer delay when you expect the MySQL server to
be down for maintenance, or when you expect the network to be temporarily unavailable.

Method MySQLConnection.rollback()

30

Method MySQLConnection.rollback()

This method sends the ROLLBACK command to the MySQL server, undoing all data changes from the
current transaction. Since by default, Connector/Python does not auto commit, it is possible to cancel
transactions when using transactional storage engines such as InnoDB.

See the commit() method for committing transactions.

>>> cursor.execute("INSERT INTO employees (first_name) VALUES (%s)", ('Jane'))
>>> cnx.rollback()

Method MySQLConnection.set_charset_collation(charset=None,
collation=None)

This method sets the character set and collation to be used for the current connection. The charset
argument can be either the name of a character set, or the numerical equivalent as defined in
constants.CharacterSet.

When collation is None, the default will be looked up and used.

The charset argument then be either:

In the following example, we set the character set to latin1 and the collation will be set to the default
latin1_swedish_ci:

>>> cnx = mysql.connector.connect(user='scott')
>>> cnx.set_charset('latin1')

Specify a specific collation as follows:

>>> cnx = mysql.connector.connect(user='scott')
>>> cnx.set_charset('latin1', 'latin1_general_ci')

Method MySQLConnection.set_client_flags(flags)

This method sets the client flags which are used when connecting with the MySQL server and returns the
new value. The flags argument can be either an integer or a sequence of valid client flag values (see
Class constants.ClientFlag).

If flags is a sequence, each item in the sequence will set the flag when the value is positive or unset it
when negative. For example, to unset LONG_FLAG and set the FOUND_ROWS flags:

>>> from mysql.connector.constants import ClientFlag
>>> cnx.set_client_flags([ClientFlag.FOUND_ROWS, -ClientFlag.LONG_FLAG])
>>> cnx.reconnect()

Note that client flags are only set or used when connecting with the MySQL server. It is therefor necessary
to reconnect after making changes.

Returns an integer.

Property MySQLConnection.autocommit

This property is used to toggle the auto commit feature of MySQL and retrieve the current state. When the
value evaluates to True, auto commit will be turned, otherwise it is turned off.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_commit

Property MySQLConnection.charset_name

31

Note that auto commit is disabled by default when connecting through Connector/Python. This can be
toggled using the connection parameter autocommit.

When the auto commit is turned off, you have to commit transactions when using transactional storage
engines such as InnoDB or NDBCluster.

>>> cnx.autocommit
False
>>> cnx.autocommit = True
>>> cnx.autocommit
True

Returns True or False.

Property MySQLConnection.charset_name

This property returns which character set is used for the connection whether it is connected or not.

Returns a string.

Property MySQLConnection.collation_name

This property returns which collation is used for the connection whether it is connected or not.

Returns a string.

Property MySQLConnection.connection_id

This property returns the connection ID (thread ID or session ID) for the current connection or None when
not connected.

Returns a integer or None.

Property MySQLConnection.database

This property is used to set current (active) database executing the USE command. The property can also
be used to retrieve the current database name.

>>> cnx.database = 'test'
>>> cnx.database = 'mysql'
>>> cnx.database
u'mysql'

Returns a string.

Property MySQLConnection.get_warnings

This property is used to toggle whether warnings should be fetched automatically or not. It accepts True or
False (default).

Fetching warnings automatically could be useful when debugging queries. Cursors will make warnings
available through the method MySQLCursor.fetchwarnings().

>>> cnx.get_warnings = True
>>> cursor.execute('SELECT "a"+1')
>>> cursor.fetchall()

Property MySQLConnection.raise_on_warnings

32

[(1.0,)]
>>> cursor.fetchwarnings()
[(u'Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

Returns True or False.

Property MySQLConnection.raise_on_warnings

This property is used to toggle whether warnings should raise exceptions or not. It accepts True or False
(default).

Toggling raise_on_warnings will also toggle get_warnings since warnings need to be fetched so
they can be raised as exceptions.

Note that you might always want to check setting SQL Mode if you would like to have the MySQL server
directly report warnings as errors. It is also good to use transactional engines so transactions can be rolled
back when catching the exception.

Result sets needs to be fetched completely before any exception can be raised. The following example
shows the execution of a query which produces a warning

>>> cnx.raise_on_warnings = True
>>> cursor.execute('SELECT "a"+1')
>>> cursor.fetchall()
..
mysql.connector.errors.DataError: 1292: Truncated incorrect DOUBLE value: 'a'

Returns True or False.

