MySQL Connector/J 6.0 Developer Guide

Abstract

This manual describes how to install, configure, and develop database applications using MySQL Connector/J 6.0, a
JDBC driver for communicating with MySQL servers.

For notes detailing the changes in each release of Connector/J 6.0, see MySQL Connector/J 6.0 Release Notes.
For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages,
and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL Documentation
Library.

Licensing information. This product may include third-party software, used under license. If you are using a
Commercial release of MySQL Connector/J 6.0, see this document for licensing information, including licensing
information relating to third-party software that may be included in this Commercial release. If you are using a
Community release of MySQL Connector/J 6.0, see this document for licensing information, including licensing
information relating to third-party software that may be included in this Community release.

Document generated on: 2017-02-22 (revision: 50872)

http://dev.mysql.com/doc/relnotes/connector-j/6.0/en/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc
http://dev.mysql.com/doc
http://downloads.mysql.com/docs/licenses/connector-j-6.0-com-en.pdf
http://downloads.mysql.com/docs/licenses/connector-j-6.0-gpl-en.pdf

Table of Contents

Preface and Legal NOTICESccouuiiiiiiiiieiiii ettt ettt e et e e et et e e e e et e e e ee bt e e e eebaaeeees v
1 Overview Of MYSQL CONNECIONTiiiii ittt ettt et ettt eb e e e e e e enees 1
2 Connector/J Versions, and the MySQL and Java Versions They SUPPOITccoeviiiiiiiinieiiiiinneeciiennn. 3
3 What's NeW in CONNECIOIT 6.07iiiiiiiiiiii ettt ettt e e e e enanns 5
4 ConNECOr/J INSTAIALION ... it ettt e e e e e e 7
4.1 Installing Connector/J from a Binary DiStributioncooieiiiiiiiii e 7

4.2 Installing the Driver and Configuring the CLASSPATHcouuiiiiii e 7

4.3 Upgrading from an Older VEISIONuuiiiiiiiiieiiii ettt et 8
4.3.1 Upgrading to MySQL CoNNECTOII 6.0ocieruiieiiiieeiei et 8

4.4 Installing from the Development SOUICE TIEEiiiiiiii i 12

4.5 TeStNG CONNECTIONT ittt ettt ettt e e et e e et et e et et b reeeest e e e enbnaeeeens 14

5 CONNECIOINI EXAMPIES ...ooiiiiiiiiii ittt ettt e et e et et e et e e et et e e e e eaa s 17
6 ConNector/J (JDBC) RETEIEINCEiiiiiiiieieii ettt e et e e et e e e enb e eeees 19
6.1 Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J 19
6.1.1 Properties Files for the useConf i gs OPLONoviiiiiiiieiiii e 51

6.2 JDBC API IMpPIementation NOTEScoouuiiiiiiiieeeii et e e 52

6.3 Java, JDBC and MYSQL TYPESuciieiiueiiiitieeeett ettt e e et e e et e e e et e e e est e e eenbn e eeens 55

6.4 Using Character Sets and UNICOUEiiiiiiiiiiiiiiie e 57

6.5 Connecting Securely USING SSL ..ot e 58

6.6 Connecting Using PAM AUthentiCationcoouiiiiiiiiii e 61

6.7 Using Master/Slave Replication with ReplicationConnectionccccoeiiiiiiiiineiiiiinecciie, 61

6.8 Mapping MySQL Error Numbers to JDBC SQLState COUEScevvviieiiiiiiieeiiiieeeeiie e 61

AN 1D = T OB o] g o1=T o] £ PP UPTPPTI 69
7.1 Connecting to MySQL Using the JDBC Dr i ver Manager Interfaceccccooovvevviiiiiiiiinieeennnn. 69

7.2 Using JDBC St at enent Objects to EXeCULE SQLuiiiiiiiiiiiiiieieeii et 70

7.3 Using JDBC Cal | abl eSt at ement s to Execute Stored Proceduresc.occeeviiiiiiiinieeenns 71

7.4 Retrieving AUTO_| NCREMENT Column Values through JDBCcooooviiiiiiiiiiiieccieeceiie 74

8 Connection Pooling With CONNECIONJIcouuuiiiiii ettt e s 79
9 MUIti-HOSE CONNECTIONS ...ttt ettt et e et e e ettt e et e a e e e tb e e e ennans 83
9.1 Configuring SErver FAIIOVEYui it 83

9.2 Configuring Client-Side Failover when using the X Protocolccccooviiiiiiiiiiiiieee 86

9.3 Configuring Load Balancing with CONNECIONJcoouuiiiiiiiiiiei e 86

9.4 Configuring Master/Slave Replication with CONNECIONJoviiiiiiiiiiiiiiiie e 89

9.5 Advanced Load-balancing and Failover Configurationcoooveiiiiiiiiinieiii e 92

10 Using the Connector/J INterceptor CIASSESviiiuiuieiiiii ettt 95
11 Using ConNector/J WIth TOMCALociiuiiiiiiiii ettt e e 97
12 USiNg CoNNECTOII WItN JBOSSccuuuiiiiiiiiiieitit ettt ettt et e et eeene s 99
13 Using ConNECEOr/J WItN SPIINGuiiiiiiieiiii ettt e e et e e et e e e et e e e enb e eeens 101
13.1 USING JADCTENMPI G € . oiiiieiieeiie ettt et e e e e e 102

13.2 TranSactioNal JDBEC ACCESSuuiiiiriueeiiii ettt ettt e et e et e e et eeeaba s 104

13.3 Connection Pooling WIth SPriNgcouuuiiiiiiii e 105

14 Troubleshooting Connector/J APPHCALIONSiiiiiieiei e 107
RSN] gl g =Tol (o] /A I ST U] o] 1] ¢ AN PP UPPTTR 115
15.1 Connector/J COMMUNILY SUPPOIT ...coetuneiiiiiiee ettt e et e et e e e e e ra s 115

15.2 How to Report Connector/J Bugs OF ProbIEMSc.uiiiiiiiiiiiiiii e 115
100 = PP PUPPPT 117

Beta Draft iii Beta Draft

Beta Draft iv Beta Draft

Preface and Legal Notices

This manual describes how to install, configure, and develop database applications using MySQL
Connector/J, the JDBC driver for communicating with MySQL servers.

Legal Notices

Copyright © 1998, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is in preproduction status and is intended for demonstration and preliminary use
only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and

Beta Draft

v Beta Draft

Legal Notices

its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Beta Draft Vi Beta Draft

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Overview of MySQL Connector/J

MySQL provides connectivity for client applications developed in the Java programming language with
MySQL Connector/J. Connector/J implements the Java Database Connectivity (JDBC) API, as well as a
number of value-adding extensions of it. It also supports the new X DevAPI.

MySQL Connector/J is a JDBC Type 4 driver. Different versions are available that are compatible with the
JDBC 3.0 and JDBC 4.2 specifications (see Chapter 2, Connector/J Versions, and the MySQL and Java
Versions They Support). The Type 4 designation means that the driver is a pure Java implementation of
the MySQL protocol and does not rely on the MySQL client libraries.

For large-scale programs that use common design patterns of data access, consider using one of the
popular persistence frameworks such as Hibernate, Spring's JDBC templates or Ibatis SQL Maps to
reduce the amount of JDBC code for you to debug, tune, secure, and maintain.

Key Topics
» For installation instructions for Connector/J, see Chapter 4, Connector/J Installation.

 For help with connection strings, connection options, and setting up your connection through JDBC, see
Section 6.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/
J".

» For information on connection pooling, see Chapter 8, Connection Pooling with Connector/J.

» For information on multi-host connections, see Chapter 9, Multi-Host Connections.

Beta Draft 1 Beta Draft

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://www.hibernate.org/
http://www.springframework.org/
http://ibatis.apache.org/

Beta Draft 2 Beta Draft

Chapter 2 Connector/J Versions, and the MySQL and Java
Versions They Support

There are currently two MySQL Connector/J versions available:

» Connector/J 6.0 is a Type 4 pure Java JDBC 4.2 driver for the Java 8 platform. It provides compatibility
with all the functionality of MySQL 5.5, 5.6, and 5.7. Connector/J 6.0 provides ease of development
features, including auto-registration with the Driver Manager, standardized validity checks, categorized
SQLExceptions, support for large update counts, support for local and offset date-time variants from
the j ava. ti me package, support for JDBC-4.x XML processing, support for per connection client
information, and support for the NCHAR, NVARCHAR and NCL OB data types.

e Connector/J 5.1 is also a Type 4 pure Java JDBC driver that conforms to the JDBC 3.0, 4.0, ,4.1, and
4.2 specifications. It provides compatibility with all the functionality of MySQL 5.1, 5.5, 5.6, and 5.7.
Connector/J 5.1 is covered by its own manual.

The following table summarizes the Connector/J versions available, along with the details of JDBC driver
type, versions of the JDBC API supported, versions of MySQL Server supported, JRE supported, JDK
required for building, and the support status for each of the Connector/J versions:

Table 2.1 Summary of Connector/J Versions

Connector/J JDBC version |MySQL Server |JRE Supported |JDK Required |Status
version version for Compilation
6.0 4.2 5.5,5.6,5.7 1.8.x 1.8.x Developer
Milestone
5.1 3.0,4.0,4.1,4.2 |(41,5.0,5.1, 1.5.x, 1.6.x, 1.5.xand 1.8.x |Recommended
5.5, 5.6%, 5.7* 1.7.x, 1.8.x* version

* JRE 1.8.x is required for Connector/J 5.1 to connect to MySQL 5.6 and 5.7 with SSL/TLS when using

some cipher suites.

Beta Draft

Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/char.html
http://dev.mysql.com/doc/refman/5.7/en/char.html
http://dev.mysql.com/doc/connector-j/5.1/en/

Beta Draft 4 Beta Draft

Chapter 3 What's New in Connector/J 6.07?

Here is a summary of major new features of Connector/J 6.0 (for details on the differences between
the Connector/J 5.1 and 6.0 and for instructions on migrating, see Section 4.3.1, “Upgrading to MySQL
Connector/J 6.0"):

* It supports MySQL 5.5, 5.6, and 5.7. See Known Issues and Limitations for issues about support for
MySQL 5.5 and 5.6.

« It supports the JDBC 4.2 specification.
* Itis a MySQL driver for the Java 8 platform. For Java 7 or earlier, use Connector/J 5.1 instead.

* It supports the new X DevAPI, through which native support by MySQL 5.7 for JSON, NoSQL, document
collection, and other features are provided to Java applications. See Using MySQL as a Document
Store, the X DevAPI User Guide, and MySQL Connector/J X DevAPI Reference for details .

Beta Draft 5 Beta Draft

http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-usagenotes-known-issues-limitations.html
http://dev.mysql.com/doc/refman/5.7/en/document-store.html
http://dev.mysql.com/doc/refman/5.7/en/document-store.html
http://dev.mysql.com/doc/x-devapi-userguide/en/
http://dev.mysql.com/doc/dev/connector-j

Beta Draft 6 Beta Draft

Chapter 4 Connector/J Installation

Table of Contents

4.1 Installing Connector/J from a Binary DiStriDULIONiiiuiiiiiii e 7
4.2 Installing the Driver and Configuring the CLASSPATHccuiiii e 7
4.3 Upgrading from an OlAdEr VEISIONuiiii it e et et e e e e et e et e een e eees 8

4.3.1 Upgrading to MySQL CoONNECIOIJI 6.0uiiiiiiiiiieii e 8
4.4 Installing from the Development SOUIMCE TIEEcouu i eees 12
4.5 TeSHNG CONNECLONJ ..ottt et e e et e et et et e et e e et e e e tn e e ean e e ean e eenneaeans 14

MySQL Connector/J is distributed as a . zi p or. t ar. gz archive, available for download from the
Connector/J Download page. The archive contains the sources and the JAR archive named nysql -
connector-java-version-hbin.jar.

You can install the Connector/J package using either the binary or source distribution. The binary
distribution provides the easiest method for installation; the source distribution lets you customize
your installation further. With either solution, you manually add the Connector/J location to your Java
CLASSPATH.

If you are upgrading from a previous version, read the upgrade information in Section 4.3, “Upgrading from
an Older Version” before continuing.

Connector/J is also available as part of the Maven project. For more information and to download the
Connector/J JAR files, see the Maven repository.

4.1 Installing Connector/J from a Binary Distribution

For the easiest method of installation, use the binary distribution of the Connector/J package. Extract the
JAR archive from the tar/gzip or zip archive to a suitable location, then optionally make the information
about the JAR archive available by changing your CLASSPATH (see Section 4.2, “Installing the Driver and
Configuring the CLASSPATH”).

Use the appropriate graphical or command-line utility to extract the distribution (for example, WinZip for
the .zip archive, and t ar for the .tar.gz archive). Because there are potentially long file names in the
distribution, we use the GNU tar archive format. Use GNU tar (or an application that understands the GNU
tar archive format) to unpack the .tar.gz variant of the distribution.

4.2 Installing the Driver and Configuring the CLASSPATH

Once you have extracted the distribution archive, you can install the driver by placing nysql - connect or -
j ava-version-bin.jar inyour classpath, either by adding the full path to it to your CLASSPATH
environment variable, or by directly specifying it with the command line switch - cp when starting the JVM.

To use the driver with the JDBC Dr i ver Manager , use com nmysql . c¢j . j dbc. Dri ver as the class that
implements j ava. sql . Dri ver.

You can set the CLASSPATH environment variable under Unix, Linux, or OS X either locally for a user
within the user's . profi | e, .| ogi n or other login file, or you can also set it globally by editing the global
/etc/profil e file.

For example, add the Connector/J driver to your CLASSPATH using one of the following forms, depending
on your command shell:

Beta Draft

7 Beta Draft

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/
http://search.maven.org/#search|ga|1|g%3A%22mysql%22%20AND%20a%3A%22mysql-connector-java%22

Upgrading from an Older Version

Bour ne-conpati bl e shell (sh, ksh, bash, zsh):
shel | > export CLASSPATH=/ pat h/ nysql - connect or -j ava- ver - bi n. j ar : $CLASSPATH

C shell (csh, tcsh):
shel | > setenv CLASSPATH / pat h/ nysql - connect or -j ava- ver - bi n. j ar : $CLASSPATH

For Windows platforms, you set the environment variable through the System Control Panel.

To use MySQL Connector/J with an application server such as GlassFish, Tomcat, or JBoss, read

your vendor's documentation for more information on how to configure third-party class libraries, as

most application servers ignore the CLASSPATH environment variable. For configuration examples

for some J2EE application servers, see Chapter 8, Connection Pooling with Connector/J, Section 9.3,
“Configuring Load Balancing with Connector/J”, and Section 9.5, “Advanced Load-balancing and Failover
Configuration”. However, the authoritative source for JDBC connection pool configuration information for
your particular application server is the documentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the
driver's . j ar file in the VVEB- | NF/ | i b subdirectory of your webapp, as this is a standard location for third
party class libraries in J2EE web applications.

You can also use the Mysql Dat aSour ce or Mysql Connect i onPool Dat aSour ce classes

inthe com nysql . cj.jdbc.jdbc2. opti onal package, if your J2EE application server

supports or requires them. The j avax. sql . XADat aSour ce interface is implemented using the

com nysql . cj.jdbc.jdbc2. optional.M/sgl XADat aSour ce class, which supports XA distributed
transactions.

The various Mysql Dat aSour ce classes support the following parameters (through standard set
mutators):

e user
e password

» server Nane (see the previous section about failover hosts)
» dat abaseNane

» port

4.3 Upgrading from an Older Version

This section has information for users who are upgrading from one version of Connector/J to another,

or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of
Connector/J might include changes to support new features, improve existing functionality, or comply with
new standards.

4.3.1 Upgrading to MySQL Connector/J 6.0

Upgrading an application developed for Connector/J 5.1 to use Connector/J 6.0 might require certain
changes to your code or the environment in which it runs. Here are some changes for Connector/J going
from 5.1 to 6.0, for which adjustments might be required:

4.3.1.1 Running on the Java 8 Platform

Connector/J 6.0 is created specifically to run on the Java 8 platform. While Java 8 is known to be strongly
compatible with earlier Java versions, incompatibilities do exist, and code designed to work on Java 7

Beta Draft

8 Beta Draft

Upgrading to MySQL Connector/J 6.0

might need to be adjusted before being run on Java 8. Developers should refer to the incompatibility
information provided by Oracle.

4.3.1.2 Changes in Connection Properties

A complete list of Connector/J 6.0 connection properties are available in Setting Configuration Properties.
The following are connection properties that have been changed (removed, added, have their names

changed, or have their default values changed) going from Connector/5.1 to 6.0.

Properties that have been removed (do not use them during connection):

e useDynam cCharsetlnfo

e useBl obToSt or eUTF8CQut si deBWP, ut f 8Qut si deBnpExcl udedCol utmmNanePat t er n, and
ut f 8Qut si deBnpl ncl udedCol utTmNanePat t er n: MySQL 5.5 and later supports the utf8mb4
character set, which is the character set that should be used by Connector/J applications for supporting

characters beyond the Basic Multilingual Plane (BMP) of Unicode Version 3.

» useJvntChar set Convert ers: JVM character set conversion is now used in all cases

» The following date and time properties:

dynam cCal endar s
noTzConver si onFor Ti meType
noTzConver si onFor Dat eType
cacheDef aul t Ti nezone
useFast I nt Par si ng
useFast Dat ePar si ng
useJDBCConpl i ant Ti nezoneShi ft
uselLegacyDat et i neCode
useSSPSConpat i bl eTi mezoneShi ft
useTi nezone

useGrt M | | i sFor Dat eti nes

e dunpMet adat aOnCol utmNot Found

e rel axAut oConmmi t

e strictFl oati ngPoi nt

e runni ngCTS13

e retai nSt at enent Aft er Resul t Set Cl ose

Properties that have been added:

* nysqgl x. useAsyncPr ot ocol

Property that has its name changed:

Beta Draft

Beta Draft

http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html#A999198
http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html#A999198

Upgrading to MySQL Connector/J 6.0

e com nysql .jdbc. faultlnjection.serverCharsetl ndex changed to
comnysqgl.cj.testsuite.faultlnjection.serverCharsetl ndex

e | oadBal anceEnabl eJMX to ha. enabl eJMX

* replicationEnabl eJMXto ha. enabl eJMX

Properties that have their default values changed:

* nul | Cat al ogMeansCur r ent is now f al se by default

e nul | NanmePat t er nivat chesAl | is now f al se by default

4.3.1.3 Changes in the Connector/J API

This section describes the changes to the Connector/J API going from version 5.1 to 6.0. You might need
to adjust your API calls accordingly:

» The name of the class that implements j ava. sql . Dri ver in MySQL Connector/J has changed
from com nysql . j dbc. Dri ver tocom nysql . cj.jdbc. Driver. The old class name has been
deprecated.

» The names of these commonly-used interfaces have also been changed:

« Exceptioninterceptor: from com nysql . j dbc. Excepti onl nt er cept or to
com nysql . cj.api.exceptions. Exceptionlnterceptor

e Statementinterceptor: from com nysql . j dbc. St at ement | nt er cept or V2 to
com.mysqgl.cj.api.jdbc.interceptors.StatementinterceptorV2

« ConnectionLifecyclelnterceptor: from com nysql . j dbc. Connecti onLi f ecycl el nt er cept or to
com nysql . cj.api.jdbc.interceptors. ConnectionLifecycl el nterceptor

¢ AuthenticationPlugin: from com nysql . j dbc. Aut henti cati onPl ugi n to
com nysqgl . cj.api.authentication. Aut henti cati onPl ugin

< BalanceStrategy: from com nysql . j dbc. Bal anceSt r at egy to

com nysql . cj.api.jdbc. ha. Bal anceSt r at egy.

4.3.1.4 Changes for Build Properties

A number of Ant properties for building Connector/J from source have been renamed; see Table 4.1,
“Changes with the Build Properties from Connector/J 5.1 to 6.0”

Table 4.1 Changes with the Build Properties from Connector/J 5.1 to 6.0

Old name New name
com nysql . jdbc. extra.libs com nysql . cj.extra.libs
com nysql . j dbc.jdk com nysql .cj.build.jdk
debug. enabl e com nysql . cj . bui | d. addDebugl nfo
com nysql . j dbc. noCl eanBet weenConpi | es |[com nysql . cj . bui | d. noCl eanBet weenConpi | es
com nysql . j dbc. commer ci al Bui | d com nysql . cj . bui |l d. conmer ci al
com nysql . jdbc.filterlLicense comnysql.cj.build.filterLicense
com nysql . j dbc. noCrypt oBui | d com nysql . cj . build. noCrypto
com nysql . j dbc. noSour ces com nysql . cj.build. noSources
Beta Draft 10 Beta Draft

Upgrading to MySQL Connector/J 6.0

Old name New name

com nysql . j dbc. noMavenSour ces com nysql . cj . bui | d. noMavenSour ces

maj or _version comnysql.cj.build.driver.version. mjor

m nor _ver si on comnysql .cj.build.driver.version.mn nor
submi nor _version com nysql . cj.build.driver.version.subm hor
ver si on_stat us com nysql . cj.build.driver.version. status
extra.version comnysql.cj.build.driver.version.extra
snhapshot . version com nysql .cj.build.driver.version.snapshot
version com nysql .cj.build.driver.version
full.version com nysql . cj.build.driver.version.full

pr odDi spl ayName comnysql.cj.build.driver.displayNane

pr odNare com nysql.cj.build.driver.nane

ful | ProdNane com nysql.cj.build.driver.full Nanme

bui |l dDi r comnysql.cj.build. dir

bui | dDri verDir com nysql.cj.build.dir.driver

mavenUpl oadDi r com nysql . cj.build.dir.nmven

distDr comnysql.cj.dist.dir

t oPackage comnysql.cj.dist.dir.prepare

packageDest com nysql.cj.dist.dir.package

com nysql . j dbc. docs. sourceDir comnysql.cj.dist.dir.prebuilt.docs

4.3.1.5 Change for Test Properties

A number of Ant properties for testing Connecotr/J have been renamed or removed; see Table 4.2,
“Changes with the Test Properties from Connector/J 5.1 to 6.0”

Table 4.2 Changes with the Test Properties from Connector/J 5.1 to 6.0

hosts-tests

Old name New name

bui |l dTestDi r comnysql.cj.testsuite.build.dir
junit.results comnysql.cj.testsuite.junit.results
comnysql .jdbc.testsuite.jvm comnysqgl.cj.testsuite.jvm

t est comnysqgl.cj.testsuite.test.class
met hods comnysqgl.cj.testsuite.test.nethods
com nysql .jdbc.testsuite. url comnysql.cj.testsuite.url

com nysql . jdbc.testsuite.adm n-url comnysql.cj.testsuite.url.admn
com nysql .jdbc.testsuite. CusterUl com nysqgl .cj.testsuite.url.cluster
com nysql . jdbc.testsuite.url.sha256def ajddm nysql . cj.testsuite.url.openssl
com nysqgl x.testsuite. url com nysql . cj . testsuite. mysql x. url
com nysql . jdbc.testsuite.cant G ant comnysql.cj.testsuite.cant G ant

com nmysql .jdbc.testsuite.no-nmulti- com nysql . cj.testsuite.disable.nultihos

Beta Draft

11

Beta Draft

[.test

Installing from the Development Source Tree

Old name New name

com nysql . jdbc. test. ds. host com nysql . cj.testsuite. ds. host

com nysql . jdbc.test.ds. port comnysqgl .cj.testsuite. ds. port

com nmysql . jdbc. test.ds.db com nysqgl .cj.testsuite.ds.db

com nysql . j dbc.test.ds. user com nysql .cj.testsuite.ds. user

com nysql . jdbc. test. ds. password com nysql . cj.testsuite. ds. password

com nysql . j dbc.test.tabl etype comnysqgl.cj.testsuite.l oadstoreperf.tapletype
com nysql . jdbc.testsuite. |l oadstoreperf. | mBimgRaguldjs t est suite. | oadst oreperf. useBi gResul

com nysql . j dbc.testsuite. M ni Adm nTest . raorBhuotsbgwej . t est sui t e. mi ni Adm nTest . r unShut down
com nysql . jdbc. testsuite. noDebugQut put |com nysql . cj.testsuite. noDebugQut put

comnysql.jdbc.testsuite.retainArtifactsgcomnysqgl.cj.testsuite.retainArtifacts

com nysql . jdbc.testsuite.runLongTests |[com nysqgl.cj.testsuite.runLongTests

com nysql . jdbc.test. ServerControl | er. bagasnrnysqgl . cj.testsuite.serverControll er| basedir

com nysql . jdbc. Repl i cati onConnection. i s®l@auarysql .cj.testsuite.replicati onConnection.isS

com nysql . j dbc.test.isLocal Host naneRepl gRemewéd

com nysql . jdbc.testsuite.driver Removed

com nysql . jdbc.testsuite.url.default Removed. No longer needed, as multi-JVM tests
have been removed from the test suite.

4.3.1.6 Other Changes
Here are other changes with Connector/J 6.0:

» Removed Repl i cati onDri ver. Instead of using a separate driver, you can how obtain a connection
for a replication setup just by using the j dbc: mysql : replication:// scheme.

» Requires the following third-party libraries to work:
* Protocol Buffers

« Javassist (only required for building Connector/J 6.0 from source)

4.4 Installing from the Development Source Tree

Caution

Read this section only if you are interested in helping us test our new code. To just
get MySQL Connector/J up and running on your system, use a standard binary
release distribution.

To install MySQL Connector/J from the development source tree, make sure that you have the following
software on your system:

» A Git client, to check out the sources from our GitHub repository (available from http://git-scm.com/
downloads).

» Apache Ant version 1.8.2 or newer (available from http://ant.apache.org/).

* JDK 1.8.x.

Beta Draft 12 Beta Draft

http://git-scm.com/downloads
http://git-scm.com/downloads
http://ant.apache.org/

Installing from the Development Source Tree

JUnit 4.1.2 (available from https://github.com/junit-team/junit/wiki/Download-and-Install).

Javaassist 3.19 or newer (available from http://jboss-javassist.github.io/javassist/).

Protocol Buffers Java API 2.6.0 or newer (available from, for example, the Maven Central Repository).

e Therequired . j ar files from the Hibernate ORM 4.1 or 4.2 Final release bundle (available at http://
sourceforge.net/projects/hibernate/files/hibernate4/).

To check out and compile MySQL Connector/J, follow these steps:

1. Check out the code from the source code repository for MySQL Connector/J located on GitHub at
https://github.com/mysqgl/mysqgl-connector-j. The latest release of the Connector/J 6.0 series is on the
rel ease/ 6. 0 branch; use the following command to check it out:

shell > git clone --branch release/6.0 https://github.com nmysql/nysql-connector-j.git

Under the current directory, the commands create a nysql - connect or - subdirectory , which
contains the code you want.

2. Make sure that you have JDK 1.8.x installed.

3. Placetherequiredjunit.jar,javaassist.jar,andprotobuf-java-x.y.z.jar filesina
separate directory—for example, / hone/ user nane/ ant - extral i bs.

4. In the same directory for extra libraries described in the last step, create a directory named
hi ber nat e4, and put under it all the . j ar files you can find under the /| i b/ r equi r ed/ folder in the
Hibernate ORM 4 Final release bundle.

5. Change your current working directory to the mysql - connect or - directory created in step 1 above.

6. Inthe directory, create a file named bui | d. properti es to indicate to Ant the locations of the root
directories for your JDK 1.8.x installation, as well as the location of the extra libraries. The file should
contain the following property settings, with the “pat h_t o_*” parts replaced by the appropriate
filepaths:

com nysql . cj.build.jdk=path_to jdk 1.8
com nysqgl.cj.extra.libs=path_to folder_for_extra_ libraries

Alternatively, you can set the values of those properties through the Ant - D options.

7. lIssue the following command to compile the driver and create a . j ar file for Connector/J:

shel | > ant di st

This creates a bui | d directory in the current directory, where all the build output goes. A directory
is created under the bui | d directory, whose name includes the version number of the release you
are building. That directory contains the sources, the compiled . cl ass files,and a . j ar file for
deployment. For more information and other possible targets, including those that create a fully
packaged distribution, issue the following command:

shel | > ant -projecthelp

8. Install the newly created . | ar file for the JDBC driver as you would install a binary . j ar file you
download from MySQL by following the instructions given in Section 4.2, “Installing the Driver and
Configuring the CLASSPATH".