Property MySQLConnection.server_host

This read-only property returns the hostname or IP address used for connecting with the MySQL server.

Returns a string.

Property MySQLConnection.server_port

This read-only property returns the TCP/IP port used for connecting with the MySQL server.

Returns a integer.

Property MySQLConnection.sql_mode

This property is used to retrieve and set the SQL Modes for the current. The value should be list of different
modes separated by comma (","), or a sequence of modes, preferably using the constants.SQLMode class.

To unset all modes, pass an empty string or an empty sequence.

>>> cnx.sql_mode = 'TRADITIONAL,NO_ENGINE_SUBSTITUTION'
>>> cnx.sql_mode.split(',')
[u'STRICT_TRANS_TABLES', u'STRICT_ALL_TABLES', u'NO_ZERO_IN_DATE',
u'NO_ZERO_DATE', u'ERROR_FOR_DIVISION_BY_ZERO', u'TRADITIONAL',
u'NO_AUTO_CREATE_USER', u'NO_ENGINE_SUBSTITUTION']
>>> from mysql.connector.constants import SQLMode
>>> cnx.sql_mode = [SQLMode.NO_ZERO_DATE, SQLMode.REAL_AS_FLOAT]
>>> cnx.sql_mode

u'REAL_AS_FLOAT,NO_ZERO_DATE'

Property MySQLConnection.time_zone

33

Returns a string.

Property MySQLConnection.time_zone

This property is used to set the time zone session variable for the current connection and retrieve it.

>>> cnx.time_zone = '+00:00'
>>> cur.execute('SELECT NOW()') ; cur.fetchone()
(datetime.datetime(2012, 6, 15, 11, 24, 36),)
>>> cnx.time_zone = '-09:00'
>>> cur.execute('SELECT NOW()') ; cur.fetchone()
(datetime.datetime(2012, 6, 15, 2, 24, 44),)
>>> cnx.time_zone
u'-09:00'

Returns a string.

Property MySQLConnection.unix_socket

This read-only property returns the UNIX socket user for connecting with the MySQL server.

Returns a string.

Property MySQLConnection.user

This read-only property returns the username used for connecting with the MySQL server.

Returns a string.

Class cursor.MySQLCursor

The MySQLCursor class is used to instantiate object which can execute operation such as SQL queries.
They interact with the MySQL server using a MySQLConnection object.

Constructor cursor.MySQLCursor

The constructor initializes the instance with the optional connection, which should be an instance of
MySQLConnection.

In most cases, the MySQLConnection method cursor() is used to instantiate a MySQLCursor object.

Method MySQLCursor.callproc(procname, args=())

This method calls a stored procedure with the given name. The args sequence of parameters must
contain one entry for each argument that the routine expects. The result is returned as modified copy of
the input sequence. Input parameters are left untouched, output and input/output parameters replaced with
possibly new values.

Result set provided by the stored procedure are automatically fetched and stored as
MySQLBufferedCursor instances. See stored_results() for more information.

The following example shows how to execute a stored procedure which takes two parameters, multiplies
the values and returns the product:

Definition of the multiply stored procedure:

Method MySQLCursor.close()

34

CREATE PROCEDURE multiply(IN pFac1 INT, IN pFac2 INT, OUT pProd INT)
BEGIN
SET pProd := pFac1 * pFac2;
END
>>> args = (5, 5, 0) # 0 is to hold value of the OUT parameter pProd
>>> cursor.callproc('multiply', args)
('5', '5', 25L)

Method MySQLCursor.close()

This method will close the MySQL cursor, resetting all results and removing the connection.

Use close() every time you are done using the cursor.

Method MySQLCursor.execute(operation, params=None,
multi=False)

This method prepare the given database operation (query or command). The parameters found in the
tuple or dictionary params will be bound to the variables in the operation. Variables are specified using %s
markers or named markers %(name)s.

For example, insert information about a new employee and selecting again the data of this person:

insert = (
"INSERT INTO employees (emp_no, first_name, last_name, hire_date) "
"VALUES (%s, %s, %s, %s)")
data = (2, 'Jane', 'Doe', datetime.date(2012, 3, 23))
cursor.execute(insert, data)
select = "SELECT * FROM employees WHERE emp_no = %(emp_no)s"
cursor.execute(select, { 'emp_no': 2 })

Note that the data is converted from Python object to something MySQL understand. In the above
example, the datetime.date() instance is converted to '2012-03-23' in the above example.

When multi is set to True, execute() will be able to execute multiple statements. It will return an iterator
which makes it possible to go through all results for each statement. Note that using parameters is not
working well in this case, and it's usually a good idea to execute each statement on its own.

In the following example we select and insert data in one operation and display the result:

operation = 'SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cursor.execute(operation):
 if result.with_rows:
 print("Statement '{}' has following rows:".format(
 result.statement))
 print(result.fetchall())
 else:
 print("Affected row(s) by query '{}' was {}".format(
 result.statement, result.rowcount))

If the connection was configured to fetch warnings, warnings generated by the operation will be available
through the method MySQLCursor.fetchwarnings().

Returns an iterator when multi is True.

Method MySQLCursor.executemany(operation, seq_params)

This method prepares a database operation (query or command) and then execute it against all parameter
sequences or mappings found in the sequence seq_of_params.

Method MySQLCursor.fetchall()

35

The executemany() is simply iterating through the sequence of parameters calling the execute()
method. Inserting data, however, is optimized by batching them using the multiple rows syntax.

In the following example we are inserting 3 records:

data = [
 ('Jane', date(2005, 2, 12)),
 ('Joe', date(2006, 5, 23)),
 ('John', date(2010, 10, 3)),
]
stmt = "INSERT INTO employees (first_name, hire_date) VALUES (%s, %s)"
cursor.executemany(stmt, data)

In the above example, the INSERT statement sent to MySQL would be as follows: INSERT INTO
employees (first_name, hire_date) VALUES ('Jane', '2005-02-12'), ('Joe',
'2006-05-23'), ('John', '2010-10-03').

Note that it is not possible to execute multiple statements using the executemany() method. Doing so
will raise an InternalError exception.

Method MySQLCursor.fetchall()

The method fetches all or remaining rows of a query result set, returning a list of tuples. An empty list is
returned when no rows are (anymore) available.

The following examples shows how to retrieve the first 2 rows of a result set, and then retrieve the
remaining rows:

>>> cursor.execute("SELECT * FROM employees ORDER BY emp_no")
>>> head_rows = cursor.fetchmany(size=2)
>>> remaining_rows = cursor.fetchall()

Note that you have to fetch all rows before being able to execute new queries using the same connection.

Returns a list of tuples or empty list when no rows available.

Method MySQLCursor.fetchmany(size=1)

This method fetches the next set of rows of a query results, returning a list of tuples. An empty list is
returned when no more rows are available.

The number of rows returned can be specified using the size argument, which defaults to one. Fewer rows
might be returned, when there are not more rows available than specified by the argument.

Note that you have to fetch all rows before being able to execute new queries using the same connection.

Returns a list of tuples or empty list when no rows available.

Method MySQLCursor.fetchone()

This method retrieves the next row of a query result set, returning a single sequence, or None when no
more data is available.The returned tuple consists of data returned by the MySQL server converted to
Python objects.

The fetchone() method is used by fetchmany() and fetchall(). It is also used when using the
MySQLCursor instance as an iterator.

The following examples show how to iterate through the result of a query using fetchone():

Method MySQLCursor.fetchwarnings()

36

Using a while-loop
cursor.execute("SELECT * FROM employees")
row = cursor.fetchone()
while row is not None:
 print(row)
 row = cursor.fetchone()
Using the cursor as iterator
cursor.execute("SELECT * FROM employees")
for row in cursor:
 print(row)

Note that you have to fetch all rows before being able to execute new queries using the same connection.

Returns a tuple or None.

Method MySQLCursor.fetchwarnings()

This method returns a list of tuples containing warnings generated by previously executed statement. Use
the connection's get_warnings property to toggle whether warnings has to be fetched.

The following example shows a SELECT statement which generated a warning:

>>> cnx.get_warnings = True
>>> cursor.execute('SELECT "a"+1')
>>> cursor.fetchall()
[(1.0,)]
>>> cursor.fetchwarnings()
[(u'Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

It is also possible to raise errors when warnings are found. See the MySQLConnection property
raise_on_warnings.