Beta Draft 13 Beta Draft

https://github.com/junit-team/junit/wiki/Download-and-Install
http://jboss-javassist.github.io/javassist/
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22com.google.protobuf%22%20AND%20a%3A%22protobuf-java%22
http://sourceforge.net/projects/hibernate/files/hibernate4/
http://sourceforge.net/projects/hibernate/files/hibernate4/
https://github.com/mysql/mysql-connector-j

Testing Connector/J

Note that a package containing both the binary and source code for Connector/J 6.0 can also be
downloaded from the Connector/J Download page.

Note

Going from Connector/J 5.1 to 6.0, a number of Ant properties for building
Connecotr/J have been renamed or removed; see Section 4.3.1.4, “Changes for
Build Properties” for details.

4.5 Testing Connector/J

The Connector/J source code repository or packages that are shipped with source code include an
extensive test suite, containing test cases that can be executed independently. The test cases are divided
into the following categories:

» Unit tests: They are methods located in packages aligning with the classes that they test.

» Functional tests: Classes from the package t est sui t e. si npl e. Include test code for the main
features of the Connector/J.

» Performance tests: Classes from the package t est sui t e. per f. Include test code to make
measurements for the performance of Connector/J.

» Regression tests: Classes from the package t est sui t e. r egr essi on. Includes code for testing bug
and regression fixes.

* MySQL X tests: Classes from the package t est sui t e. nysql x and t est sui t e. x for testing MySQL
X functionality.

The bundled Ant build file contains targets like t est , which can facilitate the process of running the
Connector/J tests; see the target descriptions in the build file for details. Besides the requirements for
building Connector/J from the source code described in Section 4.4, “Installing from the Development
Source Tree”, a number of the tests also require the File System Service Provider 1.2 for the Java Naming
and Directory Interface (JNDI), available at http://www.oracle.com/technetwork/java/javasebusiness/
downloads/java-archive-downloads-java-plat-419418.html)—place the jar files downloaded from there into
the | i b directory or in the directory pointed to by the property com nysql . cj . extra. | i bs.

To run the test using Ant, in addition to the properties required for Section 4.4, “Installing from the
Development Source Tree”, you must set the following properties in the bui | d. properti es file or
through the Ant - D options:

e comnysql . cj.testsuite.url:itspecifies the JIDBC URL for connection to a MySQL test server;
see Section 6.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for
Connector/J".

e comnysql.cj.testsuite.jvmthe JVM to be used for the tests. If the property is not set, the JVM
supplied with com nmysql . ¢j . bui | d. j dk will be used.

After setting these parameters, run the tests with Ant in the following ways:

» Building the t est target with ant t est runs all test cases by default on a single server instance. If
you want to run a particular test case, put the test's fully qualified class names in the t est variable; for
example:

shell > ant -Diest=testsuite.sinple.StringUilsTest test

Beta Draft

14 Beta Draft

http://dev.mysql.com/downloads/connector/j/
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html

Testing Connector/J

You can also run individual tests in a test case by specifying the names of the corresponding methods in
the net hods variable, separating multiple methods by commas; for example:

shell > ant -Dtest=testsuite.sinple.StringUtilsTest -Dnethods=testl|ndexX|gnoreCase,testGetBytes test

While the test results are partially reported by the console, complete reports in HTML and XML formats are
provided. View the HTML report by opening bui | d/junit/unitregress/report/index. htm . XML
version of the reports are located in the folder bui [d/ j uni t/ uni tregress.

Note

Going from Connector/J 5.1 to 6.0, a number of Ant properties for testing
Connecotr/J have been renamed or removed; see Section 4.3.1.5, “Change for Test
Properties” for details.

Beta Draft 15 Beta Draft

Beta Draft 16 Beta Draft

Chapter 5 Connector/J Examples

Examples of using Connector/J are located throughout this document. This section provides a summary
and links to these examples.

» Example 7.1, “Connector/J:

Example 7.2, “Connector/J:
Example 7.3, “Connector/J:
Example 7.4, “Connector/J:
Example 7.5, “Connector/J:
Example 7.6, “Connector/J:
Example 7.7, “Connector/J:

Example 7.8, “Connector/J:

Obtaining a connection from the Dr i ver Manager”
Using java.sql.Statement to execute a SELECT query”
Calling Stored Procedures”

Using Connecti on. prepareCal | ()"

Registering output parameters”

Setting Cal | abl eSt at enent input parameters”
Retrieving results and output parameter values”

Retrieving AUTO | NCREMVENT column values using

St at enent . get Gener at edKeys()”

Example 7.9, “Connector/J:

LAST | NSERT I DX()”

Retrieving AUTO_| NCREMENT column values using SELECT

Example 7.10, “Connector/J: Retrieving AUTO | NCREMENT column values in Updat abl e

Resul t Set s”

Example 8.1, “Connector/J:

Using a connection pool with a J2EE application server”

Example 14.1, “Connector/J: Example of transaction with retry logic”

Beta Draft

17

Beta Draft

Beta Draft 18 Beta Draft

Chapter 6 Connector/J (JDBC) Reference

Table of Contents

6.1 Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J 19

6.1.1 Properties Files for the useConf i gs OPLONccoeeuiiiiiiiiii e 51
6.2 JDBC API IMpPIementation NOTEScouuiiiiiiie e e e 52
6.3 Java, JDBC and MYSQL TYPES ...uieiiiieiiiiii ettt ettt ettt e et e e et r e et et e e e e et aeaeab e e eaaas 55
6.4 Using Character SetS and UNICOOEiiiiiiiiiiiii ettt e s 57
6.5 Connecting Securely USING SSL ... e 58
6.6 Connecting Using PAM AUtNENTICALIONuiiiiiiiiiiii e et 61
6.7 Using Master/Slave Replication with ReplicationConnectioncovvviiiiiiiieiiiieiiieee e eeeen 61
6.8 Mapping MySQL Error Numbers to JDBC SQLState Codesccuuveiiiiiiiiiiieeiiiieee v e e 61

This section of the manual contains reference material for MySQL Connector/J.

6.1 Driver/Datasource Class Names, URL Syntax and Configuration
Properties for Connector/J

The name of the class that implements j ava. sql . Dri ver in MySQL Connector/J is
com nysql.cj.jdbc.Driver.

JDBC URL Format

The general format for a JDBC URL for connecting to a MySQL server is as follows, with items in square
brackets ([]) being optional:

jdbc:nysql ://[host1][:port1][,[host2][:port2]]...[/[database]] »
[?propertyNanel=propertyVal uel[&ropertyNane2=propertyVal ue2]...]

Here is a simple example for a connection URL:

jdbc: nysql : //1 ocal host: 3306/ saki | a?profil eSQL=true

Supply multiple hosts for a server failover setup (see Chapter 9, Multi-Host Connections for details):

Connection URL for a server failover setup
jdbc: nysql // pri maryhost, secondar yhost 1, secondar yhost 2/ t est

There are specialized URL schemes for configuring Connector/J's multi-host functions like load balancing
and replication; here are some examples (see Chapter 9, Multi-Host Connections for details):

Connection URL for |oad bal anci ng
j dbc: nysql : | oadbal ance: / /| ocal host : 3306, | ocal host : 3310/ saki | a

Connection URL for server replication
jdbc: nysql :replication://master, sl avel, sl ave2, sl ave3/t est

Host and Port

If no hosts are not specified, the host name defaults to 127. 0. 0. 1. If the port for a host is not specified, it
defaults to 3306, the default port number for MySQL servers.

Beta Draft

19 Beta Draft

Initial Database for Connection

Initial Database for Connection

If the database is not specified, the connection is made with no default database. In this case, either call
the set Cat al og() method on the Connection instance, or fully specify table names using the database
name (that is, SELECT dbnane. t abl enane. col name FROM dbnane. t abl enane. . .) in your SQL.
Opening a connection without specifying the database to use is generally only useful when building tools
that work with multiple databases, such as GUI database managers.

Note

Always use the Connect i on. set Cat al og() method to specify the desired
database in JDBC applications, rather than the USE dat abase statement.

Alternate Format for JDBC URLSs

The following is an alternate format for JDBC URLs connecting to a MySQL server, which is mandatory for
IPv6 connections, but can also be used with IPv4 (items in square brackets ([]) are optional):

jdbc: nysql : // addr ess=(keyl=val ue) [(key2=val ue)]...[, address=(key3=val ue) [(keyd=value)]...]...[/[dat abase]]»
[?propertyNanel=propertyVal uel[&r opertyNane2=propertyVal ue2]...]

Supported key-value pairs include:
* (protocol =tcp), or (protocol =pi pe) for named pipes on Windows.

* (pat h=pat h_t o_pi pe) for path of named pipes. Default value for the pathis\\ . \ pi pe\ MySQL. Use
the key-value pair to specify a custom named pipe.

* (host =host nane) for TCP connections.
e (port=port_nunber) for TCP connections.

For example:

j dbc: nysql : // addr ess=(pr ot ocol =t cp) (host =l ocal host) (port =3306)/ db

Notice that the alternate format greatly simplifies the URL for a named pipe connection on Windows. For
example, to use the default named pipe of “\ \ . \ pi pe\ MySQL,” just specifies:

j dbc: nysqgl : // addr ess=(pr ot ocol =pi pe)/t est

To use the custom named pipe of “\ \ . \ pi pe\ MySQL57":

jdbc: nysql : // addr ess=(pr ot ocol =pi pe) (pat h=\\.\ pi pe\ M\ySQL57) / t est

Keys other than pr ot ocol , pat h, host, and port are treated as host-specific configuration properties,
which allow per-host overrides of configuration properties set for multi-host connections (that is, when
using failover, load balancing, or replication). For example:

Connection URL in the alternate format for a server failover setup
j dbc: nysql : // addr ess=(prot ocol =t cp) (host =pri mar yhost) (port =3306) , »
addr ess=(pr ot ocol =t cp) (host =secondar yhost 1) (port =3310) (user =t est 2)/ t est

Connection URL in the alternate format for a | oad bal anci ng setup
j dbc: nysql : | oadbal ance: // addr ess=(pr ot ocol =t cp) (host =l ocal host) (port =3306) (user=test 1), »

Beta Draft 20 Beta Draft

Setting Configuration Properties

addr ess=(prot ocol =t cp) (host =l ocal host) (port=3310) (user =t est 2)/sakil a

Connection URL in the alternate format for a server replication setup:

jdbc: nysql :replication://address=(protocol =t cp) (host =mast er) (port=3306) (user=testl), »
addr ess=(prot ocol =t cp) (host =sl avel) (port =3310) (user =t est 2) / t est

Limit the overrides to user, password, network timeouts, and statement and metadata cache sizes; the
effects of other per-host overrides are not defined.

The ways to set other configuration properties for the connection are the same for the general and the
alternate URL formats; see Setting Configuration Properties.

Setting Configuration Properties

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a Dat aSour ce object or for a Connect i on object.

Configuration properties can be set in one of the following ways:

» Using the set * () methods on MySQL implementations of j ava. sql . Dat aSour ce (which is the
preferred method when using implementations of | ava. sqgl . Dat aSour ce):

e com nysql .cj.jdbc.jdbc2. optional.Msqgl Dat aSour ce
e comnysql.cj.jdbc.jdbc2.optional.Msqgl Connecti onPool Dat aSour ce

* As a keyl/value pairinthe java. util. Properti es instance passed to
Dri ver Manager . get Connection() or Dri ver. connect ()

* As a JDBC URL parameter in the URL givento j ava. sql . Dri ver Manager . get Connecti on(),
java.sqgl . Driver.connect () orthe MySQL implementations of the j avax. sql . Dat aSour ce
set URL() method. If you specify a configuration property in the URL without providing a value for
it, nothing will be set; for example, adding useSer ver Pr epSt nt s alone to the URL does not make
Connector/J use server-side prepared statements; you need to add useSer ver PrepSt nmt s=t r ue.

Note

If the mechanism you use to configure a JDBC URL is XML-based, use the XML
character literal &anp; to separate configuration parameters, as the ampersand
is a reserved character for XML.

The properties are listed in the following tables.

Authentication.

Properties and Descriptions

user
The user to connect as

Since version: all versions

password
The password to use when connecting

Since version: all versions

Beta Draft 21 Beta Draft

Setting Configuration Properties

Connection.

Properties and Descriptions

connectionAttributes

A comma-delimited list of user-defined key:value pairs (in addition to standard MySQL-

defined key:value pairs) to be passed to MySQL Server for display as connection attributes

in the PERFORMANCE_SCHEMA.SESSION_CONNECT_ATTRS table. Example usage:
connectionAttributes=key1:valuel,key2:value2 This functionality is available for use with MySQL Server
version 5.6 or later only. Earlier versions of MySQL Server do not support connection attributes, causing
this configuration option to be ignored. Setting connectionAttributes=none will cause connection attribute
processing to be bypassed, for situations where Connection creation/initialization speed is critical.

Since version: 5.1.25

connectionLifecyclelnterceptors

A comma-delimited list of classes that implement
"com.mysql.cj.api.jdbc.interceptors.ConnectionLifecyclelnterceptor” that should notified of connection
lifecycle events (creation, destruction, commit, rollback, setCatalog and setAutoCommit) and potentially
alter the execution of these commands. ConnectionLifecyclelnterceptors are "stackable", more than one
interceptor may be specified via the configuration property as a comma-delimited list, with the interceptors
executed in order from left to right.

Since version: 5.1.4

useConfigs

Load the comma-delimited list of configuration properties before parsing the URL or applying user-
specified properties. These configurations are explained in the 'Configurations' of the documentation.

Since version: 3.1.5

authenticationPlugins

Comma-delimited list of classes that implement
com.mysql.cj.api.mysqla.authentication.AuthenticationPlugin and which will be used for authentication
unless disabled by "disabledAuthenticationPlugins" property.

Since version: 5.1.19

createDatabaselfNotExist

Creates the database given in the URL if it doesn't yet exist. Assumes the configured user has
permissions to create databases.

Default: false

Since version: 3.1.9

defaultAuthenticationPlugin

Name of a class implementing com.mysqgl.cj.api.mysgla.authentication.AuthenticationPlugin which will
be used as the default authentication plugin (see below). It is an error to use a class which is not listed
in "authenticationPlugins" nor it is one of the built-in plugins. It is an error to set as default a plugin which
was disabled with "disabledAuthenticationPlugins” property. It is an error to set this value to null or the
empty string (i.e. there must be at least a valid default authentication plugin specified for the connection,
meeting all constraints listed above).

Beta Draft 22 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Default: com.mysql.cj.mysgla.authentication.MysqlNativePasswordPlugin

Since version: 5.1.19

detectCustomcCollations

Should the driver detect custom charsets/collations installed on server (true/false, defaults to ‘false’). If
this option set to 'true’ driver gets actual charsets/collations from server each time connection establishes.
This could slow down connection initialization significantly.

Default: false

Since version: 5.1.29

disabledAuthenticationPlugins

Comma-delimited list of classes implementing
com.mysql.cj.api.mysgla.authentication.AuthenticationPlugin or mechanisms, i.e.
"mysql_native_password". The authentication plugins or mechanisms listed will not be used for
authentication which will fail if it requires one of them. It is an error to disable the default authentication
plugin (either the one named by "defaultAuthenticationPlugin" property or the hard-coded one if
"defaultAuthenticationPlugin" property is not set).

Since version: 5.1.19

disconnectOnExpiredPasswords

If "disconnectOnExpiredPasswords" is set to "false" and password is expired then server enters "sandbox"
mode and sends ERR(08001, ER_MUST_CHANGE_PASSWORD) for all commands that are not needed
to set a new password until a new password is set.

Default: true

Since version: 5.1.23

interactiveClient

Set the CLIENT_INTERACTIVE flag, which tells MySQL to timeout connections based on
INTERACTIVE_TIMEOUT instead of WAIT_TIMEOUT

Default: false

Since version: 3.1.0

passwordCharacterEncoding

What character encoding is used for passwords? Leaving this set to the default value (null), uses

the value set in "characterEncoding" if there is one, otherwise uses UTF-8 as default encoding. If the
password contains non-ASCII characters, the password encoding must match what server encoding was
set to when the password was created. For passwords in other character encodings, the encoding will
have to be specified with this property (or with "characterEncoding"), as it's not possible for the driver to
auto-detect this.

Since version: 5.1.7

propertiesTransform

Beta Draft

23 Beta Draft

Setting Configuration Properties

Properties and Descriptions

An implementation of com.mysql.cj.api.conf.ConnectionPropertiesTransform that the driver will use to
modify URL properties passed to the driver before attempting a connection

Since version: 3.1.4

rollbackOnPooledClose
Should the driver issue a rollback() when the logical connection in a pool is closed?
Default: true

Since version: 3.0.15

useAffectedRows

Don't set the CLIENT_FOUND_ROWS flag when connecting to the server (not JDBC-compliant, will
break most applications that rely on "found" rows vs. "affected rows" for DML statements), but does cause
"correct” update counts from "INSERT ... ON DUPLICATE KEY UPDATE" statements to be returned by
the server.

Default: false

Since version: 5.1.7

Session.

Properties and Descriptions

characterEncoding
What character encoding should the driver use when dealing with strings? (defaults is to 'autodetect’)

Since version: 1.1g

characterSetResults
Character set to tell the server to return results as.

Since version: 3.0.13

connectionCollation
If set, tells the server to use this collation via 'set collation_connection'

Since version: 3.0.13

sessionVariables

A comma-separated list of name/value pairs to be sent as SET SESSION ... to the server when the driver
connects.

Since version: 3.1.8

useOldUTF8Behavior
Use the UTF-8 behavior the driver did when communicating with 4.0 and older servers
Default: false

Since version: 3.1.6

Beta Draft

24 Beta Draft

Setting Configuration Properties

Networking.

Properties and Descriptions

socksProxyHost
Name or IP address of SOCKS host to connect through.

Since version: 5.1.34

socksProxyPort
Port of SOCKS server.
Default: 1080

Since version: 5.1.34

socketFactory

The name of the class that the driver should use for creating socket connections to the server. This class
must implement the interface 'com.mysq|l.cj.api.io.SocketFactory' and have public no-args constructor.

Default: com.mysgl.cj.core.io.StandardSocketFactory

Since version: 3.0.3

connectTimeout

Timeout for socket connect (in milliseconds), with 0 being no timeout. Only works on JDK-1.4 or newer.
Defaults to '0".

Default: 0

Since version: 3.0.1

socketTimeout
Timeout on network socket operations (0, the default means no timeout).
Default: 0

Since version: 3.0.1

localSocketAddress

Hostname or IP address given to explicitly configure the interface that the driver will bind the client side of
the TCP/IP connection to when connecting.

Since version: 5.0.5

maxAllowedPacket

Maximum allowed packet size to send to server. If not set, the value of system variable
‘'max_allowed_packet' will be used to initialize this upon connecting. This value will not take effect if set
larger than the value of ‘'max_allowed_packet'. Also, due to an internal dependency with the property
"blobSendChunkSize", this setting has a minimum value of "8203" if "useServerPrepStmts" is set to "true".

Default; 65535

Since version: 5.1.8

Beta Draft

25 Beta Draft

Setting Configuration Properties

Properties and Descriptions

tcpKeepAlive
If connecting using TCP/IP, should the driver set SO_KEEPALIVE?
Default: true

Since version: 5.0.7

tcpNoDelay
If connecting using TCP/IP, should the driver set SO_TCP_NODELAY (disabling the Nagle Algorithm)?
Default: true

Since version: 5.0.7

tcpRcvBuUf

If connecting using TCP/IP, should the driver set SO_RCV_BUF to the given value? The default value of
'0', means use the platform default value for this property)

Default: 0

Since version: 5.0.7
tcpSndBuf

If connecting using TCP/IP, should the driver set SO_SND_BUF to the given value? The default value of
'0', means use the platform default value for this property)

Default: 0

Since version: 5.0.7

tcpTrafficClass

If connecting using TCP/IP, should the driver set traffic class or type-of-service fields ?See the
documentation for java.net.Socket.setTrafficClass() for more information.

Default: 0

Since version: 5.0.7

useCompression
Use zlib compression when communicating with the server (true/false)? Defaults to 'false’.
Default: false

Since version: 3.0.17

useUnbufferedinput
Don't use BufferedInputStream for reading data from the server
Default: true

Since version: 3.0.11

Beta Draft 26 Beta Draft

Setting Configuration Properties

Security.

Properties and Descriptions

allowMultiQueries

Allow the use of ;' to delimit multiple queries during one statement (true/false), defaults to ‘false’, and does
not affect the addBatch() and executeBatch() methods, which instead rely on rewriteBatchStatements.

Default: false

Since version: 3.1.1
useSSL

Use SSL when communicating with the server (true/false), default is 'true' when connecting to MySQL
5.5.45+, 5.6.26+ or 5.7.6+, otherwise default is 'false’

Default: false

Since version: 3.0.2

requireSSL
Require server support of SSL connection if useSSL=true? (defaults to false").
Default: false

Since version: 3.1.0

verifyServerCertificate

If "useSSL" is set to "true", should the driver verify the server's certificate? When using this feature, the
keystore parameters should be specified by the "clientCertificateKeyStore*" properties, rather than system
properties. Default is ‘false’ when connecting to MySQL 5.5.45+, 5.6.26+ or 5.7.6+ and "useSSL" was not
explicitly set to "true". Otherwise default is 'true’

Default: true

Since version: 5.1.6

clientCertificateKeyStoreUrl
URL to the client certificate KeyStore (if not specified, use defaults)

Since version: 5.1.0

clientCertificateKeyStoreType

KeyStore type for client certificates (NULL or empty means use the default, which is "JKS". Standard
keystore types supported by the JVM are "JKS" and "PKCS12", your environment may have more
available depending on what security products are installed and available to the JVM.

Default; JKS

Since version: 5.1.0

clientCertificateKeyStorePassword

Password for the client certificates KeyStore

Beta Draft 27 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Since version: 5.1.0

trustCertificateKeyStoreUrl|
URL to the trusted root certificate KeyStore (if not specified, use defaults)

Since version: 5.1.0

trustCertificateKeyStoreType

KeyStore type for trusted root certificates (NULL or empty means use the default, which is "JKS".
Standard keystore types supported by the JVM are "JKS" and "PKCS12", your environment may have
more available depending on what security products are installed and available to the JVM.

Default: JKS

Since version: 5.1.0

trustCertificateKeyStorePassword
Password for the trusted root certificates KeyStore

Since version: 5.1.0

enabledSSLCipherSuites

If "useSSL" is set to "true”, overrides the cipher suites enabled for use on the underlying SSL sockets.
This may be required when using external JSSE providers or to specify cipher suites compatible with both
MySQL server and used JVM.

Since version: 5.1.35

allowLoadLocallnfile
Should the driver allow use of 'LOAD DATA LOCAL INFILE..." (defaults to 'true’).
Default: true

Since version: 3.0.3

allowUrlInLocallnfile
Should the driver allow URLs in 'LOAD DATA LOCAL INFILE' statements?
Default: false

Since version: 3.1.4

allowPublicKeyRetrieval
Allows special handshake roundtrip to get server RSA public key directly from server.
Default: false

Since version: 5.1.31

paranoid

Take measures to prevent exposure sensitive information in error messages and clear data structures
holding sensitive data when possible? (defaults to 'false’)

Beta Draft

28 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Default: false

Since version: 3.0.1

serverRSAPublicKeyFile

File path to the server RSA public key file for sha256_password authentication. If not specified, the public
key will be retrieved from the server.

Since version: 5.1.31

Statements.

Properties and Descriptions

continueBatchOnError

Should the driver continue processing batch commands if one statement fails. The JDBC spec allows
either way (defaults to 'true’).

Default: true

Since version: 3.0.3

dontTrackOpenResources

The JDBC specification requires the driver to automatically track and close resources, however

if your application doesn't do a good job of explicitly calling close() on statements or result sets,

this can cause memory leakage. Setting this property to true relaxes this constraint, and can

be more memory efficient for some applications. Also the automatic closing of the Statement

and current ResultSet in Statement.closeOnCompletion() and Statement.getMoreResults

([Statement. CLOSE_CURRENT_RESULT | Statement. CLOSE_ALL_RESULTS]), respectively, ceases to
happen. This property automatically sets holdResultsOpenOverStatementClose=true.

Default: false

Since version: 3.1.7

queryTimeoutKillsConnection

If the timeout given in Statement.setQueryTimeout() expires, should the driver forcibly abort the
Connection instead of attempting to abort the query?

Default: false

Since version: 5.1.9

statementinterceptors

A comma-delimited list of classes that implement
"com.mysql.cj.api.jdbc.interceptors.Statementinterceptor” that should be placed "in between" query
execution to influence the results. Statementinterceptors are "chainable”, the results returned by the
"current"” interceptor will be passed on to the next in in the chain, from left-to-right order, as specified in
this property.

Since version: 5.1.1

Prepared Statements.

Beta Draft

29 Beta Draft

Setting Configuration Properties

Properties and Descriptions

allowNanAndInf
Should the driver allow NaN or +/- INF values in PreparedStatement.setDouble()?
Default: false

Since version: 3.1.5

autoClosePStmtStreams
Should the driver automatically call .close() on streams/readers passed as arguments via set*() methods?
Default: false

Since version: 3.1.12

compensateOnDuplicateKeyUpdateCounts

Should the driver compensate for the update counts of "ON DUPLICATE KEY" INSERT statements (2 =
1, 0 = 1) when using prepared statements?

Default: false

Since version: 5.1.7

emulateUnsupportedPstmts

Should the driver detect prepared statements that are not supported by the server, and replace them with
client-side emulated versions?

Default: true

Since version: 3.1.7

generateSimpleParameterMetadata

Should the driver generate simplified parameter metadata for PreparedStatements when no metadata
is available either because the server couldn't support preparing the statement, or server-side prepared
statements are disabled?

Default: false

Since version: 5.0.5

processEscapeCodesForPrepStmts

Should the driver process escape codes in queries that are prepared? Default escape processing
behavior in non-prepared statements must be defined with the property 'enableEscapeProcessing'.

Default: true

Since version: 3.1.12

useServerPrepStmts

Use server-side prepared statements if the server supports them?

Default: false

Beta Draft

30 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Since version: 3.1.0

useStreamLengthsinPrepStmts

Honor stream length parameter in PreparedStatement/ResultSet.setXXXStream() method calls (true/false,
defaults to 'true’)?

Default: true

Since version: 3.0.2

Result Sets.

Properties and Descriptions

clobberStreamingResults

This will cause a 'streaming' ResultSet to be automatically closed, and any outstanding data still
streaming from the server to be discarded if another query is executed before all the data has been read
from the server.

Default: false

Since version: 3.0.9

emptyStringsConvertToZero
Should the driver allow conversions from empty string fields to numeric values of '0'?
Default: true

Since version: 3.1.8

holdResultsOpenOverStatementClose
Should the driver close result sets on Statement.close() as required by the JDBC specification?
Default: false

Since version: 3.1.7

jdbcCompliantTruncation

Should the driver throw java.sqgl.DataTruncation exceptions when data is truncated as is required by the
JDBC specification when connected to a server that supports warnings (MySQL 4.1.0 and newer)? This
property has no effect if the server sql-mode includes STRICT_TRANS_TABLES.

Default: true

Since version: 3.1.2

maxRows
The maximum number of rows to return (0, the default means return all rows).
Default: -1

Since version: all versions

netTimeoutForStreamingResults

Beta Draft

31 Beta Draft

Setting Configuration Properties

Properties and Descriptions

What value should the driver automatically set the server setting 'net_write_timeout' to when the
streaming result sets feature is in use? (value has unit of seconds, the value '0' means the driver will not
try and adjust this value)

Default: 600

Since version: 5.1.0

padCharsWithSpace

If a result set column has the CHAR type and the value does not fill the amount of characters specified
in the DDL for the column, should the driver pad the remaining characters with space (for ANSI
compliance)?

Default: false

Since version: 5.0.6

populatelnsertRowWithDefaultValues

When using ResultSets that are CONCUR_UPDATABLE, should the driver pre-populate the "insert" row
with default values from the DDL for the table used in the query so those values are immediately available
for ResultSet accessors? This functionality requires a call to the database for metadata each time a result
set of this type is created. If disabled (the default), the default values will be populated by the an internal
call to refreshRow() which pulls back default values and/or values changed by triggers.

Default: false

Since version: 5.0.5

strictUpdates

Should the driver do strict checking (all primary keys selected) of updatable result sets (true, false,
defaults to 'true’)?

Default: true

Since version: 3.0.4

tinylntlisBit

Should the driver treat the datatype TINYINT(1) as the BIT type (because the server silently converts BIT
-> TINYINT(1) when creating tables)?

Default: true

Since version: 3.0.16

transformedBitlsBoolean

If the driver converts TINYINT(1) to a different type, should it use BOOLEAN instead of BIT for future
compatibility with MySQL-5.0, as MySQL-5.0 has a BIT type?

Default: false

Since version: 3.1.9

Metadata.

Beta Draft

32 Beta Draft

Setting Configuration Properties

Properties and Descriptions

getProceduresReturnsFunctions

Pre-JDBC4 DatabaseMetaData API has only the getProcedures() and getProcedureColumns() methods,
so they return metadata info for both stored procedures and functions. JDBC4 was extended with

the getFunctions() and getFunctionColumns() methods and the expected behaviours of previous
methods are not well defined. For JDBC4 and higher, default 'true’ value of the option means that calls

of DatabaseMetaData.getProcedures() and DatabaseMetaData.getProcedureColumns() return metadata
for both procedures and functions as before, keeping backward compatibility. Setting this property to
‘false' decouples Connector/J from its pre-JDBC4 behaviours for DatabaseMetaData.getProcedures() and
DatabaseMetaData.getProcedureColumns(), forcing them to return metadata for procedures only.

Default: true

Since version: 5.1.26

noAccessToProcedureBodies

When determining procedure parameter types for CallableStatements, and the connected user can't
access procedure bodies through "SHOW CREATE PROCEDURE" or select on mysql.proc should the
driver instead create basic metadata (all parameters reported as INOUT VARCHARS) instead of throwing
an exception?

Default: false

Since version: 5.0.3

nullCatalogMeansCurrent

When DatabaseMetadataMethods ask for a ‘catalog’ parameter, does the value null mean use the current
catalog? (this is not JDBC-compliant, but follows legacy behavior from earlier versions of the driver)

Default: false

Since version: 3.1.8

nullNamePatternMatchesAll

Should DatabaseMetaData methods that accept *pattern parameters treat null the same as '%’ (this is not
JDBC-compliant, however older versions of the driver accepted this departure from the specification)

Default: false

Since version: 3.1.8

useHostsInPrivileges

Add '@hostname’ to users in DatabaseMetaData.getColumn/TablePrivileges() (true/false), defaults to
'true’.

Default: true

Since version: 3.0.2

uselnformationSchema

When connected to MySQL-5.0.7 or newer, should the driver use the INFORMATION_SCHEMA to derive
information used by DatabaseMetaData?

Beta Draft

33 Beta Draft

Setting Configuration Properties

Properties and Descriptions
Default: false

Since version: 5.0.0

BLOB/CLOB processing.

Properties and Descriptions

autoDeserialize
Should the driver automatically detect and de-serialize objects stored in BLOB fields?
Default: false

Since version: 3.1.5
blobSendChunkSize

Chunk size to use when sending BLOB/CLOBS via ServerPreparedStatements. Note that this value
cannot exceed the value of "maxAllowedPacket" and, if that is the case, then this value will be corrected
automatically.

Default: 1048576

Since version: 3.1.9

blobsAreStrings

Should the driver always treat BLOBs as Strings - specifically to work around dubious metadata returned
by the server for GROUP BY clauses?

Default: false

Since version: 5.0.8

clobCharacterEncoding

The character encoding to use for sending and retrieving TEXT, MEDIUMTEXT and LONGTEXT values
instead of the configured connection characterEncoding

Since version: 5.0.0

emulateLocators

Should the driver emulate java.sql.Blobs with locators? With this feature enabled, the driver will delay
loading the actual Blob data until the one of the retrieval methods (getinputStream(), getBytes(), and so
forth) on the blob data stream has been accessed. For this to work, you must use a column alias with the
value of the column to the actual name of the Blob. The feature also has the following restrictions: The
SELECT that created the result set must reference only one table, the table must have a primary key;
the SELECT must alias the original blob column name, specified as a string, to an alternate name; the
SELECT must cover all columns that make up the primary key.

Default: false

Since version: 3.1.0

functionsNeverReturnBlobs

Beta Draft 34 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Should the driver always treat data from functions returning BLOBs as Strings - specifically to work
around dubious metadata returned by the server for GROUP BY clauses?

Default: false

Since version: 5.0.8

locatorFetchBufferSize

If 'emulateLocators' is configured to 'true’, what size buffer should be used when fetching BLOB data for
getBinarylnputStream?

Default: 1048576

Since version: 3.2.1

Datetime types processing.

Properties and Descriptions

noDatetimeStringSync
Don't ensure that ResultSet.getDatetimeType().toString().equals(ResultSet.getString())
Default: false

Since version: 3.1.7

sendFractionalSeconds

Send fractional part from TIMESTAMP seconds. If set to false, the nanoseconds value of TIMESTAMP
values will be truncated before sending any data to the server. This option applies only to prepared
statements, callable statements or updatable result sets.

Default: true

Since version: 5.1.37

serverTimezone

Override detection/mapping of time zone. Used when time zone from server doesn't map to Java time
zone

Since version: 3.0.2

treatUtilDateAsTimestamp

Should the driver treat java.util. Date as a TIMESTAMP for the purposes of
PreparedStatement.setObject()?

Default: true

Since version: 5.0.5

yearlsDateType

Should the JDBC driver treat the MySQL type "YEAR" as a java.sql.Date, or as a SHORT?

Default: true

Beta Draft 35 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Since version: 3.1.9

zeroDateTimeBehavior

What should happen when the driver encounters DATETIME values that are composed entirely of zeros
(used by MySQL to represent invalid dates)? Valid values are "exception", "round" and "convertToNull".

Default: exception

Since version: 3.1.4

High Availability and Clustering.

Properties and Descriptions

autoReconnect

Should the driver try to re-establish stale and/or dead connections? If enabled the driver will throw an
exception for a queries issued on a stale or dead connection, which belong to the current transaction, but
will attempt reconnect before the next query issued on the connection in a new transaction. The use of
this feature is not recommended, because it has side effects related to session state and data consistency
when applications don't handle SQLExceptions properly, and is only designed to be used when you are
unable to configure your application to handle SQLExceptions resulting from dead and stale connections
properly. Alternatively, as a last option, investigate setting the MySQL server variable "wait_timeout" to a
high value, rather than the default of 8 hours.

Default: false

Since version: 1.1

autoReconnectForPools
Use a reconnection strategy appropriate for connection pools (defaults to ‘false’)
Default: false

Since version: 3.1.3

failOverReadOnly
When failing over in autoReconnect mode, should the connection be set to 'read-only'?
Default: true

Since version: 3.0.12

maxReconnects
Maximum number of reconnects to attempt if autoReconnect is true, default is '3'.
Default: 3

Since version: 1.1

reconnectAtTxEnd
If autoReconnect is set to true, should the driver attempt reconnections at the end of every transaction?

Default: false

Beta Draft

36 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Since version: 3.0.10

retriesAllDown

When using loadbalancing or failover, the number of times the driver should cycle through available hosts,
attempting to connect. Between cycles, the driver will pause for 250ms if no servers are available.

Default: 120

Since version: 5.1.6

initialTimeout

If autoReconnect is enabled, the initial time to wait between re-connect attempts (in seconds, defaults to
'2".

Default: 2

Since version: 1.1

queriesBeforeRetryMaster

Number of queries to issue before falling back to the primary host when failed over (when using multi-host
failover). Whichever condition is met first, 'queriesBeforeRetryMaster' or 'secondsBeforeRetryMaster' will
cause an attempt to be made to reconnect to the primary host. Setting both properties to 0 disables the
automatic fall back to the primary host at transaction boundaries. Defaults to 50.

Default: 50

Since version: 3.0.2

secondsBeforeRetryMaster

How long should the driver wait, when failed over, before attempting to reconnect to the primary host?
Whichever condition is met first, 'queriesBeforeRetryMaster' or 'secondsBeforeRetryMaster' will cause
an attempt to be made to reconnect to the master. Setting both properties to 0 disables the automatic fall
back to the primary host at transaction boundaries. Time in seconds, defaults to 30

Default: 30

Since version: 3.0.2

allowMasterDownConnections

By default, a replication-aware connection will fail to connect when configured master hosts are all
unavailable at initial connection. Setting this property to 'true’ allows to establish the initial connection, by
failing over to the slave servers, in read-only state. It won't prevent subsequent failures when switching
back to the master hosts i.e. by setting the replication connection to read/write state.

Default: false

Since version: 5.1.27

allowSlaveDownConnections

By default, a replication-aware connection will fail to connect when configured slave hosts are all
unavailable at initial connection. Setting this property to 'true’ allows to establish the initial connection. It
won't prevent failures when switching to slaves i.e. by setting the replication connection to read-only state.
The property 'readFromMasterWhenNoSlaves' should be used for this purpose.

Beta Draft

37 Beta Draft

Setting Configuration Properties

Properties and Descriptions
Default: false

Since version: 6.0.2
ha.enableJMX

Enables JMX-based management of load-balanced connection groups, including live addition/removal
of hosts from load-balancing pool. Enables JMX-based management of replication connection groups,
including live slave promotion, addition of new slaves and removal of master or slave hosts from load-
balanced master and slave connection pools.

Default: false

Since version: 5.1.27

loadBalanceHostRemovalGracePeriod

Sets the grace period to wait for a host being removed from a load-balanced connection, to be released
when it is currently the active host.

Default: 15000

Since version: 6.0.3

readFromMasterWhenNoSlaves

Replication-aware connections distribute load by using the master hosts when in read/write state and by
using the slave hosts when in read-only state. If, when setting the connection to read-only state, none
of the slave hosts are available, an SQLExeception is thrown back. Setting this property to 'true’ allows
to fail over to the master hosts, while setting the connection state to read-only, when no slave hosts are
available at switch instant.

Default: false

Since version: 6.0.2

selfDestructOnPingMaxOperations

=If set to a non-zero value, the driver will report close the connection and report failure when
Connection.ping() or Connection.isValid(int) is called if the connection's count of commands sent to the
server exceeds this value.

Default: 0

Since version: 5.1.6

selfDestructOnPingSecondsLifetime

If set to a non-zero value, the driver will report close the connection and report failure when
Connection.ping() or Connection.isValid(int) is called if the connection's lifetime exceeds this value.

Default: 0

Since version: 5.1.6

ha.loadBalanceStrategy

If using a load-balanced connection to connect to SQL nodes in a MySQL Cluster/NDB configuration (by
using the URL prefix "jdbc:mysgl:loadbalance://"), which load balancing algorithm should the driver use:

Beta Draft 38 Beta Draft

Setting Configuration Properties

Properties and Descriptions

(1) "random" - the driver will pick a random host for each request. This tends to work better than round-
robin, as the randomness will somewhat account for spreading loads where requests vary in response
time, while round-robin can sometimes lead to overloaded nodes if there are variations in response times
across the workload. (2) "bestResponseTime" - the driver will route the request to the host that had the
best response time for the previous transaction.

Default: random

Since version: 5.0.6

loadBalanceAutoCommitStatementRegex

When load-balancing is enabled for auto-commit statements (via
loadBalanceAutoCommitStatementThreshold), the statement counter will only increment when the SQL
matches the regular expression. By default, every statement issued matches.

Since version: 5.1.15

loadBalanceAutoCommitStatementThreshold

When auto-commit is enabled, the number of statements which should be executed before triggering
load-balancing to rebalance. Default value of O causes load-balanced connections to only rebalance when
exceptions are encountered, or auto-commit is disabled and transactions are explicitly committed or rolled
back.

Default: 0

Since version: 5.1.15

loadBalanceBlacklistTimeout

Time in milliseconds between checks of servers which are unavailable, by controlling how long a server
lives in the global blacklist.

Default: 0

Since version: 5.1.0

loadBalanceConnectionGroup

Logical group of load-balanced connections within a classloader, used to manage different groups
independently. If not specified, live management of load-balanced connections is disabled.

Since version: 5.1.13

loadBalanceExceptionChecker

Fully-qualified class name of custom exception checker. The class must implement
com.mysqgl.cj.api.jdbc.ha.LoadBalanceExceptionChecker interface, and is used to inspect SQLExceptions
and determine whether they should trigger fail-over to another host in a load-balanced deployment.

Default: com.mysql.cj.jdbc.ha.StandardLoadBalanceExceptionChecker

Since version: 5.1.13

loadBalancePingTimeout

Time in milliseconds to wait for ping response from each of load-balanced physical connections when
using load-balanced Connection.

Beta Draft

39 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Default: 0

Since version: 5.1.13

loadBalanceSQLExceptionSubclassFailover

Comma-delimited list of classes/interfaces used by default load-balanced exception checker to
determine whether a given SQLException should trigger failover. The comparison is done using
Class.isInstance(SQLEXxception) using the thrown SQLEXxception.

Since version: 5.1.13

loadBalanceSQL StateFailover

Comma-delimited list of SQLState codes used by default load-balanced exception checker to determine
whether a given SQLException should trigger failover. The SQLState of a given SQLEXxception is
evaluated to determine whether it begins with any value in the comma-delimited list.

Since version: 5.1.13

loadBalanceValidateConnectionOnSwapServer

Should the load-balanced Connection explicitly check whether the connection is live when swapping to a
new physical connection at commit/rollback?

Default: false

Since version: 5.1.13

pinGlobalTxToPhysicalConnection

When using XAConnections, should the driver ensure that operations on a given XID are always routed to
the same physical connection? This allows the XAConnection to support "XA START ... JOIN" after "XA
END" has been called

Default: false

Since version: 5.0.1

resourceld

A globally unique name that identifies the resource that this datasource or connection is connected to,
used for XAResource.isSameRM() when the driver can't determine this value based on hosthames used
in the URL

Since version: 5.0.1

Performance Extensions.

Properties and Descriptions

callableStmtCacheSize
If ‘cacheCallableStmts' is enabled, how many callable statements should be cached?
Default: 100

Since version: 3.1.2

metadataCacheSize

Beta Draft

40 Beta Draft

Setting Configuration Properties

Properties and Descriptions

The number of queries to cache ResultSetMetadata for if cacheResultSetMetaData is set to 'true' (default
50)

Default: 50

Since version: 3.1.1

uselLocalSessionState

Should the driver refer to the internal values of autocommit and transaction isolation that are set
by Connection.setAutoCommit() and Connection.setTransactionlsolation() and transaction state as
maintained by the protocol, rather than querying the database or blindly sending commands to the
database for commit() or rollback() method calls?

Default: false

Since version: 3.1.7

uselLocalTransactionState

Should the driver use the in-transaction state provided by the MySQL protocol to determine if a commit()
or rollback() should actually be sent to the database?

Default: false

Since version: 5.1.7

prepStmtCacheSize
If prepared statement caching is enabled, how many prepared statements should be cached?
Default: 25

Since version: 3.0.10

prepStmtCacheSqlLimit
If prepared statement caching is enabled, what's the largest SQL the driver will cache the parsing for?
Default: 256

Since version: 3.0.10

parselnfoCacheFactory

Name of a class implementing com.mysql.cj.api.CacheAdapterFactory, which will be used to create
caches for the parsed representation of client-side prepared statements.

Default: com.mysql.cj.jdbc.util.PerConnectionLRUFactory

Since version: 5.1.1

serverConfigCacheFactory

Name of a class implementing com.mysql.cj.api.CacheAdapterFactory<String, Map<String, String>>,
which will be used to create caches for MySQL server configuration values

Default: com.mysql.cj.core.util. PerVmServerConfigCacheFactory

Beta Draft

41 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Since version: 5.1.1

alwaysSendSetlsolation

Should the driver always communicate with the database when Connection.setTransactionlsolation()
is called? If set to false, the driver will only communicate with the database when the requested
transaction isolation is different than the whichever is newer, the last value that was set via
Connection.setTransactionlsolation(), or the value that was read from the server when the
connection was established. Note that useLocalSessionState=true will force the same behavior as
alwaysSendSetlsolation=false, regardless of how alwaysSendSetlsolation is set.

Default: true

Since version: 3.1.7

maintainTimeStats

Should the driver maintain various internal timers to enable idle time calculations as well as more verbose
error messages when the connection to the server fails? Setting this property to false removes at least
two calls to System.getCurrentTimeMillis() per query.

Default: true

Since version: 3.1.9

useCursorFetch

Should the driver use cursor-based fetching to retrieve rows? If set to "true" and "defaultFetchSize" > 0 (or
setFetchSize() > 0 is called on a statement) then the cursor-based result set will be used. Please note that
"useServerPrepStmts" is automatically set to "true" in this case because cursor functionality is available
only for server-side prepared statements.

Default: false

Since version: 5.0.0

cacheCallableStmts
Should the driver cache the parsing stage of CallableStatements
Default: false

Since version: 3.1.2

cachePrepStmts

Should the driver cache the parsing stage of PreparedStatements of client-side prepared statements, the
"check" for suitability of server-side prepared and server-side prepared statements themselves?

Default: false

Since version: 3.0.10

cacheResultSetMetadata

Should the driver cache ResultSetMetaData for Statements and PreparedStatements? (Req. JDK-1.4+,
true/false, default 'false")

Default: false

Beta Draft

42 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Since version: 3.1.1

cacheServerConfiguration

Should the driver cache the results of 'SHOW VARIABLES' and 'SHOW COLLATION' on a per-URL
basis?

Default: false

Since version: 3.1.5

defaultFetchSize
The driver will call setFetchSize(n) with this value on all newly-created Statements
Default: 0

Since version: 3.1.9

dontCheckOnDuplicateKeyUpdatelnSQL

Stops checking if every INSERT statement contains the "ON DUPLICATE KEY UPDATE" clause. As
a side effect, obtaining the statement's generated keys information will return a list where normally it
wouldn't. Also be aware that, in this case, the list of generated keys returned may not be accurate. The
effect of this property is canceled if set simultaneously with 'rewriteBatchedStatements=true’'.

Default: false

Since version: 5.1.32

elideSetAutoCommits

If using MySQL-4.1 or newer, should the driver only issue 'set autocommit=n' queries when the server's
state doesn't match the requested state by Connection.setAutoCommit(boolean)?

Default: false

Since version: 3.1.3

enableEscapeProcessing

Sets the default escape processing behavior for Statement objects. The method
Statement.setEscapeProcessing() can be used to specify the escape processing behavior for an
individual Statement object. Default escape processing behavior in prepared statements must be defined
with the property 'processEscapeCodesForPrepStmts'.

Default: true

Since version: 6.0.1

enableQueryTimeouts

When enabled, query timeouts set via Statement.setQueryTimeout() use a shared java.util. Timer instance
for scheduling. Even if the timeout doesn't expire before the query is processed, there will be memory
used by the TimerTask for the given timeout which won't be reclaimed until the time the timeout would
have expired if it hadn't been cancelled by the driver. High-load environments might want to consider
disabling this functionality.

Default: true

Beta Draft

43 Beta Draft

Setting Configuration Properties

Properties and Descriptions
Since version: 5.0.6

largeRowSizeThreshold

What size result set row should the JDBC driver consider "large", and thus use a more memory-efficient
way of representing the row internally?

Default: 2048

Since version: 5.1.1

readOnlyPropagatesToServer

Should the driver issue appropriate statements to implicitly set the transaction access mode on server
side when Connection.setReadOnly() is called? Setting this property to 'true' enables InnoDB read-
only potential optimizations but also requires an extra roundtrip to set the right transaction state. Even if
this property is set to 'false’, the driver will do its best effort to prevent the execution of database-state-
changing queries. Requires minimum of MySQL 5.6.

Default: true

Since version: 5.1.35

rewriteBatchedStatements

Should the driver use multiqueries (irregardless of the setting of "allowMultiQueries") as well as
rewriting of prepared statements for INSERT into multi-value inserts when executeBatch() is called?
Notice that this has the potential for SQL injection if using plain java.sql.Statements and your code
doesn't sanitize input correctly. Notice that for prepared statements, server-side prepared statements
can not currently take advantage of this rewrite option, and that if you don't specify stream lengths
when using PreparedStatement.set*Stream(), the driver won't be able to determine the optimum
number of parameters per batch and you might receive an error from the driver that the resultant
packet is too large. Statement.getGeneratedKeys() for these rewritten statements only works when
the entire batch includes INSERT statements. Please be aware using rewriteBatchedStatements=true
with INSERT .. ON DUPLICATE KEY UPDATE that for rewritten statement server returns only one
value as sum of all affected (or found) rows in batch and it isn't possible to map it correctly to initial
statements; in this case driver returns 0 as a result of each batch statement if total count was 0, and the
Statement.SUCCESS_NO_INFO as a result of each batch statement if total count was > 0.

Default: false

Since version: 3.1.13

useReadAheadInput
Use newer, optimized non-blocking, buffered input stream when reading from the server?
Default: true

Since version: 3.1.5

Debugging/Profiling.

Properties and Descriptions

logger

Beta Draft 44 Beta Draft

Setting Configuration Properties

Properties and Descriptions

The name of a class that implements "com.mysql.cj.api.log.Log" that will be used to log messages to.
(default is "com.mysql.cj.core.log.StandardLogger", which logs to STDERR)

Default: com.mysq]l.cj.core.log.StandardLogger

Since version: 3.1.1

gatherPerfMetrics

Should the driver gather performance metrics, and report them via the configured logger every
‘reportMetricsintervalMillis' milliseconds?

Default: false

Since version: 3.1.2
profileSQL

Trace queries and their execution/fetch times to the configured logger (true/false) defaults to 'false’
Default: false

Since version: 3.1.0

reportMetricsintervalMillis
If 'gatherPerfMetrics' is enabled, how often should they be logged (in ms)?
Default: 30000

Since version: 3.1.2

maxQuerySizeTolLog
Controls the maximum length/size of a query that will get logged when profiling or tracing
Default: 2048

Since version: 3.1.3

packetDebugBufferSize
The maximum number of packets to retain when 'enablePacketDebug' is true
Default: 20

Since version: 3.1.3

slowQueryThresholdMillis
If logSlowQueries' is enabled, how long should a query (in ms) before it is logged as 'slow'?
Default: 2000

Since version: 3.1.2

slowQueryThresholdNanos

If 'useNanosForElapsedTime' is set to true, and this property is set to a non-zero value, the driver will use
this threshold (in nanosecond units) to determine if a query was slow.

Beta Draft 45 Beta Draft

Setting Configuration Properties

Properties and Descriptions
Default: O

Since version: 5.0.7

useUsageAdvisor

Should the driver issue 'usage' warnings advising proper and efficient usage of JDBC and MySQL
Connector/J to the log (true/false, defaults to ‘false’)?

Default: false

Since version: 3.1.1

autoGenerateTestcaseScript
Should the driver dump the SQL it is executing, including server-side prepared statements to STDERR?
Default: false

Since version: 3.1.9

autoSlowLog

Instead of using slowQueryThreshold* to determine if a query is slow enough to be logged, maintain
statistics that allow the driver to determine queries that are outside the 99th percentile?

Default: true

Since version: 5.1.4

clientinfoProvider

The name of a class that implements the com.mysql.cj.api.jdbc.ClientinfoProvider interface in order to
support JDBC-4.0's Connection.get/setClientinfo() methods

Default: com.mysql.cj.jdbc.CommentClientinfoProvider

Since version: 5.1.0

enablePacketDebug

When enabled, a ring-buffer of '‘packetDebugBufferSize' packets will be kept, and dumped when
exceptions are thrown in key areas in the driver's code

Default: false

Since version: 3.1.3

explainSlowQueries

If 'logSlowQueries' is enabled, should the driver automatically issue an 'EXPLAIN' on the server and send
the results to the configured log at a WARN level?

Default: false

Since version: 3.1.2

logSlowQueries

Should queries that take longer than 'slowQueryThresholdMillis' be logged?

Beta Draft 46 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Default: false

Since version: 3.1.2

logXaCommands

Should the driver log XA commands sent by MysqglXaConnection to the server, at the DEBUG level of
logging?

Default: false

Since version: 5.0.5

profilerEventHandler

Name of a class that implements the interface com.mysq|l.cj.api.ProfilerEventHandler that will be used to
handle profiling/tracing events.

Default: com.mysql.cj.core.profiler.LoggingProfilerEventHandler

Since version: 5.1.6

resultSetSizeThreshold

If the usage advisor is enabled, how many rows should a result set contain before the driver warns that it
is suspiciously large?

Default: 100

Since version: 5.0.5

traceProtocol
Should trace-level network protocol be logged?
Default: false

Since version: 3.1.2

useNanosForElapsedTime

For profiling/debugging functionality that measures elapsed time, should the driver try to use nanoseconds
resolution if available (JDK >= 1.5)?

Default: false

Since version: 5.0.7

useOnlyServerErrorMessages
Don't prepend 'standard' SQLState error messages to error messages returned by the server.
Default: true

Since version: 3.0.15

Exceptions/Warnings.

Beta Draft

47 Beta Draft

Setting Configuration Properties

Properties and Descriptions

dumpQueriesOnException
Should the driver dump the contents of the query sent to the server in the message for SQLEXxceptions?
Default: false

Since version: 3.1.3

exceptioninterceptors

Comma-delimited list of classes that implement com.mysql.cj.api.exceptions.Exceptioninterceptor. These
classes will be instantiated one per Connection instance, and all SQLExceptions thrown by the driver will
be allowed to be intercepted by these interceptors, in a chained fashion, with the first class listed as the
head of the chain.

Since version: 5.1.8

ignoreNonTxTables
Ignore non-transactional table warning for rollback? (defaults to 'false’).
Default: false

Since version: 3.0.9

includelnnodbStatusinDeadlockExceptions

Include the output of "SHOW ENGINE INNODB STATUS" in exception messages when deadlock
exceptions are detected?

Default: false

Since version: 5.0.7

includeThreadDumplinDeadlockExceptions
Include a current Java thread dump in exception messages when deadlock exceptions are detected?
Default: false

Since version: 5.1.15

includeThreadNamesAsStatementComment

Include the name of the current thread as a comment visible in "SHOW PROCESSLIST", or in Innodb
deadlock dumps, useful in correlation with "includelnnodbStatusinDeadlockExceptions=true" and
"includeThreadDumplnDeadlockExceptions=true".

Default: false

Since version: 5.1.15

Tunes for integration with other products.

Properties and Descriptions

overrideSupportsintegrityEnhancementFacility

Beta Draft 48 Beta Draft

Setting Configuration Properties

Properties and Descriptions

Should the driver return “true" for DatabaseMetaData.supportsintegrityEnhancementFacility() even if the
database doesn't support it to workaround applications that require this method to return "true" to signal
support of foreign keys, even though the SQL specification states that this facility contains much more
than just foreign key support (one such application being OpenOffice)?

Default: false

Since version: 3.1.12

ultraDevHack

Create PreparedStatements for prepareCall() when required, because UltraDev is broken and issues a
prepareCall() for _all_ statements? (true/false, defaults to ‘false’)

Default: false

Since version: 2.0.3

JDBC compliance.

Properties and Descriptions

useColumnNamesInFindColumn

Prior to JDBC-4.0, the JDBC specification had a bug related to what could be given as a

"column name" to ResultSet methods like findColumn(), or getters that took a String property.

JDBC-4.0 clarified "column name" to mean the label, as given in an "AS" clause and returned by
ResultSetMetaData.getColumnLabel(), and if no AS clause, the column name. Setting this property to
"true" will give behavior that is congruent to JDBC-3.0 and earlier versions of the JDBC specification, but
which because of the specification bug could give unexpected results. This property is preferred over
"useOldAliasMetadataBehavior" unless you need the specific behavior that it provides with respect to
ResultSetMetadata.

Default: false

Since version: 5.1.7

pedantic
Follow the JDBC spec to the letter.
Default: false

Since version: 3.0.0

useOldAliasMetadataBehavior

Should the driver use the legacy behavior for "AS" clauses on columns and tables, and only return aliases
(if any) for ResultSetMetaData.getColumnName() or ResultSetMetaData.getTableName() rather than the
original column/table name? In 5.0.%, the default value was true.

Default: false

Since version: 5.0.4

X Protocol and X DevAPI.