Returns a list of tuples.

Method MySQLCursor.stored_results()

This method returns an list iterator object which can be used to go through result sets provided by stored
procedures after calling them using the callproc() method.

In the following example we execute a stored procedure which will provide two result sets. We use
stored_results() to retrieve them:

>>> cursor.callproc('sp1')
()
>>> for result in cursor.stored_results():
... print result.fetchall()
...
[(1,)]
[(2,)]

Note that the result sets stay available until you executed another operation or call another stored
procedure.

Returns a listiterator.

Property MySQLCursor.column_names

This read-only property returns the column names of a result set as sequence of (unicode) strings.

Property MySQLCursor.statement

37

The following example shows how you can create a dictionary out of a tuple containing data with keys
using column_names:

cursor.execute("SELECT last_name, first_name, hire_date "
 "FROM employees WHERE emp_no = %s", (123,))
row = dict(zip(cursor.column_names, cursor.fetchone())
print("{last_name}, {first_name}: {hire_date}".format(row))

Returns a tuple.

Property MySQLCursor.statement

This read-only property returns the last executed statement. In case multiple statements where executed, it
will show the actual statement.

The statement property might be useful for debugging and showing what was send to the MySQL server.

Returns a string.

Property MySQLCursor.with_rows

This read-only property will return True when the result of the executed operation provides rows.

The with_rows property is useful when executing multiple statements and you need to fetch rows. In the
following example we only report the affected rows by the UPDATE statement:

import mysql.connector
cnx = mysql.connector.connect(user='scott', database='test')
cursor = cnx.cursor()
operation = 'SELECT 1; UPDATE t1 SET c1 = 2; SELECT 2'
for result in cursor.execute(operation, multi=True):
 if result.with_rows:
 result.fetchall()
 else:
 print("Updated row(s): {}".format(result.rowcount))

Class cursor.MySQLCursorBuffered
This class is inheriting from cursor.MySQLCursor and if needed automatically retrieves rows after an
operation has been executed.

MySQLCursorBuffered can be useful in situations where two queries, with small result sets, need to be
combined or computed with each other.

You can either use the buffered argument when using the connection's cursor() method, or you can
use the buffered connection option to make all created cursors by default buffering.

import mysql.connector
cnx = mysql.connector.connect()
Only this particular cursor will be buffering results
cursor.cursor(buffered=True)
All cursors by default buffering
cnx = mysql.connector.connect(buffered=True)

See Tutorial: Raise employee's salary using a buffering cursor for a practical use case.

Class constants.ClientFlag
This class provides constants defining MySQL client flags which can be used upon connection to configure
the session. The ClientFlag class is available when importing mysql.connector.

Class constants.FieldType

38

>>> import mysql.connector
>>> mysql.connector.ClientFlag.FOUND_ROWS
2

See Method MySQLConnection.set_client_flags(flags) and the connection argument
client_flag.

Note that the ClientFlag class can not be instantiated.

Class constants.FieldType

This class provides all supported MySQL field or data types. They can be useful when dealing with raw
data or defining your own converters. The field type is stored with every cursor in the description for each
column.

The following example shows how you can print the name of the data types for each of the columns in the
result set.

from __future__ import print_function
import mysql.connector
from mysql.connector import FieldType
cnx = mysql.connector.connect(user='scott', database='test')
cursor = cnx.cursor()
cursor.execute(
 "SELECT DATE(NOW()) AS `c1`, TIME(NOW()) AS `c2`, "
 "NOW() AS `c3`, 'a string' AS `c4`, 42 AS `c5`")
rows = cursor.fetchall()
for desc in cursor.description:
 colname = desc[0]
 coltype = desc[1]
 print("Column {} has type {}".format(
 colname, FieldType.get_info(coltype)))
cursor.close()
cnx.close()

Note that the FieldType class can not be instantiated.

Class constants.SQLMode

This class provides all known MySQL Server SQL Modes. It is mostly used when setting the
SQL modes at connection time using the connection's property sql_mode. See Property
MySQLConnection.sql_mode.

Note that the SQLMode class can not be instantiated.

Class constants.CharacterSet

This class provides all known MySQL characters sets and their default collations. See Method
MySQLConnection.set_charset_collation(charset=None, collation=None) for examples.

Note that the CharacterSet class can not be instantiated.