Beta Draft

49 Beta Draft

Setting Configuration Properties

Properties and Descriptions

xdevapi.ssl-enable
Use SSL secured connections when creating X DevAPI| sessions
Default: false

Since version: 6.0.6

xdevapi.ssl-truststore
URL to the trusted CA certificates key store (if not specified, use defaults)

Since version: 6.0.6

xdevapi.ssl-truststore-password
Password for the trusted CA certificates key store

Since version: 6.0.6

xdevapi.ssl-truststore-type
Type of the trusted CA certificates key store (NULL or empty means use the default, which is "JKS")
Default: JKS

Since version: 6.0.6

xdevapi.ssl-verify-server-certificate

If "true" also verify the server certificate against the trust store configured with "xdevapi.ssl-truststore"
when creating SSL secured X DevAPI sessions

Default: false

Since version: 6.0.6

xdevapi.useAsyncProtocol
Use asynchronous variant of X Protocol

Default: true

Since version: 6.0.0

Connector/J also supports access to MySQL using named pipes on Windows platforms with the
NanmedPi peSocket Fact ory as a plugin-socket factory. If you do not use a nanedPi pePat h property,
the default of ' \'\ . \ pi pe\ MySQL" is used. If you use the NanedPi peSocket Fact ory, the host name
and port number values in the JDBC URL are ignored. To enable this feature, set the socket Fact ory

property:

socket Fact ory=com nysql . cj . j dbc. NanedPi peSocket Fact ory

Named pipes only work when connecting to a MySQL server on the same physical machine where the
JDBC driver is running. In simple performance tests, named pipe access is between 30%-50% faster than
the standard TCP/IP access. However, this varies per system, and named pipes are slower than TCP/IP in
many Windows configurations.

Beta Draft 50 Beta Draft

Properties Files for the useConf i gs Option

To create your own socket factories, follow the example code in
com nysql . cj.core.io. NamedPi peSocket Fact ory, or
com nysql . cj.core.io.StandardSocket Fact ory.

6.1.1 Properties Files for the useConf i gs Option

The useConf i gs connection option is convenient shorthand for specifying combinations of options

for particular scenarios. The argument values you can use with this option correspond to the names of

. properti es files within the Connector/J nysql - connect or -j ava- ver si on-bi n. j ar JAR file. For
example, the Connector/J 6.0.0 driver includes the following configuration properties files:

$ unzip nysql -connector-java-6.0.0-bin.jar '*/configs/*'
Archive: nysql-connector-java-6.0.0-bin.jar
creating: conlnysql/jdbc/configs/
nflating: conl nysql/jdbc/configs/3-0-Conpat. properties
nflating: conl nysql/jdbc/configs/5-0-Conpat. properties
nflating: conl nysql/jdbc/configs/clusterBase. properties
nflating: conl nysql/jdbc/configs/col dFusion. properties
nflating: conlnysql/jdbc/configs/fullDebug. properties
nflating: conl nysql/jdbc/configs/ maxPerformance. properties
nflating: conl nysql/jdbc/configs/solari sMaxPerformance. properties

To specify one of these combinations of options, specify useConf i gs=3- 0- Conpat ,

useConfi gs=maxPer f or mance, and so on. The following sections show the options that are part of each
useConfi gs setting. For the details of why each one is included, see the comments in the . properti es
files.

3-0-Compat

enptyStri ngsConvert ToZer o=t r ue

j dbcConpl i ant Truncat i on=f al se

noDat eti meStri ngSync=true

nul | Cat al ogMeansCurrent =true

nul | NamePat t er nMat chesAl | =t rue
transfor nedBi t | sBool ean=f al se

dont TrackOpenResour ces=t r ue

zer oDat eTi neBehavi or =convert ToNul |
useSer ver PrepSt nt s=f al se

aut oCl osePSt nt St reans=t r ue

pr ocessEscapeCodesFor PrepSt nt s=f al se
useFast Dat ePar si ng=f al se

popul at el nsert Roww t hDef aul t Val ues=f al se
useDi r ect RowUnpack=f al se

5-0-Compat

useDi r ect RowUnpack=f al se

clusterBase

aut oReconnect =t r ue
fail Over ReadOnl y=f al se
r oundRobi nLoadBal ance=t r ue

coldFusion

al waysSendSet | sol ati on=f al se
uselLocal Sessi onSt at e=t rue

Beta Draft 51 Beta Draft

JDBC API Implementation Notes

aut oReconnect =t r ue

fullDebug

profil eSQ=true

gat her Perf Metri cs=true
useUsageAdvi sor =t r ue

| 0gSl owQueri es=t rue
expl ai nSl owQueri es=true

maxPerformance

cachePr epSt nt s=true

cacheCal | abl eSt nt s=true
cacheSer ver Conf i gurati on=true
uselLocal Sessi onSt at e=true

el i deSet Aut oCommi t s=t r ue

al waysSendSet | sol ati on=f al se
enabl eQuer yTi meout s=f al se

solarisMaxPerformance

useUnbuf f er edl nput =f al se
useReadAheadl nput =f al se
mai nt ai nTi meSt at s=f al se

6.2 JDBC API Implementation Notes

MySQL Connector/J, as a rigorous implementation of the JDBC API, passes all of the tests in the publicly
available version of Oracle's JDBC compliance test suite. The JDBC specification is flexible on how certain
functionality should be implemented. This section gives details on an interface-by-interface level about
implementation decisions that might affect how you code applications with MySQL Connector/J.

* BLOB

You can emulate BLOBs with locators by adding the property enmul at eLocat or s=t r ue to your JDBC
URL. Using this method, the driver will delay loading the actual BLOB data until you retrieve the other
data and then use retrieval methods (get | nput St r ean(), get Byt es(), and so forth) on the BLOB
data stream.

You must use a column alias with the value of the column to the actual name of the BLOB, for example:

SELECT id, 'data' as blob_data from bl obt abl e

You must also follow these rules:

e The SELECT must reference only one table. The table must have a primary key.

« The SELECT must alias the original BLOB column name, specified as a string, to an alternate name.
e The SELECT must cover all columns that make up the primary key.

The BLOB implementation does not allow in-place modification (they are copies, as reported by the
Dat abaseMet aDat a. | ocat or sUpdat eCopi es() method). Because of this, use the corresponding
Prepar edSt at ement . set Bl ob() or Resul t Set . updat eBl ob() (in the case of updatable result
sets) methods to save changes back to the database.

Beta Draft

52 Beta Draft

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://dev.mysql.com/doc/refman/5.7/en/select.html
http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.7/en/select.html
http://dev.mysql.com/doc/refman/5.7/en/select.html

JDBC API Implementation Notes

CallableStatement

Stored procedures are supported when connecting to MySQL using the Cal | abl eSt at enent interface.
Currently, the get Par anet er Met aDat a() method of Cal | abl eSt at enent is not supported.

Connection

The i sCl osed() method does not ping the server to determine if it is available. In accordance with the
JDBC specification, it only returns true if cl osed() has been called on the connection. If you need to
determine if the connection is still valid, issue a simple query, such as SELECT 1. The driver will throw
an exception if the connection is no longer valid.

DatabaseMetaData

Foreign key information (get | npor t edKeys() /get Export edKeys() and get Cr ossRef erence())
is only available from | nnoDB tables. The driver uses SHON CREATE TABLE to retrieve this information,
so if any other storage engines add support for foreign keys, the driver would transparently support them
as well.

PreparedStatement

Two variants of prepared statements are implemented by Connector/J, the client-side and the server-
side prepared statements. Client-side prepared statements are used by default because early MySQL
versions did not support the prepared statement feature or had problems with its implementation. Server-
side prepared statements and binary-encoded result sets are used when the server supports them. To
enable usage of server-side prepared statements, set useSer ver PrepSt nt s=t r ue.

Be careful when using a server-side prepared statement with large parameters that are set using
setBi naryStrean(),setAscii Strean{(), set Uni codeStrean(), set CharacterStreanm(),
set NChar act er Streant(), set Bl ob(), set Cl ob(), or set NCLob() . To re-execute the statement
with any large parameter changed to a nonlarge parameter, call cl ear Par anet er s() and set all
parameters again. The reason for this is as follows:

« During both server-side prepared statements and client-side emulation, large data is exchanged only
when Pr epar edSt at enent . execut e() is called.

¢ Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and cannot be read from again.

« If a parameter changes from large to nonlarge, the driver must reset the server-side state of the
prepared statement to allow the parameter that is being changed to take the place of the prior large
value. This removes all of the large data that has already been sent to the server, thus requiring the
data to be re-sent, using the set Bi naryStrean(), set Ascii Strean(), set Uni codeStrean(),
set Character Strean{(), set NCharacter Strean(), set Bl ob(), set C ob(), orset NCLob()
method.

Consequently, to change the type of a parameter to a nonlarge one, you must call
cl ear Par anet er s() and set all parameters of the prepared statement again before it can be re-
executed.

ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most
efficient way to operate and, due to the design of the MySQL network protocol, is easier to implement.
If you are working with ResultSets that have a large number of rows or large values and cannot allocate
heap space in your JVM for the memory required, you can tell the driver to stream the results back one
row at a time.

Beta Draft

53 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.7/en/show-create-table.html

JDBC API Implementation Notes

To enable this functionality, create a St at enent instance in the following manner:

stnmt = conn. createStatement (j ava. sgl . Resul t Set . TYPE_FORWARD_ONLY,
java. sql . Resul t Set . CONCUR_READ_ONLY) ;
stnt. set FetchSi ze(l nteger. M N_VALUE) ;

The combination of a forward-only, read-only result set, with a fetch size of | nt eger . M N_VALUE
serves as a signal to the driver to stream result sets row-by-row. After this, any result sets created with
the statement will be retrieved row-by-row.

There are some caveats with this approach. You must read all of the rows in the result set (or close it)
before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be Myl SAMtable-level locks
or row-level locks in some other storage engine such as | nnoDB) is when the statement completes.

If the statement is within scope of a transaction, then locks are released when the transaction completes
(which implies that the statement needs to complete first). As with most other databases, statements
are not complete until all the results pending on the statement are read or the active result set for the
statement is closed.

Therefore, if using streaming results, process them as quickly as possible if you want to maintain
concurrent access to the tables referenced by the statement producing the result set.

Statement

Connector/J includes support for both St at enent . cancel () and St at enent . set Quer yTi meout ().
Both require a separate connection to issue the KI LL QUERY statement. In the case of

set Quer yTi neout (), the implementation creates an additional thread to handle the timeout
functionality.

Note

Failures to cancel the statement for set Quer yTi neout () may manifest
themselves as Runt i mneExcept i on rather than failing silently, as there is
currently no way to unblock the thread that is executing the query being cancelled
due to timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver does not emulate them, so
set Cur sor Nane() has no effect.

Connector/J also supplies two additional methods:

e setLocal I nfilelnputStrean() setsan | nput St r eaminstance that will be used to send data to
the MySQL server for a LOAD DATA LOCAL | NFI LE statement rather than a Fi | el nput St r eamor
URLI nput St r eamthat represents the path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL | NFI LE statement,
and will automatically be closed by the driver, so it needs to be reset before each call to execut e* ()
that would cause the MySQL server to request data to fulfill the request for LOAD DATA LOCAL

I NFI LE.

If this value is set to NULL, the driver will revert to using a Fi | el nput St r eamor URLI nput St r eam
as required.

Beta Draft

54 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/kill.html
http://dev.mysql.com/doc/refman/5.7/en/load-data.html
http://dev.mysql.com/doc/refman/5.7/en/load-data.html
http://dev.mysql.com/doc/refman/5.7/en/load-data.html
http://dev.mysql.com/doc/refman/5.7/en/load-data.html

Java, JDBC and MySQL Types

e get Local I nfil el nput Streant() returns the | nput St r eaminstance that will be used to send data
in response to a LOAD DATA LOCAL | NFI LE statement.

This method returns NULL if no such stream has been set using set Local I nfil el nput Strean().
6.3 Java, JDBC and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to aj ava. | ang. St ri ng, and any numeric type

can be converted to any of the Java humeric types, although round-off, overflow, or loss of precision may
occur.

Note

All TEXT types return Types. LONGVARCHAR with different get Pr eci si on()
values (65535, 255, 16777215, and 2147483647 respectively) with

get Col umType() returning - 1. This behavior is intentional even though

TI NYTEXT does not fall, regarding to its size, within the LONGVARCHAR
category. This is to avoid different handling inside the same base type. And
get Col umType() returns - 1 because the internal server handling is of type
TEXT, which is similar to BLOB.

Also note that get Col utmTypeNane() will return VARCHAR even though
get Col umType() returns Types. LONGVARCHAR, because VARCHAR is the
designated column database-specific name for this type.

Connector/J issues warnings or throws Dat aTr uncat i on exceptions as is required by the
JDBC specification, unless the connection was configured not to do so by using the property
j dbcConpl i ant Truncati on and setting itto f al se.

The conversions that are always guaranteed to work are listed in the following table. The first column lists

one or more MySQL data types, and the second column lists one or more Java types to which the MySQL
types can be converted.

Table 6.1 Connection Properties - Miscellaneous

These MySQL Data Types Can always be converted to these Java types
CHAR, VARCHAR, BLOB, TEXT, ENUM and java.lang. String, java.io.lnputStream
SET java.io. Reader, java.sql.Bl ob,
java.sqgl.d ob
FLOAT, REAL, DOUBLE PRECI S| ON, java.l ang. String, java.lang. Short,
NUVERI C, DECI MAL, TI NYI NT, SMALLI NT, java.l ang. | nteger, java.l ang. Long,
MEDI UM NT, | NTEGER, BI G NT j ava. | ang. Doubl e, java. mat h. Bi gDeci mal
DATE, TINME, DATETIME, TI MESTAWVP java.lang. String, java.sqgl.Date,
j ava. sql . Ti nest anp

Note

Round-off, overflow or loss of precision may occur if you choose a Java humeric

data type that has less precision or capacity than the MySQL data type you are
converting to/from.

Beta Draft 55 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/load-data.html

Java, JDBC and MySQL Types

The Resul t Set . get Obj ect () method uses the type conversions between MySQL and

Java types, following the JDBC specification where appropriate. The value returned by

Resul t Set Met aDat a. Get Col utmCl assNane() is also shown below. For more information on the
JDBC types, see the reference on the java.sql.Types class.

Table 6.2 MySQL Types to Java Types for ResultSet.getObject()

MySQL Type Name

Return value of
CGet Col umd assNane

Returned as Java Class

BIT(1) BIT j ava. | ang. Bool ean

BIT(> 1) BIT byt e[]

TI NYI NT TI NYI NT j ava. | ang. Bool ean if the configuration property
tinylntlisBit issettotrue (the default) and
the storage size is 1, or j ava. | ang. | nt eger if
not.

BOOL, BOOLEAN TI NYI NT See Tl NYI NT, above as these are aliases for

TI NYI NT(1), currently.

SMALLI NT[(M]

SMVALLI NT [UNSI GNED]

java. |l ang. | nt eger (regardless of whether it is

[UNSI GNED] UNSI GNED or not)

VEDI UM NT[(M] VEDI UM NT j ava. | ang. | nt eger (regardless of whether it is

[UNSI GNED) [UNSI GNED) UNSI GNED or not)

I NT, | NTEGER] (M] I NTEGER [UNSI GNED] |j ava. | ang. | nt eger, if UNSI GNED

[UNSI GNED) java. |l ang. Long

BIGANT[(M] Bl A NT [UNSI GNED] j ava. |l ang. Long, if UNSIGNED

[UNSI GNED] j ava. mat h. Bi gl nt eger

FLOAT[(M D)] FLOAT j ava. | ang. Fl oat

DOUBLE[(M B)] DOUBLE j ava. |l ang. Doubl e

DECI MAL[(M, D)] DECI MAL j ava. mat h. Bi gDeci mal

DATE DATE java.sql . Date

DATETI MVE DATETI VE java. sqgl . Ti nest anp

TI MESTAMP[(M] TI MESTAMP java.sqgl . Ti mest anp

TI ME TI ME java.sqgl.Tine

YEAR] (2] 4)] YEAR If year | sDat eType configuration property is
setto f al se, then the returned object type is
java. sgl . Short . If settot rue (the default), then
the returned object is of type j ava. sql . Dat e with
the date set to January 1st, at midnight.

CHAR(M CHAR java. | ang. St ri ng (unless the character set for
the column is Bl NARY, then byt e[] is returned.

VARCHAR(M [Bl NARY] | VARCHAR j ava. |l ang. Stri ng (unless the character set for
the column is BI NARY, then byt e[] is returned.

Bl NARY(M) Bl NARY byt e[]

VARBI NARY(M VARBI NARY byt e[]

TI NYBLOB TI NYBLOB byt e[]

TI NYTEXT VARCHAR java.lang. String

BLOB BLOB byt e[]

Beta Draft 56 Beta Draft

http://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

Using Character Sets and Unicode

MySQL Type Name Return value of Returned as Java Class

Cet Col umd assNane

TEXT VARCHAR java.l ang. String
MEDI UVBLOB MEDI UVBLOB byte[]
VEDI UMTEXT VARCHAR java.lang. String
LONGBLOB LONGBLOB byte[]
LONGTEXT VARCHAR java.l ang. String

ENUM ' val uel', ' val ug@HAR. .)
SET(' val uel', "' val ue2CHAR.)

java.lang. String

java.lang. String

6.4 Using Character Sets and Unicode

All strings sent from the JDBC driver to the server are converted automatically from native Java Unicode
form to the client character encoding, including all queries sent using St at ement . execut e(),

St at ement . execut eUpdat e(), St at enent . execut eQuery() as well as all Pr epar edSt at enent
and Cal | abl eSt at enent parameters with the exclusion of parameters set using set Byt es(),

set Bi naryStrean{(),setAscii Strean{(), set Uni codeStrean(), and set Bl ob().

Number of Encodings Per Connection

Connector/J supports a single character encoding between client and server, and any number of character
encodings for data returned by the server to the client in the results.

Setting the Character Encoding

The character encoding between client and server is automatically detected upon connection. You specify
the encoding on the server using the char act er _set ser ver. The driver automatically uses the
encoding specified by the server. For more information, see Server Character Set and Collation.

For example, to use 4-byte UTF-8 character sets with Connector/J, configure the MySQL server
with char act er _set server =ut f 8nb4, and leave char act er Encodi ng out of the Connector/J
connection string. Connector/J will then autodetect the UTF-8 setting.

To override the automatically detected encoding on the client side, use the char act er Encodi ng property
in the URL used to connect to the server.

To allow multiple character sets to be sent from the client, use the UTF-8 encoding, either by configuring
ut f 8 as the default server character set, or by configuring the JDBC driver to use UTF-8 through the
char act er Encodi ng property.

When specifying character encodings on the client side, use Java-style names. The following table lists
MySQL character set names and the corresponding Java-style names:

Table 6.3 MySQL to Java Encoding Name Translations

MySQL Character Set Name Java-Style Character Encoding Name
asci i US- ASCl |
bi g5 Bi g5
gbk GBK
sjis SJI'S or Cp932
cp932 Cp932 or MsS932
Beta Draft Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.7/en/charset-server.html
http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_character_set_server

Connecting Securely Using SSL

MySQL Character Set Name Java-Style Character Encoding Name

gh2312 EUC_CN

ujis EUC JP

euckr EUC KR

latinl Cpl1252

latin2 | SO8859_2

greek | SC8859 7

hebr ew | SC8859_8

cp866 Cp866

tis620 Tl S620

cpl250 Cp1250

cpl251 Cp1251

cpl257 Cpl1257

macr oman MacRoman

macce MacCent r al Eur ope

utf8 UTF- 8

ucs?2 Uni codeBi g
Warning

Do not issue the query set nanes with Connector/J, as the driver will not detect
that the character set has changed, and will continue to use the character set
detected during the initial connection setup.

6.5 Connecting Securely Using SSL

SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC driver
and the server. There is a performance penalty for enabling SSL, the severity of which depends on
multiple factors including (but not limited to) the size of the query, the amount of data returned, the server
hardware, the SSL library used, the network bandwidth, and so on.

For SSL support to work, you must have the following:
* A JRE that includes JSSE (Java Secure Sockets Extension), like JRE 1.8.

» A MySQL server that supports SSL and has been compiled and configured to do so. For more
information, see Building MySQL with Support for Secure Connections.

A client certificate (covered later in this section)

The system works through two Java truststore files, one file contains the certificate information for

the server (t r ust st or e in the examples below). The other file contains the certificate for the client

(keyst or e in the examples below). All Java truststore files are password protected by supplying a suitable
password to the keyt ool when you create the files. You need the file names and associated passwords to
create an SSL connection.

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL
server CA Certificate is located in the SSL subdirectory of the MySQL source distribution. This is what
SSL will use to determine if you are communicating with a secure MySQL server. Alternatively, use the CA
Certificate that you have generated or been provided with by your SSL provider.

Beta Draft 58 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/building-with-secure-connection-support.html

Connecting Securely Using SSL

To use Java's keyt ool to create a truststore in the current directory , and import the server's CA
certificate (cacert . pen), you can do the following (assuming that keyt ool is in your path. The keyt ool
is typically located in the bi n subdirectory of your JDK or JRE):

shel | > keytool -inport -alias nysql Server CACert \
-file cacert.pem -keystore truststore

Enter the password when prompted for the keystore file. Interaction with keyt ool looks like this:

Ent er keystore password: ****xxxxx
Onner: EMAI LADDRESS=wal r us@xanpl e. com CN=Wal r us,
O=My Conpany, L=Orenburg, ST=Sone-State, C=RU
| ssuer: EMAI LADDRESS=wal r us@xanpl e. com CN=Wlrus,
O=My Conpany, L=Orenburg, ST=Sone-State, C=RU
Serial nunber: 0
Valid from
Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:
MD5: 61:91: AO: F2: 03: 07: 61: 7A: 81: 38: 66: DA: 19: C4: 8D: AB
SHAL: 25:77:41:05: D5: AD: 99: 8C: 14: 8C. CA: 68: 9C: 2F: B8: 89: C3: 34: 4D: 6C
Trust this certificate? [no]: yes
Certificate was added to keystore

You then have two options: either import the client certificate that matches the CA certificate you just
imported, or create a new client certificate.

Importing an existing certificate requires the certificate to be in DER format. You can use openssl to
convert an existing certificate into the new format. For example:

shel | > openssl x509 -outformDER -in client-cert.pem-out client.cert

Now import the converted certificate into your keystore using keyt ool :

shel | > keytool -import -file client.cert -keystore keystore -alias nysgldientCertificate

To generate your own client certificate, use keyt ool to create a suitable certificate and add it to the
keyst or e file:

shel | > keyt ool -genkey -keyalg rsa \
-alias nysglClientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named keyst or e in the
current directory.

Respond with information that is appropriate for your situation:

Ent er keystore password: ****xxxxx

What is your first and | ast name?
[Unknown] : Matt hews

What is the nane of your organizational unit?
[Unknown] : Sof t war e Devel oprment

What is the nane of your organization?
[Unknown] : My Conpany

What is the nane of your City or Locality?
[Unknown] : FIl ossnoor

What is the nane of your State or Province?
[Unknown] : IL

What is the two-letter country code for this unit?
[Unknown] : US

Beta Draft

59 Beta Draft

Connecting Securely Using SSL

I's <CN=Matthews, OU=Software Devel opment, O=My Conpany,
L=Fl ossnoor, ST=IL, C=US> correct?

[no]: 'y

Enter key password for <mysqgl ClientCertificate>
(RETURN i f same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the
following system properties when you start your JVM, replacing pat h_t o_keyst ore_fi | e with the full
path to the keystore file you created, pat h_to_trust store_fi |l e with the path to the truststore file
you created, and using the appropriate password values for each property. You can do this either on the

command line:

- Dj avax. net. ssl . keyStore=path_to_keystore file

- D avax. net . ssl . keySt or ePasswor d=passwor d

-Dj avax. net.ssl.trustStore=path to_truststore file
- Dj avax. net . ssl . t rust St or ePasswor d=passwor d

Or you can set the values directly within the application:

System set Property("javax. net.ssl.keyStore","path_to_keystore file");
Syst em set Property("javax. net.ssl . keySt orePassword", "password");

System set Property("javax.net.ssl.trustStore","path to truststore file");
System set Property("javax. net.ssl.trust St orePassword", "password");

You will also need to set useSSL to t r ue in your connection parameters for MySQL Connector/
J, either by adding useSSL=t r ue to your URL, or by setting the property useSSL to t r ue in the
java.util.Properties instance you pass to Dri ver Manager . get Connecti on().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the

following key events:

*** ClientHello, v3.1

RandonCooki e: GMI: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, »
54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, »
217, 219, 239, 202, 19, 121, 78 }

Session ID: {}

G pher Suites: { O, 5, 0, 4 0, 9, O, 10, O, 18, 0, 19, 0, 3, 0, 17 }

Conpressi on Methods: { O }

* Kk k

[wite] MD5 and SHAl hashes: len = 59

0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A0C ...7..=....... J.
0010: 36 F4 00 A8 37 67 D7 40 10 SAE1 BE84 99 02 D9 6...70.@.......
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00OyN

0030: OA 00 12 00 13 00 03 00 11 01 OO

main, WRITE: SSL v3.1 Handshake, |ength = 59

mai n, READ: SSL v3.1 Handshake, length = 74

*** ServerHello, v3.1

RandonCooki e: GMI: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, »
202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, »
132, 110, 82, 148, 160, 92 }

Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, »
182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, »
219, 158, 177, 187, 143}

C pher Suite: { 0, 5}

Conpr essi on Method: O

* k%

%6 Created: [Session-1, SSL_RSA W TH RC4_128_SHA]

** SSL_RSA W TH RC4_128_SHA

[read] MD5 and SHAl hashes: len = 74

0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.Ct2.9.d

Beta Draft 60

Beta Draft

Connecting Using PAM Authentication

6.6 Connecting Using PAM Authentication

0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA 03
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2
0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C OF E2 18

0040: 11 B1 DB 9E Bl BB 8F 00 05 00

mai n, READ:

JSSE provides debugging (to st dout) when you set the following system property: -

SSL v3.1 Handshake, length = 1712

:.0.d.B..S. . *.

D7 OL.\...

Dj avax. net . debug=al | This will tell you what keystores and truststores are being used, as well as what
is going on during the SSL handshake and certificate exchange. It will be helpful when trying to determine

what is not working when trying to get an SSL connection to happen.

Java applications using Connector/J can connect to MySQL servers that use the pluggable authentication
module (PAM) authentication scheme.

For PAM authentication to work, you must have the following:

» A MySQL server that supports PAM authentication. See The PAM Authentication Plugin for more
information. Connector/J implements the same cleartext authentication method as in The Cleartext
Client-Side Authentication Plugin.

» SSL capability, as explained in Section 6.5, “Connecting Securely Using SSL”. Because the PAM
authentication scheme sends the original password to the server, the connection to the server must be
encrypted.

PAM authentication support is enabled by default in Connector/J 6.0, so no extra configuration is needed.

To disable the PAM authentication feature, specify nysql _cl ear _passwor d (the method) or

com nysql . cj.jdbc.authentication. Mysgl Cl ear Passwor dPl ugi n (the class name) in the

comma-separated list of arguments for the di sabl edAut hent i cati onPl ugi ns connection option. See
Section 6.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J”
for details about that connection option.

6.7 Using Master/Slave Replication with ReplicationConnection

6.8 Mapping MySQL Error Numbers to JDBC SQL State Codes

The table below provides a mapping of the MySQL error numbers to JDBC SQLSt at e values.
Table 6.4 Mapping of MySQL Error Numbers to SQL States

See Section 9.4, “Configuring Master/Slave Replication with Connector/J” for details on the topic.