Class constants.RefreshOption

• RefreshOption.GRANT

Refresh the grant tables, like FLUSH PRIVILEGES.

http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html

Class constants.RefreshOption

39

• RefreshOption.LOG

Flush the logs, like FLUSH LOGS.

• RefreshOption.TABLES

Flush the table cache, like FLUSH TABLES.

• RefreshOption.HOSTS

Flush the host cache, like FLUSH HOSTS.

• RefreshOption.STATUS

Reset status variables, like FLUSH STATUS.

• RefreshOption.THREADS

Flush the thread cache.

• RefreshOption.SLAVE

On a slave replication server, reset the master server information and restart the slave, like RESET
SLAVE.

• RefreshOption.MASTER

On a master replication server, remove the binary log files listed in the binary log index and truncate the
index file, like RESET MASTER.

http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/reset-slave.html
http://dev.mysql.com/doc/refman/5.5/en/reset-slave.html
http://dev.mysql.com/doc/refman/5.5/en/reset-master.html

40

41

Chapter 8. MySQL Connector/Python Change History

Changes in MySQL Connector/Python 1.0.6 (30 August 2012, beta)

Second beta release.

Functionality Added or Changed

• Changed name and version of distributions to align with other MySQL projects:

• The version now includes the suffix 'b' for beta and 'a' for alpha followed by a number. This version is
used in the source and built distributions. GA versions will have no suffix.

• The RPM spec files have been updated to create packages whose names are aligned with RPMs from
other MySQL projects.

• Changed how MySQL server errors are mapped to Python exceptions. We now use the SQLState
(when available) to raise a better error.

• Incompatibility: some server errors are now raised with a different exception.

• It is possible to override how errors are raised using the
mysql.connector.custom_error_exception() function, defined in the
mysql.connector.errors module. This can be useful for certain frameworks to align with other
database drivers.

Bugs Fixed

• Fixed version-specific code so Connector/Python works with Python 3.3. (Bug #14524942)

• Fixed MySQLCursorRaw.fetchall() so it does not raise an exception when results are available.
(Bug #14517262, Bug #66465)

• Fixed installation of version.py on OS X:

• version.py is now correctly installed on OS X in the mysql.connector package. Previously, it
was installed through data_files, and version.py ended up in the system-wide package location
of Python, from which it could not be imported.

• data_files is not used any longer in setup.py and is removed. Extra files like version.py are
now copied in the custom Distutils commands.

(Bug #14483142)

• Timeout for unit tests has been set to 10 seconds. Test cases can individually adjust it to be higher or
lower. (Bug #14487502)

• Fixed test cases in test_mysql_database.py that failed when using YEAR(2) with MySQL 5.6.6 and
greater. (Bug #14460680)

• Fixed SSL unit testing for source distributions:

• The SSL keys and certificates were missing and are now added to the source distribution. Now SSL
testing works properly.

• Additionally for the Windows platform, forward slashes were added to the option file creation so the
MySQL server can pick up the needed SSL files.

Changes in MySQL Connector/Python 1.0.5 (17 July 2012, beta)

42

(Bug #14402737)

Changes in MySQL Connector/Python 1.0.5 (17 July 2012, beta)

First beta release.

Functionality Added or Changed

• Added SQLMode class in the constants module to make it easier to set modes. For example:

cnx.sql_mode = [SQLMode.REAL_AS_FLOAT, SQLMode.NO_ZERO_DATE]

• Added descriptive error codes for both client and server errors in the module errorcode. A new sub-
package locales has been added, which currently only supports English client error messages.

For example, errorcode.CR_CONNECTION_ERROR is 2002.

Changes in MySQL Connector/Python 1.0.4 (07 July 2012, alpha)

Internal alpha release.

Bugs Fixed

• Incompatible Change: The MySQLConnection methods unset_client_flag() and
set_client_flag() have been removed. Use theset_client_flags() method instead using a
sequence. (Bug #14259996)

• Incompatible Change: The method MySQLConnection.set_charset() has been removed and
replaced by MySQLConnection.set_charset_collation() to simplify setting and retrieving
character set and collation information. The MySQLConnection properties collation and charset
are now read-only. (Bug #14260052)

• Incompatible Change: Fixed MySQLConnection.cmd_query() to raise an error when the operation
has multiple statements. We introduced a new method MySQLConnection.cmd_query_iter() which
needs to be used when multiple statements send to the MySQL server. It returns a generator object to
iterate through results.