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1022 ER_DUP_KEY 23000
1037 ER_OUTOFMEMORY HY001
1038 ER_OUT_OF SORTMEMORY HY001
1040 ER_CON_COUNT_ERROR 08004
1042 ER_BAD_HOST_ERROR 08s01
1043 ER_HANDSHAKE_ERROR 08s01
1044 ER_DBACCESS_DENIED_ERROR 42000
Beta Draft 61 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/pam-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.7/en/cleartext-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.7/en/cleartext-authentication-plugin.html

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1045 ER_ACCESS_DENIED_ERROR 28000
1046 ER_NO_DB_ERROR 3D000
1047 ER_UNKNOWN_COM_ERROR 08S01
1048 ER_BAD_NULL_ERROR 23000
1049 ER_BAD_DB_ERROR 42000
1050 ER_TABLE_EXISTS_ERROR 42501
1051 ER_BAD_TABLE_ERROR 42502
1052 ER_NON_UNIQ_ERROR 23000
1053 ER_SERVER_SHUTDOWN 08s01
1054 ER_BAD_FIELD_ERROR 42522
1055 ER_WRONG_FIELD_WITH_GROUP 42000
1056 ER_WRONG_GROUP_FIELD 42000
1057 ER_WRONG_SUM_SELECT 42000
1058 ER_WRONG_VALUE_COUNT 21S01
1059 ER_TOO_LONG_IDENT 42000
1060 ER_DUP_FIELDNAME 42521
1061 ER_DUP_KEYNAME 42000
1062 ER_DUP_ENTRY 23000
1063 ER_WRONG_FIELD_SPEC 42000
1064 ER_PARSE_ERROR 42000
1065 ER_EMPTY_QUERY 42000
1066 ER_NONUNIQ_TABLE 42000
1067 ER_INVALID_DEFAULT 42000
1068 ER_MULTIPLE_PRI_KEY 42000
1069 ER_TOO_MANY_KEYS 42000
1070 ER_TOO_MANY_KEY_PARTS 42000
1071 ER_TOO_LONG_KEY 42000
1072 ER_KEY_COLUMN_DOES _NOT_EXITS 42000
1073 ER_BLOB_USED_AS KEY 42000
1074 ER_TOO_BIG_FIELDLENGTH 42000
1075 ER_WRONG_AUTO_KEY 42000
1080 ER_FORCING_CLOSE 08s01
1081 ER_IPSOCK_ERROR 08s01
1082 ER_NO_SUCH_INDEX 42512
1083 ER_WRONG_FIELD_TERMINATORS 42000
1084 ER_BLOBS_AND_NO_TERMINATED 42000
Beta Draft 62 Beta Draft

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1090 ER_CANT_REMOVE_ALL_FIELDS 42000
1091 ER_CANT_DROP_FIELD_OR_KEY 42000
1101 ER_BLOB_CANT HAVE_DEFAULT 42000
1102 ER_WRONG_DB_NAME 42000
1103 ER_WRONG_TABLE_NAME 42000
1104 ER_TOO_BIG_SELECT 42000
1106 ER_UNKNOWN_PROCEDURE 42000
1107 ER_WRONG_PARAMCOUNT_TO_PROCEDURE 42000
1109 ER_UNKNOWN_TABLE 42502
1110 ER_FIELD_SPECIFIED_TWICE 42000
1112 ER_UNSUPPORTED_EXTENSION 42000
1113 ER_TABLE_MUST_HAVE_COLUMNS 42000
1115 ER_UNKNOWN_CHARACTER_SET 42000
1118 ER_TOO_BIG_ROWSIZE 42000
1120 ER_WRONG_OUTER_JOIN 42000
1121 ER_NULL_COLUMN_IN_INDEX 42000
1131 ER_PASSWORD_ANONYMOUS_USER 42000
1132 ER_PASSWORD_NOT_ALLOWED 42000
1133 ER_PASSWORD_NO_MATCH 42000
1136 ER_WRONG_VALUE_COUNT_ON_ROW 21S01
1138 ER_INVALID_USE_OF_NULL 22004
1139 ER_REGEXP_ERROR 42000
1140 ER_MIX_OF _GROUP_FUNC_AND_FIELDS 42000
1141 ER_NONEXISTING_GRANT 42000
1142 ER_TABLEACCESS_DENIED_ERROR 42000
1143 ER_COLUMNACCESS_DENIED_ERROR 42000
1144 ER_ILLEGAL GRANT_FOR_TABLE 42000
1145 ER_GRANT_WRONG_HOST_OR_USER 42000
1146 ER_NO_SUCH_TABLE 42502
1147 ER_NONEXISTING_TABLE_GRANT 42000
1148 ER_NOT_ALLOWED_COMMAND 42000
1149 ER_SYNTAX_ERROR 42000
1152 ER_ABORTING_CONNECTION 08s01
1153 ER_NET_PACKET_TOO_LARGE 08s01
1154 ER_NET_READ_ERROR_FROM_PIPE 08S01
1155 ER_NET_FCNTL_ERROR 08s01
Beta Draft 63 Beta Draft

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1156 ER_NET_PACKETS_OUT_OF_ORDER 08s01
1157 ER_NET_UNCOMPRESS_ERROR 08s01
1158 ER_NET_READ_ERROR 08S01
1159 ER_NET_READ_INTERRUPTED 08s01
1160 ER_NET_ERROR_ON_WRITE 08s01
1161 ER_NET_WRITE_INTERRUPTED 08s01
1162 ER_TOO_LONG_STRING 42000
1163 ER_TABLE_CANT_HANDLE_BLOB 42000
1164 ER_TABLE_CANT_HANDLE_AUTO_INCREMENT 42000
1166 ER_WRONG_COLUMN_NAME 42000
1167 ER_WRONG_KEY_COLUMN 42000
1169 ER_DUP_UNIQUE 23000
1170 ER_BLOB_KEY_WITHOUT_LENGTH 42000
1171 ER_PRIMARY_CANT_HAVE_NULL 42000
1172 ER_TOO_MANY_ROWS 42000
1173 ER_REQUIRES_PRIMARY_KEY 42000
1176 ER_KEY_DOES_NOT_EXITS 42000
1177 ER_CHECK_NO_SUCH_TABLE 42000
1178 ER_CHECK_NOT_IMPLEMENTED 42000
1179 ER_CANT_DO_THIS_DURING_AN_TRANSACTION 25000
1184 ER_NEW_ABORTING_CONNECTION 08s01
1189 ER_MASTER_NET_READ 08s01
1190 ER_MASTER_NET_WRITE 08S01
1203 ER_TOO_MANY_USER_CONNECTIONS 42000
1205 ER_LOCK_WAIT_TIMEOUT 40001
1207 ER_READ_ONLY_TRANSACTION 25000
1211 ER_NO_PERMISSION_TO CREATE_USER 42000
1213 ER_LOCK_DEADLOCK 40001
1216 ER_NO_REFERENCED_ROW 23000
1217 ER_ROW_IS_REFERENCED 23000
1218 ER_CONNECT _TO_MASTER 08S01
1222 ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT 21000
1226 ER_USER_LIMIT_REACHED 42000
1227 ER_SPECIFIC_ACCESS_DENIED_ERROR 42000
1230 ER_NO_DEFAULT 42000
1231 ER_WRONG_VALUE_FOR_VAR 42000
Beta Draft 64 Beta Draft

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1232 ER_WRONG_TYPE_FOR_VAR 42000
1234 ER_CANT_USE_OPTION_HERE 42000
1235 ER_NOT_SUPPORTED_YET 42000
1239 ER_WRONG_FK_DEF 42000
1241 ER_OPERAND_COLUMNS 21000
1242 ER_SUBQUERY_NO_1 ROW 21000
1247 ER_ILLEGAL_REFERENCE 42522
1248 ER_DERIVED_MUST_HAVE_ALIAS 42000
1249 ER_SELECT_REDUCED 01000
1250 ER_TABLENAME_NOT_ALLOWED_HERE 42000
1251 ER_NOT_SUPPORTED_AUTH_MODE 08004
1252 ER_SPATIAL_CANT_HAVE_NULL 42000
1253 ER_COLLATION_CHARSET_MISMATCH 42000
1261 ER_WARN_TOO_FEW_RECORDS 01000
1262 ER_WARN_TOO_MANY_RECORDS 01000
1263 ER_WARN_NULL_TO_NOTNULL 22004
1264 ER_WARN_DATA_OUT_OF_RANGE 22003
1265 ER_WARN_DATA_TRUNCATED 01000
1280 ER_WRONG_NAME_FOR_INDEX 42000
1281 ER_WRONG_NAME_FOR_CATALOG 42000
1286 ER_UNKNOWN_STORAGE_ENGINE 42000
1292 ER_TRUNCATED_WRONG_VALUE 22007
1303 ER_SP_NO_RECURSIVE_CREATE 2F003
1304 ER_SP_ALREADY_EXISTS 42000
1305 ER_SP_DOES_NOT_EXIST 42000
1308 ER_SP_LILABEL_MISMATCH 42000
1309 ER_SP_LABEL_REDEFINE 42000
1310 ER_SP_LABEL_MISMATCH 42000
1311 ER_SP_UNINIT_VAR 01000
1312 ER_SP_BADSELECT 0A000
1313 ER_SP_BADRETURN 42000
1314 ER_SP_BADSTATEMENT 0A000
1315 ER_UPDATE_LOG_DEPRECATED_IGNORED 42000
1316 ER_UPDATE_LOG_DEPRECATED_TRANSLATED 42000
1317 ER_QUERY_INTERRUPTED 70100
1318 ER_SP_WRONG_NO_OF_ARGS 42000
Beta Draft 65 Beta Draft

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1319 ER_SP_COND_MISMATCH 42000
1320 ER_SP_NORETURN 42000
1321 ER_SP_NORETURNEND 2F005
1322 ER_SP_BAD_CURSOR_QUERY 42000
1323 ER_SP_BAD_CURSOR_SELECT 42000
1324 ER_SP_CURSOR_MISMATCH 42000
1325 ER_SP_CURSOR_ALREADY_OPEN 24000
1326 ER_SP_CURSOR_NOT_OPEN 24000
1327 ER_SP_UNDECLARED_VAR 42000
1329 ER_SP_FETCH_NO_DATA 02000
1330 ER_SP_DUP_PARAM 42000
1331 ER_SP_DUP_VAR 42000
1332 ER_SP_DUP_COND 42000
1333 ER_SP_DUP_CURS 42000
1335 ER_SP_SUBSELECT _NYI 0A000
1336 ER_STMT_NOT_ALLOWED_IN_SF OR_TRG 0A000
1337 ER_SP_VARCOND_AFTER_CURSHNDLR 42000
1338 ER_SP_CURSOR_AFTER_HANDLER 42000
1339 ER_SP_CASE_NOT_FOUND 20000
1365 ER_DIVISION_BY_ZERO 22012
1367 ER_ILLEGAL_VALUE_FOR_TYPE 22007
1370 ER_PROCACCESS_DENIED_ERROR 42000
1397 ER_XAER_NOTA XAEOQ4
1398 ER_XAER_INVAL XAEOQ05
1399 ER_XAER_RMFAIL XAEQ7
1400 ER_XAER_OUTSIDE XAEQ09
1401 ER_XA_RMERR XAEO3
1402 ER_XA_ RBROLLBACK XA100
1403 ER_NONEXISTING_PROC_GRANT 42000
1406 ER_DATA_TOO_LONG 22001
1407 ER_SP_BAD_SQLSTATE 42000
1410 ER_CANT_CREATE_USER_WITH_GRANT 42000
1413 ER_SP_DUP_HANDLER 42000
1414 ER_SP_NOT_VAR_ARG 42000
1415 ER_SP_NO_RETSET 0A000
1416 ER_CANT_CREATE_GEOMETRY_OBJECT 22003
Beta Draft 66 Beta Draft

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1425 ER_TOO_BIG_SCALE 42000
1426 ER_TOO_BIG_PRECISION 42000
1427 ER_M_BIGGER_THAN_D 42000
1437 ER_TOO_LONG_BODY 42000
1439 ER_TOO_BIG_DISPLAYWIDTH 42000
1440 ER_XAER_DUPID XAEO08
1441 ER_DATETIME_FUNCTION_OVERFLOW 22008
1451 ER_ROW_IS REFERENCED_2 23000
1452 ER_NO_REFERENCED_ROW_2 23000
1453 ER_SP_BAD_VAR_SHADOW 42000
1458 ER_SP_WRONG_NAME 42000
1460 ER_SP_NO_AGGREGATE 42000
1461 ER_MAX_PREPARED_STMT_COUNT_REACHED 42000
1463 ER_NON_GROUPING_FIELD_USED 42000
1557 ER_FOREIGN_DUPLICATE_KEY 23000
1568 ER_CANT_CHANGE_TX_ISOLATION 25001
1582 ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT 42000
1583 ER_WRONG_PARAMETERS_TO_NATIVE_FCT 42000
1584 ER_WRONG_PARAMETERS _TO STORED_FCT 42000
1586 ER_DUP_ENTRY_WITH_KEY_NAME 23000
1613 ER_XA_RBTIMEOUT XA106
1614 ER_XA_RBDEADLOCK XA102
1630 ER_FUNC_INEXISTENT_NAME_COLLISION 42000
1641 ER_DUP_SIGNAL_SET 42000
1642 ER_SIGNAL_WARN 01000
1643 ER_SIGNAL_NOT_FOUND 02000
1645 ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER OKO000
1687 ER_SPATIAL_MUST_HAVE_GEOM_COL 42000
1690 ER_DATA_OUT_OF_RANGE 22003
1698 ER_ACCESS_DENIED_NO_PASSWORD_ERROR 28000
1701 ER_TRUNCATE_ILLEGAL_FK 42000
1758 ER_DA_INVALID_CONDITION_NUMBER 35000
1761 ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO 23000
1762 ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO 23000
1792 ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION 25006
1845 ER_ALTER_OPERATION_NOT_SUPPORTED 0A000
Beta Draft 67 Beta Draft

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL

Error Standard
Number SQLState
1846 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON 0A000
1859 ER_DUP_UNKNOWN_IN_INDEX 23000
1873 ER_ACCESS_DENIED_CHANGE_USER_ERROR 28000
1887 ER_GET_STACKED_DA_WITHOUT_ACTIVE_HANDLER 0z002
1903 ER_INVALID_ARGUMENT_FOR_LOGARITHM 2201E

Beta Draft 68 Beta Draft

Chapter 7 JDBC Concepts

Table of Contents

7.1 Connecting to MySQL Using the JDBC Dri ver Manager Interfaceccooeveveviiiiiiiiiiiiiciineenees 69
7.2 Using JDBC St at enent Objects to EXECULE SQL ...cvuiiiniiiiiiii e e 70
7.3 Using JDBC Cal | abl eSt at enent s to Execute Stored Procedurescccovvveviveiiiieviineeinneennnn. 71
7.4 Retrieving AUTO | NCREMVENT Column Values through JDBCccciiiiiiiiiiice e 74

This section provides some general JDBC background.

7.1 Connecting to MySQL Using the JDBC Dri ver Manager Interface

When you are using JDBC outside of an application server, the Dr i ver Manager class manages the
establishment of connections.

Specify to the Dri ver Manager which JDBC drivers to try to make Connections with. The easiest way to
do thisis to use Cl ass. f or Nane() on the class that implements the j ava. sql . Dri ver interface. With
MySQL Connector/J, the name of this class is com nysql . cj . j dbc. Dri ver . With this method, you
could use an external configuration file to supply the driver class hame and driver parameters to use when
connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the nai n()
method of your application. If testing this code, first read the installation section at Chapter 4, Connector/J
Installation, to make sure you have connector installed correctly and the CLASSPATH set up. Also, ensure
that MySQL is configured to accept external TCP/IP connections.

i mport java.sql.Connecti on;
i mport java.sql.DriverManager;
i mport java.sql.SQLException;

/1 Notice, do not inport comnysql.cj.jdbc.*
/1 or you will have probl ens!

public class LoadDriver {
public static void main(String[] args) {

try {
/1 The new nstance() call is a work around for sone
/1 broken Java i npl enent ati ons

Cl ass. forNane("com nysql .cj.jdbc. Driver").new nstance();
} catch (Exception ex) {
/1 handl e the error

}
}

After the driver has been registered with the Dr i ver Manager , you can obtain a Connect i on instance
that is connected to a particular database by calling Dri ver Manager . get Connecti on():

Example 7.1 Connector/J: Obtaining a connection from the Dri ver Manager

If you have not already done so, please review the portion of Section 7.1, “Connecting to MySQL Using the
JDBC Dri ver Manager Interface” above before working with the example below.

Beta Draft

69 Beta Draft

Using JDBC St at enent Objects to Execute SQL

This example shows how you can obtain a Connect i on instance from the Dri ver Manager . There are
a few different signatures for the get Connecti on() method. Consult the APl documentation that comes
with your JDK for more specific information on how to use them.

i nport java. sql. Connecti on;
i mport java.sql.DriverManager;
i mport java.sql.SQ.Excepti on;

Connection conn = null;

try {
conn =
Dri ver Manager . get Connecti on("j dbc: nysql :/ /| ocal host/test?" +
"user =m nt y&asswor d=gr eat sql db") ;

/1 Do sonething with the Connection

} catch (SQLException ex) {
/! handl e any errors
System out. println("SQ.Exception: " + ex.getMessage());
Systemout.println("SQState: " + ex.getSQState());
Systemout. println("VendorError: " + ex.getErrorCode());

}

Once a Connect i on is established, it can be used to create St at enent and Pr epar edSt at enent
objects, as well as retrieve metadata about the database. This is explained in the following sections.

7.2 Using JDBC St at enent Objects to Execute SQL

St at enment objects allow you to execute basic SQL queries and retrieve the results through the
Resul t Set class, which is described later.

To create a St at ement instance, you call the cr eat eSt at enent () method on the
Connect i on object you have retrieved using one of the Dr i ver Manager . get Connecti on() or
Dat aSour ce. get Connecti on() methods described earlier.

Once you have a St at enent instance, you can execute a SELECT query by calling the
execut eQuery(String) method with the SQL you want to use.

To update data in the database, use the execut eUpdat e(St ri ng SQ.) method. This method returns
the number of rows matched by the update statement, not the number of rows that were modified.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/l NSERT,
then you can use the execut e(String SQL) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, | NSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the get Resul t Set () method. If the statement
was an UPDATE, | NSERT, or DELETE statement, you can retrieve the affected rows count by calling
get Updat eCount () onthe St at enent instance.

Example 7.2 Connector/J: Using java.sql.Statement to execute a SELECT query

i mport java.sql.Connecti on;

i mport java.sql.DriverManager;
i mport java.sql.SQLException;
import java.sql.Statenent;
import java.sql.ResultSet;

/] assune that conn is an already created JDBC connection (see previous exanpl es)

Statenent stnt = null;

Beta Draft 70 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/select.html
http://dev.mysql.com/doc/refman/5.7/en/select.html
http://dev.mysql.com/doc/refman/5.7/en/update.html
http://dev.mysql.com/doc/refman/5.7/en/insert.html
http://dev.mysql.com/doc/refman/5.7/en/select.html
http://dev.mysql.com/doc/refman/5.7/en/update.html
http://dev.mysql.com/doc/refman/5.7/en/insert.html
http://dev.mysql.com/doc/refman/5.7/en/delete.html
http://dev.mysql.com/doc/refman/5.7/en/select.html
http://dev.mysql.com/doc/refman/5.7/en/update.html
http://dev.mysql.com/doc/refman/5.7/en/insert.html
http://dev.mysql.com/doc/refman/5.7/en/delete.html

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

ResultSet rs = null;

try {
stnt = conn.createStatenent();

rs = stnt.executeQuery("SELECT foo FROM bar");

/Il or alternatively, if you don't know ahead of tine that
/'l the query will be a SELECT...

if (stnt.execute("SELECT foo FROM bar")) {
rs = stnt.getResultSet();

}

/1 Now do sonething with the ResultSet

}

catch (SQLException ex){
/'l handl e any errors
System out . printl n("SQLException: " + ex.getMessage());
Systemout.println("SQLState: " + ex.getSQL.State());

System out . println("VendorError: " + ex.getErrorCode());
}
finally {
/Il it is a good idea to rel ease
Il resources in a finally{} block
/1 in reverse-order of their creation
/1 if they are no-|onger needed
if (rs!=null) {
try {
rs.close();
} catch (SQLException sqlEx) { } // ignore
rs = null;
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException sqlEx) { } // ignore
stmt = null;
}
}

7.3 Using JDBC Cal | abl eSt at enrent s to Execute Stored
Procedures

Connector/J fully implements the j ava. sql . Cal | abl eSt at enent interface, with the exception of the
get Par anet er Met aDat a() method.

For more information on MySQL stored procedures, please refer to Using Stored Routines (Procedures
and Functions).

Connector/J exposes stored procedure functionality through JDBC's Cal | abl eSt at enent interface.
Note

Current versions of MySQL server do not return enough information for the JDBC
driver to provide result set metadata for callable statements. This means that when
using Cal | abl eSt at ement , Resul t Set Met aDat a may return NULL.

The following example shows a stored procedure that returns the value of i nQut Par amincremented by 1,
and the string passed in using i nput Par amas a Resul t Set :

Beta Draft 71 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/stored-routines.html
http://dev.mysql.com/doc/refman/5.7/en/stored-routines.html

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

Example 7.3 Connector/J: Calling Stored Procedures

CREATE PROCEDURE denpSp(| N i nput Par am VARCHAR(255), \
I NOUT i nQut Par am | NT)
BEG N
DECLARE z | NT;
SET z = i nQut Param + 1;
SET i nQut Param = z;

SELECT i nput Par am

SELECT CONCAT(' zyxw , i nputParanj;
END

To use the denpbSp procedure with Connector/J, follow these steps:
1. Prepare the callable statement by using Connecti on. prepareCal | ().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter
placeholders are not optional:

Example 7.4 Connector/J: Using Connecti on. prepareCal | ()

i nport java.sql.Call abl eSt at enent ;

/1

/] Prepare a call to the stored procedure 'denpSp'
// with two paraneters

/1

/1 Notice the use of JDBC- escape syntax ({call ...})
/1

Cal | abl eStatement cStnt = conn. prepareCall ("{call demdSp(?, ?)}");

cStnt.setString(1l, "abcdefg");
Note

Connecti on. prepareCal | () is an expensive method, due to the metadata
retrieval that the driver performs to support output parameters. For performance
reasons, minimize unnecessary calls to Connect i on. prepareCal | () by
reusing Cal | abl eSt at enent instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or | NOUT when you created
the stored procedure), JDBC requires that they be specified before statement execution using the
various r egi st er Qut put Par anmet er () methods in the Cal | abl eSt at ement interface:

Example 7.5 Connector/J: Registering output parameters

i mport java.sql. Types;

/1

/] Connector/J supports both named and i ndexed
/] output paraneters. You can register output

Beta Draft 72 Beta Draft

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

/| paraneters using either nethod, as well

/] as retrieve output paraneters using either
/1 method, regardl ess of what nethod was

/] used to register them

/1

/'l The follow ng exanpl es show how to use

[/ the various methods of registering

/] output paraneters (you shoul d of course
/] use only one registration per paraneter).
/1

/1
/'l Registers the second paraneter as output, and

/] uses the type 'I NTEGER for values returned from

/] get Object()
/1

cStnt. registerCQutParaneter (2, Types.|NTECGER);

/1
/'l Registers the naned paraneter 'inQutParam , and

/] uses the type 'I NTEGER for values returned from

/] get Object ()
/1

cStnt. registerQutParaneter("inCutParani, Types.|NTEGER);

Set the input parameters (if any exist)

Input and in/out parameters are set as for Pr epar edSt at enent objects. However,
Cal | abl eSt at enent also supports setting parameters by name:

Example 7.6 Connector/J: Setting Cal | abl eSt at enent input parameters

/1
/] Set a paraneter by index
/1

cStnt.setString(l, "abcdefg");

/1

I/l Alternatively, set a paranmeter using
/] the paraneter name

/1

cStnt.setString("inputParant, "abcdefg");

/1

/] Set the '"in/out' paraneter using an index
/1

cStnt.setlnt(2, 1);

/1

// Aternatively, set the "in/out' paraneter
/] by nane

/1

cStnt.setlnt("inQutParant, 1);

Beta Draft

73

Beta Draft

Retrieving AUTO | NCREMENT Column Values through JDBC

4. Execute the Cal | abl eSt at enent , and retrieve any result sets or output parameters.

Although Cal | abl eSt at enent supports calling any of the St at enent execute methods
(execut eUpdat e(), execut eQuery() orexecut e()), the most flexible method to call is
execut e(), as you do not need to know ahead of time if the stored procedure returns result sets:

Example 7.7 Connector/J: Retrieving results and output parameter values

bool ean hadResults = cStnt.execute();

I
/] Process all returned result sets
I

whi | e (hadResults) {
ResultSet rs = cStnt.getResultSet();

/] process result set

hadResults = cStnt.get MoreResul ts();
}

/1

/'l Retrieve output paraneters

/1

/'l Connector/J supports both index-based and
/'l name-based retrieval

/1

int outputValue = cStnt.getlnt(2); // index-based

out putValue = cStnt.getlInt("inQutParant); // nane-based

7.4 Retrieving AUTO | NCREMENT Column Values through JDBC

get Gener at edKeys() is the preferred method to use if you need to retrieve AUTO | NCREMENT keys
and through JDBC; this is illustrated in the first example below. The second example shows how you

can retrieve the same value using a standard SELECT LAST_| NSERT_I () query. The final example
shows how updatable result sets can retrieve the AUTO_| NCREMENT value when using the i nsert Row()
method.

Example 7.8 Connector/J: Retrieving AUTO | NCREMENT column values using
St at enent . get Gener at edKeys()

Statenent stnt = null;
Resul tSet rs = null;

try {

/1

/] Create a Statenent instance that we can use for
/1 ‘normal' result sets assum ng you have a

/'l Connection 'conn' to a MySQL dat abase al ready
/] avail abl e

stnmt = conn.createStatenment();

Beta Draft

74 Beta Draft

Retrieving AUTO | NCREMENT Column Values through JDBC

/1
/'l 1ssue the DDL queries for the table for this exanple
/1

st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE aut ol ncTutorial ("

+ "priKey INT NOT NULL AUTO | NCREMENT,

+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");

/1

/'l Insert one row that will generate an AUTO | NCREMENT
/1 key in the 'priKey' field

/1

st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutori al (dataFi el d)
+ "values ("Can | Get the Auto Increnent Field?)",
St at ement . RETURN_GENERATED_KEYS) ;

/1
/| Exanpl e of using Statenment.get Gener at edKeys()
/!l to retrieve the value of an auto-increnent

/] val ue
/1
i nt autol nckeyFromApi = -1;

rs = stnt.get Gener at edKeys();

if (rs.next()) {
aut ol ncKeyFromApi = rs.getlnt(1);
} else {

/1 throw an exception from here

}

System out . println("Key returned from get Gener at edKeys(): "
+ aut ol ncKeyFr omApi) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException ex) {
/'l ignore
}
}
}

Example 7.9 Connector/J: Retrieving AUTO | NCREMENT column values using SELECT
LAST_| NSERT_| IX()

Statenent stnt = null;
ResultSet rs = null;

try {

Beta Draft 75 Beta Draft

Retrieving AUTO | NCREMENT Column Values through JDBC

/1
/|l Create a Statenent instance that we can use for
/1l "normal' result sets.

stnmt = conn.createStatenent();

/1
/'l 1ssue the DDL queries for the table for this exanple
/1

st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE aut ol ncTutorial ("

+ "priKey INT NOT NULL AUTO_| NCREMENT,

+ "dataFi el d VARCHAR(64), PRI MARY KEY (priKey))");

/1

/'l Insert one row that will generate an AUTO | NCREMENT
/1 key in the 'priKey' field

/1

st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutori al (dataFi el d)
+ "values ("Can | Get the Auto Increnent Field?)");

/1

/1 Use the MySQL LAST_I NSERT_I ()

/1 function to do the same thing as get Gener at edKeys()
/1

i nt autol nckeyFronfunc = -1;
rs = stnt.executeQuery("SELECT LAST_INSERT_ID()");

if (rs.next()) {

aut ol ncKeyFronfFunc = rs.getlnt(1);
} else {

/1 throw an exception from here

}

Systemout. println("Key returned from" +
"' SELECT LAST_INSERT_ID()': " +
aut ol ncKeyFr onfunc) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException ex) {
/'l ignore
}
}
}

Example 7.10 Connector/J: Retrieving AUTO_| NCREMENT column values in Updat abl e Resul t Set's

Statenent stnt = null;
ResultSet rs = null;

Beta Draft 76 Beta Draft

Retrieving AUTO | NCREMENT Column Values through JDBC

try {

/1

/] Create a Statenent instance that we can use for
/1 '"normal' result sets as well as an 'updatabl e’
/'l one, assuming you have a Connection 'conn' to
/1 a MySQ. dat abase al ready avail abl e

/1

stnt = conn. createSt at enent (j ava. sql . Resul t Set . TYPE_FORWARD_ONLY,
j ava. sqgl . Resul t Set . CONCUR_UPDATABLE) ;

/1
/1 1ssue the DDL queries for the table for this exanple
/1

st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE aut ol ncTutorial ("

+ "priKey INT NOT NULL AUTO_| NCREMENT,

+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");

/1

/] Exanple of retrieving an AUTO | NCREMENT key
/1 from an updatable result set

/1

rs = stnt.executeQuery("SELECT pri Key, dataField "
+ "FROM aut ol ncTutorial ");

rs. moveTol nsert Row() ;

rs.updateString("dataField, "AUTO | NCREMENT here?");
rs.insertRow();

/1

/'l the driver adds rows at the end

/1

rs.last();

/1

/1l W shoul d now be on the row we just inserted
/1

i nt autol nckeyFronRS = rs.getlnt("priKey");

Systemout. println("Key returned for inserted row
+ aut ol ncKeyFr onRS) ;

nally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
}
if (stnt !'=null) {
try {

stnt.cl ose();
} catch (SQLException ex) {
/'l ignore

}

Beta Draft

77

Beta Draft

Retrieving AUTO | NCREMENT Column Values through JDBC

}

Running the preceding example code should produce the following output:

Key returned from get Generat edKeys(): 1
Key returned from SELECT LAST_INSERT_ID(): 1
Key returned for inserted row 1

At times, it can be tricky to use the SELECT LAST_| NSERT_I D() query, as that function's value is scoped
to a connection. So, if some other query happens on the same connection, the value is overwritten. On the
other hand, the get Gener at edKeys() method is scoped by the St at enent instance, so it can be used
even if other queries happen on the same connection, but not on the same St at enent instance.