When executing single statements, MySQLCursor.execute() will always return None. You can use
the MySQLCursor property with_rows to check whether a result could have rows or not.

MySQLCursor.execute() returns a generator object with which you can iterate over results when
executing multiple statements.

The MySQLCursor.next_resultset() became obsolete and was removed
and the MySQLCursor.next_proc_result() method has been renamed to
MySQLCursor.proc_results(), which returns a generator object. The MySQLCursor.with_rows
property can be used to check if a result could return rows. The multiple_resultset.py example
script shows how to go through results produced by sending multiple statements. (Bug #14208326)

• Fixed MySQLCursor.executemany() when INSERT statements use the ON DUPLICATE KEY clause
with a function such as VALUES(). (Bug #14259954)

• Fixed unit testing on the Microsoft Windows platform. (Bug #14236592)

• Fixed converting a datetime.time to a MySQL type using Python 2.4 and 2.5. The strftime()
function has no support for the %f mark in those Python versions. (Bug #14231941)

Changes in MySQL Connector/Python 1.0.3 (08 June 2012, alpha)

43

• Fixed cursor.CursorBase attributes description, lastrowid and rowcount to be read-only
properties. (Bug #14231160)

• Fixed MySQLConnection.cmd_query() and other methods so they check first whether there are
unread results. (Bug #14184643)

Changes in MySQL Connector/Python 1.0.3 (08 June 2012, alpha)

Internal alpha release.

Functionality Added or Changed

• Adding new Distutils commands to create Windows Installers using WiX and RPM packages.

• Adding support for time values with a fractional part, for MySQL 5.6.4 and greater. A new example script
microseconds.py was added to show this functionality.

Changes in MySQL Connector/Python 1.0.2 (19 May 2012, alpha)

Internal alpha release.

Functionality Added or Changed

• Added more unit tests for modules like connection and network as well as testing the SSL
functionality.

Bugs Fixed

• Fixed bootstrapping MySQL 5.6 running unit tests.

Messages send by the bootstrapped MySQL server to stdout and stderr are now discarded. (Bug
#14048685)

• Fixing and refactoring the mysql.connector.errors module. (Bug #14039339)

Changes in MySQL Connector/Python 1.0.1 (26 April 2012, alpha)

Internal alpha release.

Functionality Added or Changed

• Change the version so it only contain integers. The 'a' or 'alpha' suffix will not be present in packages,
but it will be mentioned in the _version.py module since metasetupinfo.py uses this information to
set, for example, the Trove classifiers dynamically.

Changes in MySQL Connector/Python 1.0.0 (22 April 2012, alpha)

Internal alpha release.

Functionality Added or Changed

• Incompatible Change: MySQLConnection.reconnect() can be used to reconnect to the MySQL
server. It accepts number of retries and an optional delay between attempts.

MySQLConnectiong.ping() is now a method and works the way the MySQL C API mysql_ping()
function works: it raises an error. It can also optionally reconnect.

Changes in MySQL Connector/Python 1.0.0 (22 April 2012, alpha)

44

MySQLConnection.is_connected() now returns True when connection is available, False
otherwise.

ping() and is_connected() are backwards incompatible. (Bug #13392739)

• Refactored the modules connection and protocol and created a new module network. The
MySQLProtocol does not keep a reference to the connection object any more and deals only with
creating and parsing MySQL packets. Network interaction is now done by the MySQLConnection
objects (with the exception of MySQLProtocol.read_text_result()).

Bugs Fixed

• Fixed metasetupinfo.py to use the Connector/Python which is being installed instead of the version
already installed. (Bug #13962765)

• Fixed MySQLCursor.description so it stores column names as Unicode. (Bug #13792575)

• Fixed dbapi.Binary to be a bytes types for Python 3.x. (Bug #13780676)

• Fixed automatic garbage collection which caused memory usage to grow over time. Note that
MySQLConnection does not keep track of its cursors any longer. (Bug #13435186)

• Fixed setting time zone for current MySQL session. (Bug #13395083)

• Fixed setting and retrieving character set and collation. (Bug #13375632)

• Fixed handling of errors after authentication for Python 3. (Bug #13364285)