Beta Draft 78 Beta Draft

Chapter 8 Connection Pooling with Connector/J

Connection pooling is a technique of creating and managing a pool of connections that are ready for use
by any thread that needs them. Connection pooling can greatly increase the performance of your Java
application, while reducing overall resource usage.

How Connection Pooling Works

Most applications only need a thread to have access to a JDBC connection when they are actively
processing a transaction, which often takes only milliseconds to complete. When not processing a
transaction, the connection sits idle. Connection pooling enables the idle connection to be used by some
other thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a
connection from the pool. When the thread is finished using the connection, it returns it to the pool, so that
it can be used by any other threads.

When the connection is loaned out from the pool, it is used exclusively by the thread that

requested it. From a programming point of view, it is the same as if your thread called

Dri ver Manager . get Connecti on() every time it needed a JDBC connection. With connection pooling,
your thread may end up using either a new connection or an already-existing connection.

Benefits of Connection Pooling

The main benefits to connection pooling are:
» Reduced connection creation time.

Although this is not usually an issue with the quick connection setup that MySQL offers compared to
other databases, creating new JDBC connections still incurs networking and JDBC driver overhead that
will be avoided if connections are recycled.

» Simplified programming model.

When using connection pooling, each individual thread can act as though it has created its own JDBC
connection, allowing you to use straightforward JDBC programming techniques.

» Controlled resource usage.

If you create a new connection every time a thread needs one rather than using connection pooling,
your application's resource usage can be wasteful, and it could lead to unpredictable behaviors for your
application when it is under a heavy load.

Using Connection Pooling with Connector/J

The concept of connection pooling in JDBC has been standardized through the JDBC 2.0 Optional
interfaces, and all major application servers have implementations of these APIs that work with MySQL
Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it
through the Java Naming and Directory Interface (JNDI). The following code shows how you might use a
connection pool from an application deployed in a J2EE application server:

Example 8.1 Connector/J: Using a connection pool with a J2EE application server

i mport java. sql. Connecti on;
i nport java. sql.SQ.Excepti on;

Beta Draft

79 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_thread
http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_transaction

Using Connection Pooling with Connector/J

import java.sql.Statenent;

i mport javax.nam ng.|nitial Context;
i mport javax. sql . Dat aSour ce;

public class MyServl etJspOE b {

public void doSonething() throws Exception {
/*

*

Create a JNDI Initial context to be able to

* | ookup the DataSource

*

* In production-|level code, this should be cached as

* an instance or static variable, as it can

* be quite expensive to create a JNDI context.

*

* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are

* using connection pooling in standal one Java code, you
* will have to create/configure datasources using whatever
* mechani sns your particul ar connection pooling library
* provides.

*

/
Initial Context ctx = new Initial Context();

/
Lookup the DataSource, which will be backed by a pool

are al so a good candi date for caching as an instance
variabl e, as JNDI | ookups can be expensive as well.
/

E R

Dat aSource ds =
(Dat aSour ce) ct x. | ookup("j ava: conp/ env/ j dbc/ MySQLDB") ;

/*

* The followi ng code is what woul d actually be in your
* Servlet, JSP or EJB 'service' nmethod...where you need
* to work with a JDBC connecti on.

*/

Connection conn = null;
Statenent stnt = null;

try {
conn = ds. get Connection();

/*

* Now, use normal JDBC programm ng to work with

* MySQ., neking sure to close each resource when you're
* finished with it, which permits the connection pool

* resources to be recovered as quickly as possible

*/

stnt = conn.createStatenent();
stnt. execut e(" SOVE SQL QUERY");

stnt.cl ose();
stnt = null;

conn. cl ose();
conn = null;
} finally {
/*
* close any jdbc instances here that weren't

that the application server provides. DataSource instances

Beta Draft 80

Beta Draft

Sizing the Connection Pool

* explicitly closed during normal code path, so
* that we don't 'leak' resources..
*/

if (stnt !'=null) {
try {
stnt. cl ose()
} catch (sql exception sqglex) {
/'l ignore, as we can't do anything about it here

}
stmt = null
}
if (conn = null) {
try {
conn. cl ose()
} catch (sql exception sqgl ex) {
/'l ignore, as we can't do anything about it here
}
conn = nul |
}

As shown in the example above, after obtaining the JNDI | ni ti al Cont ext , and looking up the
Dat aSour ce, the rest of the code follows familiar JDBC conventions.

When using connection pooling, always make sure that connections, and anything created by them

(such as statements or result sets) are closed. This rule applies no matter what happens in your code
(exceptions, flow-of-control, and so forth). When these objects are closed, they can be re-used; otherwise,
they will be stranded, which means that the MySQL server resources they represent (such as buffers,
locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.

Sizing the Connection Pool

Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client
and server side. Every connection limits how many resources there are available to your application as
well as the MySQL server. Many of these resources will be used whether or not the connection is actually
doing any useful work! Connection pools can be tuned to maximize performance, while keeping resource
utilization below the point where your application will start to fail rather than just run slower.

The optimal size for the connection pool depends on anticipated load and average database transaction
time. In practice, the optimal connection pool size can be smaller than you might expect. If you take
Oracle's Java Petstore blueprint application for example, a connection pool of 15-20 connections can serve
a relatively moderate load (600 concurrent users) using MySQL and Tomcat with acceptable response
times.

To correctly size a connection pool for your application, create load test scripts with tools such as Apache
JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of
connections to be unbounded, run a load test, and measure the largest amount of concurrently used
connections. You can then work backward from there to determine what values of minimum and maximum
pooled connections give the best performance for your particular application.

Beta Draft 81 Beta Draft

Validating Connections

Validating Connections

MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In the
case of load-balanced connections, this is performed against all active pooled internal connections that are
retained. This is beneficial to Java applications using connection pools, as the pool can use this feature to
validate connections. Depending on your connection pool and configuration, this validation can be carried
out at different times:

1. Before the pool returns a connection to the application.
2. When the application returns a connection to the pool.
3. During periodic checks of idle connections.

To use this feature, specify a validation query in your connection pool that starts with / * pi ng

*/ . Note that the syntax must be exactly as specified. This will cause the driver send a ping to the
server and return a dummy lightweight result set. When using a Repl i cat i onConnect i on or
LoadBal ancedConnect i on, the ping will be sent across all active connections.

It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of efficiency, as
this test is done for every statement that is executed:

protected static final String PING MARKER = "/* ping */";

it (sql.charAt(0) == '/') {
it (sql.startsWth(Pl NG MARKER)) {
doPi ngl nst ead() ;

None of the following snippets will work, because the ping syntax is sensitive to whitespace, capitalization,
and placement:

sql = "/* PING */ SELECT 1";

sql = "SELECT 1 /* ping*/";

5q| = "/*pi ng*/ SELECT 1";

Sq| =R/ pl ng */ SELECT 1";

sgql = "/*to ping or not to ping*/ SELECT 1";

All of the previous statements will issue a normal SELECT statement and will not be transformed into
the lightweight ping. Further, for load-balanced connections, the statement will be executed against one
connection in the internal pool, rather than validating each underlying physical connection. This results
in the non-active physical connections assuming a stale state, and they may die. If Connector/J then re-
balances, it might select a dead connection, resulting in an exception being passed to the application.
To help prevent this, you can use | oadBal anceVal i dat eConnect i onOnSwapSer ver to validate the
connection before use.

If your Connector/J deployment uses a connection pool that allows you to specify a validation query, take
advantage of it, but ensure that the query starts exactly with / * pi ng */. This is particularly important
if you are using the load-balancing or replication-aware features of Connector/J, as it will help keep alive
connections which otherwise will go stale and die, causing problems later.

Beta Draft

82 Beta Draft

Chapter 9 Multi-Host Connections

Table of Contents

9.1 Configuring SEIVEI FAIIOVET ...t ettt e e e e e eaaeees 83
9.2 Configuring Client-Side Failover when using the X ProtocColcooooiiiiiiiiiiii e, 86
9.3 Configuring Load Balancing With CONNECIONJoiiuiiiiiiaii e 86
9.4 Configuring Master/Slave Replication with CONNECIOIJ ..o 89
9.5 Advanced Load-balancing and Failover Configurationc.oceuiiiiiiiiiineiiie e 92

The following sections discuss a number of topics that involve multi-host connections, namely, server load-
balancing, failover, and replication.

Developers should know the following things about multi-host connections that are managed through
Connector/J:

» Each multi-host connection is a wrapper of the underlying physical connections.

» Each of the underlying physical connections has its own session. Sessions cannot be tracked, shared, or
copied, given the MySQL architecture.

» Every switch between physical connections means a switch between sessions.

» Within a transaction boundary, there are no switches between physical connections. Beyond a
transaction boundary, there is no guarantee that a switch does not occur.

Note

If an application reuses session-scope data (for example, variables, SSPs)
beyond a transaction boundary, failures are possible, as a switch between the
physical connections (which is also a switch between sessions) might occur.
Therefore, the application should re-prepare the session data and also restart the
last transaction in case of an exception, or it should re-prepare session data for
each new transaction if it does not want to deal with exception handling.

9.1 Configuring Server Failover

MySQL Connector/J supports server failover. A failover happens when connection-related errors occur for
an underlying, active connection. The connection errors are, by default, propagated to the client, which
has to handle them by, for example, recreating the working objects (St at enent , Resul t Set , etc.) and
restarting the processes. Sometimes, the driver might eventually fall back to the original host automatically
before the client application continues to run, in which case the host switch is transparent and the client
application will not even notice it.

A connection using failover support works just like a standard connection: the client does not experience
any disruptions in the failover process. This means the client can rely on the same connection instance
even if two successive statements might be executed on two different physical hosts. However, this does
not mean the client does not have to deal with the exception that triggered the server switch.

The failover is configured at the initial setup stage of the server connection by the connection URL (see
explanations for its format here):

Beta Draft

83 Beta Draft

Configuring Connection Access Mode

jdbc:nysqgl://[primary host][:port],[secondary host 1][:port][,[secondary host 2][:port]]...[/[database]]»
[?pr oper t yNanel=pr opertyVal uel[&or opert yNane2=pr opertyVal ue2?]...]

The host list in the connection URL comprises of two types of hosts, the primary and the secondary. When
starting a new connection, the driver always tries to connect to the primary host first and, if required, fails
over to the secondary hosts on the list sequentially when communication problems are experienced. Even
if the initial connection to the primary host fails and the driver gets connected to a secondary host, the
primary host never loses its special status: for example, it can be configured with an access mode distinct
from those of the secondary hosts, and it can be put on a higher priority when a host is to be picked during
a failover process.

The failover support is configured by the following connection properties (their functions are explained in
the paragraphs below):

o fail Over ReadOnl y

» secondsBef or eRet r yMast er
* queri esBef oreRetryMast er
e retriesAl | Down

* aut oReconnect

e aut oReconnect For Pool s

Configuring Connection Access Mode

As with any standard connection, the initial connection to the primary host is in read/write mode. However,
if the driver fails to establish the initial connection to the primary host and it automatically switches to the
next host on the list, the access mode now depends on the value of the property f ai | Over ReadOnl vy,
which is “true” by default. The same happens if the driver is initially connected to the primary host and,
because of some connection failure, it fails over to a secondary host. Every time the connection falls

back to the primary host, its access mode will be read/write, irrespective of whether or not the primary
host has been connected to before. The connection access mode can be changed any time at runtime

by calling the method Connecti on. set ReadOnl y(bool ean), which partially overrides the property
fail Over ReadOnl y. When f ai | Over ReadOnl y=f al se and the access mode is explicitly set to either
true or false, it becomes the mode for every connection after a host switch, no matter what host type

are being connected to; but, if f ai | Over ReadOnl y=t r ue, changing the access mode to read/write is
only possible if the driver is connecting to the primary host; however, even if the access mode cannot be
changed for the current connection, the driver remembers the client's last intention and, when falling back
to the primary host, that is the mode that will be used. For an illustration, see the following successions of
events with a two-host connection.

e Sequence A, with f ai | Over ReadOnl y=t r ue:
1. Connects to primary host in read/write mode
2. Sets Connecti on. set ReadOnl y(true); primary host now in read-only mode
3. Failover event; connects to secondary host in read-only mode
4. Sets Connection. set ReadOnl y(f al se) ; secondary host remains in read-only mode
5. Falls back to primary host; connection now in read/write mode

* Sequence B, with f ai | Over ReadOnl y=f al se

Beta Draft 84 Beta Draft

Configuring Fallback to Primary Host

1. Connects to primary host in read/write mode
2. Sets Connecti on. set ReadOnl y(true); primary host now in read-only mode
3. Failover event; connects to secondary host in read-only mode

4. Set Connection. set ReadOnl y(f al se); connection to secondary host switches to read/write
mode

5. Falls back to primary host; connection now in read/write mode

The difference between the two scenarios is in step 4: the access mode for the secondary host in
sequence A does not change at that step, but the driver remembers and uses the set mode when falling
back to the primary host, which would be read-only otherwise; but in sequence B, the access mode for the
secondary host changes immediately.

Configuring Fallback to Primary Host

As already mentioned, the primary host is special in the failover arrangement when it comes to the

host's access mode. Additionally, the driver tries to fall back to the primary host as soon as possible by
default, even if no communication exception occurs. Two properties, secondsBef or eRet r yMast er and
qguer i esBef or eRet r yMast er, determine when the driver is ready to retry a reconnection to the primary
host (the Mast er in the property names stands for the primary host of our connection URL, which is not
necessarily a master host in a replication setup):

» secondsBef or eRet r yMast er determines how much time the driver waits before trying to fall back to
the primary host

* queri esBef or eRet ryMast er determines the number of queries that are executed
before the driver tries to fall back to the primary host. Note that for the driver, each call to a
St at ement . execut e* () method increments the query execution counter; therefore, when calls are
made to St at enment . execut eBatch() orifal | omvul ti Queries orrewiteBatchStatenents
are enabled, the driver may not have an accurate count of the actual number of queries executed on the
server. Also, the driver calls the St at enent . execut e* () methods internally in several occasions. All
these mean you can only use quer i esBef or eRet r yMast er only as a coarse specification for when to
fall back to the primary host.

In general, an attempt to fallback to the primary host is made when at least one of the conditions specified
by the two properties is met, and the attempt always takes place at transaction boundaries. However,

if auto-commit is turned off, the check happens only when the method Connecti on. commi t () or
Connection. rol | back() is called. The automatic fallback to the primary host can be turned off by
setting simultaneously secondsBef or eRet r yMast er and quer i esBef or eRet r yMast er to “0".
Setting only one of the properties to “0” only disables one part of the check.

Configuring Reconnection Attempts

When establishing a new connection or when a failover event occurs, the driver tries to connect
successively to the next candidate on the host list. When the end of the list has been reached, it restarts
all over again from the beginning of the list; however, the primary host is skipped over, if (a) NOT all

the secondary hosts have already been tested at least once, AND (b) the fallback conditions defined by
secondsBef or eRet r yMast er and quer i esBef or eRet r yMast er are not yet fulfilled. Each run-
through of the whole host list, (which is not necessarily completed at the end of the host list) counts as a
single connection attempt. The driver tries as many connection attempts as specified by the value of the
property r et ri esAl | Down.

Beta Draft

85 Beta Draft

Seamless Reconnection

Seamless Reconnection

Although not recommended, you can make the driver perform failovers without invalidating the

active St at ement or Resul t Set instances by setting either the parameter aut oReconnect or

aut oReconnect For Pool s to t r ue. This allows the client to continue using the same object instances
after a failover event, without taking any exceptional measures. This, however, may lead to unexpected
results: for example, if the driver is connected to the primary host with read/write access mode and it fails-
over to a secondary host in real-only mode, further attempts to issue data-changing queries will result

in errors, and the client will not be aware of that. This limitation is particularly relevant when using data
streaming: after the failover, the Resul t Set looks to be alright, but the underlying connection may have
changed already, and no backing cursor is available anymore.

9.2 Configuring Client-Side Failover when using the X Protocol

When using the X Protocol, Connector/J (since release 6.0.5) supports a client-side failover feature for
establishing an XSession. If multiple hosts are specified in the connection URL, when Connector/J fails to
connect to a listed host, it tries to connect to another one. This is a sample X DevAPI URL for configuring
client-side failover:

nmysql x: / / sandy: mypasswor d@ host 1: 33060, host 2: 33061] / t est

An alternate format can also be used, with which the priority for connection can be set explicitly for each
individual host:

nysql x: / / sandy: nypasswor d@ (addr ess=host 1: 33060, pri ori ty=2), (addr ess=host 2: 33061, priority=1)]/test

With the client-side failover configured, when there is a failure to establish a connection, Connector/J
keeps attempting to connect to a host on the host list in the order of the set priorities for the hosts, which
are specified by any numbers between 0 to 100, with a larger number indicating a higher priority for
connection. Priorities should either be set for all or no hosts. When no priorities are specified, the priorities
for connection are established according to the order the hosts appear in the list, with a host appearing
earlier in the list receiving a higher priority.

Notice that this feature only allows for a failover when Connector/J is trying to establish a connection, but
not during operations after a connection has already been made.

9.3 Configuring Load Balancing with Connector/J

Connector/J has long provided an effective means to distribute read/write load across multiple MySQL
server instances for Cluster or master-master replication deployments. You can dynamically configure
load-balanced connections, with no service outage. In-process transactions are not lost, and no application
exceptions are generated if any application is trying to use that particular server instance.

The load balancing is configured at the initial setup stage of the server connection by the following
connection URL, which has a similar format as the general JIDBC URL for MySQL connection, but a
specialized scheme:

jdbc: nysql : | oadbal ance: //[host1][:port],[host2][:port][,[host3][:port]]...[/[database]] »
[?pr oper t yNanel=pr opertyVal uel[&or opert yNane2=pr opertyVal ue2?]...]

There are two configuration properties associated with this functionality:

e | oadBal anceConnecti onG oup — This provides the ability to group connections from different
sources. This allows you to manage these JDBC sources within a single class loader in any combination

Beta Draft 86 Beta Draft

Configuring Load Balancing with Connector/J

you choose. If they use the same configuration, and you want to manage them as a logical single

group, give them the same name. This is the key property for management: if you do not define a

name (string) for | cadBal anceConnect i onGr oup, you cannot manage the connections. All load-
balanced connections sharing the same | oadBal anceConnect i onG oup value, regardless of how the
application creates them, will be managed together.

* ha. enabl eJMX — The ability to manage the connections is exposed when you define a
| oadBal anceConnect i onG oup; but if you want to manage this externally, enable JMX by
setting this property to t r ue. This enables a JMX implementation, which exposes the management
and monitoring operations of a connection group. Further, start your application with the -
Dcom sun. managenent . j nxr enot e JVM flag. You can then perform connect and perform operations
using a JMX client such as j consol e.

Once a connection has been made using the correct connection properties, a number of monitoring
properties are available:

» Current active host count.

» Current active physical connection count.

» Current active logical connection count.

» Total logical connections created.

» Total transaction count.

The following management operations can also be performed:
* Add host.

* Remove host.

The JMX interface, com nysql . cj . j dbc. j nx. LoadBal anceConnect i onG oupManager MBean, has
the following methods:

e int getActiveHost Count (String group);

e int getTotal Host Count (String group);

* | ong get Tot al Logi cal Connecti onCount (String group);

* | ong get Acti velLogi cal Connecti onCount (String group);

e | ong get Acti vePhysi cal Connecti onCount (String group);

* | ong get Tot al Physi cal Connecti onCount (String group);

* long get Total Transacti onCount (String group);

e void renoveHost (String group, String host) throws SQLException;
e voi d stopNewConnecti onsToHost (String group, String host) throws SQ.Exception;
» void addHost (String group, String host, bool ean forExisting);

e String getActiveHostsList(String group);

e String getRegi steredConnecti onG oups();

Beta Draft 87 Beta Draft

Configuring Load Balancing with Connector/J

The get Regi st er edConnect i onG oups() method returns the names of all connection groups defined
in that class loader.

You can test this setup with the following code:

public class Test {

private static String URL = "jdbc: nmysqgl : | oadbal ance: //" +
"l ocal host: 3306, | ocal host: 3310/ test ?" +
"| oadBal anceConnect i onG oup=fi r st &a. enabl eJMX=t r ue";

public static void main(String[] args) throws Exception {
new Thread(new Repeater()).start();
new Thr ead(new Repeater()).start();
new Thr ead(new Repeater()).start();

}

static Connection get NewConnection() throws SQLException, C assNot FoundException {
Cl ass. f or Name("com nysql . cj . jdbc. Driver");
return DriverManager. get Connecti on(URL, "root", "");

}

static void executeSi npl eTransacti on(Connection c, int conn, int trans){
try {
c. set Aut oCommi t (fal se);
Statenent s = c.createStatenent();
s. execut eQuery(" SELECT SLEEP(1) /* Connection: " + conn + "
c.comm t();
} catch (SQLException e) {
e.printStackTrace();
}

, transaction: " + trans + " */");

}

public static class Repeater inplenments Runnable {
public void run() {
for(int i=0; i < 100; i++){
try {
Connection ¢ = get NewConnecti on();
for(int j=0; j < 10; j++){
execut eSi npl eTransaction(c, i, j);
Thr ead. sl eep(Mat h. round(100 * Mat h. randon()));
}

c.close();
Thr ead. sl eep(100) ;
} catch (Exception e) {
e.printStackTrace();
}

After compiling, the application can be started with the - Dcom sun. managenent . j nxr enot e

flag, to enable remote management. j consol e can then be started. The Test main class

will be listed by j consol e. Select this and click Connect. You can then navigate to the

com nysql . cj.jdbc.jnx. LoadBal anceConnecti onG oupManager bean. At this point, you can
click on various operations and examine the returned result.

If you now had an additional instance of MySQL running on port 3309, you could ensure that Connector/J
starts using it by using the addHost () , which is exposed in j consol e. Note that these operations can be
performed dynamically without having to stop the application running.

Beta Draft 88 Beta Draft

Configuring Master/Slave Replication with Connector/J

For further information on the combination of load balancing and failover, see Section 9.5, “Advanced
Load-balancing and Failover Configuration”.

9.4 Configuring Master/Slave Replication with Connector/J

This section describe a number of features of Connector/J's support for replication-aware deployments.

The replication is configured at the initial setup stage of the server connection by the connection URL,
which has a similar format as the general JDBC URL for MySQL connection, but a specialized scheme:

jdbc: nysql :replication://[master host][:port],[slave host 1][:port][,[slave host 2][:port]]...[/[database]]
[?pr oper t yNanel=pr opertyVal uel[&or opert yNane2=propertyVal ue2?]...]

Users may specify the property al | owivast er DownConnect i ons=t r ue to allow Connect i on objects
to be created even though no master hosts are reachable. Such Connect i on objects report they are
read-only, and i siast er Connect i on() returns false for them. The Connect i on tests for available
master hosts when Connect i on. set ReadOnl y(f al se) is called, throwing an SQLException if it cannot
establish a connection to a master, or switching to a master connection if the host is available.

Users may specify the property al | owSl avesDownConnect i ons=t r ue to allow Connect i on objects
to be created even though no slave hosts are reachable. A Connect i on then, at runtime, tests for
available slave hosts when Connect i on. set ReadOnl y(true) is called (see explanation for the method
below), throwing an SQLException if it cannot establish a connection to a slave, unless the property
readFr omvast er WienNoSI aves is set to be “true” (see below for a description of the property).

Scaling out Read Load by Distributing Read Traffic to Slaves

Connector/J supports replication-aware connections. It can automatically send queries to a
read/write master, or a failover or round-robin loadbalanced set of slaves based on the state of
Connecti on. get ReadOnl y() .

An application signals that it wants a transaction to be read-only by calling

Connection. set ReadOnl y(true) . The replication-aware connection will use one of the slave
connections, which are load-balanced per slave host using a round-robin scheme. A given connection is
sticky to a slave until a transaction boundary command (a commit or rollback) is issued, or until the slave is
removed from service. After calling Connect i on. set ReadOnl y(true), if you want to allow connection
to a master when no slaves are available, set the property r eadFr omVast er WienNoSI aves to “true.”
Notice that the master host will be used in read-only state in those cases, as if it is a slave host. Also notice
that setting r eadFr omvast er WhenNoS| aves=t r ue might result in an extra load for the master host in a
transparent manner.

If you have a write transaction, or if you have a read that is time-sensitive (remember, replication in MySQL
is asynchronous), set the connection to be not read-only, by calling Connecti on. set ReadOnl y(f al se)
and the driver will ensure that further calls are sent to the master MySQL server. The driver takes care of
propagating the current state of autocommit, isolation level, and catalog between all of the connections that
it uses to accomplish this load balancing functionality.

To enable this functionality, use the specialized replication scheme (j dbc: nysql : replication://)
when connecting to the server.

Here is a short example of how a replication-aware connection might be used in a standalone application:

i mport java.sqgl.Connecti on;
import java.sql.ResultSet;
inmport java.util.Properties;

i mport java.sql.DriverManager;

Beta Draft 89 Beta Draft

Support for Multiple-Master Replication Topographies

public class Replicati onDeno {
public static void main(String[] args) throws Exception {
Properties props = new Properties();

/1l We want this for failover on the slaves
props. put ("aut oReconnect", "true");

/1l W& want to | oad bal ance between the sl aves
props. put ("roundRobi nLoadBal ance", "true");

props. put ("user", "foo");
props. put ("password", "bar");
/1

/'l Looks like a normal MySQL JDBC url, with a

/'l comma-separated |ist of hosts, the first

/'l being the 'master', the rest being any nunber

/'l of slaves that the driver will |oad bal ance agai nst
/1

Connection conn =
Dri ver Manager . get Connecti on("j dbc: nysql : replication:// master, sl avel, sl ave2, sl ave3/test",
props);

/1

/!l Performread/wite work on the naster

/1 by setting the read-only flag to "fal se"
/1

conn. set ReadOnl y(fal se);

conn. set Aut oCommi t (f al se) ;

conn. cr eat eSt at enent () . execut eUpdat e(" UPDATE sone_table");
conn.comit();

/1

/1 Now, do a query froma slave, the driver automatically picks one
/'l fromthe |ist

/1

conn. set ReadOnl y(true);

ResultSet rs =
conn. cr eat eSt at enent () . execut eQuery (" SELECT a,b FROM alt _tabl e");

Consider using the Load Balancing JDBC Pool (I bpool) tool, which provides a wrapper around the
standard JDBC driver and enables you to use DB connection pools that includes checks for system failures
and uneven load distribution. For more information, see Load Balancing JDBC Driver for MySQL (mysql-
Ibpool).

Support for Multiple-Master Replication Topographies

Connector/J supports multi-master replication topographies.

The connection URL for replication discussed earlier (i.e., in the format of

jdbc: nysql :replication://master, sl avel, sl ave2, sl ave3/t est) assumes that the first
(and only the first) host is the master. Supporting deployments with an arbitrary number of masters and
slaves requires a different URL syntax for specifying the hosts and the properties for specific hosts, which

Beta Draft 90 Beta Draft

http://code.google.com/p/mysql-lbpool/
http://code.google.com/p/mysql-lbpool/

Live Reconfiguration of Replication Topography

is just an expansion of the URL syntax discussed in Alternate Format for JDBC URLSs with the property
t ype=[nast er | sl ave] ; for example:

jdbc: nysql : // address=(t ype=nast er) (host =mast er 1host), addr ess=(t ype=nast er) (host =nmast er 2host), addr ess=(t ype:

Connector/J uses a load-balanced connection internally for management of the master connections, which
means that Repl i cati onConnect i on, when configured to use multiple masters, exposes the same
options to balance load across master hosts as described in Section 9.3, “Configuring Load Balancing with
Connector/J".

Live Reconfiguration of Replication Topography

Connector/J also supports live management of replication host (single or multi-master) topographies. This
enables users to promote slaves for Java applications without requiring an application restart.

The replication hosts are most effectively managed in the context of a replication connection group. A
ReplicationConnectionGroup class represents a logical grouping of connections which can be managed
together. There may be one or more such replication connection groups in a given Java class loader (there
can be an application with two different JDBC resources needing to be managed independently). This key
class exposes host management methods for replication connections, and Repl i cat i onConnect i on
objects register themselves with the appropriate Repl i cati onConnecti onG oup if a value for the new
replicati onConnecti onG oup property is specified. The Repl i cat i onConnecti onG oup object
tracks these connections until they are closed, and it is used to manipulate the hosts associated with these
connections.

Some important methods related to host management include:
e get Mast er Host s() : Returns a collection of strings representing the hosts configured as masters
» get Sl aveHost s() : Returns a collection of strings representing the hosts configured as slaves

* addSl aveHost (String host): Adds new host to pool of possible slave hosts for selection at start of
new read-only workload

» pronot eSl aveToMast er (String host): Removes the host from the pool of potential slaves for
future read-only processes (existing read-only process is allowed to continue to completion) and adds
the host to the pool of potential master hosts

* renoveS| aveHost (String host, bool ean cl oseGently): Removes the host (host name match
must be exact) from the list of configured slaves; if cl oseGent | y is false, existing connections which
have this host as currently active will be closed hardly (application should expect exceptions)

e renmoveMast er Host (String host, bool ean cl oseCGently): Same asrenoveS| aveHost (),
but removes the host from the list of configured masters

Some useful management metrics include:

e get Connecti onCount Wt hHost AsSl ave(String host) : Returns the number of
ReplicationConnection objects that have the given host configured as a possible slave

e get Connecti onCount Wt hHost AsMast er (String host) : Returns the number of
ReplicationConnection objects that have the given host configured as a possible master

* get Nunber O Sl avesAdded() : Returns the number of times a slave host has been dynamically added
to the group pool

e get Nunber O Sl avesRenpved() : Returns the number of times a slave host has been dynamically
removed from the group pool

Beta Draft 91 Beta Draft

ReplicationConnectionGroupManager

e get Nunber O Sl avePr onot i ons() : Returns the number of times a slave host has been promoted to
a master

» get Tot al Connecti onCount () : Returns the number of ReplicationConnection objects which have
been registered with this group

» get Acti veConnecti onCount () : Returns the number of ReplicationConnection objects currently
being managed by this group

ReplicationConnectionGroupManager

com nysql . cj . jdbc. ha. Repl i cati onConnecti onG oupManager provides access to the
replication connection groups, together with some utility methods.

e get ConnectionG oup(String groupNane): Returns the Repl i cati onConnecti onG oup object
matching the groupName provided

The other methods in Repl i cat i onConnecti onG oupManager mirror those of

Repl i cati onConnecti onG oup, except that the first argument is a String group name. These methods
will operate on all matching ReplicationConnectionGroups, which are helpful for removing a server from
service and have it decommissioned across all possible Repl i cati onConnecti onG oups.

These methods might be useful for in-JVM management of replication hosts if an application triggers
topography changes. For managing host configurations from outside the JVM, JMX can be used.

Using JMX for Managing Replication Hosts

When Connector/J is started with ha. enabl eJMX=t r ue and a value set for the
property r epl i cati onConnecti onG oup, a JIMX MBean will be registered, allowing
manipulation of replication hosts by a JMX client. The MBean interface is defined in
com nysql . cj.jdbc.jnx.Replicati onG oupManager MBean, and leverages the
Repl i cati onConnecti onG oupManager static methods:

publ i c abstract void addSl aveHost (String groupFilter, String host) throws SQLException;
public abstract void renpveS| aveHost (String groupFilter, String host) throws SQ.Excepti on;
publ i c abstract void pronoteS|l aveToMaster(String groupFilter, String host) throws SQLException;
public abstract void renpveMasterHost (String groupFilter, String host) throws SQLExcepti on;
public abstract String get MasterHostsList(String group);

public abstract String getSlaveHostsList(String group);

public abstract String getRegi steredConnecti onG oups();

public abstract int getActiveMasterHost Count (String group);

public abstract int getActiveSl aveHost Count (String group);

public abstract int getSlavePronoti onCount(String group);

public abstract |ong getTotal Logi cal Connecti onCount (String group);

public abstract |ong getActivelLogi cal Connecti onCount (String group);

9.5 Advanced Load-balancing and Failover Configuration

Connector/J provides a useful load-balancing implementation for MySQL Cluster or multi-master
deployments, as explained in Section 9.3, “Configuring Load Balancing with Connector/J” and Support for
Multiple-Master Replication Topographies. This same implementation is used for balancing load between
read-only slaves for replication-aware connections.

When trying to balance workload between multiple servers, the driver has to determine when it is safe to
swap servers, doing so in the middle of a transaction, for example, could cause problems. It is important
not to lose state information. For this reason, Connector/J will only try to pick a new server when one of the
following happens:

Beta Draft

92 Beta Draft

Advanced Load-balancing and Failover Configuration

1. Attransaction boundaries (transactions are explicitly committed or rolled back).
2. A communication exception (SQL State starting with "08") is encountered.

3. When a SQLExcept i on matches conditions defined by user, using the extension points defined by
the | oadBal anceSQ_St at eFai | over, | oadBal anceSQLExcept i onSubcl assFai | over or
| oadBal anceExcept i onChecker properties.

The third condition revolves around three properties, which allow you to control which SQLExcept i ons
trigger failover:

» | oadBal anceExcept i onChecker - The | oadBal anceExcept i onChecker property
is really the key. This takes a fully-qualified class name which implements the new
com nysql . cj.jdbc. LoadBal anceExcepti onChecker interface. This interface is very simple, and
you only need to implement the following method:

publ i ¢ bool ean shoul dExcepti onTri gger Fai | over (SQLExcepti on ex)

A SQLExcept i on is passed in, and a boolean returned. A value of t r ue triggers a failover, f al se does
not.

You can use this to implement your own custom logic. An example where this might be useful is when
dealing with transient errors when using MySQL Cluster, where certain buffers may become overloaded.
The following code snippet illustrates this:

public class NdbLoadBal anceExcepti onChecker
ext ends St andardLoadBal anceExcepti onChecker {

publ i ¢ bool ean shoul dExcepti onTri gger Fai | over (SQLException ex) {
return super.shoul dExcepti onTri gger Fai | over (ex)
|| checkNdbException(ex);
}

private bool ean checkNdbExcepti on(SQLExcepti on ex) {

/'l Have to parse the nessage since nost NDB errors

/] are mapped to the same DEMC.
return (ex.get Message().startsWth("Lock wait tineout exceeded") ||
(ex. get Message().startsWth("Got tenmporary error")
&& ex. get Message().endsWth("from NDB")));

}
}

The code above extends com nysql . ¢j . j dbc. St andar dLoadBal anceExcept i onChecker,
which is the default implementation. There are a few convenient shortcuts built into this, for those
who want to have some level of control using properties, without writing Java code. This default
implementation uses the two remaining properties: | oadBal anceSQLSt at eFai | over and

| oadBal anceSQLExcept i onSubcl assFai | over.

» | oadBal anceSQLSt at eFai | over - allows you to define a comma-delimited list of SQLSt at e code
prefixes, against which a SQLExcept i on is compared. If the prefix matches, failover is triggered. So, for
example, the following would trigger a failover if a given SQLExcept i on starts with "00", or is "12345":

| oadBal anceSQ.St at eFai | over =00, 12345

e | oadBal anceSQLExcepti onSubcl assFai | over - can be used in conjunction with
| oadBal anceSQLSt at eFai | over or on its own. If you want certain subclasses of SQLExcepti on to

Beta Draft

93 Beta Draft

Advanced Load-balancing and Failover Configuration

trigger failover, simply provide a comma-delimited list of fully-qualified class or interface names to check
against. For example, if you want all SQLTr ansi ent Connect i onExcept i ons to trigger failover, you
would specify:

| oadBal anceSQLExcept i onSubcl assFai | over =j ava. sql . SQLTr ansi ent Connect i onExcepti on

While the three failover conditions enumerated earlier suit most situations, if aut oconmi t is enabled,
Connector/J never re-balances, and continues using the same physical connection. This can be
problematic, particularly when load-balancing is being used to distribute read-only load across multiple
slaves. However, Connector/J can be configured to re-balance after a certain number of statements are
executed, when aut oconmi t is enabled. This functionality is dependent upon the following properties:

e | oadBal anceAut oConmmi t St at enent Thr eshol d — defines the number of matching statements
which will trigger the driver to potentially swap physical server connections. The default value, 0, retains
the behavior that connections with aut oconmi t enabled are never balanced.

» | oadBal anceAut oCommi t St at enent Regex — the regular expression against which statements must
match. The default value, blank, matches all statements. So, for example, using the following properties
will cause Connector/J to re-balance after every third statement that contains the string “test”:

| oadBal anceAut oConmi t St at ement Thr eshol d=3
| oadBal anceAut oConmi t St at enent Regex=. *t est . *

| oadBal anceAut oCommi t St at enent Regex can prove useful in a number of situations. Your
application may use temporary tables, server-side session state variables, or connection state, where
letting the driver arbitrarily swap physical connections before processing is complete could cause data
loss or other problems. This allows you to identify a trigger statement that is only executed when it is
safe to swap physical connections.

Beta Draft

94 Beta Draft

Chapter 10 Using the Connector/J Interceptor Classes

An interceptor is a software design pattern that provides a transparent way to extend or modify some
aspect of a program, similar to a user exit. No recompiling is required. With Connector/J, the interceptors
are enabled and disabled by updating the connection string to refer to different sets of interceptor classes
that you instantiate.

The connection properties that control the interceptors are explained in Section 6.1, “Driver/Datasource
Class Names, URL Syntax and Configuration Properties for Connector/J”:

e connectionLi fecycl el nt ercept or s, where you specify the fully qualified names of classes that
implement the com nysql . cj . api . jdbc.interceptors. ConnectionLi fecycl el nterceptor
interface. In these kinds of interceptor classes, you might log events such as rollbacks, measure the time
between transaction start and end, or count events such as calls to set Aut oConmi t ().

» exceptionl nt ercept ors, where you specify the fully qualified names of classes that implement the
com nysql . cj . api.exceptions. Exceptionl nt ercept or interface. In these kinds of interceptor
classes, you might add extra diagnostic information to exceptions that can have multiple causes or
indicate a problem with server settings. except i onl nt er cept or s classes are called when handling
an Except i on thrown from Connector/J code.

» statenentl| nterceptors, where you specify the fully qualified names of classes that implement the
com nysql .cj.api.jdbc.interceptors. StatenentlnterceptorV2 interface. In these kinds of
interceptor classes, you might change or augment the processing done by certain kinds of statements,
such as automatically checking for queried data in a mencached server, rewriting slow queries, logging
information about statement execution, or route requests to remote servers.

Beta Draft

95 Beta Draft

Beta Draft 96 Beta Draft

Chapter 11 Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at http://
tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time this
document was written.

First, install the . | ar file that comes with Connector/J in $CATALI NA HOVE/ common/ | i b so that it is
available to all applications installed in the container.

Next, configure the JNDI DataSource by adding a declaration resource to $CATALI NA HOVE/ conf /
server. xm in the context that defines your web application:

<Context>

<Resour ce nanme="j dbc/ MySQ.DB"
aut h="Cont ai ner"
type="j avax. sql . Dat aSour ce"/ >

<Resour cePar ans nane="j dbc/ MySQLDB" >
<par anet er >
<nane>f act or y</ nane>
<val ue>or g. apache. conmons. dbcp. Basi cDat aSour ceFact or y</ val ue>
</ par anet er >

<par anet er >
<nanme>nmaxAct i ve</ nane>
<val ue>10</ val ue>

</ par anet er >

<par anet er >
<nanme>max| dl e</ nane>
<val ue>5</val ue>

</ par anet er >

<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>SELECT 1</val ue>

</ par anet er >

<par anet er >
<nane>t est OnBor r ow</ nane>
<val ue>t rue</ val ue>

</ par anet er >

<par anet er >
<nane>t est Wi | el dl e</ nane>
<val ue>t rue</ val ue>

</ par anet er >

<par anet er >
<nanme>t i neBet weenEvi cti onRunsM | | i s</ nane>
<val ue>10000</ val ue>

</ par anet er >

<par anet er >
<nanme>m nEvi ct abl el dl eTi nreM | | i s</ nane>
<val ue>60000</ val ue>

</ par anet er >

<par anet er >
<nanme>user nane</ nane>

Beta Draft 97 Beta Draft

http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

<val ue>soneuser </ val ue>
</ par anet er >

<par anet er >
<nanme>passwor d</ nane>
<val ue>sonepass</ val ue>
</ par anet er >

<par anet er >

<nane>dri ver Cl assNanme</ name>

<val ue>com nysql . cj . j dbc. Dri ver </ val ue>
</ par anet er >

<par anet er >

<nane>ur | </ name>

<val ue>j dbc: nysql : / /| ocal host : 3306/t est </ val ue>
</ par anet er >

</ Resour cePar ans>
</ Cont ext >

Connector/J introduces a facility whereby, rather than use a val i dat i onQuery value of SELECT 1, it

is possible to use val i dat i onQuer y with a value setto/* ping */. This sends a ping to the server
which then returns a fake result set. This is a lighter weight solution. It also has the advantage that if using
Repl i cati onConnecti on or LoadBal ancedConnect i on type connections, the ping will be sent
across all active connections. The following XML snippet illustrates how to select this option:

<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>/* ping */</val ue>

</ par anet er >

Note that/* pi ng */ has to be specified exactly.

In general, follow the installation instructions that come with your version of Tomcat, as the way you
configure datasources in Tomcat changes from time to time, and if you use the wrong syntax in your XML
file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot |oad JDBC driver class '"null ' SQL
state: null

Note that the auto-loading of drivers having the META- | NF/ ser vi ce/ j ava. sql . Dri ver class in JDBC
4.0 and later causes an improper undeployment of the Connector/J driver in Tomcat on Windows. Namely,
the Connector/J jar remains locked. This is an initialization problem that is not related to the driver. The
possible workarounds, if viable, are as follows: use "ant i Resour ceLocki ng=t r ue" as a Tomcat Context
attribute, or remove the META- | NF/ directory.

Beta Draft

98 Beta Draft

Chapter 12 Using Connector/J with JBoss

These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server,
copy the . j ar file that comes with Connector/J to the | i b directory for your server configuration (which
is usually called def aul t). Then, in the same configuration directory, in the subdirectory named deploy,
create a datasource configuration file that ends with - ds. xi , which tells JBoss to deploy this file as a
JDBC Datasource. The file should have the following contents:

<dat asour ces>
<l ocal -t x- dat asour ce>

<j ndi - name>MySQLDB</ j ndi - name>

<connecti on-url >j dbc: mysql : // | ocal host : 3306/ dbnane</ connecti on-url >
<dri ver-class>com nysql .cj.jdbc. Driver</driver-cl ass>

<user - nane>user </ user - nanme>

<passwor d>pass</ passwor d>

<m n- pool - si ze>5</ m n- pool - si ze>
<max- pool - si ze>20</ max- pool - si ze>
<i dl e-ti meout - m nut es>5</idl e-ti meout - m nut es>

<exception-sorter-cl ass- name>

com nysql .cj.jdbc.integration.jboss. ExtendedM/sql Excepti onSorter
</ excepti on-sorter-cl ass-name>
<val i d- connect i on- checker - cl ass- name>

com nysql .cj.jdbc.integration.jboss. M/sql Val i dConnecti onChecker
</val i d- connecti on- checker - cl ass- name>

</l ocal -t x- dat asour ce>
</ dat asour ces>

Beta Draft 99 Beta Draft

Beta Draft 100 Beta Draft

Chapter 13 Using Connector/J with Spring

Table of Contents

13.1 USING JADCTEIMPI G € .eiiiiii ettt ettt ettt e et e e et 102
13.2 TranSaCtiONal JDBEC ACCESSuuiiiiitneeiiii ettt e ettt e et ettt e et eat e e et et e e ettt reeeentnaeeeentnaaaee 104
13.3 Connection Pooling WIth SPIiNGcoouuniiiiii e e 105

The Spring Framework is a Java-based application framework designed for assisting in application design
by providing a way to configure components. The technique used by Spring is a well known design pattern
called Dependency Injection (see Inversion of Control Containers and the Dependency Injection pattern).
This article will focus on Java-oriented access to MySQL databases with Spring 2.0. For those wondering,
there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented
programming (AOP). This is one of the main benefits and the foundation for Spring's resource and
transaction management. Spring also provides utilities for integrating resource management with JDBC
and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to set up
a MySQL data source through Spring. Components within Spring use the “bean” terminology. For example,
to configure a connection to a MySQL server supporting the world sample database, you might use:

<util:map id="dbProps">
<entry key="db.driver" val ue="com nysql.cj.jdbc.Driver"/>
<entry key="db.jdbcurl" val ue="jdbc: nysql://Iocal host/world"/>
<entry key="db. username" val ue="myuser"/>
<entry key="db. password" val ue="nypass"/>

</util: map>

In the above example, we are assigning values to properties that will be used in the configuration. For the
datasource configuration:

<bean i d="dat aSour ce"
cl ass="org. spri ngfranmewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nane="driverd assNane" val ue="${db.driver}"/>
<property nane="url" val ue="${db.jdbcurl}"/>
<property nanme="user nane" val ue="${db. usernane}"/>
<property nane="password" val ue="${db. password}"/>
</ bean>

The placeholders are used to provide values for properties of this bean. This means that we can specify
all the properties of the configuration in one place instead of entering the values for each property on
each bean. We do, however, need one more bean to pull this all together. The last bean is responsible for
actually replacing the placeholders with the property values.

<bean
cl ass="org. spri ngframewor k. beans. fact ory. confi g. Propert yPl acehol der Confi gurer">

Beta Draft

101 Beta Draft

http://www.martinfowler.com/articles/injection.html

Using JdbcTenpl at e

<property name="properties" ref="dbProps"/>
</ bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to access
it. The example below will retrieve three random cities and their corresponding country using the data
source we configured with Spring.

/Il Create a new application context. this processes the Spring config
Appl i cati onContext ctx =
new C assPat hXm Appl i cati onCont ext (" exlappCont ext.xm ") ;
/'l Retrieve the data source fromthe application context
Dat aSource ds = (DataSource) ctx.getBean("dataSource");
/'l Open a database connection using Spring' s DataSourceUtils
Connection ¢ = DataSourceUtils. get Connecti on(ds);
try {
/] retrieve a list of three randomcities
Prepar edSt at enent ps = c. prepareSt at enent (
"select City.Nane as 'CGity', Country.Nanme as 'Country' " +
"fromCity inner join Country on City. CountryCode = Country.Code " +
“order by rand() limt 3");
Resul t Set rs = ps. executeQuery();
while(rs.next()) {
String city = rs.getString("Gty");
String country = rs.getString("Country");
Systemout.printf("The city % is in %%", city, country);

}
} catch (SQLException ex) {
/1 something has failed and we print a stack trace to anal yse the error
ex. print StackTrace();
/'l ignore failure closing connection
try { c.close(); } catch (SQ.Exception e) { }
} finally {
/'l properly rel ease our connection
Dat aSour celUti | s. rel easeConnecti on(c, ds);

}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using
DataSourceUtils instead of the DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages
this resource in a way similar to a container managed data source in a J2EE application server. When a
connection is opened, it can be subsequently accessed in other parts of the code if it is synchronized with
a transaction. This makes it possible to treat different parts of your application as transactional instead of
passing around a database connection.

13.1 Using JdbcTenpl at e

Spring makes extensive use of the Template method design pattern (see Template Method

Pattern). Our immediate focus will be on the JdbcTenpl at e and related classes, specifically

NanmedPar anmet er Jdbc Tenpl at e. The template classes handle obtaining and releasing a connection for
data access when one is needed.

The next example shows how to use NanedPar anet er Jdbc Tenpl at e inside of a DAO (Data Access
Object) class to retrieve a random city given a country code.

public class Ex2JdbcDao {
/**
* Data source reference which will be provided by Spring.
&

Beta Draft 102 Beta Draft

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern

Using JdbcTenpl at e

private DataSource dataSource;

| **

* Qur query to find a randomcity given a country code. Notice

* the ":country" paraneter toward the end. This is called a

* named paraneter.

*/

private String queryString = "select Name fromCity " +
"where CountryCode = :country order by rand() limt 1";

/**
* Retrieve a randomcity using Spring JDBC access cl asses.
*/
public String get RandonCit yByCountryCode(String cntryCode) {
/Il A tenplate that permts using queries with named paraneters
NamedPar anet er JdbcTenpl ate tenpl ate =
new NamedPar anet er JdbcTenpl at e(dat aSour ce) ;
/1l Ajava.util.Map is used to provide values for the paraneters
Map paranms = new HashMap();
par ans. put ("country", cntryCode);
/'l We query for an Object and specify what class we are expecting

return (String)tenplate.queryForObj ect (queryString, parans, String.class);

}

| **

* A JavaBean setter-style method to allow Spring to inject the data source.

* @ar am dat aSour ce

*/

publ i c voi d set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. dat aSour ce = dat aSour ce;

}

}

The focus in the above code is on the get RandonCi t yByCount r yCode() method. We pass a country
code and use the NanedPar anet er JdbcTenpl at e to query for a city. The country code is placed in a

Map with the key "country", which is the parameter is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean i d="dao" cl ass="code. Ex2JdbcDao" >
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

At this point, we can just grab a reference to the DAO from Spring and call
get RandonCi t yByCount r yCode() .

/] Create the application context

Appl i cationContext ctx =

new C assPat hXm Appl i cati onCont ext (" ex2appCont ext.xm ") ;
/] Cbtain a reference to our DAO

Ex2JdbcDao dao = (Ex2JdbcDao) ctx. get Bean("dao");

String countryCode = "USA";

// Find a few randomcities in the US
for(int i =0; i < 4; ++i)
Systemout.printf("A randomcity in % is %%", countryCode,
dao. get RandonCi t yByCount r yCode(count r yCode)) ;

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional

JDBC classes including Connect i on and Pr epar edSt at enent .

Beta Draft

103

Beta Draft

Transactional JDBC Access

13.2 Transactional JDBC Access

Spring allows us to add transactions into our code without having to deal directly with the JDBC classes.
For that purpose, Spring provides a transaction management package that not only replaces JDBC
transaction management, but also enables declarative transaction management (configuration instead of
code).

To use transactional database access, we will need to change the storage engine of the tables in the world
database. The downloaded script explicitly creates MylSAM tables, which do not support transactional
semantics. The InnoDB storage engine does support transactions and this is what we will be using. We
can change the storage engine with the following statements.

ALTER TABLE City ENG NE=I nnoDB;
ALTER TABLE Country ENG NE=I nnoDB;
ALTER TABLE Count ryLanguage ENG NE=I nnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations. What
this means is that we can create a Java interface and only use the operations on this interface without any
internal knowledge of what the actual implementation is. We will let Spring manage the implementation and
with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
Integer createCity(String name, String countryCode,
String district, Integer popul ation);

}

This interface contains one method that will create a new city record in the database and return the id of
the new record. Next you need to create an implementation of this interface.

public class Ex3Daol npl inplements Ex3Dao {
prot ect ed Dat aSource dataSource;
protected Sql Updat e updat eQuery;
protected Sql Function idQuery;

public Integer createCity(String name, String countryCode,
String district, Integer popul ation) {
updat eQuery. updat e(new Obj ect[] { nane, countryCode,
district, population });
return getlLastld();
}

protected Integer getlLastld() {
return i dQuery.run();
}
}

You can see that we only operate on abstract query objects here and do not deal directly with the JDBC
API. Also, this is the complete implementation. All of our transaction management will be dealt with in the
configuration. To get the configuration started, we need to create the DAO.

<bean i d="dao" cl ass="code. Ex3Daol npl ">
<property nanme="dat aSource" ref="dataSource"/>
<property name="updateQuery">...</property>
<property name="idQuery">...</property>

</ bean>

Beta Draft

104 Beta Draft

Connection Pooling with Spring

Now we need to set up the transaction configuration. The first thing we must do is create transaction
manager to manage the data source and a specification of what transaction properties are required for the
dao methods.

<bean i d="transacti onManager"
cl ass="org. spri ngframewor k. j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

<t x: advi ce id="txAdvi ce" transaction-nmanager="transacti onManager ">
<tx:attributes>

</[tx:attributes>
</t x: advi ce>

The preceding code creates a transaction manager that handles transactions for the data source provided
to it. The t xAdvi ce uses this transaction manager and the attributes specify to create a transaction for all
methods. Finally we need to apply this advice with an AOP pointcut.

<aop: confi g>
<aop: poi nt cut i d="daoMet hods"
expr essi on="executi on(* code. Ex3Dao.*(..))"/>
<aop: advi sor advi ce-ref ="t xAdvi ce" pointcut-ref="daoMet hods"/ >
</ aop: confi g>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To
make use of this, we only have to retrieve the dao from the application context and call a method on the
dao instance.

Ex3Dao dao
Integer id

(Ex3Dao) ctx. get Bean("dao");
dao. createCity(nanme, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is all
configured with Spring. This is a very powerful notion and regarded as one of the most beneficial features
of Spring.

13.3 Connection Pooling with Spring

In many situations, such as web applications, there will be a large number of small database transactions.
When this is the case, it usually makes sense to create a pool of database connections available for web
requests as needed. Although MySQL does not spawn an extra process when a connection is made,
there is still a small amount of overhead to create and set up the connection. Pooling of connections also
alleviates problems such as collecting large amounts of sockets in the TI ME_WAI T state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source
configuration in the application context. There are a number of configurations that we can use. The
first example is based on the Jakarta Commons DBCP library. The example below replaces the source
configuration that was based on Dr i ver Manager Dat aSour ce with DBCP's BasicDataSource.

<bean i d="dat aSour ce" destroy-nethod="cl ose"

Beta Draft

105 Beta Draft

http://jakarta.apache.org/commons/dbcp/

Connection Pooling with Spring

cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >
<property nanme="driverCl assNane" val ue="${db. driver}"/>
<property name="url" val ue="${db.jdbcurl}"/>
<property nanme="usernane" val ue="${db. usernane}"/>
<property nanme="password" val ue="${db. password}"/>
<property name="initial Size" val ue="3"/>
</ bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections

to the database instead of creating a new connection every time one is requested. We have also set a
parameter here called i ni ti al Si ze. This tells DBCP that we want three connections in the pool when it
is created.

Another way to configure connection pooling is to configure a data source in our J2EE application server.
Using JBoss as an example, you can set up the MySQL connection pool by creating a file called nysql -
 ocal -ds. xm and placing it in the server/default/deploy directory in JBoss. Once we have this setup, we
can use JNDI to look it up. With Spring, this lookup is very simple. The data source configuration looks like
this.

<j ee:jndi - | ookup i d="dataSource" jndi-nanme="java: MySQ._DS"/ >

Beta Draft 106 Beta Draft

Chapter 14 Troubleshooting Connector/J Applications

This section explains the symptoms and resolutions for the most commonly encountered issues with
applications using MySQL Connector/J.