	MySQL Connector/Python
	Table of Contents
	Preface and Legal Notices
	Chapter 1. MySQL Connector/Python
	Chapter 2. Connector/Python Versions
	Chapter 3. Connector/Python Installation
	Installing Connector/Python Source Distribution on Linux, UNIX, or OS X
	Installing Connector/Python Source Distribution on Microsoft Windows
	Verifying Your Connector/Python Installation

	Chapter 4. Connector/Python Coding Examples
	Connecting to MySQL Using Connector/Python
	Creating Tables Using Connector/Python
	Inserting Data Using Connector/Python
	Querying Data Using Connector/Python

	Chapter 5. Connector/Python Tutorials
	Tutorial: Raise employee's salary using a buffering cursor

	Chapter 6. Connector/Python Connection Arguments
	Chapter 7. Connector/Python API Reference
	Errors and Exceptions
	Module errorcode
	Exception errors.Error
	Exception errors.Warning
	Exception errors.InterfaceError
	Exception errors.DatabaseError
	Exception errors.InternalError
	Exception errors.OperationalError
	Exception errors.ProgrammingError
	Exception errors.IntegrityError
	Exception errors.DataError
	Exception errors.NotSupportedError
	Function errors.custom_error_exception(error=None, exception=None)

	Class connection.MySQLConnection
	Constructor connection.MySQLConnection(**kwargs)
	Method MySQLConnection.close()
	Method MySQLConnection.config(**kwargs)
	Method MySQLConnection.connect(**kwargs)
	Method MySQLConnection.commit()
	Method MySQLConnection.cursor(buffered=None, raw=None, cursor_class=None)
	Method MySQLConnection.cmd_change_user(username='', password='', database='', charset=33)
	Method MySQLConnection.cmd_debug()
	Method MySQLConnection.cmd_init_db(database)
	Method MySQLConnection.cmd_ping()
	Method MySQLConnection.cmd_process_info()
	Method MySQLConnection.cmd_process_kill(mysql_pid)
	Method MySQLConnection.cmd_quit()
	Method MySQLConnection.cmd_query(statement)
	Method MySQLConnection.cmd_query_iter(statement)
	Method MySQLConnection.cmd_refresh(options)
	Method MySQLConnection.cmd_shutdown()
	Method MySQLConnection.cmd_statistics()
	Method MySQLConnection.disconnect()
	Method MySQLConnection.get_rows(count=None)
	Method MySQLConnection.get_row()
	Method MySQLConnection.get_server_info()
	Method MySQLConnection.get_server_version()
	Method MySQLConnection.is_connected()
	Method MySQLConnection.isset_client_flag(flag)
	Method MySQLConnection.ping(attempts=1, delay=0)
	Method MySQLConnection.reconnect(attempts=1, delay=0)
	Method MySQLConnection.rollback()
	Method MySQLConnection.set_charset_collation(charset=None, collation=None)
	Method MySQLConnection.set_client_flags(flags)
	Property MySQLConnection.autocommit
	Property MySQLConnection.charset_name
	Property MySQLConnection.collation_name
	Property MySQLConnection.connection_id
	Property MySQLConnection.database
	Property MySQLConnection.get_warnings
	Property MySQLConnection.raise_on_warnings
	Property MySQLConnection.server_host
	Property MySQLConnection.server_port
	Property MySQLConnection.sql_mode
	Property MySQLConnection.time_zone
	Property MySQLConnection.unix_socket
	Property MySQLConnection.user

	Class cursor.MySQLCursor
	Constructor cursor.MySQLCursor
	Method MySQLCursor.callproc(procname, args=())
	Method MySQLCursor.close()
	Method MySQLCursor.execute(operation, params=None, multi=False)
	Method MySQLCursor.executemany(operation, seq_params)
	Method MySQLCursor.fetchall()
	Method MySQLCursor.fetchmany(size=1)
	Method MySQLCursor.fetchone()
	Method MySQLCursor.fetchwarnings()
	Method MySQLCursor.stored_results()
	Property MySQLCursor.column_names
	Property MySQLCursor.statement
	Property MySQLCursor.with_rows

	Class cursor.MySQLCursorBuffered
	Class constants.ClientFlag
	Class constants.FieldType
	Class constants.SQLMode
	Class constants.CharacterSet
	Class constants.RefreshOption

	Chapter 8. MySQL Connector/Python Change History