Questions

» 14.1: When | try to connect to the database with MySQL Connector/J, | get the following exception:

SQLException: Server configuration denies access to data source
SQ.State: 08001
VendorError: 0O
What is going on? | can connect just fine with the MySQL command-line client.
» 14.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

* 14.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception similar to:

SQLException: Cannot connect to MySQL server on host: 3306.
Is there a MySQ. server running on the nmachi ne/ port you
are trying to connect to?

(java. security. AccessControl Excepti on)

SQL.State: 08S01
VendorError: 0O

» 14.4: | have a servlet/application that works fine for a day, and then stops working overnight

» 14.5: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection parameters
are correct.

« 14.6: My application is deployed through JBoss and | am using transactions to handle the statements
on the MySQL database. Under heavy loads, | am getting an error and stack trace, but these only occur
after a fixed period of heavy activity.

« 14.7: Updating a table that contains a primary key that is either FLOAT or compound primary key that
uses FLOAT fails to update the table and raises an exception.

e 14.8: I getan ER_NET_PACKET TOO LARGE exception, even though the binary blob size | want to
insert using JDBC is safely below the max_al | oned packet size.

* 14.9: What should I do if | receive error messages similar to the following: “Communications link failure
— Last packet sent to the server was X ms ago”?

* 14.10: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though | use the aut oReconnect
connection string option?

* 14.11: How can | use 3-byte UTF8 with Connector/J?
» 14.12: How can | use 4-byte UTF8, ut f 8nmb4 with Connector/J?

* 14.13: Using useSer ver PrepSt nt s=f al se and certain character encodings can lead to corruption
when inserting BLOBs. How can this be avoided?

Questions and Answers

14.1: When I try to connect to the database with MySQL Connector/J, | get the following exception:

Beta Draft 107 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.7/en/error-messages-server.html#error_er_net_packet_too_large
http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet

SQLException: Server configuration denies access to data source
SQLState: 08001
Vendor Error: O

What is going on? | can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix
Domain Sockets. Therefore, when MySQL Connector/J connects to MySQL, the security manager in
MySQL server will use its grant tables to determine whether the connection is permitted.

You must add the necessary security credentials to the MySQL server for this to happen, using the GRANT
statement to your MySQL Server. See GRANT Syntax, for more information.

Note

Testing your connectivity with the mysgl command-line client will not work unless
you add the "host" flag, and use something other than | ocal host for the host. The
nysgl command-line client will use Unix domain sockets if you use the special host
name | ocal host . If you are testing connectivity to | ocal host,use 127. 0. 0. 1
as the host name instead.

Warning

Changing privileges and permissions improperly in MySQL can potentially cause
your server installation to not have optimal security properties.

14.2: My application throws an SQLException '‘No Suitable Driver'. Why is this happening?
There are three possible causes for this error:

» The Connector/J driver is not in your CLASSPATH, see Chapter 4, Connector/J Installation.

» The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

» When using DriverManager, the j dbc. dri ver s system property has not been populated with the
location of the Connector/J driver.

14.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception similar
to:

SQLExcepti on: Cannot connect to MySQL server on host: 3306.
Is there a MySQ. server running on the nachi ne/ port you
are trying to connect to?

(java. security. AccessControl Excepti on)
SQLSt ate: 08S01
Vendor Error: 0O

Either you're running an Applet, your MySQL server has been installed with the "skip-networking" option
set, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served

the .class files for the applet. This means that MySQL must run on the same machine (or you must have
some sort of port re-direction) for this to work. This also means that you will not be able to test applets from
your local file system, you must always deploy them to a web server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix
domain sockets. TCP/IP communication with MySQL might be affected if MySQL was started with the
"skip-networking" flag, or if it is firewalled.

Beta Draft 108 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/grant.html
http://dev.mysql.com/doc/refman/5.7/en/grant.html

If MySQL has been started with the "skip-networking" option set (the Debian Linux package of MySQL
server does this for example), you need to comment it out in the file / et ¢/ mysql / ny. cnf or/etc/

nmy. cnf . Of course your ny. cnf file might also exist in the dat a directory of your MySQL server, or
anywhere else (depending on how MySQL was compiled for your system). Binaries created by us always
look in/etc/ nmy.cnf and dat adi r/ nmy. cnf . If your MySQL server has been firewalled, you will need to
have the firewall configured to allow TCP/IP connections from the host where your Java code is running to
the MySQL server on the port that MySQL is listening to (by default, 3306).

14.4: 1 have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the aut oReconnect parameter (see Section 6.1, “Driver/Datasource
Class Names, URL Syntax and Configuration Properties for Connector/J").

Also, catch SQLExcept i ons in your application and deal with them, rather than propagating them all

the way until your application exits. This is just good programming practice. MySQL Connector/J will set
the SQLSt at e (see j ava. sql . SQLExcept i on. get SQLSt at e() in your APl docs) to 08S01 when it
encounters network-connectivity issues during the processing of a query. Attempt to reconnect to MySQL
at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 14.1 Connector/J: Example of transaction with retry logic

publ i c voi d doBusi nessOp() throws SQLException {
Connection conn = nul | ;
Statenent stnt = null;
ResultSet rs = null;

/1

/] How many tinmes do you want to retry the transaction
/Il (or at least _getting_ a connection)?

/1

int retryCount = 5;

bool ean transacti onConpl eted = fal se;

do {
try {
conn = get Connection(); // assume getting this froma
/] javax.sql.DataSource, or the
/'l java.sql.Driver Manager

conn. set Aut oCommi t (f al se) ;

I

/]l Okay, at this point, the '"retry-ability' of the

/] transaction really depends on your application |ogic,
/'l whether or not you're using autocommit (in this case
/1 not), and whether you're using transactional storage
/'l engi nes

I

/Il For this exanple, we'll assune that it's _not_ safe
/Il to retry the entire transaction, so we set retry

// count to O at this point

I

/1 1f you were using exclusively transaction-safe tables,
/1 or your application could recover froma connecti on goi ng
/1 bad in the mddle of an operation, then you woul d not
/1 touch 'retryCount' here, and just let the | oop repeat
[/l until retryCount == 0.

I

retryCount = O;

Beta Draft

109 Beta Draft

stnt = conn.createStatenent();
String query = "SELECT foo FROM bar ORDER BY baz";
rs = stnt.executeQuery(query);

while (rs.next()) {

}
rs.close();
rs = null;

stnt.cl ose();
stnmt = null;

conn.comit();
conn. cl ose();
conn = null;

transacti onConpl eted = true;
} catch (SQLException sqgl Ex) {

/1

/'l The two SQL states that are 'retry-able' are 08S01

// for a communications error, and 40001 for deadl ock.

/1

/Il Only retry if the error was due to a stal e connecti on,
/1 comuni cati ons probl em or deadl ock

/1

String sqgl State = sqgl Ex. get SQLState();

if ("08S01".equal s(sqgl State) || "40001".equal s(sql State)) {
retryCount -= 1,
} else {

retryCount = O;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException sql Ex) {
/1 You'd probably want to log this...
}
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException sql Ex) {
/1 You'd probably want to log this as well...
}
}
if (conn !'=null) {
try {
/1
I/l 1f we got here, and conn is not null, the

/'l transaction should be rolled back, as not
/1 all work has been done

try {
conn. rol | back();
} finally {

conn. cl ose();

}

Beta Draft 110 Beta Draft

} catch (SQLException sqgl Ex) {
/1
/1 1f we got an exception here, sonething
/] pretty serious is going on, so we better
/] pass it up the stack, rather than just
Il logging it...

t hrow sqgl Ex;

}

}
} while (!transacti onConpl eted && (retryCount > 0));

Note

Use of the aut oReconnect option is not recommended because there is no safe
method of reconnecting to the MySQL server without risking some corruption of

the connection state or database state information. Instead, use a connection

pool, which will enable your application to connect to the MySQL server using an
available connection from the pool. The aut oReconnect facility is deprecated, and
may be removed in a future release.

14.5: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

Make sure that the ski p- net wor ki ng option has not been enabled on your server. Connector/J must be
able to communicate with your server over TCP/IP; named sockets are not supported. Also ensure that you
are not filtering connections through a firewall or other network security system. For more information, see
Can't connect to [local] MySQL server.

14.6: My application is deployed through JBoss and | am using transactions to handle the
statements on the MySQL database. Under heavy loads, | am getting an error and stack trace, but
these only occur after a fixed period of heavy activity.

This is a JBoss, not Connector/J, issue and is connected to the use of transactions. Under heavy loads the
time taken for transactions to complete can increase, and the error is caused because you have exceeded
the predefined timeout.

You can increase the timeout value by setting the Tr ansact i onTi neout attribute to the

Transact i onManager Ser vi ce within the / conf/j boss- servi ce. xnl file (pre-4.0.3) or / depl oy/
jta-service.xm forJBoss 4.0.3 or later. See TransactionTimeout within the JBoss wiki for more
information.

14.7: Updating a table that contains a primary key that is either FLOAT or compound primary key
that uses FLOAT fails to update the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the primary
key. If there is no match, then Connector/J considers this a failure condition and raises an exception.

The problem is that rounding differences between supplied values and the values stored in the database
may mean that the values never match, and hence the update fails. The issue will affect all queries, not
just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point
column in your primary key, use DOUBLE or DECI MAL types in place of FLOAT.

14.8: I getan ER NET_ PACKET TOO LARCE exception, even though the binary blob size | want to
insert using JDBC is safely below the max_al | owed packet size.

Beta Draft 111 Beta Draft

http://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.7/en/can-not-connect-to-server.html
http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.7/en/update.html
http://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.7/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.7/en/error-messages-server.html#error_er_net_packet_too_large
http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet

This is because the hexEscapeBl ock() method in
com nysql .cj.jdbc. PreparedStatenent. streanifoByt es() may almost double the size of your
data.

14.9: What should I do if | receive error messages similar to the following: “Communications link
failure — Last packet sent to the server was X ms ago”?

Generally speaking, this error suggests that the network connection has been closed. There can be several
root causes:

» Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not
ping).

* The MySQL Server may be closing idle connections that exceed the wai t _t i meout or
interactive_tinmeout threshold.

Although network connections can be volatile, the following can be helpful in avoiding problems:

» Ensure connections are valid when used from the connection pool. Use a query that starts with / * pi ng
*| to execute a lightweight ping instead of full query. Note, the syntax of the ping needs to be exactly as
specified here.

* Minimize the duration a connection object is left idle while other application logic is executed.

» Explicitly validate the connection before using it if the connection has been left idle for an extended
period of time.

e Ensurethatwait tineout andinteractive_ tineout are set sufficiently high.
» Ensure that t cpKeepal i ve is enabled.

» Ensure that any configurable firewall or router timeout settings allow for the maximum expected
connection idle time.

Note

Do not expect to be able to reuse a connection without problems if it has being lying
idle for a period. If a connection is to be reused after being idle for any length of
time, ensure that you explicitly test it before reusing it.

14.10: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though | use the aut oReconnect
connection string option?

There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual states
that “there is no safe method of reconnecting to the MySQL server without risking some corruption of the
connection state or database state information”. Consider the following series of statements for example:

conn. creat eSt at enent () . execut e(

"UPDATE checki ng_account SET bal ance = bal ance - 1000. 00 WHERE customer="Smth'");
conn. creat eSt at enent () . execut e(

" UPDATE savi ngs_account SET bal ance = bal ance + 1000. 00 WHERE customer="Smth'");
conn. comm t () ;

Consider the case where the connection to the server fails after the UPDATE to checki ng_account .
If no exception is thrown, and the application never learns about the problem, it will continue executing.

Beta Draft 112 Beta Draft

However, the server did not commit the first transaction in this case, so that will get rolled back. But
execution continues with the next transaction, and increases the savi ngs_account balance by 1000.
The application did not receive an exception, so it continued regardless, eventually committing the second
transaction, as the commit only applies to the changes made in the new connection. Rather than a transfer
taking place, a deposit was made in this example.

Note that running with aut ocommi t enabled does not solve this problem. When Connector/J encounters
a communication problem, there is no means to determine whether the server processed the currently
executing statement or not. The following theoretical states are equally possible:

» The server never received the statement, and therefore no related processing occurred on the server.
» The server received the statement, executed it in full, but the response was not received by the client.

If you are running with aut oconmi t enabled, it is not possible to guarantee the state of data on the server
when a communication exception is encountered. The statement may have reached the server, or it may
not. All you know is that communication failed at some point, before the client received confirmation (or
data) from the server. This does not only affect aut oconmi t statements though. If the communication
problem occurred during Connect i on. conmi t (), the question arises of whether the transaction was
committed on the server before the communication failed, or whether the server received the commit
request at all.

The second reason for the generation of exceptions is that transaction-scoped contextual data may be
vulnerable, for example:

» Temporary tables.
» User-defined variables.
e Server-side prepared statements.

These items are lost when a connection fails, and if the connection silently reconnects without generating
an exception, this could be detrimental to the correct execution of your application.

In summary, communication errors generate conditions that may well be unsafe for Connector/J to simply
ignore by silently reconnecting. It is necessary for the application to be notified. It is then for the application
developer to decide how to proceed in the event of connection errors and failures.

14.11: How can | use 3-byte UTF8 with Connector/J?

To use 3-byte UTF8 with Connector/J set char act er Encodi ng=ut f 8 and set useUni code=t r ue in the
connection string.

14.12: How can | use 4-byte UTF8, ut f 8nb4 with Connector/J?

To use 4-byte UTF8 with Connector/J configure the MySQL server with

character_set server=utf8nb4. Connector/J will then use that setting as long as

char act er Encodi ng has not been set in the connection string. This is equivalent to autodetection of the
character set.

14.13: Using useSer ver PrepSt nt s=f al se and certain character encodings can lead to corruption
when inserting BLOBs. How can this be avoided?

When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB data
contains characters that can be interpreted as control characters, for example, backslash, \'. This can lead
to corrupted data when inserting BLOBSs into the database. There are two things that need to be done to
avoid this:

Beta Draft

113 Beta Draft

1. Setthe connection string option useSer ver PrepStnts totr ue.

2. Set SQL_MODE to NO_BACKSLASH_ESCAPES.

Beta Draft 114 Beta Draft

Chapter 15 Connector/J Support

Table of Contents

15.1 Connector/J COMMUNILY SUPPOIT ... cuuniit ettt et e e et e e e et e et et e e e et e e ebn e eannas 115
15.2 How to Report Connector/J Bugs or Problems ... 115

15.1 Connector/J Community Support

Oracle provides assistance to the user community by means of its mailing lists. For Connector/J related
issues, you can get help from experienced users by using the MySQL and Java mailing list. Archives and
subscription information is available online at http://lists.mysqgl.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://
lists.mysqgl.com/. See MySQL Mailing Lists.

Community support from experienced users is also available through the JDBC Forum. You may also
find help from other users in the other MySQL Forums, located at http://forums.mysgl.com. See MySQL
Community Support at the MySQL Forums.

15.2 How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysqgl.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you will
also be able to enter new reports.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an email
message to <secal ert _us@r acl e. con>. Exception: Support customers should report all problems,
including security bugs, to Oracle Support at http://support.oracle.com/.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix the
bug in the next release.

This section will help you write your report correctly so that you do not waste your time doing things that
may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any
bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem and
assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less
troublesome to write a couple more lines in your report than to wait longer for the answer if we must ask
you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or
MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including the JVM
version, and the platform type and version number that MySQL itself is installed on).

Beta Draft 115 Beta Draft

http://lists.mysql.com/java
http://lists.mysql.com/
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.7/en/mailing-lists.html
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.7/en/forums.html
http://dev.mysql.com/doc/refman/5.7/en/forums.html
http://bugs.mysql.com/
http://support.oracle.com/
http://bugs.mysql.com/

How to Report Connector/J Bugs or Problems

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested was
not implemented in that MySQL version, or that a bug described in a report has already been fixed in
newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version humber of the platform.

If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named

'‘com nysql . cj.jdbc.util.BaseBugReport' To create a testcase for Connector/J using this class,
create your own class that inherits from com nysql . cj . j dbc. uti | . BaseBugReport and override the
methods set Up(), tear Down() and runTest ().

In the set Up() method, create code that creates your tables, and populates them with any data needed to
demonstrate the bug.

Inthe runTest () method, create code that demonstrates the bug using the tables and data you created
in the set Up method.

In the t ear Down() method, drop any tables you created in the set Up() method.

In any of the above three methods, use one of the variants of the get Connect i on() method to create a
JDBC connection to MySQL:

» get Connecti on() - Provides a connection to the JDBC URL specified in get Ur | () . If a connection
already exists, that connection is returned, otherwise a new connection is created.

» get NewConnection() - Use this if you need to get a new connection for your bug report (that is, there
is more than one connection involved).

» get Connection(String url) - Returns a connection using the given URL.

» get Connection(String url, Properties props) - Returns a connection using the given URL
and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test’, override the method get Ur | () as
well.

Use the assert True(bool ean expressi on) andassert True(String fail ureMessage,

bool ean expressi on) methods to create conditions that must be met in your testcase demonstrating
the behavior you are expecting (vs. the behavior you are observing, which is why you are most likely filing
a bug report).

Finally, create a mai n() method that creates a new instance of your testcase, and calls the r un method:

public static void main(String[] args) throws Exception {
new MyBugReport ().run();
}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysql.com/.

Beta Draft 116 Beta Draft

http://bugs.mysql.com/

Index

C

character sets
with Connector/J, 57
client-side failover, 86
connecting
through JDBC and Connector/J, 19
connection pooling, 79, 105
Connector/J
reporting problems, 115
troubleshooting, 107

E

error codes, 61
ER_ABORTING_CONNECTION, 61
ER_ACCESS DENIED _ERROR, 61
ER_BAD_FIELD ERROR, 61
ER_BAD_HOST ERROR, 61
ER_BAD_TABLE_ERROR, 61
ER_BLOBS_AND_NO_TERMINATED, 61
ER_BLOB_CANT_HAVE_DEFAULT, 61
ER_BLOB_KEY_WITHOUT_LENGTH, 61
ER_BLOB_USED_AS KEY, 61
ER_CANT_DO_THIS DURING_AN_TRANSACTION, 61
ER_CANT_DROP_FIELD_OR_KEY, 61
ER_CANT_REMOVE_ALL_FIELDS, 61
ER_CANT_USE_OPTION_HERE, 61
ER_CHECK_NOT_IMPLEMENTED, 61
ER_CHECK_NO_SUCH_TABLE, 61
ER_COLLATION_CHARSET_MISMATCH, 61
ER_COLUMNACCESS DENIED_ERROR, 61
ER_CONNECT_TO_MASTER, 61
ER_CON_COUNT_ERROR, 61
ER_DBACCESS DENIED_ERROR, 61
ER_DERIVED_MUST_HAVE_ALIAS, 61
ER_DUP_ENTRY, 61
ER_DUP_FIELDNAME, 61

ER_DUP_KEY, 61

ER_DUP_KEYNAME, 61

ER_DUP_UNIQUE, 61

ER_EMPTY_QUERY, 61
ER_FIELD_SPECIFIED_TWICE, 61
ER_FORCING_CLOSE, 61
ER_GRANT_WRONG_HOST OR_USER, 61
ER_HANDSHAKE_ERROR, 61
ER_HOST IS BLOCKED, 61

ER_HOST _NOT_PRIVILEGED, 61
ER_ILLEGAL_GRANT_FOR_TABLE, 61
ER_ILLEGAL REFERENCE, 61
ER_INVALID_DEFAULT, 61
ER_INVALID_USE_OF _NULL, 61

ER_IPSOCK_ERROR, 61
ER_KEY_COLUMN_DOES_NOT_EXITS, 61
ER_LOCK_DEADLOCK, 61
ER_LOCK_WAIT_TIMEOUT, 61
ER_MASTER_NET_READ, 61
ER_MASTER_NET_WRITE, 61
ER_MIX_OF GROUP_FUNC_AND_FIELDS, 6
ER_MULTIPLE_PRI_KEY, 61
ER_NET_ERROR_ON_WRITE, 61
ER_NET_FCNTL_ERROR, 61
ER_NET_PACKETS_OUT_OF_ORDER, 61
ER_NET_PACKET_TOO_LARGE, 61
ER_NET_READ_ERROR, 61
ER_NET_READ_ERROR_FROM_PIPE, 61
ER_NET_READ_INTERRUPTED, 61
ER_NET_UNCOMPRESS_ERROR, 61
ER_NET_WRITE_INTERRUPTED, 61
ER_NEW_ABORTING_CONNECTION, 61
ER_NONEXISTING_GRANT, 61
ER_NONEXISTING_TABLE_GRANT, 61
ER_NONUNIQ_TABLE, 61
ER_NON_UNIQ_ERROR, 61
ER_NOT_ALLOWED_COMMAND, 61
ER_NOT_SUPPORTED_AUTH_MODE, 61
ER_NOT_SUPPORTED_YET, 61
ER_NO_DEFAULT, 61

1

ER_NO_PERMISSION_TO_CREATE_USER, 61

ER_NO_REFERENCED_ROW, 61
ER_NO_SUCH_INDEX, 61
ER_NO_SUCH_TABLE, 61
ER_NULL_COLUMN_IN_INDEX, 61
ER_OPERAND_COLUMNS, 61
ER_OUTOFMEMORY, 61
ER_OUT_OF_SORTMEMORY, 61
ER_PARSE_ERROR, 61
ER_PASSWORD_ANONYMOUS_USER, 61
ER_PASSWORD_NOT_ALLOWED, 61
ER_PASSWORD_NO_MATCH, 61
ER_PRIMARY_CANT_HAVE_NULL, 61
ER_READ_ONLY_TRANSACTION, 61
ER_REGEXP_ERROR, 61
ER_REQUIRES_PRIMARY_KEY, 61
ER_ROW_IS_REFERENCED, 61
ER_SELECT_REDUCED, 61
ER_SERVER_SHUTDOWN, 61
ER_SPATIAL_CANT_HAVE_NULL, 61
ER_SUBQUERY_NO_1_ROW, 61
ER_SYNTAX_ERROR, 61
ER_TABLEACCESS_DENIED_ERROR, 61
ER_TABLENAME_NOT_ALLOWED_HERE, 61

ER_TABLE_CANT_HANDLE_AUTO_INCREMENT, 61

ER_TABLE_CANT_HANDLE_BLOB, 61
ER_TABLE_EXISTS_ERROR, 61
ER_TABLE_MUST_HAVE_COLUMNS, 61

Beta Draft

117

Beta Draft

ER_TOO_BIG_FIELDLENGTH, 61
ER_TOO_BIG_ROWSIZE, 61
ER_TOO_BIG_SELECT, 61
ER_TOO_LONG_IDENT, 61
ER_TOO_LONG_KEY, 61
ER_TOO_LONG_STRING, 61
ER_TOO_MANY_KEYS, 61
ER_TOO_MANY_KEY_PARTS, 61
ER_TOO_MANY_ROWS, 61
ER_TOO_MANY_USER_CONNECTIONS, 61
ER_UNKNOWN_CHARACTER_SET, 61
ER_UNKNOWN_COM_ERROR, 61
ER_UNKNOWN_PROCEDURE, 61
ER_UNKNOWN_STORAGE_ENGINE, 61
ER_UNKNOWN_TABLE, 61
ER_UNSUPPORTED_EXTENSION, 61
ER_USER_LIMIT_REACHED, 61
ER_WARN_DATA_OUT_OF RANGE, 61
ER_WARN_DATA_TRUNCATED, 61
ER_WARN_NULL_TO_NOTNULL, 61
ER_WARN_TOO_FEW_RECORDS, 61
ER_WARN_TOO_MANY_RECORDS, 61
ER_WRONG_AUTO_KEY, 61
ER_WRONG_COLUMN_NAME, 61
ER_WRONG_DB_NAME, 61
ER_WRONG_FIELD_SPEC, 61
ER_WRONG_FIELD_TERMINATORS, 61
ER_WRONG_FIELD_WITH_GROUP, 61
ER_WRONG_FK_DEF, 61
ER_WRONG_GROUP_FIELD, 61
ER_WRONG_KEY_COLUMN, 61
ER_WRONG_NAME_FOR_CATALOG, 61
ER_WRONG_NAME_FOR_INDEX, 61
ER_WRONG_NUMBER_OF _COLUMNS_IN_SELECT,
61

ER_WRONG_OUTER_JOIN, 61
ER_WRONG_PARAMCOUNT_TO_PROCEDURE, 61
ER_WRONG_SUM_SELECT, 61
ER_WRONG_TABLE_NAME, 61
ER_WRONG_TYPE_FOR_VAR, 61
ER_WRONG_VALUE_COUNT, 61
ER_WRONG_VALUE_COUNT_ON_ROW, 61
ER_WRONG_VALUE_FOR_VAR, 61

F

failover
Java clients, 83

IPv6 connection
JDBC URLs, 20

J
J2EE
connection pooling, 79
load balancing, 86
JBoss application server, 99
JDBC
and MySQL data types, 55

background information for Connector/J, 69

character sets, 57
CLASSPATH, 7
code examples, 17
compatibility, 52
configuration properties, 19
driver for MySQL, 1
SQLState codes, 61
troubleshooting, 107
versions supported, 3
JDBC URLs
alternative format, 20
general format, 19

L

load balancing
with Connector/J, 86, 89

M

multi-host connections
with Connector/J, 83

P

PAM authentication
with Connector/J, 61

R
replication
with Connector/J, 89

S

Spring framework, 101
SQLState error codes, 61
SSL, 58

T

Tomcat application server, 97
troubleshooting

Connector/J, 107

JDBC SQLState codes, 61

U
Unicode
with Connector/J, 57
useConfigs connection properties, 51

Beta Draft

118

Beta Draft

X

X DevAPI
client-side failover, 86

Beta Draft 119 Beta Draft

Beta Draft 120 Beta Draft

	MySQL Connector/J 6.0 Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Overview of MySQL Connector/J
	Chapter 2 Connector/J Versions, and the MySQL and Java Versions They Support
	Chapter 3 What's New in Connector/J 6.0?
	Chapter 4 Connector/J Installation
	4.1 Installing Connector/J from a Binary Distribution
	4.2 Installing the Driver and Configuring the CLASSPATH
	4.3 Upgrading from an Older Version
	4.3.1 Upgrading to MySQL Connector/J 6.0
	4.3.1.1 Running on the Java 8 Platform
	4.3.1.2 Changes in Connection Properties
	4.3.1.3 Changes in the Connector/J API
	4.3.1.4 Changes for Build Properties
	4.3.1.5 Change for Test Properties
	4.3.1.6 Other Changes

	4.4 Installing from the Development Source Tree
	4.5 Testing Connector/J

	Chapter 5 Connector/J Examples
	Chapter 6 Connector/J (JDBC) Reference
	6.1 Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	6.1.1 Properties Files for the useConfigs Option

	6.2 JDBC API Implementation Notes
	6.3 Java, JDBC and MySQL Types
	6.4 Using Character Sets and Unicode
	6.5 Connecting Securely Using SSL
	6.6 Connecting Using PAM Authentication
	6.7 Using Master/Slave Replication with ReplicationConnection
	6.8 Mapping MySQL Error Numbers to JDBC SQLState Codes

	Chapter 7 JDBC Concepts
	7.1 Connecting to MySQL Using the JDBC DriverManager Interface
	7.2 Using JDBC Statement Objects to Execute SQL
	7.3 Using JDBC CallableStatements to Execute Stored Procedures
	7.4 Retrieving AUTO_INCREMENT Column Values through JDBC

	Chapter 8 Connection Pooling with Connector/J
	Chapter 9 Multi-Host Connections
	9.1 Configuring Server Failover
	9.2 Configuring Client-Side Failover when using the X Protocol
	9.3 Configuring Load Balancing with Connector/J
	9.4 Configuring Master/Slave Replication with Connector/J
	9.5 Advanced Load-balancing and Failover Configuration

	Chapter 10 Using the Connector/J Interceptor Classes
	Chapter 11 Using Connector/J with Tomcat
	Chapter 12 Using Connector/J with JBoss
	Chapter 13 Using Connector/J with Spring
	13.1 Using JdbcTemplate
	13.2 Transactional JDBC Access
	13.3 Connection Pooling with Spring

	Chapter 14 Troubleshooting Connector/J Applications
	Chapter 15 Connector/J Support
	15.1 Connector/J Community Support
	15.2 How to Report Connector/J Bugs or Problems

	Index

